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On Approximate Solutions of Systems
of Linear Inequalities*

Alan J. Hoffman

Let Ax^b be a consistent system of linear inequalities. The principal result is a
quantitative formulation of the fact that if JC ''almost" satisfies the inequalities, then x is
"close" to a solution. It is further shown how it is possible in certain cases to estimate the
size of the vector joining JC to the nearest solution from the magnitude of the positive
coordinates of Ax — b.

1. Introduction

In many computational schemes for solving a
system of linear inequalities

Avx=anx1 +

(1)

Am-x=amlx1 +

(briefly, -4x^6), one arrives at a vector JC that
"almost" satisfies (1). It is almost obvious geo-
metrically that, if (1) is consistent, one can infer
that there is a solution x0 of (1) "close" to x. The
purpose of this report is to justify and formulate
precisely this assertion.1 We shall use fairly general
definitions of functions that measure the size of
vectors, since it may be possible to obtain better
estimates of the constant c (whose important role
is described in the statement of the theorem) for
some measuring functions than for others. We shall
make a few remarks on the estimation of c after
completing the proof of the main theorem.

2. The Main Theorem
We require the following

Definitions:
For any real number a, we define

a if
+=a+=

0 ifa<0.

For any vector y=(yu . . ., yk)y we define
(2)

A positive homogeneous function Fk defined on
&-space is a real continuous function satisfying

(i) Fk(x) ^0 , Fk(x) = 0if, and only if, x=0

(ii) a ̂  0 implies Fk(ax) = aFk(x) (3)
*This work was sponsored (in part) by the Office of Scientific Research, TJSAF.
1 A. M. Ostrowski has kindly pointed out that part of the results given below

is implied by the fact that if K and L are two convex bodies each of which is in
a small neighborhood of the other, then their associated gauge functions differ
slightly.

Theorem: Let (1) be a consistent system of ine-
qualities and let Fn and Fm each satisfy (3). Then-
there exists a constant c>0 such that for any x there
exists a solution x0 of (1) with

Fn(x-x0)^cFm(Ax-b)+).

The proof is essentially contained in two lemmas
(2 and 3 below) given by Shmuel Agmon.2

Lemma 1. If Fm satisfies (3), there exists an e>0
such that for every y and every subset S of the half
spaces (1)

where y=(ylf . . . ,ym), y=(Vi,. . .,yTO), and

yt if the ith. half space belongs to S
yr-

0 otherwise.

Proof. It is clear from (3) (i) that any e will
suffice for y=0. By (3) (ii), we need only consider
the ratio Fm(y)/Fm(y) for y such that F(y) = l, a
compact set. Hence, for each subset S, Fm(y)/Fm(y)
has a maximum es. Set e=max es.

Lemma 2. Let Q, be the set of solutions of (1), let
x be a point exterior to 12, and let y be the point in ti
nearest to x. Let S be the subset of the half spaces
(1), each of which contains y in its bounding hyper-
plane, and let tts be the intersection of these half spaces.

Then x is exterior to tts and y is the nearest point
of Qs to x.

Lemma 3. Let M be an mXn matrix obtained from
A by substituting 0 for some of the rows of A, and
let 12 be the cone of solutions of Mz^O. Let Ebe
the set of all points x such that (i) x is exterior to 12,
and (ii) the origin is the point of 12 nearest to x.

Then there exists a ds^>0 such that xeE implies

Proof of the theorem. Let JC be any vector exterior
to the solutions 12 of (1), let JC0 be the point of 12 near-
est to x, and let S be defined as in lemma 2.

Let M be the matrix obtained from A by substitut-
2 S. Agmon, The relaxation method for linear inequalities, National Applied

Mathematics Laboratory Report 52-27, NBS (prepublication copy).
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ing 0 for the rows not in S, and let 6 be the vector
obtained from 6 by substituting 0 for the components
not contained in S.

Then lemma 2 says that JC0 satisfies Mz=b, x is
exterior to the solutions of Mz ^ 6, and JC0 is the
solution of Mz ^ b nearest to JC. Perform the trans-
lation z'=z—x0. Then Mz^b if, and only if,

Mz'=Mz-Mxo=Mz-'b^O.

Thus JC—JC0 belongs to the set E of lemma 3, and

dFn(x-x0),

where d=m.in ds.
s

Thus,

using lemma 1. Setting c=e/d completes the proof of
the theorem.

3. Estimates of c for various norms

None of the estimates to be obtained is satisfac-
tory, since each requires an inordinate amount of
computation except in special cases. It is worth
remarking, however, that even without knowledge
of the size of c, the theorem is of use in insuring that
any computation scheme that makes (Ax—6)+

approach 0 will bring x close to the set of solutions of
(1). This guarantees, for instance, that in Brown's
method for solving games the computed strategy
vector is approaching the set of optimal strategy
vectors.

