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Two Applications of Group Characters to the Solution 
of Boundary-Value Problems1 

E. StiefeP 

I t is shown t h a t the numerical work involved in solving a boundary-value or eigen­
value problem by finite difference methods in a domain with many symmetries can often 
be reduced by applying the theory of group characters to the group of symmetries of the 
domain. 

In the second pa r t the au thor considers the problem of solving Aw —0 in a cube when 
the prescribed boundary values are invar iant under the group of rotat ions of the cube. 
In the series representat ion of the solution in terms of harmonic polynomials only a subset 
of these polynomials actually occurs, and the theory of group characters facilitates con-
siderablv the determinat ion of this subset. 

I t is very well known that representation of groups 
may be a useful tool in discussing various eigenvalue 
problems in quantum mechanics. This is due to the 
fact that boundary-value problems of Schroedmger's 
equation are to be solved mostly in the whole space 
or inside a sphere as fundamental region and therefore 
the high symmetry of those domains can be used. 

I t is the purpose of this paper to show that group 
characters sometimes are appropriate also to sim­
plify the numerical computation of boundary-value 
or eigenvalue problems in more general-shaped do­
mains, in particular if the problem has been trans­
lated into the language of difference calculus. I t 
will be sufficient to explain this discussing simple 
examples. 

Let, for instance, A be any plane region and D a 
differential operator invariant under Euclidean mo­
tions or reflections of the plane. More exactly, if 
J(x,y) is a function in our plane and M a Euclidean 
rotation, translation, or reflection, then 

D(Mf)=M(Df), (1) 

which is to say that D must commute with any 
motion M. The Laplace operator A and the operator 
AA of elasticity problems have this property. 

In order to solve any given boundary-value prob­
lem with respect to the region A and the operator 
D, we may use the difference technique, introducing 
a square lattice L in A and replacing / by a lattice 
function (defined only in the lattice points) and D 
by a difference operator, which approximates the 
given differential operator. In the case of a A-prob-
lem, the corresponding difference operator may be 
given by figure 1. Relation (1) will be true again in 
the difference case, provided that by M i s understood 
any motion or reflection transforming the lattice 
into itself. 

Suppose now that the given region A is invariant 
under a group G of transformations of this type. If 
A has no symmetry at all, we may use Schwarz's 
alternating process dividing A into overlapping sub-
regions, each of them having symmetry properties. 

1 This work was performed on a National Bureau of Standards contract with 
the University of California, Los Angeles, Calif., and was sponsored (in part) 
by the Office of Naval Research. 

2 University of California, Los Angeles, Calif., and Eidgenossische Tech-
nische Hochschule, Zurich, Switzerland. 
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F I G U R E 1. 

I t is our goal to show how the group G can be used in 
order to simplify the solution of the given boundary-
value problem in the region A. 

Take, for instance, the square region A of figure 2. 
The group G is in this case the symmetry group of 
the square of order 8 having the following similarity 
classes: 

Class 

[i] 
[2] 
[3] 
[4] 

[5] 

Elements 

Identity. . 
Rotat ions ± 9 0 ° __ __ 
Rotat ion 180° 
Reflection in horizontal or 

vertical line 
Reflections in diagonal lines_ 

Total _ 

Number 
of 

elements 

1 
2 
1 

2 
2 

8 

(2) 

The given boundary-value problem is equivalent to 
a system of nine linear equations for the values of the 
wanted function in the nine interior lattice points. 
Any lattice function / may be visualized as a vector 
in a nine-dimensional vector space S. Therefore, 
applying the operations of the table to the lattice 
functions, we get a linear representation R of the 
basic group G in S. 
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F I G U R E 2. 

I t is not too hard to show that its character x is 
given by the following rule: The value x(M) of x for 
an element M of G is equal to the number of lattice 
points fixed under the operation M. (Use as coordi­
nate system in S the lattice functions not equal to 0 
only in one single lattice point; they are permuted by 
M.) We want to decompose the representation R 
into irreducible components: 

R=c,Rl+c2R2 + . . . +c5R5y (3) 

Where Rly R2, . . ., R5 are the irreducible repre­
sentations of G. (There are exactly five because G 
has five similarity classes). According to the ortho­
gonality theorems of representation theory this has 
to be done working on the table of characters of G 
as follows: 

Class 

No. of e lements . 

x2 
x3 
x4 
x5 

X 

[1] [2] [3] [4] [5] 

1 2 1 2 2 

1 1 1 1 1 
1 1 1 - 1 - 1 
1 - 1 1 1 - 1 
1 - 1 1 - 1 1 
2 0 - 2 0 0 

9 1 1 3 3 

In the first line we have listed the similarity classes 
with their numbers of elements and in the following 
lines the values of the characters of the irreducible 
representations in those classes. They are recorded 
in many textbooks of representation theory.3 The 
last line is the character x of our representation R, 
computed according to the rule previously mentioned. 
The first number in each line is the degree of the 
representation (dimension of the vector space trans­
formed by the representation). According to a 
general formula of character theory the coefficient 
ct in (?) is 

C i = i S x ( M ) x * ( M ) , (5) 
(Ai) 

3 A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 3d ed., p . 179-
180 (Springer, Berlin; and Dover Pub). 

with the group element M running through the whole 
group G. By this we have for instance from our table 

c 4 = K 9 - l - 2 . 1 + l . l - -2 .3+2.3) = l. 

