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Methods of Conjugate Gradients for Solving
Linear Systems’

Magnus R. Hestenes ? and Eduard Stiefel *

An iterative algorithm is given for solving a system Az=Ek of »n linear equations in =

unknowns.

The soiution is given in n sleps.
case of a very general method which also includes Gaussian elimination.

It is shown that this method is a speeial
These general

algorithms are essentially algorithms for finding an n dimensional ellipsoid. Connections
are made with the theory of orthogonal polynomials and eontinued fractions.

1. Introduction

One of the major problems in machine computa-
tions is to find an effective method of solving a
system of n simultaneous equations in n unknowns,
garticularly’ if n is large. ere is, of course, no

est method for all problems because the goodness
of a method depends to some extent upon the
particular system to be solved. In judging the
goodness of a method for machine computations, one
should bear in mind that ertteria for a good machine
method may be different from those for a hand
method. By a hand method, we shall mean one
in which a desk calculator may be used. By a
machine method, we shall mean one in which
sequence-contrelled machines are used.

machine method should have the following
properties:

(1} The method should be simple, composed of a
repetition of elementary routines requiring s mini-
mum of storage space.

(2} The method should insure rapid convergenece
if the number of steps required for the solution is
infinite. A method which—if no rounding-off errors
occur—will yield the soluticn in a finite number of
steps is to be preferred.

(3} The proesdure should be stable with respect
to rounding-off errors. If needed, a subroutine
should be available to insure this stability. It
should be possible to diminish rounding-off errors
by a repetition of the same routine, starting with
the previous result as the new estimate of the
solution.

(4) Each step should give information about the
solution and should yield a new and better estimate
than the previous one.

(5) As many of the original data as possible should
be used during each step of the routine. Special
properties of the given linear system—such as having
many vanishing coefficients—should be preserved.
(For example, in the Gauss elimination special
properties of this type may be destroyed.)

In our opinion there are two methods that best fit
these criteria, namely, (a) the Gauss elimination
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method ; (b) the conjugate gradient method presented
in the present monograph.

There are many variations of the elimination
method, just as tﬁere are many variations of the
conjugate gradient method here pregsented. In the
present paper it will be shown that both methods
are special cases of a method that we eall the method
of conjugate directions. Thizg enables one to com-
pare the two methods from a theoretical point of
view, -

In our opinion, the conjugate gradient method is
superior to the elimination method as a machine
method. Our reasons can be stated as follows:

(a) Like the Gauss elimination method, the method
of conjugate gradients gives the solution in n steps if
no rounding-off error occurs.

(b) The conjugate gradient method is simpler to
code and requires less storage space,

{e) The given matrix is unaltered during the proc-
ess, s0 that a maximum of the original data is used.
The advantage of having many zeros in the matrix
is preserved. ‘The method is, therefore, especially
suited to handle linear systems arising from difference
equations approximating boundary value problems,

(d) At each step an estimate of the solution is
given, which is an improvement over the one given in
the preceding step. .

(e) At any step one can start anew by a very
simple device, keeping the estimate last obtained as
the Initial estimate.

In the present paper, the conjugate gradient rou-
tines are developed for the symietric and non-
symmetric cases. The prineipal results are described
m section 3. For most of the theoretical considera-
tions, we restrict ourselves to the positive definite
?lymmet,ric case. No generality is lost thereby. We

eal only with real matrices. The extension to
complex matrices is simple.

The method of conjugate gradients was developed
independently by E. Stiefel of the Institute of Applied
Mathematics at Zurich and by M. R. Hestenes with
the cooperation of J. B. Rosser, G. Forsythe, and
L. Paige of the Institute for Numerical Analysis,
National Bureau of Standards. The present account
was prepared jointly by M. R. Hestenes and E,
Stiefel during the latter’s stay at the Nattonal Bureau
of Standards. The first papers on this method were



given by E. Stiefel tand by M. R. Hestenes.®* Reports
on this method were given by E. Stiefel ® and J. B,
Rosser 7 at a Symposium ® on August 23-25, 1951.
Recently, C. Lanczos ® developed a closely related
routine based on his earlier paper on eigenvalue
problem.® Examples and numerical tests of the
method have been by R. Hayes, U. Hochsirasser,
and M. Stein,

2. Notations and Terminology

Throughout the following pages we shall be con-
cerned with the problem of solving a system of linear

equations
a1+t ... Faata=h
G+ ntet+ . . . 0Tk
(2:1)
Ci21FQustet . . . FGanla=ka.

These equations will be written in the vector form
Ax=k. Here A is the matrix of coefficients {(a,;),
x and k are the vectors {(zy,. . .,z.) and (&y,. . . k.).
It is assumed that A is nonsingular. Its tnverse A™!
therefore exists. We denote the franspose of A by

A*,
Given two vectors x=(y,. . .,%,) and y=
(¥1,- . -Yu), their sum z+y is the vector

(1411, - EaT ¥}, and az is the vector (az,,. . .,0z,),
where ¢ is a scalar. The sum

(w,y)#x1y1+xayz+- R
Es their scalar product. The length of x will be denoted
y
el=@i+. . Fa)i=@a)t
The Cauchy-Schwarz inequality states that for all
2,9
@] <llly]. (2:2)

The matrix A and its transpose A* satisfy the
relation

@y)?<(@2)(yy) or

1
(:r,Ay)=m2ﬂau:c«y;=(A*x,y)-

If ay=a,, that is, if A=A* then A is said to be
symmetric. A matrix A is said to be pusitive definsie
in case (z,42)>>0 whenever z#0. 1 (x,45) =0 for
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all z, then A is gaid to be nomnegative. If A is sym-
metric, then two veciors z and y are said to be con-
jugate or A-orthogonal 1f the relation (x,Ay)=
(Az,37y=0 holds. This is an extension of the ortho-
gonality relation (z,1)=0.

By an eigenvalue of a matrix A is meant a number
X such that Ay=Ay has a solution y#0, and y is
called a corresponding eigenvector.

Unless otherwise expressly stated the matrix A,
with which we are concerned, will be assumed to be
symmetric and positive definite. Clearly no loss of
generality is caused thereby from s theoretical point
of view, because the system Ax=Fk is equivalent to
the system Bz=I, where B=A*A, [=A%. From a
numerical point of view, the two systems are differ-
ent, because of rounding-off errors that occur in
joining the product A*4., Our applications to the
nonsymmetric case do not involve the computation
of A*A.

In the sequel we shall not have occasion to refer to
8 particular coordinate of a veetor. Accordingly
we may use subscripts to distinguish vectors instead
of components. Thus z, will denote the wvector
(o1, « . ., Zon) and 2, the vector (x4, . . ., %4,). In case
a symbol is to be interpreted as a component, we shall
call attention to this fact unless the interpretation is
evident from the context.

The solution of the system Az=k will be denoted by
h; that is, Ah=Fk. If xis an cstimate of %, the differ-
ence r=k—Ax will be called the residual of x as an
estimate of 4. The quantity |r|* will be called the
sauared residual. ‘The vector A—z will be called the
error vector of 2, as an estimate of A.

3. Method of Conjugate Gradients (cg-
Method)

The present section will be devoted to a description
of a method of solving a system of linear equations
Az=Fk. This method will be called the conjugate
grodient method or, more briefly, the cg-method, for
reasons which will unfold from the theory developed
in later sections. For the moment, we shall limit
ourselves to collecting in one place the basic formulas
upon which the method is based and to describing
briefly how these formulas are used.

The cg-method is an iterative method which
terminates i at most n steps if no rounding-off
errors are encountered. Starting with an initial
estimate z, of the solution k, one determines succes-
sively new estimates 2y, 21, 22, . . . of &, the estimate
x; being closer to A than z.,:. At each step the
residual r,=k—Az, is computed. Normally this
vector can be uscd as a measure of the “goodness”
of the estimate z,. However, this measure is not a
reliable one beeause, as will be seen in section 18,
it is possible to construct cases in which the squared
residual |r,* increases at each step (except for the
last) while the length of the error vector |h—z,|
decreases momnotonically. If no rounding-off error
is encountered, one will reach an estimate z,(m =n)
at which r,=0. This estimate is the desired solu-
tion k. Normally, m=n. However, since rounding-
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off errors slways occur except under very unusual
circumstances, the estimate , in general will not be
the solution » but will be a good approximation of &.
If the residual r, is too large, one may continue
with the iteration te obtain betier estimates of £,
Our experience indicates that frequently .., is
considerably better than x,. One should not con-
tinue too far beyond z. but should start anew
with the last estimate obtained as the initial
estimate, so as to diminish the effects of rounding-
off errors. As a matter of fact one can start anew
at any step one chooses. This flexibility is one of the
principal advantages of the method.

In case the matrix 4 is symmetric and positive
definite, the follo formulas are used in the con-
jugate gradient m %%1

Po=ro=k— Az, (x, arbitrary) (3:1a)

frf? ;
= :1b
('PnAP!) (3:1b)
Zipi=xsFaepy, (3:1c)
'?"1+[Irg_’a-§Ap{, (3:1(1)

r 2

bg—_Lﬁ’fJ ’ (3:1¢)
Pir=Tip1+ b (3:16)

In place of the formulas (3:1b) and (3:1e} one may
use

(Pn?'t) .
&= (1, Apy)’ (3:22)
__(?’!H:Api)_ .
b= 7(:0“14}}‘_) (3:2b)

Although these formulas are slightly more compli-
cated than those given in (3:1), they have the ad-
vantage that scale factors (introduced to increase
accuracy) are more easily changed during the course
of the computation.

The conjugate gradient wmethod (cg-method) is
given by the following steps:

. Imitiel step: Select an estimate x, of A and com-

I(Jute )the residual 7, and the direction p, by formulas

3:1a).

General routine: Having determined the estimate
z; of &, the residual #;, and the direction p,, compute
Zipi, Tip, and pyy by formnulas (3:1b), . . ., (3:1f)
successively.

As will be seen in section 5, the residuals ry, 7y,

. are mutually orthogonal, and the direction vec-
tors py, p1, - - . are mutually conjugate, that is,

(ps, Ap;)=0 (i=7).

These relations ean be used as checks.
Once one has obtained the set of n» mutually
conjugate vectors pg, . . ., Pp—; the solution of

(rﬁ ri) =01 (3 .3)

. in length at each step.

Ax=k (34

can be obtained by the formula

= (po k) s
= (Apz‘; FD)] "

It follows that, if we denote by p,; the jth component
of py, then

{3:5)

N Puba_
% (pi, A’P i)

is the element in the jth row and kth column of the
mverse A~! of A.

There are two objections to the use of formula
(3:5). First, conirary to the procedure of the
general routine (3:1), this would require the storage
of the vectors p,, pi, . This is impractical,
particularly in large systems. Second, the results
obtained by this method are much more influenced
by rounding-off errors than those obtained by the
step-by-step routine (3:1}.

In the cg-method the error vector h—ux is diminished
The quantity f(z)={(h—z,
A (h—2z)), called the error function, is also diminished
at each step. But the squared residual |r|*= |k —Az|?
pormally oscillates and may even increase. There
is & modification of the cg-method where all three
quantities diminish at each step. This modification
is given in section 7. It has an advantage and a
disadvantage, Its disadvantage is that the error
vector in each step is longer than in the original
method. Moreover, the computation is complicated,
since it is a routine superimposed upon the original
one. However, in the special case where the given
linear equation system arises from a difference
approximation of a bourdary-value problem, it can
be shown that the estimates are smoother in the
modified method than in the original. This may be
an advantage if the desired solutior is to be differ-
entiated afterwards.

Concurrently with the solution of a given linear
aystem, characteristic roots of its matrix may be
obtained: compute the values of the polynomials

By, R, ...and P, P, . .. at A by the iteration
RU:POZ].
RH-I:Rt—Min

P{+1:R;‘+1+b,‘Pg. (3:6)
The last polynomial R,(\) is a factor of the charac-
teristic polynomisal of A ard coincides with it whep
m=n. The characteristic roots, which are the zeros
of B, (A\), can be found by Newton’s methods without
actua.llv computibg the polynomial E,(\) itsel.
One uses the formulas

R m O\k}

R:,, (kx), (3 H 7)

M+1=M'—
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where E,.(\), R.(\:) are determined by the iteration

(3:6) and,
Ro=Py=0
R =R{—xa.P{—a.P,
Pl=Ri+bP,
with A=X;. In this connection, it is of interest to

observe that if m=—n, the determinant of A is given
by the formula

det (4)=

oy . . . a,,_l.

The cg-method can be extended to the case in
which A is a general nonsymmetric and nonsingular
matrix. In this case one replaces eq (3:1) by the set

?"0=k—Al‘u, le:A*rD;

LAk

f | Ap,|?
L=y +a.p,

{3:8)

T'1+1=?'1"a¢APi,

b=!A*"s+1i2

T A2

Pit1 IA*fﬂl‘f'biP I

This system is discussed in section 10,

4. Method of Conjugate Directions (cd-
Method)*

The cg-method can bhe considered as a special case
of a general method, which we shall call the method
of conjugate directions or more briefly the cd-method.

n this method, the vectors pq, »1, . . . are selected
to be mutually conjugate but have no further restric-
tions. It consists of the following routine:

Imitial step. Seleet an estimate x, of 2 (the solu-
tion), compute the residual ry=%— Axy, and choose a
direction p,.

General routine. Having obtained the estimate
%4 of A, the residual r,=k— Az, and the direction p,,
compute the new estimate z,., and its residual r,y
by the formulas

— @4,79) .
o (Ps;APf)’ (4:18)
V1= 0Py, (4:1h)
ra=ri—adp,. (4:1¢)

! Thismethod was presented from a different point of view by Fox, Huskey, and
Wilkinson on p. 149 of & paper entitled **Noles on the solation of algehraiu{mear
simultanecus equstions,” Quarterly Journal of Mechanies and Applied Mathe-
matics ¢. 2, 140-173 (1948).

