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Ion Transport Across Membranes: I. Definitions of Mem-
brane Electromotive Forces and of Flows of Electrolytic
Solutes

Blanton C. Duncan
(October 10, 1961)

An analysis is given for the treatment of membrane transport phenomena in accord
with the theory of steady state thermodynamics. A linear macroscopic theory for discon-
tinuous systems is applied as a postulate. It is shown that as a consequence of the trans-
formation properties of the Onsager reciprocal relations the definition of a membrane electro-
motive force gives corollary definitions of the flows of electrolytic solutes as a whole in the
form of linear combinations of the flows of ionic constituents. It is shown that established
conventions which set the activity coefficients of ionic constituents equal to unity at the
reference state of infinite dilution lead to a particular definition of the membrane electro-
motive force which may be applied at any concentration.

1. Introduction

This paper reports the results of a part of a study
directed toward the detailed application of the
thermodynamics of steady state processes to the
investigation of transport phenomena at junctions
between electrolytic solutions. The work was un-
dertaken as a part of a research project under the
sponsorship of the Office of Saline Water of the U.S.
Department of the Interior. This project had the
aim of improving the methods of measuring and
reporting the electrochemical characteristics of
membranes.

In this paper we are concerned with the problem
of treating permeability characteristics during steady
states involving the transfer of electric charge without
introducing the classical uncertainty involving the
electrostatic potential difference between two chemi-
cal phases of different composition [1, 2, 3, 4].1 The
existence of such an electrostatic potential difference
is postulated in discussions of the application of
steady state thermodynamics to electrolytic trans-
port problems. The usual practice [5] is to introduce
the definition of the differential of the chemical
potential of an ionic constituent in the form

(1)

where djfi is the total differential of the chemical
potential; z{ is the electro valence; J^is the faraday;
and d£ is the differential of the electrostatic potential.
The first term on the right, the "nonelectrical part,"
may be put formally

(2)

where Si, V*, m% and 7? are, respectively, the partial
molar entropy, the partial molar volume, the

1 Figures in brackets indicate the literature references at the end of this paper.

molality and the activity coefficient at constant
temperature and pressure of the ionic constiuent.
We note here that if ion constituents are defined as
Maclnnis [6] defines them, m\ and hence din m\ are
operational quantities without extra-thermodynamic
assumptions adopted as arbitrary conventions. The
work of Guggenheim [7] as confirmed by de Groot
and Tolhoek [8] shows that in ordinary electro-
chemical systems only the term d/4 on the left in eq
(1) may be included with din m\ as an operational
quantity in a thermodynamic treatment.

de Groot and Tolhoek give demonstrations that,
in principle, one may treat transport across junctions
between electrolytic solutions without seeking to
make the division of chemical potential differentials
called for in eq (1). The first object of this paper
is to set down a fundamental steady state treatment
which makes explicit use of familiar electrochemical
quantities but avoids the use of eq (1). The funda-
mental treatment given here is new only in the sense
that it is a unified analysis applicable to the peculiar
requirements of membrane studies. It may properly
be viewed as first a restriction of Guggenheim's [9]
treatment of galvanic cells to discontinuous systems.
The treatment is then extended to nonisopiestic
systems by including the flow of solvent in a mem-
brane fixed frame of reference. It is further extended
to the treatment of stationary states involving flows
of electric charge. Finally, by following Temkin
and Koroshin [10, 11] and Agar [12] in the treatment
of electronic transport entropies we extend the
analysis to nonisothermal systems.

In much theoretical and experimental work there
appears to be a need to adopt conventions regarding
single ion activities, membrane potentials, salt
bridges, or ideal "inert" electrodes. In terms of the
steady state theory these conventions are viewed as
giving definitions to a "force"—the EMF—conjugate
to a "flow"—the electric current—in the same sense
that a pressure difference is a force conjugate to the
flow of fluid volume. In the discussion given in sec-
tion 10 we show an important case in which the ex-
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plicit need for such a convention arises. The second
object of this paper is to study the requirements to be
met by an EMF convention if it is to lead to an in-
ternally consistent treatment of transport phenom-
ena. We will show that the application of the steady
state theory leads quite naturally to a particular
conventional definition of the membrane EMF. This
definition is developed in sections 8 and 9.

2. Analytical Model

In our analysis we will formally treat a one dimen-
sional, discontinuous, open steady state system with-
out chemistry [13]. Flows through a junction are
treated as if they took place between two points.
The points, a and 0, are taken as representative of
two parallel planes in a real system at each of which
one may assign by experiments a truly representa-
tive average value of any intensive property. A
"j unction" is everything between a and £ and its
composition need not be defined. We only require
flow continuity between a and /3. The flow of a con-
served quantity, i.e., energy, mass as a chemical con-
stituent, and electric charge, across a in the direction
of P must be equal to the flow of that quantity across
ft toward the surroundings of 0. Flows are positive in
the direction d to ft and are to be measured with
reference to a and 0.

The postulate of local equilibrium is applied at a
and 0. A complete set of intensive equilibrium ther -
modynamic properties can be defined by the local
temperature, pressures, and component concentra-
tions when a and 0 are at the same gravitational po-
tential with no other external fields operating. Dur-
ing a steady state these intensive properties are to be
maintained constant by exchanges with the sur-
roundings.

We give a priori emphasis to certain consequences
of this model. The uncertainty which arises in dis-
cussions of transference numbers and diffusion coeffi-
cients continues to receive attention in the literature
[14, 15, 16]. An analysis of the model chosen gives
permeability characteristics as integral characteris-
tics of a junction in a cell fix frame of reference. Thus
if the real system were a simple Hittorf transference
cell [17], an integral transference number of an ion
constituent would be by definition a property of the
middle cell region, a solution filled glass tube. A
transformation to an ordinary Hittorf or Washburn
[12] number given with reference to the center of mass
of the solvent would yield another integral property
of the solution filled glass tube. The identification of
these latter properties as properties of the solution
would, in the usual way, require a demonstration
that wall effects in large tubes contribute only to the
extent that the tube defines the geometry of the
solution.

