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A Method of Summing Infinite Series
Samuel Lubkin

This paper describes a new method of obtaining an equivalent series from a given infinite
convergent or divergent series. In many cases the new series is more convenient for summing
than the original and, moreover, the same method may usually be repeated indefinitely to
obtain an entire sequence of series each equivalent to the original and each better than its
predecessor in summing properties. I h e new method differs from most summing methods
heretofore employed in that terms of the transformed series are not linear functions of terms
of the original series. The paper includes proofs of theorems indicating the scope of the new
method and comparisons of results with various other methods for many specific examples.

1. General
Infinite series are not always amenable to con-

venient summing by usual methods. Even when
convergent, a series may converge too slowly to per-
mit ready evaluation or may consist of terms which,

f individually, require so much labor in evaluation as
to make determination of sufficient terms for sum-
ming even a moderately rapidly convergent series
quite difficult. If the series is asymptotic, the mag-
nitude of the smallest term seems to set a lower bound
on the accuracy of evaluation. For other types of
divergent series, a convenient summing method may
not be available. This paper presents a method of
transforming series that may be of value in all these
cases. To the best of the author's knowledge, the
method is original with him, and has not been previ-
ously published, although the author has used it since
1937.1

Essentially, the method consists of approximating
the series after the first m terms by a geometric series
whose first term is the (m+l)th term of the original
series and whose ratio is the ratio of the (ra+2)d term
to the (ra + l)th. These approximating sums for
successive values of m may be considered to be suc-
cessive partial sums of a new series that has the same
sum as the old but has, frequently, superior summing
properties. The process may, in many cases, be re-
peated again on the new series to get a third series
with still better properties. An indefinite number of
repetitions may be possible, as will be shown in ex-
amples given later.

This method differs from summing methods usually
employed in that the terms of the transformed series
are not linear functions of the terms of the original
series. It should also be pointed out that, various
modifications of the method are possible such as use
of other types of approximating series instead of the
simple geometric series,2 but loss of simplicity is

1 bince tne nrst draft of this paper, the author has learned of a talk presented by
D. Shanks at the Naval Ordnance Laboratory, White Oaks, Md. entitled "Math-
ematical sequences treated as transients", which basically considers each term of
a series as the sum of corresponding terms of one or more geometric series. When
a single geometric series is considered, his procedure reduces to that discussed in
this paper. More complicated, but generally more effective, transformations
result from the use of more than one component geometric series. Finally, he
has found it possible to use an infinite number of component series, in which case
the sum can be represented as a ratio of two determinants of infinite order, which
generally converge with considerable rapid ity. The author also understands that
Otto Szasz has had, for sometime past, a paper under preparation which embodies
similar material.

2 Such as the sum of several geometric series as taken by Shanks in the talk
referred to in the previous footnote.

likely to offset any gain resulting from use of better
fitting approximations.3

Summarizing, this paper discusses the transforma-
tion of a given infinite series: .

(1)

(2)

S=aQ+(Li+a2+as+ . . .

into a new series:

T=bo+b1+b2+b3+ . . .

If we define the partial sums by

Sn=a0+a1+a2+ . . . +an
and

Tn = b0+bl+b2+ . . . +bn,

the T series is defined by the relations

Tn—$n_i

where
—r>

+1

(3)

(4)

(5)

(6)

defined only for >
This relation can also be stated, by minor manipula-
tion, as:

rp o I ^W.

1 t—tin + 1
(7)

or as

From these relations, we readily obtain :

h — aQ .

n>0

(9)

for the terms of the new series.
Examination of these relations shows that a finite

3 See, however, transformation W below and theorems on its properties.
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alteration (modification or elimination of a finite
number of terms) in the original series results only in
a finite alteration in the transformed series. We also
note that the conditions Rn = l or an — 0 require
special consideration. In the former case, we get
Tn_i= oo to correspond. If this occurs for a finite
number of values of n, we may avoid the difficulty by
a suitable finite alteration (such as omission of the
first N terms where N exceeds any n for which
Rn = \) in the original series. If it occurs for an
infinite set of values of n, the transformation has
little value unless the original series can be re-
arranged, terms combined, or split into subseries to
avoid this difficulty. If an = 0, we may take bn = 0
and Tn=Sn-i=Snfmdbn+1==an+1/(l— Rn+2)iian+1^0
but aw=0; as a set of relations consistent with those
given for aw5^0. However, Tn=Sn at those values
of n for which an = 0 implies that the transformation
is no better than can be achieved by adding terms of
the original series between successive zeros. Example
3 below is an illustration. The theorems given, how-
ever, are valid without specific limitation if we use
the relations suggested when an = 0 since their
hypotheses rule out Rn = l at an infinite set of values
of n automatically or the results follow even if this is
the case.

