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Hydraulic Resistance Effect Upon the
Dam-Break Functions*

Robert F. Dressier

The dam-break solution, a known centered simple-wave when resistance is neglected,
is studied with the Chezy resistance formula added to the nonlinear shallow-water equations.
Resistance transforms the wavefront from a characteristic curve into an envelope of charac-
teristics. The flow near the tip differs from the other parts, due to a distinct boundary-layer
type of region adjacent to the wavefront envelope. Then a perturbation leads to a system
of partial differential equations with variable coefficients. Initial conditions are derived
for the singularity at the origin. By studying its characteristic equations, this system is
solved explicitly for the correction functions. Except at the tip, resistance raises the water
surface and lowers velocities. These functions, no longer simple-waves, possess concurrent
straight characteristic lines that map into another set of the same type. The critical flow
locus moves downstream, faster for more resistance, and discharge rates are reduced. The
method fails in the tip layer because the asymptotic expansions for the first derivatives lose
validity there. Estimates are made indirectly for the wavefront velocity by observing where
the boundary-layer effect becomes predominant.

1. Introduction
Sudden destruction of a dam results in a highly

unsteady flow, with a forward wave (the "positive"
wave) advancing over a dry channel, and a back dis-
turbance (the "negative" wave) propagating into the
still water above the dam. We consider a two-
dimensional problem, a horizontal stream bed, with
initially no water below the dam and water at rest
above the dam. An explicit solution to this problem
was given in 1892 by Hitter [1]* by applying certain
general expressions of Saint Venant [2]. The equa-
tions used were the usual approximate ones involving
small curvature, due to Saint Venant, often called the
nonlinear shallow-water equations.

The problem under consideration possesses genuine
practical significance, not merely for the applications
involving dynamiting of dams through military
action, for example, the destruction in 1941 by
Russian engineers of the Dnieprostroy Dam (140
feet high) near Kichkas on the Dnieper River, and
the occasional mechanical failure, for example, the
St. Francis Dam (205 feet high) in California, which
broke in 1928 because of defective geologic founda-
tions, causing the loss of hundreds of lives and
immense property damage, but also for the more
common occurrences, such as the opening of canal
and sluice gates and controls at hydroelectric sta-
tions. The problem is most important, however,
because of the information desired about the basic
question of the behavior of any wave advancing along
a dry channel, concerning which very little work has
been done so far.

In the case of a wave advancing into still water of
appreciable depth, the problem can be handled by
approximating the flow with the discontinuity condi-
tions of mass, momentum, and energy for a bore. In
that case, one evaluates the relation between hydro-
static forces and rate of change of momentum at the
wavefront. For our present case, however, this is not
possible; rather, the controlling factor in the propaga-

* The preparation of this paper was sponsored (in parti, by the Office of Naval
Research.1 Figures in brackets indicate the literature references at the end of this paper.

tion of the wave is the hydraulic resistance caused by
stream bed friction and turbulence. This effect will
predominate especially in the shallow front region of
the flow. For this reason the classical solution of
Ritter, which neglects resistance, is not realistic. It
should, therefore, be significant to initiate some study
on the effects of resistance upon this unsteady flow.
Forchheimer [3] has presented a summary of most
previous work on the dam-break problem.

The experiments of Schoklitsch [4] indicate that
actual velocities for the forward wave may be as low
as 40 percent of the theoretical result given bj7

Ritter's solution without resistance, whereas the
experimental and theoretical results agree for the tip
of the negative wave. Thus it is clear that the for-
ward part of the flow is highly sensitive to hydraulic
resistance, and it is our present purpose to deduce
some approximate quantitative information of this .
effect by considering the equations containing the
resistance term. Experiments of Eguiazaroff [5]
likewise confirm the above observations; in his report,
the author remarks about the almost complete
absence of data concerning the propagation of a wave
over dry land.

One can determine analytically the exact wave-
front velocity (neglecting resistance) for the case
where the bottom is inclined below the horizontal.
We will study here, however, only the horizontal case,
since the resistance predominates over the slope
effect for the usual small slopes occurring in nature.
Both effects could be handled simultaneously by the
present approach, but since it is only the resistance
term that seriously complicates the equations, the
slope will be ignored.

