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On Calculating the Zeros of Polynomials by the

Method of Lucas
Herbert E. Salzer

When f{x) is a polynomial of degree n and =z, i=0,1, . . ., n, are any n-+1 peints at which
S&) 70, the zeros of f(x) are known to be identical with the zeros of ! Zay/(s—z;), where
a;=f{x;) /0’ (#;—=x;). Lucas proposed this prineiple for use in an electric anaiogue device
for finding zeros. The present note evaluates thia prineiple in digital eomputation for
both real and complex zeros when the coefficionts of f(x) are ﬁiven exactly (integral or rational)
80 that the zeros of f{z) are identieal with the zeros of ZA;/(x—i), A; integral. The chief
advantages are (1) the saving of labor in tabulating ZA:f{x—17} instead of f(z) in the neigh-
borhood of the zero, especially for complex zeros, and (2) somewhat less work in the inverse

interpolat.ion for the zero.

Three examples in loeating a real root, and one example in

loeating & complex root were worked oui in support of these findings.

In three separate notes F. Lucas? describes an
electric analogue device for calculating the roots of
equations (also mentioned by J. 8. Frame)® Al-
though the principle is familiar, as far as the writer
knows it has not been investigated from the stand-
point of digital computation. The present note is
intended to call attention to its advantages in finding
the roots of polynomial equations with exact coef-
ficients when one has a t approximation as a
starting point,.

_If f(z) denotes & polynomial of degree =, and z,,

1=0,1, . . . ,n, denotes any n--1 points where
Flzy) 0, from
o'z —
f@)=22 ﬁ:—((;:-_"%% Sz

Sz
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=H(3—2’,¢)Z Hf(

there follows the well-known result (which is the
basis of Lucas’s method) that the zeros of f(x) are
identical with the zeros of

@y __ J=) .
> r—z) where a‘_'ﬂ’(xg—a:,)

In problems where the coefficients of f{z) are
rational, the choice of x,==% Is very convenient. By
multiplying through, one cbtains the equation in the
form 2A,(z—1)=0, A, integral, which saves & con-
siderable number of multiplication operations, espe-
cially when getting all or even several of the zeros of
the same f (x%.

By choosing =114, for any x, and A for which
Sz )20, Lucas’s principle can be formulated also as
follows:

The zeros of f(z), a polynomial of the nth degree,
are identical with the zeros of A™{f{/z—D}, m

1 Here and elsewhere the summation is over the range 0 to %; simijlarly 1T indi-
eates & product over the same range, and IT* indicates such & produet with the
vanishing factor omitted,

2 Lul%alssbo()Jompt. rend. Acad. Scl. Parls 108, 645-48 and 1072-74 (1888); 11,

1T 8. Frafns. MTAC 1, 33753 (especially 347-50) {1948).

any integer >n, where the f(£)/(z—1) i» tabulated for
any m+1 equally spaced values of ¢,

{ course, in obtaming A™{ f{)/(x—8}, ¢ isIthe
variable, with z as the parameter, and the resulting
expression is then regarded as a function of 2. (The
proof is left for the reader.)

This principle of Lucas, namely, calculaiing the
zeros of f(z) by tabulating Za,/(x—z,) or Z4,/(z—x),,
instead of f(x) itself, in the neighborhood of a zero,
was tried out in several different examples where the
zeros had already been obtained from the tabulation
of f(z) itself. In all examples, the use of Lucas’s
method showed a very great saving of computational
labor. The two main advantages were (1) much less
work in calculating A4,/(z—a,} instead of the separate
terms of f(x), especially those of high degree,* and
(2) somewhat less work in the inverse interpolation
from the tabulated Z4,/(z—z,) instead of the tabulated
f(x) near the zero, which was apparent from the
tendency of A™fA to be less in the former case.’

In connection with (1), in adding the separate
terms of ZA,f(z—=zx,) considerably more sigmficant
figures were lost than in the summation of the
separate terms of f(z); but that disadvantage is slight
because of the ease in getting any number of places
in A(z—z ) by performing continued division on an
ordinary 10-bank desk ealculator {the x—z,is almost
certainly an exact number having fewer than 10
significant figures), and the total work in tabulating
the 2A,/(z—zy) 18 still much less than that in tabulating
the f(z). DBut if the z,’s are not exact, or the coeffi-
cients in f(x) are approximate, this principle of Lucas
is severely limited in applicability, even to the point
of not yielding a single significant figure. Thus, if in
the example below, one were to introduce a relative
error of 10~ in those exact coefficients of f(X), it is
apparent that the 2({X) could not be obtained to even
one significant figure. However, the choices of
£y=% or x,=%—[nf2] seem most suitable for many
problems. For example, in the case of the classical
(e b s 30y, ml o compuatr ghome e
until fiz) =wu=usr-}-ay, which avoilds the caleuiation of powers of x, but which
sy be less cotiveniont for ¢hecking and the retention of sigpificant figures.

