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Changes in the symmetry of a crystal caused by an applied strain have been used to 
show in wha t circumstances an internal friction peak can result from the motion of isolated 
point defects. General rules are given to make the prediction, and these are applied to 
several s tructures of common oxides. The prediction for rutile is compared with experi­
mental results which are interpreted by the movement of t i tanium ions between interstitial 
positions in the s t ructure. 

1. Introduction 
Point defects, such as vacancies and interstitial 

atoms, are important in the deformation of crystalline 
solids. They cause Nabarro-Herring creep and 
interact with dislocations. Knowledge on jump 
frequencies between neighboring defect sites is 
therefore interesting and may be obtainable from 
internal-friction studies. From the disappearance 
of the internal-friction peak in a-iron when deprived 
of carbon and nitrogen, Snoek [1] * proposed his 
theory on the stress-induced jumping of interstitial 
atoms in body-centered cubic structures. As sum­
marized by Berry [2], this model has been diversely 
applied to the study of other bcc metals such as 
tantalum containing carbon, oxygen, or nitrogen, 
and vanadium containing oxygen or nitrogen. 
Many new problems arise. I t is natural, for 
example, to ask if such studies can be useful in 
ceramic oxides and other nonmetallic crystals. 

The purpose of this paper is to present rules to 
show in what circumstances isolated point defects 
can contribute to internal friction, and to predict 
for specific oxides the types of defect which can be 
expected to give an internal-friction peak. There 
exist similar phenomena which by this stated purpose 
are excluded from discussion. For example, a point 
defect, such as an oxygen vacancy, may be con­
strained -to remain in the neighborhood of a rela­
tively immobile dislocation or defect such as a 
substitutional impurity atom. The motion of this 
oxygen vacancy can be studied by internal friction. 
The activation energy determined in such an experi­
ment may differ from that for a free vacancy. Some 
discussion of pairs of point defects including pairs of 
atoms making up a split-interstitial site can be 
found elsewhere [2,3]. 

The approach in this paper might be termed the 
crystallographic method and should be compared 

i Figures in brackets indicate the literature references at the end of this paper. 

with the "elastic dipole" being used by Nowick and 
co-workers [4] by analogy with the electric dipole 
because of the insight obtained by comparing 
dielectric and mechanical relaxation. The local 
distortion which interacts with a homogeneous 
strain does not have the symmetry of a true dipole, 
and "elastic dipole'' should be understood as de­
noting a centrosymmetric local distortion and not 
as a type of dipole. 

The "elastic dipole" method has developed out of 
work on mechanical and related electrical effects by 
A. S. Nowick and collaborators including B. S. 
Berry, R. W. Dreyfus, W. R. Heller, and R. B. 
Laibowitz [3,4,5,6,7,8]. A general paper is being 
prepared by Nowick and Heller [9]. 

The essential ideas of the crystallographic method 
have been previously introduced [10]. The present 
paper gives a fuller discussion and presents a series 
of applications. 

2. Theory 

2.1 . Equivalence of Sites Under Arbitrary Strain 

The box in the upper left-hand corner of figure 1 
represents a perfect, strain-free crystal. We are 
concerned with the state of affairs in a crystal 
containing defects which is placed under an externally 
imposed homogeneous strain. The approach used 
in the elastic-dipole method, as given, for example, 
by B. S. Berry [2], although he does not use the term 
"elastic dipole", is to begin with the perfect, un­
strained crystal, next to consider a defect introduced, 
setting up a local distortion, and finally to consider 
how the distorted portion of the crystal interacts 
with an externally applied strain. In the crystallo­
graphic method, the perfect crystal is considered to 
be homogeneously strained and a point defect is 
then inserted in either of two positions which were 
equivalent in the unstrained, perfect crystal. If the 
positions in the strained, perfect crystal were still 
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F I G U R E 1. Scheme showing two hypothetical ways of producing 
an imperfect, strained crystal from a perfect, unstrained 
crystal. 

equivalent, no internal friction would result, because 
a point defect would have the same energy if placed 
on either position and should therefore have no 
preference for either position. If, however, these 
positions in the strained, perfect crystal are inequiva-
lent, the point defect should have different energies 
when placed on the two positions and a preferred 
distribution should result, leading to internal friction 
if the jump rate of the point defect is approximately 
equal to the frequency of the alternating strain. 
Therefore, only the behavior of the perfect crystal 
under strain need be considered in predicting the 
possible existence or absence of an internal friction 
peak which is caused by a point defect which can 
occupy a given set of equivalent positions in the 
crystal. When a peak is permitted on symmetry 
grounds, its magnitude may or may not be adequate 
for detection by a given experiment. 

