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On Some Functionals of Laplacian Processes'
R. Fortet

Let X () be a random function derived, in a sense that is explained in the paper, from

a Poisson process.

t
functional f
it

It is proved that, under certain assumptions, the distribution of the

e
N V(u, X(u))du tends to a Laplacian (i. e. normal) distribution as 7— .

This result is extended to the case that X (f) is itself a Laplacian process by means of a
theorem stating that, under certain assumptions, every Laplacian process is the limit of
some random function derived from a Poisson process.

‘We shall use the following abbreviations:

fr: function of repartition.

cf: characteristic function.

¢: covariance.

fe: function of correlation.

rf: random function.

rv: random variable.

mq: in quadratic mean.

ac: almost certain, with probability 1.

Ip: Laplacian process.

rfP: random function derived from a Poisson
process.

em: mathematical expectation.

emq: standard deviation.

imq: integral in quadratic mean.

iac: integral with probability 1.

Section 1 is devoted to the statement of some
lemmas; section 2 is to show that, under some general
assumptions, a Ip may be considered as the limit, in
law, of certain rfP’s; section 3 is to state our principal
result in the stationary case; section 4 is devoted to
extensions of these results to nonstationary cases; in
section 5, we indicate some generalizations in another
direction.

1. Let Y(t) be a real rf of second order defined over
(— o, + o), the ¢ v(¢,7) of which is F-integrable (on
every finite domain); we assume E[Y(#)]=0; hence:

L(tr)= ﬁ V@ydu imq

exists, has a null em and an emq o(f,7) given by:

ﬂt,ﬂ:f’f’y T o
s t

we assume that: (a) there exists a fixed number / such
that, for any integers n, m, and for any values
tl, 50 t,” Tly + o+ oy Tm VVit}l:

t1<52< e <tn<71< ) <Tm

the two (n-dimensional and m-dimensional)
{Y(t), . .. Y(,)}and{Y(r), . . ., Y(rn) }are in-

dependent; (b) there are two fixed positive numbers

Tl—tngl

Rl The l;))reparation of this paper was sponsored (in part) by the Office of Naval
esearch,

2 Loeve, Fonctions aleatoires du second ordre, p. 320, in P. Levy, Processus
‘Stochastiques, Paris, 1948, Gauthiers-Villars edit.
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a and b (independent of ¢ and ) such that
a (r—t) <d? (t,r) b (r—1)

at least for (r—¢) >0 and sufficiently large; (c) there
is a finite positive function K (u) such that:

EILt,7)P <K (r—t)

for every (t,7), at least for (r—%) >0 and sufficiently
arge.
Then we have the following lemma:

Lemma 1: Under the above assumptions (a), (b),
(¢), for every fixed ¢, the fr of [L(tt+ T)]/[e(t,t+T)]
tends toward Laplace’s law [with em=0 and emq=1]
when 7' tends toward + o ; and L(tt+T)/T tends
toward 0 in probability.?

Proof: Of course, it is sufficient to consider the
case t=0; let L be any positive number, larger than
l; we put:

ta=n(L+1) t,=n(L+1)—1;

’ th
anﬁt” VD ﬁ ¥ (i) o
J'n -1 J'n

and, if ny is the largest integer such that: n,(L+1) <
T,

gp/
Tope f e
t"T

We have:
LON 1 a1 z
20,1 (0,T) & oo & Y eo,n W
Z 1 gy b Tt _b L1
E[Uz(w s B 250~ =2 2 (o)

It must be pointed out that the Ys are mutually
independent; also the X,’s are mutually independent;
hence we have:

nr

1 2 blny b
E[(a<o,T)j§ Y,) |s2 =2

3'We do not know if this rather obvious lemma is or is not already known.
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l/(L+1) being a quantity that may be arbitrarily

small, if we choose L sufficiently large. From the
111(10])011(1(\11(@ of the X’s, and from (b) and (¢) it
follows that the fr of

U
VE[U

L

where
nr

25

gt

LT

7y

~ tends toward Laplace’s law [with em=0 and emq=
1], when 7 tends toward -+ <« ; on the other hand, it
follows from (2) and (3) that E[U?/¢*(0,T) may be
as near 1 as we like, if we choose L and 7 sufficiently
large. The lemma follows obviously from these
remarks.