3. Fundamental Steady State Formulation

de Groot gives a detailed discussion of the funda-
mental principles of the steady state theory. We
accept the theory here in the manner of a formal

postulate. The material of this section sets forth the
way in which quantities of established operational
significance are to be employed to define flows and
forces in the steady state description of junction
processes without resort to eq (1).

The choice of a concentration scale is immaterial
to the essential results of this paper. In noniso-
thermal systems it is generally preferable to avoid
volume concentrations [37]. We find it convenient
to employ molalities, mole kg"1 of solvent. The com-
positions of the solutions at a and 0 are defined by
the concentrations of r constituents. The first m,
including the solvent, are nonelectrolytes. The next
r-m are ionic constituents. We define a constituent
composition vector, {mf}, the elements of which are
the molalities of these constituents. We define the
constituent electro valence vector, {zf}} where the
elements are the electrovalences of the respective
constituents represented in {mf}. The restriction of
the electroneutrality condition is expressed by

(3) -

where the superscript dagger, f> denotes transpo-
sition.

Under the restriction imposed by eq (3) it will
always be possible to express the composition of solu-
tions a and 0 in terms of r — 1 independent components
[38]. We define a component composition vector,
{m*}, where the respective elements are the molali-
ties of electrically neutral isolable chemical com-
pounds. These composition vectors must be con-
nected by a relation,

(4)

or, in more detail,

0

0

0

1

0

0

0

0

0 IV-i.m+1

0 J>r.m+1

~ m*

. . JV-l,r-l

• • JV.r-l_J

m{

mf
T-x

(5)
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An element, vijf of the matrix {v} is zero or a positive
integer. It is the number of moles of the iih constit-
uent contained in one mole of the isolated jth neu-
tral component. The particular combinations of
ionic constituents chosen as neutral components are
a matter of convenience except that the independence
of the components requires that {v} be of rank r—1.
A unique solution must exist for the molalities of
components in terms of molalities of r— 1 constituents.
We note that the requirement of electroneutrality
for every component is expressed by

(6)

We also note that convenience is best served if {vj is
chosen such that the elements of the solution vector
{m*} of eq (4) satisfy the condition

I t is important to note tha t in equilibrium thermo-
dynamics one can treat the properties of a three
component system such as H2O-NaCl-KBr. In a
steady state treatment of transport processes—
"without chemistry"—such as the interdiffusion of
the components between solutions with differing
concentrations of NaCl and KBr we must regard
such solutions as special cases in which the concen-
tration of a fourth component, either KC1 or NaBr,
is zero. In practice such special cases would be
treated as the result of special restraints upon the
possible transport processes in a system under study.

Writing

AMi=M?—M?. (8)

as the difference in chemical potential of a chemical
component or constituent between a and /3 and
using the equilibrium property

(9)

we secure the equation,

AM!

A M * r - l

. A M ? .

' A M ? '

AM*m+1

(10)

The superscript, *, indicates quantities which are
functions of only temperatures, compositions, and
pressures in accord with classical thermodynamics.

The superscript, e, indicates quantities requiring an
auxiliary electrochemical operation involving meas-
ured transfers of electric charge coupled with
measured transfers of material constituents [19, 20].
The algebraic theorem that eq (10) possesses no
unique solution for the elements of the vector on the
left is equivalent to Guggenheim's conclusion that
where a and fi are formally treated as electrically
isolated phases, the elements A/4 have no general
thermodynamic significance. However, when a and
j(3 are not electrically isolated but communicate
through a junction permeable to at least one ion
constituent, the elements A/4 are operationally mean-
ingful. Guggenheim considers the case when a and
0 are at the same temperature and pressure. He
shows that when a reversible current can be passed
between the terminals of a pair of identical electrodes
reversible to the ith. constituent, one at a and one at
/3, the relation

(11)

defines the chemical potential differences when
E^—Ef is the electric potential difference measured
between the electrode terminals. Equation (11) is
easily modified to include cases where the tempera-
tures and pressures at the electrodes are not equal.
Here we follow Temkin and Koroshin [10, 11],
Agar [12], and deBethune [21] by choosing to have
the leads from the electrodes at a and (5 be wires of
identical composition which come out to terminals
which are at the same temperature, but we specif-
ically require the use of platinum wire for these
leads.2 We write the electrode reaction

(12)

for an electrode reversible to the ith constituent.
3§{ denotes the chemical symbol of the constituent
corresponding to theith element of {mf] • s/ik denotes
neutral components of the electrode which are
virtually insoluble in the solutions at the electrodes
and, hence, are not represented in the vector {m*}.
For example, for a silver-silver chloride electrode we
write

(12a)-Ag+AgCl-Cl-+e-=0

with k taking the values 1 and 2. srfn is silver;
silver chloride; and \n and \i2 are —1 and 1, re-
spectively.

We then write for each ion constituent

i=m+l, . . ., r) (13)

2 In nonisothermal systems it is necessary to indicate the reference medium
implied for electrons when one writes an electrode reaction. The established use
of platinum in constructing hydrogen electrodes and in resistance thermometers
makes it convenient to regard platinum at 25 °C as the reference medium for
electrons.
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where A#z is the EMF obtained by correcting the
measured EMF, E\—Ea

u for the homogeneous
thermoelectric effect in the platinum leads and for
the chemical potential differences of the insoluble
components involved in the electrode reaction, i.e.,

(14)

where #pt is the transported entropy for electrons in
platinum.3

For silver-silver chloride electrodes under ordinary
conditions eq (14) becomes

(14a)

where the term in square brackets is derived from eq
(16) below with the condition that

\ _
) T P - (15

for compounds in their standard states.
Equation (13) defines the last r-m elements of the

vector on the left in eq (10). The first m elements
are defined using the classical equilibrium thermo-
dynamic relation resulting from the choice of tem-
perature, pressure, and molality as independent
intensive variables, i.e.,

r-l

j=2 'T,P,m
dm? (16)

Sf denotes the partial molal entropy; V* denotes
the partial molal volume; and the summation is over
the independent solute components represented in
the vector {m*}. Since we wish to express the
thermodynamic "forces", A/4, as linear functions of
the experimental "forces" it is convenient to write

r - l
m)

where

(17)

(18)

with log denoting logarithms to the base 10. This
gives a condensed symbol for our constant coefficient;
we expect Atf to be more nearly proportional to
Alog mj than to Am%. We restrict our attention

s At temperatures near 25 °C the work of Koroshin and Temkin gives

%t=—8.66X10-H-0.044X10-6T; (T>220 °k)

with temperature in degrees Kelvin and ~Spt in volt faraday deg-i.

here to steady states representing displacements
from a definite reference state of complete equi-
librium between a and /3 when the solutions a and (3
have the same temperature, pressure, and con-
centrations of components with no net flows of
energy, chemical constituents, or electric charge
taking place between them.4 The vectors {mf} and
{m*} are defined at this state.

