Preparation of D-Mannitol-C14 and Its Conversion to
D-Fructose-1-(and 6)-C14 by Acetobacter Suboxydans

Horace S. Isbell and J. V. Karabinos

Methods are described for the production of D-mannitol-1-C14 and D-fructose-1-(and 6)-C14. These materials are powerful new tools for research in biology and chemistry. D-Mannitol-1-C14 was prepared in 80-percent yield from D-mannono-7-lactone. D-Fructose-1-(and 6)-C14 was produced in 54-percent yield by growth of Acetobacter suboxydans on a D-Mannitol-1-C14 substrate.

1. Introduction

The Bureau recently undertook a program for the development of methods for the production of a variety of position-labeled sugars [1]. The preparation of D-glucose-1-C14 and D-mannose-1-C14 in high yield was described in a previous report [2]. This paper deals with the production of D-mannitol-1-C14 and its conversion to D-fructose-1-(and 6)-C14 by oxidation with Acetobacter suboxydans. Prior to the present investigation, randomly labeled fructose had been prepared by photosynthesis [3], but position-labeled fructose had not been reported. It was known that D-mannitol could be obtained by reduction of D-mannose, and that it could be converted to D-fructose by oxidation with Acetobacter suboxydans [4]. D-Mannitol differs from D-mannose in that the ends of the molecule are alike. For this reason a 1-labeled mannitol (I) can be considered as either 1- or 6-labeled, and any unsymmetrical derivative prepared from this substance would be 1,6-labeled, provided the carbon chain remains intact. Thus, by oxidation of D-mannitol-1-C14 one would obtain D-fructose-1-(and 6)-C14 (II).

As both D-mannitol-1-C14 and D-fructose-1-(and 6)-C14 would provide powerful tools for the elucidation of many problems in biology and chemistry, the preparation of these compounds was undertaken.

2. Discussion of the Processes

The production of D-mannitol-1-C14 includes: (1) preparation of D-mannono-7-lactone-1-C14 by the method already described [2], (2) conversion of the lactone to D-mannose-1-C14 by sodium amalgam reduction, and (3) catalytic reduction of the sugar with hydrogen. Each step in the process was studied in detail, and procedures were developed to obtain D-mannitol-1-C14 from D-mannono-7-lactone-1-C14 in an over-all radiochemical yield of about 80 percent.

The production of D-fructose-1-(and 6)-C14 involves oxidation of D-mannitol-1-C14 with Acetobacter suboxydans. It has been established [5] that Acetobacter suboxydans preferentially oxidizes the OH OH
R—C C—CH$_2$OH

group to the

OH O
R—C C—CH$_2$OH

group. In agreement with this property, D-fructose-1-(and 6)-C14 is obtained by oxidation of D-mannitol-1-C14 with Acetobacter suboxydans. As pointed out in section 1, the ends of the molecule are alike. For this reason, oxidation could proceed equally well from either end of the molecule, and, in the event that oxidation took place at both ends, a diketo derivative would be formed. Thus, prolonged action of Acetobacter suboxydans on mannitol should yield the diketo derivative

\[
\text{CH}_2\text{OH} — \text{C—OH—C—CH}_2\text{OH}
\]

(D-threo-5-oxo-2-ketohexose).

Figures in brackets indicate the literature references at the end of the paper.

Footnote 3: A proof by chemical degradation for the 1- and 6-structure assigned to the fructose formed will be presented in a later report.
To ascertain whether the oxidation did, in fact, proceed beyond the fructose stage, a series of mannitol Acetobacter suboxydans cultures were set up and, as given in table 1, the course of the reaction was followed by determinations of fructose and total copper-reducing substance. The fructose concentration was determined from the polarization at two temperatures [6]. Total reducing substance was determined by the modified Scales method [7]. Curve 1 of figure 1 gives the yield of α-fructose determined from the difference in optical rotation at two temperatures. Curve 2 gives the copper-reducing power of the solution expressed as the percentage of the reducing power of a solution containing the amount of α-fructose molecularly equivalent to the mannitol originally present. The copper-reducing value represents all reducing substances present and is expressed arbitrarily on the fructose scale. The yield of α-fructose reached a maximum in about 2 days, and then decreased for about 6 days when active growth of the organism had slowed down. In every sample, after the first day the copper-reducing value exceeded that of the α-fructose determined from the polarization at two temperatures. Hence, the solution contained a constituent having copper-reducing power other than α-fructose. Presumably, this substance was the anticipated diketo compound or a substance derived therefrom. The results clearly show that it is necessary to control the reaction time to obtain maximum yields of α-fructose. The experiment of figure 1 was conducted with a surface-volume ratio of 1.28. In agreement with the work of Fulmer, Dunning, and Underkofler, a somewhat higher yield of fructose was obtained with a higher surface-volume ratio. In the preparation of D-fructose-1-((and 6-)C14 on a tracer level, a surface-volume ratio of 1.59 was used, and a radiochemical yield of 54 percent was obtained.

3. Experimental Procedures

3.1. D-Mannono-γ-lactone-1-C14

This substance was prepared in 67-percent yield by the sodium-bicarbonate-carbon-dioxide method previously described [2].

