Phase Equilibrium Relations in the Binary System Bismuth Sesquioxide-Niobium Pentoxide

R.'S. Roth and J. L. Waring

(August 2, 1962)

The phase equilibrium diagram for the binary system bismuth sesquioxide-niobium pentoxide has been constructed from observations of fusion characteristics and X-ray diffraction data. In the system five binary compounds were observed with $\mathrm{Bi}_2O_1:\mathrm{Nb}_2O_3$ ratios of 5:3, 1:1, 4:9, 1:5, and 1:6. The 1:1 compound was found to transform irreversibly (in laboratory time) from the orthorhombic bismutotantalite type structure to a triclinic form at about 1,020 °C and melt congruently at 1,245 °C. The 5:3 compound melts incongruently at 1,193 °C the 4:9 at 1,183 °C and the 1:6 at 1,242 °C. The 1:5 compound has a maximum temperature of stability at 1,095 °C and the 4:9 and 1:6 compounds have minimum temperatures of stability at 1,070 °C and 1,002 °C respectively. Nb₂O₆ was found to enter into solid solution in $\mathrm{Bi}_2\mathrm{O}_3$ up to about 23.5 mole percent Nb₂O₆. The melting point is increased and the monoclinic-cubic phase transformation temperature is decreased. A morphotropic phase change occurs at about 19.5 mole percent Nb₂O₃ from the cubic to a pseudocubic structure.

1. Introduction

A study of phase relationships in the binary system Bi₂O₅—Nb₂O₅ has been conducted as part of a program of fundamental phase equilibria studies of ceramic materials. Attempts to synthesize an orthorhombic BiNbO₄ compound isostructural with the mineral bismutotantalite have been reported as failures by several workers [1, 2]. Aurivillius [2] has indicated that the resultant material was triclinic. No systematic attempt to study the phase equilibrium relations in the entire binary system has been previously published.

X-ray diffraction data, together with the melting points of the compounds and the solidus and liquidus temperatures at various compositions across the system have been obtained in order to construct an

equilibrium diagram.

2. Sample Preparation and Test Methods

The following starting materials were employed for

the preparation of specimens:

 Nb_2O_5 —high-purity grade niobium pentoxide. Spectrographic analysis indicated less than about 0.01 percent Si, 0.001 percent Ca and Mg, with As, Cu, and Ta only questionably present.

Bi₂O₃—Reagent grade bismuth sesquioxide. Spectrographic analysis indicated less than about 0.01 percent Fe and Si, 0.001 percent Al and Pb, and 0.0001 percent Ag, Ca, Cr, Cu, Mg, and Mn, with Co questionably present.

For the preparation of the specimens the weight percentages were calculated to within ± 0.01 percent, with no corrections made for percentage purity of

Figures in brackets indicate the literature references at the end of this paper.

the raw materials except for loss on ignition. The starting materials were weighed to the nearest ±0.1 mg, in sufficient quantities to yield 3 g batches. For most compositions each batch was mixed in a mechanical shaker for about 15 min and pressed into a disk in a % in. diam mold at 10,000 lb/in.² The disks were sandwiched between Pt foil disks, stacked in a MgO crucible and calcined in air to 700 °C for either 3 or 6 hr in an electrically heated furnace. Some compositions were prepared by grinding a slurry of the weighed mixture and alcohol with an agate mortar and pestle for a few minutes. The slurry was then allowed to dry in air or dried under an infrared lamp, or in a drying oven, then pressed into a pellet and fired in the usual manner.

Following the preliminary heat treatment the disks were ground in an agate mortar, remixed, and a portion of the specimen reformed in a % in. mold at 10,000 lb/in.² and reheated to a desired temperature.

Subsolidus as well as melting point data were obtained by the quenching technique on samples sealed in platinum tubes. An electrically heated vertical tube furnace wound with 80 percent Pt-20 percent Rh wire was used for the quenching experiments. The furnace was controlled by an a-c Wheatstone bridge controller which was capable of holding the temperature to at least ± 2 °C for an extended period of time. Temperatures were measured with a Pt versus Pt 10 percent Rh thermocouple which had been calibrated against the melting points of NaCl (800.4 °C [3]) and Au (1,063 °C [4]). The thermocouple was recalibrated several times during the course of the work. When the tubes were opened the specimens were examined for physical appearances of melting. Specimens were

suspended in the furnace by fine Pt wire. In order to quench, the wire was burned off, allowing the scaled tubes to drop out of the heating chamber into a beaker of water. The first sign of glazing of the surface of the specimen was interpreted as the first experimental evidence for the solidus temperature. Acceptance of this appearance as evidence of melting was found justified in many specimens by an abrupt difference in the X-ray diffraction patterns of the specimens. The formation of a concave meniscus, without the formation of relatively large crystals, indicated the liquidus temperature. The precision of the temperature measurements for the experimental data points is about ± 2 °C and the overall accuracy of the reported temperatures is probably about ± 5 °C.

Equilibrium was considered to have been obtained when the X-ray diffraction patterns of specimens successively heated for longer times and/or at higher temperatures showed no change. X-ray diffraction powder patterns were made using a high angle recording Geiger counter diffractometer and nickel-filtered copper radiation, with the Geiger counter traversing the specimen at $\frac{1}{2}\theta$ /min and the radiation being recorded on the chart at $\frac{1}{2}\theta$ /in. The unit cell dimensions reported can be considered accurate to about ± 2 in the last decimal place listed.

3. Compounds in the Bi₂O₃-Nb₂O₅ System 3.1. Bi₂O₅

Four polymorphs of Bi₂O₃ have been reported. The equilibrium and stability relations have been somewhat confused mainly because Bi₂O₃ reacts with almost any container, and also because the high-temperature forms are difficult or impossible to quench.

a. Low-Temperature Monoclinic Modification

It has been recognized by several workers [5, 6, 7, 8] that the monoclinic form is the true low-temperature stable modification. The structure of this phase has been described by Sillen [6,9] who has shown by single crystal studies that, although the powder pattern can be indexed on the basis of orthorhombic symmetry, the true symmetry is monoclinic. The indexed X-ray diffraction powder pattern has been given by Sillen [6] and by Swanson et al. [10].

b. High-Temperature Cubic Modification

The monoclinic form of Bi₂O₅ transforms reversibly to a high-temperature form above 700 °C. This transformation was first reported by Guertler [5] to be at 704 °C using DTA apparatus, but since the composition of the container was not stated the results of this work were questioned by Schumb and Rittner [7]. Apparently only Pt can be used as a container for Bi₂O₂ at any appreciable temperature without fear of considerable contamination. Schumb and Rittner [7], using Pt containers found a temperature of 710 °C as the transformation point. However, they postulated that the high-temperature form was tetragonal,

DTA and high-temperature X-ray data (to be reported in more detail in a future publication) have shown that the $\mathrm{Bi}_2\mathrm{O}_3$ used in this study transforms from monoclinic to cubic at 730 ± 5 °C, this phase remaining stable to the melting point at 825 ± 5 °C. However, on cooling the cubic form of $\mathrm{Bi}_3\mathrm{O}_3$, it was observed that the monoclinic phase did not reform at 730 °C. Instead, the cubic phase supercooled to about 650 °C, then transformed to a tetragonal phase before reverting again to the monoclinic form at about 450 °C.

The cubic form has an X-ray diffraction powder pattern resembling that of a face-centered cubic cell of about 5.5 A. However Sillen [6] has pointed out that it is probably simple cubic with ordered oxygen vacancy positions somewhat similar to the cubic forms of Sb₂O₃ and As₂O₃.

c. Metastable Tetragonal Modification

A tetragonal form, structurally related to the cubic modification, was first reported by Sillen [6] who prepared it by very fast cooling of Bi₂O₃ vapor. It was also prepared by Schumb and Rittner [7] by a different method of condensation of a vapor. Both workers used a graphite furnace. The tetragonal form could not be obtained in this laboratory by condensing Bi₂O₃ vapors from a Pt dish of molten $\mathrm{Bi}_2\mathrm{O}_3$ onto a glass slide. It is still not known whether the graphite is necessary for obtaining the tetragonal form at room temperature. DTA and high-temperature X-ray patterns made in this laboratory on pure Bi₂O₃ indicate that under the conditions of the experiments the tetragonal form only occurs on cooling of the cubic form. It is found only in the range of 650 to 450 °C where the monoclinic form is the stable phase.

