Mass Spectrum of Sulfur Vapor

Paul Bradt, Fred L. Mohler, and Vernon H. Dibeler

The mass spectrum of sulfur vapor has been measured by evaporating sulfur from a heated tube directly into the ionization chamber of a mass spectrometer. Ions S_{*}^{*} with z ranging from 1 to 8 are observed with S_{*}^{*} most abundant. Isotope abundances were computed from the S_{*}^{*} ions. The appearance potentials of S_{*}^{*} and S_{*}^{*} are respectively 8.9 ± 0.2 and 8.3 ± 0.2 electron volts. This suggests that the vapor in the ionization chamber is a mixture of molecules containing S_{*} and S_{*} and possibly other molecules.

1. Introduction

The mass spectrum of sulfur vapor has been studied in connection with a program to establish reference samples of natural isotopic abundance [1].¹ While one objective of this study was to check the isotope ratios and the chemical purity of the reference sample, the mass spectrum and the appearance potentials are of rescarch interest. The molecular weight of sulfur vapor indicates that the vapor in equilibrium with sulfur at 175° C is predominantly S₈ [2]. This is a relatively unstable configuration, and in the presence of an electric discharge an S₂ band spectrum is observed [3]. The vibration series and predissociation spectra give with some uncertainty a value of 4.4 ev for the S₂ bond energy, indicating that S₂ is quite stable.

2. Experimental Procedure

The sulfur from the reference-sample stock is virgin sulfur from a dome in Wharton County, Tex. The sulfur-vapor pressure is too small to measure the mass spectrum at room temperature, and the measurements were made by evaporating the sulfur from a heated tube into the ionization chamber of a 60° mass spectrometer. A few milligrams of coarse powder were held in a capillary tube with a thermocouple in contact with the tube. This in turn was in a 6-mm tube, which extended about 2 cm to the entrance port of the ionization chamber. The ionization chamber reached a temperature of 186° C during operation, and the sample attained a steady temperature of 94° C by heat conduction and radiation. This proved to be a convenient temperature for recording the spectrum.

Sulfur dioxide was made by burning the sulfur in air, and the mass spectrum of SO₂ and the air oxygen was measured with a 180° gas-analysis mass spectrometer. This is the conventional method of measuring sulfur-isotope abundances.

3. Results

3.1. Mass Spectrum

Table 1 gives the principal ions observed in the mass spectrum of sulfur vapor. Column 3 gives the relative abundance of the ions S_x^{32} , whereas column 4 gives the monoisotopic spectrum. It is the sum of the isotope peaks in each S_x group relative to the S_1 ions taken as 100. The rather complicated isotope structure identifies all these ions as predominantly singly charged ions, except for the following: Mass 16 from S⁺⁺ was 0.05 percent of the 64 peak in a spectrum where O⁺ from O₂ and CO₂ was negligible. Mass 32½ from S³²S³³⁺⁺ was 0.06 percent of the 64 peak. Hence, doubly charged ions of mass 64 contribute 4 percent to the 32 peak. A peak at mass 80 from S⁺⁺ is 0.06 percent of the 64 peak.

Impurities that can be ascribed to the sulfur rather than the mass-spectrometer background are volatile gases, which decrease with time. H₂S⁺ ranged from 1.2 to 0.15 percent of the 64 peak, and CS⁺ was 0.13 to 0.07 percent. A 48 peak ranging from 0.17 to 0.02 percent may be SO⁺ from SO₂. The molecule ion masked by S⁺₂ would be about twice the SO⁺ peak.

TABLE 1. Mass spectrum of sulfur vapor

m/e	Ion	Relative intensity	Monolso- topic spec- truin
32	agg areaga	13. 5 100. 0 4. 7 8. 1 5. 2 3. 2 0. 33 6. 4	12.8 100.0 5.0 9.0 6.1 3.9 0.43 7.8

¹ Figures in brockets indicate the literature references at the end of this paper.

3.2. Isotope Ratios

Sulfur has four isotopes of abundance S³², 95.0; S²³, 0.76; S²⁴, 4.2; S³⁶, 0.014 (see table 2). The relative intensity of the isotope peaks in a molecule containing x atoms can be expressed formally by means of the z power of the expression,

$$S^{32} + a_1 S^{22} + a_2 S^{34} + a_2 S^{36}$$
.

where the a's are abundances relative to that of S^{22} as unity, but the S terms are chemical symbols, not algebraic terms. Thus the isotopes of S₂ give the terms:

 $S^{32}S^{32} + 2a_1S^{32}S^{33} + 2a_2S^{32}S^{34} + a_1^2S^{32}S^{33} + 2a_1a_2S^{32}S^{35} + a_2^2S^{32}S^{34} + a_1^2S^{32}S^{34} + a_2^2S^{32}S^{34} + a_2^2S^{34} + a$

$$2a_{2}S^{32}S^{36} + a_{2}S^{34}S^{34} + 2a_{1}a_{2}S^{32}S^{36} + 2a_{2}a_{3}S^{34}S^{36} + a_{1}^{2}S^{26}S^{36}$$
.

Collecting terms of equal-mass numbers gives the relative intensities of the S2 ions as listed in column 2 of table 2. Because of intensity and resolution, the S₂ ions are best adapted to deriving isotope ratios, and mass peaks 64, 65, 66, and 68 were used to determine a_1 , a_2 , and a_3 . Five successive slow scans of the S_2 peaks under steady conditions gave the relative intensities listed in column 3, where uncertainties listed are the maximum spread of the data. In these measurements the 64 peak was about 5,600 scale divisions on the most sensitive scale, and a small drift in the 64-peak height was corrected by a linear interpolation to the positions of the mcas-ured peaks on the record. The fourth column gives the derived relative abundances.