For convenience in later discussion, we add the
following definitions:

R=limRn.

2n=n(l—Rn), defined only for

<2=lim Q..

(10)

(11)

(12)

Po=bo/ao=l/(l-R1).

an 1—/tnH

1 _ Rn+1—Rn
-j 73 /-i 73 /̂""I / ? "\

We shall also make use of another transformation
defined by the relations:

n + Wn + 1 + . . . , (14)

. . + wn, (15)

^Tn-f^Sn ( 1 6 )

From these, we readily obtain:
an{\ J? \

**' n &n — 1 "T" i ^r%T>

j + )
\ —2Kn+l-\- KnUn+l

1 -R2 . 1

+

(18)

* + l l-Rn-1
[-2BH+BnBn^1

(19)

The W transformation is similar to the T trans-
formation in that a finite alteration in S causes only
a finite alteration in W. Such an alteration may be
used to avoid consideration of a finite number pi
terms for which either an=0 or 1— 2Rn+RnRn_i = 0.
The transformation is obviously not of value if an
infinite number of terms have either property. As
for the T transformation, we shall take wn=Q when-
ever an=0. The relation 1— 2Rn+RnRn_15*0 will
be assured, except for a finite number of terms at
most, by the conditions of the theorems concerned.

In accord with usual terminology, we shall say
oo n

that a series C=^lcn with partial sums Cn = y^,cm

o # o
is more rapidly convergent than S if both S and C
converge and {C—Cn)l(S—Sn)j the ratio of the
corresponding remainders, tends to zero as n tends
to infinity; is of the same order of rapidity of con-
vergence if both series converge and \(C—Cn)J
(S—Sn)\ remains in value between two finite posi-
tive constants for all sufficiently large n; and is no
less rapidly convergent than S if both series con-
verge and the ratio of corresponding remainders is
bounded as n-^ oo.

The remainder of this paper makes use of the
common definitions and theorems, generally without
specific acknowledgment. Where such material is
believed less well known, reference will be made by
footnote to a source. For convenience, wherever
possible, such reference will be made to the "Theory
and application of infinite series" by Konrad Knopp,
English Edition (1928) and will consist merely of the
name Knopp followed by the page number in this
text.

No extensive bibliography is included in this paper.
The reader will find appropriate references to other
sources in the book by Knopp mentioned above and
in a report by R. D. Carmichael in the Bulletin of
the American Mathematical Society, 25, pp. 97 to
131 (1918) on the subject "General aspects of the
theory of summable series". An extensive biblio-
graphy on similar material will also be found in
"Studies on divergent series and summability" by
W. B. Ford (Macmillan, New York, N. Y. (1916)).
Since the first draft of this paper, a book by G. H.
Hardy, titled "Divergent series", has been published
by the Oxford University Press. The following are
several papers dealing with methods of obtaining
sums of slowly convergent series that appeared more
recently:

J. A. Shohat, On a certain transformation of
infinite series, Am. Math. Monthly 40, 226 to 229
(1933).

W. G. Bickley and J. C. P. Miller, The numerical
summation of slowly convergent series of positive
terms, Phil. Mag. [7], 22, 754 to 767 (1936).

J. W. Bradshaw, Modified continued fractions
for certain series, Am. Math. Monthly 45, 352 to
362 (1938).

J. W. Bradshaw, Modified series, Am. Math.
Monthly 46, 486 to 492 (1939).

O. Szasz, Summation of slowly convergent
series, presented before Am. Math. Soc. June 19,
1948,.and in J. Math. Phys. 28, 272 (1950).229



2. Original Series Convergent4

In this section, the transformation T (and, in cer-
tain cases, W) will be considered in connection with
an original series S, which is convergent. Theorems
will be stated ahd proved that give some of the con-
ditions under which the transformation leads to a
convergent series; beginning with one that states
that, in this case, the derived series has the same
sum as the original. Since, in connection with a
convergent series, the transformation is chiefly in-
tended to permit more convenient numerical evalua-
tion of the sum, we shall be mainly concerned with
the relative rapidity of convergence of the derived
and original series.