Sillen [6] reported the unit cell dimension of the tetragonal phase to be a=10.93 A, c=5.62 A, and Schumb and Rittner [7] obtained a=10.93 A, c=5.63 A. In the present study the tetragonal form was obtained at room temperature by quenching, from 773 °C, a mixture of 99 mole percent $\mathrm{Bi}_2\mathrm{O}_3$ and 1 mole percent $\mathrm{Nb}_2\mathrm{O}_5$. The unit cell dimensions of this phase are a=10.938 A, c=5.632 A.

d. Metastable Body-Centered Cubic Phase(s)

Sillen [6] first reported the occurrence of a body-centered cubic phase ($a=10.08~\mathrm{A}$), which he found by fusing $\mathrm{Bi}_2\mathrm{O}_3$ in a porcelain crucible. He recognized that this phase was probably impure, and considered it to be a compound of $\mathrm{Bi}_2\mathrm{O}_3$ and a second metal oxide in the proportion of about 12 Bi^{+3} ions to one other metal cation. Schumb and Rittner [7] were able to prepare a body-centered cubic phase ($a=10.245~\mathrm{A}$) which they considered to be a metastable form of pure $\mathrm{Bi}_2\mathrm{O}_2(z=13)$ different from Sillen's phase. However, this phase could only be made by moderately fast cooling of the previously formed tetragonal phase. It should be pointed out here that even this "pure bismuth oxide" body-centered cubic phase may well have had some carbon atoms present in the lattice, since the

original tetragonal material had been prepared in a graphite crucible. In this laboratory a bodycentered cubic phase has been found to occur in a large number of binary systems containing Bi₂O₂. The thermal stability of the phases found in these systems will be discussed in a future publication.

3.2. Compound 5Bi₂O₃-3Nb₂O₅

A compound was found in the present study at a ratio of 5Bi₂O₂·3Nb₂O₅. The X-ray diffraction powder pattern listed in table 1 can be partially indexed on the basis of a tetragonally distorted pyrochlore type structure with a c/a ratio less than one. The pseudotetragonal parameters are a=10.912 A, c=10.496 A. If the c axis is doubled (20.992 A) then the relatively strong peak at 6.99 A can be indexed as (003). However, this larger value does not account for all the extra peaks and the true symmetry is probably less than tetragonal. It should be noted that the powder pattern is always of quite poor quality regardless of the temperature from which the specimen is quenched or the length of time at which the specimen is held at temperature. This phenomenon is often indicative of a nonquenchable phase transformation and may indicate that the compound is actually tetragonal somewhat above room temperature.

The X-ray diffraction powder pattern of the compound $5\mathrm{Bi}_2\mathrm{O}_3\cdot3\mathrm{Nb}_2\mathrm{O}_5$ is similar to that of the pseudotetragonally distorted pyrochlore previously found for $3\mathrm{PbO}\cdot\mathrm{Nb}_2\mathrm{O}_3$ [11]. However, in the latter compound the c/a ratio is greater than one instead of less than one. Another example of a tetragonally distorted pyrochlore with c/a less than one was found by C. R. Robbins of this laboratory, in a specimen of $2\mathrm{Bi}_2\mathrm{O}_3$: GeO_2 quenched from the

liquid.

Table 1. X-Ray diffraction powder data for the compound 5Bi₂O₃-3Nb₂O₃ (CuK\alpha radiation)

4	2/6	ARI	d	I/t_0	#Y4
10.54	l 1		1.6393	20 11 7	622
6.99	9		1.5943	11	226
5.91	l i		I. 555 L	-7	444
3.800	l ī	202		-	
8, 440	1 4 2	301	1.4918	2	604
0. 220	. •	1 001	L 4781		408
T 014				1 3 1 2	900
3. 2L4	3	113	1. 3634		1 540
3.111	100	229	1-3117	1	800 009 822
8.013	•		1. 2900	2	6722
2,766	3	J			1
2.726	3 37	· 400 ll	1.2483	а	662
		i ***	1, 2298	Ä	628
2, 024	22	/ 904	1, 2206	ā	640
2 372	22 5 6 19 23	904	1.2110	4 2 2	804
2,292	ı ă	204 323	1.1819	÷	408
1.9297	1,4	440	1, 1017	4	200
	18	1 440	1 1050		
L 8915	23) 404	1 1072	22	BH
		· .	1, 0844	2 1 2	449 10, 2, 2
1.8646	3		1.0484	2	10, 2, 3
1.7098	1 3	III	- 1		1

3.3. Compound Bi₂O₂·Nb₂O₃

Although this composition has not been found in nature, the analogous composition Bi₂O₃·Ta₂O₅ has

been found and is called bismutotantalite. Both Dihlstrom [1] and Aurivillius [2] attempted to synthesize BiNbO₄ and BiTaO₄ but found that the synthetic compounds were different from the naturally occurring bismutotantalite, which is orthorhombic [12] and apparently isostructural with stibiotantalite (SbTaO₄) and antimony tetroxide (Sb₂O₄) [Dihlstrom, 1].

a. Low-Temperature Orthorhombic Modification

The low-temperature orthorhombic modification, was found in all solid-state preparations of the 1:1 composition heated below about 1,020 °C. However, once the high-temperature modification was formed the transformation could not be reversed by heating at lower temperatures. The X-ray diffraction powder pattern of the low-temperature modification is given in table 2, indexed on the basis of an orthorhombic unit cell with a=4.980 A, b=11.70 A, and c=5.675 A.

Table 2. X-Ray diffraction powder data for the low temperature orthorhombic form of Bi₂O₅ Nb₂O₅ (Cuka radiation)

		yor 138 tay 25.	tou reston (
ď	1/16	W	ی <u>ہ</u> ا ا	I/I+	PF5
5.84 4.576	12	020 110	1. 6969 1. 6934	3 16 9	153 123
3,740	20 20 15	101	1.6879	Į iš	123 232
3, 564 3, 153	15 100	111 121	1, 6439	,	310
0. 130	"00"	121	1.6337	3 4 5 7	251
3,076 2,924	8	130	1. 6108 1. 6080	5	251 133
2.924	40	040	1.0080	1 7	062 301
2.838	296	002	L 5988	2	301
2, 758 2, 700	296 7 3	012 131	1.5772	14	242
	l		1, 5377 1, 5278	20	321
2.553	21 22	022	1.5278	į į	330
2, 490	223	200	1.5140 1.4942	14 20 3 11 2	321 830 143 213
2, 412 2, 305 2, 294	2 20	112 141	il	-	ı
2. 294	1 8	032	L. 4635	8	090
0.000	(₁₀		1.4021	8 4 2 3	252 072
2. 292 2. 272	. 3	220 122	1. 4411 j 1. 4229	ž	312
2, 238	/ š	211	1, 4190	įž	312 004
2. 123	8 6 1	211 221 132	lı	_	l
2.085	1 3	1702	1. 4L20 j. 4089	2	153
2, 037	24	D42	ll 1.41%13	2	014 2 3 3
1. 9652	/ š	042 151	1, 4003 1, 3799	2 2 2 2 8	341 024
1, 9889	<u>.</u> 6	l 2211	1.3799	8	024
1. 9485 1. 896 7	24 3 6 27	060 240	1 9636	۱ ء	104/181
1. 6641		234	1, 8686 1, 3584	l i	104/181 114
1. 6721	17	202	1, 3047	9	350
1.8488	#	212	1. 3513 1. 3479	3 1 9 5	262 271
1. 8070 1. 7800	8 3 13 14	222	!	"	2/1
1. 7694	14	212 052 222 103	1, 3333	9	034
4 -400		l 1	1, 3333 1, 3125 1, 3011	4 4	163 062
1, 7492 1, 7302	34	113 161	1.3011	1	062
1, 1002	"1	101			

b. High-Temperature Triclinic Modification

From about 1,020 °C to the melting point, about 1,245 °C, the stable modification of $\text{Bi}_2\text{O}_5\cdot\text{Nb}_2\text{O}_5$ is the triclinic form reported by Aurivillius [2]. The X-ray diffraction powder pattern, listed in table 3, was indexed on the basis of a triclinic unit cell with $a=7.61_1\text{A}$, $b=5.53_6\text{A}$, $c=7.91_5\text{A}$, $\alpha=89.88^\circ$, $\beta=77.43^\circ$, $\gamma=87.15^\circ$ as compared with the rather inaccurate values calculated by Aurivillius [2] from Weissenburg photographs of $a=7.7_1\text{A}$, $b=5.5_5\text{A}$, $c=7.9_7\text{A}$, $\alpha=89^\circ$, $\beta=77^\circ$, $\gamma=87^\circ$.