It is useful to show how 9»* is to be expressed in
terms of the solution compositions and activity
coefficients.

We have the defining relation

r - l ) (19)

where the summations are over the elements of {mf}.
Here, for ion, constituents, yf is a single ion activity
coefficient5 which in this paper has no more than
the ordinary significance of a formal device. I t
disappears when eq (19) is written in the meaningful
form

(tf)T,P=tf+RTj:vki In ml+tiRT hi 7? (20)

where

(21)

and 7* is the molal activity coefficient for nonelec- „
trolytes and the mean molal activity coefficient for
electrolytes. From eq (20) and the definition -"
given by eq (18) we find

& , = •

BT r
I •m)0.4343 L

There is a real advantage of simplicity and con-
venience in the form of eq (22) where ionic molalities
are retained. The introduction of mean ionic
molalities as suggested by textbooks leads to
an almost hopelessly unwieldly expression in the
general case.

"We recognize the experimental fact that the solu-
tions may be of such a composition that no reversible
electrode will function as required by eq (14).
However, as demonstrated in section 6, if a single
pair of reversible electrodes is available to measure
A<j>i • for any one of the ion constituents represented
in {m/}, the added equation supplements eq (10) to
give a solution for the remaining terms, A/xt Thus,
given a satisfactory pair of reversible electrodes, we
may define every term in eq (10) in terms of oper-
ational quantities without resort to eq (1).

* The steady state postulate can be applied with reference to other equilibrium
states, e.g., osmotic equilibrium. __However, in writing eq (17) we imply the one
indicated because we regard Si*; V%* and 0f,-* as constants.

6 It should be noticed that we distingush 7« in eq (2) and yf here. We regard
7« as being denned on the basis of a postulate that the electrostatic potential,
A£, can be operationally denned between solutions of different compositions at
finite concentrations. This postulate has been rejected.
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A fundamental set of phenomenological relations

(23)

(24)
with

may now be set down by choosing

J{

JL

Jr

, and

- A M ?

- A / 4

—A/4+i (25)

>«/# J A A l n T j
This choice of flows and forces is similar to that em-
ployed by Kirkwood [22] in differential form. "We
have already defined the first r elements of {Xf}
and grant that AlnT is a meaningful quantity. The
first r elements of {Jf} are flows of chemical con-
stituents corresponding to the respective elements of
{mf}. Since the chemical constituents are defined
as having fixed identities in cell processes including
exchanges with the surroundings of a and P it may
be granted that the first r elements of {Jf} are
meaningful quantities. It is this conservation of
chemical identity in the complete specification of
concentrations and of flows of matter which permits
the analysis "without chemistry" [13].6

The flow of "entropic heat," J{, must be given
special notice. We select the name, entropic heat,
on the basis of the discussion set down by de Groot
[24] who notes that various flows are termed "flows
of heat" by different authors. The flow of entropic
heat is defined by

(26)

where Ju is the flow of energy. Energy is of course
conserved in all cell processes. Entropic heat is not.
However, we cannot rely upon eq (26) alone to
define J{ since the chemical potential of a single ion
constituent, p% has been given no meaningful defini-
tion. t Only its significance in the particular linear
combinations of eq (9) has been established. It is
necessary to state conditions which are at least
sufficient to establish an operational definition of J{.

We first note that by eq (23)

(27)

6 The treatment of water as a nonelectrolytic solvent limits til-* participation
of hydrogen and hydroxyl ions in the net transfer of electric charge to those sys-
tems where either a strong acid or strong base is present as a solute. The treat-
ment of weak electrolytes requires the introduction of "chemistry" [23].

A measurement of the thermal conductivity of the
junction when all flows of matter are zero gives

(28)

from which L{t may be determined using

= O ) ( 2 9 )

when the experiment is designed to simultaneously
evaluate the elements of {Xf} and the elements
Lf

qj are already known. Since by eq (24)

the equations

^ -^g

(30)

(31)

applied to measurements of the flow of each material
constituent in the presence of a temperature differ-
ence would evaluate each term Lf

qj when again the
elements of {Xf} are simultaneously evaluated and
the elements L{j are known. We finally require the
measurement of a complete set of isothermal per-
meability characteristics to define the elements of
the isothermal admittance matrix in the equation

( 3 2 )

which is obtained from eq (23) by setting AlnT
equal zero. Isothermal measurements dealing with
flows of conserved quantities require no special
discussion.

This formulation of a linear macroscopic theory
requires an additional postulate to put a restriction
upon the magnitude of any admissible displacement
of equilibrium from the reference state. We have
chosen to give the treatment of a discontinuous
system in order to avoid operational uncertainties
which often arise in attempts to apply an analysis
of a continuous system [25]. In general we are
unable to measure intensive properties at an arbi-
trarily dense succession of planes lying between
a and p. Our choice is in line with the suggestions
of Kirkwood [22] and Scatchard [26]. Thus the
specification of a junction such as one including a
membrane or porous plug must include the specifi-
cation of the composition of the contacting solutions
at the reference state. At the reference state we
formally assume that equilibrium is established with
respect to all solution components throughout the
region a to p. The integral admittance matrix,
\L% can in principle include linear "polarization"
effects in the boundary layers. However, with
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reference to Kirkwood's treatment of thed tirec
transformation of the analysis of a continuous
system into the analysis of a discontinuous system,
Schlogl [27] has demonstrated the possibility of
"apparently" linear phenomenological relations
where the elements of {Lf} are not proper constants.
In such a case the respective elements of a series of
differential admittance matrices defined as functions
of position between a and 0 would not, upon inte-
gration, give the corresponding elements of fZ/|.
In a purely phenomenological approach no basis
can exist for distinguishing "really" and "appar-
ently" valid applications of eqs (23) and (24).
SchlogFs analysis suggests that no difficulty exists
in the limit of the reference state and that if the
forces represented in {Xf} are "sufficiently small,"
the experimental demonstration of any such dis-
tinction would be difficult and would require meas-
urements of the highest accuracy and precision.
We require some quantitative criterion for judging
what forces are "sufficiently small."