It is convenient to have criteria on rapidity of
convergence that involve relative magnitudes of in-
dividual terms of the series considered rather than
of remainders. A group of lemmas on this subject
thus precedes the formal part of the discussion. The
section closes with a number of numerical examples
that show some of the types of behavior that may
be encountered.

Lemma 1. If S is convergent with i?w>0 for n
00

sufficiently large, then the series G=^2cn converges
o

with the same order oj rapidity as S if there exist
constants A, B, and N such that AB^>0 and A^>cJ
an^>B for all n^>N; no less rapidly than S if cn/an
is bounded as n-><x>; and more rapidly than S if
cn/an->0 as n-^> oo.

Proof: We restrict ourselves throughout to n suffi-
ciently large without specific statement to that effect.
Since Rn^>0, all an are of the same sign, which we
may assume to be positive. Then, since \cnjan\ is
bounded for all cases considered, C converges.5 If

If

, then A and B are of like sign and

has a value between \A\ and \B\ and hence C con-
verges with the same order of rapidity as S. If
cnjan is bounded, A and B exist but may be of oppo-

, we have Aan^>cny>Ban and
n

mso that A> S cm fe «m>B.

site sign. In this case, <CD where D

is the larger of \A\ and |J8| and hence G converges
no less rapidly than S. If cn/an—>0} then, for any
€^>0, we have e^>cnjan^>— e for n sufficiently large.

Hence ^cmh>2am <Ce—>0 as w->oo so that G con-
n I n

verges more rapidly than S.emma 2. If S is convergent with RnRn_x (l+jRn+1)
+#rc-i)>& for n sufficiently large, and the series
CO

(7= 2 cn has terms such that cn—>0 as n—> oo; then C

converges with the same order of rapidity as S if there
exist constants A, B, and N such that AB^>0 and

* Unless otherwise stated, nomenclature is that given in section 1. We also
use the same symbol to represent a series and its sum.5 Knopp, p. 137.

Ay(cn+cn+1)/(an^-an+1)yB for all n>N; no
rapidly than S if (cw+cw+i)/(aw+^w+1) is bounded as

; and with greater rapidity than S if (cn-\-cn+1)/
) 0 as n-^ <*.

Proof: We assume n sufficiently large. Then

an + an+i = an(l+Rn+i)

RnRn_i

The series

(l+Rn-lf

2n+1) and S™=ao+

w) both converge and have the sum S

since S^ = S2n+1-+S and S?} = S2n->S. By Lemma

1, the series Cr(1) = Xj (^2n + c2n+1) converges with the
o

indicated rate for each condition as compared to series

and the same holds for the series C ( 2 )=c0+

») as compared to S(2). Now C™ =

+i since cn-*0. Hence C(1)=Cf(2).
Furthermore, G2n=Gf-^Gi2) and C2n.^=G^^
C{l)=G{2). Hence G converges and C=C™=G{1\
We now have

C-C2n_C<*-C<*>

and

hence proving the lemma in view of the known rates
of convergence of (7(2) as compared to S(2) and C(1) as
compared to S(1)

Lemma 8. If S is convergent with RnRn_Y (1 +Bn+1)
(l+Rn+1)>0 and | l+ i ? w | >K>0 for n sufficiently

oo

large, then the series (7= XI cn converges no less rapidly
o

than S if cn/an is bounded as n-^> oo and more rapidly
than S if cJan^0 as n-> oo.

Proof: Since S converges, an—>0. Hence, for either
condition, cw-^0. Also, for n sufficiently large,

cn

an(l+Rn+1)
i

Cn+1

dn+1

and is thus bounded (or->0) when cjan is bounded
(or-^0). We may now apply Lemma 2.
Remark. The condition RnRn-i (1 + Rn+i) (1 + Rn-i) > 0
is satisfied if i?w>0 for all n or if i?M<0 and
(l+i?w+i)(l+i?w-i)>0 for all n. A special case of
the latter is 0><R»> —1.

