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Three independent velocities of sound can be measured along any direction of propaga
tion in a cubic crystal except the [100] and [111] directions. These three velocities suffice to 
determine the three elastic constants and for the [110] direction, the calculation of these 
constants is easy. For all other directions, the calculation is more difficult; the only existing 
method appears to be a perturbat ion technique developed by Neighbours. 

The present paper presents a method using exact equations and an i terative procedure 
to solve these equations and to calculate both the elastic constants and their s tandard 
deviations from the sound velocities and their s tandard deviations. The method is illus
t r a t ed with new da ta on SrTi0 3 which give Cn=3.156±0.027 , Ci 2=1.027± 0.027, c 4 4 = 
1.215±0.006X 1012 dynes/cm2 a t 25 °C. The importance of including covariance terms in 
calculations of the s tandard deviations is emphasized. 

1. Introduction 

The determination of the elastic constants of single crystals from measurements of the 
velocity of sound is an extensive and active field of research and several survey papers exist 
[1, 2, 3,4]} For any direction in a single crystal three types of sound wave may be propagated : 
one quasi-longitudinal and two quasi-transverse waves. The three corresponding velocities 
are the roots of a cubic equation, sometimes called ChristoffeFs equation, whose coefficients 
are complicated functions of the elastic constants and the direction cosines for the direction of 
propagation of the sound. In the case of a cubic crystal, there are only three independent 
elastic constants so that velocity measurements in a single direction suffice to completely 
determine the elastic constants provided that no two velocities are required to be equal by 
crystal symmetry. Such equality is required for the [100] and [111] directions so that measure
ments in one of these directions alone do not provide sufficient information to determine the 
three elastic constants. I t may happen that for some other direction two of the velocities are 
equal; the three velocities are still independent quantities, however, and measurements in such 
a direction would provide sufficient information to calculate the three elastic constants. We 
assume that the three velocities v1, v2, v%, and their standard deviations <r1, a2, <rz, have been 
measured for some direction which is specified by direction cosines I, m, n and which does not 
coincide with or closely neighbor [100] or [111]. We seek to calculate the three independent 
elastic constants c n , Ci2, c44 and their standard deviations <rn, v12, cr44. The theory leads to a 
sixth degree algebraic equation of which Cn must be a root. I t may occur that more than one 
of the roots of this equation are of reasonable magnitude so that some test is needed to 
distinguish which of the roots is Cn. The direction of polarization of the quasi-transverse 
waves provides such a test and we therefore assume that the orientation of the transducer 
exciting each of the two quasi-transverse waves was also determined. 

One would usually prefer to use the [110] direction for which the calculations are easy 
and well known and for which the present method is unnecessary. However, single crystals 
of many substances are available only in very limited sizes and shapes and it may occur that 
the only available crystals do not permit measurement along [110]. Also, even if [110] is 
accessible for measurement, it may be desired to check the results by measurements in other 
directions. 

*Now at the University of Kansas, Lawrence, Kans. 
i Italicized figures in brackets indicate the literature references at the end of this paper. 
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Neighbours arid his collaborators [5, 6, 7], following a beginning by Ahrenberg [8], have 
developed an approximation method for calculating elastic constants from wave velocities 
and have applied it to the case of cubic crystals as well as several other crystal systems. In 
Neighbours' method, the equations relating the velocities and the elastic constants are expanded 
into infinite series. The first term of each equation is u simple linear combination of elastic 
constants and the first step in his self-consistent calculation is to solve for the elastic constants 
ignoring all other terms. The values so obtained are used to calculate the largest of the 
remaining terms of the infinite series and a second set of values of the elastic constants is then 
calculated considering only the elastic constants of the first term as variables. This process 
is repeated as often as necessary to obtain the desired degree of accuracy. Successive sets of 
elastic constants calculated in this manner converge to a set which satisfies the chosen finite 
portions of Neighbours' expanded form of the velocity equations. 

Presumably the next order terms could be calculated if greater accuracy were desired, 
but they apparently have not been given. The present method which uses exact equations 
thus provides a desirable alternative to Neighbours' method. The propagation-of-error theory 
could presumably be applied to Neighbours' method to calculate standard deviations, but this 
has apparently not been worked out. The present method includes such a calculation and 
this is worthy of note because the calculation involves quantities which are not statistically 
independent and serious errors can arise if the elementary propagation-of-error equations, 
which do not include covariance terms, are used. Any comparison of Neighbours' method 
with the present work should note the great utility and generality of the former which can be 
applied to crystals of any symmetry (if sufficient measurements are available) while the latter 
is strictly limited to cubic crystals. 