Miller [28] has recently reviewed the experimental
evidence which bears upon the validity of the
Onsager relations in macroscopic processes. Miller
[29] and Dunlop and Gosting [30, 31] have given
detailed attention to ternary diffusion in electro-
lytic solutions. It is clear from a study of these
papers that any criterion will necessarily be some-
what arbitrary. Nevertheless, since a major part
of the intuitive support for the postulation of a
linear macroscopic theory involves the established
validity of linear free energy relationships such as
eq (17) it is reasonable to assume that the range of
validity of eq (17) is of fundamental significance in
applications of the theory. Therefore, we choose to
apply the following minimum condition:

It is assumed that determinations of the elements
of p / J will involve displacements of equilibrium
with forces and flows of such a magnitude that the
uncertainty in the value of an element L{j arising
from uncertainties in measurements of temperatures,
concentrations, pressures, and potentials will be
equal to or greater than the errors introduced by
neglecting variations of Vf,l§i, and G*y.

This criterion has the practical advantage of
setting "sufficiently small" at magnitudes consistent
with the precision and accuracy of any particular
experimental investigation.

4. Transformation Properties

In the fundamental formulation, a flow of electric
charge is identified with the flow of each ionic con-
stituent and a conjugate electromotive force is de-
fined for each such flow. However, no net flow of
charge or overall electromotive force occurs as an
element of the vectors {Jf) and {Xf}. The thermo-
dynamic theory does not require us to define vectors
containing such elements, but the definition of all

elements of {Jf} during all processes including
electric charge flows depends upon our extra-
thermodynamic definitions of ionic constituents
and our use of the established conservation relation

I (33)

The electric current in amperes is denoted by / .
Equation (33) suggests a linear transformation of
flows to give a new flow vector, say {«/'}, where one
element is the flow of electric charge. A correspond-
ing transformation of forces to give a new force
vector, {X'}, would contain an element conjugate
to the flow of charge. In this paper we identify
such an element of {X'} as a junction EMF.

The steady state theory explicitly defines restric-
tive conditions which must be applied in carrying
out linear transformations of flows and forces. The
transformation properties are summarized by de
Groot [32]. We set them down briefly in the nota-
tion of this paper.

We take as given

with

and

{jf}=m{x'}

T<r={J')HX'}

(23)

(24)

(34)

where a is the rate of entropy production during a
steady state process described by the vectors {Jf}
and{X'}.

We may choose an alternative description of the
same steady state process in terms of vectors {J'}
and {X'} where

with

and

{J'}=IL'}{X'}

py]=p/p

(35)

(36)

(37

The entropy production, cr, must be invariant under
a linear transformation of flows and forces. We
must define a new force vector by

(38)

where the order of the superscripts in the matrix of
the linear transformation indicates the direction
of the transformation, i.e.,

P'/]=p/']-i (39)

The elements of the vector {X'} must be linearly
independent combinations of the elements of {Xf},

(40)

88



where the prefix, det, denotes the determinant of
the matrix. The corresponding transformation of
flows is uniquely defined by

where
(41)

(42)

Alternatively, since the reciprocal of the transpose
of a matrix is the same as the transpose of its reciprocal
the transformations may be defined in reverse order
with

[j/ ' ]=[ a / ' ] t-i (43)

The matrix \aft\ takes the role of de Groot's matrix
P and we note that an application of the trans-
tormation

is required to complete the definition of an alternative
set of phenomenological relations to replace eq (23).

Finally, we note that in the general case we are
dealing with a force vector whose elements are
formally linearly independent in terms of their
definitions from measurements of intensive prop-
erties. We may state that if not all the elements
X{ are zero,

(45)

for any choice of constants, e*. The transformation
properties given remain valid regardless of the
permeability characteristics of any junction perme-
able to at least one ion constituent. In a real
system if any one flow or a linear combination of
flows is identically zero in all steady state flow
processes, the elements of {Jf} will not be linearly
independent. We will study such a special case
in section 7 below and set a linear combination of
forces to zero, de Groot demonstrates that the
a priori definition of independent forces secures the
validity of the transformation properties despite
any linear dependence of flows in a special case.

5. Restrictive Condition Upon a Defined
EMF

We consider first a matrix {af/}. Certain general
restrictions upon the form of this matrix may be
adopted on the basis of elementary considerations.
The nonelectrolytes are independent components of
conserved chemical identity. The law of conserva-
tion of mass is applied to the flow of each such
nonelectrolyte. The flows of r—m— 1 electrolytes
and of electric charge are an interdependent group
subject to the laws of conservation of mass and of
electric charge, but the electroneutrality condition
only operates as a restriction upon the flow of ionic
constituents with respect to other ionic constituents.
It does not restrict the independence between flows

of nonelectrolytes and electrolytes. We take these
points into consideration when we write

1

0

0

0
0

0

. . . 0

• . . .
. . . 1
. . . 0

. . . 0

. . . 0

. . . 0

1 0

o

am+hm+1

0

. . . 0

. . . 0

. . . aT.x

. . . 0

0

0

l.r-1 Q>m+l,r

0

1 0

0

0

0
0

1

(46)

where the last column and the last row indicate that
we retain the flow of entropic heat as a fundamental
flow. It is convenient to have the rth element of
our new vector {J'} equal to the flow of electric cur-
rent. This is indicated in the matrix where

and
(47)

(48)

The rth flow defines the flow of electric charge.
The flows J[ through J'm are the flows of neutral
components not involving a transfer of electric
charge. It is natural to inquire into the possibility
of defining as set of r—m—1 independent flows of the
neutral electrolytic components represented by the
last r—m—1 elements of the vector {m*} in such a
way that these flows do not imply a flow of electric
charge. On the most elementary rational grounds
a net transfer of a quantity of an electrolytic com-
ponent from a to p must represent some combination
of the transfers of ionic constituents. It is not
obvious that any established rules or conventions
dictate these combinations, but we identify the
respective conjugate forces defined by a matrix
{¥'} with the chemical potential differences of
neutral electrolytic components defined as linear
combinations in eq (10). The fact that the eq (42)
describes a unique operation permits us to carry
out an inverted development.