Theorem 1. If both S and T converge, they have
the same sum.
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Proof: Suppose TVS. Then, from (7),

Since S converges, an—>0. Hence, from the above,
1—i?w—>0 or i?w—>1. Therefore, for n sufficiently
large, i?w>0 and all an are of like sign. In view of
the above, this requires that 1— Rn be of constant
sign for n sufficiently large. Hence, either Rn^>l
for all sufficiently large n or Rn<^l for all sufficiently
large n. The former is impossible since an—>0. The
latter, coupled with the constancy of sign of the an,
states that, for n sufficiently large, either S or —S
consists of positive monotonically decreasing terms.
Convergence of S thus requires that nan^0.6 How-
ever,

nan

n(l-Rn) l-Rn

Hence we must have n(l — /?w)—K). This is not pos-
sible since S converges.7 Therefore our supposition
cannot be true, and T=S.

Theorem 2. If S is convergent and |1 —Rn\^>Ki^>0
for sufficiently large n, then T converges. If, in addition
\l+Rn\>K2>0 and RnR^l +Rn+i)(1 +Rn-i)>0for
n sufficiently large, T converges no less rapidly than S.
If furthermore, Rn+i—Rn-^0 as T?,-^<», then T con-
verges with greater rapidity than S.

Proof: Since S converges, an^0. Hence
\anj{l—Rn)\<C]an\IKi^>0 and, from (7), Tn^Sn-^S.
Also, from (13)

1 1 n

and thus remains bounded while, if Rn+i—Rn

\Rn + \—Rn\ /\Rn + \—Rn\ fPn\=< K\

Application of Lemma 3 now completes the proof.
Theorem 3. If S converges and R exists 9^0, —1,

or 1, then T converges with greater rapidity than S.
Proof: Since S converges, |JK| <1 . But \R\M1 by

hypothesis. Hence, |B |<1. Now Rn-^>R. Hence,
for n sufficiently .large, 1 ± f l n >( l — |JR|)/2>0. If
fi>0 (or <0), then i?w>0 (or <0) for n sufficiently
large. In either case, i?wi?w_!>0 for n sufficiently
large. We also note that Rn-^R requires Rn+1—Rn-^0,
and we therefore satisfy all the conditions of The-
orem 2.

Theorem 4. If S converges, R=0, and Rn is of
constant sign for n sufficiently large, then T converges
with greater rapidity than S.

Proof: Since Rn->0, W3 have l ± i ? n > ^ > 0 for n

sufficiently large. Also RnRn_C>Q, since Rn is of
constant sign, for n sufficiently large. We now
apply Theorem 2, noting that Rn-^Q implies Rn+\—
R0

6 Knopp, p. 124.
7 Knopp, p. 285.

Theorem 5. If Sponverges, R= — l and (l+#n+i)/
( l+ i ? n )> l , then T converges with greater rapidity
than S.

Proof: Since R= — 1, we have Rn<^0 for n suffi-
ciently large. Hence RnRn_i^>0 and 1—i?w>l.
From theorem 2 it follows that T converges so that
6W—>0. Since (l+JBn+1)/(l+JKw)-»l, it is positive for
n sufficiently large and

also

Now

(Rn+1-Rn) 1+Rn.
1+Rn 1+Rn

bn + bn+i
an+an+1

< bn

an-\-an+1

Pn
1+Rn+1

+

+

bn + l

an + an+i

Kn+\±n+\
l+Rn + l

since

Pn
i + i

l+Rn
i+Rn +1

and

1+Rn+ 1

\Rn + 11
'\l-Rn+l\\l-Rn+2\

Rn+2 — i+i

l+R n + l

We may now apply Lemma 2.
Remarks. The conditioti (1+Rn+1)/(1+Rn)-^1 re-
quires that, for n sufficiently large, (1+Rn) be of
constant sign. Since S converges, this means that
Rn^> — 1 for all sufficiently large n so that terms
decrease monotonically in magnitude. The converse
is, however, not true. The condition can, of course,
also be stated as {Rn+i—fi«)/(l+fi»)->0.

Theorem 6. If S converges with i?w>0 and #w>
K>0 for n sufficiently large, then T converges. If,
in addition, n2(Rn+1—Rn) it bounded as n-> <» then T
converges no less rapidly than S. If, further,
n2(Rn+i—Rn)-^0 as n->™ then T converges more
rapidly than S.