Remark: 1t must be pointed out that, if Y(¢) is
strictly stationary, the assumption (¢) may be sup-
pressed, the X,;’s having, in such a case, the same
fr; on the other hand, in the general case, (¢) may,
of course, be replaced by some other, more or less
reneral, assumption of the same kind.

We consider now a real rf Y (¢), defined over (— =,
+ o), stationary of second order and the fe y(h) of
which is continuous; we are always considering

L(nr)ziﬁrY(u)du

but in this stationary case, o’(t,r) depends only on
(r—1); we have the:
Lemma 2: For the existence of two positive num-
bers @ and b such that:
a(r—)=d*(r—t)<b(r—1) [(r—8>0] (4)
for any ¢, 7, at least for (r—t) sufficiently large, 1t is
ufficient that:

+o
(@ [y widh<+

() lﬁi}(@dh#ﬂ

if F(w) is the spectral function of v(h), we have:
+ o
ﬁu—nzzf 1-08 8 op

where =7 —t; for any ¢ >0, we have:

. 2 1—cos dw
lim = = —

6+ 6 CU~

dF (0)=0.

Iw[>s

Let us assume that, in the interval (—e,+e€), F(w)
has a derivative f(w), and that f(w) is continuous
for w=0, with f(0) #0; we have:

dF (@)=1 (0) f

cos 0w

dw+

f+ 1 —cos 0w

f“ 1—cos éw

€

T @—f O de

977170—52-
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+e1—cos dw
2 2

to S6, where S is some fixed number 0; and
!f m [f (0)—f (0)] dw| is bounded by 53,

when 6—+ «, 1(0) f

—(3

dw is equivalent

where 7 1s a >0 number, as small as we like if we
choose e sufficiently small on the other hand, F(w)
has an everywhere continuous derivative f (w) 1f

[Tl lan< ;s and, s ="y @ an,

the lemma follows. Besides, we see that, under the
assumptions (a) (b), there exists a number ¢ such as:

a*(Ty~cT (5)
when 7'—-+ «; (5) is more precise than (4).

2. In what follows, we have to consider: a Poisson
process N(f) of constant parameter m; if 7 >t,
N(r)—N(t) is the number of the jumps between t
and 7, and

[m(r—t)] K

—m(r—t)—— !

Pr{ SIHE

the derived centered process N*(t)=N(t)—mt; a
real function R(¢,7) of the two variables ¢, 7, defined
over — o <t, <+ o, such that, for every fixed ¢,
R*(t,7) 1s, as a function of r, L-measurable and L-
summable; the process X(¢) defined by:

N(n)—N(@)

b

8
X({#)= lim mq {iac,i_f R(t, r)dN*(r)}- (6)
a—w, Bt Vi«
We shall call such a process X(¢) a random function
derived from a Poisson process (rfP). The precise
meaning of (6) is stated, for instance, by Fortet.*
It is known (see footnote 4) that:
Theorem I: If m—+ o, X(t) is tending in law®
toward the Laplacian process X*(t), the covariance
I'(¢,7) of which is given by:

F@ﬂ=£tkmwmanL )

Reciprocally, one may ask under what conditions a
real Laplacian process X*(#) with c. I'(f,7) may be
considered as the limit in law of some rfP. We
gave (see footnote 4) a partial answer to this ques-
tion, by the following:

Theorem II: Let the ¢ T'(t,7) of X*(t) be a func-
tion 7(h) of h=7—t only; X*(¢) is the limit in law of
a rfP with a R(t,r)=R(r—t) depending on (r—t)
only, if and only if: (a) r(h) [which is necessarily
positive definite as a c] is continuous [hence, it is a
cf] with an absolutely continuous spectral function;
(b) R(u) is of the form:

¢ Fortet, Random functions from a Poisson process, Berkeley Second Sym-
poemm on Mathematical Statistics and Probablhty (1950

5 A process X(#) tends toward the process X*(¢) in law 1f for any n and any #;,
ta, ., tn, the fr of the (n- dlmensmnal) rv [X(tl) X(t), .y X(ta)] is tend-
mg “toward the fr of [X*(h), X*(t2), . X*(tn)].



