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The six elastic constants (and six elastic compliances) of rutile were determined in the
kilocycle per second frequency range by a resonance method. The standard deviations
range from 0.2 percent for sn to 4.3 percent for si3.

1. Introduction

The electrical properties of rutile make it a prom-
ising material for solid state electronic devices and
a large literature on such properties exists and has
been surveyed [1, 2, 3].1 Comparatively little infor-
mation on the mechanical properties of rutile was
available until recently. The linear compressibilities
had been measured by Bridgman [4], and a set of
elastic constants was calculated from spectroscopic
data by Dayal and Appalanarasimham [5]. No
further work on elastic properties was apparently
done until the recent independent and nearly simul-
taneous measurements of three groups. Vick, Hol-
lander, and Brown [6], determined four of the six
elastic constants of rutile directly from pulse ve-
locity measurements and calculated the other two
by combining Bridgman's linear compressibilities
with their own data. Verma [7] published a set of
the elastic constants calculated from his pulse ve-
locity measurements. The present writers reported
[8] a set of values determined by least squares fitting
of the theoretical equations for the orientation de-
pendence for elastic moduli to a set of experimental
values determined on 10 single-crystal rutile rods by
resonance in the audiofrequency range. Appreciable
discrepancies existed for some of the constants, es-
pecially between those of Verma and those of the
other investigators. Vick and Hollander [9] checked
their measurements and published a refined set of
values which are little different from their first set.
The most serious discrepancies were removed when
it was discovered that the direction which Verma
took to be [100] was in fact [110]. It is an interest-
ing property of the 4/mmm crystalographic point
group, to which rutile belongs, that the x axis may
be taken as either [100] or [110] and a self consistent
matrix of elastic constants results which has the
same form (but three of the six constants will have
different numerical values). There is thus no in-
ternal inconsistency in Verma's work but his results
should be expressed in terms of [100] as the x axis
to agree with the usual convention and to permit
direct comparison with other values. This calcula-
tion has been done by Birch [10] and the resulting
values agree fairly well with the results of other in-

1 Italicized figures in brackets indicate the literature references at the end of
this paper.

vestigators but not as well as would be expected from
the accuracy of methods of measurement which were
used. The present writers wished to refine their
data; their initial results were based upon measure-
ments on 10 rods whose rod axes were all near the
[001] axis. A comparatively large uncertainty in cn
and c66 resulted. This situation was improved when
six additional rods were eventually obtained and the
present results agree well with the values calculated
by Birch in the sense that there is now no statistically
significant difference for any of the c^. The stand-
ard deviations are, however, appreciably larger than
those obtained by the authors on corundum [11]
using the same resonance method. The most im-
portant source of this variability is believed to be
caused by the presence of a profusion of small angle
boundaries whose existence is shown by back-reflec-
tion Laue patterns.

The present paper gives the method of applying
the resonance technique to tetragonal crystals
because it apparently has not been previously
described for this crystal system. The general
method has been described previously and reference
[11] may be consulted for general background.

2. Description of Specimens

All specimens were synthetic "single crystals''
grown by the Verneuil flame-fusion technique using
an oxygen-hydrogen flame. Such specimens in the
as grown state characteristically contain two types
of defect: (1) they are oxygen deficient and (2) they
have many small angle boundaries (as much as 2°
misorientation across a single boundary). The first
type of defect is easily removed by heating in oxygen
at temperatures around 1,000 °C. Parenthetically
we note that the difficult problems of obtaining exact
stoichiometry and of measuring small deviations from
stoichiometry do not concern us here. The elastic
constants do undoubtedly depend to some extent on
the degree of reduction but the effect is very small
as noted by Vick and Hollander [9]. We have not
carried out a systematic study of the effect of reduc-
tion on all of the ctj but observations of the very
small changes produced in several heavily reduced
(jet black) rods indicate that the effect which the
possible small remaining oxygen deficiency in our
nominally stoichiometric rods may have on the cti
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at room temperature is too small to be of any con-
cern. Heavy reduction did show a measurable effect
on the temperature dependence of Young's modulus
at high temperature [12] but this is outside the scope
of our present considerations. Our specimens were
heated for about 24 hr in flowing O2 at about 800 °C
and we consider them to be effectively stoichiometric.

