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On Cauchy-Riemann Equations in Higher Dimensions1 

E. St iefe l 2 

The n linear partial differential equations with constant complex coefficients 

i,k ux* 

(j= 1, . . . , n) are said to form a system of generalized Cauchy-Riemann equations, if there 
exist constants f% such that 

TO 

Au,-r/fc£: 

It is proved that such systems exist for n= 1,2,4,8 only. In the cases n=2,4 there are three 
essentially inequivalent systems; n = 8 , only two. If the coefficients are required to be real, 
there exist only the classic system of two equations, the two systems of Dirac-Fueter equa
tions, and two systems of eight equations. 

If two real functions uh u2 of the real variables 
xu x2 satisfy the Cauchy-Kiemann equations 

d^i i>u2 

i>Xi i>x2 
= 0, i>u2 ^iz=0/ 

i>xt dx2 
(1) 

they are harmonic, that is, from (1) follows Laplace's 
equation by differentiation: 

A b2Ui . &2Ui A A d2u2 . b2u2 A /ON 
AU2=^F+-^F=°- (2) 

Introducing the left sides of the Cauchy-Riemann 
equations 

, _?>Ui_J)U2 
1 d^i bx2 

2~"dx! i>x2 
(3) 

we observe that this statement is an immediate con
sequence of the relations 

A = d £ i . dl2 
1 i)Xi bx2 

bl2 dZi 
dxi bx2 ^ W 

that is to say, that the Laplacians of uu u2 are linear 
combinations of the derivatives of the left sides of 
the Cauchy-Riemann equations. 

In 1939 Olga Taussky-Todd 3 studied the follow
ing general problem. Let uh u2, . . . , un be func
tions of the independent variables xh x2, . . , , xn. 
Is it possible to find a system of n linear partial 
differential equations with constant coefficients 

(5) 

1 This work was performed on a National Bureau of Standards contract with 
the University of California at Los Angeles, and was sponsored (in part) by the 
Office of Naval Research. 

2 University of California, Los Angeles, Cal., and Eidgenossiche Technische 
Hochshcule, Zurich, Switzerland. 

3 O. Taussky, An algebraic property of Laplace's differential equation, Quart. 
J . Math. 10, 99(1939). 

in such a way that 

ft, k dxh 
(6) 

the b)k again being constant coefficients? If a set 
of functions ux, u2j . . . , un satisfies (5), it follows 
then from (6) that they are harmonic. So we may 
say that (5) are Cauchy-Riemann equations in 
n-dimensional space and generate a theory of functions 
in this space reasonably related to potential theory. 
O. Taussky proved that this problem can only be 
solved in spaces of dimension n=2m. In this paper 
the better result is established that n must be 1, 2, 
4, or 8 and moreover all Cauchy-Riemann systems 
(5) will be classified. In our discussion we admit 
that the xh, uk and the coefficients in (5), (6) are 
complex. We will use methods of representation 
theory introduced by Wigner and Eckmann4 for 
the solution of problems of an analogous type, but 
we shall simplify matters a little by dealing with 
algebras instead of groups. 

1. Introducing the n-row matrices 

iii = (<4), BH=W*), i,h=l,2, • • .,n, (7) 

and the vectors 

l=(lul2, . . .,lH), u=(uuu2) . . .,un), (8) 

relations (5), (6) can be written 

bu 
t=i i>xt jfci i>xh 

n hi 
Au=^Bh°

L (9) 

Inserting the second equation into the first we get 

b2u i>2u , d2u . +ra-S*^ssr<I0) 
l,i 

4 B. Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon 
fiber die Komposition quadratischer Formen, Comment Math. Helv. 15, 358 
(1942). 
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This identity holds for every vector u. Comparing 
coefficients it turns out that 

BiA^I, BnAi+BiA^O, i*h, (11) 

i" being the n-row unit matrix. Thus the matrix Bt 
is the inverse of At, and our question is reduced to 
the problem of constructing n matrices At of n rows 
satisfying the relation 

An1Ai + Ar1Ah=0, %9*h, (12) 

2. In order to solve this problem we observe that 
(12) is invariant under a general equivalence trans
formation 

Ai-^SAiT, i=l,2, . . .,w, (13) 

where S, T are two matrices with nonvanishing de
terminants. We do not distinguish between two 
Cauchy-Riemann systems (5) related to each other 
by such a transformation but call them essentially 
equal. Using this equivalence, we may transform 
by (13) one of our matrices—say An—into the unit 
matrix. For h=nwe have then 

At + Ar^O or Ai1 = -Ai or A2
t=-I 

and for A = l , 2, . . ., n—1 this gives 

AnAi + AiAn=0. 