2. Equations for Calculating Elastic Constants 

The equations relating elastic constants to wave velocities are derived in many places; 
see, for example, Kolsky [9] for a treatment in conventional (matrix) notation and Farnell [10] 
for a brief sketch in tensor notation. The resulting secular equation can be written as an 
equation involving a 3 X 3 determinant using FarnelFs notation as 

| r ,*-8,*3 | = 0 (1) 
where 

x=pv2 (2) 

p=density, 

v=velocity, 
and 

r i f c =K ] C oifa^Cijia+Cijijc) (3) 
£ i, I 

In the last expression, the a* are the direction cosines for the direction of propagation and the 
Cijki are the elastic constants; both are referred to the crystal axes. Assuming cubic symmetry, 
writing l} m, n for the direction cosines and using the conventional matrix notation for elastic 
constants, the Tjk become 

Tn=cnl
2+Cu(m2+n2) 

T22=cnm
2+cu(l2+n2) 

r33=cnn
2+ca(l2+m2) 

r i2=r 2 i= (c i 2 +c u ) lm, 

Tu=T31 = (ci2+C44)ln, 

T23=T32=(ci2+cii)mn. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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These values can be substituted into the secular equation to give a cubic equation in x. We 
assume that for a given direction (I, m, n) the three velocities have been measured and the three 
corresponding values xu x2, H, computed. Then for this direction the cubic equation obtained 
from the secular equation must factor into 

(x—Xi) (x—x2) (x—xz)=0. (10) 

When this factored equation is multiplied out and the coefficients of each power of x equated 
to the coefficient of the same power in the secular equation three simultaneous equations are 
obtained. To simplify these, let 

<x=cu, (11) 

P=cu, (12) 

y=c12+cu, (13) 

U = X1 + X2 + XS, (14) 

v=x1x2+x1xz+x2xz, (15) 
and 

The three equations are 

and 

w=x1x2x3. (16) 

u=a+2p, (17) 

v=[cF+p(l2+m2)][am*+p(l2+n2)] 

+ [al2+l3(l2+m2)][an2+p(l2+m2)] 

+ [am2+l3(l2+n2)][an2+^l2+m2)] 

-7 2 (W+W+mV) , (18) 

+ 2yH2m2n2-y2{l2m2[an2+!3(l2+m2)] 

+ZV[am 2 +^(Z 2 +^ 2 ) ]+mVM 2 +iS(m 2 +^ 2 ) ]} . (19) 

The problem is to solve for a, 0, and y from a known set of values of u, v, w, I, m, and n. The 
procedure is to use eq (17) to eliminate $ from eqs (18) and (19). Then use (18) to eliminate 
the y2 term from (19). This leaves one equation, derived from (18), which can be solved for 
y2 and one equation, derived from (19), which can be solved for T3. Cubing the first of these 
two equations and squaring the second allows the elimination of y and gives a 6th degree 
equation in a. The coefficients in this equation are very long expressions when written out in 
full and it is much more convenient to define various functions of the starting quantities (I, m, 
n, u) v, w) and so simplify the algebraic manipulations. We thus define 

Zi = l -Z 2 , (20) 

mi = l—m2, (21) 

m = l—n2, (22) 

Z2=3Z2—1, (23) 

m2=3m2-l, (24) 

rc2=3tt2—1, (25) 

e=l2m2+l2n2+m2n2, (26) 

f=l2m2n2+l2n2m2+m2n2l2% (27) 

g=l2m2+l2n2+m2n2, (28) 

h=l2m2ni+l2n2mir\- m2n2li, (2 9) 
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and 

j=l2mi+lim2+l2ni+lin2+ni2ni+iniri2t (30) 

k=l2m2ni-\-l2n2mi+m2n2lh (31) 

p=l2mi7ii+lim2n i+/im1n2, (32) 

g=/ imi+/ i% + mini, (33) 

r=2l2m2n2, ' (34) 

s=limini, (35) 

s1=l2m2n2, (36) 

9i=Sflesi, (37) 

Ai = (w#&+M£/) /6—hu, (38) 

j l = {u2jk+u2qi-4,vj)le-u2p, (39) 

&i=W& (w2g;—4v)/e—v?s+8w, (40) 