Proof: By hypothesis, for n sufficiently large,
Qn=n(l-Rn)>K. Hence l-Rn>K/n and Rn<l~
K/n<^l. Since i?w>0, this means that terms of S
that correspond to sufficiently large n are of like sign
and monotonically decrease in magnitude. Since S
converges, we therefore have nan-^0 (see foot-
note 6). Hence \an/(l—Rn)\ = \nan/Qn\<\nan\!K^O.
Therefore, by (7), Tn~Sn^S.
Furthermore,

\Rn+i—Rn\ _n(n-
Rn\~

l—Rn\

~\1-Rn + 11 \QnQn+ 11

K 2
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and is therefore bounded (or—>0) if n2(Rn+1—Rn)
is bounded (or—>0).
We may now apply Lemma 1.
Remarks. The boundedaess of n2{Rn+x—Rn) re-
quires that R exist since it assures convergence of

00

the series ]T) (Rn+i—Rn), whose partial sums
1

are Rn+\—R\. I t does not, however, exclude the
value R=\. The condition may also be stated as
[nQn+i—(,n + l)Qn] is bounded (or —>0).

Theorem 7. If S converges and C exists, then T con-
verges. If, in addition, w2(i?w+1—Rn) is bounded as
n-^<x> then T converges no less rapidly than S. If,
further, n2(Rn+1—Rn)->0 as w—>oo then T converges
more rapidly than S.

Proof: Since Qn=n{\ —Rn)->Q, we have 1—Rn-^O.
Hence Rn^>0 for n sufficiently large. Since S

converges, Q > 1 and thus Qn^> „ > 0 for n sufficientlv

large. We now apply Theorem 6.
Theorem 8. If S converges, Q exists ^ 1, and 7i(Qn—

00

Qn-i)^O as n-^^o, then the series U=^2 un with
o

v>n={Qbn—a<n)IQ—l) converges more rapidly than
S and has the same sum.

Proof: From theorems (1) and (7), we have, with
the present hypothesis that T converges and T=S.
Hence

Un-

also

\-Sln QSS
-l """e-i=

pn=^=—1 1 n+l
l—J-^n + 1 -l —Rn Qn + l

J ( t t+ l ) (& + l - & )
Qn QnQn+1

n
"Qn

Q'

since Q > 1 if S converges. Hence

un QPn-l
an Q-l -*"•

Moreover, as shown in the proof of the previous
theorem, existence of Q implies P w > 0 for n suffi-
ciently large. We may thus use Lemma 1 to com-
plete the proof.

Remarks. If any transformation or set of transfor-
mations leads from a convergent series S to a con-
vergent series V= X) vn, which has the same sum and

00

if vnlan->L^l as w->oo; then the series Z= X)g«
o

with zn=(vn—Lan)/(l—L) converges and has the
sum S. Z may converge more rapidly than S. This
will certainly be the case, since zn/an-^0, if | l + i ? w | >
K>0 and BnPH^l(l+Bn+1)(l+Bn.l)>0 in view of
Lemma 3. The previous theorem is a special case
of this. As another, and simpler case, consider a
series S such that , for a fixed integer k, an+k/an-^L ^ 1.
Then we may take the S series displaced k terms for

V. That is, we tajce

i-L '

We shall call this simple transformation the "Ra t io"
transformation and use it as one of the comparison
transformations in a later section. In particular, if
R exists 7^1, we may use the Ratio transformation
with k=l and L=R. Obviously, we may always
reduce the transformation to this particular case by
breaking the original series into k subseries. Other
applications of the general idea will be encountered
in examples 4 and 5, where it proves helpful, and in
example 2, where it does not appear to be of
assistance.

In attempting numerical use of the Ratio transfor-
mation or of the U transformation of theorem 8, we
are handicapped in many cases by not knowing the
constants R,Q,k, or L, which appear in the formulae,
even if we are certain that necessary conditions are
met. We may write the Ratio transformation for
k=l as

y Sn

In this form, if we approximate R by Rn, we obtain
the T transformation:

rp &n -L*n&n — \

w o w _ i an

Similarly, noting that Pn-^>1/Q in certain cases, we
may approximate 1/Q in the expression for Un by Pm
to obtain the W transformation given by (17).

Both the T transformation and the W transforma-
tion have the advantage of being calculable without
knowledge of an analytic expression for the general
term. Each term of the former is completely
determined by the values of a corresponding group
of three successive terms of S, while four such terms
are needed to calculate each term of W. Where the
initial portion of the S series has suitable properties,
use of the T series may produce the sum with suf-
ficient accuracy, even though it may not be suitable
when terms far out must be considered. Otherwise,
at the expense of increased complexity, we may use
the W series. There are, of course, conditions under
which neither transformation is of value. There are
also peculiar cases where the T transformation is
usable but not the W. Examples of such conditions
are included in the latter part of this section.