The multiplicities ct are listed in the column to the 
right of the table. Finally, we find 

R=3R1+Ri+Rt+2R5. (6) 

Therefore, the vector space S splits into subspaces 

Si, o'i, o / ; o3; o4; S5, S5, (7) 

each of them being invariant under R and being 
transformed by the irreducible representation given 
by its subscript. 

Take now a set of subspaces having the same sub­
script (i. e., being transformed by the same repre­
sentation) and introduce base vectors in each space 
of the set. For instance, S5 and S5', being both 
two-dimensional, may be spanned by the base vectors 

S5: e5i, e52 

(8) 

Generally speaking, each set of equally transformed 
subspaces yields a rectangular arrangement of base 
vectors by listing the base vectors of each subspace 
in a line. The length of the rectangle is the degree 
of the irreducible representation under consideration 
and its height the multiplicity of this representation 
as a component of R. I t is, of course, possible to 
choose the base vectors in such a way that each line 
of the rectangle is transformed exactly in the same 
way. 

I t follows then from a well-known generalization 4 

of Schur's lemma that each linear operator in S corn-
mutable with the transformations of R transforms 
the vectors of each column in our rectangle among 
themselves and in each column in the same way. 
Taking into account the relation (1), we see that the 
difference operator of the given boundary-value 
problem has this property. From this follows imme­
diately that the original system of nine linear equa­
tions with nine unknowns splits into partial systems. 
The rectangle (8), for instance, yields two systems of 
two equations each, having the same coefficient 
matrices. From the first and the c column of the 
table (4) we get therefore the following final result. 
The system of nine equations splits into one system of 
three simultaneous equations, one single equation, 
one single equation, and two systems of two simul­
taneous equations. 

If we have to deal with an eigenvalue problem in­
stead of a boundary-value problem, the analogous 
statement is, that the wanted characteristic poly­
nomial is the product of a factor of third degree, two 
linear factors and the square of a quadratic factor. 
In order to carry out the decomposition of the system 
of nine equations explicitly, it is, of course, necessary 

4 B. L. van der Waerden, Die gruppentheoretische Methode in der Quanten-
mechanik, sect. 13, p. 47-50 (Springer, Berlin, 1932). 
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to establish the lattice functions, which build the 
base vectors of the different rectangles (8). The 
three basic lattice functions corresponding to the 
first irreducible representation Rx are simply three 
linear independent functions invariant under all 
motions of the square. As another example we give 
the values of the lattice functions (8) in the nine 
lattice points. 

*51 = 

0 
1 
0 

1 
0 
1 

0 
0 
0 

0 
0 
0 

0 
1 , 
0 

1 
o , 
1 

e$2= 

e52= 

0 
0 
0 

1 
0 

- 1 

1 
0 

- 1 

0 
0 
0 

0 
0 
0 

1 
0 

— 1 

(9) 

Taking as D the operator of figure 1, we get 

De5l=— 4.e5l+e'51 

De'&1 = 2e51—4e'51. 
(10) 

The functions e52, £52 are transformed in the same way. 
The eigenvalue problem of the operator D with 

vanishing boundary values gives the equation 

Df + \f=0. (11) 

Let us put j=ae5i + be'51. Then (10) yields the eigen­
value problem 

(X—4)a+2& = 0 
(12) 

a + ( X - 4 ) 6 = 0. 

And from this follow the eigenvalues 

X=4±V2 (13) 

of the operator D, each of them having at least the 
multiplicity 2. 

I t is not too hard to establish for a lattice in a 
given region A the rectangles of base vectors when 
we know the characters and the irreducible repre­
sentations of the symmetry group of A. I t is con­
venient to choose all those vectors (their total number 
is equal to the number of lattice points) orthogonal 
to each other. This is possible because the re­
presentation R is orthogonal, and therefore the ir­
reducible subspaces of 8 are orthogonal. 

At the Institute of Applied Mathematics in Zurich 
(Switzerland) we used the methods of this paper in 
order to solve the boundary-value problem of 
Airy's elasticity function inside a dam. As subre-
gions in Schwarz's alternating process, we chose 
squares of 16 lattice points. 