Pi=u2g—4:V. (41) 

When (17) is used to eliminate #, eq (18) becomes 

v=a2g/4:Jrauj/4:Jru2q[/4:—y2e, (42) 

and eq (19) becomes 

w=ass1/S + a2uh/S + au2p/S+uds/S+ryz-y2(af+uk)/2. (43) 

Substituting for y2 from (42) into (43) gives 

w=a3 (sxe—gf) /Se+OL2 (ueh—ugk—ujf) /Se+a (u2ep—u2jk—u2qj-\- 4vf) /Se 

+ (uzes—uskq+4:uvk)/8e+ryd. (44) 

Computing 64r276/e3 from (42) and equating to the same quantity computed from (44) gives 

aQa6+a5a
5+a4La4:-\-aza

s+a2a2-\-aiaJi-ao=0 (45) 
where 

a,=r2p\/ez-k2
u (46) 

a1=3ur2jp2Jez-2j1ku (47) 

a 2 = 3 r 2 ( ^ + ^ » / e 3 - 2 A A - j t , (48) 

a^r^Qugjp^u^/e'^ig.h+h^), (49) 

a 4 = 3 r 2 ( ^ i 2 + ^ 0 / ^ 3 - (2ffiii+A?), (50) 

a5=3ur2g2j/ez-29lhly (51) 

and 

<H=i*tfl#-g\. (52) 
The procedure for determining the elastic constants is thus as follows: Starting with the 

density, p, the velocities Vi, v2, v3 and the direction cosines I, m, n first compute x{, x2, x3 from (2), 
next compute u, v, w from eqs (14) through (16), next compute the quantities defined in eqs 
(20) through (41), then compute the coefficients given by eqs (46) through (52). Using these 
coefficients plot eq (45) to determine the real, positive roots in the region of physical interest; 
if there is more than one such root choose the correct one, which is a=Cn, as described below. 
Equation (45) can be plotted and the chosen root determined as accurately as desired by routine 
automatic computer techniques to save laborious hand computation. Then compute cu from 

Cu=(u-cu)/2. (53) 
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Use eq (42) to compute y2=(cu+Cu)2 and obtain y. The sign of the square root is determined 
by the 73 term in eq (43). Then compute ci2 from 

Cu=y—cu. (54) 

The only ambiguity which arises in this calculation results from the fact that more than one 
physically reasonable root of eq (45) may occur and each such root may lead to a set of three 
elastic constants, none of which can be ruled out by t*he inequalities of Alers and Neighbours 
[11] or by any general physical argument. In this case, one can take one set and compute the 
polarization of each of the two quasi-transverse waves (the procedure for computing the 
polarization is given, for example, by Farnell [10]) and compare with the polarization of the 
transducer used to excite the waves. The results should agree for only one set of elastic con
stants so that the correct choice of root for cn can be made in this way. A second way is to 
measure velocities in a second direction in the crystal and compare the elastic constants so 
determined. Although more than one set of elastic constants may give the correct velocities 
for one direction (but not the correct polarizations) only one set should give the correct velocities 
for both directions. This second way of choosing cn avoids the need to consider the direction 
of polarization. 

3. Equations for Computing Standard Deviations of the Elastic Constants 

I t is assumed that uncertainty in the density and the direction cosines may be ignored 
and that the principal uncertainty in the data is expressed by the three statistically independent 
standard deviations <TU <T2, 03 of the velocities V\} v2, v3. I t is easiest to divide the calculation of 
the standard deviations o-n, (712, <744 (of cnj ci2, c& respectively) into two parts. First, propagation-
of-error theory is used to calculate the variances and covariances of u} v, w. Second, these 
results are then used to calculate an, vi2, and au. 

The following result [12] from propagation-of-error theory is needed: Let x and y be 
statistically independent variables with known variances (variance=square of standard 
deviation). Let u and v be defined as functions of x and y and let Fbe defined as a function of 
u and v. Then 

where 

HW'•<%)'<• ™ 
-c.»)-(£)(f)^+(|)(I)^ « 

and 

In some textbooks it is implicitly assumed that quantities such as u and v are statistically 
independent so that their covariance is zero and equations such as (56) and (57) with no covar-
iance terms are given instead of the complete eq (55). The use of the complete equation is 
important in the present case; the extension of these equations from two to three variables is 
obvious. 

