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Group representat ion theory is applied to the problem of calculating the relaxation 
modes of a point defect t rapped near an impuri ty a tom or other defect in a crystal, where 
more t h a n one set of neighboring sites is available to the point defect. For illustration, the 
case of a cation vacancy t rapped near a divalent impuri ty in the sodium chloride lattice is 
t reated, including nearest- and next-nearest-neighbor sites. 

Haven and van Santen [l]1 and Wachtman [2] have 
used group theory methods to determine the relaxa
tion modes appropriate to a vacancy trapped in the 
vicinity of an impurity ion in an ionic crystal, 
Wachtman applied the results to a study of Th0 2 
containing C a + + and oxygen ion vacancies. Haven 
and van Santen treated the case of a sodium-chloride 
lattice containing divalent impurities and sodium-ion 
vacancies. They gave complete solutions for all 
modes for the relaxation involving only nearest-
neighbor positions, and also considered several spe
cial cases when next-nearest-neighbor positions were 
allowed as well. Previously, Lidiard [3] had solved, 
without restrictions, for the electrically active relax
ation involving next-nearest-neighbor positions, but 
had not distinguished the two distinct modes present 
in his solutions. Dreyfus [4] showed that Lidiard's 
solution was indeed equivalent to two electrically 
active modes. Haven and van Satnen had also ob
tained two electrically active relaxation modes. 

The group theory methods can in fact be very 
readily extended to include any number of additional 
sets of neighbors. The problem of the undriven relax
ation can be expressed mathematically in matrix 
form [2]: 

where / is the identity matrix; C is a matrix in which 
the element in the i th row and jth column is the 
negative probability per unit time of a jump from the 
jth into the ith site, and in which the ith diagonal 
element.is the sum of all jump probabilities out of 

the ith. site; and p is the vector whose ith component 
is the probability of occupation of the 'ith site by the 
point-defect. The eigenvectors of C in the space of 
-» 
p are then the relaxation modes. 

Since by definition the various sets are not carried 
into each other by the point-group operations of the 
crystal, they correspond to independent, orthogonal 
subspaces of the vector space defined by the occupa-

i Figures in brackets indicate the literature references at the end of this paper. 

tion probability of the allowed sites. Hence the re
laxation modes corresponding to the various appro
priate irreducible representations of the point group 
can be found separately for each set, and then com
bined in a simple fashion. The relaxation modes for 
the whole system, involving all allowed sites, will be 
just linear combinations of the modes for the several 
sets, combining together only modes belonging to the 
same irreducible representation and arising, as part
ners, from the same symmetry-basis functions as 
discussed by Bethe [5]. 

Use of standard matrix algebra methods [6] allows 
the problem to be solved. A real, orthogonal trans
formation matrix may be formed from the uncom-
bined relaxation modes as columns. This matrix 
transforms C to reduced form, from which the eigen
values and the coefficients in the linear combinations 
of uncombined relaxation modes that constitute the 
eigenvectors may be calculated. The eigenvalues 
are just the reciprocal relaxation times. One eigen
value is always zero, corresponding to the equilibrium 
distribution of the defects. If the corresponding 

normalized eigenvector is Ui, and the other normal-

ized eigenvectors are denoted by ut, then the solu
tions to eq (1) can be written 

fi=jio exp [—\tt] 

where the fi0 are determined by the initial distribu-

tion, the uik are the components of u1} and the X* are 
the eigenvalues, and N is the total number of sites 
available. 

Application of this technique to the problem of 
the motion of a sodium-ion vacancy trapped near a 
divalent impurity ion in the sodium-chloride lattice, 
and allowing jumps among nearest and next-nearest 
neighbors as well as interchange between the 
impurity ion and the vacancy on a nearest-neighbor 
site, results in the following (unnormalized) relaxa
tion modes [7]: 
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M o d e n u m b e r 

1 
2 _ 
3, 4, 5, 6 

7, 8, 9 -
10, 11, 12— __ 
13,14, 15, 16, 17, 18 

Descr ip t ion 

H y d r o s t a t i c 
Uniaxia l compression 

Shear 
Inact ive.— 
Electr ical 

I r reducible 
representa t ion [8] 

AU 

Bu 

Tiu 
T2u 

Eelaxa t ion frequency 

0 

( 3 ^ 1 + ^ 3 + 2 ^ 4 ) j 
±[(3wi+wz—2Wi)2+2wzWi]2 

2(2wi+wz) 
2(3Wi-\-W2+W2) 

(W1+W2+W3+2W4) 
=b[(Wl+W2+M>3—2^4)2+4^3^4] 2 

Occupat ion ra t io , a 

WzIWi 
-2 

{(3^1+203—2Wi) 
^ [ ( 3 ^ 1 + ^ 3 - 2 ^ 4 ) 2 + 2 ^ 3 ^ 4 ] 2 \JWA 

{(W\-\-W2-\-Wz—2Wi) j 
=F[(Wi+W2+Wz—2W4)2+±WzW4]2}llVi 

MODE NUMBER 
1,2 

MODE NUMBER 
3 ,4 ,5 ,6 

MODE NUMBER 
13,14,15,16, 17,18 

In this table, the w's represent the jump frequencies 
for the unit motions, as follows: Wi—between nearest-
neighbor positions; w^—interchange of the impurity 
ion and the vacancy in a nearest-neighbor position; 
wz—nearest-neighbor to next-nearest-neighbor posi
tion ; and wA—the reverse of w3. For any group, such 
as modes 7, 8, and 9, having the same relaxation fre
quency, any linear combination will also be a relaxa
tion mode. In the group 3, 4, 5, and 6, there are two 
pairs distinguished by the cube axis along which the 
uniaxial compression acts. Note that relaxation 
along the third axis is the negative sum of those along 
the other two axes. In the electrically active group 
13 to 18, there are three pairs, again corresponding 
to the three independent cube axes. The occupation 
ratios, a, given in the last column are defined in the 
sketches shown in the figure for the various modes. 

The author is grateful to J. B. Wachtman, Jr., for 
the original suggestion that led to undertaking this 
problem, and to both J. B. Wachtman, Jr., and A. H. 
Kahn for extremely enlightening discussions. 
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