Ru)= .
1 (T 7S i, —ieu,g,, [Fourier-Plancherel
NETA V) e @eiondo transform)],

where f(w) is the spectral density of 7(h), and ¢(w) is

any odd function. )
We shall give here a more detailed proof of this

theorem; if there is a rfP X(@) with R(,7)=R(r —t)

depending on (z—?) only, | and such that we have:

i R, 7) d~r=f+m R*u)du< + oo:l and tending in
law toward X*(f), we must have by (7):

r(h) = f j: R@)Ru-h) du 8)

Let us put:

~+ o
a(w)et? @ =—l_—_f R(u)e~"*du [Fourier-Plancherel
v2m) -e transform],
@ (w) being real, even, and = 0; ¢ (w) is odd, R(u)
being real; then we have (see® for instance):

-+
r(h)=f a(w)e V@ q(—w)e¥ W e ihod g

-+ o
=f a*(w)e~"ed w.

Hence, r(h) is necessarily continuous and with a
spectral density a%(w). Conversely, if r7(h) is con-
tinuous and has a spectral density f(w), a function
R(u) exists given by:

+o
R(u):f_co V%Vf(w)ewme—iwudw ©9)
where ¥(w) is any odd function, such that:
—+
f Rw) du< +

and satisfying (8).

1t is more difficult to obtain a result in the general
case; of course, I'({,7) <+ « for every ¢ is a necessary
condition; we suppose it satisfied in what follows;
in a heuristic manner, we may develop the following
considerations: T'(,7) is, as a ¢, of the nonnegative
type (see reference cited in footnote 2, p. 301); hence,
if His the linear operator defined on L*(— « ,+ =) by

+w
sO—HLf1= [ 1€, 1f)dr

then, under some general assumptions, /H is self-
adjoint positive (bounded or not); hence it has™ a
self-adjoint positive square root K [and only one?],

6 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2d ed.
Clarendon Press, Oxford, 1948).

7 Bela de Nagy, Spektral darstellung lineares Transformationen des Hilbert-
schen Raumes, Ergebnisse der Math. 5, part 5, p. 52 (Springer, Berlin, 1942).

8 But in general there are also self-adjoint nonpositive square roots, and also
non self-adjoint square roots.

that is to say that: K*=H; under some general
assumptions, / being an integral operator, K is also
an integral operator and admits a representation
of the form:

00=K1f1= [ K@) s

The relation K*=H is expressed by:
T, )= f _+:K(t,u) K, =) du

and, because K(¢,7) is necessarily symmetric, by:
N f :L:K(t, W K(r,u) du

Hence we have found a solution of (7) (and a sym-
metric one): we may take R(t,7)=K(t,7); and there
is at least one rfP, the limit in law of which is X*(¥).
For instance, if T'(¢,7) is continuous over every finite
domain and if

fj:fj:l“"(t, 7 dtdr < + o

H is completely continuous; all the necessary assump-
tions are satisfied; I'(Z,7) admits the representation:
P(t, T) - Z f](t).)i{]<1>

j

J

where the A/s are the eigenvalues of H, and f,’s its
normed eigenfunctions; we have:

Ji®F(7)
7

in mq

VA

Then we may remark that, if we have a solution
R(t,7) of (7) for a particular I'(t,7) =I°,7), R({,7)=
Sf()R(t,7) is a solution of (7) for T'(t,7) =f(t)f () T°(¢,7).
From that we may deduce that for every I'({,7) con-
tinuous on every bounded domain, (7) admits at
least one solution (symmetric or not); the reason is
that, in such a case, we may find a continuous func-
tion f(#) and a kernel I°(¢,7) such that: (a) I'°(¢,7) is

R, =K, 1)=22

: : b
continuous (on every bounded domain); (b) f

[T e atar<+ = () 16,79=F0S@G, 7).

