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On Some Functionals of Laplacian Processes! 
R. Fortet 

Let X (t) be a random fun ction derived, in a sense t hat is explained in t he paper , from 
a Poisson pTocess . It is proved t hat , under certain assumptions, t he dist ribut ion of the 

r'+T . fUll ctional J, V(u, X(U» dlt ten ds to a Laplacian (i. e. normal) distribu tion as T-->oo . 

This result is extended to t he case t hat X (t) is itself a Laplacian process by means of a 
t heorem stat in g t hat, under certain assumptions, every Laplacian process is t he limi t of 
some random func t ion derived fro m a Poisson process. 

W e shall use the following abbreviations: 
fr : function of repartition. 
cf: characteris tic function. 
c : covanance. 
fc: function of correlation. 
rf : random function. 
rv: random variable. 
mq: in quadratic mean. 
ac: almost certain , with probability l. 
Ip: Laplacian process. 
rfP: random function derived from a POiSSOII 

process. 
em: mathematical expectation. 
emq: standard deviation. 
imq: integral in quadratic m ean. 
iac : integral with probability l. 

Section 1 is devoted to the statement of some 
lemmas' section 2 is to show that, under some general 
assumptions, a Ip may be considered as the limit, in 
law, of certain rfP's; section 3 is to state our principal 
r esult in the stationary case; section 4 is devoted to 
extensions of these resul ts to non stationary cases; in 
section 5, we indicate some generalizations in another 
direction. 

1. Let yet) be a real rf of second order defined over 
(- co, + co), the c 'Y(t ,T) of which is R-integrable (on 
every finite domain); we assume E[Y(t)] = 0; hence: 

L (t,T) = i TY (u)dU Imq 

exists, h as a null em and an emq U(t,T) given by: 

U 2 (t,T)= i 7 .f'Y (u,v) dudv 2 

we assume that: (a ) there eXIsts a fLxednumber l such 
that, for any integers n, m, and for any values 
tI , • • • , tn, TI, . . . , Tm with: 

a and b (ind ependent of t a nd T) such that 

at least for (T-t) > 0 and sufficien tly large; (c) there 
is a finite positive fun ction K (u) such that: 

for every (t ,T), at least for (T- t» O and sufficien tly 
large. 
Then we have the following lemma : 

L emma 1: Under the above assumptions (a), (b) , 
(c) , for every fixed t , the fr of [L(t,t + T )]/[u(t,t + T)] 
tends toward Laplace 's law [with em = O and emq = 1] 
when T tends toward + co; and L (t,t+ T )/ T tends 
toward 0 in probability.3 

Proof: Of course, it is sufficient to consider the 
case t= 0; let L be any positive number, larger than 
l ; we put: 

tn = n(L+ l) t~ = n(L+ l)- !; 

X n= rt~ Y (u)du Jtn - 1 

and, if n T is the largest integer such that: nT(L + l) ~ 
T , 

We have: 

L (O,T) 
u (O,T) 

1 n r T . 1 nr T Z r 
(0 T) ' ~ X,+ (0 T )' ~:1 J+ (0 T ) (1) u , J = 1 U, J = 1 U, 

It must be pointed out that the Y/s are mutually 
independent; also the X/s are mutually independent; 

the two (n-dimensional and m-dimensional) l'V . hence we have: 
{Y(tI ), ... , Y(tn) }and{Y(TI) , . .. , Y(Tm) }are in­
dependent; (b) there are two fixed positive numbers 

1 The preparation of this paper was sponsorer1 (in part) by thc Officc of Naval 
Research. 

'Loeve, Fonctions aleatoires d u second ordre, p. 320, in P . Levy, PrOccssus 
Stochastiques, Paris, 1948, Gauthiers·Villars edit. 
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(3) 

3 We do not know if this rather obvious lemma is Or is not already known. 



l j (L + l ) being a quan tity tha t may be arbitrarily 
~mall , if we choose L sufficiently large. From the 
mdependcnce of the X/s, and from (b) and (c) it 
follows that the fI" of 

> U 
.JE[U2] 

whcre 

~ tends toward Laplace's law [with em = O and emq = 
1], when T tends toward + co ; on the other hand, it 
(ollows from (2) and (3) that E[U2] ju2(O,T ) may be 
as near 1 as we like, if we choose Land T sufficiently 
large. The lemma follows obviously from thes·c 
remarks. 

