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Cross-Sectional Correction for Computing Young's Modulus
From Longitudinal Resonance Vibrations of Square
and Cylindrical Rods

Wayne E. Tefft and Sam Spinner
(December 8, 1961)

The cross-sectional correction involved in the calculation of Young's modulus from the
longitudinal resonance vibrations of both square and cylindrical bars has been determined
by an empirical method.

On an order of accuracy of 1 part in 1,000, Bancroft's correction, developed for longi-
tudinal waves in cylinders of infinite length was found to be satisfactory. For this purpose
the thickness of square bars is related to the diameter of cylindrical bars of the same length
by W = 3d2.

For accuracies of 1 part in 10,000, modifications in Bancroft's correction must be applied.
These modifications take a different form for the square rods than for the cylindrical rods.
The relation, 21 = nk held for both shapes and on the higher order of accuracy, i.e., the
cross-sectional correction was the same for the fundamental and overtones on specimens of the
same effective length.

1. Introduction

This is the fourth in a series of papers [1,2,3] 1

dealing with the empirical establishment of accurate 2

relations for computing elastic moduli from the
various types of resonance vibrations of isotropic
solids. The experimental technique and general
approach have been fully described in these previous
papers and will not be elaborated here. In one of
these papers [2] the problem of the cross-sectional
correction factors involved in the computation of
Young's modulus from both the fundamental and
overtones of the longitudinal resonance vibrations
of cylindrical bars has already been treated. The
present investigation extends this treatment by
considering longitudinal vibrations of square as well
as cylindrical bars; and on a higher order of accuracy
for both shapes (by a factor of 10) than in the
previous work.

Bancroft [4] has obtained an accurate numerical
solution of the Pochhammer-Chree equations for the
case of longitudinal waves in cylinders of infinite
length. However, it is known [5] that these equa-
tions cannot be applied rigorously for longitudinal
resonance vibrations in bars of finite length (where
the ends of the bar are at zero stress). The problem
of the present investigation is to determine experi-
mentally the degree to which Bancroft's solution,
developed for longitudinal waves in cylinders of
infinite length, fits the case for longitudinal reso-
nance vibrations in cylindrical and square bars of
finite length; and to what degree modification is
required.

1 Figures in brackets indicate the literature references at the end of this paper.
2 As accurate as the determination of the relevant parameters permit.

2. Experiment

Of the eight steel specimens used in this investiga-
tion, (table 1) the first six were the same ones used
in a previous study [3], and have the same designa-
tion. A description of their method of preparation
and characterization is given in that reference. This
description applies also to the remaining two speci-
mens. The longitudinal modes of vibration were ob-
tained concurrently with the torsional modes dis-
cussed in [3]. Consequently, the advantage which
was gained in the previous study by cutting down
certain larger specimens after a series of resonance
frequencies had been determined, and obtaining the
resonances on the shortened specimens thus formed
(enabling one to obtain a fairly large number of
experimental points from a fairly small piece of
original stock), is also retained here.

The number of experimental points obtained here,
however, was more limited than in the study on
torsion because the fundamental and overtones of
the longitudinal resonance frequencies of bars are
higher than the corresponding torsional ones. It is
recalled from the previous paper that the upper
frequency limit of the resonance determinations is
about 50 kc/s. Consequently, fewer overtones of
longitudinal resonances could be obtained before this
upper frequency limit was attained; and for the short-
est specimen (An, actually a cube) for which only
the fundamental torsional resonance could be deter-
mined, not even the fundamental longitudinal reso-
nance frequency could be detected.

The same precautions to insure accuracy, including
waiting for the specimens to attain thermal equilib-
rium with a controlled ambient temperature, that
were taken for the torsional resonance determina-
tions, were also used here. The accuracy of these
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resonance determinations, was conservatively esti-
mated to be about 1 part in 10,000, as was the case
for torsional resonance.