* Tha rate of convergence of mast Inverse interpolation serles depends upon the
rapidity with which the AmfA fall off,
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orthogonal polynomials where the coéfficients dre
Eiﬁfen exactly (for example, Hermite, Laguerre,

ebyshev, Legendre, ete.) the A,/(z—z) can he easily |

had to any required number of places.
As an illustration, consider the calculation of the
zero of the polynomial

JX)=X*—156 X°1-8580.X*—205920.X3
+2162160.X*—8648640.X 18648640,

which is near 67.28, Here f(X) was chosen to be
Hyz(z}/(2x), where X=4z% and H\3(z) is the Hermite
polynomial of order 13. Choosing X;=1, one has

f(0)= f(4)=—24 89408
J)y= f(5)=—13 89935

- 86 48640
19 64665

The numbers I’ (X;— X;) have no more than three:
digits. After obtaining the ¢, in their lowest terms,
one sees that the zeres of f(X) are identical with, the
zeros of

392933 94688 304431
§(X)= ]

T —1) 3(X—2) T4(X—3)

_155588+ 277987 | 96
S X 24X 5" X—¢

which, in turn, are identical with the zeros of
288288 392933 757504

12012

¥

249(X) h(X)= X—1 = X_3
+1826586 1244704 g77937+2304
X—3 X—1 T X= ;

An approximate value of the zero is X=67.2838, and

f@=—1515008  f6)= 69120 R(X) was caleulated for X—67.2838(0.0001)67.3841,
F(3)==—27 39879 The separate terms of A(X) are given here to show the
loss in significant figures upon summation:
X=87. 2838 Xmf7. 2430 X' @7, 3840 A=67. 2841 .
2RI X = 4284, 65803 07916 §1588 7 T84, 65056 27046 43547 7 4284, 04419 47565 54307 L 4284, 63782 7673 93782 §
—30233H(X—1)= | —GU2R.00073 21810 207710 | —5O%8. 03078 BTTATA4A538 |  —5O2R 02184 53025532567 |  —b5028. 01200 20388 47054 6
—T757504/ (X —2)m | —11603. 24613 45603 72403 § —11603. 22536 60T 33705 0 —11603. 21058 T5E65 44942 1 — 11603, 19251 41768 05684 7
1826586/ (X—3) = | 28514, 40611 78710 65494 0 28414, 36101 64363 08313 6 28414, 31771 51380 70375 2 28414, 27351 39783 51037 0
—I244704/(X—4)= | —19668. 60297 13165 138629 | —10GS, 57200 13673 145034 | —19608. 4181 15163300430 | —10668. 51073 17635 BE746 1
2T KBy = 4463, 23120 93995 54940 5 4463, 22404 34526 41854 5 4483, 21687 75287 59328 1 4463, 20971 16278 47235 &
204/ (X —B) = 37, GOS5T DO0B5 58584 3 37. 50551 85610 T1415 & 37. 50545 T2155 86450 ( " 87 50530 SEA04 01698 2
ME)= = (. DOODD 000BH BES20 O =-0. GO0 (0237 72288 6 =+, 00000 (1445 13214 & —+0: 00000 (12652 b4257 & ‘

That only three values of A(X} at intervals of 0.0001

are required in order to find the zero X to the max-
imum attainable accuracy, follows from these

differences:
X MX) A Al
67. 2838 —{. (6)06Y6 86200 =40 (8)12074 080885 —+0. (123114
7. 2830 =+. (6)02377 22886 . (B)12074 05260 S {1231172
7. 38340 . (614451 32146 L(BY2074 10432 |
7. 2841 . (BY26525 42578 | L. |amic ool

When these differences were compared with the
correspondi differenees in f{X), it was noted
that A*/A for A(X) was only (1/25) of A*/A for f(X),
from which one can infer that the inverse interpo-
lation is better for the fumction A(X). The zero
X=67.28394+0.0001p was found from the three-
point formula® p=r—r%, where

r=-—2k(67.2839)/{ h(67.2840) —h(67.2838) }
§ =A% {h(67.2840)—Ah(67.2838) }.

Thus
i (67.2840) —A(87.2838) =0.(6)24148 17346,

s H. E. Salzer, Bul, Am, Math, Soq, 50, No. 8, 513-18 (1044),

r=—0.(7)47544 5772/0.(6)24148 17346
=—0.10688 6846,
§ =0.(12)1174/0.(6)24148 =0.(6)488,
72=0.03876, r%s=0.(7)1884,
p=—0.19688 6865; X=67.28388 03113 135,

which happens to be correct to 13 decimals,

This method was tested upon the calculation of
two different roots of the same tenth-degree polyno-
mial in X (the example was to find both the smallest
and largest zero of Hyu(z)), the result being that the
relative saving of labor was even greater than that
for His(z). In fact, as the degree of the polynomial
increaseg, the proportion of work saved also increases.

Finally, this method was applied to the computa-
tion of a complex root of a tenth-degree polynomial,
from s rough first approximation. There the
relative saving of labor was even greater than that

-for the examples involving real roots, due in par-

ticular to the avoidance of the calculation of high
powers of complex numbers. Even when e
computation is for complex roots, the choice of
#;=1 or zy=—1i—[n/2] is still suitable, so that if the
coefficients of f(z) are real, the caleulation involves
the sum of fractions with only real numerators.

WasHINGTON, July 24, 1951,
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