R emark: It must be pointed out that, if Y(O is 
':) s trictly sta tionary, the assumption (c) may be sup­

pressed , the X /s having, in such a case, the same 
fl"; on the other hand, in the general case, (c) may, 
of course, be replaced by some other, more or less 
~e nera1 , assumption of the same kind. 

We consider now a real rf Y(t ), defined over (- co 
+ co), sta tionary of second order and the fc 'Y (h) of 

) which is continuous; we are always considering 

L (t ,T)= .fY(u) du 

but in this stationary case, U 2(t,T) depends only on 
I (T-t) ; we have the: 
~ L emma 2: For the existence of two positivc num-
I bcrs a and b such that: 

or any t, T, at least for (T-t) s ufficiently large, it is 
ufflcient that: 

(a) J+O> 
- 0> 1'Y(h) ldh <+oo 

(b) J+., 
_., 'Y (h) dh rf 0 

. If F (w) is the spectral function of '"1(11, ), we have: 

U 2 (T- t)= 2 J:.," l -~S Ow dF (w) 

vvhere O= T- t; for any E> O, we have: 

lim ~ r l - C~S Ow dF (w)= O. 
6->+ '" 0 J Iwl>. w 

I Let us assume that, in the interval (- E, + E), F(w) 
>has a deriva tive j ew), and that few ) is continuous 
for w= O, with f(O) rf O; we have: 

J_~< l -~S Ow elF (w)= j (0) .L~< l -~S oWelw+ 

. L~· l -:~S Ow [j (w) -f (0)] dw 
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h r+· I - cos Ow 
w cn o---?+ co, j (0) 2 dw is equivalent 

• -< 2w 

to 80, where 8 is some fixed number rfO; and J+' l - COS Ow I _ < w2 [f (w)-f (0)] dw I is bounded by 7]0 , 

where 7] is a > 0 number , as small as we like if we 
choose E sufficiently small ; 011 the other hand, F (w) 
has an everywhere continuous derivative f (w) if 

f -+.," I 'Y (h ) I dh < + co; and, as j (0)= .L+.," 'Y (h) dh, 

the lemma follows. Besides, we see that under the 
assumptions (a) (b), there exists a numbe~· c such as: 

(5) 

when T ---?+ co ;(5) is more precise than (4). 
2 . In what follows, we have to consider: a Poisson 

process N(t ) of constan t parameter m· if T >t 
N H - N(t) is the number of the jumps betwcen t 
and T , and 

[m (r-t) ]K 

P1'[NH-N (t)=K] = e -m(r-tJ------:T(!-- ; 

the deriv~d centered process N*(t ) = N(t) - mt; a 
real functlOn R (t ,T) of the two variables t , T, defin ed 
0ier -.co < t , T< + ~, such that, for every fixed t , 
R (t ,T) IS, as a functlOn of T, L-meas urable and L ­
summable; the process X(t ) defined by : 

X(t) = lim mq {iac ~Jf3 R (t , T)dN*H}. (6) 
a -+-co , II_+oo 'V m a 

W e shall call such a process X(t) a random function 
derived from a Poisson process (riP) . The precise 
me.aning of (6) is stated, for instance, by Fortet.4 

It IS known (see footnote 4) that: 
Theorem I: If m ---?+ co, X(t ) is tending in law 5 

toward the Laplacian process X * (t ), thc covariance 
r(t,T) of which is given by : 

J+., 
r (t,T)= _., R (t ,u )R (T,U) du (7) 

R eciprocally, one may ask under what conditions a 
real Laplacian process X*(t ) with c. r (t ,T) may be 
considered as the limit in law of some rfP. W e 
gave (see footnote 4) a partial answer to this ques­
tion, by the following: 

Theorem II: L et the c r (t ,T) of X*(t ) be a func­
tion 1'(h) of h = T- t only; X*(t ) is the limit in law of 
a rfP with a R (t ,T)= R (T- t ) depending on (T-t) 
only, if and only if: (a) r(h) [which is necessarily 
positive definite as a c] is continuous [hence it is a 
cf] with an absolutely continuous spectral f~nction· 
~RM~~~fu~: ' 

• Fortet, Random fun ctions from a Poisson process, Berkeley Second Sym­
posium on Mathematical Statistics an d Proba bility (1950) . 