Application of eqs (56) through (58) gives 

°"tt —0"zi~l-0'z2~t~0'z3> (59) 

*\ = (%2 + %3)2(Tx2i+ (Xi + X3)
2ax

2
2+ (Xi + X^azl, (60) 

o-2
w=(x2x3)

2axl+ (XiXz)
2<r£+ (XiX2)

2<r£, (61) 

C o v (u, v) = (x2+xz) <JX\ + (a?i+Xs) <JX\ + (a?i+x2) ax
2
3, (62) 

COV (u, w)=X2X3axl + XXXZGX\ + XiX2(Tx\J (63) 
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and 

where 
Cov (v, w) = (x2 + x3)x2xsax

2
1+ (x1 + xz)x1xzax

2
2+ (x1+x2)x1x2axlJ (64) 

axl = 2pVia1) (Tx2 = 2pv2a2) <jxZ-=2pVz<Jz. 

To use eq (55) for the standard deviations of the elastic constants one must compute the 
partial derivatives of these constants with respect to u, v, w. These partials of cn can be 
obtained by taking derivatives of eq (45). The resulting expressions involve partials of the 
coefficients at and these in turn involve partials of the quantities defined in eqs (38) through (41). 
Let subscripts u, v, w denote partial differentiation with respect to u, v, w respectively. Then 
from eqs (38) through (41) 

hiu=(gk+jf)/e—h, (65) 

jiu=2u[(jk+qf)/e-p], (66) 

& l w=£(3u2g-4*0/e-3u2s, (67) 

Piu=2uq, (68) 

i i . = —4//e, (69) 

klv=—4:uk/e) (70) 

2>i.= - 4 (71) 

klw=S (72) 

and the following are all zero: hiv, h\W}jiw, and p\w. We shall next require the partial derivatives 
of the di which are given by differentiating eqs (46) through (52) with* the result for the u 
derivatives 

a0u=Sr2p2
1plu/e

3—2k1k1Uj (73) 

alu=3r2(jp2
1 + 2ujpipiu)/e

z—2j1klu—2k1jlu, (74) 

a2u=3r2(2gp1plu+2uj2p1+u2j2plu)/e
3—2h1klu—2k^ (75) 

a*u=r2(§gjpi + §ugjplu+Zu2f)lez—2{glklu+^^ (76) 

a4U=3r2(2ugj2+g2plu)/e
z—2g1jlu—2h1h1U) (77) 

a5u=3r2g2j/e3-2g1hlu, (78) 

and with a6u equal to zero. For the v derivatives the result is 

Oo.= - \2r2p\\e>-2kxku, (79) 

alv= —24r2ujp1/e
s—2j1klv—2k1j1V) (80) 

a2v=-12r*(2gpl+uy)/e*-2h1k1,-2j1jl9, (81) 

azv= -24r2ugj/ed-2(g1klv+h1jlv)y (82) 

aiv=-12r2g2/e*-2gijlv, (83) 

and with a5v and aQv equal to zero. For the w derivatives the result is 

a0w= — 16*i, (84) 

diw= — 16ji, (85) 

a2w=-16hh (86) 

08«= —16ffi, (87) 

and with a4w, abw, and aQw equal to zero. Define 

0=6^0^ +5a5c1\+4a4c?1 + 3azc1
2

1 + 2a2cn+al (88) 
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then differentiation of eq (45) gives 

+aluCn+a0u)/D, (89) 

Cuv= — (aAvCi1+a3vc1\+a2vCi1+alvcn+a0v)/D) (90) 
and 

Cuw= — (d3wCii+a2wCu+alwcn+a0w)/D, (91) 

where we have assumed D^O. For the [110] direction D=0 and a different treatment, described 
below, is required. The derivatives of eu are obtained from (53) and are 

c44«=(l-Cii l l)/2, (92) 

Cuv=— Cuv/2, (93) 
and 

Cuw=— Cnw/2. (94) 

The derivatives of cu are obtained from eq (54) and so involve derivatives of y. From (42) we 
have 

72= (jgc^+ujcu+pjle, (95) 
so that 

(y2)u= (2cngcuu+jcu + ujcnu+piu)/4e, (96) 

(y2)v= (2ciigcllv+ujcnv—4:)/4:e, (97) 
and 

(y2)w= (2cng+uj)cllw/4e. (98) 

Now use yu=(y2)u/2y and eq (54) to obtain 

Ci2u=(y2)J2y—cUu, (99) 

cuv=(y2)v/2y-cuv, (100) 

and 

c]2w= {y2)wl2y—cUw. (101) 

The expression for a2
x is then 

<rn=cnl*l+cul°l+Cnl<r2
w + 2clluCnv cov (u, v)+2cllucnw cov (u, w)+2cllvcllw cov (v, w). (102) 

The equations for o-4
2
4 and a2

2 are the same with the subscripts on cn changed to 44 and 12 
respectively. 