Before setting down a matrix [bf'} we note that in
the matrix [af'} given above the dashed lines show
how the matrix may be partitioned to give a pseudo-
diagonal matrix;

[«''!= (49)

The submatrices {M} and {Q} are identity matrices,
and the submatrices fO] are zero matrices. It re-
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suits as a property of such forms [33] that when the
matrix {N} is not singular,

with

(50)

(51)

Thus we write the pseudodiagonal form

1 1
o
0

0

0
0

0

... o

. . . 1

... o

... o

... o

... o

! °
0

ml ,m+

H'm+1

0

0

. . . o

Vr-1,

. . . Vf_lt

• ' ' H'.r-

. . . o

0

0

r - 1 Vr,r-l

1 Kr

o

0 1

0

0

0
0

1

(52)

with the matrix \y\\ from eq (10) comprising the
first r— 1 rows and first r columns. Only the ele-
ments, bf

r'j, in the rth row and columns m+1 through
r are left to be determined.

The restriction upon {¥'} can be demonstrated.
For the moment we assume that det {¥'} does not
vanish. The definition of an element of the ith. row
of the reciprocal of a transposed matrix is [33],

f,_'cqfb{}
i j W

(53)

where the numerator on the right is the cofactor of
the element indicated. Following eq (53) we write
the definitions of the elements of {a?'} within the
submatrix J7VJ as

aiJ~ det
(54)

The electrical neutrality of each component repre-
sented in the vector {m*} as stated in eq (6) gives
th condition,

;=m+l , . . . , r - l ) (55)
j=m+l

Equation (55) applied in the first r—m—1 rows of
det fiVp"1 gives zeros as the first r—m—1 elements
of any column when the other r—m—1 columns are
added to it. The last element of that column
then becomes

±
771+1 j=77l+l

(56)

for any jth. column. It then follows that

(57)

for any Jth column m+1 through r. Substituting
from eq (57) for det \bf'\ in GCL (53) gives

Clearly, if

(58)

(59)

eqs (47) and (48) will be satisfied provided {¥'} is
not singular. The nonsingularity of {bff} is assured
by the requirement that fvj.be of rank r— 1. At
least one cof bf

T
fj will not vanish. When the condition

of eq (59) is applied the determinant will be given by

(60)

6. Reference Ion Electromotive Force

An extremely important class of experimental
systems including concentration cells and various
cells with transference have identical reversible
terminal electrodes [1] and can be designed to fall
into the class of systems discussed in section 2. It
is proper to inquire as to whether or not the EMF
between a single pair of identical reversible probe
electrodes, one at <j> and one at /3, may be formally
regarded as the junction electromotive force. We
may choose to order the elements of {m/}, {Xf} and
{Jf} to have the rth constitueit be that one to which
the electrode pair is reversible. We define a "refer-
ence ion" force vector with

(61)

, . . . , r - l ) ; (62)

and

(63)

(64) -

The matrix [¥r] is thus of the class of [bfr] in eq (52).
The elements

and
0=1, (65)

(66)

clearly satisfy the restriction imposed by eq (59).
Therefore, any one of ther—mEMFs A<̂  defined by
eq (14) may be chosen as the junction EMF.

This reference ion formulation is important for
practical applications. In most systems one can at
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must be applied with

best discover a single pair of adequate reversible
electrodes. Experimental flows will normally be
expressed most directly in terms of the vector {Jf]
with the forces being in terms of the vector {Xr},
A transformation,

(67)

(68)

7. Junctions With Zero Electric Current Flow

Treatments of electromotive forces acting across
junctions are most often encountered in discussions
of the thermodynamics of galvanic cells. In such
treatments one is concerned with the apparently re-
versible EMF measured at the limit of zero electric
current flow. Guggenheim [9] has given a treatment
of isothermal, isopiestic cells with liquid-liquid junc-
tions without employing eq (1). The treatment is
one of a continuous steady state system without
chemistry in a solvent fixed frame of reference. His
work is an exception to the apparent universal prac-
tice of using eq (1) or its equivalent. Therefore,
some indication must be given of the relationship
between the treatment here and the more common
treatments. In addition the treatment of junctions
at states of zero current gives an important relation-
ship for use in connection with eq (10).

It can be shown [34] that when no electric current
is flowing through the junction,

GH. (69)

The coefficients, r/, are the integral stoichiometric
transference numbers in a cell fixed frame of reference
when no difference of temperature, pressure, or com-
position exists between a and 0, i.e.,

=Jj(lt, «//) \ (A77=AP={Am*}=0).

(70)

The numbers T$ are properties of the junction defined
as functions of the elements of the admittance ma-
trix 11/}.
These functions are

where

with

•LIE i=i

.2 *M=
+l

(71)

(72)

(73)

The detailed manipulations leading to the above
relations need not be repeated. However, in existing
analyses the use of eq (1) as an elementary postulate
gives a familiar result in differential form as

(74)

which because of uncertainties in notation may ap-
pear to be inconsistent with eq (69). The relation-
ship may be seen clearly if we write

(75)

and substitute for A/̂  in eq (69). The use of eq (73)
to reduce the coefficient of jFA^ then gives

(76)

Of course this only demonstrates a formal abstract
relationship since the operational significance of eq
(1) has not been established for ordinary electro-
chemical systems.

Nevertheless, we note that eq (69) is a linear com-
bination of chemical potential differences defined as a
function of the permeability characteristics of the
junction. Thus when this relation is added to the set
of equations in eq (10) we have a set of r equations in
r unknowns,

0 0 0 0

1 0

0 v.,m+l,m+l r-l,m-l Vrt7n^i

r{

0 Pm+i.r-1 •-

AM!

r-i,i—1 ^r,r-l

AM?