Theorem 9. If S converges, Q exists 5^1,
n(Qn-Qn-i)-^09 and n[(n+l) (Qn+i-Qn)-n(Qn-
Qn_i)]->0, then W converges more rapidly than S
and has the same sum.

Proof: With the given hypothesis, the proof of
theorem 8 shows tha t Pn-^1/Q^l and that Tn~^S.
Hence, from (16), Wn->S. Also, Qn^0 and Qn—
1 9^0 for n sufficiently large since Q^l by hypothesis
and QT^O since S converges.7 Hence

7 Knopp, p. 285.
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dn 1 —'
l-Rn

—2Rn-\-RnRn_i

^

with the given hypothesis. Also, as shown in the
proof of Theorem 7, existence of Q implies Pn^>0 for
sufficiently large n so that we may apply Lemma 1.

Theorem 10. If the hypothesis of theorem 3, theorem
4, or theorem 5 holds then W converges more rapidly
than S and has the same sum.

Proof: The proofs of the theorems referred to show
that, for any of the conditions stated, Pw-^0 and T
converges more rapidly than S. Theorem 1 shows
that T=S. We thus have 1-Pn-^1 and

while
S-Wn_(S-Tn)l(S-Sn)-Pn

Theorem 11. If S is an infinite convergent series and

«3

n

is valid for all n>N where the at and N are con-
stants, then T converges more rapidly than S if «o^l
and with the same rapidity as S if ao=l. If at = 0
for all i^>0, then T terminates with less than N terms.
Otherwise, T is an infinite series with ratio of each
term to its predecessor given by

valid for all n sufficiently large, where the pt are
constants and not all ft = 0 for i>0 . Moreover,
PO=OLO. In addition, PI = OLI if aa=0 or 1 and P2=a2
if ob+1.

Proof: Let us write

This converges for x=l/N by hypothesis. It,
therefore, converges for \x\<C^/N and defines an
analytic function in this range. Also, for n>N,
Rn=R(l/n). We have

(a3 —

valid for |z|<l/(iV+l),8 and fln_i=B
Rn+1=R+(l/n) at least for n>N+l.

If OLQ9*0,-1, or 1 then, since R(l/n)—>ao as n
8 Knopp, p. 180.

and

-Q, - i )+&«2- i - i ) ]
the hypothesis of theorem 3 is satisfied and T con-
verges more rapidly than S.

If ao=O, not all ai = 0 since this would make
Rn=0 for all n^>N and S would terminate contrary
to hypothesis. If k is the smallest value of i for
which aij^O, then nkRn=H(x)/xk for x=l/n and
approaches ak whence all Rn have the same sign,
namely that of ak, for n sufficiently large. There-
fore, from theorem 4, it follows that T converges
more rapidly than S.

If ao= — 1, not all a*=0 since this would make
Rn= — 1 for all n>N, which is impossible since S
converges. Again, let k be the smallest value of
i for which a^O. Then [l+R(x)]/x*-*ak and

\-Rn,
l + Rn n\l+Rn)

( n V f*
\n+lj ^a

and theorem 5 shows that T converges more
rapidly than S.

If <*o=l, we have

)=[\— R(x)]/x = — ai — a2x — a3x
2 —

and

Q-(x)=Q[x/(l-x)]

v a l i d f o r x < l / ( N + l ) a n d Q n = n ( l - R n ) = Q { / )
while Qn-i = Q-(l/n) at least for n^>N+l. Hence

q(x)=[Q(x)-Q_(x)]/x

and n(Qn—Qn-i)=q(l/n)-^0 while Qn-^—ax. Sinco
S converges, «i< —1 9 or Q=— «i>l. The proof of
theorem 8 indicates that, under these conditions,
Pn->l/Q^>0- For n sufficiently large, we thus
have 3/2#>Pw>l/2# and, by Lemma 1, the
series T converges with the same order of rapidity
asS.

If all a*=0 for i>0, then Rn=a0 for all n>zN.
We cannot have ao==£ in this case, since S converges.
Hence 1— ao^O and, from (9), bn=an[l/(l— a0) —
1/(1— ̂ l ^ O for all n^N and T terminates with
less than N terms.