Now consider the effect of a homogeneous strain 
on a single crystal. We can think of a crystal as 
made up of a set of identical unit cells. Strain 
distorts these cells but, if the strain is homogeneous, 
all the cells will distort in the same way and so 
remain equivalent. Therefore, we need only con­
sider what happens in one unit cell. I t is convenient 
to choose the smallest possible cell—the primitive 
cell—which can be repeated in space to generate the 
crystal. In so doing, we have exploited the transla­
tion symmetry of homogeneous strain. There re­
mains one other general symmetry property of 
homogeneous strain; it is always centrosymmetric. 
Thus a center of symmetry in a crystal cannot be 
removed by homogeneous strain and two positions 
in a crystal which are equivalent due to a center of 
symmetry cannot be made inequivalent by homoge­
neous strain. 

These facts form the basis of Rule 1: Internal 
friction cannot occur if there is only one position 
per primitive cell (i.e., per lattice point in the strict 
crystallographic sense) or if there are only two, 
which are related by a center of symmetry. Internal 
friction should occur for some state of strain if there 
are two positions unrelated by a center of symmetry 
or if there are three or more positions. 

To illustrate the application of this rule, consider 
the hypothetical two-dimensional oxide, MO, shown 
in figure 2. The positions are labeled according to 
the conventions used in the International Tables for 

HYPOTHETICAL 2-DIMENSIONAL OXIDE MO 

Q 

O" O 
<^-

o 
dl 

- * * > • 

*d 

I 6 \ 

Q-*z 

•Y 

p4m, 

a I 
b I 
C 2 
d 4 
e 4 

CENTERS 

4 mm 

AT a ,b,c 

-a*0 

F I G U R E 2. A two-dimensional illustration of a crystal showing 
four unit cells. 

Each type of position is given the letter symbol as in ref. 11 and the number 
per unit ceil is given. 

X-ray Crystallography [11]. The metal ions are at 
positions a at the corners of the cells. There is 
only one a-type position per cell. Thus, all metal 
ion sites must remain equivalent under homogeneous 
strain. The oxygen sites also remain equivalent 
under homogeneous strain because there is only one 
6-type site per lattice point. Thus, we could not 
expect internal friction for either type of vacancy or 
for a substitutional impurity. The situation is 
different for interstitial ions, however. The largest 
interstitial position is labeled c and there are two 
per cell, cx and c2. There is no center of symmetry 
to relate them, so some state of strain must exist 
which will split the set of c-type sites into two in-
equivalent subsets of equal size. In this case, we 
speak of a splitting factor of two; in the case of no 
splitting, we speak of a splitting factor of one. Now 
consider the four 6-type positions. Interstitial 
hydrogen might take up such a position, close to the 
oxygen and equidistant from the two metal ions. 
The center of symmetry at the oxygen position 
keeps ei equivalent to e1} and e2 equivalent to e2 
after strain. Here we have a set of four sites per 
primitive cell splitting into two sets of two each 
and again we have a splitting factor of two. 

