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A Method for Determining the Elastic Constants of
a Cubic Crystal from Velocity Measurements in a
Single Arbitrary Direction; Application to SrTiO,
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Three independent velocities of aound can be measured along any direction of pro
tlon in a cubie éryatal exeept the [100] and [111]) directions, Thess three velocities suthes to
determine the theee elastle eonstantz and for the [110] direction, the caleulation of thess
eansiants i5 eagy.  For all ather directions, the caleulation 13 more diffeult; the anly existing
rcthed appears to be a perturbation technique developed by Neighbonrs.

The present paper presents 3 method using exact aguations and an Herative proccdure
to solve thess eguations and to caloulate hoth the elastic constants Bnd their atandard
devialiona from the apund velocitizs and their standerd deviationa. The method iz ilhse-
trated with new dats on ScTiOy which give ¢p=3.1501+0027, c—L027 + 0027, Cu—
12154 OUHH > 1009 dynesfem® &t 25 °C,  'The importance of inclnding coveriance termes in
caleulations of the standard devistions iz emphasized,

1. Introduction

The determination of the elastic constants of single ervetals from measurements of the
velocity of sound is an extensive and active feld of research and several survey papers exist
(1,2, 3, 4]' Forany direction in a single exystal three types of sound wave may ba propagatad ;
ona guasi-longituedinal and twe guasi-transverse waves. 'The three corresponding velocities
are the roots of a cubic equation, sometimes called Christoffel’s equation, whose coeflicients
are complicated functions of the elastic constants and the direction eosines for the diraction of
propagaiion of the sound. 1In the case of a cubic crystal, there are only three independent
olastic constants so that velocity measurements in a siogle direction suffice to completely
datermina the elastic constants provided that no twe velocities ara reguired to be equal by
crystal symmetry.  Such equality is required for the [106] and (111) directions s¢ that messure-
ments in one of these directions alene do not provide sufficient information to determine the
three elastic constants. It may happen that for some gther direction two of lhe velocities are
equal; the three velocities are still independent quantities, however, and measurements in such
a direction would previde sufficient information to caleulate the three elaetic constants. We
assume that tha three velocitios #,, #, #;, and their standard deviations #;, ¢35, 3 have been
measured for some direction which is specified by direction cosines {, m, » and which does not
coincide with or closely neighbor [100] or [111]. We seek to calewlate the three independent
elastic conetants ¢,,, 3, ¢y and their standard deviations oy, 7z . The theory leads to 2
Bixth degree slgebraie aquation of which ¢, mp=t be & root. It may occur that more than one
of the roots of this equation are of repsonable magnitude so that some test is needed to
distinguish which of the roots is ¢,,, The direction of polarization of the guasi-transverse
waves provides such a test and we therefore assume thst the ocientation of the transducer
exciting each of the two quasi-transverse waves was also determined,

One would usually prefer to use the [110] direction for which the ealeulations are easy
and well known and for which the present method 1s unnecessary, However, single erystals
of many substances are available only in very limited sizes and shapes and it may occur that
the only avsailable crystals do pot permit messurement slong [110).  Also, even if [110] is
aceeszible for messurement, it may be desired to check the results by measurements in ather
directions,

*Haw at tbe Unlversity of Kanags, Lawmenot, ant
1 Tialicieed Agures ko brackets mdicata the lkteraiore references st the end of this payser,
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Neighbours and his coliaborators (5, &, 7], following a beginning by Abrenberg [£], have
daveloped an approximation method for ecaleulating elastic constenta from wave velocities
and have applied it to the casa of cubic crystals as well as several other crystal] systems=. In
Naighhours' methad, the equations relating the velocitios and tha elastic constants are expanded
into infinite serigs. The first term of each equation is & simple linear combination of elaatic
constants and the first step in his zelf-consistent caleulation is to zulve for the olastic constants
ignoring sll other termz. The values so obtained are used to caleulate the largest of the
remnaining terms of the infinite seriez and a second =et of valnes of the elastic constantsz i= then
ealeuluted considering only the elastic sonstants of the first term az wvarables, This procese
is repeated as often a8 necessary to obtain the desired degree of accuracy,  Buccessive sets of
elastic constuntz ealeulated in thi=s menner converge to a =et which satisfies the choszen finite
portions of Neighbours’ expanded form of the velocity equations,

