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On the Truncation Error in the Solution of Laplace’s
Equation by Finite Differences’
Wolfgang Wasow

The difference between the selution of the Laplace differential aguation aod the Laplace

difference equation, defined in the same rectangle and assuming the same bonn

vilitos,

1= estimated nnder the asnmption that the biundary Mdoetion possesses a bounded third
derivative, The bound ohtained igof the o;ﬂ;lel_' of magnitude of the aqusare of the mash length,

1. Introduction

Probably the most widely used approach for the
numerical eolution of differential equations for which
simple analytic zolutions are not available consists in
replacing the differential squation by e finite differ-
enco equation. ‘The difference hetween the exact
aolutions of these two problems ie usuvally called—
somewhat inappropriately—the funcation error.

It iy hirhly desirable, for numerical ealculations,
to have adequate estimates of this truncation error.
There exist in the Literature numetous Investigations
of thiz problem. We shall ba primarily concerned
with the ease of the firat boundary value problem for
eliptic partial linear differential equations. Somme
referances to the literature for this case are listed at
the end of this paper. All these investigntions, as
far a= they are mtﬂematicaﬂy mmdplete, suffer from
the defect that the gstimates given depend on bounds
for the derivatives of the unknown solution of the
differential equation itself. Buch bounds can in pen-
el not be found without effectively solving the dif-
ferentizl equation. Thus the value of thees estimutes
consists eﬁaentiall‘i{ein giving information shout the
order of magnitude of the truncation error in terms
of the mesh length wsed, and in helping to form
reasonsble gueases a8 to the size of the error.

It turnz out that, with the difference expressions
used in most nomerical work, and for a square net of
mesh length % the truncation error is of the order
O3, Fmvided the b-nund:ug values and the agua-
tins of the boundary curve ! possess bountdsd fourth
dersndipes, and provided the boundary values of the
differance equation problem are =uitebly adjusted
(2ee, . . E’ﬂ %, This estimate i3 then valid i the
whole domain F.

The bound for the truncation error given by P. C.
Roesenbloom in [6] is somewhat different. It depends
enly on the modulue of continuity in B4-€' of the
nnlknmown harmonic function, but it is a pointwise
estimate that deterlorates indefinitely at points near
the boundary.

Thus there remain & aumber of unsolved problems
of theoretical as well a3 computationsl interest: The
ideal would be a pointwize eatimate of the truncation
error, valid if the boundary curve and the houndary
values are piecewise anzlytic. This error estimate
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should have the hiphest posaible order in &, and, at
the sama time, it should not be unduly wasteful. It
should, of course, depend nly on quantities that can
L easily computed from the data.

From the relical viewpoint the order of mag-
nitude of the error is the most interesting quentity.
In particular, one would like to know the exact way
in which a weakening of the smonthness roquired of
the data affects the global and local order of the arror.

For computatio urpaes an egtimate will be
most useful if it yields small bounde for the error
at moderats sizes of &, Thue 104 iz » better bound
in praetico than 10,0004,

The contents of this note ore intended as & fimt
exploratory step toward the examnation of these
questions, The error estimate for Laplace’s equa-
tiwon in a rectangle given below in formulas {18} and
(19} is of order ﬂ{}%, with coefficients of moderste
size, although it depends on bounds for the third
derivatives of the boundary values only, and in spite
of the fact that & rectangle is & domain with corners.
It is hoped that this special result may help to
stimulate mors general investigations.