3. Results and Analysis
The frequency of the fundamental and overtones

of the longitudinal resonance vibrations of all the
specimens is given in table 1.
TABLE 1. Dimensions and longitudinal resonance frequencies

of specimens of this investigation

Specimen*

A
A 1
A 12
A 2
B

c
D
F

Length

cm
28.5902
19.9753
16.1737
8.2550
5. 7142

9.2341
9.2340
5. 7144

Thick-
ness

cm
3.4950
3.4950
3.4950
3.4950
2. 5737

2.5737
2.2285
2.2285

Resonance frequencies (c/s)

9043.6
12931.2
15953.1
30932
44807

27927
27924
44795

ft

18030.5
25686
31555
59437

55075
55057

h

26890
38016
46234

n

35529

*Specimens B and C are cylindrical; all others are square in cross section.
**/i=fundamental resonance frequency, j%=first overtone, etc.

We proceed with an analysis of the data by re-
calling certain well-known relations, some of which
have been used previously [2] in studying this mode
of vibration. First, the relation between the ve-
locity, v0, of a longitudinal wave in an infinitely
thin rod, of infinite length, and the Young's modulus,
E, and density, p, of the medium is given by

VO=^WP- (1)

In a cylinder of finite diameter, d, and infinite
length, the velocity of a longitudinal wave, v, is re-
duced from vQ. Bancroft's [4] numerical solution of the
Pochhammer-Chree equations for this particular
case has already been mentioned. His results can be
conveniently expressed in the form of a table, such as
table 2, which gives numerical values of the reduction
factor,

# ( W ) 2 (2)

as a function of d/\ (X being the wavelength of the
wave) and Poisson's ratio, n, of the medium; vs is the
velocity from Bancroft's correction.

For square bars, no theory comparable in accuracy
to that developed for cylinders (for this cross-
sectional correction) appears to be available. How-
ever, it seems that the correction factors from table
2 could be applied to square bars if an appropriate
assumption were made as to what cross-sectional
dimension of a square bar should be taken to
correspond to d for a cylinder of the same length.
There appears to be some theoretical justifica-
tion [5] for assuming that the correction would be the
same if the polar moments of inertia of the square
and circular cross-sectional areas were the same.
This assumption was adopted here. Such a condi-
tion would require the following relation between
the thickness, t, of a square bar, and the diameter, d,
of a cylinder of the same length.

(3)

In longitudinal resonance vibrations in cylindrical
or square rods (associated with standing waves) the
following set of relations are usually adopted,

\=2lln, vs=fn\=2lfn/n (4)

where I is the length of the specimen, vs the "velocity"
of the wave, / the longitudinal resonance frequency,
and the letter n, either as a subscript, or inde-
pendently, indicates the order of the resonance
vibration; for the fundamental, n=l; for the first
overtone, n=2, etc.

Assuming that vB=vs, and combining eqs (1), (2),
and (4), one obtains the following relation,

E/P=(l/Kn)(2lfjny. (5)

Here the subscript in Kn takes on the added signifi-
cance of indicating the order of vibration to which
this correction factor applies.

All the parameters in the parentheses in eq (5)
may be determined experimentally and E/p for a
carefully selected group of specimens from the
same source should be the same.

The remainder of this paper, then, reduces itself
to the problem of determining the degree to which
the factor, Kn, developed for longitudinal waves
in cylinders of infinite length also applies to longi-
tudinal resonance vibrations (in rods of finite length).
This is equivalent to finding the degree to which the
assumption that vB=vs holds. Also to be tested is
the assumption that square and cylindrical rods of
the same length, having the same polar moments of
inertia of cross sectional area, undergo the same
reduction in velocity.

In figure 1, the data of table 1 are plotted on a
scale comparable in precision (about 1 part in 1,000)
to that of the previous study (fig. 1 of [2]). The
square of the parameters comprising the ordinate
and abscissa are selected, rather than the first power,
as in the previous study, to show the approximately
linear relationship that then exists between these
variables. Such a presentation is in conformity
with table 2 which facilitates accurate interpolation.
For the highest accuracy of interpolation from Ban-
croft's values Aitken's [6] method of interpolation
must be used. In order to include square as well
as cylindrical specimens, /3, in the figure, is chosen
so that p2=(d/2)2, or *2/3.