Next select & direction p;; conjugate to p,, . . ., Py
that is, such that
{(Pr11,Ap;)=0 G=01,. . .3} (4:2)

In a sense the ed-method is not precise, in that no
formulas are given for the computation of the direc-
tions pg, Py, . - . . Various formulas can be given,
each fea ing to & special method. The formula
(3:1f) leads to the cg-method. It will be seen in
section 12 that the case in which the p's are obtained
by an A-orthogonalization of the basic vectors
(1,0, . . ., 0), {0,1,0, . . J, . . . leads essentially to
the Gauss elimination method.

The basic properties of the ed-method are given by
the following theorems,

Theorem 4:1.  The direction vectors py, D1, - - + @re
mutually conjugate. The residual vector v 15 orthogonal

10 Po, Piy + + vy Pat.  Lhe tnner product of p; with each
of the residuals roq, vy, - - -, ryi8 the same. That s,
 @uAp)=0 () (4:3n)
(psr)=0 (j=0,1, - - -i—1) (4:3b)
(Poroy=@yr)= - - - ={pyr).  (4:3¢)
The scalar a,; can be given by the formula
= in 4

in place of (4:1a),
Equation (4:3a) follows from (4:2}. Using (4:1¢),
we find that

@3,7041)= (g1} — 0 (21, A1)

If j=Fk we have, by (4:1a), (py,7:411)=0. Moreover,
by (4:3a) (p,rep) =47, 7k). Equations (4:3b)
and {4:3c¢) follow from these relations. The formula
(4:4) follows from (4:3¢) and (4:1a).

As a consequence of (4:4) the estimates 2,2, « - -
of h can be computed without computing the resid-

nals rom, - - -, provided that the choice of the
direction vectors p,p;, - - - is independent of these
residuals.

Theorem 4:2. The ed-method is an m-step method
{m = n) in the sense that al the mth step the estimate z.,
1§ the desired solution k.

For let m be the first integer such that yy=h—2a'is
in the subspace spanned by pe, - - -, P, Clearly,
m =n, since the vectors po,p;, - - - are linearly inde-

pendent. We may, accordingly, choose scalars
&, * - -, an_y such that
Yo=eagPot * * + T &n1Pm1.
Hence,
h=rtapet -+ - tomaiPmos.
Moreover,

ro=k—Ary=Ah—z)=acdpet « + T oma1 AP

412



Computing the inner product (p,,r.) we find by (4:3a)
and (4:4) that «,—=a;, and hence that h=x,, as was
to be proved.

The cd-method can be looked upon as a relaxation

method. In order to establish this result, we intro-
duce the function

J@)=h—z,Ah—x))=(&,42)—2(@xk)+ (h,k). (415)

Clearly, f(x) 20 and f(x)=0 if, and only if, z=h.
The function ff(:l:) can be used as a measure of the
‘‘roodness’’ of z as an estimate of A. Since it plays
an important role in our considerations, it will be
referred to as the error funclion. If p is a direction
vector, we have the useful relation

J@+ap) =f{z) —2a(p,r) +o(p,A4p),

where r=k—Ax=A(h—z), as one readily verifies
by substitution. Considered as a function of o,
the function f{z+eap) has g mnimum value at
a=4a, where

(4:6)

(p,r) .
4:7
~(p,Ap) (#:7)
This minimum value differs from f(z) by the quantity
2
@ 415

f(x)_f(x -F-ap)ztlz(p,Ap)-——(p,Ap)-

Comparing (4:7) with (4:1a), we obtain the first two
sentences of the following result:

Theorem 4:3. The point z; minimizes f(z) on the
line 2=2, 1+ ap;y. At the i-th step the error f(x, )
18 relaxed by the amount

FEe)— flay=Brul =) (4:9)

(Pi-1,4pi_1)

In fact, the point 2, minimizes f(z) on the i-dimensional
plane P of poinis

x=$o“‘r‘ aopo—{-...—l-a;_lpf_:, (4:10]

where o, ..., o are parameters This plane con-
tains the pomts Loy By ey T

In view of this result the cd-method is & method
of relaxation of the error function f(z). Ap iteration
of the routine may accordingly be referred to as
a relaxation,

In order to prove the third sentence of the theorem

observe that at the point (4:10)

F@)=flzd— ;2 [2ay(ps, 70— Dy, Ap))].

At the minimum point we have

(pi: ?"0)
(Ph AP})

and henee o;=a,;, by (4:4). The minimum point is
accordingly the point #, as was to be proved,

Geometrically, the equation f(x)=const. defines
an ellipsoid of dimension n—1. The point at which
f(2) has & minimum is the center of the ellipsoid and
is the solution of Ax—*Fk. The i-dimensional plane
P;, described in the last theorem, cuts the ellipsoid
Ff@)=f(z;) in an ellipseid E; of dimension i—1,
unless E; is the point z, itself. (In the cg-method,
E; iz never de%merate, unless 2,=4.) The point, 2 is
the center of E;. Hence we have the corollary:

Corollary 1. The point z; is the center of the
(i—1)-dvmenssonal ellrpsoid in which the i-dimensional
???8 ;’E’; )1'ntersects the (n—1)-dimensional ellipsoid

xI)= o).

Although the function f{z) is the fundamental
error fupetion which decreases at each step of the
relaxation, one is unable to compute f{x) without
knowing the solution % we are seeking. In order to
obtain an estimate of the magnitude of f(z) we may
use the following:

Theorem 4:4.  The error vector y=—h—2, the residual
r=k—Az, and the error function f(x) satisfy the
relations

Eal .?‘[ )

(r)—f( )— (4:11)
where u(2) is the Rayleigh quotient

n(z)=(z[’jf)° (4:12)

The Rayleigh quotient of the error vector y does not
exceed that of the residual r, that is,

F(’.’)’)é#(?’)-
f |< |r|
#(?‘)_ =@

The proof of this result is based on the Schwarzian
quotients

{z, Az)s(Az Az)S(Az A? z),
(2,2) (z,Az) = (Az,Az)

The first of these follows from the inequality of

Schwarz
|(p,@)|* < (2,0) (0,0 (4:16)

by choosing p=2z, g=Az. The second is obtained
by selecting p= Bz, g—= Bz, where B?=A.

In order to prove theorem 4: 4 recall that if we
set y=h—z, then

r=k—Ar=Ath—z)=Ay
f@y="(y,4y)

(4:18)
Moreover,

(4:14)

{4:15)

by (4:5). Using the inequalities (4:15) with z=y,
we see that
”(y)_(y,Ay)q(Ay,Ay_)_W (Ay, A%y)

Wy = WAy [@)T (dy, Ay

(r Ar)
(r,7)

Pt u(r).
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This yields (4:11) and (4:13).
p=y and g=r we find that

J@&=u.an=un =y .

J@)=p@yP= | i7],

so that the second imquality in (4:14) holds.
first inequality 1s obtained from the relations

Using (4:16) with

Hence

The

Fss@sil

As is to be expected, any c¢d-method has within
its routine a determination of the inverse A~! of A.
We have, in fact, the following:

Theorem 4:5. Let 2y, . . ., Pn—1 be n mutually con-
Jugote nonzero vectors and let py; be the i-th component

of pe. The element in the j-th row and k-th column of
A~ is given by the sum

3 Puba

xZO (pi: Api)

This result follows from the formula

(Pfk) P
=0 (Ps,APf) ¢

for the solution % of Ax=Uk, obtained by scleeting
a‘:g=0.

We conclude this section with the following:

Theorem 4:6. Let w; be the (n—i)-dimensional
plane through x; conjugate to the vectors py, p1, . . .,
pi_1. The plane =, conlaing the points z;, Tip, . .
and “intersects the (n—1)-dimensional ellipsoid f(a:)“
flz) in an pfhpsmd E! of dimension (n—i1—1).
The center of K 15 the solution h of Ax=k. The point
Typ 1€ the mzdpomt of the chord C, of Ei through x,,
which is parallel to p,. In the cg-method the chord 2y
8 normaf to E] at x; and hence 1s in the direction of
the gradient of f(x) at z,1n T,

The last statement will be established at the end
of section 6. The equations of the plane =, is given
by the system

n=1

h=

(Ap;z—z)=0 {=0,1,. . .,i—1),
Since py,piy1,. . . are conjugate to po,. . .,Pi, 50 also
* B—e=apit. . eGP K>,
The points #:,Z:i1,. . ..¥n=h are accordingly in

and A is the center of E;. The chord C,is defined by
the equation x=x(+}tap,, where { is a parameter. As
is easily seen,

Slect-tap) =f@)— (2—)ai(pydp,).

The second endpoint of the chord (% is the point
z+t+2a.p; at which /=2. The midpoint corresponds
to t=1, and hence is the point z,, as was to be
proved.

In view of theorem 4:6, it is secn that at each step
of the cd-routine the dlmensmnahty of the space
in which we seek the sclution A is reduced by unity.
Beginning with z;, we seleci an arbitrary chord ¢ of
flzy=F{(xy) through =, and find its center. The plane
m through =, conjugate to C}, contains the centers of
all chords parallel to . In the next step we re-
strict ourselves to m and select an arbitrary chord

Cy of fx)=f(x,) through =z, and find its midpoint
z; and the plane =, in 7, conjugate to €, {and hence
to ). Thls process when repeated will yvield the

answer in at most o steps. In the cg-method the
chord C; of f(x)=f(x; is chosen to be the normal
at xr,.

5. Basic Relations in the cg-Method

Recall that in the cg-method the following formulas
are used

Po=ro=k— Az, (5:1a)
— |ref? .

(e, Apo) (8:1b)

=%t 0@, (5:1c)

roa=ri—aAp, {5:1d)
_[ren] .

i i‘rgiz (5‘18)

Par=ru+b:p. (5:11)

One should verlfy that ¢g. (5:1e) and (5:11) hold for
i=0,1,2,. . . if, and only f,

Pr=|r| 2 i I2 E=0,12, .. (5:2)

The present section is devoted to consequences of
these formulas. As a first result, we have

Theorem 5:1. The residuals ry, v, . . . and the
direction vectors pg, P, - - - generaled by (5:1) satisfy
the relations

(ryr) =0 (i79) (5:3a)
@ App=0 (77 (5:3b)
(Pord=0 <5, (purp=[r[" Gzp (5:3¢)

(rt‘;A?i) = (pﬁApf) ’ (ri:Ap}) =0 (":' #jli ;ﬁj_i_ 1) {5 :3d)

The residuals vy, vy, . .
the direction vecters py, P1, . . -
gaie,

The proof of this result will be made by inducticn.
The vectors 7o, Do =Ty and r, satisfy these relations
since

. are mutually orthogonal and
are mutually conju-

{(ro,r) = (po,r1) = |?°0P— to(ro, Ape) =0
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by (5:1b). Suppose that (5:3) holds for the vectors

for - - o reand py, . . ., Pr_1. 'To show that p; can
be adjoined to this set it is necessary to show that
{ropy=Irl* = G2l (5:4a)
(P Ap)=0  (<k) (5:4b)

(?‘t;APi) = (P.{'.-Api) (i2kiz=k—1) (5:4c)

Equation (5:4a) follows at onece from (5:2) and
(5:3a). To prove (5:4b) we use (5:1d) and find that

(ropn,pa) = (rope) —a{Apipo).
By (5:4a) this becomes
lreft=relP—a.(Ap.,p) {(a<k)-

Since a>0, eq (5:4b) holds. In order to establish
(5:4¢), we use (5:1f) to obtain

(P2, Ap3) = (ry, Ap) +- 051 (Der, APy = (14, Ap))
(E#k—1)-

Tt follows that (5:4c) holds and henee that (5:3)
holds for the vectors r, #, . . ., rrand py, 9, . .

Pr
It remains to show that rx,; can be adjoined to this
set. This will be done by showing that

(T{,TE_H) =0 (?: ék) (5:5&)
(APs,?'kﬂ):O_ (<) (5:5b)
{(PoTer) =0 (t=k). (5:5¢c)

By {5:1d) we have
(’;i;rk-ﬁ—l) = (ryre) —ar(r,Aps).

If i<k, the terms on the right are zero and (5:5a)
holds. If =%, the right member is zero by (5:1b)
and (5:3d). Using (5:1d) again we have with ¢<(&

0= (11,7 i1) = (Tay1)73) — €@lPrp, AP ) = — @ (7211, 4D)

Hence {5:5b) holds. The equation (5:5¢) follows
from {5:5a) and the formuls (5:2) for p;.

As a consequence of (5:3b} we have the first two
sentences of the following:

Theorem 5:2. The eg-method is a ed-method. It is
the spectal case of the ed-method in which the p, are
obtained by A-orthogonalization of the residual vectors
ry.  On the other hand, a cd-method in which the resid-
uals ry, ry, . . . are mutually orthogonal is essentially
a cg-method.

The term ‘‘essentially’” is used to designate that
we disregard iterations that terminate in fewer than
7. steps, unless one adds the natural assumption that
the formula for p, in the routine depends continu-
ously on the initial estimate &, T prove this result

we accordingly suppose that the routine terminates
at the n-th step. Since the r; is orthogonal to
ri we have ;72 and hence ¢,70. It follows that
(pyrg=0by (4:1a). Wemay accordingly suppose the
vectors p, have been normalized so that (p.r)=|rf%. .
In view of (4:3b) and (4:3¢) eq (5:3¢) holds. Select
numbers a,; such that

-1

Pi= Zﬂ: Q.
J-

Taking the inner product of p, with 7, It 1s seen by
(5:3¢) that

r? .
aﬂ:iTj_z iz, a;=0 G}

Consequently, (5:2) holds and the theorem is estab-
lished.