In his book about eigenvalue problems, L. Collatz5 

introduces the notion of "eigenvalues of a graph" 
and discusses an example, where the graph is built 
by the segments joining two midpoints of 
edges of a cube. This problem may also be treated 

5 L. Collstz, Eigenwertaufgaben mit technischen Anwendungen, p. 
(Leipzig. 1949). 
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by characters, using the group of all rotations of 
the cube. 

In this section another application of character 
theory is discussed, related to the methods of S. 
Bergman and M. Picone for the solution of 
boundary-value problems. For our purposes those 
methods may be characterized by the following 
procedure. At first a complete set of particular 
solutions of the given partial differential equation 
is constructed and then the solution of the boundary-
value problem is expanded into a series having as 
terms those particular integrals. Let us take, for 
instance, Laplace's equation Au = 0 in three-dimen­
sional space. The particular solutions may be in 
this case the harmonic polynomials of degree n 

Y}l
m)(x,y,z) = rn-emi<t>'Pim) (cos 6), n=0,l,2, 

(14) 

m running from (—n) to (~\-n). On the right side,. 
r, 6, <j> are polar coordinates, P^w) is a generalized 
Legendre polynomial. Suppose now that the fun­
damental region A of the boundary-value problem 
is a cube having its center at the origin and suppose 
furthermore that the given boundary values are 
invariant under the group G of the 24 rotations of 
the cube. I t is obvious that under those circum­
stances only harmonic polynomials appear in the 
Bergman-Picone expansion, which have the same 
symmetry properties. In other words, we have 
the problem to establish all harmonic polynomials 
invariant under the group G oi rotations of the cube.& 

The theory of characters gives general methods 
in order to solve problems of this type. G has the 
following similarity classes: 

Class 

[1]-- . 

[3]__. 
[4]__. 
[ 5 ] _ -

Typical element 

Ident i ty 
Rotat ion ± 9 0 ° 
Rotat ion 180° (z-axis) 
Rotat ion 180° (axis: 2 = 0 , x =y)--
R o t a t i o n ± 120° (axis = diagonal) _ 

Total 

Number 
of ele­
ments 

24 

(15) 

By any rotation of the cube the (2n-\-l) harmonic 
polynomials of a given degree n are transformed 
linearly among themselves and yield therefore a 
representation Rn of degree ( 2 n + l ) of G. Let M 
be any rotation of G and Xn(M) the character of Rn. 
The number of linear independent harmonic poly­
nomials of degree n invariant under G is equal to 
the multiplicity cn of the unit representation in the 
decomposition of Rn into irreducible components. 
(The unit representation of a group maps every 

6 This question has been posed and answered by G. Polya and B. Mever, 
Sur les svm6tries des fonctions sph§riaues de Laplace, Compt. rend. 228, 28-30 
(1949); Snr les fonctions spberiaues ae Laplace de sym§trie cristallograpMque 
donnee, Compt. rend. 228, (1949). 
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group element into the one-row m a t r i x = l ) . This 
multiplicity is given by the character formula 

^ 4 (M) 
(16) 

M running through the group. I t remains to com­
pute the character Xn(M). In order to do this 
we may restrict ourselves to rotations M around 
the 2-axis. Let /x be the rotation angle. Taking 
into account (14), it follows that the ( 2 n + l ) har­
monic polynomials of degree n are transformed by 
M in the following way: 

Y (m) y^mi^Y {m) 
(17) 

The matrix of the transformation is pure diagonal 
with the trace 

+n sin ( 2 n + l ) § 
Xn{M)= S «miM= ' 

sin 
M 

(18) 

From (16) and the table (15) follows now the result: 

cn-24[{2n+l) + Q g i n 4 5 0 

+ 9 s i n ( 2 ^ + l ) 9 0 ° + 8 0 L o s i n ( 2 ^ + l ) 6 0 c 

sin 60° (19) 

O 

The final result may be expressed in the following 
terms. Write n in the form of a multiple of 12 and 
the corresponding remainder 

Then 
n=12-k+r, 0 < r < 1 2 -

cn=k+t(r), 

where t(r) is given by the table 

(20) 

(21) 

r 

t(r) 

0 1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 1 0 1 1 

10 

1 

11 

0 
(22) 

The polynomials themselves can be built by choosing 
any harmonic polynomial of degree n, applying the 
24 rotations of the cube and adding up the 24 result­
ing polynomials. 

A more general problem would be to establish the 
harmonic polynomials being transformed by G 
according to a given irreducible representation of G. 
This can be used to simplify the solution of a bound­
ary-value problem in which the given boundary-
values have not the symmetry of the cube. The 
basic idea is, of course, the same as outlined previously 
in this paper. 

Los ANGELES, January 29, 1952. 
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