Presumably the next order tetrmz could be enleulated if grester accuracy were desired,
but they apparently have not been piven. The present method which usez exact equations
thue provides u desirable alternative to Neighbours' method. The propugation-of-ervor theory
could presomably be applied to Neighbours’ method to caleulate standiard deviations, but this
ting apparently not been worked out. The present method ioeluodes such s ealeulation and
this i= worthy of note beeavse the caleulation involves quanlities which are not statistically
independent and serions errors can arise il the elementary propagation-ol-error equations,
which do not include covariance tertns, sre used. Any comparison of Neighbours' method
with the present work should note the preat utility and generality of the fortmer which can he
applied to erystals of any symmetry (if sufficient messuremnents are available) while the latter
is strietly limited to cubic erystais.

2. Equations for Calculating Elastic Constants

The equations relating elastic constanta to wave velocities are derived in many places;
mae, for example, Kolsky [#] for & trestment in conventional (matrix} natation and Farnell [10]
for a brief sketeh in temsor notation, The resulting seculsr equation can be written as an
equation invelving a 3 X 3 determinant yzing Farnell’s notation as

[Ta—épx|=0 {1
where
=t (2
p=density,
t=rvalocity,
and
PR_E % oo (e € ) (3

In the last expression, the o are the direction cosines for the direction of propagation and the
£ip7 Are the elastie congtants; both are referred to the ervetal axes.  Assuming cubic symmetry,
writing I, s, # for the direetion cosinea and uamg the conventional matrix notation for elastic
constants, t.ha I'n beeome

My=¢nl*+eu{mt+n} {4}
Tu=cym*+cu(®+n) ()
In=cun* e+ m?) (6)
1".; == Pm = {{-‘1; +{.‘“Hm {T}
=T ={(cia+.)in, (8)
and
l"=== Pa:: |:6|2+ﬂ“:|m'i"l-. Eg}
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These values can be subatituted into the secular equation to give a cubic equation in x. We
agsume that for s given direction {, #, n) the three velocitier have been messured and the thrae
eorresponding values 7, %z, 2., computed. Then for this direction the cubic eguation obtained
from the secular equation must faetor into

(— 1) (7— 1) (r— ) =0 (10)

When this factored equation is multiphed out and tha coefficients of each power of = equated
1o the coefficient of the same power in the secular equation three simultaneous equations are
obtained. Ta simplify these, let

«—ry, {11}
f=ty, (12)
¥="tutéu {13}
u=x;+ a9}y, {14)
V=2t Ti¥zt waz, (15)
and

W=E E;T;. {163

The three equationz are
u=a12a, |:1 ?}

p=[ad?+ BB+ )] [am® A+
+[ad* + 8E +m®)|[en®+B(1* +m®))
+[am? + 3+ n)]an + S+ mT)]
—yr it Bt minT), (18}
and
w=/[ad*-+B{m*+n*) [em® + G402 [am® -+ B+ m®)]
+ 2 Pmint— | Emon® -+ BT +m7)]
+Pn?om® - B 07} | mintlalf+ 8(m® +27) | (1%

The problem is to solve for &, 3, and ¥ from a known set of values of %, », @, [, m, and . The
procedurs is to use eq {17} to eliminate § from egs (18) and (19), Then use (15) to eliminate
the 4* term from (19). Thia leaves one equation, derivad from (18), which can be solved for
¥ and one eguation, derived from (18), which can be solved for »". Cubing the first of these
two equetions and squaring the second allowe the elimination of ¥ and pives a 6th degree
equation in & The coefficienta in thie equation are very long expressions when wrilten cut in
full and it is myuch more convenient to define various functions of the starting quantities {f, m,
%, , v, w) and eo simplify the algebraiec manipulations. We thus dafine