Theorem 5:3. The residual vectors ro, 1, . . . and
the direction vectors py, Py, . . . satisfy the further
relations

2 2
worp=LEE Gxh) Gow
| Pl F=ra |2+ 87 1| pesfP= |rl8 Jz:u ﬁ >0)
(5:6b)
roAr)=0  J1i—j[>1 (5:6¢)
(ro, Ary=(ps, Ap)+ bi_(pi_1, APiy) (i>>0).
(5:6d)

The vector r, 18 shorter than p.. The vector p, makes
an acute angle with p;. _

The relations (5:6a) and (5:6b) follow readily from
(5:1e), (5:1f), (5:2), and (5:3). Using (5:1f) and
(5:3d), we see that
(ro, Ary=(ro, Apg—b;_1(ry, Ap;—1)=0 (G<g—1).
Hence (5:6¢) helds. Equation (5:6d) i a conse-
quence of (5:1f) and (5:3b). The final statements
are interpretations of formula (5:6b) and (5:6a).

Theorem 5:4, The direction vectors py, p1, . . .

sattsfy the relations '
1= (14d)p—auAp, (5:7a)
Pur=(1+bdpi—adp,—bi 1P (@>>0).  (5:7b)
Similarly, the residuals ro, r1, . . . satisfy the relations
7y ==f— @y Ary {b:8a)
re= (10 _)ri—adr,—b{_iri s, (5:8b)

where

bt_1=ai"’:1 bees. (5:9)
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Equsation (5:7b) is obtained by eliminating ».
and #; from the equations

pi+1:?’t+1+btpt
P =r— . Ap,
Pi="r +b¢—1P£—1-

Equation (5:7a) follows similarly. In order to prove
{5:8b), eliminate Ap; and Ap,_; from the equations

?'i+1=f'f—asAjD¢
Api=Ari+b;_1Ap,_,
re="ri1— @ APy,

Equation (5:8a) holds since pe=r.

Theorem 5:5. The sealars a; and b, are given by the
several formulas
ik @41 @4, 70)
= = H
G dp) ®odp) @odps OO
[rosif’ oy, Apy_ (o, Arg .
T T T Gndp) o dpy 1D

The scalar a; satisfies the relation

k), spI< o <ulr) (>0, (G:12)
where p(2) is the Rayleigh quotient (4:12), The recip-
rocal of ay lies between the smallest and largest char-
acteristic roofs of A.

The formula (5:10) follows from (5:1b) and (5:3¢),
while (5:11) follows from (5:1e), {5:1f), (5:3b), and
(5:3d). Since

Iri|<|Pi|1 (Ti; A?i)>(phAp£)
by (5:6b) and (5:6d), we have

(P, AP1)<(P1, Apz)<(?'¢, Ary

[pal® |7 |7f?

The inequalities (5:12) accordingly hold. The last
statement 18 immediate, since p(z) lies between the
smallest and largest characteristic roots of A.

6. Properties of the Estimates x; of 4 in the
cg-Method

Let now z, @, . . ., Zn=h be the estimates of A

obtained by applying the cg-method. Let 7o, 7,

.+ '»=0 be the corresponding residuals and p,,

D1, + - -, Pm- the direction vectors used, The pres-

ent section will be devoted to the study of the prop-

erties of the points @y, z;, . . ., Zm. As a first result
we have

Theorem 6:1. The estimaies xo, 2y, « + -, 2y Of b are

distinct. The point 2, minimizes the error function
f(x)—(h a:A(h x)) on the i-dimensional plane P,
passing In the ith

through dptnnts Xo, Tyy + v 4y Iy

step of the cg-method, f(x) is diminished by the amount

S@e) —flag=afrif=s@) |z —af, (6:1)

where u(2) is the Rayleigh guotient (4:12). Hence,

fa)—fla)=alr|*+ - - - +asalrif (?:<(j(;):2)
The point z, 18 given by the formulas )

xi:%"l‘z G;Pj—xu+20f(%)|r l‘zf(x()f'j (6:3)

This result is essentially a restatement of theorem
4:3. The formula (6:3) follows from (5:2) and
(6:2). The second equation in (6:1) i1s readily
verified.

Theorem 6:2. Lel 8, be the convex closure of the
estimales &y, &1, + + -, T The point x, 18 the point in
Sy, whose error vector h—z is the shortest.

For a point 2 >, in 8, is expressible in the form

T=agyt- - ety

where o; 20, oyt o+ - -Fa,=1.

We have accordingly

t—r=a(T—xo)++ + Fa(@i—21) =BePo

‘ +B¢—1Pf_1,
where the f's are nonnegative. Inasmuch as all
(p,px) >0 it follows that
>0 (E<.

(w;—ay, 2,—

Using the relation

o, —2*= |t;— 2, 4 2 (2,2, 2,— ) +|2—2]* (6:4)

we find that

|IJ“I¢|<1J5J_$i (i<g).
Setting j=m, we obtain theorem 6:2.

Incidentally, we have established the

Corollary. The point x, is the point in S, nearest to
the point x; (5>1).

Theorem 6:3. At cach step of the eg-algorithm the
error vector y,—=h—zx, 1¢ reduced in length. In fact,

_Sfeitf@y
w(ps_1)

where u(2) is the Rayleigh quotient (4:12).

lyimalP— [y f2= (6:5)
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In order to establish (6 :5) observe that, by (5:6a},

W, i— Ty )= (Tm~— 24, Pio1) B
=lapopi) o Cm(Pa1, 2]
@1 Do |2
=[G;!?";Iz+. . .+am_1[rm_1[2] %'

In view of (6:2) and (5:1b) this becomes

(o xi— 2= f(z(;fi)l) (6:6)

Setting z=zx,_; and j=m in (6:4), we obtain (6:5)

by the use of (6:6) and {6:1).

This result establishes the cg-method as a method
of successive approximations and justifies the pro-
cedure of stopping the algorithm before the final-
step is-reached. If this is done, the estimate ob-
tained can be improved by using the results given
in the next two theorems.

Theorem 6:4. Let 28, -, & be the projec-
tions of the points x4y, - - - xm—k m the i-
dimensional plane P passing through the pomts To,
Ty = v vy &y oinits xi_h 4, m;.H, .o :3(') lie
on @ straight l'me in t e order given by their enumera-tion.
The point 2l (k7>1) is given by the formulas

f(Tt — f(-’Ck)

=t g Ly ey (e 678

_i_f(xt) I (xa)

|re_a]?

20 =2, P 6:7b)

In order to prove this result, it is sufficient to
establish (6:7). To this end observe first that the
vector

Ir.f [2 iy

?3 | rio l2 P:’ 1 (J = 1)

is orthogonal to each of the vectors py, 1, - - -
#:-1. This ean be seen by forming the inner product.

with p({<(2), and using (5:6a). The result 1s

(P, P)— r :IF (pe, Pe- 1)_IP:|[:

" [[rs*—irilf1=0
The projection of the point

Te=L; @i Piata:pit. o @1 P
in P, is accordingly

te_,lr +. . . talr
r“’—xi 1_1__f_l, f— 1| |r£ 1]2 17— 1|

Using (6:2), we obtain (6:7). The points lie in the
designated order, since f{@) > f(%rs1)-
Since f(x,) =0, we have the first part of

i1

Theorem 6:5. The point
29 =t L2 oo (6:8)
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is the point in P, whose distance from the solution h is
the least. It lies on the line x4 x; beyond x,. Mareover,

1 1 1

T T T (6.9)

and
SR Sy Y L s f(:l‘:f).
|b— 2= [h—23| +7#( -

In order to establish (6:9) and 6:10) we use the
formula

f@tapi_)=f(@) -+t (@i, Apiy),

which helds for all values of « in view of the fact that
2; minimizes (@) on P, Setting a=f{z)/lri_.|®
we have

(6.10)

f)t
f(x —1)—‘f(37t)

An algebraic reduction yields (6:9).
S @ |pial®

is‘"t—lI'i
ﬂr:—1iPi 1[

@ alpef?
f(xf — f(xi) ['-”i 1[2

we obtain (6:10) from (6:9) and (5:1b).

As a further result we have

Theorem 66, Let x;, -« ., Bn_y be the projections
of the points @1, . . ., %y o0 the lme Jjoining the indtial
pomt 2 to the solufwn Zm=h. The jpo'mts Xo, ¥y - v -
Xp_1, Tn=h lic in the order of enumeration.

Thus, it is seen that we proceed towards the solu-
tion without oscillation. To prove this fact we need

(xg?

1) =fa+ L syt

Inasmuch as

bt b=

only observe that
(:}:m-—'Io,xg—-$¢_1)=($m—1¢u,ai—1,?f—l)
m=1
=@ J_;ﬂ Py pi-1y >0
by (5:6a). A similar result holds for the line joining

#gt0 2,(i<4).
Let =, be ‘the (n—i)-dimensional plane through =z,
conjugate to pg, Py, . - ., Pi1- 1t consists of the set
of points  satisfying the equation
(j=071 ro= -

(Apsz—x)=0 L—1).

This plane contains the points 2., . . .,%, and hence
the solution A.

Theorem 6:7. radient of the function f(x) at &,
n the plane =;is scal?u' multiple of the vector p,.

The gradient of f(z) at 2, is the vector —r;.. The
gradient g, of f{z) at #,in =, is the orthogonal projec-
tion of —#; in the plane r,. Hence ¢, is of the form

g{:—h*i-aoApu'f- “ . -+ai—1APi"1!



a_; are chosen so that ¢, is orthogonal
Since

where o, . . .,
tOApo, . .,Apf_g.

i
¥y
= |I" 2
Pl 2 e

?‘j+1=rj—a,Apj (j:(),l, . .,i_l),

it is seen upon elimination of rq, 7, . . ., 7;y Succes-

swely that p; is also a linear combination of r;, Ap,,
Ap:_,. Inasmuch as p,is con;ugate t0 P,

p, . it is orthogonal to Ap,, . . The vector

p; accordingly is a scalar multiple 0% the gradient. ¢,

of f(z) at z; 1n x;, a3 was to be proved.

In view of the result obtained in theorem 8:7 it is
geen that the name “methoed of conjugate gradients”
is an appropriatec name for the method given in see-
tion 3. In the first step the relaxation is made in the
direction p, of the gradient of f(x) at =, obtaining
a minimum value of f(x) at ;. Since the solution &
lies in =y, it is sufficient to restrict = to the plane m.
Accordingly, in the next step, we relax in the direc-
tion p, of the gradient of f(z) in =, at 2, obtaining the
point z; at which f(2) is least. The problem is then
reduced to relaxing f(z) in the plane =, conjugate to
poand p;. At the next step the gradient in z, in =,
1s used, and 50 on. The dimensionality of the space in
which the relexation is to take place is reduced by
unity at each step. Accordingly, after at most n
steps, the desired solution is attained.

7. Properties of the Estimates x; of & in the
cg-Method

In the eg-method there is a second set of estimates
To==xo, Ty, T2 - . . of h that can be computed, and
that are of significance in application to lnear
systems arising from diffsrence equations approxi-
mating boundary-valve problems. In these applica-
tions, the function defined by Z; is smoother than
that of z,, and from this point of view is a better
approximation of the solution A. The point ¥, has
its residual proportional to the conjugate gradient p,.
The points Zy, Z,, T,, . . . can be computed by the
iteration (7:2) given in the following:

Theorem 7:1.  The conjugate gradient p,is expressible
in the form

pi=ek—Azxy), (7:1)

where ¢; and %, are defined by the recursion formulas

60:1, C(+1=1+bf0; (7:2&)
- - x bic.x
Lo=T0, $1+1=i+1:;f”" (7:2b)
We have the relations
i1 [pl?
Ci= 2D =1 7:3
e=Ird §|‘”f|2 7] (7:38)

Ty= 7:3b
“ cs f=iirl? ¢ )
Fe b Aty Il e
o=k Azi=pp= c =l (7:3¢)
The sum of the coeﬁments of Zo, %1, . . ., 24 %0 (7:3b)

{and hence of ro,ry, . . ., #: in (T:3¢)) is umty
The relation (7:1) can be established by induction.
It holds for :=0. If it holds for ¢, then

Pip1=7Tqy +bp=1+bedk—Alr; +beds)
='3£+1(k‘_A51+1)-

The formula (7:3a) {follows from (7:2a), (5:1e) andl
(5:6b). Formula (7:3b) is an easy consequence of
{7:2b). 'To prove (7:3¢c) one can use (5:2) or (7:3h),
as one wishes. Thoe final statement is & consequence
of (7:3a).

Theorem 7:2.  The point T, given by (7:2) lies in
the convex closure Sy of the points o, &y, - - -, 2. L1
the point z in the i-dimensional plane P, through To,
2y, - - v, @ at which the squared residual |k— Az|* has
its minimum value. This minimum value is given by
the formule

(7:4)

The squared residuals [rof?, |74% - - - diminish mono-
tontcally during the cg-method, At the ith step the
squared residual is reduced by the amount

Feoal?,

e, (7:5)

e |P— |F='|2=

The first statement follows from (7:3b), since the
coefficients of x, @, . : -, 7, are positive and have
unity as their sum. In order to show that the
squared residual has a minimum on P at Z,, observe
that a point « in P; differs from z; by & vector z; of
the form

T—Ti=Z=agPot * + ta P

The residual r=%— Az is_accordingly given by

r:Ff_AZi

Az;=aApot- < Fa 1 Ape .

Inasmuch as, by (7:3¢), ¥.=p./¢;, we have

4, AP;)" (?t:AP:) 0 (7<9).
Consequently, (7,,4z,)=0 and
[P|?= ]_?f|2-+- | Az 2> 742 (x=E,).
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It follows that T, affords a proper minimum to |7{2 on
P, Usmg (7:3¢) and (7:3a) and the ort.ho%onaht.y
of ry's, it 1s seen that the minimum value of |7|* on
P;is given by (7:4). By (7:4) and (7:2a)

Ciy ]Tilz )
[+ iri-l[z
|74

- bt—lct—l) T
— 2 —— —
=[P (1 € €y

This completes the proof of theorem 7:1.
Theorem 7:3. The Rayleigh quotients of ry, ry,
. and Ty, Ty, . . . are connected by the formulas

g _slro 4 elre)

[ (7 [Fesl®

e |2 —[Fi|>= 1T [?