(77)

. 0

The elements T£+J through rf
r obey eq (73); there-

fore the condition of eq (59) required for bf
T[m+i

through hs
r'r in treating the matrix W\ applies. It

may be shown by a treatment similar to that applied
to |6//] that the matrix here does not vanish unless

1 = . . . =Tf
r=Q (78)

91



Thus if the junction is permeable to at least one ionic
constituent of the solutions at a and 0, eq (77) pos-
sesses a unique solution. This result confirms the
statement given after eq (10).

It should be noted that eq (77) has the distinct
practical advantage of unifying the treatment of
galvanic cells having identical terminal electrodes in
compartments separated by a defined junction
through which flow continuity is established. It is
clear that a solution for any A/4 will after applying
eq (13) give the EMF, A0*, at the limit of zero electric
current flow in terms of the transference numbers
and the thermodynamic properties of independent
isolable components.

8. Electromotive Force at Infinite Dilution
The reference state of unit activity coefficient es-

tablished for treating the thermodynamic properties
of solutes is infinite dilution in pure solvent. In the
limit of infinite dilution aqueous solutions of strong
electrolytes are "nearly" insulators and the Debye-
Hiickel limiting law is valid for electrolytic solutes as
a whole. In accord with the discussion of Tolhoek
and de Groot [8] and Guggenheim [7] we may regard
it as meaningful to speak of a difference of electro-
static potential acting as a part of the "force" con-
jugate to the transfer of an ionic constituent between
solutions of infinitesimally different compositions in
the neighborhood of infinite dilution. To define this
"force" we make use of several commonly used extra-
thermodynamic conventions, and we need only con-
sider isothermal, isopiestic systems.

We assume that the activity coefficients of solute
nonelectrolytes approach unity much more rapidly
than their concentrations approach zero in the limit
as a solution is diluted with pure solvent. We write

(di4)T,P=RTdln mf; (i=2,..., m). (79)

For ionic solute constituents we apply the same
assumption and write

(80)

It will be noted that the Debye-Hlickel theory sup-
ports the assumption underlying eq (80) since the
limiting law

^i (81)

(82)

where u is the ionic strength, i.e.,

*j+l

suggests that Q.nyf)Ttptd^0 approaches zero in the
limit of infinite dilution as In m{ approaches minus
infinity.

Using the relation.

^ £ (83)

in eqs (79) and (80) and then applying the electro-
neutralitv condition

2 z{dm{=0
j=m+l

gives a set of r equations in r unknowns.

^ 4 - ... o o ... o o

(84)

o

o

0 0

0 Z{n+l

dm{

dmf
m

dm^A

RT f

z{ 0

dmT

T,P

T,P

(dfie
m+1)TtP

)T,P

(85)

0

The coefficient matrix is nonsingular; its determi-
nant is given by

r-2u(u m{\ *>0.

The solution,

(86)

(87)

gives the differential of the electrostatic potential at
infinite dilution as a linear combination of the
differentials of chemical potential. The coeffi-
cients in eq (87) satisfy eq (59).

It is clear from the form of eq (80) that d% is
introduced as the "force" conjugate to any infini-
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tesimal transfer of electric charge, hence, eq (87)
.. defines the electromotive force at infinite dilution.

We use eq (87) to define the elements of the rih
row of the linear transformation matrix in

-I |[0 JJ \ Ji. j — (-A. j \oo)

where {bfd} is of the class required by eq (52). By
eqs (41) and (43) we have the transformation

{afd}{Jr} = {Jd} (89)

v where each element Jt+i through Jd-i is a linear
combination of the flows of ionic constituents de-
fining the "flow" conjugate to the ''force" acting
on an isolable electrolytic component as a whole.

1 The combinations are necessary consequences of
, established extra-thermodynamic conventions and

assumptions. They are implicit in our established
% methods of treating the properties of completely

dissociated electrolytes.

9. The Membrane EMF at Higher Concen-
trations

y
The definition of the membrane EMF at higher

v concentrations follows directly from the definition
at infinite dilution. In order to remove any implica-
tion of a definition of an electrostatic potential
difference at finite concentrations and concentration

" differences we write

± 4?AM? (90)

where \f/ is the electromotive force between a and ft.
We regard ^ as representing the action of an electric
field in the sense that it denotes a force acting to
produce a flow of electric charge, but it is not a
gradient of an external electrostatic potential field
[35]. The EMF, ^, is fully meaningful since every
term on the right hand side is meaningful. It is
arbitrary in the sense that our choice of the reference
state of infinite dilution and the applications of eqs
(79) and (80) are arbitrary. It depends upon our
definitions of the elements of the vector {mf} and
our use of these ion constituent concentrations in
writing the ionic strength, u, given in eq (82) and
the electroneutrality condition given as eq (3).
It is, however, quite independent of any arbitrary
choice of the matrix \y\ to give the elements of
{m*}. * The matrix \afdj of eq (89) defined at infinite
dilution fixes the stoichiometry governing exchanges
of radical chemical constituents. The most elemen-
tary considerations of internal consistency dictate
the use of this same stoichiometry regardless of the
absolute concentrations of the solutions.

10. Discussion

The need for defining a membrane electromotive
force and the corollary flows of electrolytes as a
whole arises quite naturally if we consider the treat-

ment of electrokinetic phenomena. However, we
must first establish certain points in terms of a
specific example.

Consider a membrane cell with compartments
filled with HC1 solutions. Let it be arranged in
the manner of a four lead resistor with a pair of
probe electrodes close to the membrane—one on
each side. These probe electrodes establish the
positions of the planes, a and 0, indicated in section 2.
They are potential indicating devices and carry no
steady electric currents. Let each compartment
also be provided with a working or current electrode
more remote from the membrane than a and 0.
The electrode reactions at the current electrodes
are to involve virtually insoluble components and
either the chloride or the hydrogen ion constituent
of the solution. Let us also provide for continuous,
adjustable flows through each compartment utilizing
feed solutions of adjustable composition.