2. Truncation Error for Dirichlet's Problem
in a Rectangle

Let B be the rectengle with vertices (0,0), {1,01,
(L&), (0d) where 5 18 a rational number. &
prescribed boun funetion f 8 assumed to be
continuoue on the boundary ¢ of B and to possess
bounded third devivatives on each cloged side of £,

We denote the Laplacien, ae ususl, by 4u and
arite A for the expression

2B EHh Poa—hn ol y+h
t+o(zy—h—to (2, vl
For any walue of & such that 1A and Bf% are integers
wa denota hy wwxy) the function, defined at all
netpointa {ah, mi) m BE+C where n.m are infegers,
for which
Ayt =ﬂ, in &

Ty =fj o 0.-

If o designates the solution of the mrmspundiﬁg
Dirichlet problem for the operator &, shen we are
concerted with the truncabion error tb—1.

and
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It is desirable to deal with bouadary valuss that
vanish abt the four vertices. To this end we intro-
duce the harmonic polynominel Q{m,y}, defined by
b @ (x, gy =dop lx—1} {y—b)— Az (y—) + Aoy —
A z-—-j‘}y whera Ay, Ap, ete. sre the values of §
at the vertlws This function solves both the differ-
enca and the differential squation. If we replace the
boundary values ¥ by

fr=f—1,

we obtain therefore a mew problem for which the
truncation error is the same as for the original prob-
lem, sinee the trunestion error correspon |§ to the

bDl.I.D.dH.I‘}F roblem determined by the values of
(zy) on £ is zere. It s clear that f vanishes at
the vortices. Also the sercond and higher derivatives

of J* are the same as those of 7.

e truneation error can be considered the sum of
four terms, esch corresponding to boundery velues
that are zero except on one of the four sides of the
rectangle. Therefors, we assume temporariy that
F* is zero exﬂa]fnt on the side y=0. Thera f*=7*(x}
12 & fupction of x elone.

The zolutions of Aw=0 and Amu,=—0 for thesze
botundary values can be nritten, respectively,

W 4y =3 eag(ymx) Sin v, o
{x,y}=-:)i:‘l. Yegly.8a/k) sin nxz, {2)

where 1
= EJ; FHE sin mafdt (3]
7o 2h Z3f0R) im wavh @)
gly.2)=sinh (3 —y)zfsinh bz, (5)

and §, s the solution of

sinh ﬁ"—sm ﬂTM

(6)
These well-known formulas can be readily verified
hy substitution,

We next collect a few facts neaded for the com-
parison of ¥ and .

To find an estimate of the Fourier coofficiants o, we
integrate ihe right roember of formula (3) by parts
three fimes, obigining the formuia

.={nir}a [(— 1™ 5 (13— F{(0)]

2 1 W EF
+{ET}3J;_1F @ cos natdt. (1)

‘This implies

leal £En™3, {7

where

K=Z 7+ 70}l 4 5 max 1F7G). @

The Fouwriar coeffcienta ¢, and the “interpalstion
eoeficients”, +., are related by the aquation

Tn='5'n+é Camin—tup-sa) =12, .. . 1/k}
This relation ﬂ&n readily be proved by expressing
{See &lso the

{rh} in. (4) ite Fourier series,
raferences in I?{} Combining (7) with the last for-
mula we find, for » <1k,

lew—val SE 32 {(2kfA+n)"34-(2h/A—2)~}
<k gi(1+7) +(-3)
+ [ +(=-%) Jost

{9}

Hance,

|6a—va] SL.7EHS, for n<1fh.

Next wanead an estimate of thadifference g{y, nx)—
(¥, Bufh). To this end we express 2./2, s given
v (6), I terma of nhx/2 by menns of Taylor's for-

mula. A siraightforward calealation shews thot

o _nmhx |, nhay®
F=2r+ ()R
where R is the valuc of

—-;- c08 o (1—2 gin® ¢} (1 48in? ¢33

st B certain mean valus of ¢ in the interval
0< r<"nhxi2.