(7:6a)

sl
74l ['-‘"112

(7:6b)

s) ﬂ(?“!) p.(f‘; l12) C (1) ﬂ(""u)

ol

The Rayleigh quotient of 7,(i>>0) 13 smaller than that

of 1, that is, u(F) <u(ry).
In order to prove this result we use (5:6d) and
obtain

(’-"'!a Ary) (’Pt, A‘Pi)_i_(fh

[rl* [

L APy,

[reaf?

Since |rt=|p/*7rd® and ,u(p;)=pﬁi), this relation
yields (7:6a). The eq (7:6b) follows from (7:6a).
The last statement follows from (5:12).

In the applications to lLinear systems arising from
difference equations approximating boundary value
problems, u(r;) can be taken as & measure of the
smoothness of ;. The smaller p(r)) is, the smoother
z.1s. Hence T, 1s smoother than x,.

Theorem T:4. At the point Z; the crror function
f(x) has the valuse

FE)=flz+ ial*;i; o) _Jend )
and we have
Ha) < F @< F o). (7:8)

The sequence f(&), f(z)), f(Fa), - . . decreases mono-

tonically. . L )
In order to prove this result, il is convenient to set

Bt

=Cf—1|?'{[2=bi—1 G
[7eaf?

Cs[?’f—l[z Cy

(7:9)
By (7:2) we have the relation
E;——x;za_l a'rg_‘] —2:;) . (7 H 10)
Using the formula
J@) —f@)=@—2, Alx—z3)),

which holds for any z in P,, we see that

J@Eo—f(xad= 5%4 Ei— kg, AF L —x)),

that is, )
FE)—F @) =B [ f@er) —F (). (7:11)

By (7:9) it is seen that this result can be put in the
form

J@)— f(xt)

[7dd*

f($i—l)“f(x!)_,‘_f(-x-i—-l)'_-f(zt—l)

Femaf® fraaf*

Since Ty=1u, thi_s formula yiclds the desired relation
(7:7). Since b,_;<1, it follows from (7:11} and
(7:7) that (7:8) holds. This proves the theorem.

Theorem 7:5. The error vector y;=h—zx, is shorter
%ﬂ, the error vector T;=h—7T,, Moreover, §, is shorier
than 4. ;.

Th% first statement follows from (7:2). It also
follows from theorem 6:2, since % is in §;. By
(7:2) the point %, lies in the line sepment joining
Z; to ZT,_;. The distance from & to T, exceeds the
distance from & to ;. It follows that as we move
from T; to Z,_, the distance from % is increased, as
was to be proved.

8. Propagation of Rounding-Off Errors in
the cg-Method

In this section we take as basic relations between

the vectors »,, 7, - - - and pg, Py, + - - in the eg-
method the following:
Pt::'-‘"o; (81&)
|74
&= 8:1b
=, 4p) (8:15)
r¢+1=r¢-—a;Ap; (8:10)
b= I7el 8:1d
2 #:19
P =ris1+0:ps {8:1e)

As a consequence, we have the orthogonality
relations
{royr) =0, (i=k).

(Api,pr) =0 (8:2)

Because of rounding-off errors during a numerical
calculation (routine), thess relations will not be
satisfied exactly. As the difference |k—i| increases,
the error in. (8:2) may increase so rapidly that =z,
will not be as good an estimate of & as desired. This
error can be lessened in two ways: first, by iniro-
dueing a subsidiary calculation to reduce rounding-
off errors; and second, by repealing the iteration so
as to obtain a new estimate.. This section will be
concerned with the first of these and with a study of
the propagation of the rounding-off errors, To this
end 1t is convenient to divide the section in four parts,
the first of which is the following:
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8.1. Basic propagation formulas

In this part we derive simple formulas showing
how errors in scalar products of the type

(Aper,pe) (8:3)

(ri—IJTf)?

are propagated during the next step of the computa-
tion. From (8:1e) follows

(roro)= @urin) —bia Py,
Inserting (8:1¢) in both terms on the right yields

(rorip) =(@ur)—ap,Ap d—bea(Pes,r)
+bm1@(APio1,pa)-

Applying (8:1e) to the first and third terms gives
(rorun)=(ror) —a(poAp) +b,10,(Ap1,20), (8:4)
which by (8:1b) becomes

(rorap) =b a0, (Ap,_y,p;). (8:5)

This is our first propagation formula.
Using (8:le) again,

(Ap,poy=Ap,ra) H5.(ApLps).

Inserting (7:1c) in the first term,

1, 1
(Apnpnl):—a: |"s+1f3+a (roro)+ b Apy,po).
(8:6)
But in view of (8:1b) and (8:1d)

reft=ad(Apop)). (8:7)

Therefore,

(Apypip)=— (ﬁﬂ'u-l) (8:8)

This is our second propagation formula.
Puttin% (8:5) and (8:8) together]yields the third

and fourth propagation formulas
b
(rorip)= ;1‘11 (ry_1,74) (8:9n)
(Apapi)=bia(Ap.,p), (8:9h)
which can be written in the alternate form
(ryyregy) @y (ri_1,13)
- = 104
[?"1!2 L F 3] |1"'i—1]2 (8 Oa)
(AP; Pf+1) @i (A?i—lspt)
! 8:10b
(Apt,jp;) di—; (APt-I;Pf—l) ( 0b)

by virtue of (8:1b) and (8:1d). Each of these propa-
gation formulas, and in particular the simple formu-
las (8:9), can be used to check whether nonvanishing
products (8:3) are due to normal rounding-off errors
or to errors of the computer. The formulas (8:10)
have the following meaning. If we build the sym-
metric matrix P having the elements (Ap,p:), the
left side of (8:10b) is the ratio of two consecutive
elements in the same line, one located in the main
diagonal and one on its right hand side. The
formula (8:10b) gives the change of this ratio as we
go down the main diagonal.

8.2. A Stability Condition

Even if the scalar products (8:2) are not all zero,
so that the vectors py, p1, - - -, Pa— are not exactly
conjuga,te, we may use these vectors for solving

in the following way, The solution % may be
written in the form

h=15t+aspot+aipr+- -
Taking the scalar product with Ap,, we obtain

(@o, AD:) + ? (Ap,pa= (h,Ap)=(Ah,p,) = (k,p:)

Ry (8:11)

or

Zk:fAPnPk)G;= (To,04). (8:12)

The system Ax=Fk may be replaced by this linear
system for @, - -@._,. Therefore, because of
rounding-off errors we have cert&miy not solved
the given system exactly, but we have reached =
more modest goal, namely, we have transformed the
iven system into the system (8:12), which has &
gommatmg main diagonal if rounding-off errors have
not accumulated too fast. The eg-algorithm gives
an approximate solution
M =2ytapy+- - G 1P (8:13)
A comparison of (8:11) and (8:13) shows that the
number a; computed during the cg-process i1s an
approximate value of a;.
n order to have a dominating main diagenal in
the matrix of the system (8:12) the quotients

(Api,ps)

Ap0p) (8:14)

(i74k)

must be small. In particular this must be true for
k=4i--1, In this special case we learn from (8:10b)
that increasing numbers @, @, - - during the cg-
process lead to acecumulation of rounding-off errors,
because then these quotients imcrease also. We
have accordingly the following stability condition.

The larger the ratios aja,.,, the more rapidly the
rounding-off errors accumulate.

A more elaborate discussion of the general quotient
(8:14) gives essentially the same result,
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By theorem 5:5, the scalars a; lie on the range

1 1
<at<1m1n

Mmax ’

where A, Amsx 8re the least and the largest eigen-
values of A. Accordingly, the ratio p=Ansz/ A 18 a0
upper bound of the critical ratio aya,_,, which deter-
mines the stability of the process. When p is near
one, that is, when A is near a multiple of the identity,
the cg-metﬁod is relatively stable. It will be shown
in section 18 that exarples can be constructed in
which the ratios @i e, (i=1, - -,;n—1} are any
set of preassigned positive numbers. Thus the
stability may be low. However, this instability can
be compensated to a certain extent by starting the
cg-process with a vector z, whose residual vector r,
is near to the eigenvector of A corresponding t0 Ap.
In this event ¢, 1s near to the upper %ound 1/ Ao of
the @, This result is brought out in the following
theorem:

For a given symmetric and positive definite matriz A,
which has distinct eigenvalues, there erists always an
initial residual vector rq such that (a,/a,_) <1 and hence
such that the algorithm is stable with respect to the
propagation of rounding-off errors.

In order to prove this we introduce the eigenvalues

hmln=htl<xl<h2< L <Xn—l=kn:nx

of A, and we take the corresponding normalized
eigenvectors as a coordinate system. let oy, oy, ...,
ay—1 be real numbers not equal to zero and e a small
quantity. Then we start with a residual vector
ro={ag,0n€,00€%, . .. 0, 1€"7). (8:14a)
Expanding everything in a power series, one finds
that

e €X0%), (8:14b)
*
Hence
LTI Y58 P
RN +eM<1

if ¢ is small enough.

Ag a by-product of such a choice of r; we get by
(8:14h) approximations of the eigenvalues of j
Moreover, it turns out: that in this case the sueccessive
residual-vectors ry, 71, ..., rp_; &re approximations of
the eigenvectors,

These results suggest the following rule:

The eg-process should start with a smooth residual
distribution, that is, one for which u(ry) is close 10 hum.
If needed, the first estimate can be smoothed by some
relazation process.

Of course, we may use for this preparing relaxation
the cg-process itself, computing the estimates ¥,
given In section 7. A simpler method is to modify
the cg-process by setting 6,=0 so that p.=r; and
selecting a; of the form «,—aju(r,), where a« 13 a
small constant in the range 0< a<1.
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(8:18).

8.3. The End-Correction

The system (8:12) can be solved by ordiﬁary Te-
laxation processes. Introducing the numbers a; as
approximations of the solutions a;, we get the resid-

uals
(ro,p1)— ; (Ape,pe)or. (8:15)

Inasmuch as ro=r.y; +apdpe+. . . +acdp by (8:1¢),
we have

(ro.p)=0+1,0) taldp,pl+. . . tedAp,ps).
It follows that the residual (8:15) isTeduced to

(8:16)

(roppd) — (AP P} — (AP Pieda—. . .

— (Aphpn—l)an—b (8 17)
This leads te the correction of a,
1
Ag, = —{d4
&y (Ap,py) {(rir,20—(APpyDip)ain
—(Apupii)ipe—. . — (APyPar)@an.}- (8:18)

A first approximation of ¢/ is accordingly
a; ~a;FAa,

In order to discuss this result, suppose that the
numbers a; have been computed accordingly to
the formula

(pe,rs)
P 1
@ (Pi:AP'I) (8:19)
(theorem 5:5). From (R:1c) it follows that

(ri1,p0)=0, and therefore this term drops out in
In this case the correction Ag; depends
only on the products (Ap,p;) with i<k, That is
to say, that this correction is influenced only by the
rounding-off errors after the i-th step. If, for
instance, the rounding-off errors in the last 10 steps
of a cg-process are small enough to be neglected,
thelast 10 values a; need not. to be corrected. Henee,
generally, the Aa, decrease rather rapidly.

From (8:18} we learn that in order to have & good
rounding-off behavior, it i3 not only necessary to
keep the products (p,Ap.) (1=£k) small, but also to
satisfy (rep,p:)=0 as well as possible. Therefore,
it may be beiter to compute the ¢ from the formulas
(8:19) rather than from (8:1b). We see this im-
mediately, if we compare (8:19) with (8:1b); by
(8:19) and (8:1e) we have

L 2
a;=m { ]?‘fl b ifrp-0) )}

For ill-conditioned matrices, where a; and b; may
become considerably larger than 1, the omitting
of the second summand may cause additional errors.
For the same reason, it is at least as important in



these cases to use formula (3:2b) rather than (8:1d)
for determining b,, since by (3:2b) and {8:1¢)

1
a:(p, AP0

Here the second summand is not directly made
zero by any of the two sets of formulas for ¢, and
b; The only orthogonality relations, which are
directly fulfilled in tﬁe scope of exactitude of the
numerical computation by the choice of a; and b,
are the following:

1= {resaP—(riard b

(P, Ap.) =0.

Therefore, we have to represent (re4,7,) in terms
of these scalar products:

(T:rq-l;Ps) =0,

T =Tu,P) =80T hper) tadi (poApes)

From this expression we sce that for large &, and g,
the second and third terms may cause considerable
rounding-off errors, which affect also the relation
(Pry1, Apy) =0, if we use formula (8:1d) for b,. This
8 co by our numerical experiments {sec-
tion 19).

From a practical point of view, the following
formula is more advantageous because it avoids the

computation of all the products (Ap.p.). From
(8:1c) follows
Pe=ri1— G APy — @2 dAPpro— . . . —8o 1 Apa,

(raP) = T i1,09) — G111 (AP, poia)
. —ﬁn+1(AP£,1?n—1)-

and we have the result

(1‘,,,?’)
Aay 8:20
~(Apy P ®:20
This formula {%wes corrections of the @, if, because
of rounding-off errors, the residual r, is not small
enough.

