JOUENAL OF EESEARCH of the Hotional Bureou of Standards—A. Phyalar and Chemictry
Vol. 664, No, 2, Morch-April 1962

Cross-Sectional Correction for Computing Young's Modulus
From Longitudinal Resonance Vibrations of Square

and Cylindrical Rods

Wayne E. Tellt and Sam Spinner
(Draecember 8§, 1451}

The sross-zectional correotion invoived in the caleulation of Young's medulbus from the
longitudinal resonance vibrations of both square and eylodrical bars has bech detarmined
by an empirical method. . .

On an order of sceuraey of 1 part in 1,000, Bancroft's eorrection, devaeloped for longi-
tudinal waves in cylinders of infinite length was found o be satisfactory.  For this purpose
the thick ness of agquere bezs is related fo the diameter of pylindrieal bary of the asme longth
by dF=3d.

For securacles of 1 part {n 10,000, modifications in Bancroft's eorrectinn tust be applied.
There modlfications take a diferent form for the square rods than for the cylindrical rods.
The relation, 2=na held for both shapes and on the higher order of accuracy, ie, tha
erogs-gactional correction was the sama for the fundamental aond overtones on specimens of the

pytne effective length.

1. Introduchon

This is the fourth in & series of papers {1,2,3] 1
dealing with the empirical establishment of accurate *
relations for computing elastic modyli from the
varipus types of resonance vibrations of isotropic
anlids. w experimental technique and genernl
approach have heen fully deseribed in these previous
papera and will not be elaborated here. In one of
these papers {2] the problem of the crosssectional
correction factors involved in the computation of
Young's modulus from both the Tondementel nod
overtones of the longiludinal regonance vibrations
of eylindrical bars has already been treated. The
present investigation extends this treatment b
considering longitudinal vibrations of square as w
a8 cylindrical bars; nnd on a higher order of accuracy
for both shapea (by a factor of 10} then i the
Previcus work.

Banerolt [4] hos obtaiced an aceurate numerieal
solution of the Pochhammer-Chree equations for the
case of longitudinal waves In cylinders of infinite
length. However, it is known [5] that these aqua-
tiops cannot he applied rgorously for longiudinal
resonandce vibrations in bara of finite length (whare
tha ends of the bar are at zero stress). The problem
of the present investigation is to determine experi-
menlally itho degres to which Brncroft's solution,
developed for longitudinal waves in cylinders of
infinita length, fita the ease for longitudina]l reso-
nance wibrations in eylindrical and square bars of
finite longth; and to what depree modifieation is
required,

1 Figores In brackets indicale Ll Ijkenstun; miereoces ot the end of thiz paper.
¥ Ag prviymle wy Tl determination of the relevant parsmeatars permii.

2. Experiment

(f the eight steel specimens used in this investiga-
tion, (table 1) the first six were the same ones used
in a previous atudy [3), and have the sama desigha-
tion. A description of their method of preparation
and characterization is given in that referenee.  This
deseription applies also to the remaining Lwo spect-
mens, The longitudinal modes of vibration were ob-
tained concurrentiy with the torsions]l modes dis-
cisard in [3]. Consequently, the adventage which
was gained in the previous study by cutting dowa
certain larger specimens after a secies of reschance
frequencies had been determined, and obiaining the
resonances on the shortened specimens thus formed
{enabling one to obtain a fairly large number of
experimental points from a fanly small piece of
oﬂlﬁin&l stock}, is also retained here.

'he nember of experimental points o¢btainad here,
however, was more limited thun in the study on
torsion because the fundamental and overtones of
the longitudinsl resopance [requencies of hare are
higher than the correeponding torsional ones. It is
recalled from the previous paper that the upper
frequency limit of the resonance determinations is
about 50 kefs. Consequenily, fewer overtones of
longitudinal resonances could be obtained before this
upper frequency limit was attained ; and for the short-
et specimen. (A, wetuslly a cube) for which only
the fundamental torstonal resonance conld be deter-
mingd, not evan ithe fundamental longitudinal rezo-
nance frequency could be detected.

The same precsutions to insure aceuracy, including
waiting for the specimens to attain thermal equilib-
rium with a controlled ambient temperature, thab
ware taken for the torsional resonsnce detsrmina-
tions, were also used here. The aecuracy of thess
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resonance deferminations, was conservatively esti-
rated t¢ be about 1 part in 10,000, as was the case
for torsionsl resonance.

3. Results and Analysis

The frequency of the fundamental and overtones
of the longituding! rescnance vibeations of all the
apecimens iz given in tabla 1.
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*Hpacimens B and © are cvlindries; sil otbhars sve square in croes section.
=4 =fundamental reearsiee fregiengy, =it ovecbans, ede.