The type of position actually occupied by a point 
defect must, of course, be used in these considera­
tions and this is not always obvious. An impurity 
atom at a site (say a of fig. 2) may shift and form 
covalent bonds with some but not all of its initially 
equivalent neighbors, in which case it would have 
the symmetry of one of the neighboring special 
positions of lower symmetry (say d of fig. 2). Even 
when covalent bonds are not formed, the same result 
may be caused by the Jahn-Teller effect. In either 
case, alternating strain could then cause jumps from 
one of the rf-type positions neighboring an a-type 
position to another. A more complicated situation 
would arise if the a-type position also split into 
subsets under a suitable strain (this is not true for 
our hypothetical oxide, MO, but a more complicated 
example could be given for which it is true.) One 
would then have to consider jumps, characterized 
by activation energy Ed, between d-type positions 
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neighboring an a-type positions and jumps, charac­
terized by an activation energy Ea, between a-type 
positions. If a7-type positions are occupied because 
of the formation of covalent bonds, Ed and Ea will 
both probably be large and there is no general reason 
to assume one is much larger than the other. For 
Jahn-Teller symmetry lowering, however, it appears 
that Ed would usually be appreciably less than Ea. 
Jahn-Teller effects are known to exist [12] and sites 
of lower symmetry for "substitutional" atoms may 
be preferred by as much as about 0.1 ev. This is 
a rather low value compared to the activation 
energy for motion of point defects of the type impor­
tant in material transport processes, which is found 
[13] to range upward from about 0.4 ev for the 
alkali halides and is probably higher in the refractory 
oxides. If Ed is only a small fraction of Ea, one 
might expect to see two internal friction peaks in a 
curve of internal friction as a function of temperature 
at constant frequency, / . One peak should occur at 
a temperature for which the jump frequency, vd, of 
the impurity atom between d-type positions neigh­
boring a single a-type position approximately 
matches the experimental frequency. At this tem­
perature, the jump frequency, va, between a-type 
positions would be negligibly small if Ea is several 
times larger than Ed. If the temperature is raised 
enough to make va approximately equal / , the value 
of vd will become much larger. In effect, the motion 
over d-type sites averages out, so far as the internal 
friction peak caused by jumps between a-type sites 
is concerned, and for the discussion of symmetry 
restrictions on the high temperature peak, it is 
possible to treat the impurity atom as if it occupied 
the a-type sites rather than the d-type. This argu­
ment underlies our subsequent discussion of the 
symmetry conditions for internal friction associated 
with various point defects in the refractory oxides. 
For example, we discuss oxygen vacancies as if they 
occupied sites with the full symmetry of the oxygen 
position whereas it seems quite possible that Jahn-
Teller symmetry lowering occurs. Throughout the 
discussion we assume that jumps between the sites 
of full symmetry have an appreciably higher activa­
tion energy than jumps between neighboring sites 
of lower symmetry and we limit our consideration 
to the high temperature range for which the jumps 
between sites of full symmetry could give internal 
friction peaks if permitted by symmetry. 

2.2. Equivalence of Sites Under Specific States of 
Strain 

The splitting factor is simply the number of 
inequivalent subsets into which the original set of 
initially equivalent positions splits. Usually the 
splitting will be into equal subsets (i.e., into subsets 
of equal size.) Thus, a set of six positions would be 
expected to split into two subsets of three positions 
or into three subsets of two positions or into six 
subsets of a single position. Under very special 
conditions, the set might split into a subset of two 
and a subset of four positions. Such splittings into 
unequal subsets do occasionally occur. We proceed 
to formulate a rule for the case of splitting into equal 

subsets. If this rule is blindly applied to a case of 
splitting into unequal subsets, it will sometimes 
signal trouble by giving nonintegral values of the 
splitting factor. These situations can also be treated 
by the present methods, but we omit detailed dis­
cussions to save space. 

For the case of the splitting into equal subsets, 
we have Rule 2: The splitting factor of equivalent 
positions is equal to a fraction whose numerator is 
equal to the ratio of the order of the point group of 
the unstrained crystal to the order of the position 
point symmetry in the unstrained crystal; the de­
nominator is the same ratio evaluated for the strained 
crystal. The quantity in Rule 2 is just the fraction 
whose numerator is the number of equivalent 
positions in a set in the unstrained crystal and whose 
denominator is the number of positions in a subset 
in the strained crystal. The expression in the nu­
merator requires a little explanation. If an atom is 
put down in the unit cell of a crystal at a point having 
no position symmetry (i.e., a general position) and 
then acted upon by the symmetry elements of the 
crystal, a set of n atoms will be generated, which is 
equal to the order of the point group of the crystal, 
written n(PG). If the atom were put down at a 
position having some symmetry (special position), 
called the position point symmetry, then some of the 
posit..,as generated by the action of the symmetry 
opeiations would coincide. To take this into ac­
count, we must divide out the number of coincident 
positions to obtain the number of distinct positions. 
Thus, the numerator is the number of equivalent 
positions in the general case divided by the number 
which coincide when the position has position point 
symmetry denoted by PPS. The denominator is the 
same quantity evaluated in the strained crystal. 
Subscript zero will be used to refer to the unstrained 
crystal and subscript one to refer to the strained 
crystal. We shall give an application of Rule 2, but 
first let us consider how to evaluate the action of a 
specific strain on PG0 to obtain PGi, and on PPS0 
to obtain PPSi. Consider the symmctiv <W the 
components of homogeneous tensile si rain *•; >h3ar 
strain; i.e., what is the highest pomt symmetr}" 
(not necessarily crystallographic symmetry) v in­
sistent with the existence of a given strain. Take a 
point at the center of a sphere. Initially this point 
will have a symmetry which includes any possible 
crystallographic point symmetry; we wish to kiiOw 
the maximum symmetry possible after each com­
ponent of strain has been applied. The two types 
of strain components are illustrated in two dimen­
sions (for ease of visualization) in the upper part of 
figure 3, which shows the distortion of a square under 
tensile strain and under shear strain. The lower 
part of figure 3 shows the three dimensional point 
group (convention as in reference 11) which a sphere 
would possess after each of these strains. The point 
group for tensile strain, PGXX= oo /mmm, contains 
an infinite fold axis. That is, a rotational symmetry 
axis of any order is consistent with the axis of a 
tensile strain although axes higher than 6-fold cannot 
exist in crystals. The point group for shear strain. 