In 1946 Re [6] computed, by a finite-difference
calculation on the characteristic equations, the flow
to be expected from the destruction of a dam, for one
specific value of slope and Chezy resistance co-
efficient. This was done in anticipation of possible
destruction of a dam at the German-Swiss frontier in
World War II. Re's problem included the presence
of some water below the dam initially, causing the
formation of a bore in his solution.
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2. The Basic Equations

We first define the problem in dimensional quan-
tities (denoted by bars) and then transform immedi-
ately to dimensionless variables (unbarred). Let Y
denote the height of the dam, and let the horizontal
direction downstream from the dam be measured by
x. Upstream the water is at rest until time t=0.
Let y be the vertical distance of the water surface
above the bed and u the horizontal component of
velocity. Introducing "c= -y/gy, the momentum and
continuity equations used are

^=+R( - ) = 0,
dx \cj '

-du . rt dc . ^-

containing Ithe 'Chezy Resistance term, in which the
roughness coefficient R has dimensions of accelera-
tion. Neglecting resistance, the well-known Hitter
solution is

(2)

ir=—I -

where H=ygY. This defines the parabolic surface
profile for any fixed t, with the negative wave propa-
gating upstream at velocity —-\gYy and the forward
wave advancing at velocity 2-\gY. This profile
always intersects the line i = 0 at height y=(4/9) Y
with u=(2/S) H,jriving the constant discharge rate
Q=uy= (8/27) {Wig). The wave tip at c = y = 0
has a horizontal tangent at all times, whereas it is
known experimentally that the wavefront is actually
vertical.

Transforming to dimensionless notation by the
relations

x=(_g/H2)x,t=(g/lJ)i, u=u/H, y=y/7, c = c/H,
R=R/g7 Q = (g[H3) Q, and m = x/t, the equations
become

du
~dt ox ox \c/

be
dx dx (3)

for which the Hitter solution at R=0 becomes

(4)

6 2t

FIGURE 1. Diagram of the Hitter solution.

At the site, z=0vy=4/9, u==2/3, and Q=8/27 (fig. 1).
The characteristic equations equivalent to system

(3), when R=0, are

'dt

II _:d(u° +2e°) = 0,

(5)

defining two families 7+ and Y_ of characteristic
curves, along which the corresponding relations given
above must hold. A study of these equations pro-
duces the Bitter solution by utilizing the solutions
for the characteristic curves, which are

y+:x=mt,

y_:x=2t-3a2/H1/z,
(6)

where m and a are parameters. The ?•_ curves pass
through the points (—a, a). Since the 7+ curves
are concurrent straight lines through the origin in
the x, t plane, the Ritter solution exemplifies what
is now commonly called a "centered simple-wave."
This simple-wave interpretation of the dam-break
solution is discussed in Courant-Friedrichs [7] and
Stoker [8]. Figure 2, A, shows the familiar pattern
of characteristics for this solution given by (4), (5),
and (6). Line OB marks the propagation of the
disturbance into the still water, while OF is the
trajectory of the forward wavefront, along which
c°=0. Therefore by (5) the two characteristic
directions coincide along OF, which must belong to
both the 7+ and 7_ families. This means the solu-
tion of (3) with R=0 degenerates from hyperbolic
to parabolic type along the boundary defined by
the forward wavefront double characteristic.

As the resistence R changes from zero to a positive
value, it will distort all the characteristics lying to
the right of OB, as shown qualitatively in figure 2, B.
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FIGURE 2. Pattern of characteristics.

A, Without resistance; B, with resistance.

The characteristic equations for R > 0 become

T dx

dx
(7)

(8)

introducing characteristic parameters a and 0, which
vary along 7+ and 7_, respectively. Equations (8)
can bejwritten in simpler notation as

(9)

The characteristics for this solution in the region of
motion are now unknown. In the still-water region
upstream where u=0, 7+ and 7 . have slopes dx/dt=
+ 1, respectively; hence they become straight lines
here. Because the disturbance emanating from the
origin will be carried as a derivative discontinuity
along a y+ curve from (0, 0), on this curve we still

II+:d(u-2c)=-R O

II-:d(u+2c)= -R (-

have u=0, c = l , and therefore OB remains straight
with slope —1. Resistance will decrease the for-
ward wave velocity, turning the wavefront curve
OF above the straight line m=2.