The procedure for obtaining the desired standard deviations is thus straightforward 
although tedious. One begins by calculating the variances and covariances of u, v, w from eqs 
(59) through (64). Then compute in succession the quantities given by eqs (65) through (102). 

Following eq (91) we noted that D=0 for the [110] direction. This can be seen as follows: 
For the [110] direction r is zero by eq (34) and the Y3 term drops out of eq (43). Then eq (45) 
simply consists of the square of all the terms in (43) except ry3. Let 

B=a3s1/8 + a2uh/S + au2p/S+uss/S-y2(af+uk)/2-w. (103) 

Then eq (45) for the [110] direction is B2=0, and D is then D=2B ^ and therefore D=0. 

The foregoing statistical treatment thus fails for any direction for which cn is a double 
root of eq (45). This appears to be true only for the [110] direction (we have already noted 
that the [100] and [111] directions are not suitable for the method of this paper) but the writers 
have not been able to construct a proof. 
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For the [110] direction the following results are well known and easily obtained from, the 
treatment of Kolsky [9], for example. If xx corresponds to the longitudinal wave, x2 to the 
transverse wave with displacement parallel to [001], and x3 to the transverse wave with dis
placement parallel to [110], then 

Cu=x1—x2+xz, (104) 

Ci2=Xi—x2—xz, (105) 

and 
cu=x2. (106) 

These give 
0'll = 0'l2 = 0'zi + a'x2 + (7S3> (107) 

and 
<r±4 = o-x2- (108) 

We have assumed throughout this paper that errors in thickness and density can be 
neglected in comparison with errors in transit time t. If standard deviations were assigned to 
the thickness and density as well, the quantities xt would not be statistically independent and 
two modifications of the foregoing treatment would be required. First, eqs (56) through (58) 
would have to be used with the thickness, density, and transit times as independent variables 
to give the variances and covariances of uy v, w. The calculations using eqs (65) through (102) 
would then go as before. Second, eqs (107) and (108) would have to be replaced by appropriate 
expressions in terms of the standard deviations of the thickness, density, and transit times 
derived from (56) through (58) and (104) through (106). No attempt has been made to allow 
for uncertainties in the orientation; such allowance should probably be made but appears to 
be an exceedingly difficult problem. 

4. Procedure for Computing the Elastic Compliances and Their Standard 
Deviations 

The foregoing results form a complete unit, giving the elastic constants, cih and their 
standard deviations. The present section may be skipped unless it is desired to put the results 
in terms of the elastic compliances, s^. The calculation of the stj from the ctJ is trivial but the 
calculation of the standard deviations of the s^ is more difficult and serious errors can result 
if the covariance terms are not taken into account. There appears to be no discussion of this 
problem in the literature on elastic constants, so we present the method for the cubic case. 

The well-known equations for the elastic compliances of a cubic crystal in terms of the 
elastic constants are 

8ii=(cu+c12)/c, (109) 

Sl2=—C12/C, (110) 

and 
su, = l/cu, (111) 

where 
c=(cii-c1 2)(cn + 2cia). (112) 

To compute the standard deviations of the stj one can apply eq (55) which requires the 
covariances of the ctJ. To compute these covariances one might try to use eq (58) which would 
be wrong because x and y were assumed to be statistically independent. We require the more 
general formula 

fW ~ dFdG 2,dFdG 2,/dFdG.dFdG\ , , , 1 1 Q . 
v ' J du du dv dv \du dv dv du/ v ' 

for the covariance [12] of F and G which are defined in terms of quantities u and v which are not 
statistically independent. Writing cov (11, 12) for the covariance of Cu and ci2 we have 
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COV ( 1 1 , 12)=ClluC12ual + CuvCi2v(rl + CnwC12Wo-2
w+(CnuCi2v + CnvCi2u) COV (u, v) 

+ (clluCUw + CnwCi2u) COV (U, w) + (CiUfii2u, + Cnufii2v) COV (v, W) (114) 