The second type of defect appears in all rutile
single crystals examined by the authors and no
method of removing it is known. Back-reflection
Laue patterns were taken at random on many speci-
mens ; perhaps one fourth of the patterns show double
spots indicating a change of orientation of 1 or 2 deg.
If this were a systematic, progressive change of
orientation along a rod, one end would differ greatly
in orientation from the other and the crystals would
be useless for our work. Fortunately, as table 1
shows, this is not so. Laue patterns were taken at
the center and at both ends of each rod. Duplicate
patterns were taken on specimens 21 and 22 to indi-
cate the precision of the method. The resulting
standard deviations were 0.12° for 8 and 0.16° for </>
where 8 and <t> are the usual spherical polar angles.
The colatitude, 0, is the angle between the rod axis
and [001]; the angle <j> is the angle between [100] and
the projection of the rod axis on the (001) plane.
The orientation apparently shifts back and forth in
a random manner from one small angle boundary to
another. The average values of 8 and <t> were used
for each rod in the calculations. It is hoped that
better temperature, atmosphere, and powder feed
control during crystal growth would reduce the
number of the boundaries and this is being attempted
at the National Bureau of Standards and elsewhere.

Both the Linde Co.2 and the National Lead Co.
were asked for high-purity single crystal specimens
and both graciously gave us some of their production.
The National Lead specimens were in the form of
boules intended for gem stones, and rods cut from
these proved to be too short for our use. Some of
the Linde rods were long enough to permit cylinders
of useful length to be ground from them. These
rods are listed as numbers 21 through 30 in table 1
and our first set of elastic constants [8] was calculated
from results on these rods.

The manufacturer's analysis for a typical Linde
rutile single crystal indicates the following oxides
at each stated percentage: 0.01-B2O3, ZnO, ZrO2,
Sb2O3; 0.005-Al2O3, U2O5, Fe2O3, SrO, MoO, PbO,
SnO2; 0.003-SiO2, CaO, Cr2O3, Co2O3, BaO; 0.002-
MnO, NiO; 0.0005-MgO, Ag2O, CuO. The lack of
any rods with high 8 values in this set is apparent
from table 1. The Linde Co. then made a special
series of growth runs and produced rod number 44
with a very useful orientation. Additional rods
were also needed and a successful effort was made
by W. S. Brower and S. F. Holley of the National
Bureau of Standards to grow rods parallel to the
[100] axis. The purest available TiO2 powder from
National Lead Co. was used. The manufacturer's
analysis of the impurities in percent is: 0.02-SiO2;
0.01-Nb; less than 0.005-W; 0.001-Fe2O3; less than

2 A division of Union Carbide and Carbon Co.

TABLE 1. .

Speci-
men

number
Mass

Properties of "

Length

single t

E n d

0 *'