If R has any nonzero value, however small, it is
seen in (3) that certain terms must become infinite
at the wavefront, where c=0, to maintain the equal-
ity. It is experimentally known, or can be seen from
these equations, that cx->— <» at the tip, that is, a
vertical wavefront is maintained. Likewise,
c,t-->-\- °°, while u, ux, and ut remain bounded. This
singular behavior of these derivatives will cause
complications in the subsequent analysis. If the
variable hydraulic radius were not present in the
denominator of the resistance term, the entire prob-
lem would be basically simpler. In a somewhat
similar way, it is this variable denominator that
produces instability in a uniform flow and creates
the possibility of roll-wave formation (see [9] and
[10].)

The eq (3) used here are based upon hydrostatic
pressure (negligible vertical accelerations or stream-
line curvature), and the question arises concerning
their validity to describe the flow in the tip region.
With cx->— 00, the profile curvature becomes large,
but the depth of water becomes zero, so that their
product for the actual flow may stay small. Fried-
richs [11] has shown that eq (3) apply when this
product is small. Alternatively, one sees from experi-
ment that the wave tip moves along somewhat like
a separate mass of nearly fixed shape, with vertical
accelerations therefore possibly negligible. In any
case we wish to study the mathematical implica-
tions of (3) when applied to the dam-break problem.

In order to justify why the characteristic pattern
should be as shown in figure 2, B, we will consider the
following argument. Let the wavefront OF be
defined as the locus, where c=0. It is implicit in the
basic eq (3) that particles at the tip always remain
at the tip, hence the velocity, u, evaluated along OF
must always equal the reciprocal slope dx/dt of the line
OF. Each of eq (7) is then satisfied by the wave-
front curve; and at every point of OF, both charac-
teristic directions 7+ and 7_ coincide with the
direction of OF. This line cannot be a characteristic
curve itself, however, since neither of relations (9)
can hold along OF for any i?> 0. Therefore, it must
be an envelope of 7+ and 7_ curves (fig. 2, B). Since
the reflected 7+ curves of class O'F' cannot intersect
each other, they must approach some limit line OT
as O'—>O. Three patterns therefore arise: (a) OT
coincides with OB, (b) OT lies in the interior of
section BOF, entering O at some intermediate angle
between OB and OF, (c) OT is interior to BOF and
enters O at the same angle as OF and OF". Case
(c) is shown in figure 2, B, because the following
discussion indicates that (a) and (b) are not possible.
We assume that the dam-break functions u (x, t, R)
and c (x, t, R) are continuous in R at R=0 (but not
necessarily so for their derivatives). Then the char-
acteristic directions given by (7) will be continuous
in R, and their curves must distort continuously as
R-+0.
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If we transform to new variables by x=x*/K,
t=t*/K with u (x, t)=u*_(x*, t*), c (x, t)=c* (x*, t*),
denning a radial stretching centered at the origin
with constant magnification K, eq (3) transform to

be
bu *\2

bx*

These equations are identical (in the starred quan-
tities) with (3) except for the resistance coefficient.
Hence the effect of letting K—> o°, R fixed, increasing
the stretching, is equivalent to the effect on the origi-
nal quantities when R—>0. The characteristic pat-
tern for J?>0 must therefore approach by continuous
radial stretching the known limit pattern for R=0
(fig. 2, A). This is possible only for case (c). The
limit chracateristic OT can now be used as a definition
for the beginning of the tip layer TOF and as the
separation line for this boundary-layer effect.

To obtain some quantitative results, we let the
unknown solutions u and c to eq (3) be represented
as asymptotic expressions of form

(10)

where u°, c° is given by (4). Because of the above
remarks about bc/bx and bc/i>t- at the wave tip for
any i?>0, whereas bc°/c>x and bc°/bt stay finite, it
follows that the derived expansions bc/bz~'dco/'dx+
. . ., and dc/d^dc°/ctf+ . • . , cannot remain valid
in the neighborhood of the wave tip. That is, the
perturbation procedure based upon (10) becomes
singular near the line OF, and from this standpoint
also we see that some type of boundary-layer
complication must develop there. Therefore these
calculations, using the correction functions U and
(7, cannot be applied directly to the wavefront
layer.