The expressions for cov (11, 44) and cov (12, 44) are identical except for the appropriate changes 
of subscripts, but we shall not need to calculate these latter two covariances. Writing s l l t l l for 

r̂— and similarly for other partials we have 

n (cii+ci2)(2cn+ci2) m ^ 
c 

Sn,i2—c-\ ~2 > Uio; 

Ci2(2cu+Ci2) / 1 1 7 N 
Si2,n= ~2 > C 1 1 * ; 

(cn+Ci2)(4ci2—en) n 1Q^ 
^12, 1 2 = ~2 > l 1 ^ / 

§44,44^ — 1/̂ 44, (H9) 

and with Sni44, s12;44, Su,n> SMA2 all zero. Letting asn represent the standard deviation of $n 

and similarly for the other stj, 

we have 
<J?ii=sii. IIO-II+«II. i20-i2+2snf iiSu, 12 cov (11, 12) (120) 

0fj2 = Sl2,ll^ll + Sl2,12ffl2 + 2Si2>llSl2.12 COV (11, 12), (121) 
and 

cr,u=ejcl. (122) 

For the [110] direction the covariances of c n and Ci2 is best calculated directly from (104) and 
(105) using (58). The result is 

cov (11, 12) = c72
zl + ^ 2 + ^ 3 . (123) 

Thus, the procedure for calculating the standard deviation of the stj for any direction, 
including the [100] and [111], is to use eqs (120) through (122) evaluating the partial derivations 
from eqs (115) through (119). The situation considered in the present paper, using only 
information obtainable from measurements in a single direction, compels us to exclude [100] 
and [111] from the present considerations. For [110] cov (11, 12) is given by (123); for any 
other direction, it is given by (114). 

5. Measurements on SrTi03 

The writers carried out a series of measurements on a boule of strontium titanate, kindly 
supplied by the National Lead Company, to check the method. The density value [13] of 5.116 
g/cm3 was used. Flats were first ground to give the maximum thickness between parallel 
faces permitted by the shape of the crystal. A series of measurements was taken and analyzed. 
The crystal was then recut normal to the [110] direction and a second series of measurements 
was then made. The measurements were all made with 10 Mc/s X-cut and AC-cut quartz 
crystals 0.25 in. in diameter. A commercial pulsed oscillator was used to drive these transducers. 
The echoes were observed on a dual trace oscilloscope simultaneously with a 1 Mc/s standard 
frequency signal. The results are sumarized in table 1. 
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T A B L E 1. Data on S rT i0 3 at 25° C 

Parameter 

Direction 
Cosines 

Length cm.. 
Transit times, 10-6 sec 

x^ 1012 dyne/cm2 

Symbol 

I 
m 
n 

h 
U 
Xl 

X2 

x% 

First 
direction 

0.67905 
. 27160 
. 68200 
5.3045 

13.15±0.10 
22.08±. 05 
23.15±. 07 

3.330±. 051 
1.181±. 005 
1.074±. 006 

Second direc
tion, [110] 

0.70711 
. 70711 
.00000 
4. 5670 

11.36±0.05 
18. 71±. 07 
20.02±. 09 

3.308±. 029 
1.219±. 009 
1.064±. 010 

6. Results 

• The data are summarized in table 1. The calculation of cn by the method of eqs (20) 
through (52) was programmed for an automatic computer using an iterative procedure of solving 
eq (45) which gives the real roots to four places in the interval 0.0 to 5.0 X1012 dynes/cm2. 
For the first direction, there is a single root at a=3.162 and a single root at a=3.497X101 2 

dynes/cm2. For the second direction there is a double root at a=3.153 and a double root at 
a=3.462X101 2 dynes/cm2. A complete set of elastic constants was computed for each of these 
possible choices of cn and the results are compared in table 2. The choice of 3.497 and 3.462 
leads to a disagreement in cl2 which is outside the experimental error. The choice of 3.162 
and 3.153 gives consistent sets of constants. The latter choice is also known to be correct 
because 3.153 is obtained from eq (104) when a?2 and x3 are properly distinguished by the polari
zation of the corresponding sound waves. 

For the first direction, the standard deviations of the dj were determined by the method 
of eqs (59) through (102) using an automatic computer. Equations (107) and (108) were used 
for the second direction. The final values for the ctj were computed by averaging the results 
for the two directions weighted by the reciprocals of the squares of the standard deviations. 
The stj values were then computed from eqs (109) through (112) and their standard deviations 
from eqs (113) through (123). 