For mstance, we may choose f(f) in the following
way: let N(a) be the tub|T'(¢, 7)] when 0=|7|Zt|=
a,N (0)=max [1,\(@)]; we take: f{)=N()et’. Hence
we have the:

Theorem I11: Every Laplacian process X*(¢), the
¢ I'(t,7) of which is continuous on every bounded do-
main is the limit in law (as m is tending toward + «)
of at least one rfP.

On the other hand, it is obvious that in general (7)
admits several, and even an infinity, of solutions
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R(t,7): for instance, if I'(¢,7)=1, there is an infinity
of choices for R(¢,7) which are functions of 7 only that
satisfy (7); another remark is that a I'(4,7), given by
(7) when R(t 7) is given, is necessarily a covariance,
but is not necessarily a ‘continuous one [see, for ex-
ample, the case where:

R(t,r)=0 if t=0 and:=e" " if 0]

3. In what follows, we consider rfP X(7) like (6);
and, V(txz) being any real, given function of ¢ and ,
we consider the rf

Y ()=

and the functionals:

VIt X(®)] (10)

Lt, 1)— ﬁ Vi, X)) du

and our aim is to prove that, under some assumptions,
the fr of L(t,t+ T'), when this rv is properly normed,
and for any fixed ¢, tends toward Laplace’s fr when
T—+ ». And we shall try to extend this result to
the case where X(¢) is not a rfP but a lLaplacian
process. In all cases we shall assume that there is
a finite positive number M, independent of ¢ and z
(but, of course, depending on the considered func-
tion V') such that for any ¢, z, 2"

[V(te)—Vita)| s Mpa—a'| (11)
where a 1s any fixed number with 0<a<1. Ofsuch
a function V, we shall say that it belongs to the class
Cu; if VeCy and if f({) is any function of ¢, it is
obvious that V--f belongs to (.

In this section, we restrict ourselves to the station-
ary case, in which R({,r)=R(r—1) depends on (r—1)
only, and V(t,z) =V (x) depends on z only; we begin
by considering the case where X(?) is a rfP.

It is readily %v(\n that Y(t) is strictly stationary,
that E[Y®)], E[Y®|, EIY*®), E[Y®)Y({+ h)]—
v(h) exist; from a plccc(hnﬂ remark, we may assume,
without. loss of generality, that E[Y(#)]=0; v(h) is
the fc of Y(¢), and it is easy to prove that vy(h) is
continuous; Y(t) is continuous in mq and

L= ft V X @) du

imq

exists; E[L(t,7)]=0; the emq o(r—1) of L(t,7) exists,
(lopvmls only on (r—t), and is given by:

2r—t)= fr fry(u—v) dudv
Jit JE

[t 1s supposed that:

+o
[T Ry du< + =

!
.

We put:
iR f R (w) du
Jlul>a
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and we assume that:

[ s da<t = (12)
We put:
Ro()— R@)if ju|=a o =
a(u~{0 if Ju>a . (W)=R(u)— R, (u)

(13)

X,(t)= lim mgq

a——o, 4o

{iac\/%n_f R.(t—7)dN* (T)}

(14)
X.t)=Xt)—X.(t)=
B8
lim mg m{iac \/L;ﬁ f R.(t—) dN* (+)
(14")

and we remark that: (a) if |r—t|=2a, X,(t) and
XN,(r) are two independent rv; (b) for every fixed
t, X,(t) and X,(t) are independent rv; but the two
processes X, (t) and X () are, in general, correlated,
because X,(t) and X,(r) are not necessarily inde-
pendent if r #¢.  Now we state the following lemma:
let Ri(u) (7=1,2, ., ) be r real functions such

that:
) ) .
f (B ()] du<+ = G=1,2,...,7.
We put:
s@=[ @@k G=1,2,.. .,

X/(t)= lim mq

a—s—o, 4o

{iac x/%ﬁzzf(t—f) dN*<T)}(j:1,2, ,r)

