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On Calculating the Zeros of Polynomials by the
Method of Lucas

Herbert E. Salzer

When/(#) is a polynomial of degree n and xiy i=0, 1, . . ., n, are any n-\-1 points at which
fixi) 7*0, the zeros of fix) are known to be identical with the zeros of1 Soi/fx-a;,), where
ai=fixi)/IL

/ixi—xi). Lucas proposed this principle for use in an electric analogue device
for finding zeros. The present note evaluates this principle in digital computation for
both real and complex zeros when the coefficients of fix) are given exactly (integral or rational)
so that the zeros of fix) are identical with the zeros of 2Ai/ix—i), A{ integral. The chief
advantages are (1) the saying of labor in tabulating XAiUx — i) instead of fix) in the neigh-
borhood of the zero, especially for complex zeros, and (2) somewhat less work in the inverse
interpolation for the zero. Three examples in locating a real root, and one example in
locating a complex root were worked out in support of these findings.

In three separate notes F. Lucas2 describes an
electric analogue device for calculating the roots of
equations (also mentioned by J. S. Frame).3 Al-
though the principle is familiar, as far as the writer
knows it has not been investigated from the stand-
point of digital computation. The present note is
intended to call attention to its advantages in finding
the roots of polynomial equations with exact coef-
ficients when one has a first approximation as a
starting point.

If j{x) denotes a polynomial of degree n, and xi}
i=0 , l , . . . ,n, denotes any n+l points where
f ( ) 0 , from

there follows the well-known result (which is the
basis of Lucas's method) that the zeros of f(x) are
identical with the zeros of

> where a j=TT/

In problems where the coefficients of f(x) are
rational, the choice of xt=i is very convenient. By
multiplying through, one obtains the equation in the
form EAi/(x—i)=0, At integral, which saves a con-
siderable number of multiplication operations, espe-
cially when getting all or even several of the zeros of
the same/(x).

By choosing xt=x0-{-ihf for any x0 and h for which
f(xt)y^Oy Lucas's principle can be formulated also as
follows:

The zeros of/(#), a polynomial of the nth degree,
are identical with the zeros of Am{f(f)/(x—f)}j m

* Here and elsewhere the summation is over the range 0 to n; similarly n indi-
cates a product over the same range, and n ' indicates such a product with the
vanishing factor omitted.

2 Lucas, Compt. rend. Acad. Sci. Paris 106, 645-48 and 1072-74 (1888); 111,
965-67 (1890).

3 J. S. Frame, MTAC 1, 337-53 (especially 347-50) (1945).

any integer >n, where the f(t)/(x—f) is tabulated for
any m+1 equally spaced values of t.

Of course, in obtaining Am{f(t)/(x—t)}, t islthe
variable, with x as the parameter, and the resulting
expression is then regarded as a function of x. (The
proof is left for the reader.)

This principle of Lucas, namely, calculating the
zeros of j(x) by tabulating Xdi/ix—Xi) or 2Ai/(x—x)it
instead of f(x) itself, in the neighborhood of a zero,
was tried out in several different examples where the
zeros had already been obtained from the tabulation
of f(x) itself. In all examples, the use of Lucas's
method showed a very great saving of computational
labor. The two main advantages were (1) much less
work in calculating Ail(x—xl) instead of the separate
terms of f(x), especially those of high degree,4 and
(2) somewhat less work in the inverse interpolation
from the tabulated XAi/(x—xt) instead of the tabulated
J(x) near the zero, which was apparent from the
tendency of Aw/A to be less in the former case.5

In connection with (1), in adding the separate
terms of JSAi/(x—Xi) considerably more significant
figures were lost than in the summation of the
separate terms off(x); but that disadvantage is slight
because of the ease in getting any number of places
in Ai/(x—xt) by performing continued division on an
ordinary 10-bank desk calculator (the x—xt is almost
certainly an exact number having fewer than 10
significant figures), and the total work in tabulating
the EAi/(x—Xi) is still much less than that in tabulating
the f(x). But if the xt's are not exact, or the coeffi-
cients inf(x) are approximate, this principle of Lucas
is severely limited in applicability, even to the point
of not yielding a single significant figure. Thus, if in
the example below, one were to introduce a relative
error of 10~10 in those exact coefficients oif(X), it is
apparent that the h(X) could not be obtained to even
one significant figure. However, the choices of
Xt=i or Xt=i—[n/2] seem most suitable for many
problems. For example, in the case of the classical

* There is the very well-known computational scheme for anXn+an-\x^-^-\-
an-2X»-*+ . . . +aix+ai> in the form un=anx+an-i, Un-i=UnX+an-2, . . . , etc.,
until f(z)=ui=U2X+ao, which avoids the calculation of powers of x, but which
may b§ less convenient for checking and the retention of significant figures.