T A B L E 2. Comparison of possible sets of elastic constants 

cn_— 
C i 2 — . 

C 4 4 — -

Cn . 
cn 
C 4 4 - . . 

Constants First direction Second direction 

Computed from correct choice of root for cn 

3.162±0.052 
1.035± .052 
1.212± .007 

3.153±0.032 
1.024± .032 
1.219± .009 

Computed from incorrect choice of root for cn 

3.497 
1.200 
1.044 

3.462±0. 032 
1.024± .032 
1.064± .010 

The Cn and c12 values of Bell and Rupprecht [14] agree within experimental error with 
the results of the present work as shown in table 3; the c12 value of Poindexter and Giardini 
[IS] also agrees within experimental error, but their cn value differs from the present result by 
much more than twice the standard deviation and so is significantly different from our result. 
The other workers' cu values lie on either side by slightly more than twice the standard deviation 
of our value, but are probably within the combined experimental error of their determination 
and ours. The writers feel that the cn values of Poindexter and Giardini should be rejected 
and that the remaining data show reasonable agreement. 

The anisotropy of a cubic crystal depends on the quantity 8 defined by 

8=2sn—2si2—su. (124) 
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The Young's modulus, Yf, and shear modulus, Gf, are given as a function of the usual spherical 
polar angles by 

^=Sn—8 sin2 6 cos2 0— (5/4) sin4 d sin2 2$, (125) 
*• f 

and 
1 —=^44+25 sin2 0 cos2 0+(5/2) sin4 6 sin2 20. (126) 

These quantities are plotted in figure 1 which shows that SrTi0 3 comes close to being isotropic; 
Young's modulus varies by only 10 percent and the shear modulus by 5 percent. 

T A B L E 3. Comparison with elastic constants of SrTiOz at 25° C determined by other workers 

Cons tan t s 

Cn 
Ci2 
Cu 

Sn~- - - - - - - - -
Sl2-__ _ _ 

Poindexter 
a n d 

Giardini a 

3.48 
1.01 
1.19 

3.3 
- 0 . 7 4 

8.4 

Bell a n d 
R u p p r e c h t i> 

3.181 
1.025 
1.236 

3.729 
- 0 . 909 

8.091 

Present 
work b 

3.156±0.027 
1. 027± . 027 
1.215=b .006 

3. 772± . 023 
- 0 . 9 2 6 ± .010 

8.233± .040 

Percent 
difference, 

last two 
columns 

0.79 
0.19 
1.73 

1.14 
1.84 
1.73 

All dj in units of 1012 dyne/cni2; 8a in units of 10—13 cm2/dyne. 
a Sij determined by resonance method and c»,- by matrix inversion. 
t» cn determined by pulse velocity method and *»-,• by matrix inversion. 

2 .95 

F I G U R E 1. Young's modulus, 
Yf, and the shear modulus, 
Gf, as a function of orien
tation. 

The colatitude, 0, is the angle between 
the [001] direction and the direction of 
measurement. The azimuth, <j>, is the 
angle between the [100] direction and 
the projection of the direction of 
measurement on the (001) plane. The 
subscript / indicates that the elastic 
moduli are for a free specimen which is 
under no constraint. 
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7. Summary 

(1) Velocity measurements in a single direction in a cubic crystal provide enough informa
tion to determine the three elastic constants, ctj, except for the [100] and [111] directions which 
are therefore excluded from consideration in this paper. 

(2) For the [110] direction the computation of the elastic constants and their standard 
deviations is simple and is given in eqs (104) through (108). 

(3) For all other directions the calculations are much more complex. The general pro
cedure for the elastic constants (applicable also to the [110] direction) is given in eqs (2) through 
(54). The general procedure for the standard deviations (not applicable to the [110] direction) 
is given in eqs (59) through (102). 

(4) The procedure for calculating the elastic compliances, sijy and their standard devia
tions is given in eqs (109) through (123). Throughout the statistical treatment the covariance 
terms are included and their importance is emphasized. 

(5) The method is applied to SrTi0 3 and results in good agreement with previous workers 
are obtained. 

The writers thank W. E. Tefft of the National Bureau of Standards for bringing eqs (55) 
and (58) to their attention, and M. D. Beals of the National Lead Company for supplying the 
SrTi0 3 specimen. 
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