8.4, Refinement of the cg-algorithm

In order to diminish rounding-off errors in the
orthogonality of the residuals »; we refine our general
routine (8:1). After the ith step in the routine we
compute (Ap,_1,p:), which should be small. Going
then to the (i1 1)st step we replace @, by a glightly
different quantity @; chosen so that (r,ry)=0. In
order to perform this, we may use (8:4), which now
must be written

(rori) =Fard—a,(Ap,p) + b a3 (Ap,1,p) =0
vielding
. = |"£|2

(AP:st)— b, {ADp,_ nPf)

Introducing the correction factor

1 (Ai‘?t—l:iﬂi)
di=1—bes (A, py)

and taking into account the old value (8:1b) of a,,
this can be written in the form

®:21)

=%
=
ds

(8:22)

Continuing in the general routine of the (i+1)st step
we replace b, by a number b, in such a way that
(Ap,pi)=0. We use (8:6), which now must be
written in the form

— l?‘¢+1]2+ (roren) —}—Ejn(Ap,,p{) =0.

The term (r,r;) vanishes by virtue of _our choice
of .. Using (8:7), we see that ¢;b,=ab; and from

(8:22) ~
bg:bgd(. (8:23)

Since rounding-off errors occur again, this sub-
routine can be used in the same way to improve the
results in the (¢4-1)th step.

The corrections just described can be incorporated
automatically in the general routine by replacing the
formulas (3:1) by the following refinement:

Po=ro=k— Az, do=1
[7?

“ouApd d;

Tep1=2; P4

rep=ri—adp, (8:24)
7
b£—-| |::'_‘-‘|‘I2i di

Pt+1'—'?‘t+1+btps

(Apii1, P9
dria=1—bs (APt Pry)

Another quite obvious, but numerically more
laborious method of refinement goes along the
following lines. After finishing the ith step, compute
a product of the type (Ap.,ps) with k<<. Then
replace p; by

( P, pk)
= 8:25
Pi Pi— (Ap,pk)pk ( )
The vector p; is exactly conjugate to p;. This
method may be used in place of {8:24) in case
k=1i—1. It has the disadvantage that a vecior must
be corrected and not just numbers, as in (8:24).
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9. Modifications of the cg-Process

In the cg-method given by (3:1}, the lengths of the
vectors Py, Pi, . . . are at our disposal. In order to
preserve significant figures in computations, it is
desirable to have all the p, of about the same magni-
tude. In order to aim at this goal, we normalized
the p’s by the formulas

(>0}

However other normalizations can be made. In
order to see how this normalization appears, we
replace p; by dp; in eq (3:1), where d, is o scalar
factor. This factor d, is not the same as that given
in section 8 but plays a similar role. The result is

De="ry P1=Ts} bi-i,pf—l

r
To:k—Aﬂ?n, p(l:d_a

0
yp1=2y+ AP
Pig=ri— G AP

_ft+1+ 54%
p:+1——“‘—'—di+1

PR s (D474)
i poApdd:  (p,Aps)

3 _relPde (reandpg),
TP (@1, Aps)

The connections between ay, b, d. are given by the
equation

(9:1)

do
F(fo)—‘a:—o

_d¢ bi_l [h[z di—l ' .
pirs) @ Gy ‘?'1—1]2 Gy (z>>0), (9:2)

where u(7) is the Rayleigh quotient (4:12). TIn order
to establish these relations we use the fact that r,
and ry, are orthogonal. This yields

Ire|?=a.(reApy.

[Pes1]P=—a:(rips, Apy)

i 20)

by virtue of the formula #,.,=7,—¢.4p,. From the

connection between p, and r,, we find that

g—:- rP=di(re, Ap)
=(r, Ar)+b (i, Api_y)

b£_1 [T;Is.

iy
This yields (9:2) in case 1>>0. The formula, when
1=0, follows similarly.

In the formulas (9:1) the scalar factor d; is an
arbitrary positive number determining the length of
p;. The case d;=1 is discussed in sections 3 and 5.
The following cases are of interest.

=(?'nA?'¢)—

227440—52——86 N

I. The vecior p, can be chosen lo be the residual
vector T, described in section 7. '
In this event we select

t9:3)

d|)=1, d{+1=1 “l“b{.
The formula (7:2b) for %, becomes
—~ bz
$f+1=m———pil__|_]_b:x" (9:4)

I1. The vector p, can be chosen so that the formula

I 7y
2y .fgo |rgf®
holds.
In this event the basic formulas (9:1) take the
simple form

ro=k—Aze =g

Pt
$:+1=$:+——"—*( ,Apg) ,
9:5)
AP;
T =T s, Ap)

»
Ps+1=10¢+ﬁ‘
This result is obtained from (9:1) by choosing

d;= |?"¢Iz.

In this case the formulas (9:5) are very simple and
are particularly sdaptable to computation. It hag
the disadvantage that the vectors p; may grow con-
giderably in length, as can be seen from the relations

1
2t |8t -
[Peta|*=ip4| +]"¢+1|2

However, if ‘“floating’” operations are used, this
should present no difficulty.

III. The vector p, can be chosen to be the correction
to be added to x, in the (i-+1)st relazation.

In this event, ¢,=1 and the formulas (9:1) take
the form

—k— Az, =20
To Ly Pa 2o
Topr=2:1P;
?'f-:-l:?'i—'A’Pt
(9:6)
_'»"¢+1+ b:?s
P =T
41
do=plry), dipr=p(ri)—by
2
b‘=1rt+1| d..

[e)?
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These relations are obtained from ($:1) and (9:2) by
setting ¢,=1.

IV. The vector p, can be chosen so that a,is the recip-
roeal of the Rayleigh quotient of r,.

The formulag for o, b; and d,in (9:1) then become

__rd? .
i—(?'t,A?'s)
+
b=l
dy=1, '5£s+1=1"—b£ai+1
&y

This is sufficient to indicate the variety of choices
that cab be made for the scalar factor dg, d;, . . . .
For purposes of computation the choice d;=1 appears
to be the simplest, all things considered.

10. Extensions of the cg-Method

In the preceding pages we have assumed that the
matrix A is & positive definite symmetric matrix.
The algorithm (3:1) still holds when A is nonnegative
and symmetric. The routine will terminate when
one of the following situations is met;

(1) The residual r, is zero, In this event 2, is
a solution of Ax=1£k, and the problem is solved.

(2) The residual r, is different from =zero but

m,Pm)=0, and hence Ap,=0. Since p.=c.7y,
f?)llows that A7, =0, where ry, is the residual of the
vector I, defined in section 7. 'The point %, is
according]y a point at which |k—Az)® attains its
minimum. In other words, T, is a least-square
solution. Ome should observe that p, =0 (and hence
Fm#”0). Otherwise, we would have r,=—b,_ipr_1,
contrary to the fact that r, is orthogonal to p,_,.
The point x,, fails to minimize the function

glx)=(x,Ax)—2{k,x),
for in this event
@t tPn) =G (@m) —2fral>

In fact, g(@) {ails fo have a2 minimum value.

It remains to consider the case when A4 is a general
nonsingular matrix. In this event we observe that
the matrix A*A is symmetric and that the system
Ax=Fk is equivalent to the system

A*Az—A*k. (10:1)

Applying the eq (3:1) to this ]ast system, we obtain
the following iteration,

If one does not wish to use any properiies of the
cg-method in the computetion of e, and b, besides
the defining relations, since they may be disturbed
by rounding-off errors, one should use the formulas

a =(Apf,f't)
! |Ape]?

bo— e (APn A4 ’-‘°£+1)
f TAplt

In this cage the error function f{2) is the function

f@)={k—Az]*, and hence iz the squared residual.

It is a simple matter to interpret the results given
above for this new system.

It should be emphasized that, even though the use
of the system (10:2) is equivalent from a theoretical
point oiy view to applying the eg-algorithm to the
system (10:1), the two methods are not equivalent
from a numerical point of view. This follows because
rounding-off errors in the two methods are not the
same. The system (10:2) is the better of the two,
because at all times one uses the original matrix 4
instead of the computed matrix A*A, which will
contain rounding-off errors.

There is a slight generalization of the system (10:2)
that is worthy of note. This generalization consists
of selecting & matrix B such that BA is positive defi-
nite and symmetric. The matrix B is necessarily of
the form A*H, where H is positive definite and

symmetric. We can apply the cg-algorithm to the
system
BAxz=DBk. (10:3)
In place of (10:2) one obtains the algorithm
ro=k— Az, po=1Bry,
| Brd®
(ph BAP()
=2y,
(10:4)
7'¢+1=?'¢—0::A‘Pb
| By
b;— iBT;]z 7

Pi+1=B?'t+1+ bip:.

Again the formulas for ¢, and b, which are given

ro=k — Az, Po= A*p,, directly by the defining relations, are
Atry|?
€=|]AP:[|2 a,= (Ps; B"()
(po: BA?O
@.t+1=xi+afpt
- (10:2) b (Brip,, BAp)
T =ri—a; Ap; T (poBApY
b, ATl . .
AR When B=A%, this system reduces to (10:2). If 4
is symmetric and positive definite, the choice B=1
Peni=A*r 1+ bipr. gives the original eg-algorithm,
424
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There is a generalization of the cd-algorithm con-
cerning which a few remarks should be made. In

this method we select veetors 2y, . . ., Pe-; and
Qo, + « + Qa1 Such that
(QiJApJ}=0 (1 ?"{.?):
(10:5)
(Qg,APj)>O.
The solution can be obtained by the recursion for-
mulas
T0=k—A$0,
4= (qf!rf) — (Q‘i,?'a) .
(g4, 4ps) (g4, Apy)
(10:6)

Ty =T Py,

?'s+1=?'i—artA‘Ps-

The problem is then reduced to finding the vectors

Dy, ¢: such that (10:5) holds. We shall show in a

moment that ¢; is of the form

g=B*p,, (10:7)

where B has the property that BA is symmetric and

. positive definite. The algorithm (10:6) is accordingly
equivalent to applying the cd-algorithm to (10:3},
To see that ¢, is of the form (10:7), let P be the
matrix whose column vectors are py, . . ., P, and @
be the matriz whose column vectors are g, . « ., ¢
The condition (10:5) is equwalent to the statement
that the matrix D=0Q*AP is a diagonal matrix whose
diagonal terms are positive. Select B so that
(=B*P. Then D=P*BAP from which we conclude
that BA is a positive definite symmetric matrix, as
was to be proved.

In view of the results just obtained, we see that
the algorithm (10:4) is the most gene'rai cg-algorithm
Sfor any linear system. Similarly, the most general
cd-algorithm is obtained: by (i) selecting a matrix
B such that BA is symmetric and positive definite,
(ii) selecting nonzero vectors py, . . ., Pa-1 such that

(p1,BAp;) =0, =)
and (iii}, using the recursion formulas
ro=k— Az,
(ps,Bry) _ (p,Bry

Y 0,BAp)~ (p,BAD)

Fip=2c e,

Fep1=ri— (I-(AP;.
11. Construction of Mutually Conjugate
Systems

As was remarked in section 4 the ed-method is not
complete until » method of construeting a set of
mutually conjugate vectors p,, p;, . . . has been

given. In the cg-method the choice of the vector
p: depended on the result obtained in the previous
step. The vectors po, py, . . . are accordingly deter-
mined by the starting point @, and vary with the
point .

Assume again that 4 is a positive definite, sym-
metric matrix. In a ¢d-method the veetors p,,
P1, - - . can be chosen to be independent of the
starting point. This can be done, for example, by
starting with a set of = linearly mdependent vectors
Ugy Uty » oy Upt and constructing conjugate vectors
by a successive A-orthogeonalization process. For
example, we may use the formulas

Po=—"1Uy,
1= agPo,
Pa="Yg~— aogPy— (11:1)

oz Py,

Pi=U%i— apPo—ouPr— — Oy i1 Pi-1-

The coefficient a;;(i>>7) is to be chosen so that p, is
conjugate to p;. The formula for e« is evidently

(uhAPJ)

<) 11:2
) (p AP:f) (.7<’1) ( )
Observe that
(PoAugy=0 (7<)
(21, Au,) = (py, Apy). (11:3)
Using (11:3) we see that alternately
(Auijp:) .
T (Auy,py) (L1:4)

As deseribed in section 4, the successive estimates of
the solution are given by the recursion formula

ﬁozo, m¢+1=xi+a;p‘, (115)
where
(pijk) N
(pi,APf) (11:6)

There is a second method of computing the
vectors Py, P1, . . ., Pa_1, given by the recursion

formulas
w‘-')) =1y (1 1 :7&)
py=uf, (11:7b)
uf 0 =uf —a,p,, (=741, .. .n) {11:7¢)
ul Au .
((p, Auj)j) G>9). (11:7d)
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We have the relations (11:3) a,hd ,

(u® Auw,)=0 (j<k) (11:8a)

(u® Ap)=0  (§<k) (11:8b)

wP =u—agPo—. . —ayPi1 (2>7) (11:8c¢)
(p1,Apy)=0 (15£9). (11:8d)

The eq
(11:70) and (11:7d),
values of j<k follows by induction.
(11:8¢) follows from (11:7¢).

If one selects successively wuo=ry, wm=r, . . .,
tg.1=Ty-1, the procedure just described is equw&lent
te the cg-method described in sectiop 3, in the sense
that the same estimaies xo, z;, . . . and the same
direction vectors p,, Py, - . . are obtained. If
one selects wy=Fk, 4= o e1=A""Tk, one
again obtains the same estimates Zo, 21, . . . 88 in
the cg-method with 2,—=0. However in this event
the vectors g, #, . . . are multiplied by nonzero
sealar factors. Obn the other hand if ope selects
U= (10 O)s ""-f'l—(O1 0)! R 1&“_1—(0
. .,0,1) the cd-method is equivalent to the Gauss
elimmation method. This case will be discussed in
the next section.

12. Connections With the Gauss Elimina-
tion Method 1

In the present section it will be convebnient to
use the range 1, , # in place of 0, 1, , n—1
used hereto ora, except. for the notations a:.,, a:l, C
z, describing the successive estimates of the solution.