Table 3. X-ray diffraction power data for the high temperature triclinic form of Bi₂O₅·Nb₂O₆ (CuKa radiation)

ď	1/fn	A+r-	· ·	I/I_0	BAI+
7.41	21	100	2.219	7:	
6.09	21 2 8 3	10Î 110	2, 177	7: 4	}
4.544	8	110	0.451	_	
4, 324 8, 967		110 002	2. 16# 2. 115	.6	
0.001		L DRIZ	2.078	15 11	
3, 770	له ا	102	2.048	14	
8.710	4 15 2 68 100	200 201 012 102/210	2.011	12	
3.666	2	20Î			
3. 187	66	012	1.9903	28	
3, 164	100	102/210	1. 934B	15 3 6	
		1	1. 9 019	3	
3.149	97 24	012	1.8919	1 .5	
3, 1492 3, 025	24	112 202	1.8835	21	
3.013	112	210	1.8567	14	
2.763	44 46 33	020	1.8363	15 6 4 6 23	l
	~		1.8164	ية ا	
2.706	3	112	1, 7974	ē	
2.690	7	212 212/103	1, 7878	28	ı
2. 620	3 7 8 2 6	212/103			1
2.500	2	021	1.7775	5	
2.549		120/T21	1.7666 1.7471	, ŭ	i
2, 474	ه ا	800	1.7345	5 6 6	\
2, 429	25	202	1,7208]
2.370	4	203/118	1.12	*	Ī
2.326	8 25 4 4	302	tl 3,7160 i	5	Į
2. SOL	2		1.7074	5 7 9 7 9	Í
	Ι.	1	1.6857	9	l
2.274	4 4 5		1. 6822 1. 6732	7	l
3. 265	1	1	1. 11732	9	l
2. 246	3	1	1- 6690	7	l

Due to the complexity of the pattern only those his values have been given which can be assigned with reasonable certainty.

3.4. Compound 4Bi₂O₃.9Nb₂O₃

This compound was found to be stable from about 1,070 °C to the incongruent melting point of 1,183 °C. The X-ray diffraction powder pattern, listed in table 4, can be indexed on the basis of a hexagonal unit cell with a=6.447A, c=19.778 A. There is no indication on the powder pattern that the true symmetry might have $a=\sqrt{3}$ 6.447 A=11.166 A.

A compound with a similar X-ray diffraction powder pattern Ba(Nb,zsLigs)O₃ has $a = \sqrt{3}$ 5.797 A=10.040 A, c=19.072A; the increase in a is represented by only one small peak in the powder diffraction pattern. These X-ray diffraction powder patterns are similar to those of the hexagonal compatterns are similar to those of the hexagonal com-

Table 4. X-ray diffraction power data for the compound $4Bi_2O_3$. $9Nb_2O_3$ (CuKa radiation)

	1/10	bki	d	1/10	14A
9, 86 4, 946 3, 294 3, 179 3, 063	13 4 99 63 100	002 004 006 111 112	1, 5703 1, 5324 1, 4931 1, 4909 1, 4138	18 14 9 6	1, 1, 11 224 225 308 0, 0, 14
2, 895 2, 699 2, 498 2, 471 2, 308	10 73 28 6	113- 114- 115- 008- 116-	1, 4000 1, 3554 1, 3503 1, 2496 1, 2840	4 8 4 3 10	227 3, 0, 10 228 2, 2, 10 2, 1, 13
2, 125 1, 9778 1, 9616 1, 8610 1, 8158	11 7 29 67 11	0, 0, 30 118 300 119	1, 2903 1, 2162 1, 2095 1, 2003 1, 1833	5 4 3 8	1, 1, 15 413 412 2, 2, 11 414
1, 6857 1, 6483 1, 8210 1, 8070 1, 6013	27 8 89 11 11	1, 1, 10 0, 0, 12 306 221 229	1. 1648 1. 1880 1. 0749 1. 0378 1. 0215 1. 0088	4 3 2 3 2 4	415 1, 1, 16 230 4, 1, 10 338 4, 1, 11

pounds $5\text{BaO-}2\text{Nb}_{2}\text{O}_{6}$ [13], $5\text{BaO-}2\text{Ta}_{2}\text{O}_{6}$ [14], Hex-BaTiO₃ [15] and Rhomb PbO-Nb₂O₆ [11]. It can be assumed that all of these compounds are structurally related, the major difference being in the stacking sequence of layers of the large cations plus O^{-2} ions.

3.5. Compounds Bi₂O₃·5Nb₂O₅ and Bi₂O₃·6Nb₂O₅

The compound Bi₂O₂-5Nb₂O₅ was found to be stable from room temperature to a dissociation temperature of about 1,095 °C. The unindexed X-ray diffraction powder pattern of this compound is listed in table 5. The compound Bi₂O₂-6Nb₂O₅ was found to be stable from about 1,002 °C to the incongruent melting point of 1,242 °C. The unindexed X-ray diffraction powder pattern of this compound is given in table 6. The X-ray patterns of these two compounds are very complex and obviously of low symmetry. From the general appearance of the two patterns it can be concluded that these two compounds are structurally related and probably also structurally related to pure Nb₂O₃.

Table 5. X-ray diffraction powder data for the compound Bi₂O₃·5Nb₂O₄ (CuKα radiation)

d	1/10	d	IJħ	ď	HI
12. 4 12. 2 8. 55 8. 946 3. 921	15 15 15 100 46	3, 219 3, 276 3, 196 3, 073 3, 062	15 16 50 20 20	2, 843 9, 781 2, 763 2, 722 2, 601	45 60 (8 15 20
3, 864 3, 599 3, 523 3, 463 3, 367	30 30 20 20 80	3, 001 2, 984 2, 940 2, 990 2, 859	90 28 55 5 30	2, 506 2, 487 3, 424 2, 373	A 5 5 45

Table 6. X-ray diffraction powder data for the compound Bi₂O₃ 6Nb₂O₅ (CuKa radiation)

d	I/I ₀	d	Ηh	ď	1/14
7. 49 6. 15 5. 92 3. 929 3. 673	5 5 10 100 25	3, 206 3, 129 3, 089 3, 032 3, 000	40 25 20 40 50	2, T3A 2, 596 2, 592 2, 429 2, 402	10 40 85 5
8, 619 3, 455 3, 442 8, 310 3, 274	15 30 35 10 20	2, 064 2, 980 2, 854 2, 788 2, 773	15 40 10 30 66	2, 256 2, 352 2, 294 2, 275	10 10 6 10

3.6. Nb₂O₅

The stability relations of the various reported polymorphs of Nb_2O_3 have been summarized by several workers [16, 17, 18, 19]. Bi_2O_3 , unlike PbO [11], has no estalytic action on the thermal stability of the various modifications of Nb_2O_5 . Since it has been concluded [11, 16, 19] that the high-temperature monoclinic form of Nb_2O_5 (H- Nb_2O_6) is the only stable form, no phase transformation temperature has been indicated. The X-ray powder pattern and unit cell dimensions of the stable form were previously reported [11].

4. Discussion of Phase Equilibria

The phase equilibrium diagram of the binary system Bi₂O₃—Nb₂O₅ is shown in figure 1. The experimental data from which this diagram was constructed are given in table 7. The designation Per. in table 7 stands for the perovskite structure type and signifies that the material which crystallizes in this structure type must have been in the liquid state when quenched (see discussion of metastable compounds in section 5). The system contains one compound which melts congruently, Bi₂O₃·Nb₂O₅; three compounds which melt incongruently, 5Bi₂O₃·3Nb₂O₅, 4Bi₂O₃·9Nb₂O₅, and Bi₂O₃·6Nb₂O₆; and one compound which dissociates before melting, Bi₂O₃·5Nb₂O₆. In addition Bi₂O₃·Nb₂O₆ has two

polymorphs and 4Bi₂O₃·9Nb₂O₅ and Bi₂O₃·6Nb₂O₅ both apparently have minimum temperatures of stability.

The high-temperature cubic polymorph of Bi₂O₃ is stabilized by the addition of Nb₂O₃ in solid solution. When specimens containing 1, 2, 3, and 4 mole percent Nb₂O₃ are quenched from the region between the monoclinic-cubic phase transformation and the solidus temperature the resultant material is tetragonal with the unit cell dimensions shown in table 8. However, high-temperature X-ray patterns show the compositions to be really cubic at these temperatures. The unit cell dimensions of the cubic and pseudocubic solid solutions from 5 mole percent Nb₂O₅ to 25 mole percent Nb₂O₅ are also given in table 8.

