A Note on Bounds of Multiple Characteristic Roots of a Matrix

P. Stein

If \(A = (a_{ij}) \) is an \(n \times n \) matrix and if \(C_i \) are the circles, center \(a_{ii} \) and radii \(\sum_{s \neq i}^{n} |a_{is}| \), and if

\[\lambda \] is a characteristic root with \(m \) independent characteristic vectors, Olga Taussky proved the following two results:

1. If \(\lambda \) lies outside all but one circle \(C_i \), then \(m \) cannot be greater than 1.
2. If \(m = n - 1 \), then \(\lambda \) is an inner or boundary point of at least \(m \) circles \(C_i \).

In this note the gap between these two results is closed, and it is shown that \(\lambda \) lies in at least \(m \) circles \(C_i \), for all finite values of \(m \) and \(n \), \(m \leq n \).

We require this lemma:

Lemma. If \(X_i, i = 1, 2, \ldots, m \), are \(m \) independent vectors with components \(x_{is}, s = 1, 2, \ldots, n, n \geq m \), we may construct a set of \(m \) independent vectors \(Y_i \), with components \(y_{is} \), which are linear combinations of the vectors \(X_i \) and which have the property that we may select components of maxima moduli corresponding to each \(Y_i \), so that no two such selected components have the same subscripts.

We may suppose \(m \geq 2 \).

We choose \(Y_1 = X_1 \). Let \(y_{i1} = x_{i1} \) be a component of maximum modulus of \(Y_1 \). Choose \(\alpha_1 \) and \(\alpha_2 \) so that

\[\alpha_1 y_{i1} + \alpha_2 x_{i2} = 0. \]

and

\[Y_2 = \alpha_1 Y_1 + \alpha_2 X_2. \]

Since \(y_{i1} \neq 0 \), \(\alpha_2 \neq 0 \), and so since \(X_1 \) and \(X_2 \) are linearly independent, \(Y_2 \neq 0 \). Let \(y_{i2} \) be a component of maximum modulus of \(Y_2 \). By (1) and (2) \(y_{i2} \neq 0 \), hence \(s_2 \neq s_1 \). Further, \(Y_1 \) and \(Y_2 \) are linear combinations of the vectors \(X_1 \) and \(X_2 \) and are independent. The construction is thus complete for two independent vectors \(Y_i \). If \(m \geq 3 \), we choose three numbers \(\beta_1, \beta_2, \beta_3 \) so that

\[\beta_1 y_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} = 0 \]

\[\beta_1 y_{i2} + \beta_2 y_{i2} + \beta_3 x_{i3} = 0 \]

and

\[Y_3 = \beta_1 Y_1 + \beta_2 Y_2 + \beta_3 X_3. \]

Since

\[y_{i1} y_{i2} y_{i3} y_{i4} = y_{i1} y_{i2} \neq 0, \]

\[y_{i2} y_{i3} y_{i4} y_{i3} \neq 0 \]

\[\beta_3 \neq 0 \), and \(\gamma \neq 0 \). The argument used above may now be repeated to show that if \(y_{i3} \) is a component of maximum modulus of \(Y_3 \), then \(s_3 \neq s_1, s_3 \neq s_2 \). Further, \(Y_3 \) has the other properties required of \(Y_i \).
This would complete the construction for three vectors \(X_i \).

If \(m \geq 4 \), the other properties may be continued step by step till all the independent vectors \(Y_i \) are exhausted. This completes the proof of the Lemma. To complete the proof of Theorem C, given the set of \(m \) independent characteristic vectors \(X_i \), corresponding to the characteristic root \(\lambda \), we construct the set \(Y_i \) of the Lemma. Since \(Y_i \) are linear combinations of \(X_i \), they are also characteristic vectors corresponding to the characteristic root \(\lambda \). Hence we have the system of equations

\[
\sum_{s=1}^{n} a_{s,t} y_{is} = \lambda y_{ts}, \quad i = 1, 2, \ldots, m; t = 1, 2, \ldots, n.
\]

In particular we have

\[
\sum_{s=1}^{n} a_{s,t} y_{is} = \lambda y_{ts},
\]

and so

\[
(\lambda - a_{s,t}) y_{is} = \sum_{s=1}^{n} a_{s,t} y_{is}.
\]

Dividing through by \(y_{is} \), and taking the moduli of the two sides, since \(|y_{is}| \geq |y_{st}|, s = 1, 2, \ldots, n \) we get that \(\lambda \) lies in the circle \(C_{s,t} \).

Since \(s_t \neq s_i, i \neq j \), we conclude that \(\lambda \) lies in \(m \) different circles \(C_i \). This concludes the proof of the theorem.

Los Angeles, October 18, 1951.