Lh=1-f2 {20}
my=1-—m? (21}
m=1—n’ (22}
L=3—1, ' (23)
ma=omi—1, (243
fig—3n"=—1, {25)
e=0m P min?, (26}
J=Pmny -+ Puim, + mintl, (27}
g =l +lsme4-mighy, {28)
h=Lmgng +Lngm, - mongd), {28}




F=lam L Hlamy L+ tgmg 1 s, {30)

E=Fmn 4 Eatm - otn ), (31)
s=Lmn, +hman +Hlimn, {32}
g=dmy 4l +mmg, (33)
r=20"m?, {34}
F=lmny, {35)
# =3:m-2ﬂ3,-. (36)
h=gfle—a, (37)
fy = (ugh + uif) fe—has, {38}
h=(ulk+uigf—duf)fe—v'p, (39)
&y =ul{ug— 40} fe - 1248w, {40}
anid

Pr=tf—1n. {41)

When (17} is used fo eliminate &, eq (12) becoines

v=e'gfd+ atf{d +uwigfd—e, {42)
aod &g (19) becomes

w= a8 f8+ Pl B+ ot p/8 |+ uts 8 1y ¥ af 1) 2. {43)
Substituting for +° from (42) into (43} gives

w=of (56— qf /8¢ + o (uch —uok —uf 1 /Be+ o (vwlep —ulk —ulgf+4a) [Be
4+ (fen—uwthg - dunk) (Re+ryd.  (44)

Computing 64r%%é from (42) and aquating to the sama quantity computed from (44) rives

dae® + 350"+ @0 +ape + ol + @yt do=0 {45}
where

ag=rpfé— ki, (46)

m=3uwrp,fe ~ Zjky, (47)

#y=3r{gp} + P He' — 2ty — 7, (48)

&y =r*{Bugin +o*F) fe — 2l + M), {49)

ay=3r(wPgl g [ — (2051 H R3), (50

ay=Jur'g' e —2gid, (51)
andd

aa—=rg*lel—g). (52)

The procedure for determining the elastic constanta is thus as follows: Starting with the
demsity, p, tha velocities &, 7, 3 and the direction cosines {, m, r ficst compute 5, s, #: from {2},
next pompute @, #, i from eqe (147 through {16}, next compute the goantities defined in eqs
(20) through (41), then compute the coefficients given by eqe (46) through (52). TUsing these
coefficients plot eq (45) to deterinine the real, positive roots in the region of physical intersst,
if there is more than one such root choose the correct ome, which is @=c);, a8 deacribed below.
Equation (45} can ha plotted and tha chosen root determined as accurately a2 desired by routine
antomatic computer techniques to save laborioys hand eomputation. Then compute £, from

ey={u—rp} 2. (53}
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Uge e (42) to compuie v*~={eu+ew)® and ohtain .  The sign of the aquare root is determined
by the 4* tarm in eq {43}). Then computn ¢y from

£1g="—Cu. {Hd}

The only ambiguity which arises in this ealealation resulte from the fact that more than one
physically reascnable root of eq (45} may ocour and esach such root ey lead to o set of three
elastic constants, none of which can be roled out by the inequalities of Alers and Neighbours
[Z1] or by eny genersl plivsical argument. In this case, one san take one set and compute the
polarization of each of the twe guasitransverse waves (the procedure for esinputing the
polarization is given, for example, by Famell [{0]) and compare with the polarization of the
tranaducer used to excite tha waves. Tha results should agree for only one set of elagtic con-
stants so that the correet choice of root for ¢, can be made in this way. A second way is to
measure velocities in & second direction in the erystal and compare the elastic constants so
determined. Although more than one set of elastic constante may give the correct velocities
for ane direction (but not the correct polarizations) only one set should give the carrect velocities
for both directions. This second way of choo=ing ¢, aveids the need to consider the direction
of polarization.

3. Equations for Computing Standard Deviations of the Elasgtic Constants

It js nsewned that uncertainty in the density and the direetion cosines wmnay be ignored
and that the principal uneertainty in the data is expressed by the three statistically independent
standard deviations o, oz, 3 of the velocitiea m, &, 15, It i3 easieal to divide the caleulution of
the etandard deviations oy, o, e (of &y, €1z, 6 Tespectively) into two parte. First, propagation-
of-error theory e used to ealeulate the variances and covariances of w, ¢, w. Second, these
resulte are then used to caleulate oy, o4z, a0d ;.