Table 7. Experimental data for compositions in the binary system Bi₂O₂-Nb₂O₃

Сопр	osition		Heat tre	eatment			Results
BliOi	NI ₂ O ₁	Çak	ine -	Que	nelt b	Physical observation	X-ray diffraction analyses v
		Temp	Time	Temp	Time		
Mole % 100	Mole %	°c	kr	°C 826 924	0.083 0.083	just begun to melt	Mon-BirO ₂ Do.
9 4	1	700	8	721 725 773 827 833 840	16.0 16.0 2.0 0.083 .017 .017	no melting	Mon-Bi ₂ O ₃ Tet-Bi ₂ O ₃₊ +Mon-Bi ₂ O ₃ Tet-Bi ₂ O ₃₊ +Mon-Bi ₂ O ₅ (tr) Tet-Bi ₂ O ₃₊ +Mon-Bi ₃ O ₅
98	2	700	3	850 861 880 721	.017 .017 .017	aimest completely melted completely melted (?). completely melted no nelteling. do	Tet-Bi ₂ O ₃₀ +Mon-Bi ₂ O ₃ Mon-Bi ₂ O ₃₀ +Mon-Bi ₂ O ₃
97	3	700	3	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	16.0 2.0 0.017 .017 .017 .017 .017 .017 .017	do do just becaus to melt partially melted do simest completely melted completely melted no melting do do	Tot-Bi ₁ O _{1m} - Do. Tet-Bi ₁ O _{1m} +Mon-Bi ₂ O ₁ Mon-Bi ₂ O ₁ +b.a.cBi ₂ O _{1m} Mon-Bi ₂ O ₂₊ C-Bi ₁ O _{2m} Tet-Bi ₂ O _{3m} +Mon-Bi ₂ O ₃ Tet-Bi ₂ O _{3m}
98	4	700	3	884 840 850 884 880 900 772 775 840 851	0, 088 - 017 - 017 - 017 - 017 - 017 - 017 - 18, 5 - 17, 0 - 64, 0 - 0, 017 - 033 - 037	dodododododododo.	Tet-Bi ₂ O ₂₀₀ +Mon-Bi ₂ O ₃ (tr) b.e.e. Bi ₂ O ₂₀₀ (a=10.283A)+C-Bi ₂ O ₂₀₀ (tr) C-Bi ₁ O ₂₀₀ +Mon-Bi ₂ O ₂ Tet-Bi ₂ O ₂₀₀ Do.
85 (19	5 :1)	700	3	615/4856 500- 507- 506- 682- 702- 850- 860- 863- 860- 863- 863- 863- 863- 863- 863- 863- 863	.017 .017 .017 .016 .0 6 .0 6 .0 160 .0 167 .167 .017 .033 .083	simost completely melted. completely melted (?). no melting	b.c.c. Bi ₁ O _{10r} +O-Bi ₁ O _{10r} Mon-Bi ₂ O ₁ +C-Bi ₁ O _{10r} +b.c.c. Bi ₂ O _{10r} (tr) b.c.c. Bi ₁ O _{2r} +C-Bi ₂ O _{2r} +b.c.c. Bi ₂ O _{10r} (tr) Do. Mon-Bi ₂ O ₁ +C-Bi ₂ O _{2r} +b.c.c. Bi ₂ O _{10r} (tr) Do. C-Bi ₂ O _{2r} +Mon-Bi ₂ O ₃ (tr) C-Bi ₂ O _{2r} +Mon-Bi ₂ O ₃ (tr) C-Bi ₂ O _{2r} +Mon-Bi ₂ O _{3r} (tr) C-Bi ₂ O _{2r} +Mon-Bi ₂ O _{3r} (tr) C-Bi ₂ O _{2r} +Tet-Bi ₂ O _{2r} (tr) C-Bi ₂ O _{2r} +Tet-Bi ₂ O _{3r} (tr) C-Bi ₂ O _{2r} +Tet-Bi ₂ O _{3r} (tr) C-Bi ₃ O _{3r} +Tet-Bi ₂ O _{3r} +Mon-Bi ₄ O _{3r} C-Bi ₃ O _{3r} +Tet-Bi ₂ O _{3r} +Mon-Bi ₄ O _{3r}

Table 7. Experimental data for compositions in the binary system Bi₂O₃-Nb₂O₅-Continued

Comp	osition.		Hest to	estment		Results			
Bi _z O ₅	Nb ₇ O ₄	Colc	lne •	Quer	neh b	Physical observation	X-ray diffraction analyses		
		Тетр	Time	Temp	Time				
90.91	Mole % 7. 59 ::1) 9.08	*C 700	#r 3	**C	85. 0 44. 0 17. 0 0. 5 . 25 . 26 . 187 . 063 . 017	no melting	C-Bi ₂ O ₃₀ +b.c.c. Bi ₂ O ₃₀ Mon-Bi ₂ O ₃ +C-Bi ₃ O ₃₀ C-Bi ₂ O ₃₀ +Mon-Bi ₃ O ₃ C-Bi ₂ O ₃₀ +Mon-Bi ₃ O ₃ (tr) C-Bi ₃ O ₃₀ +Bi ₃ O ₃₀ (tr) C-Bi ₃ O ₃₀ +Tet-Bi ₂ O ₃₀ C-Bi ₂ O ₃₀ +Tet-Bi ₃ O ₃₀ C-Bi ₃ O ₃₀ +Tet-Bi ₃ O ₃₀ +Mon-Bi ₃ O ₃ C-Bi ₃ O ₃₀ +Tet-Bi ₃ O ₃₀ +Mon-Bi ₃ O ₃ C-Bi ₃ O ₃₀ +b.c.c. Bi ₃ O ₃₀ +b.c.c. Bi ₃ O ₃₀ (tr)		
68 88	12 12	700	3	203 550 681 969 904 987 965 976 996	65, 0 54, 0 17, 0 17, 0 0, 133 . 33 . 017 . 033 . 033 . 033	no meiting	C-Bi ₁ O _{3m} +Mon-Bi ₂ O ₃ +b ₁ c,c,Bi ₂ O _{3m} (tr)+b ₁ c,c,c'-Bi ₂ O _{3m} (tr) C-Bi ₂ O _{3m} +Mon-Bi ₂ O ₃ +b ₁ c,c'-Bi ₂ O _{3m} (tr) C-Bi ₂ O _{3m} +b ₁ c,c'-Bi ₂ O _{3m} (tr) Do. C-Bi ₂ O _{3m} +Tet-Bi ₂ O _{3m} Do. C-Bi ₂ O _{3m} +Tet-Bi ₂ O _{3m}		
				622 928 944 960 968 1,012 1,041	18 16 0.417 .417 .088 .087 .067	no melting	C-BigO _{3m} Do. Do. C-BigO _{3m} +Tet-BigO _{2m}		
65	16	700	S	022 928 1,026 1,033 1,039 1,054 1,073	18 16 0.017 .063 .033 .067	no meiting	C.Bl ₂ O ₃₄₀ C.Bl ₂ O ₃₄₀ +Mon-Bl ₂ O ₃ C.Bl ₂ O ₃₄₀ D _O . C.Bl ₂ O ₃₄₄ +Tet-Bl ₂ O ₃₄₄ (tr) D _O .		
84	16	700	! 6	600 619 1,004 1,000 1,000 1,000	16 22 1.0 0.083 .083 .083	no meltingdo	C.Bi ₁ O _{1m} C.Bi ₁ O _{2m} +h ₁ c.c. Bi ₂ O _{1r} C.Bi ₂ O _{1m} +Mon-Bi ₂ O ₂ (tr) C.Bi ₂ O _{1m}		
83 82	18	700 700	6 	600 619 1,004 1,050 1,060 1,070 1,090	16 22 1.0 0.083 .083 .083 .083	no meiting	C.Bl ₂ O ₃₀ +b.c.c.Bi ₂ O ₃₀ C.Bl ₂ O ₃₀ +Mon-Bi ₂ O ₃ (tr) C.Bl ₂ O ₃₀		
81	19	700		399 815 1,004 1,000 1,070 1,090	16 18 2 0.083 .083	no metangdededo	$\begin{array}{l} C - B _{2} O_{2a_{1}} + b_{1} e_{1} e_{-} - B _{2} O_{2a_{2}} \\ C - B _{2} O_{2a_{1}} + M o_{11} \cdot B _{2} O_{1} \text{ (tr)} \\ C - B _{2} O_{2a_{2}} \end{array}$		
90	20	700	ļ a	599 615 1,064 1,070 1,089	16 18 2 0,083 0,083	no melting. do do do ado pertially melted.	C-Bi ₂ O _{2m} +)cc Bi ₂ O _{2m} (tr) C-Bi ₂ O _{2m} +Mon-Bi ₂ O ₄ (tr) C-Bi ₂ O _{2m} C-Bi ₂ O _{2m} C'-Bi ₂ O _{2m} +bcc'Bi ₂ O _{2m}		
79	21	2410	6	503 599 889 1,010 1,056 1,080 1,101	70, 5 23 17 16 0, 5 1-0 0, 167	no melting	Do. Do. C'-BiyO ₂₀ Do. C'-HigO ₂₀		
78	22	700	6	1, 050 1, 060 1, 090 1, 005 1, 506 1, 515	2 0.083 .083 .083 .083	no meltingdododododododo	CB1èO²™		
.,,	**	100		1, 050 1, 090 1, 115	2 0.083 -088	no melting fin almost completely metted	С-вцо <u>⊾</u>		