, A process X(t) tends toward the process X*(t) in law if, for any n an d any t .. 
t" ... ,tn, the Ir of the (n-dimensional) rV [X(t,), X(t,), .. . • X(t.)] is tend­
ing toward the fr 01 [X*(t, ), X*(t,), ... , X*Un)] . 



R (u) = 
_ l _ f +oo ..J j ew) eiif"w) e -iwu dw [Fourier-Plancherel 
.J2; -00 transform], 

wherej(w) is the spectral density of r(h), and ..y(w) is 
any odd function . . . 

We shall give here a more detailed proof of thIs 
theorem; if there is a rfP X(t) with R(t,r) = R(r-t) 

depending on (r - t) only, [and such that we have: 

f +OO f +oo ] 
_00 R2(t, r) dr= _00 R 2(u)du< + 00 and t ending in 

law toward X*(t), we must have by (7): 

f +OO 
r(h)= _'" R(u)R(u+ h) du (8) 

Let us put: 

a (w) ei-{l (w) = !.-J+'" R (u )e -iwudu [Fourier-Plancherel 
~27r -00 transform], 

a (w) being real, even, and ~ 0; ..y (w) is odd, R (u) 
being real; then we have (see 6 for instance): 

r(h) = J: .. oo a(w)ei-{l (w) a(- w)ei-{l (- w)e -ihwdw 

H ence, r(h) is necessarily continuous and with a 
spectral density a2(w). Conversely, if r (h) is con­
tinuous and has a spectral density j ew), a function 
R(u) exists given by: 

r.+'" 1 . R (u) = -=-vj(w)e1-{1 (w)e- twU dw 
~ -00 ..J27r 

where ..y(w) is a,ny odd function, such that: 

J: .. '" R2(U) du< + 00 

and satisfying (8). 

(9) 

It is more difficult to obtain a result in the general 
case; of course, r(t,r)< + 00 for every t is a necessary 
condition; we s uppose it satisfi ed in what follows; 
in a heuris tic manner, we may develop the following 
considerations: r (l ,r ) is , as a c, of the nonnegative 
type (see reference cited in footnote 2, p . 301); hence, 
if H is the linear operator defined on D ( - 00 ,+ 00 ) by 

f+'" 
g(t)=H[j] = _00 r et, r) j (r ) dr 

then , under som e general assumptions, H is self­
adjoint positive (bounded or not); hence it has 7 a 
self-adjoint positive square root K [and only one 8], 

• E. O. T itchmarsh, Introduction to the theory of F ourier intcgrals, 2d ed. 
Olare,ndon Prcss, Oxford , 1948). 

7 Bela de Nagy, Spek tral darstellun g lineares Transformationen des Hilbert· 
schen Raumes, E rgebnisse del' Math. 5, part 5, p . 52 (Springer, Berlin, 1942). 

8 But in general there are also self-adjoin t nonposit,ive square root" and also 
non self-adjoint square root,. 

that is to say that: K 2= H; under some general 
assumptions, H being an integral operator, K is also 
an integral operator and admits a representation 
of the form : 

f+'" 
g(t)=K[j] = -CX> K (t, r)j(r) dr 

The relation K 2=;[{ is expressed by: 

I+OO 
r et, r )= -CX> K (t ,u) K (u, r ) du 

and, because K (t,r) is necessarily symmetric, by: 

f +OO 
r et, r )= _a> K (t,u) K (r,u) du 

Hence we have found a solution of (7) (and a sym­
metric one): we may take R(t,r) = K(t,r); and there 
is at least one rfP, the limit in law of which is X*(t)­
For instance, if r(t ,r) is continuous over every finite 
domain and if 

H is completely continuous; all the necessary assump­
tions are satisfied; r(l ,r ) admits the representation: 

where the A/S are the eigenvalues of H , and j /s its 
normed eigenfunctions ; we have: 

R(t, r) = K (t, r)= 2fJJC~;r) in mq 

Then we may r emark that, if we hav e a solution 
RO(t,T) of (7) for a particular r (t,r) = r O(t,r ), R (t,r) = " 
f(t )RO(t,T) is a solution of (7) for r (f, r ) -}(t)J(r) r °(t, r). ' 
From that we may deduce that for every r (f,T) con­
tinuous on every bounded domain, (7) admits at 
least one solution (symmetric or not) ; the reason is 
that, in s uch a case, we may find a continuous func­
tionJ(t) and a kernel r °(t,T) such that: (a) r°(t,r ) is 
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continuous (on every bounded domain); (b ) J _+",oo < 

J _+",oo [rO(t, r )]2 dtdr < + co; (c) r et, r )=j(t)j(r )r O(t, r ). 