We proceed with an analvsis of the data by re-
calling certain well-known relations, some of which
huv:iem lmdkg;eviousl}' [2] in studying this mode
of vibration. First, the relatiom between the wve-
locity, m, of n longitudinel wave in an infinitely
thin rod, of infinite length, and the Young's mnodulus,
E, and density, p, of the medium is pivan by

%=+Ejp. (1}

In a cylinder of finite diametsr, d, and infinite
length, the velocity of a longitudingl wave, 7, I8 re-
duced frem #3. Bancroft’s [4] numerical solutionof the
PochhammerChree equationa for this particular
case has alrondy been mentioned. His results can be
conveniently expressed in the form of & table, such &=
table 2, which gives numarical values of the reduction

factor,
K, ={(rst5), (2)

as a function of dfx (A being the wavelength of the
wave) and Poisson’s ratio, g, of the medium ; ¢y is the
veloaity from Bancroft’s correction.

For aquare bars, no theory comparsble in accuracy
to that developed for cylinders (for this cross-
zectional correction) appears to be available. How-
over, it seems that the correction factors from table
2 could bo appliad to square bars if an approprista
assurnption were made ss to what cross-sectionsl
dimension of & 2quare bar should be taken to
correspond to 4 for a cylinder of the same langth.
There appears to be soma theoretical justifica-
tion [6] for assuming that the cortection wﬂu{d be the
same if the polar moments of inertis of the square
nud circular cross-sectional arens were the same.
This assumption was adopted here. Such a condi-
tion would require the following rclation between
the thickness, 1, of & square bar, and the diameter, d,
of a cylinder of the same lengih.
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m=§ . (3)

In longitudinal resonance vibrations in cylindrical
or square rods {(associated with standing waves) the
following set of relations are ususlly adopted,

A=2{n, v, =F=2fu/n (4)
where is the length of the specimen, v, the *'veloeity”
of the wave, f the longitndmal resonance frequency,
gnd the letter m, oither as a subseript, or inde-
pendently, indicates the order of the rescnance
vibration; for the fundamentsl, n=1; for the first
overtone, n==2, etc,

Assuming that vp=1,, and comkining eqs (1}, (2},
ghd {4), one obtaing the following eelation,

Efp= (1K )2 ./n)". (5)

Hera the subscript in &, takes on the added signifi-
cance of indicating the order of vibration to which
thiz sorreetion factor applies.

All the parameters in tha parentheses in eq (5}
may he determined experitnentally and E/p for o
carefully zelacted %;*outi of apeeimena from the
same souree should be the same.

The remainder of this paper, then, reduces itself
to the problem of determining the degree to which
the factor, &, developed {or longitudinal waves
in eylinders of infinite length alse applhes to long'-
tudinel resonance vibrations (in rods of finite length).
This is equivalent to finding the degree to which the
assumption that rp=v, holds. Also io be tested is
the assumption that square and cylindrical rods of
the same langth, haviog the same polar moments of
ingrtia of cross sectional area, undergo tha same
reduction in velocity.

In figure 1, the data of table 1 are plotted on a
scale ecomparable in precision (about 1 part in 1,000)
to that uf the previous study (fig. 1 of [2]}. The
square of the parsneters comprising the ordinate
and abscissa ave selected, rather than the first power,
ng in the previous study, to show the approximately
linegr relationship that then exista hetween these
variables. Sueh a presentation 18 in conformity
with table 2 which facilitates acecurate interpolation.
For the highest accuracy of interpolation from Ban-
croft’s values Aitken’s [6] method of interpolation
must he wsed, In order to include squars as well
g8 eylindrical specimens, 8, in the figure, is chosen
a0 t.?mt. = (d212 or 133,

Tha ling in the figure ia obtained by plotting Ban-
croft’s values from table 2 for an appropriate value
of p. Buch a value may be selected in two inde-
pendent ways, and the degree to which the values
s0 ohtained agree provides s check of the consistency
of the data. On the onae hand, one may seleet that
value of u from table 2 for which the associated
values of ordinate and abscizea give the best fit to
the experimental data. The velue of u s¢ obtained
wag 0.2906, Omn the other hand, one may extrapolate




the experimental values to obtain the best estimate
of vy; then, Jmowing p for the specimens® from the
previous gtudy [3], £ may be computed from aq (1).
Since & for these specimens is alzo known from [3],
p may be computed from the well-known relation,
p={E/2() —1. The value of y o obtained was 0.25880.
This waz the wvalue used in the figure. The two
valies ure seen to be in excellent agresment with
each other and also with the ones given in the litera-
ture for steel,

Examination of figure 1 leads to the following
conclusions:

(1) The deta of the previous study for cylinders
iz confirmed in that Bancroft’zs cross-scolional cor-
rection for longitudinal waves in eylinders of infinils
length may also be applied to longitudingl resonence
vibrations {in cylinders of finite length).