crystal7 1 rutile

Center

e 0

specimens

Other end

e

All angles in degrees

Linde rods

24
25
26
27
28
29
30
44

g

2. 6317

2. 2113

2.8205
2.3654
2. 3770
1. 2718
1.2769
1. 2561
0. 8562
1.1523

15. 0251

era
13. 236

13.178

12.168
11. 714
11.178
7.534
6.986
6.080
6.004
5.816
9.848

/ 12.5
I 12.3
/ 37.9
I 38.0

14.0
43.3
11.2
8.0

14.6
39.0
12.9
58.7
88.8

2.6
2.2

12.5
12.5
7.3

34.1
37.9
26.6
18.8
40.0

7.8
24.0
44.1

} 12.7

J 38.9
16.1
45.6
11.4

7.8
14.2
42.4
14.0
58.5
88.4

2.1

10.2
7.0

37.9
29.0
22.8
19.0
40.0

5.6
24.2
43.4

f 14.3
\ 14.2
/ 40.1
I 40.2

14.8
44.7
11.9
8.4

15.0
43.0
13.7
59.3
90.0

1.8
1.5
8.0
8.1
6.3

33.6
36.3
26.1
20.9
45.0
6.0

23.7
44.5

NBS rods

41
42
49
50
51

8. 0767
5. 8920
7.1208

21. 5907
16. 0263

8.508
6.256

11.128
17.107
17. 634

12.9
7.0

87.8
88.8
86.2

9.2
20.0

0.0
5.4
0.4

12.9
6.9

87.8
89.5
86.2

8.0
21.0

0.0
5.4
1.0

13.5
6.2

88.0
90.0
86.8

9.3
19.0
1.5
5.0
0.9

0.001-Al2O3, Sb2O3, Pb, V, Cr; less than 0.0005-Hg,
less than 0.0003-Cu; less than 0.00005-Mn. Spec-
troscopic analysis of single crystals after growth
showed no significant change in the major impurities.

3. Relation of Young's Modulus and Shear
Modulus to Elastic Compliances and to
Orientation
In this section the elastic moduli measured in

resonance experiments are expressed in terms of
the elastic compliances and the orientation. The
method of solving these equations for the compli-
ances is then described. The theory and experiment
closely parallel work on corundum [11] and therefore
only a brief description will be given.

In relating the elastic compliances to Young's
modulus, it is necessary to distinguish between
the "free" Young's modulus, Yf, and the "pure"
Young's modulus, Yp, when analyzing flexural or
torsional tests. The free Young's modulus is the
value obtained when the specimen is completely
free to deform elastically under the applied tensile
stress. The pure Young's modulus is the value
obtained when the specimen is tested in flexure and
is prevented from twisting. In an isotropic medium
the free and pure moduli are identical. Calculation
of Young's modulus from, flexural vibrations of
slender, cylindrical rods of nonisotropic material
corresponds to measurements of Yf. For such rods
the modulus determined from torsional resonance is
the pure shear modulus, Gp. The validity of these
results is discussed by Brown [IS],

The following treatment develops the relation be-
tween the measured quantities, Yf and Gp, and the
elastic compliances, s^, expressed in the standard
rectangular coordinate system for tetragonal crys-
tals, XiX2x3, described by Nye [14]. It is convenient
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to introduce a rotated coordinate system, x[x2xz, with
the £3 axis along the rod axis. The free elastic mod-
uli for measurements along the rod axis are related
to the compliances expressed in the primed coordinate
system by

and

#33 TZ J

1 f

$44 + S55 (2)

Brown [13] and Hearmon [15] give the following
equation relating the pure shear modulus, Gp, to
the free shear modulus, Gf:

where
(3)

(4)

Equations (2), (3), and (4) can be combined to give

-1- x i v

n —n ' ~ (5)

It is now necessary to express the primed quantities
in eqs (1), (2), and (5) in terms of the unprimed
compliances and the orientation. This is done for
eqs (2) and (3) by writing out the tensor transfor-
mations and expressing the direction cosines in terms
of the colatitude, 0, and the azimuth, </>. In other
words, 0 is the angle between x3 and x'3 and </> is the
angle between xx and the projection of x'3 on the

plane. The tensor transformation gives

3̂3=̂ 11 sin4 0+s33 cos4 0+(2si3+s44) sin2 0 cos2 0

+\ ( « i 2 - « n + y ) sin4 0 sin2 2*, (6)

and

1 1
p - 5 = 2 s66 sin2 0 + i s44(l+cos2 6)+2(sn+s33

—si4—2s13) sin2 6 cos2 0+(sn—su—y)sin4 6 sin2 2<t>.

(7)

The directions of the x[ and x'2 axes have not been
specified except for the requirement that x[x2x3 form
a right handed rectangular system because eqs (1)
and (2) are independent of their directions. This
independence also holds for (5) because S34+S35 de-
pends only on the direction of x3 as Hearmon [15]
states. It is convenient to write s'S4: and s'35 sep-
arately, however, and these quantities are not spec-
ified by the direction of x'3 alone. For simplicity
x'2 was chosen to lie in the xxx2 plane and x[ is then
uniquely specified. The tensor transformations give

2 \ 2 0 sin (8)

and

3—S44—2sia) sin3 0 cos 0+(2s13 + s44

-2s33) sin 0 cos d

Xsin3 0 cos 0 sin2 2</>. (9)