The line in the figure is obtained by plotting Ban-
croft's values from table 2 for an appropriate value
of jit. Such a value may be selected in two inde-
pendent ways, and the degree to which the values
so obtained agree provides a check of the consistency
of the data. On the one hand, one may select that
value of /x from table 2 for which the associated
values of ordinate and abscissa give the best fit to
the experimental data. The value of /x so obtained
was 0.2906. On the other hand, one may extrapolate
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the experimental values to obtain the best estimate
of v0; then, knowing p for the specimens3 from the
previous study [3], £ m a y be computed from eq (1).
Since G for these specimens is also known from [3],
M may be computed from the well-known relation,
fjL=(E/2G) — 1. The value of /* so obtained was 0.2880.
This was the value used in the figure. The two
values are seen to be in excellent agreement with
each other and also with the ones given in the litera-
ture for steel.

Examination of figure 1 leads to the following
conclusions:

(1) The data of the previous study for cylinders
is confirmed in that Bancroft's cross-sectional cor-
rection for longitudinal waves in cylinders of infinite
length may also be applied to longitudinal resonance
vibrations (in cylinders of finite length).

(2) For square specimens, this correction also
applies, if the assumption previously made is adopted,
namely, that d2=(4/3)£2=4/32.

The above two conclusions hold only on the order
of accuracy of figure 1, i.e., 1 part in 1,000. Small
deviations are noted when the data are plotted on
a more expanded scale as will be shown in figures
2 and 3.

(3) For both square as well as cylindrical speci-
mens, the observation previously made for cylindrical
specimens with respect to overtones still holds. This
is that the points for overtones fall on the same line
as for fundamental resonance vibrations. This
means that the relation, \=2l/n, holds and that the
correction factor for the overtones of a longer speci-
men is the same as for that of a shorter specimen
having the same effective length (i.e., having the
same value of abscissa).

In figure 2, the experimental points are plotted
on a more extended scale, comparable to the full
accuracy of the data itself, namely, about 1 part in
10,000. A convenient way to present such a plot

3 Actually, since the same set of specimens is involved, p should be the same for
all specimens and need not be known. Poisson's ratio may then also be computed
using flo (longitudinal) and vo (torsional) in place of E and G, respectively; vo
(torsional) is also known from [3].

flix-fnix

FIGURE 1. Plot showing the reduction in longitudinal velocity,
v, in a square or cylindrical rod of finite cross section from
Vo, the corresponding velocity in an infinitely thin rod of the
same length I.

0 is related to the diameter, d, of cylinders, and the thickness, t, of square rods by
4/S2=d2and3/32=£2. Also the wavelength, \=2l/n (n being the overtone). The
line is drawn through Bancroft's values for Poisson's ratio=0.2880, showing
the agreement between Bancroft's correction, developed for longitudinal waves
in cylinders of infinite length, and resonance vibrations in cylinders or square
bars of finite length on this scale of accuracy (1 part in 1,000).

is in terms of possible departures of the experimental
points from the velocities resulting from Bancroft's
correction, vB. This would correspond geometrically
to making a horizontal line of the one given in figure
1 at (v/vB)2=l, and plotting the ratio (v/vB)2 as a
function of {finII)2 for all the experimental points in
table 1.

When this procedure is followed, certain significant
departures from Bancroft's correction become evi-
dent. The upper line shows that the cross-sectional
correction factor for cylinders deviates linearly from
Bancroft's correction as (fin/l)2 increases.

TABLE 2. Bancroft's cross-sectional correction factor, ~Kn=(vB/vo)2 a, as a function of Poisson's ratio, ix}