283 



PG x y =2/mmm (abbreviated mmm), is seen to differ 
from PGXX in containing no axis higher than 2-fold 
and in the orientation of the symmetry elements 
which it does contain. Any state of strain can be 
made up of combinations of tension and shear 
strains. The symmetry elements in a strained 
crystal will be those common to the unstrained 
crystal and to the strain. 

Curie's principle [14] postulates that a homoge­
neously strained crystal will have the symmetry ele­
ments common to the point group of the unstrained 
crystal and to the strain for the given mutual orien­
tation of the symmetry elements of the initial crystal 
point group and of the imposed strain. Curie's 
principle has been discussed especially by Shubnikov 
[15] and Koptsik [16]. We assume that this prin­
ciple applies to position point symmetry, i.e., that 
the point symmetry of a position in the strained 
crystal consists of the symmetry elements common to 
the original position point symmetry and to the 
strain (again in the given mutual orientation). 

Let us apply these ideas to the specific case of 
position c, the largest interstitial hole, in our hypo­
thetical oxide, MO. Figure 4 shows the effect of 
strain exx. The point group of the unstrained crystal, 
PG0, is 4mm, which means a 4-fold axis intersected 
by two sets of mirror planes. This is shown in a 
pattern in which the small solid square represents the 
4-fold axis and the heavy lines represent the mirror 
planes. The points show a set of eight equivalent 
general positions generated from one position so the 
order of the group is 8. We now take the symmetry 
elements in common with the point group of the 
strain exx, that is, we take the intersection, denoted 
by the symbol f|> °f the ^ w 0 groups of symmetry 
operations. There is a logical difficulty (but no 
practical difficulty) in taking the symmetry elements 
common to a three dimensional point group, PGXX, 
and a two dimensional point group, 4mm. One 
simply takes those elements of PGXX which have 
meaning with respect to the plane of 4mm and finds 
which of these are also present in 4mm; the result is 
the intersection desired. The common elements are 
one 2-fold axis and two mirror planes giving us 2mm 
(equivalent to mm2) for FG1 with order 4. The 
position c has two mirror planes which intersect in a 
2-fold axis so that PPS0 is 2mm with order 4. Taking 
the intersection with PGXX, the point group of exx, 
simply gives us P P S ^ P P S Q . The splitting factor is 
thus 2. Now consider the action of the shear 
strain exy, shown in figure 5 (the reference axes for 
components are Cartesian). The two figures on the 
left of the diagram are the same as in figure 4, but 
note the change in the point group of the strain. 
Taking the intersection of PG0 with the point group 
PGxy again gives us 2mm for PG^ The intersection 
of PGxy with PPS0, however, contains only the 2-fold 
axis so that n(PPS1)=2. The splitting factor thus 
equals 1. In other words, internal friction would 
not be allowed for exy, but it would be permitted for 

This rapid sketch indicates how the real, three-
dimensional oxides can be treated. 
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PGXX = oo/mmm PGxy = 2/mmm 

F I G U R E 3. The effect of tensile strain, eXX} and shear strain, exy, 
on a square. 

Stereograms show the point group associated with each strain in three dimensions. 
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F I G U R E 4. An illustration of the effect of tensile train in 
lowering the point group symmetry and position point sym­
metry. 