For instan ce, we may choose jet) in the following 
way: let A(a) be the lub lr (t,r)1 when O ~ l r l ~ l t l ~ 
a, A' (a)= max [l, A(a)]; we take: j(t) = A'(t)e t2 • Hence 
we have the: 

Theorem III: Every Laplacian process X* (t), the 
c r (t, r ) of which is continuous on every bounded do­
main is the limit in law (as m is tending toward + (0) 
of at least one rfP. 

On the other hand, it is obvious that in general (7) 
admits several, and even an infinity, of solutions 



R (t ,r); for instance, if r(t,r) = l , there is an infinity 
()f choices for R (l ,r ) which are functions of r only that 
atisfy (7); another r emark is that a r(t,r) , given by 

::, (7) when R (l, T) is gi ven, is necessarily a co variance, 
but is not necessarily a continuous one [see, for ex­
a mple, the case where: 

R (t,r) = O if l= O and:= e- T if t~O] 

3. In wbat follows, we consider rfP X(t) like (6); 
~ a nd, V(t,x) being any real, given function of t and x, 

w e consider the rf 

Y(t) = V[t,X(t)] (10) 

l and the functionals: 

~ L (t, r) = i TV[U, X (u) ] du 

, 
, and 0UI' aim is to pl'ove that, under some assumptions, 

the f1' of L(l,t+ T ), when this rv is properly normed , 
and for any fixed t, tends toward Laplace 's frwhen 

i T~+ 00 • And we shall try to extend this res ult to 
the case where X(t) is not a rfP but a Laplacian 

( process. In all cases we shall ass ume that there is 
a firlite positive number M, independent of t and x 
(bu t, of course, depending on the considcl'ed func­

I tion V) such that for any t, x , x': 

I W(l ,x)- V(l,x') I ;£ MI:L-x' ia (ll ) 

l vhere a is any fixed number with O< a;£ 1. Of such 
a function V, we shall say that it belong to the class 
Oa; if V~Ca and if f(t) is any fUllction of t, i t is 
obvious that V +} belongs to Ca. 

In this sec tion, we r estrict ourselves to the station­
ary case, in which R (t,r )=R (r-t) depends on (r-l) 
only, and V(t,X) = Vex) depends on x only; we begin 
by co nsidering the case where X (t) is a rfP. 

It is readily seen t.hat yet) is strictlv stationary, 
that E[Y(t )], E[ IY (t )l ]' E[P(t )], E[Y(t )Y (t+ h)]= 
'Y (h) e}"'lst; from a preceding remark, we may assume, 
without. loss of gener nlity, that E[Y(t)] = O; 'Y (h) is 
the fc of yet), an d it is easy to prove that 'Y(h) is 

, continuous ; yet) is con tinuous in mq and-

L (t ,r) = ( T V [X (u)]du 
.J t Imq 

exists; E [Lrt,r)] = O; th e emq CJ (r - t) of L (t,r ) exists , 
depends only on (r - t) , and is given by: 

CJ2(r - t)= iT i T 'Y (u -v) dud v 

It is supposed th at: 

We put: 
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and we assume that: 

(12) 

We put : 

{
R (u) if lui ;£ a 

Ra(u) = 
o if lul>a 

H. (u) = R(u) - Ra(u) 

(13) 

Xa(t) = limmq {iac ~ ( IJ Ra(t - r ) dN* (r)} 
a-.-co , tJ-++ 00 1/ m J a 

(14) 

x: (t)= X(t)-X a(t) = 

lim mg {iac - 1- (IJ R: (t - r) dN*(r) 
a -+-co, /J--++co mJa 

(14') 

and we remarh:: that: (a) if Ir - t I ~ 2a, X a(t) and 
X a(r) are two independent rv; (b ) for ever y fLxed 
t, X a(t) and X : (t) are independent rv; but the two 
processes X a(t) and X:(t) are, in general, correlated, 
because X a(t) and X : (r ) are not necessarily inde­
pendent if r ~ t . Now we state the following iemrna: 
let RJ(u) 0 = 1,2, .. . , r ) be r real functions uch 
that: 

0 = 1,2, .. . , r ). 

