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Belaxation spertra have heen used in both the pressntetion and interpretation of messure-
ments of the mechanical properties of rubherlike polymers.

Kelaxation specira have been widaly nsed in both
the preseniation and interpretation of measurements
ol tha mechanieal properties of rubberlike polymers.
They are generally introduesd in terms of 5 more or
less specigc modsl representing linear viseoalastic
behavior, since the & priori assumption of » spectrum
of & certain form is equivalent t¢ sssuming a certain
maile] representation for mechanical responsa.

Ordinarily the derivation of such funetions is
based on the assumed squivalence of the mechanical
rezpotize of a material to tha reaponse of an assembly
of ideal springe and dashpots. And indeed it can be
shown rigorously that any linear Tesponse is equiva-
lent to the response of some such array if one admits
certain limiting cases analogous to the familiar elec-
trical cable with distributed resistance and ca-
pacitance. However, the proper form for the spec-
tram, whather it should be an integral or a sum, 13 not
determined by this approach, but is arbitranl
assumed depending on the type of analysis prefcrred.

This ambiguity iz not particularly serious for any
practical application, since our experimental meagure-
ments are ssldom precise or extensive enough to per-
mit vs te distinguish experimentslly hetween the
two forma. It is, however, quite possible fo define
the spectra unambiguously in terms of a relation
between the trangient and steady-state functions
which must held whenever the behavior is linear and
the Boltzmann auperposition principle applies.
Moreover, this development automatically dater-
mintes the natura of the spectrum in terms of the
Einfulm'ities of the steady-state response function,
and yields directly an algebraie relation giving the
apecirum ex:m?ldy if the response function is known or
assumed in analytie form.

The basic definition ¢of the mechanical rewponsa
function of & moterial is considered here to be that
obtained from experimental observation. For a
linear passive material either the response to a fozce
which is a unit step function of time, (), or the
steady-state response to sinusoidal force, O™(iw)=
@ {w)+1 G (w), will mn&plel;egr define the response
in shear, In principle &), &{«), and "'{w) can
be messnred for all real positive times, ¢, or frequen-
cies, w, and we shall assume that both functions are
known, are bounded, and are ressonably smooth.
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Since we are considering relaxation-type behavior,
we shall further assume that &t} is monotonic
nnr}mcmasinﬁ and contmns ne oscillatory terms
which would characterize resonance- or dumped
resenance-type response.

We define a function G*(p), with p=s1-iw, hy
anplytic extension of G*%{7q) ﬁo:n its hne of defini-
tion. By a somewhat lengthy argument involving
energ[v;nmnsideratiuns it can be shown that the
gin ties of G*(ﬁ] are confined to the nepative
real axis including the origin. This same conclusion
can be reached from & consideration of the relation
between G™(p) and @), established through the
Carson traneformation

G )= 6 exp (—ptiit

and its inverse
Glty=g [ (6"l exp (0} dp. (1)

Since G'(t) is defined for all real £2-0, and has heen
assumed to bave the character of u relaxation-type
response, the singularities of G*(p)fp must be con-
fined to the negative real axis, including the origin,
Moreover, if these singularities are poles they must
be of first order, since any higher order poles would
lead io terms in &) of the form %2, Inconsistent
with relaxation-type behavior. If these singularities
ore simple poles, Cﬁ:ﬂl will be given by a sum of terms
of the fgrrn #n EXp (3:), 8, <0, where the sum may be
either fnite or infinite. Thizs may be written in
terros of a relaxstion spectrutn, AN, as

6= [0 exp (2030 2

if we take
ﬁ(l]=§ #o8(A18,). (3)

The various molecular theories of viscoelastic
behavior yield expressions of this form. However,
& continuous spectrum is consistent with our assump-
tions, and will be found if @*{p) is cheracterized not
by poles but by = branch cut along a portion or the
whole af the negative rewl axis. Since various
approximation methods for obtaining a spectram
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from the tessured response functions ordinarily
Kield A continuous spectrum, it is of interest to see
ow this can he darived.
I{ &*(p} contains a branch cut, the contour of eq
1) msay be deformed and the integral written as

G =(1/2a1) 1.1_13 1.111;1
Via—a

{J-

+z‘f“ @*(pe™) exp (ate*)dy

[ (s— e}/ (s—te)] oxp [(—Fe)t]de

+f _[G"(S-I-%e f{-ﬁ-l-u)]nxp {s—i—u}lt]ds} {4)

where ¢ =(x{2) +cos~ ¢/ p).
Tha second term of (4) ylelds @*{0}=G{=). The

first and third terms can be combined, ueing the fact

that O™ of pconjugate equalz the comjugale of
@*{p), to give:

)~ =)=(1/x)

=[x exp (00,

el e &) ]EI_l'mI'l L *{2} 1)

(5)
whera
A{A == (1/rk) liﬂ I @ — x4t ie).

This will be a continuons function of & over the
region of the branch cut. If applied to a function
characterized by simple poles it will yield zerc for
A(A) except at the poles where Im *(p) goes to
infinity.

The same procedure ¢wn be used to define the
retardation spectrum from the relation between
j{=)—4{f) and its transform, where 7{f) is the re-
cuver&gla part of the creep function J{{).

The slgebraic relation {6) was derived by Gross !
by a less direet method starting from the integral
gving F¥{fa} in berins of A(A).
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