(11:8a) hold when k=j+1 by virtue of
That they hold for other
Equation

Let ¢, . . ., ¢, be the unit vectors (1,0, L0,
©,1,0,. . .0}, .. . (0, . .01} These vectors
will play the Tole of the vectors Uy, « « oy Uy—y Of

section 11. The eq (11 7), together with (11:4) and
(11:5), yield the recursion formulas

wfV =g, G=1,. . .,n) (12:1a)

P=u (12:1b)

I =yP —a,p, (E=5+1,. . .2} (12:1¢)
(Au? e

=t 12:1d

W= A pye) (12:1d)

2=0,  Ty=%1+CP: (12:1e)

(ps,k)
12;
~Wpoed az1p

These formulas generate mutually conjugate vectors
Pr, - . ., Ps add corresponding estimates @, . . ., ¥,
of the solution of Ax=Fk. In particular z, is the
desired solution. The advantage of this method
lies in the ease with which the inper products appear-

[ % ef. Fox, Huskey, and Wilkinson, loe, cit.

ing in (12:1d) and (12:1f) can be computed. A
systematic scheme for carrying out the computations
will now be given. The scheme is that commonly
used in elimination. In the presentation that we
now give, extraneous entries will be kept so as to
give the reader a clear picture of the results obtained.

We begin by writing the matrices A, I and the
vector k as a single matrix
ay QG O 4, 1 0 0 0 k&
dy1 gy Om .y 010 0 k
g1 @z Ogs ., 0 0 1 0
. (12:2)
0
arnl Gng Gna PR am. 0 P 0 1 kﬂ'
The vector p, is the vector (1,0,...,0), and a,=

krjay, is defined by (12:1f). Hence,

)

Observe also that

k
£1=61}‘J1=(EI—11: 0,...
is our first estimate.

o _ G
n=_—
an

Multiplying the first row by @ and subtracting the
result from the ith row (1=2, . ,n}, we obtain the

new matrix

i1 Gz O3 G P Pin ky

0 aff af asy P2 P2a kR

0 aff aff i ug U3y kg

0 alt ol at Ut 254 k2
(12:3)

One should observe that (0,£%,. . .,k%) is the residual
of . By the tfrocedu.m ]ust "deseribed the ith row
{(i>>1) of the identity matrix has been replaced by
%2, the second row yielding the vector p,=u%. Ob-
serve also that

af =(AuP,e) (1=2,...,n)

ol =(Apyed, kG =(p2k).

Hence,
[+1]

2
Ta=2+ @ P
137

is the next estimate of the solution, Moreover,

X = —=y (’5=3, o -,ﬂv)-
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Next multiply the 2nd row of (12:3) by e and sub-
tract the result from the ith row (i=3,...n). We ob-
tain

G @iz Q3 1a Pun .- Pm ky
0 af af e}  pa Pon kS
0 0 Qs as Pa Psn kY
0 0 a? al® uy u® F 2y
0 0 a¥ ... 4B  w® ... owd kY.

The vector (0,0,k%,. .. Ek®) is the residual of z,.
The elements «5,. . .,u® form the vector u¥ (1=3)

and p;—=u'®. We have
af=(AuP, e (1=3,...m)
a,gg’=(Ap3, 83)! km:(}”a: k)

We have accordingly

kés}
xs:xz'i_ﬁ Pay
34

and

3
LLTES .
C!,‘_S:—"_ (324, -

Proceeding in this manner, we finally obtain a matrix
of the form

ty iz i3 @1 i Pin ks

0 af aff ady P " Pan k®

0 0 af ... a® pu ... P k®
. . . [:f . .

0 0 0 a,(":‘) Pm1 Pa=n k,s",

(12:4)

The elements py, + + -, Pin define a vector p;. The
vectors i, - - -, P, are the mutually comjugate
vectors defined by the iteration (12:1). At each

stage
3

@ j_a’ii
ol
&5

(i':j_}'ls ce M)

a‘i‘i)z(ph Apf): kl‘m‘:(pf} k):(p!: ?.f)'

Moreover the estimate ¢ of the solution h 1s given
by the formula

®
i
xi=x1—1+ @) P
g

The vector 0, - + +, 0, &, . - ., af) defined by the
first » elements in the ith row of (12:4) is the vector
Ap;. If we denote by P the matrix whose column

vectors are py, Py, - -

-, Pa, then the matrix (12:4)
is the matrix :
|P*A P*

Pg||.

The matrices P*A and P are triangular mairices
with zeros below the diagonal. The matrix D=P*AP
is the diagonal matrix whose diagonal elements are
an, 457, . . ., e, The determinant of Pisunityand
the determinant of A is the product

2
anasy ... .

As was seen in section 4, if we let

f@)=(h—2,d(h—1)),
the sequence

f(l-'o) af(zl); L] ';f(xn—l) !f(xu) =}

decreases monotonically. No general statement
can be made for the sequence

]yolilyllr <. -:I%-:I,Iy,.]=0

of lengths of the error vectors y,=h—zx,. In fact,
we shall show that this sequence can increase mono-
tonically, excopt for the last step. A situation of
this type cannot arise when the cg-process is used.

If is nonsymmetric, the interpretation given
above must be modified somewhat. An analysis of
the method will show that one finds imp]icit.f;' two
triangular matrices P and @ such that Q*AP is a
diagonal matrix. To carry out this process, it may
be necessary to interchange rows of A. By virtue
of the remarks in section 10, the matrix Q* 1s of the
form B*P. 'The general procedure is therefore equiv-
alent to application of the above process to the sys-
tem (10:3).

13. An Example

In the cg-method the estimates xq,2y, . . . of the solu-
tion & of Ax=k have the property that the error
vectors yo—=h—2, h—=h—z;, . . . are decreased in
length at each step. This property is not enjoyed
by every cd-method. In this section we construct
an example such that, for the estimates 2,=0,2,, . . .,
of the elimination method,

[h—31_1[<]h_“3:¢| (1:11, . -,ﬂ—l).

If the order of climination is changed, this property
may not be preserved.

The exampls we shall give is geometrical instead
of numerical. Start with an (n—1)-dimensional
ellipsoid E, with center z,=h and with axes of un-
equal length. Draw a chord (', through 2,, which
is not orthogonal to an axis of £, Select a point
T._17%%, on this chord inside E,, and pass a hyper-
plane P, , through z.., conjugate to (', that is,
parallel to the plane determined by the midpoints
of the chords of E, parallel to (,. Let ¢, be a unit
vector normal to P,_;. It is clear that e, is not
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arallel to (',. The plane P,_, ean be shown to cut

» Il an (n—2)-dimensional ellipsoid E,_, with cen-
ter at z,_, and with axes of unequal length.

Next draw a chord C,_; of E,_, throughz,_, which
is not orthogonal to an axis of £,_;, and which is not
perpendicular to A—z, ;. One can then select a
point z,_, on ,,_; which is nearer to Athanz,_;. Let
P,_, be the hyperplane through z,_, conjugate to
C,_i. It intersectzs K, ; in an (n—3)-dimensional
ellipsoid E,_, with center at z,_,. The axes of E,_,
can be shown to be of unequal lengths. ILet e,.; be
& unit vector in P,_, perpendicular to P,_,.

We now repeat the construction made in the last
paragraph. Select a chord ,_; of E, , through
z,_; that is not orthogonal to an axis of K, , and that
is not perpendicular to A—x,_,. Select z,_; on (2
nearer to A than 2,_;, and let P,_; be a plane through
2, 3 conjugate to O, 5, It cuts E, 5 n an {(n—4)-
dimensional ellipsoid E, ; with center at z,_; with
axes of unequal lengths. Let ¢,-; be & unit vector in
P, and P,_; perpendicular to P,.;. Clearly, ¢,
€1, €n_z ATC mutuﬁly perpendicular,

Proceeding in this manner, we can construct

(1) Chords C,, Cry, . . ., Gy, which are mutually
conjugate.

(2) Planes P,_,, . . ., P, such that P; is conjugate
to (/g+1. The ChOl'dS 01, ey Ok ].ie in Pk.

(3) The intersection of the planes P, |, . . ., Py,
which cuts F, in a {(k—1)-dimensional ellipsoid E,
with center z;.

(4) The point z,, which is closer to & than z:,,
i<n--1.

{5) The unit vectors e,, . . ., &, &, (with ¢, in the
direction of (), which are mutually orthogonal.

Let # be an arbitrary point on (7 that is nearer to
h than x;. Select a coordinate system with x, as the
origin and with ¢, . . ., e, as the axes. In this co-
ordinate system the elimination method described
in the last section will yield as successive estimates
the points ay, . . ., z, described above. These esti-
mates have the property that 2; is closer to x,=h
than x.; if i<n—1.

As a consequence of the construction just made we
see that, given a set of mutually conjugate vectors
1, - - ., Py and a starting point x,, one can always
choose a coordinate system such that the elimination
method will generate the vectors p,, . . ., p, (apart
from scalar factors) and will generate the same esti-
matesx, . . .z, of k as the ed-method determined by
these data. One needs only to select the origin at
%y, the vector e, parallel to p,, the vector e¢; in the
plane of p; and p, and perpendicular to ¢;, the vector
¢ In the plane of p,, p;, ps and perpendicular to ¢
and e;, and so on. This result may have no practi-
cale value, but it does serve to clarify the relation-
ship hetween the climination method and the cd-
method, and also the relationship between the
elimination method and the cg-method.

14. A Duality Between Orthogonal Poly-
nomials and n-Dimensional Geometry

The method of conjugate gradients is related to
the theory of orthogonal polynomials and to con-

tinued fraction expansions. To develop this, we
first study connections between orthogonal poly-
nomials and n-dimensional geometry.

Let m(») be a nonnegative and nondecreasin,
function on the interval 0<A<I. The (Riemann
Stieltjes integral

{7 rovamay

then exists for any continuous funection f{A) on

0<a<l. We call m(dA) a mass distribufion on the
positive A-axis, The following two cases must be
distinguished.

(2} The function m(r) has infinitely many points
of inerease on 0< A<],

) There are only a finite number # of peints of
increase. In both cases we may construet by
orthogonalization of the successive powers 1, X, A2,
« « -y, A* a set of n+1 orthogonal polynomials *

RU(X)!Rl(h)s "t ';Rﬂ(h) (14:1)

with respeet to the mass distribution. One has

L ROVBMNIMON=0  (4k  (14:2)

The polynomial R;(\) is of degree i. In case (b),
E.(\) is & polynomial of degree n having its zeros at
the = points of inerease of m(x). In both cases the
zeros of each of the polynomials (14:1} are real and

distinet and located inside the interval (0,). Hence
we may normalize the polynomials so that
B {0)=1 (=1, « + -, m). (14:3)

The polynomials (14:1) are then uniquely determined
by the mass distribution.

During the following investigations we use the
Gauss mechanical rature as g basic tool. Tt ean
be described as follows: If A, - - -, denote the
zeros of R,(3), there exist positive weight coeflicients
My, Mg, - + -,M, such that,

ﬁ ROVEMO) = 1, RO )4 maBOD -+ + .+ 1R
(14:4)

whenever R{\) Is a pelynomial of degree at most
2n—1. In the special case b) the A, are the absciszas
where m(A} jumps and the m; the corresponding
ump.

. Inporder to establish the duality mentioned in the
title of this section, we construet a positive definite
matrix A having N, Ny, - - -, A, 85 eigenvalues {(for
instanece, the diagonal matrix having A, - + -, A, in
the main diagonal and zeros elsewhere). Further-
more, if 6, ¢, + - -, ¢, are the normalized eigen-
vectors of A, we introduce the vector

ro=é -t agat - - agg,, (14:5)

12 The varvious properties of orthogonal polynomials used in this chapter may be
found in G. Szegd, Orthogonal Polynomiacly, American Mathematical Soclety
Colloguinm Poblleations 2% {1939).
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where :
C!?:m¢ (%=1) 'Jﬂ) (14:6)
We then have
Afrg=adfe+aphte+ - - - Faghte,  (14:7)

for k=0,1, -, n—1. The vectors rydr,, - -
A"y, are hnearly independent and will be used as 8
coordinate system. Indeed their determinant is up
to the factor eyer, - + + a, Van der Monde’s determi-
nantof &, - + -, A,. By the correspondence
hk_>Ak?"a (k=0,1, . ',’n—l) (14:8)

every polynomial of maximal degree n—1 is mapped
onto a vector of the n-dimensional space and a one-
one correspondence between these polynomials and
vectors is established. The correspondence has the
following properties:

Theorem 14:1. ILet the space of polynomials E(N)
of degree <n—1 be metrized by the norm

BI=] [[ROydm m]%.

Then the correspondence deseribed above is isometrie,
that is,

ﬁ%mﬂmmmhmm

where R()\), R'(N) are the polynomials corresponding
to r and r'.

It is sufficient to prove this for the powers 1, A,
A% L L., WL Let M, ¥ be two of these powers.
From Gauss’ formula (14:4) follows

I 4
ﬁ MAtdm ()\)=J; NHrdm ()
=M MmN L L b ma A

Bui (14:5), (14:6), and (14:7) show that this is
exactly the sealar product (A%, A*y) of the cor-
responding vectors.

Theorem 14:2. Let the space of polynomials B(\)
of degree <n—1 be metrized by the norm

[ ﬁ ‘B Oy*hdm o\)]%.

Then for polynomials R(M\},E'(A) corresponding to
rr’ one has

ﬁ ROVR ONdm () —(dr,),  (14:9)

that is, the correspondence is isometric with respect to
the weight function Mm{)) and the metric, determined
by the mairiz A.

Again we may restrict ourselves to the powers

1, N ..., A", That is, we must show that
H
f M (N =(ATHrg, AP (G E<n—1),
0
(14:10)

H j<{n—1, this has already been verified. The

remaining case
H
J; NNdm ()= (A, APy (E<n—1) (14:11)

follows in the same manner from Gauss’ integration
formula, since n+k<2n-1.

Theorem 14:3. Let A be a positive definite sym-
metric matriz with distinet eigenvalues and let ry be @
vector that is not perpendicular to an eigenvector of A,
There 1s a mass distribution m(\} related to A as
described above.