A set of elastic compliances can be determined
from the preceding equations in the following man-
ner: Assume that values of Yf and Gv have been
determined on at least four rods. Equation (6) is
written for each value of Yf and the resulting system
of simultaneous equations is solved for sn, s33,
2si3+$44> and $12—^11+^44/2. These results are used
in eqs (8), (9), and (7) to calculate values of Gf
from the measured values of Gv. Equation (7) is
written for each value of Gf and the resulting system
of simultaneous equations is solved for s44, s66,
Sn+«33—S44—2«i3, and sn—s12—sd6/2. In this way
two independent values of s12 and s13 are obtained
which may be compared for consistency. If more
than four specimens are used, a good check on the
consistency of the whole set of stJ values is then
available.

4. Relation of Elastic Moduli to Resonance
Frequencies

The values of Yf and Gv needed for the calculation
of the elastic compliances were obtained by resonance
frequency measurements on slender, cylindrical rods.
Young's modulus was calculated from the longi-
tudinal resonance frequency for the five longest rods
and from the flexural resonance frequency for all
of the 16 rods used in this investigation. The shear
modulus was calculated from the torsional resonance
frequency of all 16 rods. For both of the Young's
modulus calculations, the equation relating the
resonance frequency to the appropriate modulus is
approximate but the approximations are very good.

For longitudinal vibrations, Young's modulus
of an isotropic medium can be calculated from
Rayleigh's equation [16] which can be written

(10)

where p is the density in g/cm3, I is the length in
cm, / is the fundemental longitudinal resonance
frequency in cycles per second, <r is Poisson's ratio,
r is the radius in cm and Y is Young's modulus in
dynes/cm2. The term in parentheses is the Rayleigh
correction term for the finite thickness of the rod
and neglects higher powers of r/l. For the values
of r/l used in the present work the difference be-
tween values given by Rayleigh's equation and a
more accurate treatment by Bancroft [17] is much
less than the experimental accuracy. The correction
term should be modified for nonisotropic material,
but a good estimate of the correction can be obtained
by using an average value of Poisson's ratio in the
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present equation. Taking o-=0.30 and r/Z=0.0113
for the shortest of the five rods used in longitudinal
resonance gives a Rayleigh correction factor of only
1.000006. The values of Y calculated from (10)
should be very accurate despite the fact that rutile
is nonisotropic.

For flexural vibrations of a cylindrical rod of
isotropic material the best existing- theory seems to
be Pickett's [18] differential equation.3 The result
obtained can be expressed as the result for a rod
of infinitesimal thickness multiplied by a dimen-
sionless correction factor, T. This result is

F=0.31547P (11)

where the symbols have the same meaning as in
eq (10) except that here / is the flexural resonance
frequency. Tefft [22] has calculated a table of T
from Pickett's differential equation as a function of
r/l and Poisson's ratio. Fortunately the T values
are nearly equal to one and depend very little on
the Poisson's ratio value for small r/l. The values
of T for o-=0.30 were used for all calculations. The
whole subject of the determination of elastic moduli
of isotropic materials has been summarized [23]
recently.

For torsional vibrations of an isotropic cylindrical
rod, the equation

G=4pl2f (12)

.

FIGURE I. Method used to measure torsional resonance
frequency of short rods (about 6 cm. long).

The fine phosphor bronze springs have sufficient flexibility to permit relatively
free specimen vibration and Nave sufficiently low damping noi to cause excessive
power loss.

•' This equation should not
linn derived by Timoshenko

• eon fused with an approximate differential equa-
»| and studied by Goens [20] and by Picketi [21].

is rigorously true. Here / is the torsional resonance
frequency and the other symbols have their previous
meanings. The significance of this equation for
crystalline cylinders has been considered by Brown
[13] and by Hearmon [15]. The details are compli-
cated, but the result is, as previously stated, that
for sufficiently slender rods eq (12) gives Gp and
eqs (10) and (11) give Yf.

The density value of 4.250 g/cm3 reported by
Swanson and Tatge [24] was used.