The following result [12| frem propagation-of-error theory is needed: Let x and y be
statistically independent wariables with known variances (varance—=aquare of standard
deviation}. Let % and # be defined as functionz of z and » and let F be defined as a function of
% and #. Thm

() () 2 (D) () v
A as()

Gy e
ortn=(32) () 44(2) ()

In some textbooks it is implicitly sssomed that quantities such as « and » are statistically
independent so that their covarianee is zero and equations such as (56) and {57} with no covar-
1ance terms are given mstead of the complete eg (55). The use of the completa equation is
important in the present case; the extension of these equations from two to three variables is
obvious,

Application of aga (56} through (48) gives

=t antoa {(5%)
o= (2o Poa+ (5 aa) o+ (i F ) 0, (60)
7y = (2ata) ma - (ria) 0 s+ {2125V 0 g, (61)
Cov (u, t)=(tm+n)eq+ (@t oa+ (1 +2des, (82}
Cov (4, w) =250+ E204; -+ 2i0ae g, {82}
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and
Cav (7, w) = {2+ 2)um0ai + (0 + 2508 Byo g+ (2 +20) 013003, (54)
where
dn=2pt0, C= Epthis, To=2pisry.

To use ag (55) for the standard deviations of the elaatic constants ohe must compute the
partial derivatives of these constants with respect to w, ¢, w. These partinlz of ¢, can be
ohtained by taking derivatives of eq {45). The resulting expressions involve partials of the
coefficients @, and these in: turn involve partials of the quantities dafined in eqs {28} through (41),
Lat subseripts %, », # danote partial differentintion with respect to , #, w respectively, Then
from eqs {38) fhrough {£1)

b= (ghk+Jf)le—4, {65}
Fo=2u[{jk+gf)/e—p], (66
=k {3uty—do)/e— Juls, (67
Proe=2ug, {68}
Fio=—"4ffe, {89
o= —4ukle, {70}
p=—1 {71}
k1e=8 {72}

and the following are all zero: A, g, S 80d Py We shall next require the portial derivatives
of the @, which are given by differentisting egs {46} through (52) with the result for the «
derivatives

tige = 3P profet— 2o ky, 3)
a1, =371+ 2uip P lfe'— 2k i — L, 74
a2 =3r2gm P+ 26 ) — 20— 2k — 2., (76)
B2, = (Bgipi+ Gugipra+ 3E) fe — 2 gkt hudiuFdibes), (76)
=P g+ 21— 20w — Piabr 77
Bsu=3r G 2ghra &)
arul with @g, equal to zers.  For the » derivatives the result is
tg=—12¢%p% e — 2kik 1o, (79)
@pp== — 2417y in 6 — 29 ks — 2y 10, (50)
By =— 1207 (2 P+ U — 2k~ s, B
g, = — 2drfugifef =2 {mb ki), 82)
o= —12F°6% /& — 24,54, (83)

nnd with 2y, 8nd @ equal to zero. For the o derivatives the result j=

= — 16k, (84}
diw=—161, {85}
Fow=— 1BA,, {35
e L (587}

and with f,,, #.e, and &, equsl to zero.  Define

Dr=Bage + 5uee,) + e, + Bagel + 2mey 4 (88)
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then differentistion of eq (45) gives

eny=— (tsulry T Loty T Tantny T oty + Ernlin G0 {2, (89}

110= = (thaet) |, T Bastyy F tlaety] + trty Heg D, (80)
and

¢||w=—{ﬂauﬂﬁ+ﬂw¢1§+ﬂm¢n+ﬂw}fﬂr (o1}

where wa have assumed £r=0, For the [110] direction =0 and a different treatment, deseribed
below, is required. The derivatives of £ ara obiained from (53) and are

Coly™ {1 _fllu}.l'lzj (92‘,:'