Substituting (10) into (3) and equating terms in-
dependent of R produce eq (3) with R=0 and their
solution (4). At the next step, using terms of
first degree in R, the equations defining U(x,t)
and C(x,t) become, by (4),

1 —
2t

= 0 (11)

In order to solve this nonhomogeneous system
with variable coefficients, we will first derive the
appropriate initial and boundary conditions and
then study the associated characteristic equations.

3. Initial and Boundary Conditions for U, C

At the initial moment of breakage, the water
height and the velocity are multivalued at #=0.
This means that the full solution u, c with resistance
has a singularity at the origin; the lowest order
approximation u°, c° possesses a singularity there
also. Will there likewise be singularities in the
higher order terms at (0, 0), or is the entire effect
contained in u°, c°? In order to get the procedure
started in his finite-difference calculations, Ke [6]
assumed that the flow could be considered initially
as two finite shocks, one positive and one negative.
When our problem is considered as defined by (3)
with i?>0, since the velocity starts off discon-
tinuously with nonzero values, the opposing
force —R(u/c)2 must become operative instantan-
eously. Although it has already been indicated
that resistance effects on u and c can be ignored in
the immediate neighborhood of the origin, a more
detailed discussion will also be made now for the
behavior of U and C there.

Let the limit values be uif ct for the solutions
u,.c as we approach the origin along a curve with a
limiting slope m*. By (4),

o 2 1
c?=3-3

(12)

For example, as we approach (0, 0) along OB
(fig. 2, A), c°=l;. along OF, c°=0; and intermediate
values result for an approach within region BOF.
For all such approaches, by (12), v%+2c° = 2
through the origin point, consistent with the char-
acteristic relation d(u°+2 c°)=0 for Y_ in (5). One
may consider this origin point to be stretched out
into a 7_ characteristic curve, with c° varying
continuously from 1 to 0 along this curve from left
to right.

Now going over to the full problem with i?>0.
(fig. 2, B), we likewise consider point O to be stretched
into the arc MN, shown schematically in figure 3.
Interpreting the curve MNF as a Y_ characteristic,
the relation holding along it by (9) is

(13)

if c 7*0; but c=0 only at N. Hence (13) is applicable
on MN, along which dt=O. This means u-\-2c is
constant along MN, and so

Ui+2ct=2. (14)
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FIGURE 3. Schematic diagram of characteristics at origin.

Approaching MN along any 7+ curve,
,. dxx

mi=hm-jj—Ui—ctat
by (7). The solution of (14) and (15) is

(15)

_2_I

Using (10), Ui=l\m (vP+U R+.
by (12)

(16)

. ), we obtain

(17)
which are the desired conditions on U and C at the
origin. This result shows that the resistance effects
on the main solution can be ignored at the initial
instant.

The relations c(—t,t,R)=l, u(—t,t,R)=0, previ-
ously discussed, give the necessary data for U and
C along line OB. The use of these with (10) yields

4. The Solution for U and C
To obtain a clue for solving most easily for U and

C subject to the conditions just derived, we now
study the characteristic equations equivalent to
system (11), which are

11+

II_

:d(U-2C) = 4

:d(U+2C) = -

(C

1

1

-U)-

+flI
X

~"2t

1

2

dt,

L-

if

x^
t
X

~2t^

2

i<2-

dt, it* < 2 .

(19)

The characteristics are the same as (6) for u°, c°
(fig. 2, A), but now the relations along them are more
complicated. Relation II_ has the right side inde-
pendent of the unknown, and can therefore be inte-
grated along the 7_ curves, using (6) and (18). The
resulting integral along 7_ becomes

35 7W 5 \a
( 2 0 )

This equation used with II+ of (19) now indicates
how to solve explicitly for U and C as follows.

If we move out from the origin along a straight
7+ characteristic, the value of t at an intersection
with a 7_ curve emanating from (—a, a) must be
proportional to a. This is immediately seen since
the equations for the two curves can be written in
the form (x/a)=m (t/a) and (xja)=2(t/a)—3(tja)1/d.
Now.by (20), the quantity (U+2C)/a is a function
of t/a, which is constant along each 7+ ray. There-
fore, U+2C is also proportional to a along the ray,
and so C7+2Cmust be proportional to t there. Next
we observe in the II+ relation of (19) that U—2C
would likewise be proportional to t along a 7+ ray if
the term (4/3£) (C—U) were a constant there; then
each of the quantities U and C would separately be
proportional to t. But this would then be sufficient
to make (4:/3t)(C—U) constant as required. There-
fore the solutions U, C must actually be linear in t
along each 7+ ray, since this will also satisfy the
condition (17) at the origin. With this information,
the original system (11) can now be solved explicitly,
subject to the other boundary condition along OB.