The point group of the tensile strain, PGxx, is drawn for three dimensions. 
Its application to two dimensions is simple; only the subgroup of operations 
appropriate to the plane under discussion need be considered. 
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F I G U R E 5. An illustration of the effect of shear strain in 
lowering the point group symmetry and position point sym­
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REDUCTION OF POINT GROUPS TO SUB-GROUPS BY HOMOGENEOUS STRAIN 
11 Centro-Symmetric Closses 

21 Non-Centro-Symmetric Classes 

. Indicates no super 
group 

No sub-group 

IT IS A NECESSARY CONDITION THAT A SUB-GROUP BELONG TO A DIFFERENT 
CRYSTAL SYSTEM THAN THE CORRESPONDING SUPER-GROUP 

F I G U R E 6. Reduction of point groups to subgroups by homogeneous strain. 

2.3. Calculation of Possible Subgroups 

There is a general table [10] which can be used to 
speed up the calculations somewhat. This table is 
shown in figure 6. There are only 32 crystallographic 
point-groups and homogeneous strain can only lower 
a given point group to one of its subgroups. Also, 
strain cannot change the crystal property of being 
centrosymmetric or non-centrosymmetric, so that the 
table splits into two separate parts. Further condi­
tions arise because no strain can eliminate a two-fold 
axis perpendicular to or a plane of symmetry parallel 
to a three-, four-, or six-fold axis without also de­
stroying the higher axial symmetry. Reduction to 
a subgroup turns out always to be accompanied by a 
change of crystal system (and a change in Bravais 
Lattice). This statement follows from the fact that 
even the most general strain in a crystal can be repre­
sented by a triaxial ellipsoid referred to Cartesian 
axes. A three-fold or higher axis restricts the triaxial 
ellipsoid to an ellipsoid of revolution which has mirror 
planes in all planes parallel to the unique axis and 
two-fold axes in all directions perpendicular to the 

unique axis. When all these conditions are taken into 
account, the table shown results. Point group 
4/mmm, for example, can go only to mmm in the or-
thorhombic system or further to 2/m in the mono-
clinic system or further to 1 in the triclinic system. 
Point group 23 can either degrade to 3 or 222, but 
the former can only go to 1, whereas 222 can retain 
one of its diads independently of the other two. 

3. Predictions for Specific Structures 

3.1. Corundum-Type Structures (A1203) 

Let us turn to some specific refractory oxides and 
other structures of interest, beginning with aluminum 
oxide in the stable, alpha form. _ This has the corun­
dum structure, space group R3c, point group 3m, 
with 3 A1203 in the rhombohedral unit cell. The 
calculations for this structure follow the lines of the 
example just given; the results are shown in figure 7 
with a drawing of the aluminum and hole positions. 
The drawing has been slightly idealized, following 
Kronberg [17], by showing the aluminum ions in 
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F I G U R E 7. Splitting factors for selected positions in the corundum structure. 

planes instead of being slightly displaced; the results, 
however, hold for the real structure. Starting at the 
hole in the base of the cell marked bx and moving 
along the c axis, we come to two aluminum ions, a 
hole, two more aluminum ions, and then the hole in 
the base of the next cell. The other aluminum ions 
and holes are arranged in identical chains which are 
parallel, but which have been moved up or down one 
position spacing. The oxygen ions are on hexagonal 
close-packed sheets at right angles to the aluminum 
chains. Our table shows that the tensile strains 
€xx or ezz cause no splitting of the sets of hole positions 
or aluminum positions. Shear strain causes a split­
ting into two equal subsets. The holes are labeled bx 
and b2. A 6i position is shown with its 6 neighboring 
b2 positions. One might expect an inert gas such as 
helium to occupy the holes and to diffuse by bx to b2 
type jumps. Internal friction experiments using 
shear strain might thus provide information of direct 
interest concerning the diffusion of noble gases in 
corundum. The set of aluminum positions splits into 
the subsets cx and c2. Acx position is shown with the 
neighboring c2 positions in the two adjacent sheets 
(all aluminum positions in the same sheet are d posi­
tions). There are three distinct types of jumps from 
a Ci position to a c2 position: jx is parallel to the c 
axis and passes between three equidistant oxygen 
ions; j 2 and j 3 must pass around an oxygen ion. In 
an internal friction experiment, we would have a 
relaxation process taking place by three parallel 
paths and the fastest path would be rate-determining. 
In diffusion, a series of steps is involved and the slow­
est step in the particular series would be rate 
determining. The usefulness of internal friction rela­
tive to cation diffusion in corundum is thus prob­
lematical and further work is needed on the combina­
tion of jumps required in diffusion. An interesting 
experiment involving aluminum positions would be 
the attempt to observe the interchange of aluminum 
and chromium ions in ruby by doing an internal 

friction experiment in shear. Turning now to the set 
of oxygen positions, we see that this splits into three 
subsets, ei, e2, and e-6. Here again a detailed theory 
of the combination of jumps involved in diffusion is 
needed, but it seems that some information of interest 
could be gained. In summary, for corundum it 
appears that internal friction experiments should be 
of direct interest to noble gas diffusion and very 
probably of interest in relation to oxygen diffusion (if 
nonstoichiometric alumina exists as various workers 
have suggested), but that the relation of internal 
friction to cation diffusion is problematical. 