Cue=——4¥%n n.l"E;. (93}
and

Cla= _'cliw,'fg- ':94}

The derivatives of o,y are obtained from cq (54) aod =0 involve derivatives of ¥.  From (42} we
have

¥={ge;+ujen+ mMe, {95)
s0 that
() u=(2engeratjers +uferict pru) e, {28)
{'}'E}u= {2'?1 1H¢11:+ ﬂjﬂlw_‘l‘:] .I'I‘i‘ﬁ {9?)
mod
(¥} o={2eng+uflenode. fas)
Now uze y.={v"./2y and oq (54) to obtain
Tiae= {Ts} w27 — anw, ALY
Cize={¥" 1o 27 — fuis, (100}
and
Cloe= {Tz}mj'lgT_clils- [lﬂ]}

The oxpression for ¢}, is then
T =t et 00 o+ 2eiutine 0OV (1, 1]+ 2000w 00V (38, W) + 200000 COV (3, 00}, (102)

The squations for ¢s and ¢ are the same with the subscripts on e, chaneed 0 44 and 12
respactively.

The procedure for obtaining the desired standerd deviations is thus straightforward
although tedious. One begins by caleulating the variances and covariances of w, v, to fromn eqe
{593 through (84). Then compuate io sucecesalon the quantities given by eqs (65) through (102).

Following eq (01} we notad that D=0 for the [110] direction. This can be seen as follows:
For the [110] direction » is zero by oq (34) and the 4* terin drops cut of eq (43). Then g (45)
simply consista of the square of all the terms iv (43) except . Lot

B=ota,/B+ aPuh {8+ ctp /8 + w8 — yH{af -+ uk) /2 —ww. (103)

Then aq {45) for the [110] direction s B2=0, and Dia thenr D=2F %, and therofore D=0,

The foregoing statistical treatment thus fails for any direction for which ¢ is a double
root: of ag (45). This sppears to be true only for the [110] direction {we have glready noted
that the [100] and [111] directions are not suitable for the methoed of this paper) but the writers
have not been able to construct & proof.
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For the [110) direction the following results are well known and ansily obtained from, the
trentment of Kolsky [3], for exnmple. If & corresponds te the longitudinal wave, 7. to the
transverse wave with displacement parallel to [081], and =z, to the transverss wave with dis-
placemnent parallel to [110], then

e =2 — 4y, (104}
Gy =) —iy— Ty, {105;

an
=1 (106}

These give o 2 2 2 7

O = 01g= Opy T TagF Oy, (107}

an
T — T, {lﬂsj

We have gssumed throughout this paper that errors in thickness and density can be
neglected in comparizon with errors 1o transit time ¢ If standard deviations were sssipgned to
the thickneas and density as well, the guantities x, would not be statistically independent and
two modifications of the foregeing treatment would be reguired.  First, eqe (66) through (58)
would have to be used with the thickness, density, and transit times as independent variables
t0 give the varionces end coverlances of «, », #.  The calculations using eqs (65} through 102)
would then go as before. Second, eqe (107) and (108) would have to be replaced by appropriate
cxpressions in terms of the standard deviations of the thickness, density, and transit times
derived from (58) through (58) and {104) through (108). No attempt has been made to allow
for uncertainties in the orientation; such aliowanee should probably be mnde but appears to
be an exceedingly difficult problam.

4. Procedure for Computing the Elostic Complinnces and Their Standard
Deviations

The foregoing results form a complete untt, giving the elastic constants, £, and their
standard devietions. The present section may be slapped unless it is desired to put the results
in terme of the elasiic comphances, 8;;  The caleulation of the g,y from the ¢, is trivial but the
calculation of the stendard deviations of the 2y is more difficult snd serlous errors can result
if the covariance terms are not taken into account, There appears to be ne discussion of this
problemn in the Hiterature on elastic constants, 80 we present the method for the cubic case.