A little reflection will show that we can establish
a particular steady state—defined by giving the
elements of {Xf}—regardless of whether it is the
hydrogen ions or the chloride ions which are ex-
changed with the solutions at the current electrodes.
The adjustments of feed solution compositions and
rates of flow serve as our compensating variables.
If the phenomenological relations, eq (23), describe
a steady state process taking place between a and 0,
they describe it independently of the specific nature
of the processes at current electrodes which may in
practice be at virtually infinite distances from the
region between a and f$. This statement of inde-
pendence, the independence of dissipative proc-
esses occuring in different regions of space, expresses
an elementary requirement of the steady state
theory [39]. Processes which are described as
coupled—having phenomenological relations with
cross coefficients—in the production of entropy
must take place in the same system. By system
we mean an open system, the region of space be-
tween a and /3 as defined in section 2. If we wish
to describe a particular process in terms of some set
of phenomenological relations resulting from a
linear transformation of eq (23), the second form of
the phenomenological relations will describe the
same and only the same process if and only if it is
defined so as not to include external dissipative
processes. This elementary requirement is ex-
pressed in the steady state theory when we state
that the rate of entropy production given by eq (34)
must be independent of a linear transformation of
the forces and flows.

Ordinary isothermal electrokinetic phenomena at
membranes are investigated by making experimental
measurements—in a membrane fixed frame of ref-
erence—of flows of fluid volume and electric current
under the influence of their conjugate forces—pres-
sure difference and electric potential difference.
We can site, for example, de Groot's [40] and Gug-
genheim's [36] demonstrations of the application of
the steady state theory in the special case where no
differences of temperature or of composition are
present to act as forces. They show that the well
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known experimental relation, the Saxen relation, be-
tween the streaming potential and the electroosmotic
transport, i.e.,

(#) -(t) =AT={Ara*}=0
(91)

may be regarded as a consequence of the Onsager
reciprocal relations. J v is the rate of flow of fluid
volume and A£ is, as before, the difference in elec-
trostatic potential. The electrostatic potential, A£,
is of course a meaningful quantity when measured
between phases of identical composition and tem-
perature; it is the EMF measured between the ter-
minals of any pair of identical electrodes. Hence,
neither of the treatments cited makes any reference
to the nature of the electrodes employed to measure
A£. The fact that these analyses impose the restric-
tion

AT={Am*}=0 (92)

and the fact that in practice the experimental
measurements do not include measurements of the
flows of heat and of the relative flows of constituents
obscures certain features of the phenomena involved.
Jv is computed from the measured rate of change of
the volume of solution in a cell compartment with
due allowance for the change of the volume of a
compartment arising from the reactions of insoluble
components at the working electrodes. In such
treatments there is normally an implicit under-
standing that the reactions at the probe and work-
ing electrodes are identical. The problem of sep-
arating electrode and membrane processes simply
does not arise in such a restricted case. However,
we may, for example, study Guggenheim's [9] treat-
ment of concentration cells with transference. This
is a case where {Am*} is not restricted to zero. Al-
though our formulation is first to be distinguished
from his treatment of concentration cells by the fact
that his is in a Hittorf, i.e., solvent fixed, frame of
reference, the essential point is that Guggenheim
explicitly requires the use of electrodes reversible
to one of the ionic constituents. Such a treatment
avoids the classical uncertainty involving A£.
Since he restricted his treatment to steady states
not involving flows of electric charge, the require-
ment of specific electrodes does not introduce any
difficulty with respect to the separation of elec-
trode and junction processes.

Since the phenomenological relations of eq (23)
describe processes which involve electrokinetic effects
as well as diffusion effects, we are led immediately to
attempt to set down a treatment in which heat flows
and temperature differences and diffusion flows and
concentration differences are added to the flows and
forces of the electrokinetic treatment. However,
we find that not only the meaning of A£ but also the
meaning of Jv , is uncertain. We must require our
formulation to describe the processes in the "mem-
brane", i.e., a to 0, region. It is to result from a
linear transformation of the fundamental phenom-
enological relations, eq (23).

At first glance it appears that we would write

(93)

where the terms V{ are the partial jtnolal volumes of
the nonelectrolytes and the terms V\ are the partial
molal volumes of ionic constituents represented in
the vector {mf}. However, we have_ already indi-
cated in the discussion of eq (2) that V\ has no opera-
tional meaning when we reject the postulate that
A£ is operationally defined^ We could consider a
convention which defines V\ for any constituent.
Such a convention would permit us to retain the
distinction between electrode and membrane proc-
esses. However, there is an alternative approach
which has to be considered.

We recognize that in the study of combined
hydrodynamic and diffusion flow processes during
steady states not involving net flows of electric
current, we have by definition

g (94)

where (J*)r=o&re the flows of the neutral_components
represented in the vector {m*} and V* are their
partial molal volumes. We recognize that in prac-
tice the flows (J*)/=o will be computed from experi-
mental measurements of changes of ion constituent
concentrations with explicit dependence upon the
requirement of electroneutrality, i.e., as linear com-
binations of the flows (J{)/=o. We are thus led to
write

§ (95)

where the flows JJ are linear combinations of the
flows of ion constituents which represent flows of
electrolytes as a whole. It was necessary to dis-
cover what conditions are to be met in defining JJ.

In section 5 of this paper we showed that we are
first led to the conclusion that when we define the
membrane EMF in terms of the potentials measured
between pairs of identical probe electrodes with
specific electrode reactions, we at the same time
define, by implication, a particular method of com-
bining the flows of ionic constituents into the flows
of neutral electrolytes as a whole. Thus, by im-
plication, we establish the definitions of JJ and,
hence, Jv in eq (95). Therefore, we conclude that
it is not proper_to introduce any auxiliary convention
which defines V% in eq (93) when we set down a
transformation of eq (23) into an electrokinetic
formulation.

In section 6 we showed that we can choose a
"reference ion" EMF, A<£r, by choosing to employ
probe electrodes reversible to some particular ion
constituent. Formally, there will be r-m distinct
choices possible. In general there will be a family
of r-m pairs of matrices {bfr} and fa/rj. The defini-
tion of the flow of any jth neutral electrolyte
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J',=
? = 771+1

(96)

will in general be different for each choice of a
"reference ion." Although the arbitrariness of a
"reference ion" electromotive force is objectionable,
one can always employ such a device in order to
define electrokinetic effects in terms of a general
treatment. We can employ the essentially "direct
experimental variables" such as appear in Saxen's
relation, eq (91), in conjunction with diffusion flows
and concentration difference forces without including
external dissipative processes in our description of
membrane processes.