We pu t: 

cp,(a)= ( [Rl (u)J2du 
.J lul>a 

0 = 1, 2, . . ., 1') 

X '(t)= lim mq 
a -+ - co, /1-++ 00 

Let VJ(.;) be r functions of t he class Ca , such that: 

E { VJ [X' (t)] } = 0 0 = 1, 2, ... , r ) 

W e put: 
r 

Z (t)= ~ V j [XJ (t)] 
j= l 

Of course, Z(t ) is a stri ctly s tationary rf; let 
p (h)=E[Z (t)Z(t + h)] be its fc . In what follows, S 
is some fini te fixed positive number, not necessarily 
the same in all the formulas; we have the following; 

It is sufficient to prov.e this in the ea e r= 2; R~(u), 
R~/(U), X~(t), X~i (t) being defined a in (13 ), (14), (14)' , 



we put : 

hen 

E[Z a(t)] = E[Za(t) - Z(t)] 

= E {(V 1IX!(t)]- vJ[XJ (t)D +(VJX~(t)] - V~[X2(t)])} 

and by (11 ): 

IE[Za(t)] I ~ S { E[ IX~J(t) l a ] + E[ IX~2(t) la] } 

By Holder's inequality, we obtain: 

because: 

Vile put: 

We have: 

Aa(t) = Za(t) - E[Za(t)] 

Ba(t ) = E[Za(O] + Z(t) - Za(t) 

Z(t) = Aa(t) + Ba(t) 

E[Aa(t)] = E[Ba(t)] = 0 

(15) 

and, if [t l ~ 2a, AaCO) and AaCt) are two independent 
r.v.; we have from (ll) and (15): 

a a 

I Ba(t) I ~S I ¢I(a)2 + ¢2(a)2 + IX~ J (t) l a+ IX~2(t) l a l 

H ence, from Holder's inequalities: 

(16) 

On the other hand, it is easy to see that: 

E( I A a(t)J2) ~ S (17) 

hence, if a = hj2, we may write: 

p(h)= E[Z(O)Z(h)] = 

E[A}(O)B~(h)+ A~(h)B~(O) + B~(O)B~(h)] (18) 

(16), (17 ), (18) and Schwarz's inequality prove the 
Lemma 3. By exactly the sarrie method, we may 
prove that: 

Lemma 4: If we put: 

(under the same assumptions as above on the X i's 

we have: 

(where S may be chosen independent of j and k ). 

Now, we return to the rf y et) defined by 

YCt)= V[X~t) ] 

and with fc 'Y(h), 

L (t,T) = .r Y(u)du 

By (9) and the lemma 3 (with r = I ), we have : 

We shall assume that : 

(19) 

It follows by the lemma 2 that there arc two posi­
tive numbers land m sllch as: 

at least for (T - t) sufficiently large; let a be any posi­
tive number, we put: 

Ya(t) = V [Xa(t)] 

A a(t) = Ya(t)-E[YaCt)] BaCt) = Y (t) - Ya(t) + 
E[Ya(t)] 

L a(t ,T)= iT A a(u)du 

We have 

L~(t , T ) = fT Ba(u)du 
.J t 

y et) = Aa(t) + Ba(t) 

L (t , T) = L a(t, T) + L~(t , T ) 

and we remark that: 

(a) if IT - t l ;;;; 2a , Aa (t) and Aa H are two independ­
ent rv ; by lemma 3, applied to AaCt) , the fc 'Ya(h) of 
Aa(t) is such as: 

a 

(h)" l'Ya(h)I ~ S¢ "2 - (20) 

on the other hand we have: 

(21) 

and the V / s) and: This follows obviously from: 

E[Yi t) Y i t + h)] = ), jk(h), Aa(t) = Y (t)-[Y (t) - Ya(t)] - E[ Ya(t)] , 
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from (12) flpplied to Ya(t), and from : 

! Y (t)- Ya(t) ! = !V[X(t)] - V[Xa(t)] ! ~ 111 !X~(t) ! a . 