3.2. Periclase-Type Structures (MgO) 

The results for MgO are shown in figure 8. There 
are just one magnesium ion and one oxygen ion per 
primitive cell so that no splitting occurs for either 
position. There are two large interstitial positions 
per primitive cell, but they are related by a center of 
symmetry so that no splitting takes place. The set 
of interstitial positions equidistant from three 
oxygen atoms does split into two subsets, but it 
seems unlikely that any impurity would occupy 
these positions. I t thus appears that internal 
friction experiments are unlikely to give any infor­
mation about isolated point defects in MgO. Pairs 
of point defects, however, are subject to different 
symmetry conditions as previously mentioned and 
internal friction experiments should be quite useful 
in the study of such pairs as a trivalent ion associated 
with a magnesium vacancy. There is also the pre­
viously mentioned possibility of the lowering of 
symmetry by the Jahn-Teller effect and the accom­
panying possibility of mechanical relaxation. 

3.3. Rutile-Type Structures (Ti02) 

The situation for rutile is shown in figure 9. Here 
splitting exists for the titanium positions, the 
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F I G U R E 9. Splitting factors for selected positions in the rutile 
structure. 

oxygen positions and the positions which interstitial 
titanium would be expected to occupy. The pat­
terns of splitting are different and internal friction 
experiments seem to offer a good way to get informa­
tion about the type of defect present in lightly reduced 
rutile. Data have been reported from two investi­
gations [18, 19] which are in good agreement with 
each other. A peak was found in vacuum-reduced 
rutile which was not present when the specimen was 
stoichiometric. The peak occurs under strain exx so 
that isolated oxygen vacancies are not responsible 
because" the splitting factor for oxygen positions 
under strain exx is one. The splitting factor for 
titanium interstitial positions under exx is two and 
the existence of the peak suggests that the predomi­
nant type of point defect in vacuum-reduced rutile 
is the titanium interstitial. No peak is observed 
under strain €xy, although the splitting factor for 
titanium interstitial sites is two. The interpreta­
tion of the defect causing the observed peak is thus 
uncertain; the interpretation which appears most 
probable is that the defect responsible is either a 
titanium interstitial (with a contribution to the 

internal friction under eXy too small to be observed) 
or a pair of titanium interstitials. Such a pair, 
with one interstitial in the edge of a (100) face and 
the other in the center of an adjacent (010) face 
would [18] give a peak under e 
or ezz. 

xx, but not under exy 

3.4. Fluorite-Type Structures (Th02) 

Turning now to thoria with the fluorite structure 
shown in figure 10, we see that the thorium positions, 
the oxygen positions, and the largest interstitial 
positions do not split under any strain so that this 
structure is not a promising one for internal friction 
studies of isolated point defects unless Jahn-Teller 
symmetry lowering leads to symmetry permitted 
internal friction as previously discussed. An internal 
friction peak attributed to pairs composed of a 
substitutional calcium ion and an oxygen vacancy 
has been reported [20]. 

3.5. Diamond-Type Structures (C) 

The next structure to be considered is the diamond 
structure shown in figure 11. The carbon positions 
do not split, nor do the larger holes called the tetra-
hedral interstitial sites. There are, however, smaller 
interstitial sites which a small ion might occupy. 
Weiser [21] has calculated the binding energy for 
several interstitial ions in either the tetrahedral or 
the "hexagonal" interstitial position in germanium 
or silicon which have the diamond structure. He 
concludes that for lithium, the "hexagonal' ' site is 
more probable than the tetrahedral site. This gives 
the opportunity for an interesting internal friction 
experiment, as the lithium ions should not contribute 
to internal friction if they are in tetrahedral sites, 

f h 0 2 (FLUORITE STRUCTURE) 

F m 3 m 

POSITION 

a (THORIUM) 

b ( L A R G E 
INTERSTITIAL) 

c ( O X Y G E N ) 

NQ 

1 

2 

2 

m 3 m 

SPLITTING 

£xx * x y 

1 1 

1 1 

1 1 

F I G U R E 10. Splitting factors for selected positions in the 
fluorite structure. 