5. Method of Determining Resonance Fre-
quencies

The general procedure for measuring resonance
frequencies of slender cylinders has been described
previously [11, 23]. The specimen is suspended by
fine threads tied in such a manner that free vibration
is unimpeded; i.e., the threads are tied near the nodes
of the vibrational mode being investigated. Vibra-
tion is excited either by air drive with a loudspeaker
or by driving one of the suspending threads with a
transducer. The resonance is detected by a pickup
attached to another thread. The resonance fre-
quency is measured with a crystal controlled counter
having an accuracy of ±0.1 c/s.

This method was successfully used in the present
work for all resonance frequencies except the torsional
frequencies on rods 26 through 30. In the case of
torsional vibration the resonance frequencies are so
large and the amplitude of motion so small that the
resonances could not be detected using cotton or
silk thread. A special procedure, shown in figure 1,
was used. Fine springs, made from phosphor bronze
wire, were used to couple the driver and pickup to
the specimen. These springs were flexible enough
to permit free vibration of the specimen, but had
sufficiently low damping to permit adequate power
transfer from the driver to the specimen and from
the specimen to the pickup to allow resonance to be
excited and detected. In this way the torsional
resonance frequencies of specimens 26 through 30
were measured.

The value of Young's modulus calculated from the
longitudinal resonance frequency was considered to
be slightly more accurate than the value calculated
from the flexural resonance frequency and was used in
subsequent calculations when it was available (i.e.,
for those rods for which the longitudinal resonance
frequency could be determined).

6. Results and Discussion

The flexural and longitudinal resonance frequencies
are given in table 2 together with the reciprocal
Young's modulus values calculated from these
frequencies. Table 3 gives the corresponding tor-
sional resonance frequencies and reciprocal shear
modulus values. The values of l/Yj, Q, and f were
used to write eq (6) for each rod. The resulting set
of Mi simultaneous equations in four unknowns was
then solved for the four linear combinations of •">*,•>
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Specimen
number

TABLE 2.

Resonance
. flexural

Young's

Frequency
longitudinal

modulus calculations

U Yf

Flexural Longitudinal Wy

10~13 cm2/dyne

21
22
23
24
25
26
27
28
29
30
44

Linde rods

1166. 5
943.0

1485. 2
1393.0
1703.8
3338.2
3980 8
5317.5
4748. 3
5001.8
5693.0

els
35544
31271
38514
37325
42399

2.655
3.490
2.671
3.080
2.614
2.614
2 689
2.961
2.702
3.831
2.7295

2.658
3.464
2.678
3.077
2.619

2.699

-0.008
- .014
—.012
+.030
- .023
- .003
+.011
+.024
+.032
-.050
+.005

NBS rods

41
42
49
50
51

6107. 6
11246
1840.6
1111.6
882.3

26402
17408
16740

2.655
2.617
6.824
6.617
6.714

6.814
6.632
6.750

-0.018
- .007
+.037
- .018
- .007

ved—(l/F/)calculated where Yf computed from longitudinal reso-
nance was used when available.

Specimen
number

TABLE 3.

Torsional
resonance
frequency

Shear modulus calculations

11 Qp H Of

10-13 cm^dyne

Linde rods

21
22
23
24
25
26
27
28
29
30
44

cjs
20206
19496
21936
20370
24070
35737
37942
39340
43920
42640
20260

8.213
8.885
8.250

10. 304
8.099
8.115
8.372

10. 282
8.459
9.580

14. 778

8.236
9.301
8.281

10.447
8.110
8.121
8.396

10.298
8.483

10. 560
14. 796

- 0 . 046
+.245
- . 0 5 9
- . 1 1 7
- . 1 3 8
- . 0 3 7
+.057
- . 1 1 7
+.188
- . 0 1 4
+.047

NBS rods

41
42
49
50
51

31319
43016
26604
17215
16844

8.285
8.123
6.712
6.782
6.668

8.307
8.127
6.718
6.947
6.686

+0. 023
- . 0 0 4
+.019
- . 011
- .035

TF*=(l/G!/)ob8erved-(l/G[/)calCulated.