« The rate of convergence of most inverse interpolation series depends upon the
Rapidity with which the A*/A fall off.
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orthogonal polynomials where the coefficients Ire
given exactly (for example, Hermite, Laguerre,
Chebyshev, Legendre, etc.) the At/(x—xt) can be easily
had to any required number of places.

As an illustration, consider the calculation of the
zero of the polynomial

+ 2162160Z2-8648640X+8648640,

which is near 67.28. Here f(X) was chosen to be
Hiz(x)/(2x), where X=Ax2 and Hlz{x) is the Hermite
polynomial of order 13. Choosing Xt = i, one has

/(0) = 86 48640

jf(l)= 19 64665

/(2) = —15 15008

/(3) = - 2 7 39879

/(4) = - 2 4 89408

/(5) = —13 89935

/ (6)= 69120

The numbers U'tXi—Xj) have no more than three
digits. After obtaining the at in their lowest terms,
one sees that the zeros oif(X) are identical with^the
zeros of

12012 392933
X
155588

94688 304431

277987 96

which, in turn, are identical with the zeros of

288288 392933 757504
X X-l

1826586 1244704

X-2

X-Z X-4:
,277987

+~X~=5~~
2304

An approximate value of the zero is X=67.2838, and
h(X) was calculated for X=67.2838(0.0001)67.2841.
The separate terms of h(X) are given here to show the
loss in significant figures upon summation:

288288/X

-392933/(X-l) =

-757504/(X-2) =

1826586/(X-3) =

-1244704/(X-4) =

277987/(X-5) =

2304/(X-6) =

h(X) =

X=67. 2838

4284. 65693 07916 61588 7

-5928.03973 21819 20771 0

-11603. 24613 45693 72493 6

28414.40611 78710 65494 0

-19668. 60397 13165 13862 9

4463. 23120 93995 54940 5

37. 59557 99085 56584 3

-0.00000 00969 68520 0

X=67. 2839:

4284. 65056 27646 43547 7

-5928,03078 87737 44453 8

—11603. 22836 10507 33795 0

28414.3619164363 08313 6

-19668. 57289 13673 14593 4

4463. 22404 34526 41854 5

37. 59551 85619 71415 0

+0. 00000 00237 72288 6

X = 67. 2840

4284. 64419 47565 54307 1

-5928.02184 53925 53255 7

-11603. 21058 75865 44942 1

28414.31771 51390 70375 2

-19668. 54181 15163 39043 0

4463. 21687 75287 39323 1

37. 59545 72155 86450 0

+0. 00000 01445 13214 6

X = 67. 2841

4284. 63782 67673 93782 5

-5928.01290 20383 47054 6

-11603.19281 41768 05684 7

28414. 27351 39793 51037 0

-19668. 51073 17635 86746 1

4463. 20971 16278 47235 5

• 37.59539 58694 01688 2

+0:00000 02652 54257 8

That only three values of h(X) at intervals of 0.0001
are required in order to find the zero X to the max-
imum attainable accuracy, follows from these
differences:

X

67.2838

67.2839

67.2840

67.2841

h(X)

— 0 . (6)09696 85200

+ . (6)02377 22886

. (6)14451 32146

. (6)26525 42578

A

+0.(6)12074 08086

.(6)12074 09260

. (6)12074 10432

A2

+0. (12)1174

.(12)1172

When these differences were compared with the
corresponding differences in j(X), it was noted
that A2/A for h(X) was only (1/25) of A2/A for f(X),
from which one can infer that the inverse interpo-
lation is better for the function h(X). The zero
~X= 67.2839+0.0001# was found from the three-
point formula6 p=r—r2sr where

Thus

= —2A,(67;2839)/{M67.2840) -^(67.2838)
=A2/{/i(67.2840)-/i(67.2838)}.

>(67.2840)—A(67.2838) =0.(6)2414817346,
« H. E. Salzer, Bui. Am. Math. Soc. 50, No. 8, 513-16 (1944).

r = -0.(7)47544 5772/0.(6)2414817346
= -0.19688 6846,

5=0.(12)1174/0.(6)24148=0.(6)486,
r2=0.03876, rh=0.(7)1884,
p =—0.19688 6865; X=67.28388 03113 135,

which happens to be correct to 13 decimals.
This method was tested upon the calculation of

two different roots of the same tenth-degree polyno-
mial in X (the example was to find both the smallest
and largest zero of H2o(%)), the result being that the
relative saving of labor was even greater than that
for His(x). In fact, as the degree of the polynomial
increases, the proportion of work saved also increases.

Finally, this method was applied to the computa-
tion of a complex root of a tenth-degree polynomial,
from a rough first approximation. There the
relative saving of labor was even greater than that
for the examples involving real roots, due in par-
ticular to the avoidance of the calculation of high
powers of complex numbers. Even when the
computation is for complex roots, the choice of
xt=i or Xi=i—[n/2] is still suitable, so that if the
coefficients of f(x) are real, the calculation involves
the sum of fractions with only real numerators.

WASHINGTON, July 24, 1951.
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