(2) For square apecimens, this correction also
applies, if the assumption previcusly made is adopted,
namely, that d?={4/31* =45

The above two conclusions hold only on the order
of accuracy of figure 1, ie, 1 part in 1,000, Small
deviationa are noted when the data are plotted on
u more expanded seale as will he shown in figures
2 and 3.

{3} For both square az well as cylindrieal speci-
meng, the observation previously made for eylindrical
apecimena with respect to overtones still holds, This
is that the points for overtones fall on the sgme line
aa for fundamental resonance vibrations. This
means that the relation, A=2¢/w, holde and that the
correction factor for the overtones of a longer apeei-
men is the same as for that of a shorter specimen
having the sumae effective langth {i.e., having the
sarne value of wbscisza).

In fipure 2, the experimental points are plotted
on & more extended scale, comparable to the full
accuracy of the data itself, namely, about 1 part in
10,000. A convenient way to prezent such a plot
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is in terms of possible departures of the experimental
points from cge velocities resulting from crofi's
correction, #5.  ‘This would correspond geometrically
to making a horizontsl line of the one given in figure
1 at (zfep)’=1, and plotting the ratic (v/eg)" as a
fuﬂi:tion of (8nf0)* for all the experimental points in
tabla 1,

When this procedure is followed, certain significant
departures from Baneroft’s correction becoma evi-
dent.  The upper line ehows that the cross-zectional
eorrection factor for eylinders deviatea linearly from
Bancroft's correction as {gn!)® increases.
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Ficuer 2. Exponded plof shovudng deporiure of longliudinal
usineiticy, ammostaled itk resphanre wbrofionz, from values
obfained wstng Boancrefl's correction for longitedinal woees,
tpe of 6 Funcon of eross sectron fo fenglh,

T pper Iine 19 4 Jeast square splution of polats lor exlindeles] specimena while Jower
LW eurves are 2iraply deawn throngh eeperimental points A smallar and lerger
BEYAA00 SpepibEL,

This line is obtained by a least squares fit of the
experimantal points yiclding the foliowing relation:

(tf28)*=1-+0.0075 (nd/20)". (6)

The two lower curves are for the square specimens.
The fact that two swch curves, one for the largar
apecimens and onae for the smaller ones, appear is

isconcerting but presents no serious problom. If
the ressonable asswnption is mads that the separa-
tion of these eurves is caused by real differences in
intrinsic elastic moduli {or Efp) of the laree and
simall specimens due to differences in work hardening
or some other canae Y and the two curves wre hrought
into coincidence by changing the basa value for the
lower curve, say, than figura 3 resulis, Following
the procedure of tha other fizures, Lhe abscizza is
again sguared in order to obtain an approximately
Iimear relationship. The line in fizure 3 ia alae &
least square solution of the experimental points,
represented by the equation,

' (2f2g)i=1—0.055[1/3 (n&/DF. )

It is emphasized that these departures from Ban-
eroft’s correction do not mean that thi= factor i in

41t 1 racelled from [3] that the Targe o Staal] Sjuae apecimeng wers it foom
te erude of Lhe m'jﬁtua] stook, It iz 8leo importsat be remamber thet thess
s anly sbow {hemseives oo the highly expanded scale of feuee 2.
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reduction in longifwdine
with longitudinal regonance

ribrations, from fhaf oblatned wsing Borcorgs correchion,
affer adjualsent i fhe bose eolue of the lorger specimens.
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error. Hather they are a measure of the degree to
which the experimental peints depart from Bancrodt s
values when the conditions of his wnalysiz are not
fulfilled.

Ii ia also noted that the third observation op figure
1 concerning the identity of the correction factor for
overtones and fundamentsl resomancs vibrations
still bolds on the ﬂx]{a,ndcd scale of figures 2 and 3,
It i= recalled from the previovs study [3] that this
wis Dot the caze for torsionsl respnance vibrationa
in sguare rods in which the erose-sectional correstion
for overtones followed a different patiern from that
for the fundamental of specimens of the same effec-
tive length. For cylindrical specimenz in torsional
rezohance, on the other hand, no cross-zectional
correction at all is regoived theoretically eitber for
the fundamental or for overtones and this is borne
out by experiment.

4, Summary

The forepoing analysia may now he summatized in
the following way.

In making the crosssectional correction for lomgi-
tudinal resonance vibrations of square or cylindrieal
bars, Bancroft’s theoretical correction (developed
for longitndinal waves in eylinders of infinite lengih)
may be safely used if aceurncy not higher than 1 part
in 1,000 i3 sought. Bancroft's values ara presented
in such & manner that linear interpolations can also
ba made to this order of accuracy.

In making n =imiler correction to an accuracy of
1 part in 10,000, an sdjustment, in Baneroft’s corree-
tion faector 18 required. Tn compuling £, from this
mode of vibration, then, the following two aquations
fit the dats.

198