Conversely, if T terminates with K terms, then
bn=0 for all n^>K. But if an=0 for any n^N, the
finiteness of the Pn makes all subsequent an=0 so
that S terminates contrary to hypothesis. Hence
an5*0 for n^N. We therefore require Pn=0 for
all n^M, where M is the larger of K-\-\ and N.
From (13) it follows that this implies Rn+i—Rn—0
for all ri^M. so that Rn is constant in this range

9 Knopp, p. 288.
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and R(x) is equal to R0(x)=RM+0x+0x2+0x3+. . .
for the null sequence x—l/n. Hence all at=0 for
i>0.10 If, therefore, not all at=0 for i>0 , T is
an infinite series. If not all at—0 for i>0 , let k be
the least value of i > 0 for which at^0. Then

R+(x)-R(x)=-kakx
k+i-(k+l)(ak+1-kak/2)x

k+2-

(k + 2)[ak+2-(k+l)ak+r/2 +

)ak/S\]xk+3 + . . .
and

] = (1 - a o ) 2 - 2 ( l -

all valid for |z|<l/(iV+l). Furthermore, we have

R+(x)-R(x)
P(X) = ;

kakx
k+l (k+l)(ak+1-kak/2)

X *"r —

(k+2)[ak+2-

for ky>2; and

_____ 2a2X
3 _3(a 3 — a2)x

4:

""""( l -« 0 ) 2 ( l -*o) 2

2x5

(1—a0)

for i = 2, noting that we cannot have ao=l in these
cases. For k= 1, a0^ 1, this becomes

1 3ai(2a2—

3a? I t

(l-ao)2J • • •

while, for a o = l (and, therefore, & = 1),

• 2ag aH 3 _

all valid for sufficiently small \x\.n Then

io Knopp, p. 172.
» Knopp, p. 182.

+1kakx*
(1-ao)2

for k^>2; and

_ 2a2x
3

—«o

for k = 2; and

3«1(2«2+a1)

( l -«o) 2

for A:=1, a0 5̂  1 • Finally, for «0= 1,

1 r 2 a 4 , « 3 4«2«3 2a3
2 «i

«i L a i a i a i ai a i

We thus get, for \x\ sufficiently small

for i 7̂  1; and

G(x)=l-2x + 2 [ l - ^ -
y L «i

for fc = l, aO5*l; and

for ao= 1 • We may now write

where P0=a0 in all cases; ft=ai when ao=O or 1; and
^2=0:2 when ao^l- For ao^O, fc^l, we have ft=
— (fc+l)oo^0. For «o^O or 1, Ar=l, we have
j81=a1 — 2aO5*O unless a! = 2a0. In the latter case,
we find p2=— 2ao(l+«o)/(l—«o)^O unless «0= — 1 .
However, we cannot have |i?w |>l for all suffi-
ciently large n, and hence l + Rn cannot become and
stay negative. But n(l + Rn)->ai if ao= — 1. Hence
we must have a i>0 and thus a i ^ — 2= 2 ao so that

For ao=O, we have pk=ak9*0. In all cases,
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therefore, not all the & = 0 for i^>0. But, by inspec-
tion, Fn=F(l/n) for n sufficiently large. Hence our
proof is complete.

Theorem 12. If S is an infinite convergent series
and

n^n2
3

is valid for all n^Nwhere the at and N are constants,
then W converges more rapidly than S and has the
same sum. If at=0 for all i > 0 or if ao=l and
ai=(a2/ai)i~2a2 for all i > 2 , then W terminates with
less than N terms. Otherwise W is an infinite
series with ratio of each term to its predecessor
given by

valid for all sufficiently large n, where the yt are con-
stants and not all yi=O for i^>0. Moreover; jo—ao
and) if ao=O, 7i=«i.

Proof: We shall use a large part of the proof of
theorem l l . We note that

so that

valid for \x\ < 1/(N+1). Therefore,

n[(n+ l)(Qn+i-Qn)-n(Qn- Qn^)] =

This, coupled with other data from the proof of the
theorem 11, shows that the hypothesis of either
theorem 9 or theorem 10 is satisfied so that W
converges more rapidly than S and has the same
sum.

If all at=0 for i > 0 , we have Rn=ao for all n^N
and ao?£l since S converges. Hence 1— ao?*O and,
using (19), ti?n/an=l/(l—ao) —1/(1—oo)=0 for all

so that W terminates with less than N terms.
If all ai=(a2/ai)i~*a2 for i > 2 and aQ=l, we have

Rn=l+a1/(n—a2/a1) for all n^N. Using (19),
n/n ( / 1 ) / ( + 1 ) ( / 1 ) / ( + 1 )

all n^N since —a{^>\ and l + a i ^ 0 if S converges.
Thus W terminates with less than N terms.