The well-known equations for the elastic compliances of a cubic crystal in terms of the
elagtic constanta aTe

sy=lentenlfe, (108)
Fa—= —ﬂujrﬂ, {llﬂ:l
and
Pl = lll'l'ﬂ", {1 llj
where '
l:=f{-'u_¢:'z} (et 2em). (112}

To compute the standard deviations of the s,; one can apply eq (53) which requires the
covarisnces of the e,  To compute thesa covariances one might try to use cg (58} which would
ke wrong hecause 7 snd y wore assumed to be statisticolly independent.  We require the more
general formula

cov (F, G) oF

AF G, OF O ﬁ+(¥%+ﬁﬁ cov {, ) (113}

duon T o

for the covariances [12] of F and & which are defined in terms of quantities « and # which are not
statistically independent. Writing cov (11, 12) for the covariance of ¢;; and e,z wa have
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v (11, 12}:ﬂlluﬂlzufi-[_ﬂllncﬂuﬂ'f-l'ﬂ]]uﬂlﬂmﬂiu-l_(Glluﬂlll-l'ﬂ]]n‘ﬂ]in} cav [, i-"}
F (e utiznt Crawtize) 2OV (1, 1)+ {11400+ E1lizs) cOV (8, W) {114}

The expressions for cov (11, 44) and cov {12, $4) are identical exeept for the approprinte changes
of subseripta, but we shall not need to caleulate these Intter two covariances. Writing £y, for

& . .
= and =similarly for other partials we have
11

3".“=c_f¢u+¢12:'§fﬂ'u+CL=}' (115}
#1 r=6 (ﬂu+ﬂ12j§iﬁrz+ﬂu}a (116}
Eunzlﬁcﬁi@'}! (117}

{C n+ '31‘2:' {dﬁlz_lﬁ 1]
ot !

e 1 {11,

By 12— — |:113}

and Wwith £, w, #1246 %wn, S Ml zero,  Letting oy, represent the standard deviation of &,
and similarly for the other &,

we have
9'3”='BJI‘I.]]F?I+3HLI, wela 281, 180,12 cov (11 12) (120)
ﬂf:z=~'5'?2. ath T8 ol 2, g2 0ov (11, 12), (121}
and
Try ™= Tqal i (222}

For the [110] direction the covarianees of e; and ez is best calewdnted direetly from (104 and
{105) uging (58%). The result is

cov (11, 12)=a? + ods+ots. (123)

Thus, the procedure for caleulating the standard deviation of the #, for any direction,
including the [100] and [111], is te use aga (120) through {122) evaluating the partial derivations
from eqs (1156} through (119}, The situation considered in the present paper, uszing only
information obtainable ftom measurements in a single direction, compels us to exclode [100]
and [111] from the present congiderations, For [110] cov (11, 12) i5 given by (125}); for any
other direction, it is given hy {114),

8. Meagurements on SyTi0,

The writera carried out u series of measuremetits on 4 boule of strontium titanate, kindly
supplied by the National Lead Company, to e¢heck the melhod. The density value [{3] of 5.116
glem® was ueed. Flate were first ground to give the maxmum thickness between parallel
faces permitted by the shape of the crystal. A series of measurements waa taken and analyzed.
The eryate]l was then recut normal to the [110] direction and & second sories of messurements
waa then made. The messurements were all made with 10 Mo/s X-cut and AC-cub quartx
cryvelals 0.25 in. in diametar. A commercial pulsed ssciilator was used to drive these trunsd ucers.
The echoes were observed on g dual trace oscilloscope simulteneously with o 1 Me/s standard
frequency sigtial.  The resultz are sumarized in tabie 1.
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Tapre 1. Data on 8rTi0y gf 25% O

Parimeer Brnbol Fimg Second diree-
o et s thotn, |10
Trirsok[omn Wt LR 1L} ik MIT11
Ciginies__ .| = L ITieD , TRl
it BEA00 . DM
Length i O 5, MH5 i
‘Trancit tlmea, M-lpes______________, i Id. 16210, 10 1L, 3Lk 05
iy 22, 05 18 714, OF
[N 23, 15 07 b RIFEN ]
£, e dyoelemd | ¥ i, Bk 051 4, =, 02
¥4 1, 181, U5 1, 918, D1
| 1. 4T4=. 008 1. ==, 010
6. Repulis