Let V;(x) be r functions of the class C,, such that:
E{V,[X@®)]}=0 (=12, L)
We put:
Z()= 33V, IX )
Of course, Z(t) is a strictly stationary rf; let
p(h)= EFZ(t)A(tth)] be its fe. In what follows, S

1s some finite fixed positive number, not nccoseanlv
the same in all the formulas; we have the following:

Lemma 3: ]p(h)[:S(é‘f@. (g)g>

It is sufficient to prove this in the case r=2; Ri(u),
R (u), Xit), X () being defined as in (13), (14), (14)’,



we put:

Z,H= Vi[X.(O] 4 Vo [X50)]

hen

ElZ,0)=E[Z,t)—Z(1)]
=E{(VIIX.0l— VIX'O)+(VIXZ0) — VXD

and by (11):
|E[Z®]| = S{EIX. |1+ E[|X2@)[}

By Holder’s inequality, we obtain:

|ELZ0)]| =S eu(a)t + dola) | (15)
because:
E{X)OF) = f IR = f | IRpdu=ga)
We put:
A= Z,t)— E[Z)]
-Ba<t> = E[Za(t)] + Z(t) - Za(t)
We have:

Z(t) ez Aa(t) + Ba(t)
E[A0]=E[B,®]=0

and, if [t/ =2a,A,(0) and A,{) are two independent
r.v.; we have from (11) and (15):

BuO)] < S |u(@)? +dola)f -+ | X0) |+ | X2(0)| ]

Hence; from Holder’s inequalities:

a a)2
BB =S [#1@F +os0? |  (16)
On the other hand, it is easy to see that:
E(4.0)=8 (17)

hence, if a=~h/2, we may write:

p(h)=E[Z(0)Z(k)]|=

(16), (17), (18) and Schwarz’s inequality prove the

Lemma 3. By exactly the same method, we may
prove that:
Lemma 4:  1f we put:

Y()=WVi[X'®)l, Y.)=VIX'@®), ..., =V, [X*D)]

(under the same assumptions as above on the X7’s
and the V;’s) and:

E[Y (6)Yi(t+h)l=vu(h),

36

we have:

lva(h)| =S [?;, ®; <,2L>Z]

(where S may be chosen independent of j and k).
Now, we return to the rf Y(t) defined by
Y@O=VIX®]

and with fe y(h),
Lit,r)— f 'Y ) du
t

By (9) and the lemma 3 (with »=1), we have:

+®
[ wjan<+ =
We shall assume that:

+o
f- y(h)dh#0 (19)

It follows by the lemma 2 that there are two posi-
tive numbers / and m such as:

l(r—t) S a*(r—t) Em(r—1) (7>1)

at least for (r —t) sufficiently large; let @ be any posi-
tive number, we put:

Y.()=V[X.0)]

AO=Y.)—E[Y.,0)]  B.®=Y@O—Y)+

E[Y. 1]

Lat,r)— ft "Ayde Llr)— ﬁ " Bwydu

We have
Y ()= A1)+ B.t)

L(t)T>:La(t) T)—I—L;(t,T)
and we remark that:
(a) if [7—t|=2a, A,() and A,(r) are two independ-

ent rv; by lemma 3, applied to A,{#), the fe v,(h) of
A,(t) is such as:

va(h)| = So (gy (20)

on the other hand we have:

lim vy, (h) =~ (h).

a— -+ ©

21

This follows obviously from:

Aa(t) == Y(t) W [Y(t) - Ya(t)] _E[ Ya(t)]r



from (12) applied to Y,(), and from:
YO — Y.0)!=|V[XO—VI[X.0] = M| X )]

It follows that, for any a
+
[©7 rawldh<+ =
and that, for any sufficiently large a, by (19):
|-

Hence for any sufficiently large a, by Lemma 2, there
are two positive numbers /; and m, such as:

Yo (h)d =0

Li(r—t) ZE[Lt, 7)) =my(r—1)

and A,(f) being a strictly stationary process, it fol-

lows from Lemma 1 that, for any fixed t and when 7

is tending toward + = the fr of
Ltt+T)
VE[LGt+ 1)

tends toward Laplace’s fr [with em=0 and emq=1};
on the other hand, putting:
B=u-+0,

a=uU—7uv

we may write:

fgaEir t+T
[ f v(u— 1,')(/7u/z'-*f'f(t+”\ ZI: f 'y(a)(/a]
JE Ji tv2

where 8, and B, are two functions of g, easy to deter-
mine; in the same way:

[HL f Yol —v)dudw *;15 [ (t:”\ 2[[ Yol )(la]dﬁ
) J 81

From (20) and (21), it follows that:

LUth%TH
lim —_1—-— 10 (22)
a—+= 71 02( r]Y)

uniformly in T.

(b) We may apply the lemma 3 to B,(t), in the
following way: r=2, Vi[z]=V(z), Vy(x)=V(x)—
EY,®)], R'=R), R*=R,(u); as:

dr(w)=o(u)  da(u) = ¢(u),

we obtain that, v.(h) being the fe of B,(f):

|7 | % g h/ .
) =80 (5) -

91t is useful, for the proof, to divide the numerator and the denominator by 7'

And, because:

B (t)={ VIX(®)] — VIX (0] } +E[Yu?)]

it follows from (12) [applied to Y,(¢)] and from (8)
that, for every fixed h:

lim v/(h)=0.

a—+©

From this we may deduce, as in (a), that:

E[L(tt+T)]=0

Im 5
a—+ ]'

uniformly in T.
Now, from all these facts and from Lemma 1, it
follows the:

Theorem IV: Under the above hypothesis, when
T tends toward -+ < and for every fixed ¢, the fr of

Litt+T)
a(T)

tends toward Laplace’s fr [with em=0 and emq=1].
More generally, considering Z(t) defined by:

,
=33 VLX)
Jj=1
as above, under the same assumptions, and if we put:
\ ‘T \
M@, 7)= [ Z(u)du,
Jt
obviously we obtain in the same way that:
Theorem V: When T tends toward + < then, for

every fixed ¢, the fr of

VEMGrTa Mo D

tends toward Laplace’s {r, at least if, 6(h) being the
fe of Z(t), we have:

+ o

f s(h)dh 0
On the other hand, considering Y/(t)=V,[X'(t)]
(j=1,2,. . .,r), under the above assumptions, and

assuming that, if v;(h) is the fc of Y(t), we have:

Al
[' vR)dh=0  (j=1,2,. ..,

putting:

Lwa:LHUWM% o*(r—t)—E[LA, 7Y

it is easy to prove that:
Theorem VI: For every fixed t, as T tends toward

37



Lt t4-T)
O'l(T)

g oe ey

-+ o, the fr of the r-dimension rv{

Lt t+ 1)
- a(T)
fr.

In order to prove theorem VI, we have to use
Lemma 4, a reasoning very similar to that which
gives Lemma 1, and to prove that, when 7—+ o

{L‘(t t+T)><L2(t 1+T)}
oy(T) oo(T)

has a limit. That is not difficult, with (5) and a
reasoning similar to that which leads to (22).1°

Euxtension to the case of a stationary Laplacian process:
Let X*(t) be a Laplacian stationary process, with
_fe 7(h); from theorem II we know that X*(¢) is the
limit in law (when m-—- «) of the fdP X () with
R(u) given by (9); let us assume that there 1s a choice
of Y(w) in (9) in such a way that, ¢(a) always being

} tends toward an r-dimensional Laplace’s

R*(w) du,
|ul>a
we have:

st dac+ 23)

Introducing, as above, X,(t) and X/({), we know, by
theorem I, or, better, by a more genelal thoorem of
[3] that the two-dimensional rf [X.(t), X.@#)] tends
in law toward a two-dimensional Laplacian rf [ X*(),
X *(t)} (when m—+ ), and we see immediately
that we may consider that:

X*O=XI0+X 0

It is clear that, if |r—¢ =2ae, X} () and X(7) are
independent; that for every t, X5(t) and X *(f) are
independent; but ‘the two tf X5 t) and X *(t) are
correlated; the fc's of 20 X;*(t), the correlations
between X*(1) and X*(t), X*( and X *(t), X*(#)
and X *(f) being the same as those between X(¢)
and X, (t) X(t) and X;(t), X,(t) and X (¢). What-
ever m 1is, it 1s clear also that the preceding method
may be apphed to X*(t) as well as to X(#), and with-
out any change; in particular, we may conclude:

(a) from Lemma 3, that (24) is a representation
if X(t) be a sum of two Laplacian processes, the
second of which is in some sense negligible if a is
large, the first being of a well-defined and very sim-
ple and special form; this decomposition is valid for
a wide class of stationary Laplacian processes [it
would be interesting to replace (23), which defines
this class, by a more direct assumption on r(h)], and
seems to us to be the most interesting feature which
we encounter in this section; it must be pointed out
that this decomposition is not a classical spectral de-
composition; in such a spectral decomposition, which
is valid for any stationary r.f. of second order, the

(24)

10 Theorem IV was first stated by Blanc-Lapierre, in Sur certaines fonctions
aleatoires stationnaires, Thesis (Paris, 1945), Masson edit., but under some very
much stronger assumptions.
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terms of the sum are uncorrelated: but ia (24),
XN¥(t) and X.*(t) are correlated.

(b) Theorem IV and Theorem V are immediately
applicable with X*(#) instead of X (f); it is also pes-
sible to state the equivalent to Theorem VI.

4. Now, we take the case in which R(t,7) is any
function of (f,7), but we assume that there is a
nonnegative function 7 (u) such as:

4o
RODISRE-7 [ Rt

and such that, if

¢ (0)= f | Edu,

f T @ du - o

and V(t,x) may depend on t.
It is clear that the preceding method may be applied,
with:

R,(t,7)=R({,7)if |7r—t|Za,=0if |7—t| >a

R.(t,7)=R (t,7(—R.(¢,7)

and so on. The limitations given by Lemma 3 and
4 are still valid; we start by considering, not X(¢),
but its Laplau&n limit in law X*@); let v*(u,p)=
E {V[X*(w)]V[X*®)] }be the ¢ of Y* () VIit,X®1,

and

L*(t_,f):ft’y*(mdu.

It is easy to see that there is a function K(r—t)
such as:

E(L*¢.n) ) =K(v—1) (25)
is valid for every (¢,7). Consequently, by Lemma 1,
the analogue of theorem IV yields, if we suppose

that:
1 (t+T [t+T
Tﬁ ﬁ v *(uw,v)dudv >0

[this limit is independent of ¢; this assumption is
to replace (19)]. And we may point out that we
have for X*(#) a decomposition analogous to (24).
But it is an open problem to characterize, directly
on their c., the Laplacian processes such that there
is a corresponding function £(¢,7) satisfying the pre-
ceding assumptions. But we may mention that, in
the electrical applications it is known a priori that the
interfering Laplacian processes are of the above con-
sidered kind.

Now, if we take the case of X(t) instead of X*(¢),
we may follow exactly the same procedure; the only
exception is that, now, the limitation analogous to
(25) 1s not automatically satisfied, and we need a
supplementary assumption, like, for instance:

lim inf
T—+



E[(f: Rt—r) z(zN*(r)1)3:|<+ S

in order to have (25).

5. On the other hand, it would be useful to havean
assumption on V weaker than (11); considering only
the stationary case, it is easy to see that (11) may be
replaced by the weaker assumption that:

V@) — V@) <A@ le—|=  (0=a<ll) (26)
where the positive function of z XN(x) is such as:
2
E(MxOI=)<+ = (27)
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or

B .
E(axr@=)<+ =
If N(x) is bounded by:
Nx) <A+ Blzff

when A, B, g are any positive numbers, (28) is always
satisfied.

If a=1, reasonings have to be slichtly modified,
but it is readily seen that weaker assumptions like
the preceding one may be accepted.

But it would be useful to have assumptions such
that V" may have some discontinuities.

(28)

LLos AxcrLEs, December 18, 1951.
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