~ It fol lows that , for any a: 

> 

/ 

and thn,t , for nny s ufficiently large a, by (19): 

H ence for any sufficien tly large a, by L emma 2, ther e 
arc two positive numbers II and m l such as: 

and A a(t ) bein g a s tric tly s tationary process, it fol­
lows from Lemma 1 that , for any fixed t ancl when T 
is tending toward + 00, the II' of 

L i t,t + T ) 

,E[L i t,t + T ?] 

tends toward Laplace's fr [with e111 = 0 and emq = l]; 
on th e other hand , putting : 

a = U- V 

where i31 and (32 arc t\\~O fun ctions of (3, easy to deter­
mine ; in the sam e wfly: 

From (20) and (21 ), it follows that: 

~ E(L,,(t ,t + T )2] 
lim -.= 19 (22 ) 
a~+'" ~ (J2(T) 

uniformly in T . 
(b) "Ve may apply the lemma 3 to Ba(t ) , in the 

following way: r= 2, VI [x] = V(x) , 112(x )= V (x) ­
E[Ya(t ) ], R I= R (u), R2= H,, (u); as: 

CPI (u ) ~ cp (u ) 

we obtain that , 'Y ~(h) being th e Ic of B a(t) : 

g i t is useful , for the proof, to di vide the numera tor and th e denominator by T . 

And , because: 

B aCt) = { V[X(t)] - V [XaCt)] } + E[Ya(t)] 

it follows from (12) [applied to Y a(t )] and from (8) 
that, for every fixed h: 

lim 'Y~(h)= O . 
u----t+ m 

From this we may ded lice, as in (a), that: 

lim 1;E[L~(t,t + T)2]= O 
Q-++cn 

uniformly in T. 
Now, from all these facts and from Lemma 1, it 

follows the: 

Theorem IV: Und er the above hypothesis, when 
T tend s toward + 00 and for every fix ed t , the [1' of 

L (t ,t + T ) 
(J(T-) 

tend s toward Laplace's j'r [with em = O and emq = l ]. 
:\10re generally, considering 7-(t ) defined by : 

r 

Z (t) = ::8 V j [X j(t)] 
j= l 

as above, under th e same assumptions, and if we put: 

M (t, T)= iT Z(u)du , 

obviously we obtain in the sam e way that: 

Theorem V : When T t ends toward + 00 , th en , for 
e very fixed t, the [1' of 

tend s toward Laplace's fr , at leas t if, 0 (h) being the 
fc of 7- (t ) , we have: 

On the other hand, considering P(t)= VAXJ(t) ] 
(j = 1,2, ... , r ), under the above ass umptions, and 
assuming that, if 'Y j (1o) is th e fc of Y j(t) , we have: 

putting: 

D (t ,T)= ( ' YJ(u)clu , 
.J I 

it is easy to prove that: 

(j = 1,2, .. . , 1'), 

Theorem V 1: For every fixed t, as T tend s toward 

37 

• 

J 



f d· . . {V(t,t+ T) + 00, the fr 0 the r- llnenSlOn rv crl(T) , .•. , 

D(t) t+ T)} tends toward an r-dim ensional Laplace's 
crr(T) 

fl'. 
In order to prove th eorem VI, we have to use 

Lemma 4, a reasoning very similar to that which 
gives Lemma 1, and to prove that, when T---,;>+ 00, 

has a limit. That is not difficult , with (5) and a 
reasoning similar to that which leads to (22) .10 
Extension to the case oj a stationary Laplacian process: 
Let X *Ct) be a Laplacian stationary process, with 
fc r(h) ; from theorem II we lmow that X *(!) is ~he 
limit in law (when m---,;>+ (0) of the fdP A (t) wlth 
R(u) given by (9) ; let us assume that there is a cho.ice 
of !/I(w) in (9) in such a way that, cf>(a) always bemg 

we have : 

f +o> a 

_a> cp(a)2 da< + 00 (23) 

Introducing, as above, Xa(t) and X~(t), we know, by 
theorem I or better by a more general theorem of 
~3] th at the t~o-dim~n slon~l rf (Xa (t) , . X~ (t) ) t~nds 
m law toward a two-dlmenslOnal LaplaCIan 1'f {Xa (t), 
X~*(t) ) (when m---,;>+ ex», and we see immediately 
that we may consider that: 

X*(t)=X:(t) + X~* (t) (24) 

It is clear that , if I r-t l ~2a, X:(t) and X:( r ) are 
independent; that, for every t, X;(t) and X~*(t) are 
independent ; but the t~vo rf Jf: t) and X~*(t) . are 
correlated' the fc's of .x: (t), X a * (t), the correlatlOns 
between X*(t) and X: (t) , X*Ct and X~*(t), X:(t) 
and X~*(t) being the same as those between X(t) 
and Xa(t) , XCt) and X~Ct) , X a(t) and X~\t). What­
ever m is it is clear also tha t the precedmg method 
may be applied to X*(t) as well as to XU), and with­
out any change; in particular, we may conclude: . 