We transform to the new independent variables m

and t, putting C(x,t)=C(m,t) and U(x,f) = U(m,t).
Then (11) transforms to

2 - m
t

2(2-m) bC

(21)

2-mbU 2(2-m)dC 2 ~
U

with U(—l,t) = C(—l,t) = 0 for condition (18). In-
troduction of U=h(m)t and.C=k(m)t leads to the
system

(22)

dm dm
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This possesses the solution, for h(—l) = k(—l) = 0,

h( ) — 1 Q 8 I 1 2 8 i 8 ^ f 2 W2

(23)

The desired quantities U, C are then given by ht, kt,
respectively.

The characteristic eq (19) have thus furnished an
easy method for obtaining the particular solution
U, C. It would have been possible, however, to
solve the original system (11) first for its general
solution, but with much more difficulty. This
general solution to (11) is

where Ŝ  and $ are arbitary functions, 8 is an arbitrary
constant, and r=(2—x/t)tm. In order to keep the
corrections finite at the origin, one must select
^ = 0 and 5=0. These expressions for the general
solution indicate in an alternative manner the correct-
ness of our conditions (17) at the origin, since we
can now see that no other finite values except Ui = d
= 0 could be prescribed there. Then conditions (18)
along line OB require the selection $(r) =(8-^3/189)
(2—x/t)3/H. The resulting particular solutions are
seen to be identical with those previously given by
(23).

These particular solutions U and C no longer de-
fine a centered simple-wave (as for u°, c° for which
the maps of all the x, t characteristics fall on one F
curve in the u, c plane), but rather define what might
be called a "centered seimilinear wave". The map
of its characteristics is shown in figure 4. For these
solutions it is clear that the 7+ straight lines in figure
2, A, must map into a pencil of straight lines r +
through the origin (fig. 4). The 7_ family goes over
into curves F_ (dotted in fig. 4) also concurrent at
the origin. The line OB and the origin in the x, t
plane map into the single point (0, 0) in the U, C
plane. All of the curves remain inside the wedge
formed by AO (with slope— J) and the negative
U axis.

The dam-break solution with first order resistance
correction is then

u(x,t,R)~±(l+m)+h(m)tR+

c(x,t,R)~h2-m)+Jc(m)tR +
O

(24)

FIGURE 4. Map of characteristics in U, C plane.

1 1
-1

+ 30 j

+ 20

+ 10

- 1 0

- 2 0

- 3 0

II

: I
y

1 1 1 J 1—n™.

- \

FIGURE 5.

with h, Jc defined in (23) and m=x/t. Up to first-
order terms, the solutions depend only upon the
product tR=a. Both h and k have poles at m=2
due to the tip effect; the behavior of these functions
is shown in figure 5. It is seen that resistance causes
a much greater effect upon the velocity than upon c
or the height, since \h\ greatly exceeds k.

For a fixed R, (23) implies that the value given
by (24) for u must eventually become negative as
we go far enough out from the origin along any 7 +
curve. Thus the asymptotic validity of our series
weakens with increasing distance from the origin, as
the U, C characteristics diverge further from the
true characteristics of figure 2, B. For all numerical
results presented here, the calculations have been
restricted arbitrarily to a region comprising less than
one-third the distance to the points where the series
would indicate a zero value for u.
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FIGURE 6. Locus of critical flow.

5. Locus of Critical Flow

In the u°, c° solution, the flow always remains
critical (where u=^gy or u=c) for all £>0 at x=0,
with subcritical flow for #<0 and supercritical for
£>0. The resistance will distort this critical flow
locus. To calculate it, we denote the locus where
u=c by x=s(t,R)^S(t)R+si2)(t)R2+ . . ., since
s°(t) = 0. Using the relation u(s[t,R], t,R) =c(s[t,R],
t,R) we obtain

u°(s[t,R],t) + U(s[t,R],t)R+

(25)

and then expand each function in this identity in a
series about #=0. Equating terms of first order in
the resulting double series gives the result S(t) =
t[C(O, t) — U(0, t)]. The equation of the locus of criti-
cal flow correct to first order is therefore the parabola

x= [k(fl) - (26)

Figure 6 shows this locus for various values of R
within extreme practical limits. We observe that
the critical flow position moves continually down-
stream, and the resistance increases the proportion
of the total flow which is subcritical.