In order to prove this result let ¢, . . ., e, be
the normalized eigenvectors of A and let Ay - v ooy
A, be the corresponding (positive) eigenvalues. The
vector 7y is expressible in the form (14:5). According
to our assumption no oy vanishes, The desired mass
distribution can be constructed as a step function
that is constant on each of the intervals 0</h\ <A<
.+« <A<l, and having a jump at A; of the amount
;nhk:a§>0, the number ! being any number greater

an

We want to emphasize the following property of
our correspondence. If A and r, are given, we are
able to establish the corredence without computing
eigenvalues of A. This follows immediately from the
basic relation (14:8). Moreover, we are able to com-
pute integrals of the type

fo ROVR ) Adm V),

i
[l RN dm,
0
(14:12)
where R, R’ are polynomials of maximal degree
n—1 without constructing the mass distribution.
Indeed, the integrals are equal to the corresponding
scalar products (r,#"), (Ar,7’) of the corres% onding
vectors, by virtue of theorems 14:1 and 14:2. Finally,
the same 18 true for the construction of the orthog-
onal polynomials Ry(7), B,(d), . . ., B,(2) because
the construction only involves the computation of
integrals of the type (14:12). The corresponding
vectors 7, 1, - . ., Ty build an orthegonal basis in
the Euclidian n-space.

15. An Algorithm for Orthogonalization

In order to obtain the orthogonalization of poly-
nomials, the following method can be used. For
any three consecutive crthogonal polynomials the
recurrence relation holds:

R=+1(R) =(di—

aM (N —edt (V) =1, ¢y=0,

(15:1)
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where @, ¢,, d; are real numbers and a,70. Taking
into account the normalization (14:3), we have

1=d,—es (15:2)

Hence
Bia(W=00+e;—aM)Ri(N)—c By (M),

This relation can be written

RH-I_Ri___ S Rt—Ri—l_
a;l o Ri.l_a-( A

From this equation it is seen by induction that
Ri—!—l _‘Ri

ﬂ.re polynomials of degree <. Introducing the num-
ers
b, =201 —0 (15:4)
a;
we have _
PN =RN)+betP (V) (15:5a)
Rﬁl()\):R;()\)—-a;lPi()\). (15:5b)

Beginning with Ry=1, we are able to compute by
{15:5) successively the polynomials Py=R,=1, K,
P, By, Py, . . ., provided that we know the numbers
@i, b,. In order to computc them, observe first the
relation

ﬁzPﬁ()\)Pk(X))\dm(k)=0 GE).  (15:6)

Indeed this integral is up to a constant factor
i
L (Rua—B)Pdm(n).
For k<4 this is zero, because the second factor is of

degree k<4,
Using (15:5a) and (15:6), we obtain

J:R,,()\)Pf()»))\dm()\)=fzP,()\)g)\dm()\).
0

Combining this result with the orthogonality of
R and By, we see, by (15:5b), that

[ Riowamoy
L ' POV

@y== (15:7)

Using {15:6) and (15:5a),

o= ["roP d b :
'_J; NP (MAdm(N) +- :—1J; P00 dm().

Applying (15:3) to the first term yields
! 1 '
L f Rf(x)ﬂdm(x)=b‘_1f Pe NIV,
@i-1 o ]
Combining this result with (15:7}, we obtain
1
[ Rovimey
- 0
-1 H
| Busyamy
1]

The formulas (15:5), (15:7), (15:8), together with
Ry=1, b_1=0, completely determine the polynomials

RO) Rl) L] bﬂ-—l-
16. A New Approach to the cg-Metheod,

Eigenvalues

b (15:8)

In order to solve the system Ax=1F, we compute the
residual vector ro=%— Az, of an initial estimate 2y of
the solution b and establish the correspondence based
on A4, r; deseribed in Theorem 14:3. Without com-
puting the mass distribution, the orthogonalization
process of the last section may he carried out by
(15:56), (15:7} and (15:8) with Ry=1, 4_,=0. The
vectors r;, p; corresponding to the polynominals
R, P, are therefore determined by the recurrence
relations

Pi=Ti+bi1Pia, (16:1)

Multiplication by X in the domain of polynominals
is mapped by our correspondence into applying A
in the vector space according to (14:11), In fact,

pe=PA}ro, r,=RBi(A)rq (¢=0,1,. . ,n—1).
The numbers a,, b, are computed by (15:7) and (15:8),

Using the isometric properties described in theorems
14:1 and 14:2, we find that '

f‘g+1=?";-—aiAp i

|7:f?

[raf? — )
biwl_ lﬁ—r[z

a‘=(APs;P£)’

The vectors r; are orthogonal, and the p, are con-
jugate; the latter result follows from (15:6). Hence
the basic formulas and properties of the eg-method
listed in sections 3 and 5 are established. It remains
to prove that the method gives the exact solution
after n steps. If we set x,,—x+a:p, the corre-
sponding residual is »,,; as follows by induction:

k—Azy,= (I‘C—A:t;) "G:AP¢=?'¢—G,Api= Pirr

For the last residual r, we have (1=0,1,. .. ., n—1)}
(Tmrf) = (rn—iri) _a'n—l(Apu—l’ri)

=fR _IR,dm—a,_lan_lR;xdm

=fRnR¢dm= 0.
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Our basic method recstablishes also the methods
of C. Lanczos for computing the characteristic poly-
nomial of a given matrix A. Indeed the polynomialg
R, computed by the recurrence relation (15:5), lead
finally to the polynomial R, (), which, by the basic
definition of the correspondence in section 14, is the
characteristic pclynomial of A, provided that 7, satis-
fies the conditions given in theorcm 14:3. It may
be remembered that orthogonal polynomials build a
Sturmian scquence. Therefore, the polynomials
R, B, ... R, buld a Sturmian sequence for the
eigenvalues of the gwen matriz A.

Our correspondence allows us to translate eve
method or result in the vector-space into an anal-
ogous method or result for polynomials and vice
versa, Let us take as an example the smoothing
process in section 7. TIi is easy to show that the
vector 7, introduced in that section corresponds to a
polynomiel R.(A) characterized by the following
_property: R.(M) is the polynomial of degree ¢ with
B,(0)=1 having the least-square integral on (0,I)-
In other words, if r; is given by (14:5), then

R (M)t ol By (M) + A of B.(\,)*=mipnimum.
This result may be used to estimate a single eigen-
value of A. In order to compute, for instance, the
lowest eigenvalue N, we select ry near to the corres-
ponding eigenvector. The first term in the expan-
sion being dominant, the smallest root of B,(3) will
be a good approximation of X, provided that 7 is not
too small. Henee the last residual vapishes, being
orthogonal t0 7o, 7y, . . ., Ty—r. 1t follows that 2, is
the desired solution.

17. Example, Legendre Polynomials

Any known set of orthogonal polynomials yields
an example of a cg-algorithm. Take, for instance,
the Legendre polynomials.  Adapted to the interval
(0,1), they satisfy the recurrence relation

This gives the following result, let A be a symmetrie
matrix having the roots of the Legendre polynomial
R,(}\) as eigenvalues, and let

o= et . . e,
where ¢, . . ., ¢, are the norm&hzed elgenvectors of
A, and ml—aﬁ, my=aj, ., My=a are the
Welght—coeﬂiclents for the Giauss’ mechanical quad-
rature with respect to .. The cg-algorithm applied
to Ag, yields the numbers @y by given by (17:1).
Moreover,

(o) =bisbes - - . blrom)—gpiy(rer)  (<n).

Hence the residuals decrease during the alogrithm.
It may be worth noting that the Rayleigh quotient
of r,is

Lber_ 1

e, 2

|”'i|2 G

All residual vectors have the same Rayleigh quotient.
This shows that, unlike many other relaxation
methods, the cg-process does not necessarily have
the tendency of smoothing residuals.

The Chebyshev polynomials yield an example
where a.. b, are constant for ¢ >0.

18. Continued Fractions

Suppose that we have given a mass disiribution of
type (b) as described in section 14. The function
m{A} is a step function with jumps at 0<A<h<. ..
<Au<l, the values of the jumps being m,, m,, . . .,
1y, respectively. It is well known !t that the orthog-
onal polynominals Eo(N), B,(3), . . ., B.(A\), corre-
sponding to this mass distribution, can be constructed
by expanding the rational function

Nia

2:4-1
Rf+1()\)—' %+ (1—20E () — +1 BN, R{0)=1. FO\)=LT;1 * +?\-—-R {18:1)
From (15:1) and (15:4) in & continued fraction. The polynominal R,(}) is
. . the denominator of the ith convergent. For our
a _4i42, ot b _2@“"1 (17:1) | purposes it is convenient to write the continued
R | i1 L Y | ; fraction in the form
FO)= =1
do— Ggh— 2 .
_ 2 -

dl alk dg'—ﬁ-gk—‘

(18:2)
. Cp-1
dw—l'—\'-'\""‘u—lx

W H., 8. Wall, Analytic Theory of Continued fractions, Ven Neorstrand (1848),
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The denominators of the econvergents are given by
the recursion formulas
Rig=(di—aRi—eBi_y, Ry=1, c,=0. (18:3)
This coincides with (15:1). However, in order to
satisfy (14:3), the expansion must be earried out
so that d,=¢,;+1, by virtue of (15:2). The numbers
b, are then given by {15:4). It is clear that

e =

where

QM= Xn‘, m LA —N).
=y R ¥

Let us translate these results into the n-dimensional
space given by our correspondence. As before, we
construct a positive definite symmetric matrix A
with eigenvalues N, . . ., A\, Let ¢, . . ., ¢, be
corresponding eigenvectors of unit length and choose,
as before,

To—=ali+ . . . T @nlu of=m,
The eigenvalues are the reciprocals of the squares of
the semiaxis of the (mn—1)-dimensional ellipsoid
(¢, Az)=1. The hyperplane, (rp,z)=0, cuts this
ellipsoid in an (n— 2)-dimensional eliipsoid, E,_,, the
?uares of whose semiaxis are given by the reciprocals
the zeros of the numerator &), ;(}) of F(¥).

This follows from the fact that if A, is a number
such that there is a vector z;=0 orthogonal to r4
having the properiy that (Ax,,x)=N(zs,z) whenever
(ro,x}=0, then X, is the square of the reciprocal of
the semlaxm of £, , whose direction is given by .
H the coordinate system is chosen so that the axes
are given by ¢, . . ., e, respectively, then da=Xxy
satisfies the equation

M—A 0 0 ... 0 &
0 A=2 0 ... 0
0 0
QuaM=| : '_ =0
0 0 Ao—X oy
€y I e oy 0

as was to be proved.

Let us call the zeros of @, (}\) the eigenvalues of A
with respect to r, and the polynomial @, ;(3) the
characteristic polynomial of A with respect to ro. The
rational function F(}) is accordingly the quotient of
this polynomial and the characteristic polynomial of
A, Hence we have,

Theorem 18:1. The numbers a,, b; connected with
the cg-process of ¢ matrmz A and a vector x, can be com-

puted by expanding into ¢ condinued fraction the quo-
trent buill by the characteristic polynomial of A with
r;sgect to ry and the ordinary characteristic polynomial
of A.
This is the simplest form of the relation between a
matrix A, a vector r, and the numbers a,, b; of the
corresponding cg-process, The theorem may be used
to investigate tha behavior of the a,, b, if the eigen-
values of A and those with respeet to r, are given,
The following special case is worth recording. If
Wy=MmMy= . . . =Mm,=1, the rational function is the
logarithmic derivative of the characteristic poly-
nomial, From theorem (18:1) follows

Theorem 18:2. If the vector vy of @ cg-process is the
sum of the normalized eigenvectors of A, the numbers
&y by may be computed by expanding the logarithmic
derivative of the characteristic polynomial of A into a
continued fraction.

Finally, we are able to prove

Theorem 18:3.  There is no restriction whatever on
the posttive constants @, b, in the cg-process, thaot 1s,
given fwo sequences of positive numbers aq, @, . . .,
Gp_y and by, by, . . ., ba_y, there i3 @ symmelrie positive
definite matriz A and o vector v, such that the cg-
algorithm applied to A, ry yield the given numbers.

The demonstration goes along the following lines:
From (15:2) and (15:4), we compute the numbers ¢,,
d,, the ¢; being again positive. Then we use the con-
tinued fraction (18:2) to compute F()\) which we
decompose into partial fractions to obtain (I18:1),
We show next that the numbers A, m, appearing in
(18:1) are positive, After this has been established,
our correspondence finishes the proof.

In order to prove that A, >0, m>>0 we observe that
the ratio R.;/R;1s a decreasing function of ), a8 can
be scen frem (18:3) by induction. Using this result,
it is not too difficult to show that the polynomials
R0y, By(N), . . ., Ba(M) build a Sturmian sequence
in the following sense. The number of zeros of B.(\)
in eny interval ¢ <A< b is equal to the increase of the
numbper of variations in sign in going from ¢ to &.
At the point o there are no variations in sign since

R, (0)=1 for every 2. At A= o, there are exactly n
variations because the coeflicient of the highest power
of xin R.(\) 18 {(—1)ag; . . . @;_y. 'Therefore, the
roots hy, Ay, . . ., Ay of B,() are real and positive.

That the function F(d) is itself a decreasing func-
tion of A follows directly from (18:2). Therefore, its
residues m,;, ma, . . ., M, arc positive.

In view of theorem 18:3 the numbers ¢, in a
process can inerease as fast as desired. This result
was used in section 8.2. Furthermore, the formuls

_[?’i+1]2
b=

shows that there is no restriction at all on the be-
havior of the length of the residual vector during the
eg-process, Henee, there are certainly examples
where the residual vectors inerease in length during
the computation, as was stated earlier. This holds
in spite of the fact that the error vector h—z decreases
in length at each step.
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19. Numerical Illustrations

A number of numerical experiments have been
made with the processes described in the preceding
sections. A preliminary report on these experiments
will be given in this section. In carrying out these
experiments, no attempt was made to select those
which favored the method., Normally, we selected
those which might lead to difficulties.