C (DIAMOND STRUCTURE) 

Fd3m m3m 

NO. POSITION 

a(CARBON) 

b(TETRAHEDRAL) 

d ("HEXAGONAL" 
INTERSTITIAL) 

SPLITTING 

' X X 

I 
'xy 

I 

I 

2 

F I G U R E 11. Splitting factors for selected positions in the 
diamond structure. 
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but are permitted by symmetry to do so if they are 
in "hexagonal" sites. 

Southgate [22] has found an internal friction peak 
associated with oxygen in silicon. This could occur 
if the oxygen occupies "hexagonal" interstitial 
positions, but another possibility is that the oxygen 
is present in the tetrahedral holes, but occupies 
a special position of lower symmetry than the 
tetrahedral position. This is analogous to the sub­
stitutional positions a and d of our hypothetical two-
dimensional oxide, MO, discussed previously. Infra­
red spectra indicate [23, 24] that the oxygen atom is 
in the tetrahedral hole, but is more tightly bound by 
covalent bonds to two of the four tetrahedrally 
situated silicon atoms; the oxygen atom thus occupies 
a position of lower symmetry and the occurrence of 
an internal friction peak is then consistent with the 
present theory. One can look upon the existence 
of an internal friction peak caused by isolated oxygen 
interstitials in silicon as proof that they do not 
occupy sites with the full symmetry of the tetrahedral 
interstitial position. 

3.6. Perovskite-Type Structures (BaTi03) 

The perovskite structure is shown in figure 12. 
The oxygen positions split and this might be an 
interesting structure to study. 

3.7. Wurtzite-Type Structures (BeO) 

The wurtzite structure, which is the structure of 
both BeO and ZnO is shown in figure 13. Two of 
the components of shear strain cause splitting of 
anion, cation, and interstitial positions. This struc­
ture thus appears quite suitable for internal friction 
studies using the appropriate shear strain. 

3.8. Spinel-Type Structures (MgAl204) 

Finally, the spinel structure is shown in figure 14. 
The magnesium positions do not split, but the 
aluminum and the oxygen positions do. Spinel is 
known to form a solid solution with A1203 and 
internal friction studies might be of interest. 

4. Summary 

In summary, internal friction appears to offer a 
unique method of obtaining information on atomic 
jump rates for isolated point defects, but only under 
very special symmetry conditions as given by Kules 
1 and 2, or by the elastic dipole method, which is 
believed to give the same results so far as indicating 
the possible presence or absence of mechanical 
relaxation. 

The writers thank A. S. Nowick and W. R. 
Heller for discussing the elastic dipole theory prior 
to the publication of its general form and for helpful 
discussions concerning the possibility that atoms 
occupy positions of lower symmetry than might at 
first be supposed. 

Pm3m 

POSITION 

a (BARIUM 

b (TITANIUM) 

c(OXYGEN) 

m3m 

NO. 

1 

1 

3 

SPLITTING 

^xx ^xy 
1 1 

1 1 

2 * 2 * 

* UNEQUAL SUBSETS, 3 = 2 + 1 

F I G U R E 12. Splitting factors for selected positions in the 
perovskite structure. 

BeO (WURTZITE STRUCTURE) 

P 6 3 mc 6mm 

2 BeO IN PRIMITIVE CELL 

POSITION 

a (TRIGONAL INTERSTITIAL) 

b BERYLLIUM 

b' OXYGEN DISPLACED ALONG 
c AXIS FROM b 

b" (TETRAGONAL 
INTERSTITIAL) DISPLACED 
ALONG c-AXIS FROM b' 

F I G U R E 13. Splitting factors for selected positions in 
wurtzite structure. 

A I 2 M g 0 4 (SPINEL STRUCTURE) 

the 
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2 ( A I 2 M g 0 4 ) I N PRIMITIVE CELL 

POSITION 

a (MAGNESIUM) 

d (ALUMINUM) 

e(OXYGEN) 
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SPLITTING 
£xx £xy 

I I 

I 2 

I 2 

D 1/2 D 
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F I G U R E 14. Splitting factors for selected positions in the spinel 
structure. 
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