and diameter to wavelength ratio, d/\

d/\

0.00
.05
.10
.15
.20

.25

.30

.35

.40

.45

.50

0.0000
.0025
.0100
.0225
.0400

.0625

.0900

.1225

.1600

.2025

.2500

.10

1.00000
0.99988
. 99950
. 99882
. 99780

. 99632

. 99421

. 99114

. 98651

. 97913

. 96621

.15

1.00000
0.99972
.99886
. 99736
. 99509

. 99184

.98728

.98085

.97158

.95778

.93646

.20

1.00000
0. 99950
.99798
.99533
. 99138

. 98579

. 97810

. 96759

. 95310

.93300

. 90503

.25

1.00000
0. 99922
.99686
.99277
.98670

. 97830

.96702

.95203

.93236

.90668

. 87383

.30

1.00000
0.99888
.99549
.98967
. 98117

. 96956

. 95435

. 93486

.91031

.88003

.84372

.35

1.00000
0.99848
.99389
.98609
. 97480

. 95975

. 94049

. 91660

. 88770

. 85372

. 81499

.40

1. 00000
0.99802
. 99206
. 98202
. 96772

. 94903

. 92571

. 89770

. 86503

. 82812

. 78780

a vo is the velocity of a longitudinal wave in an infinitely thin cylinder, and VB is the velocity in a cylinder of finite diameter and infinite length.
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FIGURE 2. Expanded plot showing departure of longitudinal
velocities, associated with resonance vibrations, from values
obtained using Bancroft's correction for longitudinal waves,
vB> as a function of cross section to length.

Upper line is a least square solution of points for cylindrical specimens while lower
two curves are simply drawn through experimental points for smaller and larger
square specimens.

This line is obtained by a least squares fit of the
experimental points yielding the following relation:

(y/vB)2=l+0.0075(rid/2iy. (6)

The two lower curves are for the square specimens.
The fact that two such curves, one for the larger
specimens and one for the smaller ones, appear is
disconcerting but presents no serious problem. If
the reasonable assumption is made that the separa-
tion of these curves is caused by real differences in
intrinsic elastic moduli (or E/p) of the large and
small specimens due to differences in work hardening
or some other cause 4 and the two curves are brought
into coincidence by changing the base value for the
lower curve, say, then figure 3 results. Following
the procedure of the other figures, the abscissa is
again squared in order to obtain an approximately
linear relationship. The line in figure 3 is also a
least square solution of the experimental points,
represented by the equation,

(v/vB)2=l-0.055[l/3(nt/l)2]2. (7)

It is emphasized that these departures from Ban-
croft's correction do not mean that this factor is in

4 It is recalled from [3] that the large and small square specimens were cut from
opposite ends of the original stock. It is also important to remember that these
differences only show themselves on the highly expanded scale of figure 2.

1.0002

1.0000

0.9998,

0.9996

0.9994

0.9992

0.9990

0.9988

nqqRK

-b
-

-

-

-

-

-

1

•

a ̂ N\ >

I

1 1 1 1 1

a
•
A

+ A

+

\ . • X

a ^ \

\

1 1 1 1 1

= A
= A,

= A 2

= D

= F

\

1

1 1

I 1

1

-

-

-

-

1
0 .002

FIGURE 3. Expanded plot showing reduction in longitudinal
velocities of square bars, associated with longitudinal resonance
vibrations, from that obtained using Bancroft's correction,
after adjustment in the base value of the larger specimens.

The line is a least square solution of the experimental points.

error. Rather they are a measure of the degree to
which the experimental points depart from Bancroft's
values when the conditions of his analysis are not
fulfilled.

It is also noted that the third observation on figure
1 concerning the identity of the correction factor for
overtones and fundamental resonance vibrations
still holds on the expanded scale of figures 2 and 3.
It is recalled from the previous study [3] that this
was not the case for torsional resonance vibrations
in square rods in which the cross-sectional correction
for overtones followed a different pattern from that
for the fundamental of specimens of the same effec-
tive length. For cylindrical specimens in torsional
resonance, on the other hand, no cross-sectional
correction at all is required theoretically either for
the fundamental or for overtones and this is borne
out by experiment.

4. Summary

The foregoing analysis may now be summarized in
the following way.

In making the cross-sectional correction for longi-
tudinal resonance vibrations of square or cylindrical
bars, Bancroft's theoretical correction (developed
for longitudinal waves in cylinders of infinite length)
may be safely used if accuracy not higher than 1 part
in 1,000 is sought. Bancroft's values are presented
in such a manner that linear interpolations can also
be made to this order of accuiacy.

In making a similar correction to an accuracy of
1 part in 10,000, an adjustment in Bancroft's correc-
tion factor is required. In computing E, from this
mode of vibration, then, the following two equations
fit the data.
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