Table 7. Experimental data for compositions in the binary system Bi₂O₂-Nb₂O₅-Continued

Comp	asition		Heat to	eatment			Results
		Calc	ine •	Que	neh h		
Bi ₂ O ₂	NbiOs	Тетр	Titme	Team	Time	Physical observation	X-rey diffraction analyses *
Mole %	Mole %	° C 700	Ar 8	° C	Ar		
76	 24			1,050 1,115 1,124	21.5 0.083 .088	no melting	C'-Bao _{te}
*4	, a	730	1 6	1,050 1,090 1,124 1,135	21, 5 9, 083 , 083 , 187	no metting do considerably melted completely metted	C'-B ₂ O _{2m} +5B ₂ O ₂ -3N ₂ O ₄ (tr)
78	25	720	3	503 1,080 1,081 1,090 1,101	70.5 0.5 (6.7) 0.5	no melting	C'-Bi ₂ O _{3a} +5Bi ₂ O ₃ -3N ¹ ₂ O ₃ Do. Do. Do. Do.
70	30	700	3	1, 110 1, 135 1,096 1,101 1,153	-76 -25 -0, 133 -068 -063	considerably melted almost completely melted no melting just begun to melt partially melted considerably melted	
ne.67 (2∶ 	33.83	700	3	1, 166 1, 174 1, 095 1, 106	. 083 . 083 . 083 . 083	rompletely melted	C'-B5gO ₈₀ +519gO ₈ 3Nb ₉ O;
ft2, 5	37. 5	700	a í	1, 149 1, 160 1, 170 1, 180 1, 191	2, 5 0, 33 - 167 - 083 - 033	do do considerably melted almost completely melted completely melted	C'-BigO ₅₀ +6BigO ₅ 3Nb ₂ O; Do.
(5:		roar		1,008 1,146 1,150 1,170 1,180 1,191 1,106	0.167	no melting	5BiyOx3NbyOy+1i+BiyOxNbyOy(\$r)+C'+BiyOv+(\$r)
RO	10	700	а	1, 200 946 1, 057 1, 127 1, 161 1, 175 1, 191 1, 190 1, 200 1, 210	1.0 0.067 .5 .5 .333 .033 .5 .167	partially melted (?) no melting do do do do do partially melted considerably melted completely melted completely melted	5BhO; 2Nh ₂ O ₆ +C'-Bh ₂ O ₅ +H-Bh ₂ O ₇ .Nh ₂ O ₆ 5BhO; 3Nh ₂ O ₆ +L-Bh ₂ O ₅ .Nh ₂ O ₅ Do. 5Bh ₂ O ₅ -3Nh ₂ O ₆ +H-Bh ₂ O ₅ .Nh ₂ O ₆ Do. Do. Do. Do. Do. Do. 6Bh ₂ O ₅ -3Nh ₂ O ₆ +H-Bh ₂ O ₅ .Nh ₂ O ₆
55	4.5	700 	, ₃	1, 220 1, 189 1, 195 1, 230	. 167 0. 063 . 083 . 083	no melting partially melted considerably melted	
50 (1:)	50 .	700 1, 150	33 .	1,249 946 1,001 1,008 1,024 1,024 1,036 1,051 1,158 1,225 1,241 1,252	18.5 18.0 184.0 2.833 114.0 15.6 1.75 20.0 0.5 33	completely melted	Do. Do. Do. Do. L=Bi ₂ O ₃ ·Ni ₂ O ₃ +H=Bi ₂ O ₃ ·Ni ₂ O ₃ (tr) H=Bi ₂ O ₃ ·Ni ₂ O ₃ Do. Do. Do. Do. Do. Do. Do.
		1, 200	3 .	1,246 1,246	0. 167 . 167	completely melted	H = Bi ₁ O ₂ ·Nb ₂ O ₃
4 5	5# 	700 !	a	1, 001 1, 024 1, 189 1, 179 1, 162		no melting	Do. Do,
40 I	60 ;	j 704⊦	3	1, 230 1, 240 1, 246 1, 246 1, 169 1, 179	. 093 . 093 . 167 17. 0 0. 167	lust began to idelt considerably melted quinost completely melted completely melted no inelting do do	H−B1 ₂ O ₂ NԵ ₂ O ₃ ∔ B1 ₂ O ₂ -¶NԵ ₂ O ₃ Do.

Table 7. Experimental data for compositions in the binary system Bi₂O₂-Nb₂O₅-Continued