appearing as coefficients in eq (6). The process of
solving an overdetermined set of simultaneous linear
equations for the least squares best estimates of the
coefficients and their standard deviations is a
straightforward calculation and is described, for
example, by Scheffe [25]. This calculation was done
on an automatic computer and the resulting values
of the coefficients are given in the first half of table 4.
These coefficients were then used in eq (6) to calcu-
late a value of 1/F/for each rod. The deviations of
the calculated from the observed values of l/Yf}

labeled Wy, are listed in table 2 and provide an
indication of how well eq (6) fits the data. These
results were then used in eqs (8), (9), and (5) to
obtain 1/6?/ from I/Op for each rod. The values of
1/0/ were then used in eq (7) and a least squares
solution for the coefficients was carried out as was
done for eq (6). The resulting values of the coeffi-
cients are given in the second half of table 4. Devia-
tions, Wo, between calculated and observed values
of I/Of are listed in table 3.

TABLE 4. Least squares best estimates of parameters in elastic
moduli equations

From equation for 1/Y/

6.788±0.015X10-13 cm2/dyne
2.592± .011
6.466± .062
8.200± .059

From equation for 1/ Gf

11+S33—S44—2si3
11-S12—S66/2

8.072±0.048
5.302± .140
2.880± .157
8.077± .132

The deviations are standard deviations of the coefficients obtained from least
squares calculations.

The results presented in table 4 give sn, s3Z, su, and
SQ6 directly. A value of s12 and sls can be calculated
from their appearance in the 1/Yf coefficients. A
second value of each can be calculated using the
I/Of coefficient in which they appear. For s12 the
two values are — 4.063±0.088 and — 3.940±0.113;
for slz the result is —0.803 ±0.039 and —0.786 ±0.069
The results are thus self consistent. These values
were weighted according to the reciprocals of their
variances and the values of $12= — 4.017±0.069 and
su=— 0.799±0.034 were obtained.

The Cij values can be calculated by inversion of the
matrix of stj values. The equations for passing from
dj to Sij are given by Nye [lJj\ and it is easy to show
that the equations for obtaining cLj from stj in this
case are obtained by interchanging c's and s's. The
result is

=ir«»8+_j_"|

1̂  ^ ^ 3 3 1 "1

$13
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where
s=s33(sn+s12)— 2s2

13.

The calculations were made by substituting for the
Sij the directly computed quantities of table 4. For
each of the constants cn, c33, c12, and c13 the two
values were obtained and a weighted mean computed
as in the case of s12 and s13.

The sfj and cfj values are listed in table 5 for com-
parison with the work of other investigators. The
present Ctj show no statistically significant differences
from the values calculated by Birch. Using the
simple test of twice the standard deviation we find,
however, that the sn and s12 values of Birch are
significantly different from our results. This is
probably caused by the fact that the equations for
sn and s12 (which have the same form as the above
eqs for cn and cu) both involve the difference cn—cu.
There is thus some reason to prefer the present sn
and s12 values as they are more directly determined;
the same argument favors the Cu and cu values of
Verma-Birch. Our linear and volume compressibil-
ity values are also given in table 5 and are consistent
with Bridgman and Verma-Birch.

It is interesting to compare the elastic properties of
rutile single crystals with those of polycrystalline
rutile. Huntingdon [26] discusses the problem of
calculating elastic moduli of a pore-free polycrystal-
line solid from the single crystal elastic constants.
Results calculated from theories of Reuss (which
gives a lower bound) and of Voigt (which gives an
upper bound) are given in table 6. The bulk
modulus is determined within narrow limits but the
Young's modulus and shear modulus values are not
so well determined. This is a reflection of the fact
that, as shown by figures 2 and 3, these two moduli
depend strongly on orientation.

