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On Approximate Solutions of Systems
of Linear Inequalities”

Alan ]. Hoffman

Let Ax=b be & consistent system of linear inequalities,

The principal result is a

quantitative formulation of the fact that if x “almost’’ satisfies the inequalities, then x is
“‘close’ to a solution. It is further shown how it is possible in certain cases to estimate the
gige of the vector joining x to the nearest solution from the magnitude of the positive

coordinates of Ax—b.

1. Introduction

In many computational schemes for solving a
system of linear inequalities

Apx=aun+ . . . Fa,2,5h
. (1)
ApXx=a,t+ ... +0uaZnZhn

(brieﬂy, Ax<b), one arrives at a vector X that
“almost’” satisfies (1). It is almost obvious geo-
metrically that, if (1) is consistent, one can infer
that there is a solutlon X, of (1) “close” to ¥. The
purpose of this report is to justify and formulate
precisely this assertion.’ We shall use fairly general
definitions of functions that measure the size of
vectors, since it may be possible to obtain better
estimates of the constant ¢ {whose important role
is described in the statement of the theorem) for
some measuring functions than for others. We shall
make a few remarks on the estimation of ¢ after
completing the proof of the main theorem.

2. The Main Theorem

We require the following
Definitions:
For any real number g, we define
. g ifez0
at=
0 ifa<0.
For any vector y= .y Y&}, we define
SN @)

A positive homogeneous function F, defined on
k-space is & real continuous function satisfying
(i) Fy(x)z0, F.(x)=0if, and onlyif, x==0

()  az0implies Fy(ax)=aFy(x) 3)

*This work wes g red (in part) by the Office of Scientific Research, USAF.

1 A. M, Ostrowski bas kindly pointed out that part of the results given below
is implied by the fact that if K and L are two convex hodies each of which is in
nusgn]l;alll nejghborhood of the other, then their associsted gauge functions differ
A tly.
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Theorem: Let (1) be a consistent system of ine-
gualities and let F, and F,, each satisfy (3). Then
there exists a constant ¢>0 sueh that for any x there
exists o solution X, of (1) with

Fo(x—x,) ScF, (Ax—b)*).

The proof is essentially confained in two lemmas
(2 and 3 below)}gwen by Shmuel Agmon.*

Lemma 1 F satiﬂgies (3), there exists an >0
sueh that for every y and every subset S of the half
spaces {1)

Fo(f) eFn(y)
where H=(yn L ;ym),- E:(.gls' . -ng)! and

¥ if the ith half space belongs to §

0 otherwise.

Proof. It is clear from (3) (i) that any e will
suffice for y=0. By (3) (il), we need only consider
the ratio F,(y)/F.(y) for y such that F(y)=1, a
compact set. Henee, for each subset S, F,,(}/ F.(p)
has a maximum eg. Set e=max es.

Lemma 2. Let Q be the set of solutions of (1), let
x be a point exterior to Q, and let y be the point in Q
nearest to x. Let S be the subset of the half spaces
(1), each of which conlains y in ifs bounding hyper-
plane, and let Qs be the intersection of these half spaces.
y Then x is exterior to Q5 and y is the nearest point
of &gz fo X.

Lemma 3. Let M be an m Xn mafriz obtained from
A by substituting 0 for some of the rows of A, end
let & be the cone of solutions of Mz <0, Let E be
the set of all points x such that (1) x is exterior o Q,
and (i) the origin is the point of Q nearest to x.

Then there exists ¢ dg >0 such that xeE implics

Fo((Mx)") 2dsFy(x).

Proof of the theorem. Let x be any vector exterior
to the solutions © of (1), let x, be the point of @ near-
est to X, and let S be defined as in lemma 2.

Let M be the matrix obtained from A by substitut-

3 8, Agmon, The relaxation method for lincar lnetiu,ali_ties, National Applied
Mathematies Laboratery Report 52-27, NBS (prepublication copy).
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ing 0 for the rows not in S, and let b be the vector
obtained from b by substltut.mg ¢ for the components
not contained in S.

Then lemma 2 says that X, satisfies Mz=>5, x is
exterior to the solutions of Mz<b, and x, is the
solution of Mz=b nearest to x. Perform the trans-
lation 2’=2z—x,. Then Mz<b if, and only if,

Mz =Mz — Mx,—Mz—b<0.
Thus x—x, belongs to the set & of lemms 3, and

Fu((Mx—B)")=Fn((ME—x%))") 2dsF.(x—%) 2
dF,(x—x,),
where d=m§in dg.
Thus,
Fox—xg= F (Mx—b)< m((AI—b)*'),

using lemma 1. Settmg c=ejd completes the proof of
the theorem.

3. Estimates of ¢ for various norms

Nomne of the estimates to be obtained is satisfac-
tory, sinee each requires an inordinate smount of
computation except in special cases. It is worth
remarking, however, that even without knowledge
of the size of ¢, the theorem is of use in insuring that
any computation scheme that msakes (Ax—H)*
approach 0 will bring x close to the set of solutions of
(1). This guarantees, for instence, that in Brown’s
method for solving games the computed strategy
vector is approaching the set of optimal strategy
vectors.