)

The data ara summarized in table 1. Thea calculation of e, by the method of eqs (20)
through {52} was programmed for an automatic computer using an iterative procsdare of solving
eq {45) which gives the resl roots to four places in the interval 0.0 to 503107 dynes/cn®.
For the first direction, there iz » single root at x=3.162 and a single root st «=3.497 X 10"
dyvoesfern®.  For the second direction there is a double root at #=3.153 and a double root &t
a=3.462 105 dynes/con®. A complete set of elastic conztantz was computed for each of these
poesible choices of ¢ and the resulte are compared in toble 2. The choice of 3.407 and 3.462
leads to s dieasgreement in ¢, which is outside the experimental error. The choice of 3.182
and 3.153 gives consietent sets of constants. The latter choice is aleo known to be correct
because 3.153 s obtained from eq {104} when 2> and 2, ave properly distinguished by the polari-
zation of the correaponding sound waves,

For tha first direction, the standard deviations of the ¢,, were determined hy the method
of eqs (59) through (102) using An automatic compuier. Equationa (107} and (108} were used
for the second direction. The final values for the ¢,; were computed by averaging the rasults
for the two directions weighted by the reciprocals of the squares of the standard deviations.
The &, values were then computed from eqs {109) through (172) and their standard deviations
[rom eqs (113) through (123).

TasLE 2. Compdrison of potaible sas of elastic oonalanls

ooytenid Firgt direction (Bamod direetion

Corapatlesd Bt sowrteet olilew o 2oal Rt oy

Blla e wam st LR 4, =0
T 1.200 LK== i
L L T P, 104 I, (== 00

The ¢, and c;; values of Bell and Rupprocht [14] agree within experimentsl error with
the results of the present work as shown in table 3; the ¢, value of Poindexter and Giardini
[18] also aprees within experimental error, but their ¢;, value differs from the present result by
much more then twice the standard devistion and so is significantly different from our result.
Tha other workers' &, values lie on cither side by slight!y more than twice the standard deviation
of our value, but are probably within the combined experimental erver of their determination
and ours. The writers feel that the ¢, values of Poindexter and Giardini sheuid be rejected
and that the remaining data show reasonable agreement.

The anizotropy of & cubic crystal depands on the quantity § defined by

ﬁ=2|?11‘—'2hg—3u. (124}
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The Young's modulus, ¥, and shear modulus, &, are given as a funetion of the usual spherical
polar angles by

}IT=311_6 sin? §f cos? A— (&4} sint & sin® 20, (125)

r

and -{l;,-=aﬂ+26 it @ coa® 84 (3/2} sint & ain® Lp, {126
i

These quantities are plotted in figure 1 which shows that SrTi0, comes close to being isotropic;
Young's modulus variez by only 10 percent and the shear modulus hy 5 percent.

Taere 3, Comparizon with eloalic conlmnlr of SrTi0: of 8570 determined by ofher workers
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7. Summary

{1} Velacity mensurements in a single direction in s cubic eryatal provide enough informa-
tion to determine the thres elastic constants, ¢, except for the [100] and [111] directions which
are therefore exeluded from consideration in this paper.

{2} For the [110] direction the computation of the elastie eonstants and their standard
deviations iz sirnple and is piven in eqa (1043 through (108).

(3 For uil other directions the ealeulations are much more complex. The general pro-
cedure for the elastic conetants (applicable aleo to the [110] divection) ie given in eqs (2} through
(54). The general procedure for the standard deviations (mot applicable to the [110] direction)
is given in eqe {59) through {102},

(4) The procedure for ealeulating the slestic compliances, 2, and their standard devia-
tions is gpiven in eqs (108) through (123). Throughout the statistical treatinent the covariance
terma sre included and their importanee is emphagized.

(5) The method is applied to SrT50,; and results in good apresment with previous workers
are obtainad.

The wrilers thank W. E. Tefft of the Nutions]l Buresu of Standards for bringing eqs (55)
and (55} to their attention, and M. D. Beals of the National Lead Company for supplying the
BrTi0; apecimen.
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