TABLE 5. Elastic parameters of rutile

dj in 1012 dyne/cm2

C33

C44

Cl2

cn
Sn
S33
844

812

sn

533+2*13
2«l 1+533+2512+4^13

Bridg-
man a

1.89
1.04
4.82

Dayal
and

Appala-
narasim-

ham b

3.005
1.9
1.324
1.761
1.76
1.36
5.8
8.9
7.6
5.7

- 2 . 2
- 2 . 5

sn in 10~13 cm2/dyne

Vick and
Hollander 0

2. 48±. 08
4. 52±. 08
1. 20±. 03
1.6 ± . 1
2.0 ± . 1
1.4 ± . 1

11.8
2.7
8.3
6.2

- 9 . 0
-0.86

Verma
recalcu-
lated by
Birch d

2.73
4.84
1.25
1.94
1.76
1.49
6.55
2.59
8.00
5.16

-3.76
-0.86

1.93
0.87
4.73

Present
work e

2. 660±. 066
4. 699±. 081
1.239±.OO7
1. 886±. 050
1. 733±. 071
1. 362±. 081
6. 788±. 015
2. 592±. Oil
8.072±. 048
5. 302±. 140

-4.017±. 069
- 0 . 799±. 034

1.965±.O69
0. 994±. 067
4. 911±. 166

a Measured statically. Present adiabatic values calculated from Bridgmen's
isothermal values.

b Cij computed from spectroscopic observations, sn computed by matrix
inversion.

c Diagonal d,- computed from pulse velocity measurements, cn and cn com-
puted using Bridgman's linear compressibilities, sn by matrix inversion.

d cn computed from pulse velocity measurements, sn by matrix inversion.
« sn computed from resonance frequency measurements, cn by matrix in version

as explained in the text. The values for the linear and volume compressibilities
given in the last three rows are not exactly the same as would be obtained by direct
computation from the sn above, because the weighting is different for a combina-
tion of constants than for a single constant. The deviations shown for the present
values are standard deviations for the compliances and constants obtained from
least squares calculations.

TABLE 6. Elastic moduli for polycrystalline rutile computed
from Reuss and Voight theories a

Young's modulus
Shear modulus
Bulk modulus

Polycrystalline

Reuss
theory

Voight
theory

Single crystal

All units 1012 dyne/cm2

2.555
0.990
2.025

3.116
1.244
2.103

Orientation dependent see figure 2.
Orientation dependent see figure 3.
2.025.

a Using values of the sn and cn given in the last column of table 5.

The writers have previously used the resonance
method to determine the six elastic compliances,
stjt of corundum [11] with standard deviations of
about 0.1 percent for the diagonal compliances and
about 1.0 percent for the off-diagonal compliances.
The present uncertainties in the diagonal constants
range from 0.2 percent for sn to 2.6 percent in s66.
For the off-diagonal constants the values are 1.7
percent for s12 and 4.3 percent for s13. These results
are somewhat disappointing when compared with
the precision achieved with corundum. Rutile
differs from corundum in being more anisotropic
but this should not cause such an increase in standard
deviation if the orientation were constant through-
out the specimen. The principal difficulty probably

FIGURE 2. Young1 s modulus, Yf, as a function of orientation,
calculated from eqs (1) and (6), using the least squares best
estimates of the coefficients given in table 4-
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FIGURE 3. Shear modulus, Gf, as a function of orientation,
calculated from eqs (2) and (7), using the least squares best
estimates of the coefficients given in table 4-

is associated with the small angle boundaries. If
specimens free of these boundaries are ever produced
it would be interesting to repeat both the pulse
velocity and resonance measurements and attempt
to obtain agreement to 0.1 percent in the diagonal
constants. It is probably not worthwhile to attempt
to improve the agreement using existing specimens.
The present results are accurate enough for most
purposes and the general agreement of different
observers leaves no question of serious error. The
value of c33 calculated by Dayal and Appalanara-
simham from spectroscopic data is in serious error,
as previously noted [9, 10], and an extension of their
calculation to correct this value might be worthwhile.

NOTE.—The writers were recently informed by Gilman
[27] of unpublished work by himself and B. Chick on the
elastic constants of rutile. They obtained c33=4.75X1012

dynes/cm2 and C44—1.23 X1012 dynes/cm2. Both values are
in good agreement with the results of the present work.

The writers gratefully acknowledge the help pro-
vided by the suppliers of the rutile powder and
single crystals. In particular we thank W. S. Brower
and S. F. Holley of the National Bureau of Standards,
K. G. Rudness of the Linde Co., and M. D. Beals
of the National Lead Co.
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