Çomp	osition	<u> </u>	Reat to	eatment			Results
BhO ₁	NbrOs	Çalç	ine -	Que	nch b	Physical observation	X-ray diffraction analyses a
		Тешр	Time	Тепър	Time	1	
Mole % 40	Mole %	°C 700	Ar	°C 1, 181 1, 194 1, 201 1, 212 1, 223	A7 .083 .083 .187 .083 .083	paritally inelted_ considerably maited	Do.
aa. 39	60.87	700	3	1, 173 1, 177 1, 179 1, 182 1, 185	.083 .083 .083 .167 .083	no melting	H = Bi ₂ O ₂ ·Nb ₂ O ₃ +4Bi ₂ O ₂ ·9Nb ₂ O ₃
(I	(:2)			1, 145 1, 180 1, 194	17. 0 0, 083 . 083	no melting considerably melted completely melted	$\begin{array}{l} 4Bi_1O_1\cdot 2Nh_2O_4+H-Bi_2O_2\cdot Nh_2O_4\\ 4Bi_1O_2\cdot 2Nh_1O_1+H-Bi_1O_2\cdot Nh_2O_2+Per\\ Per+H-Bi_2O_2\cdot Nh_2O_4 \end{array}$
ð 2	68	700 1, 140	33	1, 149 1, 149	2.0 17.0	ло meltingdo	$\begin{array}{l} 4B_{12}Q_{2}+9Nb_{1}Q_{1}+H+B_{13}Q_{2}+Nb_{2}Q_{3}+B_{13}Q_{3}+6Nb_{3}Q_{3}\\ 4B_{13}Q_{1}+9Nb_{1}Q_{4}+H+B_{13}Q_{2}+Nb_{2}Q_{3}(tr)\\ Do. \end{array}$
41 P.				1, 170 1, 178 1, 181 1, 188	0. 167 . 167 . 167 . 083	no melting	
31, 25 (5, 30, 77	68, 75 (21) 69, 23	700 (700 (700 (3	I, 149 I, 149	2. 0 17. 0	no meltingdo.	$\begin{array}{l} 4B1_2O_79Nb_2O_1+H-B1_1O_7\cdot Nb_1O_6+B1_1O_7\cdot 8Nb_1O_6\\ 4B1_2O_79Nb_2O_8+H\cdot B1_1O_7\cdot Nb_2O_1(tr) \end{array}$
(s:	9)			1, 001 1, 040 1, 061 2, 075 1, 149 1, 151 1, 151 1, 170 1, 180	28. 0 1. 0 40. 0 64. 0 2. 0 16. 0 70. 0 0, 167 . 063	no melting do do do do do do do pertially incited (motastable inciting of non-rescreed components)	H-Bi ₂ O ₂ -Nb ₂ O ₂ +Bi ₂ O ₂ -5Nb ₂ O ₃ -44Bi ₂ O ₃ -9Nb ₂ O ₃ 4Bi ₂ O ₂ -9Nb ₂ O ₄ +H-Bi ₂ O ₂ -Nb ₂ O ₁ +Bi ₂ O ₃ -5Nb ₂ O ₃
		2, USO	77	1,001 1,061 1,075 1,180 1,183 1,185 1,190 1,194 1,210	28 40 64 0. 033 1.0 0. 083 1.0 0. 167	no inciting,	#Bi;O;•\$NbjO; #Bi;O;•\$NbjO; #Bi;O;•\$NbjO;+Bi;O;•\$NbjO;(tr) #Bi;O;•\$NbjO;+Bi;O;•\$NbjO;(tr) #Bi;O;•\$Nb;O;+H-Bi;O;•NbjO;+Bi;O;•\$Nb;O;+Per Per+4Bi;O;•\$Nb;O;+H-Bi;O;•NbjO;+Bi;O;•\$Nb;O;+Per Per+H-Bi;O;•Nb;O;+Bi;O;•\$Nb;O; Per+H-Bi;O;•Nb;O;+Bi;O;•\$Nb;O; Dio.
340	70	700	a	1, 149 1, 152	2.0 18.0	no meitingdo	4Bl ₂ O ₃ 4Nb ₂ O ₆ + H-Bi ₂ O ₃ Nb ₂ O ₆ + Bi ₂ O ₂ 6Nb ₂ O ₄ 4Bl ₂ O ₅ 9Nb ₂ O ₆ + Bi ₂ O ₁ 6Nb ₂ O ₅
28, 67 (2:	71. 43	1, 130 700	33	1, 186 1, 185 1, 200	0, 167 167 25	no meiting partially meited. completely meited	$ H \cdot B i_1 O_2 \cdot N b_2 O_2 + 4 B i_2 O_2 \cdot 6 N b_1 O_4 + B i_2 O_2 \cdot 5 N b_1 O_4 + B i_2 O_4 \cdot \\$
25	75	1, 142	16	1, 102 1, 149 1, 150 1, 150 1, 150 1, 187 1, 200 1, 210	1, 0 17. 0 2, 0 18. 0 0. 187 167 167	do d	Bisos Nosograbio Bisos Nosog
~ (t:		700		1.003 1,083	18. 0 16. 0	no meltingdo	L-Bi ₂ O ₂ -Nb ₁ O ₁ +Bi ₂ O ₂ -SNb ₂ O ₁ 4Bi ₂ O ₂ Nb ₂ O ₂ +Bi ₂ O ₃ -5Nb ₂ O ₃ +H ₂ -Bi ₂ O ₃ -Nb ₂ O ₃ +Bi ₂ O ₃ -
		1, 160	33	1, 095 1, 092 1, 106 1, 178 1, 200 1, 219 1, 231 1, 388 1, 001 1, 092 1, 180 1, 185 1, 230 1, 240	1. 0 65. 0 1. 0 0. 33 . 5 . 607 . 583 . 167 18. 0 0. 167 . 25 . 167 . 167	dodo no moltingdo partially melteddodo partially melteddododododododo	6Ni-O ₂ (7) H-Bi ₂ O ₂ -Nb ₂ O ₃ +Bi ₂ O ₃ -8Nb ₂ O ₄ +4Bi ₂ O ₁ -9Nb ₂ O ₂ (tr) 4Bi ₂ O ₃ -Nb ₂ O ₂ +Bi ₂ O ₃ -8Nb ₂ O ₃ +H-Bi ₃ O ₃ -Nb ₂ O ₂ +Bi ₂ O ₃ -8Nb ₂ O ₃ +H-Bi ₃ O ₃ -Nb ₂ O ₃ +Bi ₂ O ₃ -8Nb ₂ O ₃ +H-Bi ₃ O ₃ -Nb ₂ O ₃ 4Bi ₃ O ₂ -8Nb ₃ O ₃ +Bi ₃ O ₃ -8Nb ₂ O ₃ +H-Bi ₃ O ₃ -Nb ₂ O ₃ Bi ₃ O ₃ -6Nb ₂ O ₃ +H-Bi ₃ O ₃ -Nb ₂ O ₃ De. H-Bi ₄ O ₃ -8Nb ₂ O ₃ +H-Bi ₃ O ₄ -8Nb ₂ O ₃ 4Bi ₃ O ₂ -8Nb ₃ O ₃ +Bi ₃ O ₃ -8Nb ₂ O ₃ -Ri ₃ O ₃ -Nb ₂ O ₃ (tr) 4Bi ₃ O ₃ -8Nb ₃ O ₃ +Bi ₃ O ₃ -8Nb ₂ O ₃ +Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -Nb ₂ O ₃ +Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -Nb ₂ O ₃ -Bi ₃ O ₃ -P-Bi ₃ O ₃ -SNb ₂ O ₃ -Bi ₃ O ₃ -SNb ₂ O ₃ -SNb

Table 7. Experimental data for compositions in the binary system Bi₂O₃-Nb₂O₆-Continued

Comp	sattion		Heat tre	w tme nt			Results
Bi ₁ Q ₂	Noioi	Calc	ine •	Quen	ch ^b	Physical observation	X-ray diffraction analyses *
		Temp	Time	Тетр	Time	-	
Mole %	Mole %	°C 700 910	Ar 3	°C	Ьт		
α	i4)		9	989 1,050	19. D 4. 0	no treiting	
	İ	1,060	18 24	1,076	88, 5	no melulug	
		1.1.2 		1,248 1,299 1,310 1,319 1,325 1,334	0, 167 0, 187 167 . 083 . 167	partially melted	H·Nb ₂ O ₃ +Per+H·Bi ₂ O ₂ ·Nb ₂ O ₃
18.18	81.82	700 910	3 9	1,359	107	completely metted (?)	Do. L-BigOr-NbjOr+BigOr-5NbgOr+H-NbgOr
	ì"			299 1,053	19.0 4.0	no melting	BlgOs-5NhrOs+B-BlgOs-NhrOs
	[080,1	18	1,075	88. 6	no melting	Do.
		1, 150	24	1, 319 1, 334 1, 339	0, 367 .25 .083	partielly melted	H-Nb ₂ O ₂ +-Per+H-Bi ₂ O ₃ -Nb ₂ O ₅
				1,360 1,369 1,378	. 167 . 25 . 083	considerably melted almost completely indicet completely melted (?) completely melted	Per+H-BirOr Nb2Or+H-Nb2Or Per+H-NbrOr+H-BirOr Nb1Or+unknown Do.
10, 67 (1	63.33 5)	700	3	1,068 1,095 1,105 1,153	21, 0 16, 0 16, 0 90, 0	no melting	Rigo-8Nb ₁ O ₁ +H-Nb ₁ O ₂ +Bi ₁ O ₂ 4Nb ₂ O ₁ +H-Bi ₂ O ₂ Nb ₂ O Bi ₁ O ₂ 8Nb ₁ O ₄ +Bi ₂ O ₂ 8Nb ₂ O ₃ Bi ₂ O ₂ 8Nb ₁ O ₄ +Bi ₃ O ₃ 8Nb ₂ O ₅ Do ₂
		910	9	999	19.0	po melting.	$\begin{bmatrix} B_{12}O_{1}.5Nb_{1}O_{4}+H.Bi_{2}O_{2}.Nb_{2}O_{3}(tr)+H.Nb_{3}O_{4}(tr) \end{bmatrix}$
		1,060	19	1,000 1,075	4.0 8R.5	po melling	Bi ₂ O ₂ -5Nb ₂ O ₅ Do.
		1, 150	24	1,068 1,005 1,105 1,163	21. 0 16. 0 18. 0 90. 0	dodododo	D ₀ , Bi ₂ O ₂ -8Nb ₂ O ₂ +Bi ₂ O ₂ -6Nb ₁ O ₁ (tr) D ₀ , Bi ₂ O ₂ -6Nb ₂ O ₂ +4Bi ₂ O ₂ -9Nb ₂ O ₃
		}		1, 189 1, 185 1, 230 1, 240	0. 167 - 167 - 167 - 063	no meiting, just begun to meit. partially meited.	 BigOp-8Nb ₂ O ₆ + Per BigOp-8Nb ₂ O ₆ + Per
				1,245 1,399 1,251 1,378 1,401	. 167 . 167 . 083 . 0.5 . 167	do considerably melted do considerably melted do completely do completel	Per+H-Ni ₂ O ₂ +H-Ri ₂ O ₂ ·Ni ₃ O ₄ +Bl ₂ O ₂ 4Ni ₂ O
15. 89 (2	: 84.61 ::11) 	700 1960 1150	29 24			/	Hi ₂ O ₂ -5Nb ₂ O ₂ +Bh ₂ O ₂ -8Nb ₂ O ₄
14, 29		700	,	1, 589 1, 351 1, 400	0. 167 - 033 - 167	partially multed considerably melted completely multed	
	:0)			1, 000 1, 005 1, 014 1, 019 1, 040 1, 075 1, 174 1, 201 1, 240 1, 248	21.0 1.0 1.5 1.0 16.0 18.5 1.0	no metting	Bi ₂ O _* 5Nb ₂ O ₄ +H·Nb ₂ O ₁ Bi ₂ O _* 6Nb ₂ O ₄ +H·Nb ₂ O ₁ (tr)+Bi ₂ O ₂ 5Nb ₂ O ₃ (tr) Do. Do. Do. Do. Bi ₂ O ₂ 6Nb ₂ O ₅ Do. Bi ₂ O ₂ 6Nb ₂ O ₅ Do. II-Ob ₂ O ₃ +Per+H-Bi ₂ O ₂ Nb ₂ O ₃
	1160	23	***********	1, 977 1, 282 1, 305 1, 311 1, 322 1, 361	1.0 68.0 0.33 .33 .5 1.0	do do pritally maited oonsiderably maited.	Do, Do. H-Nb ₂ O ₂ +Pot+H-Bi ₁ O ₂ -Nb ₂ O ₄
				1, 000 1, 075 1, 240 1, 244 1, 359 1, 369 1, 470 1, 425	2) 18. 0 2. 0 0. 167 - 167 - 167 - 167 - 083	, do de de	Bis On AND Of Do.