3.2. Conversion of D-Mannono-γ-lactone-1-C14 to D-Mannitol-1-C14

One millimole of D-mannono-γ-lactone-1-C14 having an activity of 10 μC was dissolved in 20 ml of water; 1.5 g of benzoic acid was added, and the mixture was stirred in an ice bath until cold. Sodium amalgam pellets (4.6 g, containing 5 percent of sodium) were added and stirring was continued. After 2 hours the mercury was removed, and another addition of 1.2 g of benzoic acid and 4.6 g of amalgam was made. Stirring was continued at 0° to 5° C for 2 hours, after which the mercury was removed, and 1.26 g of oxalic acid was added. Then the mixture was extracted with chloroform to remove the benzoic acid. The sodium oxalate in the aqueous solution was precipitated by the addition of approximately 2 volumes of methanol and 2 of ethanol. The insoluble salts were separated by filtration and washed with methanol. The resultant alcoholic liquor was concentrated under reduced pressure to about 5 ml and was diluted again with 2 volumes of methanol and 2 of ethanol. The resultant precipitate was separated and washed with methanol. The alcoholic liquor was evaporated to approximately 2 ml and was then transferred with 3 ml of water to the tube of a high-pressure hydrogenator containing 0.1 g of calcium carbonate and 0.5 g of Raney nickel catalyst. The mixture was hydrogenated for 2 hours at 125° C and 1,000 lb/in2. Then the mixture was cooled to room temperature, filtered, and passed through a column (1.4 by 25 cm) containing equal portions of Amberlite IR 100-H and Duolite A4. The effluent and wash liquor were combined and lyophilized. The residue was dissolved in the minimum quantity of hot methanol. After the addition of an equal volume of isopropanol, and seeding, the solution was set aside for crystallization of D-mannitol. In the course of 3 days 117 mg of D-mannitol-1-C14(6.4 μC) was obtained. It melted at 165° C, in substantial agreement with the accepted value of 166° to 168° C. "Carrier" D-mannitol (100 mg) was dissolved in the mother liquor and, after crystallization, 98 mg of D-mannitol-1-C14 was obtained with a radioactive content of 1.6 μC. The total radioactivity recovery was 80 percent.

3.3. Preliminary Study of the Oxidation of D-Mannitol to D-Fructose with Acetobacter Suboxydans

Aliquots (25 ml) of an aqueous solution containing 9.1 g of D-mannitol, 2.5 g of yeast extract, and 1.5 g of potassium dihydrogen phosphate in 500 ml were placed in 125-ml Erlenmeyer flasks and sterilized for 15 minutes at a steam pressure of 15 lb. Each flask was then inoculated with five drops of a previously prepared inoculum of Acetobacter suboxydans and allowed to stand at 30° C in an incubator. The inoculum was prepared by growth, at 30° C for 45 hours, of a fresh culture of Acetobacter suboxydans on a solution containing 2 g of mannitol, 0.2 g of yeast extract, and 40 ml of water.
At regular intervals following the inoculation, one of the flasks was removed from the incubator. The liquid was transferred to a 25-ml volumetric flask and diluted to volume. One-half gram of neutral lead acetate trihydrate was then added. The mixture was transferred to a centrifuge tube, and the precipitate was removed by centrifugation.

To the clear solution was added 0.25 g of potassium oxalate monohydrate, and the resulting precipitate was again removed by centrifugation. The clear solution was then used directly for measurements of optical rotation and copper-reducing power.

The optical rotations given in table 1 were made at two temperatures with a Bates saccharimeter and a 2-dm tube. The rotations at the higher temperatures were corrected [6] for expansion by use of the coefficient 0.00044 for each degree rise in temperature. The difference between the corrected rotation and that at 20°, divided by the temperature difference and by 0.03441, equals the number of grams of d-fructose per 100 ml of solution. Complete conversion to D-fructose of the mannitol originally in the solution would have given 1.8 g of D-fructose per 100 ml.

Copper-reducing values, also given in table 1, were determined on the solutions by the modified Scales method [7] standardized against D-fructose. The values so obtained represent all substances that reduce the alkaline copper reagent.

Table 1. Acetobacter suboxydans Oxidation of Mannitol

<table>
<thead>
<tr>
<th>Inoculation time</th>
<th>Polarity at two temperatures</th>
<th>Fructose yield</th>
<th>Reducing sugar yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>°C</td>
<td>°S</td>
<td>°C</td>
</tr>
<tr>
<td>20</td>
<td>-4.47</td>
<td>57.2</td>
<td>-5.39</td>
</tr>
<tr>
<td>3.0</td>
<td>-5.25</td>
<td>61.2</td>
<td>-6.01</td>
</tr>
<tr>
<td>4.0</td>
<td>-5.10</td>
<td>64.5</td>
<td>-5.02</td>
</tr>
<tr>
<td>5.0</td>
<td>-5.10</td>
<td>64.5</td>
<td>-5.10</td>
</tr>
<tr>
<td>6.0</td>
<td>-4.85</td>
<td>64.6</td>
<td>-6.92</td>
</tr>
<tr>
<td>7.0</td>
<td>-4.59</td>
<td>63.0</td>
<td>-3.73</td>
</tr>
</tbody>
</table>

The authors express their appreciation to Nancy B. Holt and to Abraham Schwebel of the Bureau, who conducted the analytical work, and to Laura C. Stewart of the National Institutes of Health, who supplied a culture of Acetobacter suboxydans and made suggestions concerning its use.

4. References

WASHINGTON, March 3, 1952.

A limited quantity of D-fructose-1- and 6-C14 with an activity of 0.5 mc/mg made by this process, is now available from this Bureau at a cost of $1.00 per microcurie.