In what follows let

A =maximum cf the absolute wvalues of
the coordinates of x;

| |xl] =sum of the absolute values of the co-
ordinates of x;

[llx]| [=the square root of the sum of the
squares of the coordinates of x.

Note that if F,, is any one of these norms, then
e=1. We consider these cases:

Case 1. Fu=||] |Hr m_l ]
square matrix of rth order, let

o[ (o)

where the (/s are the cofactors of the elements of
Using tjne notation, and assuming that the

If C=(eyy) is a

rows of {1) are normalized so that ﬁ‘, @f=1, Agmon
=1

(see p. 9 of reference in footnote 2) has shown that if

Aisof rank #, then

e i
(= [1311-( E < e (I‘{'l: C e :{: =!]%’
[icne Z <hen | A%l
where 7;, . . ., %, are r (ﬁxed) linearly independent
rows of (a;,), Afp-ed js the rXr submatrix

formed by the fixed rows and indicated columns, and
where the summation is performed over all different
combinations of the §'s.

CaseIl. F,=| |, Fn=] |
CaseIll. F,=| |,Fm—|| L.

For cases IT and III, it is convenient to have a
description of K alternative to that contained in
lemma 3. We shall use the notation of lemma 3.

Lemma 4. Let K'=the cone spanned by the mw

vectors of M, with the origin deleted, Then K'=

Proof. Let M,, . . ., M, be the row vectors of M
and let x= MM+ . +)\ nwidn, where x# 0, a.nd
A0, =1, .. ., m " Then ¥ is exterior to ﬂ and

the origin is the point of Q@ closest to x; thatis, 2 ¢ @
implies (x—2)-(x—2z)—x-x20. For zx—2. (\M, -+
Ca Moy=nzM+ ... +2,2 M, <0. Hence
(x—2z)-(x—2z}—x-x=z-2—22-x20. This shows that
K CE.

Assume x ¢ . Then,
(4)

(otherwise let w be & sufficiently small positive num-
ber; then w 2 €@ and wz-wz—2wz.x< 0). Consider
z as the coordinates of a helf space whose boundin,
plane contains the origin. Then (4) says that aﬁ
half spaces (“‘through’’ the origin) contai the row
vectors of Af also contain x. It is a fundamental
result in the theory of linear inequslities ® that this
later statement implies that x is in the cone gener-
ated by the rows of M. Hence £ C K’.

4, Case II

It is clear from the proof of the theorem that all
we need is to calculate mm (| Mx)*|/|x]), for each M

corresponding to a subset S of the vectors A;, . . .,
Ay. Let A, , A (say) be the vectors of the
subset 8. Then by lemmsa 4, xe¢E implies that
there exist N\, . . ., X with )\j>0 such that

« FnA,

We now prove that £ C X*.

z 2 impliee x50

x=7\1A1?5 oy (5)

Hence,

k
x| £ as }22 As (6)

where ¢z is the largest absolute value of the co-ordi-
nates of 4y, . . ., 4.
It follows from the homogeneity of [(Ax)*|/|x| that

¥ T, 8, Moizkin, Beitrige sur Theorle der Linearen Ungleichungen. Jerusslem,
1036, with references to proofs by Minkewski and Weyl.
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‘we need ongy consider xeF such that if z is expressed
as in (5), E A=1.

Then

|(Mx)*|=max (4, x)* =max (4 -x)=

k §
max (Arz )\,A,)=max 2 Juhs
i = i 5=
Where g;;:Ag'Aj, hjéO,ij:].

Hence,

!
min [(Mx)*‘]:minm?x jZ) Feshy="72g, (7)
Y =

where vy i3 the value of zero sum two person game
whose matrix is g
Therefore, from (6) and (7)

min [(A1x)7] =2

er_ [xl T ag
Can vy=07 Clearly, if, and only if, the origin is in
convex body spanned by 4,, . .., A,. DBut this

would imply that the set £ is the entire space (except
for the origin). And it follows from the proof of the
main theorem that this can occur only for a subset
8 that would never arise in lemma 2.

Therefore, using the language of the theorem

[x—x,| Se[(Ax—b)*|, (8)
where
ag
c=max —-
>0 Vg

A special case occurs when all A;A>0. Let

p=1nin A;'A_f, d=max ]a”[. Theﬂ,
i3 44
x| < |(Ax— )], ©
5. Case III

Reasoning, aloglg the l:lgles of case IT, we need only
estimate min H(Zg; B ,) I, and it is possible to derive
» A=

from it an expression analogous to (8), which un-
fortunately does not seem to have a neat statement
in terms of games or any other familiar object. An
interesting special case occurs, however, if the
n;.;trix g4 (for 8 all the rows of A), has the property
that

'w_—_min (gﬁ ’l"jzl g”)>0.
' ﬂ-‘;‘r{(l

Then
. & + . ok k
mmil(Eguh;) || 2 min Z;guh
i=1 X jm] jm]
Lk k - &
=min Elj§g¢j=%m E)Lyw:w.
Then we obtain, with ¢ having the same meaning as

in {9)

r—xo] <2 [((Ax—)*]. (10)

WasHINGTON, June 5, 1952,

265