Table 7. Experimental data for compositions in the binary system Bi₂O₃-Nb₂O₄-Continued

Conty	osițian		Heat to	otment			Results		
BlgOa	NtoOs	Calc	ine '	Queneli b		Physical observation	X-roy diffraction analyses *		
		Тетр	Time	Temp	Time				
Molr % 9. 09	Mole % 90. 91	°C 700	<u>ф</u> 3		lt-		L-Nb ₂ O ₂ +L ₂ Bl ₂ O ₂ -Nb ₂ O ₄ +5Bb-O ₂ -3Nb ₂ O ₅ (tr)		
5	P5	1,150	24	898 1, 006 1, 014 1, 019 1, 284 1, 285 1, 301 1, 240 1, 240 1, 248 1, 401 1, 428 1, 451	1.5	no melting do do do gertially melted do do do no melting pertially melted no melting pertially melted considerably melted do completely melted	Bi ₂ O ₂ +NI ₂ O ₃ + HNI ₂ O ₃ Bi ₂ O ₂ +NI ₂ O ₃ + HNI ₂ O ₃ Do ₃ Do ₃ Do ₃ Bi ₂ O ₂ +6NI ₂ O ₃ + HNI ₂ O ₃		
0	100	1, 150	34	1, 340 1, 245 1, 425 1, 451 1, 480 1, 480	0. 167 - 167 - 083 - 083 - 083 - 083	no melting. just begun to melt. gartially melted. considerably melted. completely melted. no melting.	ℋ. ℕ ԵլՕ _¢ + են¦Օ _≻ eNԵլՕյ		
v			 	1, 484 1, 488 1, 489 1, 491	.083 .083 .083 .083	do completely melted do			

^{*} All calcined specimens were heated and cooled at the rate of approximately 4°/min. All specimens were first calcined at 700 °C and then small portions of this calcine were recalcined at one or more desired higher temperatures. All specimens were quenched in scaled Pt tubes.

• The phases identified are given in the order of the amount present at room temperature. The phases are not necessarily those present at the temperature to which the specimen was heated. C—cubic, C'—pseudocubic, b.c.c.—body-

centered cubic (a=10.283 A), b.c.c.'—body-centered cubic (a=10.15-10.19 A), Tet—tetragonal. Mon—monoclinic, L—low-temperature polymorph, H—high-temperature polymorph, Per—perovskite (a=8.94A), a composition of approximately Bi-O₂:30th[O₃ always metastable in this system and occurs only upon quenching the liquid, ss—solid solution, tr—trace, just barely discernable to X-ray restrem.

Table 8. Unit cell dimensions of tetragonal and cubic BigO1 solid solutions

Composition		Heat treatment, queuch		Unit cell dissensions	
Ri ₂ O ₂	Nhioi	Temp	Time	4_	
Mole %	Mole %	°C	ñ.r	A	4
90 98 97	Ĭ	773	3 .	10.939	5, 633
\$9	3	778	2) 64,	10.921	5. 634 5. 645
97	3	775	641	5. 46 1	3.04
96	•	775	64	5, 464	5, 643
96 95	5	782	64 16	- 5. 525	
92.31	5 7.69 j	793	1	5, 540	
90,01	9.09	869	17	0.133	
188	12	£28	16	5. 521	
- 64	15	929	16	3,510	
84	18	1,004	ĩ	5,504	
65 64 63 62 61	15 16 17 18	1,004		5, 499	
62	18	1,004	1 2 2	3.4M	
Ř1	19	1,004	2	5.490	
- Pr	20	1.010	18	b 5, 493	
- % I	21	1,010 1,050	16 2	5. 48 0	
76	22	1,00	2	5. 477	
80 79 76 77 76	29	1,000	21.5	5. 471	
76	23 24	1,00	21.5	6,469	
75	20	1,081	18	5, 409	

[•] This material was poorly grystalline and the value given is an average-value

The melting points of the solid solutions increase from the melting point of pure $\rm Bi_2O_3$, 825 °C [20], to about 1,055 °C at 17 mole percent $\rm Nb_2O_6$. A morphotropic transformation occurs in the solid

solution at this point curving to a eutectoid at about 610 °C and 19.5 mole percent Nb₂O₅. The cubicmonoclinic transformation temperature is lowered from about 730 °C to the above-mentioned cutectoid although there is very little solid solution in the monoclinic phase.

The solid solution higher in Nb₂O₅ content is designated C'ss in table 7. It is apparently only pseudocubic with several very small superstructure peaks in the X-ray diffraction pattern corresponding to d spacings of about 8.4 A, 2.69 A, and 2.35 Λ . The two phase region between the two solid solution fields is too narrow to be found by experimentation and is shown as dashed lines in figure 1. The C'ss is apparently stable from room temperature to the solidus which extends to about 1,096 °C at 23 mole percent Nb₂O₃. The peritectic for this solidus occurs at about 20 mole percent Nb₂O₅.

The liquidus rises smoothly from the 1,096 °C peritectic to another peritectic at 36.5 mole percent Nb₂O₅ and 1,193 °C corresponding to the incongruent melting temperature of the compound $5\mathrm{Bi_2O_3}\cdot3\mathrm{Nb_2O_5}$. There is little or no solid solution on either side of this compound, or any other of the compounds in the binary system, as shown by the similarity of the unit cell dimensions of the pure compound to those of the same compound in a two phase region.

The liquidus again rises smoothly from the 1,193 °C peritectic to the congruent melting point of Bi₂O₃·Nb₂O₃ at 1,245 °C. This compound was observed to crystallize in two polymorphic forms.

for the cubic and tetragonal phases,

b From 20 to 25 mole percent Nb₂O₅ the parameters represent the values measured for the pseudocubic cell.

The low-temperature orthorhombic form was found toltransform to the triclinic form at-about 1,020 °C. However this phase transformation could not be reversed. Neither polymorph appeared changed after 184 hr at 1,008 °C, but a small amount of the high-temperature form was present in the original low form after 114 hr at 1,024 °C (see table 7). Because of the inability to reverse the phase transformation the polymorphic change is shown as a dashed line in figure 1.

The liquidus curve falls smoothly from 1,245 °C to a cutectic at 1,180 °C and about 64 mole percent Nb₂O₅. The liquidus then rises very shallowly to a peritectic point at about 68 mole percent Nb₂O₅ and 1,183 °C, the incongruent melting temperature of the 4Bi₂O₃·9Nb₂O₅ compound. This compound needs a long period of heating time at relatively high temperatures in order to form a single phase. It also takes a relatively long time to be completely transformed to liquid plus the Bi₂O₃·6Nb₂O₅ com-

FIGURE 1. Phase equilibrium diagram for the system Bi₂O₅-Nb₂O₄

no melting
 partially incited
 completely melted
 less temperature modification
 bligh temperature modification
 cubic
 pseudocubic
 monochiniq
 LiQ—liquid

pound (see table 7). The hexagonal $4Bi_2O_3 \cdot 9Nb_2O_5$ compound is not formed at all-below about 1,070 °C. Specimens preheated to form a single phase are slowly decomposed to triclinic $Bi_2O_3 \cdot Nb_2O_6$ and the $Bi_2O_3 \cdot 5Nb_2O_5$ compound, when heated below about 1,070 °C. The $4Bi_2O_3 \cdot 9Nb_2O_5$ compound can therefore be concluded to have a minimum temperature of stability at about 1,070 °C.

The compound Bi₂O₃-5Nb₂O₃ was found to have a maximum temperature of stability of about 1,095 °C. The preformed compound slowly decomposed to 4Bi₂O₃-9Nb₂O₅ and Bi₂O₃-6Nb₂O₅ above this temperature, while the original 700° calcined material showed no Bi₂O₃-5Nb₂O₅ at all when heated much above 1,095 °C. The compound Bi₂O₃-6Nb₂O₅ was found to have a minimum temperature of stability at about 1,002 °C. A specimen heated for 21 hr at 1,000 °C contained only Bi₂O₃-5Nb₂O₅ and H-Nb₂O₅, while heating for 1 hr at 1,005 °C was enough to form the Bi₂O₃-6Nb₂O₅ phase with only traces of the other two. The preformed Bi₂O₃-6Nb₂O₅ compound showed definite traces of Bi₂O₃-5Nb₂O₅ and H-Nb₂O₅ after reheating for 21 hr at 1,000 °C.