Hence

lfa—mnhw| <lnhe)if12, Loy

In order to estimate the difference g(y,nx}—
g(y, fu/h} with the help of the theorem of the mean
we have to estimate the right member of the formuls

2 gty, 5)—7 sinb~? b

X {(@b—y)sinh yz —y=inh(2b—y)z}. (11}
We abeerve that sinh 4 is nn increasing function of
t, for =0, Therefore,

<3 iy, <Y sich 7 be sinh (2b—3) 2,

for 20, y=0. (12)
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To this axpression we shall apply the inequnlities

ginh ki <e% v ginht, for o<k <1, {13}
and :
ﬂinhﬁj% (1—em 0’ P2t >0 (14}
The second of these inequalities iz obvious. The
firat. follows from
sinh Kifsinh t=e®- V1 —a=*/(1 —g=M),
Also, we shall need the inequalities
S a<phsen, forigagifh  (8)

The zecond of these is A consequence of (6); the first
can be proved as follows:

nh'(sin ﬂg’*/n';’" SBhT2 ok

B,
smhi o 2 x
and
- inh B2 <PhT T,

sinh 3 = 3 {2

Bince sish z/z s ua inereasing function of = for £ =0,
imh 81 {82 < X feainh T <3
sinh 2/2 Eg/nrﬂmhﬁiﬁ-

Hence

2

3 nh,

8.2 B
3 23 sinh 5T
which completes the proof of (15). Applying (13},
{14) and (15) to {12) wa obtain
1€ <1k
‘% g{yr 2:}‘ 5{1 ___E—ab}aj—l.yg _“: fos ﬁl!h{z‘iﬂf
0<y=<h
and therefors, using (100,
{1 —gmifmt 1—’; e~ "Rt
for 1 <<m =<1fh.

‘y{m %— gly, nr)
{16)

‘Wa conclude these preparatory remarks with the
inequality

G<gly,2)<1, for0<y<h, (17}

which is an immediate consequence of the definition
of gy, 2).

. To thi=

We are now ready to estimate |u-—i
end wa write, using (1} and {2),

|15—1$n| <h+ R+ B,

; i
R1=’é |ex =74/ g (3, )
1
R=3" Iya
Hm]

B= 3 e, ,
A ﬂ_gmlc |l nmd

+

gy, nrd—g (¥, Bk}

From {9) and {17) we conclude that
R <1.7Kh
and from (7} it follows thet

R<E 3 a=Khk¥2.
n=14ith
In order to estimate B, we note that, in view of {T)

and (g),
lve| =B (n-141.78%.

Using alsp (16) wa obiain, by summation,

By £(1—e=¥9=1K(2.7) %y(ﬁ"‘”— 1)-th%,
Since
yl{ei—1) i%r for g0,
this yields
R?*_:Er,?{ (1l —e WEH=1Fx?
and, benee, adding these Inequalities,
fe—uy| £[2.345.24 (1 —e =) 1 KR

If we denote by M;: the numerical mazimum of the
second derivative of the piven houndary function st
the vertices of the rectangle, and by Mf the numeri-
cal maximum, anywhere on ', of the third derivative
of the houndary function, the last inequality can be
replaced, in view of (8), by

le—ea] SL287+.676 (1 —e~ 27 [ M+ 310 3,142

Finaliy, if the eides of the rectangle are 4, B in-
stead of 1.6 a homothetic transformeation gr'iaids the
formuln

ot — 0] <[ 207 +.876 (1 — e84y~ [ M, + 3104 M, A%

We recall that this formula is valid only for bound-
ary values that vanish except on the side y=0. For
the full truncation error three analogous expressions
have to be added to the right member of the last
inequality, leading—with some rounding off to
shorten the expression—to

oo = tea] <[.6+ 1.4(1 — 555~ [Af,4.32.4 M2
[ B4 1.4(1—eM [M;-]—.EEBM;]IE’.
18)
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For the square of side A this reduces to
vt < (4. 3041 4 A MRS, {19)

Added in proof: 'The function
tty (x, H}=§ €x7 () @afh) 5in nyre

eoincides with v, (z, y]) at sll net points.  Its uss in-
stead of u, (z, ¥) simplifiea the calculations somewhat
and leads to better estimates for the truneation error,
namealy

| <1345 (1 — &~ ) ML+ 0.32 AM] b2
{1345 (1 —e=88343 7] [AL, 4 0.32BM,] At

and
[ —u)| (3. 400,434 M)A

instead of {18) and (19}.
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