We note parenthetically that this double series
method cannot be utilized to obtain the locus of the
wavefront because of the tip effect. If one desig-

•3.1
JT- Q*8/27

2.0

5000 10000 15000
t

FIGURE 7. Discharge rates.

20000

nates by x=z(t,R) the locus where c=0, with z r
•Zr(t) R-\-.. . , and u(z,t,R) = zt, one would compute in
this manner the formal results

= *2/8 fJo

which are undefined in this case because of the singu-
larities of U and C along the line x=2t.

6. The Discharge Rate

From the dimensional discharge rate Q=u y, we
define Q=(g/IP)Q=u c2, the corresponding dimen-
sionless quantity. For the discharge rate at the site
of the dam,

which becomes, after neglecting terms above first
order,

Figure 7 presents these data for various resistances.

7. Approximations for the Wavefront
We see from the experimental profiles obtained by

Schoklitsch [4], converted into dimensionless form
by Keulegan [12], figure 8, that the dam-break wave
actually governed by resistance has a vertical slope
at the tip. As previously discussed here, eq (3)
shows that \cx\ and 1̂ 1 become infinite when c=0.
In the region where \cx\ begins to grow large, our
expansions lose validity and the present method of
attack breaks down. To handle the tip region
accurately, some type of boundary-layer technique
would be necessary. This is being investigated at
present, but no results are yet available. Figure 9
illustrates schematically this spearation of the two
regions, with T marking the transition zone. For
present purposes, this point T of transition will be
described merely as a point where \cx\ and \yx\
begin to grow large rapidly.
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FIGUKE 8. Wave profiles according to Schoklitsch.
• *=43; O *=1O9.

FIGURE 9. Velocities in the wave tip.

In the absence of any more satisfactory boundary-
layer results, we will apply the following approxi-
mate considerations to obtain some data about the
wavefront. This rough method seems justifiable
since there appear to be no other theoretical data
and almost no experimental data available on this
problem.

We visualize the tip region to be moving some-
what like a separate entity pushed along by the
water behind it, and in the tip, u should be changing
(increasing) rather slowly toward the front. Hence
uT could be taken as an approximation for uF.

Next we make the following approximation for
uT. The results in (24) are graphed in figures 10
and 11. Each curve corresponds to a particular
value of the parameter a=Rt. The c curves, being
based upon expressions that lose validity toward
the tip, reach a minimum and then turn upward.
Analogously, each u curve attains a maximum.
Since the true values for c and u should not increase
or decrease, respectively, toward the tip, these ex-
tremal points must lie already in the tip region.
As estimates for uT we will take uM, the maximum
values of u, indicated by the small circles in figure
11. Actually the tip region will begin before
these maximum points are obtained, thus making
the approximation too high; but if % is now taken
as an approximation to uF, since uT<CnFi these effects
will partly compensate for each other to improve

FIGURE 10.

FIGURE 11.

the accuracy of the approximation. In figure 11
the locus of maximum points defines a function
o-(ra). Using di£(m,(7)/dm = 0, this relation is found
to be

(28)

Using (24), the value uM=v>(m(<r),a) where m(a)
is the inverse function in (28). Applying this as an
estimate for the wavefront velocity, these values
are graphed in figure 12 as functions of t, with R
as a parameter over the limits of the practical range.
AH the curves must leave the point (2, 0) with verti-
cal tangents.

To obtain the corresponding estimate for the
trajectory of the wavefront, the velocity curves of
figure 12 are integrated to give the position of the
tip in the x,t plane, with R as parameter (fig. 13).

A series of experiments is contemplated here at
the National Hydraulic Laboratory to check the
validity of the analysis presented and to investigate
in more detail the actual behavior of water particles
at the tip of a positive wave advancing over a dry
channel.
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FIGURE 12. Approximate wave-front velocity.
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