In what follows let
|'JC| ^maximum of the absolute values of

the coordinates of JC;
| |JC| | =sum of the absolute values of the co-

ordinates of JC;
| | | jc | | | = the square root of the sum of the

squares of the coordinates of JC.
Note that if Fm is any one of these norms, then

e=1. We consider these cases:
Case I. Fn=\\ | 111, Fm=\

square matrix of rth order, let

where the

If C=(ctJ) is a

are the cofactors of the elements of
ctj. Using this notation, and assuming that the

n
rows of (1) are normalized so that 2 aij2==l> Agmon

(see p. 9 of reference in footnote 2) has shown that if

A is of rank r, then

f S Ypil, . . . ,M
Li<ji< . . . <jT<n yi ti, . . . , it)

where ii9 . . ., iT are r (fixed) linearly independent
rows of (ati); A%\\\\\\r

r is the rXr submatrix
formed by the fixed rows and indicated columns, and
where the summation is performed over all different
combinations of them's.
CaseII. Fn=\. \,Fm=\ \.
Caselll. Fn=\ \,Fm=\\ ||.

For cases II and III, it is convenient to have a
description of E alternative to that contained in
lemma 3. We shall use the notation of lemma 3.

Lemma 4. Let K'=the cone spanned by the row
vectors of M, with the origin deleted. Then K'=E.

Proof. Let Mu . . ., Mm be the row vectors of Mt
and let x=\iMi~\- - . • +\mMm where x^ 0, and
Xi^O, i=\, . . ., m. Then x is exterior to 12, and
the origin is the point of Q, closest to JC; that is, z e 12
implies (JC—z)-(x—z)—JC-JC>0. For z-x=z-(\iMi-{-
. . . +\mMm)=\iZ-M1+ . . . +\mz-Mm^0. Hence
(x—z)'(x—z)—X'X=Z'Z—2Z'X^0. This shows that
K' C E.

We now prove that E CLK'. Assume XeE. Then,

(4)z e!2 implies z-JC^

(otherwise let w be a sufficiently small positive num-
ber; then w z e!2 and wz-wz—2wz-x<^0). Consider
z as the coordinates of a half space whose bounding
plane contains the origin. Then (4) says that all
half spaces ("through" the origin) containing the row
vectors of M also contain JC. It is a fundamental
result in the theory of linear inequalities 3 that this
later statement implies that JC is in the cone gener-
ated by the rows of M. Hence E C.K'.

4. Case II
It is clear from the proof of the theorem that all

we need is to calculate min (|MJC)+|/|JC|), for each M
XeE

corresponding to a subset S of the vectors Aiy . . .,
Am. Let Ah . . ., Ak (say) be the vectors of the
subset S. Then by lemma 4, XeE implies that
there exist Xi, . . ., \k with X^O such that

Hence,
. . . +\kAk. (5)

(6)

where as is the largest absolute value of the co-ordi-
nates of Ah . . ., Ak.

It follows from the homogeneity of |(MJC)+|/|JC| that

3 T. S. Motzkin, BeitrSge zur Theorie der Linearen Ungleichungen. Jerusalem,
1936, with references to proofs by Minkowski and Weyl.
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we need only consider XeE such that if x is expressed

as in (5),

Then

=max (At-x)=

max i )=max X
/ i i

where #*,=

Hence,

min |(Mjt)+|=minmax
x i 7=1

(7)

where i1^ is the value of zero sum two person game
whose matrix is gtj.

Therefore, from (6) and (7)

mm
\{MxY

' as

Can ^ = 0 ? Clearly, if, and only if, the origin is in
convex body spanned by Au . . ., Ak. But this
would imply that the set E is the entire space (except
for the origin). And it follows from the proof of the
main theorem that this can occur only for a subset
S that would never arise in lemma 2.

Therefore, using the language of the theorem

where
(8)

as

c=max —
vs>0 VS

A special case occurs when all J.
Vi'Aj, &=max \CLH\. Then,

U

\x-xQ\S-\{Ax-b)+\.

5. Case

Let

(9)

Reasoning, along the lines of case II, we need only

estimate min 11( ^jgtj\j) 11, and it is possible to derive
x \;=i /

from it an expression analogous to (8), which un-
fortunately does not seem to have a neat statement
in terms of games or any other familiar object. An
interesting special case occurs, however, if the
matrix gtj (for S all the rows of A), has the property
that

Then

i-i
9H<0

k k

9a

k k

X ; = 1

k

X ; = 1

Then we obtain, with a having the same meaning as
in (9)

^ - & ) + | | . (10)

WASHINGTON, June 5, 1952.
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