Thus we may restrict ourselves to the problem of 
constructing (n—1) matrices AhA2, . . . , ^L- i having 
the property 

A\=-I, AhAi+AiA?l=0) %9*h. (14) 

If we have only these special systems under con
sideration the general equivalence transformation 
(13) will be restricted to a similarity transformation 

Ar+SAtS-1, (15) 

because the unit matrix must be left invariant. 
Matrices of the type (14) have been studied at first 
by Hurwitz 5 in the special case where the At are 
real and orthogonal. 

3. From the basic relations (14) it follows that the 
2n~1 matrices 

I, A\y A2J • • •, An-lj 

A1A2, A\Azj • • • > An—2<A~n—l) 

A\A2Az> . . . , An-zAn^An-i, J 

A\A2) • • • j An-i, 

(16) 

s A. Hurwitz, Uber die Komposition der quadratischen Formen, collected 
papers?, 641 (1933). 

this is to say, all products with increasing subscripts 
of the factors, form a matrix algebra of order 2n~1. 
Indeed, the product of two matrices of the set (16) 
is (up to the sign) again a matrix of the set. Let us 
now consider the abstract associative algebra H of 
order 2n~1 over the complex field given by the basic 
elements 

1, 6i, e2) . . . , en-i> 

eie2, exez, . . ., en-2en-i, 

exe2eZ) . . ., en^en_2en-h 

C\62i . . . , Vn — Xi 

and the multiplication rules 

e2i= — 1, ehet+eieh=0, i^h. 

(17) 

(18) 

Thus our problem is finally to construct a representa
tion of the algebra H by n-row matrices. In order 
to do this we use the following well-known theorems 
of representation theory: 

Theorem I . There is—up to similarity transforma
tion (15)—only a finite number m of irreducible repre
sentations, where m is the order of the center oj the given 
algebra H. Any representation is the sum of irreduci
ble representations. 

Theorem I I . Let f be the degree of a representation 
(number of rows of the representing matrices). Then 
the degrees fi,f2). . . ., fm of the irreducible repre
sentations satisfy the relation 

f\+ft+ + / ^ = o r d e r of H=2n~ 

4. Let us discuss first the case that the number n 
of Cauchy-Riemann eq (5) is even. Then the last 
element (exe2 . . . en_i) of the sequence (17) com
mutes with ^i,62, . . .,6„_i and is therefore a center 
element of the algebra H. I t is not difficult to show that 
the elements 1 and (exe2 . . . e»_i) span the center 
of Hy that is to say that the general center element is 
of the form a+0(eie2 • • • en-i), where a, 0 are 
complex numbers. The order of this center being 
m=2, we learn from theorem I, that our algebra H 
has exactly two irreducible representations, D\ 
and D2. They are related in the following way. 
If Di is given by 

Dx: ! -> / , ei-*Ei} (19) 

(Ei being the representing matrices) then D2 is 
given by 

A: 1-̂ T, e^-Ei. (20) 

In order to prove this let us observe that if the Et 
satisfy the basic relations (14) 

E\=-I, EhE{+ElEh=0> 
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the same is true for the matrices (—Et). Hence, if 
(19) is a representation, then (20) is another. 
Furthermore, if A is irreducible, the same is true 
for A and, finally, A , A are not similar. Indeed, 
the center element (exe2 . . . en-\) is represented in 
A by the matrix EXE2 . . . 2?n-i,. which must be a 
multiple cl of the unit matrix, since it commutes 
with the whole irreducible set of representing ma
trices; In D2 the representing matrix is 

-E\E2 En_x=-cl. 

But (cl) and (—cl) are not similar because, cer
tainly, Cj^O. This finishes our proof. 