(a) from Lemma 3, that (24) 1~ a representatlOn 
if X(t) be a sum of two LaplaCian p~·o.cesse.s , t~e 
second of which is in some sense negllglble If a IS 
large, the first being of :;t well-define.d. an~ ver~ sim­
ple and special form; thIS decomposltlOn IS valld for 
a wide class of stationary Laplacian processes [it 
would be interesting to replace (23), which defines 
this class, by a more direct assump~ion on r(h) ], 3:nd 
seems to us to be the most interestlllg feature WhICh 
we encounter in this section ; it must be pointed out 
that this decomposition is no t a classical .sI?ectral ~e­
composition ; in such a spectral decomposltlOn , whICh 
is valid for any stationary r .f . of second order, th e 

)0 Theorem IV was firs t stated by Blanc-Lapierre, in SUI' certaines fonctions 
aleatoires stationnaires, 'T'hcsis (PariS, 1945), l\1asson edit., but under some very 
much stronger assum ptiOl1S. 

terms of the sum are uncorrelatecl: bu io (24) , 
X:(t) and X~ *(t) are con"elated . 

(b) Theorem IV and Theorem V are irrunediately 
applicable with X *(t) instead of .X(t); it is also pos-
sible to state the equivalent to Theorem VI. ) 

4 . Jow, we take the case in which R(t, .. ) is any 
fun ction of (t, r ) , but \\Te assume th at th e:["c; is a 
nonnegative function R(u) such as : 

and SllCh that, if 

cf> (a)= ( Jr-(u)du, J1 .. 1>0 

J+o> a 

_a> ¢(apdu< + 00 

and 17(t,x) may depend on t. . . . 
It is clear that the preceding method may be applIed, 
with: 

Ra(t,r) = R (t,r) if Ir - tl ~a,= O if Ir - t l> a 

R~(t, T )= R (t, T( - Ra(t,T) 

and so on. The limitations given by Lemma 3 and 
4 are still valid ; we start by considering, not X(t), 
but its Laplacian limit in law X*(t); let -y*(u,v)= 
E { V[X*(u)]V[X *(v) ] }be the c of Y*Ct) = V[t, X(t)], 
and 
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L *(t,r) = ( T Y*(u)du . . Jt 
It is easy to see that there is a function K ( r - t) 
such as: 

(25) 

is valid for every (t,r ) . Consequently, by Lemma 1, 
the analogue of theorem IV yields, if we suppose 
that: ll t+T l t+T lim inf -T -y *(u ,v)cludv>O 

T ->+a> t t 

[this limi t is independent of t ; this assumption is 
to replace (19)]. And we may point out that we 
have for X * (t) a decomposition analogous to (24) . 
But it is an open problem to characterize, directly 
on their c. the Laplacian processes such that there I 

is a corresp~nding function R(t,r) satisfy!ng the pr!3-
ceding assump tions. But we may men tlOn that, m 
the electrical applications it is known a priori that the 
interfering Laplacian processes are of the above con- , 
sidered kind. 

Now, if we take the case of X U) illstrad of X *(t), 
we may follow exactly the same proced1ll'e ; the only 
exception is that, now, the limitation analogous to 
(25) is no t automatically satisfied, and we need a 
supplementary assumption, like, for instance: 



in order to have (25). 
5. On the other hand, it would be useful to have an 

a umption on V weaker than (11) ; considering only 
the stationary case, it is easy to see that (11 ) may be 
replaced by the weaker assumption that: 

lV(x)-V(x') I ~ ).(x) l x-x'la (0 ~ a< l) (26 ) 

where the positive functio.i1 of x ). (x) is such as: 

(27) 
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or 

E ( IA[X* (t) l l l~a) < + 00 

If ). (x) is bounded b : 

A(X) ~A+B lxIP 

(28) 

when A , B, {3 are any positive numbers, (28) is always 
sa tisfied. 

If a = l , reasonings have to be sligh tly modified, 
but it is readily seen that weaker assump tions like 
the preceding one may be accepted. 

But it would be useful to have assump tions such 
that F may have some discontinuities. 

Los A NGELES, December 18, 1951. 

l 
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