In carrying out these experiments three sets of
formulas for ¢, b; were used in the symmetric case,
namely,

_(}&_?"t) _ (?":+1,AP¢) .
(‘PnAPf) bi=— (Pn s) 4%
|7 |#¢31] .
“@udp) Il (19:2)
7o ]?'H-l] 1 (pt—nAPt),
= s, Apod! be= [ By di=1—b-y (pe,Apy)
- {19:3)

In the nonsymmetric case, we have used only the
formulas

|4t

s ]A ?“i+1|
~ [Ap[?

b= fA* ]2

(19:4)

Qur experience thus far indicates that the best
results are obtained by the use of (19:1). Formulas
(19:2) were about as good as (19:1) except for very
ill conditioned matrices. Most of our experiments
were carried out with the use of (19:2) because they
are somewhat simpler than (19:1). Formulas (19:3}
were designed to improve the relations

(P, Api1) =0,

which they did. Unfortunately, they disturbed the
first of the relations

(7)) =0, (19:5)

(_p(;ApH-l):O- (19:6)
A reflection of the geometrical interpretation of the
method will convince one that one should strive to
satisfy the relations {19:6) rather than {19:5). It is
for this reason that (19:1) appears to be considerably
superior to (19:3). In place of (19:2), one can use
the formulas

(P:J'Hl) =0,

!Ttiz _1?':+l]2—(?‘¢+1:?‘t) Y
“wodpy T mwE 19

te correct rounding off errors. A preliminary
experiment indicates that this choice is better than
(19:2) and is perhaps as good as (19:1).
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A sufficient number of experiments have not been
carried out as yet so as to determine the ‘“‘best”
formulas to be used. OQur experiments do indicate
that floating operations should be used whenever
possible. We have also observed that the results
in the (n4-1)st and (n+42)nd iterations are normally
far superior to those obtained in the nth iteration.

Ezample 1. This example was selected to illus-
trate the method of conjugate gradients in case
there are no rounding off errors. The matrix A
was chosen to be the matrix

1 2 —1 1

2 5 0 2(

A= |
—1 0 6 0|.

1 2 0 3

If we select £ to be the vector (0,2, —1,1), the
computation iz simple. The results at each step
are given in table 1.

Normally, the computation is not as simple as in-
dicated in the preceding case. For example, if one
selects the solution A to be the vector (1,1,1,1), then
k is the vector (3,9,5,6). The results with (0 0,0,0)
as the initial estimate is given by table 2.

TasLE 1,
Companents ol the vector
Btep | Vector & b
3 F 3 l 4
L) 1 a 1] [ a
T -1 o i 1]
1]
o -1 0 o 0
Aps -1 —2 1 —1 1
n 0 ] 0 1]
1y 1] 2 -1 1 G
1
™ -G 2 -1 1
i Ap 0 0 0 1 8
5] —36 +12 -6 J 6
i ¢ 2 -1 -5 5
2
i} —30 12 -ib 1]
Apg Q O -6 -G 56
Iz —61 22 —11 1]
A s 0 E: 4 0 23
] —20 w ] a
Aps 0 10 20 0 1/5
T
4 T4 —85 24 -1t 1]




TABLE 2. The system just described is }iar.ticulal:ly well
— suited for elimination. In case % is the vector
. « times components of vector {3,9,5,6) thp procedure deseribed in section 12 yields
{ Step | Vector o the results given in table 3. In this table, we start
; 1 2 37 1 with the matrices A and I. These matrices are
transformed into the matrices P*A and P* given at
% 0 0 0 0 1 the bottom of the table.
70 8 9 5 6 1 - It is of interest to compare the error vectors
0 - 3 9 5 8 1 ys=h—z; obtained by the two methods just des_cribed
A » o a7 50 X with £=(3, 9, 5, 8). The error [y is given in the
following table,
P 453 1350 755 w6 | B
. 1 ~316 —485 03 123 A | cg-methed | Elimination method
m -—1935 — 2790 461 1140 i
Ap | 12854 —15585 10701 —4113 Bim [#al 2.0 2. 00
. las:l 0.7 2. 65
z | 131702 410558 208277 ey | g
) r 1689 —34380 | —2736 73483 8 |zl .87 4. 69
P | 116022 | —1684085 | —381080 | 3060641 | Fime [ .65 6. 48
Aps | —6647L | —3679187 | —2140488 5685731 Brve Yara .0 0. 00
-] 27689274 84528651 FA3448R4 T3103513 &
\ v | sizsg | —1smss soss0 | —seota | gy In the c%—rrg}ethqd ly7.] decreases monotonically, while
oo | a7z | —1smzss | ovesasz | —srseser | s ttﬁetﬁes testepmatmn method [y increases except for
Aps | MBAR | —I8818S 82650 | —6R019 | favs Ezample 2. In this case the matrix A was chosen
to be the matrix
o 1 1 1 1 1
4 .263870  TOI4TO0  .016836  .070773 —.020062  .D1l463
r 0 0 0 0 1 A
—. 04700 249370  .07B4 057757 —.O0B0B48 —. 134493
Bi=1002, $1=320123, f;=60314516, L016836 029764 263734 —.033628 —.012128 . 082082
N=Aif151, ya=Pu/B149, ya=Fy800615 079773 057757 —, 033628  .215%31 000606 —.087489
2=1y1, G=vfvy Ge=vivs, H=m2 —. 020052 —. 0506048 —.012128 090608  .324486 —, (22484
Bu=8145%8%, b =80D61581v//63, b3—3806888r /8] L011463 — 134403 .084932 — 037480 —. 022484 339271
TanLe 3. This matrix 18 a well-conditioned matrix, its eigen-
values lying on the range A =.6035 <X <X=4.7357.
Elom o Im The computations were carried out on an IBM
card programmed calculator with abhout seven sig-
12-11| 1 0 00| 3| 80 nificant figures. The results for the case in whic
25 02| 06 1 00| 9! oz g 18 i&hetogligiil and & the vector (1,1,1,1,1,1) are
_ given in table 4. ) )
et DO B B Erample 3. A good illustration of the effects of
t2 08, 0 0 01p6) 03 rounding can be obtained by study of an ill-con-
— — ditioned system of three equations with three un-
12-11) 10 00} 3 ) =310 knowns, namely, the system
o1 20]—2 1 00| 3 3|0
02 51] 1 0 10| 8 0| 2 6z 13y—17z2=1
00 12(—-1 0 01 i 0 3 133+29y_'382:2
t2-11) 1 0 ool 3 7 | 0 —172z—38y+502=—3,
01 20y{-2 1 00| 3| -1 |0 .
00 11! s5-3 10| 2 alo whose solution is x=1, y=—3, z=—2. The system
was constructed by E. Stiefel. The eigenvalues of
00 12f=1 0 01) 3} 01 A are given by the set
12SLA) L0 00y 81D M=.0588,  2\=.2007, A\=84.7405.
01 20|~z 1 00| 3 1|0
00 11] 6-2 10| 21 110 The ratio of the largest to the smallest eigenvalue
90 01|-6 2-11] 1 1|0 is very large: N/M=1441. The formulas (19:1},
(19:2), and (19:3) were used to compute the solution,
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TasLE 4. TABLE 5
Starting veetor ke=(3.371, 1.2086, 3.4851, 3.7244, 3.0387, 2.412) To={1,0, 0}
Ste 5 Case 1 2 3 1 with 10 digits
D Eal i Bi &4 i -| Formula (19;2) | Formala (19:3) | Formuls (19:1)
0 337100 3.37100 5 5 5 5
0 1. 26060 1. 26860 ay—3, 092987 m 1 1 1t 1n
. 0 3.48510 3. 48510 ™ —H - - —l4
0 2. 73440 372440 bo=0. 02360156 £ 011504 . 011804 - 011804 01180409347
0 3. 03870 3. 03870 84008 . 94008 . 94098 . 409705326
0 2 41900 2 4190 7 —. 12084 —. 12084 — 12084 —, 1208450283
.16526 .18528 . 16526 . 1852573086
1042444 —0.3176047 | --0.0238045¢ . 14856 . 1485 . 14858 . 148517R838
. 4018886 1.001922 . 1042504 a1=3, 487517 n - 18754 - 18754 - 18754 - 1874503815
. 20021 . 20021 . 20021 2003244444
1077728 . 2194351 . 03014873
3 {3
1151728 02054774 006835219 | by=0, 1411714 n - 097325 - 067325 097323 - 00732500125
. 5390836 —. 3100108 . OME1ML bo . (K254 58 . 028458 . 00027630 . GO02845760270
. 7458837 . 03018107 , 008708602 .14608 .14588 L 14004 . 1499404530
550475 | —0. 009951160 | —0.1331168 m . 19067 . 19067 . 10058 . 1005807178
- 7854031 - DC4267497 - 1508504 1=, 445507 .19623 19623 . 19634 . 1963403800
s | | S| R ) =
T 8631285 L01514192 1162813 ” o ¥ 0058 70383 7005 - o067
- 762564 - 03244476 -337617 —. 10975 —. 11477 —. 10M8 —. 1006143528
.sa&sﬁ 'iéi%&'é .Onfl'ggggg? . 5;0 12 F —1. 45564 —1_ 47202 —1. 46602 —1. 4851846170
. 88563 . . WB=t
3 11001024 | —.1843RE5 —. C21B5659 —1. 20940 —1. 21608 —1.21028 —1. 2104487373
11265089 | —. 0081802 —.004282730 |  bu—0, 3760145
- 8165367 | 0633472 -01088733 —. 16045 —. 15188 — 12047 —. 1275876043
- SoBT42T — 0807231 - 004300484 S N . 030400 . 029648 L 081611 . 0814215363
930153 08509514 , 1215308 085455 084906 018197 . 0154025802
B | e | me | e = |
-1 . - K .
4 | =1 1062 —. 12107054 — 1371484 r -0 081138 671838
- yose e (Dpotessar | bu=0.25H840 & 31710 31860 . 23870 . 2388565047
. JUR5ED =, Q02365634 . 007231114 —. 10289 —. 10387 —. (91679 —. (917733357
. 953835 - D00B18167 02354482 ay=4. 742589
Fostid Doomaey - 0a5g2 P2 . 090881 . 090655 ,12710 . 1260420951
5 1.032032 (003267702 | —. 08753326 . 14768 . 14772 . 065039 . DBG2DOTTAS
i . ODGONER34 . 06183634 bp=0
1008814 (003135791 | —. 01818237 a1 047688 047713 12039 12. 09060098
Soeaas | looooa — 10434 —. 05079 .op42¢ . SUD038E303
6 1.000013 —, 00002271 7z | —i46897 —1.34651 —2. 99518 —3, 000023179
1O g%‘fgﬁg —1.21653 —1. 38837 ~1,98328 —1. 999968135
. 93900 . 00000825
1 2 —. 057618 —. 058572 —~. 086092 —. 0009108398
n . 23615 . 29643 —. 10038 —. 0020300857
—. 18543 —.18733 . 25063 . 0026063150
keeping five significant figures at all times. For ” ool o oot ee—
comparison, the computation was carried out also
with 10 digits, using (19:2). The results are given b 3.0287 8. 0308 1.8504 - 000518791676
in table 5. In the third iteration, formuls (19:1) _ o0 — a3 — 50802 . D00SEEE0L0
ave the better result. Ipn the fourth iteration, - 51184 51126 . 38181 —. (019642287
ormulas (19:1) and (19:2) were equally good, and . 26185 26035 . 54853 0027001520
superior to (19:3). The solution was also carried out " P P oitEe Peev—
by the elimination method using only five significant
figures. The results are 100004 1,06040 1.00024 1.-0000000003
z | —3.00006 —2. 80812 —2 99682 —2, 9999000997
—2, 00006 —2 16322 —1,99978 —1, 9999999963
N . 00084408 . 00014843 . 00005181 o
—me 19:1 E (4]
cg-methed (19:1) limination 7 . 0014340 —. 00035647 . 0000152 . DODO0000008
—. 0018823 . 00094441 . 0000364 . 00000000002
. 09424 1. 00603
—2, 99518 — 3. 00506
2 —1. 99328 —2. 00180
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In this case the results by the cg-method and elimin-
ation method appear to be equally effective. The
cg-method has the advantage that an improvement
can be made by taking one additional step.

This example is also a good illustration for the
fact that the size of the residuals iz nmot a reliable
criterion for how close one i3 to the solution. In
step 3 the residuals in case 1 are smaller than those
of case 3, although the estimate in case 1 is very far
from the right solution, whereas in case 3 we are
close to it,

Further examples. The largest system that has
been solved by the cg-method is a linear, symmetric
system of 106 difference equations. The computa-
tion was done on the Zuse relay-ecomputer at the
Institute for Applied Mathematics in Zurich. The
estimate obtained in the 90th step was of sufficient
accuracy to be acceptable. **

14 8ee U7, Hochstrasser,  Die Anwendung der Methode der kanjugierten: Gradi-

enten und ihrer Modifikationen auf dig Ldsung linearer Randwertproblems,”
Thesis %. T. H., Zurich, Switzerland, in mannseript,

Several symmetric systems, some involving as
many as twelve unknowns, have been solved on the
iem card programed calculator. In one case,
where the ratio of the largest to the smallest eigen-
value was 4.9, a satisfactory solution has been
obtained already in the third step; in another case,
where this ratio was 100, one had to carry out fifteen
steps in order to get an estimate with six correct
digits. In these computations floating operations
were not used. At all times an attempt was made
to keep six or seven significant figures.

The cg-method has also heen appliad to the
golution of small nonsymmetric systems on the
swac. The results indicate that the method is
very suitable for high speed machines.
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