This discussion shows, in particular, that A and 
D2 have the same degree / . From theorem I I we 
have 

2f=2n~l and so / = 2 ~ (21) 

As stated in section 3, our basic problem is to find a 
representation D of the algebra H by n-row matrices. 
From theorem I it follows that D must be the sum 
of the representations A , D2, each of them perhaps 
repeated several times. So the degree n of D is 
a multiple of/: 

n=k-2 2 (22) 

But this is only possible for 71=2,4,8, and the multi
plicities k are 2, 2, 1, respectively. In the cases 
7i=2,4 we have for D the three inequivalent possi
bilities 

A+A, A+A, A+A (23) 

and in the case T I = 8 the two possibilities A , A -
5. The case of odd n is rather trivial because the 

center of H in this case is formed only by the multi
ples of the unity element. So we have only one 
irreducible representation. I ts degree / is given by 

f2=2n~ f=2 * 

and the wanted representation D must be a multiple 
of this unique irreducible representation: 

n - 1 

n=k-2 2 . 

This leads to n = l . 
Collecting the results we get the theorem: 
A system oj n Cauchy-Riemann equations oj the 

type (5)] (6) is only possible for n=l,%,4,8. In the 
cases n=2,4, there are three inequivalent systems, in 
the case n=8, only two. 

6. In this section we establish the Cauchy-Rie
mann systems explicitly and discuss especially the 
real ones. 

(a) In the case T I = 2 the degree/of the irreducible 
representation A i s / = l according to (21). So A , 
A may be given by 

A: e1->i) A (24) 

i being the imaginary unit. 
(23) D=D1+D1 is then 

Our first possibility 

and yields the Cauchy-Riemann system (5) 

OXi OX2 

(25) 

(26) 

consisting of two separate equations for ux and u2. 
Hence, we may restrict ourselves to the single equ
ation 

* d'M du _ 
dxx dx2 ' 

(27) 

which expresses the fact (if x1} x2 are real variables) 
that u is a complex analytic function of X\ — IX 2. 
By differentiation of (27) it follows of course Aw=0. 
The two other possibilities (23) may be established 
by changing i into (—i) in one or both equations (26). 

In order to find the real Cauchy-Riemann sys
tems—that is to say real representations of H—we 
must form the sum of one of our irreducible represen
tations and its complex conjugate representation. 
Taking into account that A and D2 are complex 
conjugates, we have finally only the unique real rep
resentation Z > = A + A and only one real Cauchy-
Riemann system, which is, of course, the system (1). 

(b) For n = 4 the representation A may be given 
by the so-called Pauli-matrices 

«^.=(o -°) <28> 
with 

eie2er < - ; - ! > 
(29) 

A is obtained by changing the sign of those matrices 
The Cauchy-Riemann system corresponding to 
D = A + A splits again into the equations 

. bu2 bu2 . . d^i , dUi _ 
OXx OX2 OXz OX4 

. dux . d^i . bu2 . bu2 _ 
% ^ — K ^ ^ + ^ = 0 

OXi OX2 OXz OXi 

(30) 

for uu u2 alone and the same equations for u^ u4. 
In this case, however, A and A are not conjugate 
complex, but A is similar to its own conjugate com
plex and the same is true for D2. This follows from 
the fact that in A the center-element eie2e3 is rep
resented by a real matrix according to (29). So we 
have two nonequivalent real Cauchy-Riemann sys
tems corresponding to the representations A + A 
and A + A . They are R. Fueter's equations for 
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right and left regular functions of a quaternion vari
able, and they are closely related to Dirac's equations 
in quantum mechanics. The first system may be 
derived from our equations (30) in the following way. 
Let Xi, x2, #3, #4 be real variables and U\t u2 complex 
functions: 

Ui=vi+iv2, u2=V3+ivt. 

Splitting the eq (30) into their real and imaginary 
parts we get the four equations wanted for vu v2, vz, y4. 
The second system follows in the same way if we re
place (30) by the equations corresponding to D2+D2. 

(c) The case n=S is entirely different from the 
previous cases, because we found in section 4 that the 
representation D solving our problem is either D} or 

D2 and hence irreducible. Thus the Cauchy-
Riemann systems of this case will not split into sys
tems of fewer equations. We omit the computation 
of the matrices of Du which is closely related to the 
socalled Cayley numbers building a nonassociative 
algebra and mention only the result that those mat
rices may be constructed as real matrices. They 
yield two Cauchy-Riemann systems. 

As a final result we have the following statement: 
The only generalized real Cauchy-Riemann systems are 
1. the classic system of two equations; 2. the two sys
tems of Dirac-Fueter equations, each system having four 
equations; and 3. two systems of eight equations. 

Los ANGELES, December 4, 1951, 
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