The arbitrariness of a "reference ion" treatment
can only be removed by adopting an additional
convention—an "averaging" convention. In Sec-
tions 8 and 9 we showed that such a convention is
implicit in the conventions already established for
the treatment of the thermodynamic properties of
electrolytic solutions. A general treatment which
is consistent with the elementary defining stoichio-
metric relationships employed at the reference state
of infinite dilution results when we write

gVJ (97)

where Jd is defined by the transformation given in
eq (89).

It is important to emphasize that the treatment
which defines \[/ is complete only with respect to the
requirement of consistency with established conven-
tion. We have implied that ^ is a physically sig-
nificant quantity. The developments of this paper
are not adequate to demonstrate any real physical
significance. Our development in sections 8 and 9
follows the formal procedure of defining the Lagran-
gian multiplier corresponding to the electroneutral-
ity condition.7 Although as a formal device in sec-
tion 8^ is uniquely defined when we write eq (85),
the approach to ideal behavior implied by eq (80)
is not subject to an adequate experimental test [42].
The use of the concept of "almost" insulators is not
satisfying as a basis for attaching physical signifi-
cance to A£ in extremely dilute solution and, hence,
to \f/ in more concentrated solutions.

An important problem for further investigation is
the comparison of experimentally determined values
of ^ with the EMF's measured between pairs of
saturated calomel electrodes. A study of represen-
tative attempts to set down meaningful conventions
for junctions potentials [4, 43, 44] based upon estab-
lished common practice shows that saturated solu-
tions of potassium chloride are regarded as special
experimental devices. It is abundantly clear that
they are assumed to represent a practical approach
to some ideal of "inert" behavior in experimental
systems. We can, for example, accept ^ as a phys-
ically significant quantity if a general study of a
large class of experimental systems shows that sat-

7 Lagrangian multipliers as physically significant quantities are common in
statistical mechanics. Onsager [41] suggests the use of such a multiplier to
represent the electric potential in electrochemical systems. However, he gives
no explicit definition and, further, he chooses to have his dissipation function
include electrode processes.

at

W'}

cof a{'j
detfa''}
EeE

V Td Tr

Jv

{m*}

urated calomel electrodes can be regarded as exper-
imental devices which measure ^ directly with a
degree of accuracy which is adequate for most prac-
tical purposes—"to within a few millivolts." We
suggest this hypothesis here because our first tests
support it, but we regard it, for the present, as
only an example.

11. Summary of Symbols and Notation
Activity of a constituent, eq (74).
Matrix of transformation of g=

r + 1 flows, r of chemical con-
stituents and one of entropic
heat, into the flows of r—1
chemical components, electric
current, and entropic heat, eq
(46).
"J"1, the reciprocal of [af'\.
atrix of the class {af/} consistent
with the conventional EMF,
^, section 9.

Matrix of the class {aff} consistent
with a particular reference ion
EMF, A<£r, section 6.

Chemical symbol of electrode com-
ponent, eq (12).

Matrix of transformation of forces,
eqs (50) and (52); f6"J=|[a / 'F-1.

Matrix of the class f^'J; (bfd}=

Matrix of the class {bf'}; {bfr}=

Chemical symbol of ion consti-
tuent, eq (12).

Cof actor of ij th element of {aff}.
Determinant of matrix \af'\.
EMF measured between electrode

terminals.
Faraday.
Electric current.
i=l, . . ., r; rate of flow of a

chemical constituent.
i=l, . . ., r—1; rate of flow of a

neutral component.
J/JTeq (33).
i=lj . . ., r—1; rate of flow of a

neutral component when 1=0,
eq (94).

g = r + l ; rate of flow of entropic
heat.

Rate of flow of fluid volume,
section 10.

Admittance matrices.
Constituent composition vector

having r elements which are the
molalities of m nonelectrolytes
and r—m ion constituents.

Component composition vector
having r—1 elements which are
the molalities of m nonelec-
trolytes and r—m—I neutral
electrolytes.

Pressure.
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B
S*t

si
T_
Vt

i, Xi, Xi j

X{

x*

a,fl

A

A

Gas constant.
Partial molal entropy of iih com-

ponent in {m*}.
(Undefined) partial molal entropy

of an ion constituent.
Temperature.
Partial molal volume of iih com-

ponent in {m*}.
(Undefined) partial molal volume

of an ion constituent.
X\ i = l , . . .,m;forces,—A)u*, acting

conjugate to the flows of non-
electrolytes.

- i=m+l , . . ., r; forces, — A/4,
acting conjugate to the flows of
ion constituents.

i = m + l , . . ., r—1; forces, —A/4,
acting conjugate to the flows of
neutral electrolytes.

Conventionally averaged force,
— .^Vs acting conjugate to the
flow of electric charge, section 9.

Force, — ,̂ A</>r, acting conjugate to
the flow of electric charge in
accord with a reference ion
convention, section 6.

q=r+l; force, —A In T, acting
conjugate to the flow of entropic
heat.

Electrovalence of a constituent.
Denote boundaries of membrane

region; a to 0 positive.
i= 1, . . ., m; molal activity coeffi-

cient of a nonelectrolyte; and
i=m+l . . ., r— 1; mean molal
activity coefficient of an elec-
trolyte.

(Undefined) electrostatic molal
activity coefficient of an ion
constituent.

Formal device denoting the molal
activity coefficient of an ion
constituent; eq (19).

Thermodynamic composition co-
efficient, eq (18).

Stoichiometric coefficient of a
neutral component in an elec-
trode reaction, eq (12).

Formal device denoting the
chemical potential of an ion
constituent.

Difference in the chemical
potential of an ion constituent
between a and 0, eq (13).

The chemical potential of a com-
ponent represented in {m*}.

The stoichiometry matrix, eq (4).
The integral stoichiometric trans-

ference number of a constituent
in a cell fixed frame of reference;
eq (69).

(Undefined) the absolute electro-
static potential.

Equation (13).
Conventionally

section 9.
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