TABLE 2. Isotope abundances and relative intensities of S₂ ions

Observed

Derived ralative

Relative

in/e

	intensities	intensities	abundances
64 65 67 68 89 70	$1 \\ 2a_1 \\ 2a_3 + a_1^3 \\ 2a_3a_2 \\ 2a_4 + a_2^2 \\ 2a_4a_3 \\ 2a_5a_4 $	$1 \\ 0.01596 \pm 7 \\ 0.08897 \pm 20 \\ 0.00228 \pm 2 \\ 0.0028 \pm 2 \\ 0.002$	$a_1 = 0.00748 \pm 4$ $a_2 = 0.04445 \pm 20$ $a_3 = 0.00015$
72	ai	·	

Table 3 gives percentage abundances from data of table 2 and values derived from the mass spectrum of SO_2 made from this sulfur. The correction for O₂ isotopes was based on measurements of the air oxygen used in making SO₂. The table also includes published values from SO₂ spectra.

The S₂ ions are not favorable for the computation of a_3 , for the contribution of $2a_3$ to the 68 peak is only 15 percent of the az term. A source of uncertainty in evaluating a_1 from the 65 peak arises from the possibility that a trace of $S_3^{32}S^{2l++}$ may be present. The comparative values of table 2 give no evidence of this.

	Mass number			
	32	33	я	38
S [†] (nulfur vepor) SO ₁ (sette sulfur) Nier [6] Thete [8] sulfur from	95. D 95. D 95. 1	0. 78±0. 004 . 77₃±. 01 . 74±. 02	4, 22±0, 01 4, 23±- 07 4, 20±- 1	0.014 .016±.0016
same region			4 253	

3.3. Appearance Potentials

Some measurements of appearance potentials were made to see whether or not S⁺ was a fragment ion from S₈ ionization. The experimental conditions were not well adapted to accurate measurements. The ion-repeller voltage was kept rather high to maintain sensitivity, and there were irregularities in the current-voltage curves that may come from surface charges on adsorbed sulfur. Mercury vapor was introduced with the sulfur vapor, and the appearance potentials of sulfur ions were measured relative to that of Hg⁺ (spectroscopic value 10.34 ev) [4]. Measurements are based on semilog plots, with current plotted on a scale to make the ion current at 50 v unity. Values of the appearance potentials at an ordinate of 0.003 of the current at 50 v are: S₈⁺ 8.9±0.2 ev and S₂⁺ 8.3±0.2 ev. Variations in the slopes of the current-voltage curves give some added uncertainty. Some measurements on S⁺ indicate an appearance potential roughly 2 v higher than S⁺₂ and S⁺₈. A search for negative ions gave negative results, but there was no basis to appraise the sensitivity for negative-ion detection.

4. Discussion

The fact that the appearance potential of S_2^+ is somewhat less than that of S^{*} suggests that S₂ molecules are present and 8.3 ev is the ionization potential of S₂. Ionization resulting in a pair of positive and negative ions could give fragment ions at an appearance potential less than the ionization potential of the S₈ molecule, but there is no evidence that this occurs. As vapor in the ionization chamber is at a pressure less than 10⁻⁴ mm and at a temperature of 186° C, dissociation of S₈ into the relatively stable S₂ molecule is not unexpected. The mass spectrum of sulfur vapor given in table 1 is probably to be interpreted as the spectrum of a mixture of molecules.

The appearance potentials are unexpectedly low. Smyth and Blewett [7] reported an appearance potential of 10.7±0.3 ev for S⁺₂ from thermally dissociated CS_2 , as compared with 8.3 ev found in this work. An ionization potential of S₂ lower than that observed by Smyth and Blewett is suggested by analogy with O_2 . The ionization potential of O is 13.61 cv [4] and that of O_2 is 12.2 ev [8]. As the ionization potential of S is 10.36 ev [4], the ionization potential of S₂ is expected to be considerably lower than this, not slightly higher as reported by Smyth and Blewett.

The isotope ratios of sulfur are fairly consistent with published values, as is evident in table 2, but there is considerable variation in isotope abundances of sulfur. Thode and his colleagues [6] have made an intensive survey of relative abundances of S²⁴ in sulfur from various sources and find values ranging from 4.39 to 4.19 percent, with a value of about 4.29 percent reported for native sulfur from the same region as the reference sample.

.

- 5. References

- F. L. Mohler, Science 122, 334 (1955).
 G. B. Guthrie, Jr., D. W. Scott, and G. Waddington, J. Am. Chem. Soc. 76, 1488 (1954).
 A. G. Gaydon, Dissociation energies and spectra of diatomic molecules (John Wiley & Sons, Inc., New York, N. Y., 1947).
 Charlotte E. Moore, Atomic energy levels I, NBS Circ. 457 (1940)

- [4] Charlotte E. Moore, Atomic energy levels 1, NBS Circ. 467 (1949).
 [5] A. O. C. Nier, Phys. Rev. 53, 282 (1938).
 [6] H. G. Thode, R. K. Wanless, and R. Wallouch, Geochim. et Cosmochim. Acta 5, 280 (1954).
 [7] H. D. Smyth and J. P. Blewett, Phys. Rev. 45, 276 (1934).
 [8] T. M. Sugden and W. C. Price, Trans. Faraday Soc. 44, 116 (1948).

WASHINGTON, May 9, 1956.