Bi₂O₃·6Nb₂O₆ was found to melt incongruently at 1,242 °C to a liquid containing approximately 76 mole percent Nb₂O₅ plus crystalline Nb₂O₆ with little or no Bi₂O₅ in solid solution. The liquidus between the 1,183 °C peritectic and the 1,242 °C peritectic is essentially a straight line. The liquidus rises smoothly from the last peritectic to the melting point of Nb₂O₅, found to be 1,485 °C for the batch of Nb₂O₆ used for this study. As this Nb₂O₆ is essentially Ta free it is not surprising that this melting point is several degrees lower than that previously reported

[11, 13, 16, 19].

It is interesting to note that although both BaO and PbO enter into solid solution in Nb₂O₅ [11, 13] the Bi₂O₃ does not. Considering that the radius and polarizability of Pb⁺² and Bi⁺³ are very similar [20] this fact must be dependent on the difference in valence. It should also be noted that unlike PbO [11] Bi₂O₃ has no catalytic effect upon the temperature of the metastable phase transformations in Nb₂O₆.

5. Metastable Phases

5.1. The Perovskite Phase

When compositions containing more than 50 mole percent Nb₂O₅ were quenched from above the solidus a metastable phase always formed from the liquid. The maximum amount of this phase occurred around the composition Bi₂O₂·3Nb₂O₆. The X-ray diffraction pattern of this phase could be interpreted as that of a poorly crystalline cubic perovskite with a≈3.94A. Specimens quenched from above about 1,380 °C (well above the liquidus) contained another metastable phase which had an X-ray diffraction pattern similar to the cubic perovskite, but with extra lines. The metastable perovskite in this system can be compared with the distorted perovskite compound La₂O₃·3Nb₂O₃, previously reported [21].

5.2. The System Bi₂O₃-Nb₂O₃-Alcohol

A large number of metastable phases were found to occur in the Bi₂O₃-Nb₂O₅ system if either methyl or ethyl alcohol was used for wet mixing of the end members, and the resultant material was pressed into a pellet and fired without first thoroughly drying the mixture. Two separate body centered cubic phases were observed in mixtures containing 3 to 25 mole percent Nb₂O₅ which had been wet mixed with methyl alcohol. The first phase, labeled b.c.c. in table 7, had a unit cell dimension of a=10.263 A. This phase decomposed quickly in quench runs above 750 °C and did not affect the melting point measurements. However specimens containing 16 to 24 mole percent Nb₂O₅ originally mixed with methyl alcohol contained large amounts of a second body centered cubic phase (labeled b.c.c.' in table 7) with a about 10.15 to 10.19 A. These specimens were found to dissociate to unknown phases which had metastable melting points several hundred degrees below the melting values of specimens prepared with-out alcohol, and had to be discarded. For these latter compositions only the dry-mixed specimens are reported in table 7. Other unknown phases were found in mixtures containing 1 to 4 mole percent Nb₂O₅ which had been wet-mixed in ethyl alcohol and were also discarded for table 7.

It seems likely that Bi₂O₂ forms a series of complex compounds with methyl and ethyl alcohol and can incorporate Nb₂O₅ into these compounds. first b.c.c. phase (a=10.263 A) seems to contain little or no Nb₂O₅ and probably contains only Bi₂O₃ and alcohol or carbon. The second (b.c.c.') phase apparently contained about 12 to 15 mole percent Nb_2O_5 (plus alcohol or carbon). The body-centered cubic phase appears to be built up by spheres of Bi+3 and O-2 ions with a large tetrahedrally coordinated hole in the center [6, 8]. This host lattice, by itself apparently thermodynamically unstable, is stabilized in some cases by the addition of a second component in the central hole. It is possible that this phase may therefore be a clathrate compound. A more complete study by high-temperature X-ray diffraction, of the body-centered cubic phase with a large number of other oxides will be discussed in a future publication.

6. Summary

The system Bi₂O₅-Nb₂O₅ was studied by means of solid state reactions, fusion characteristics, and X-ray diffraction data. The existence of five compounds in this system was shown. They are: 5Bi₂O₃·3Nb₂O₅, which melts incongruently at 1,193 °C to Bi₂O₃·Nb₂O₅ and liquid containing about 36.5 mole percent Nb₂O₅; Bi₂O₃·Nb₂O₅ which melts congruently at 1,245 °C, and has a phase transition (irreversible in laboratory time) at about 1,020 °C from a low-temperature orthorhombic structure to a high temperature triclinic form; 4Bi₂O₃·9Nb₂O₅ which has a minimum temperature of stability at 1,070 °C and melts incongruently to Bi₂O₃·6Nb₂O₅ and liquid containing about 68 mole percent Nb₂O₅; Bi₂O₃·5Nb₂O₅ which

has a maximum temperature of stability, decomposing at 1095 °C to 4Bi₂O₂·9Nb₂O₅ plus Bi₂O₂·6Nb₂O₅; and Bi₂O₃·6Nb₂O₅ which has a minimum temperature of stability at 1,002 °C and melts incongruently at 1,242 °C to Nb₂O₅ and a liquid containing about 76 mole percent Nb₂O₅. The only eutectic in the system occurs at 1,180 °C and about 64 mole percent Nb_2O_5 .

Nb₂O₅ enters into solid solution in the hightemperature cubic form of Bi₂O₃, raising the melting point to about 1.055 °C and lowering the monoclinic to cubic phase transition from about 730 °C to about 610 °C. A morphotropic transition occurs in the solid solution at about 19.5 mole percent to a pseudocubic form, and further solid solution occurs from 19.5 mole percent to about 23.5 mole percent $\mathrm{Nb}_2\mathrm{O}_5$. The pseudocubic form of $\mathrm{Bi}_2\mathrm{O}_3$ solid solution is stable from room temperature to a maximum solidus temperature of 1,096 °C. No solid solution was observed in Nb2O5 or in any of the five binary compounds in the system.

(Paper 66A6-180)

References

- K. Dihlström, Z. Anorg. Allgem. Chem. 239, 57-64 (1938).
 B. Aurivillius, Arkiv Kemi 3 (20) 153-161 (1951).
 H. S. Roberts, Phys. Rev. 23, 386-95 (1924).
 H. F. Stimson, J. Research NBS 65A (Phys. and Chem.) 139-145 (1961).
- W. Guertler, Z. Anorg. Chem. 37, 222 (1903)
- L. G. Sillén, Arkiv Kemi 13A [18] 1-15 (1937).
 W. C. Schumb and E. S. Rittner, J. Am. Chem. Soc. 65, 1055-1060 (1943)
- [8] B. Aurivillius and L. G. Sillén, Nature 155 [3932] 305-
- 306 (1945).
 [9] L. G. Sillén, Z. Krist. 163 [4] 274–290 (1941).
 [10] H. E. Swanson, M. C. Morris, and E. H. Evans, NBS

- [10] H. E. Swanson, M. C. Morris, and E. H. Evans, NBS Mono. 25, Sec. 2 (to be published).
 [11] R. S. Roth, J. Research NBS 42 [27] (1959) RP2925.
 [12] C. S. Hurlbut, Jr., Am. Min. 42 [3, 4] 178-183 (1957).
 [13] R. S. Roth and J. L. Waring, J. Research NBS 45A (Phys. and Chem.) No. 4, 337-344 (1961).
 [14] F. Galasso and L. Katz, Acta Cryst. 14 [6] 647-650 (1961).
 [15] R. O. Burbank and H. T. Evans, Acta Cryst. 1 330 (1948).
- (1948)
- [16] F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Am. Chem. Soc. 79 2039-2043 (1957).
 [17] M. W. Shafer and R. Roy, Z. Krist. 110 [3] 241-248
- (1958).
- (1958).
 [18] H. J. Goldschmidt, J. Inst. Metals 67, 235-239 (1958-59).
 [19] A. Reisman and F. Holzberg, J. Am. Chem. Soc. 81, 3182-3184 (1959).
 [20] E. M. Levin and C. L. McDaniel, J. Am. Ceram. Soc. 45, No. 8, 355-360 (Aug. 1962).
 [21] R. S. Roth, in "Rare Earth Research," Ed., E. V. Kleber, Chem. 2007, 1962.
- The Macmillan Co. (1961), pp. 88–95.