Let us now consider a^l and not all a* = 0 for
If k is the smallest index i > 0 for which
we obtain

A(x)=[l -R-

for \ and

for k = 2; both valid for |x|<l/(iV+l.) But, from
(19), wn/an = An/Bn, where

An={\ =Rn+1)(l-2Rn+RnRn.1)-

and

l - i ? n ) - ( l -Rn+1)(Rn-Rn-l)

Bn = (l -2Rn+RvRn_1)(l -2Rn+l+RnRn+1).

Since aw^0 for n^N as indicated in the proof of
theorem 11, if W terminates with K. terms, we must
have An=§ for all n^M, where M is the larger of N
and K+l. But A(x) cannot vanish for all terms of
the null sequence x=l/n, n^M since ak5*0. Hence
An=A(l/n) cannot be zero for all n^Mf and W is
an infinite series. Furthermore, we readily obtain

B(x)=[1 -2R(x)+B(x)B-(x)] [1 - 2R+(x)+B(x)B+(x)]

[4:(l-a0ya2-2(l-a0)
2al-6(l-a0)

2al]x2

if k = 1; and , for k 5* 1,

J5(x) = ( l —a0)4—4(1 —«o)8«*a:*—

[A(l-aofak+1-2(l-aQ)2kak]xk+1- . .

Thus, for I a; I sufficiently small,

12

for i > 2 ; and

x± r
P(x)t=d_ay\

for k = 2; and

1 — a0 (1 — a0)
2 (1 — a(

for k= 1. From these, we further get
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or

l — a0)

2 10(1—
or

Sal
) OV1 CXQ) 6{L (XQ)

a\ ha\ ) 2 "1
3( l -a 0 ) 2 3 ( l - «o ) 2 r ~ ' " J

for k^>2, k = 2, and.A: = l, respectively. Hence, for
sufficiently small \x\,

or

3(1— 2 _

for A: 5̂  1 and it = 1, respectively. We may now write

where, yo=ao in all cases and yi=ai when ao=O.
Also, for ao=O, yk=ak5*0. For ao^O, Jc^l, we have
7i= — (k+2)aO5*O. For ao^O, Jfc=l, we have
7i=«i—Sao^O unless a! = 3o:o- I n the latter case,
we find 72=— 6a0(l+oo)/(l— «o)^O unless «0= —1.
However, if ao= —1? we must have «i>0, and hence
ai5*—3 = 3a0 so that 715^0. In all cases, therefore,
not all the ji=0 for i>0 . By inspection,/w=/(l/n)
for n sufficiently large. Hence our proof for the
case aO7*l is complete.

Finally, let us consider ao=l and not all at=
(a2/«i)^~2«2 for i > 2 . Let k be the smallest index

for which ai9^(a2/ai)i~2a2. Then we have

where m=n—a2/ai, ^i=ai—
If we now write

and

then r(y) converges for y=l/M, where M=N—a2/ai
and hence for | i / |<l /M and defines an analytic
function of y in this range. Also, for m>M, we

have Rn=r(l/m) where m=n—a2lax. We will,
however, find it m6re convenient to use the function

By substitution, we also get,

and

valid for |2/|<1/(M+1). It is obviously that

r(y)=l+yD(y)

and
r+(y)=r[y/(l+y)] = :

Thus

(i-y)D(y)]}y2/(i-y2)

= -[al(k-l)(k-2)St+a1k(k-l)5t+ly +

• • .]y*+'Ki-y*)~

By inspection, An=a(l/n) and cannot vanish for
all sufficiently large n since cti(k— 1) (k—2)8k9^0.
As previously stated, all an^0 for n^>N. Hence
wn does not vanish for all sufficiently large n, and
W is an infinite series. Also,

b(y)=[l-2r(y)+r(y)r_(y)][l-2r+(y)+r(y)r+(y)]

[(1 +y)D(y)-D+(y)+yD(y)D+(y)] y2/(l-y2)

Thus

and
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so that

d(y)=e(y)le.(y)=l-(k-l)y+ . . .,

and

If

D(y)=d(y)r(y)=l -lc)y + . . ..

then

where

7o=«o(=i) —k<C — k since—

Remarks. The last theorem shows that, if Rn is
an analytic function of 1/n for n sufficiently large,
then the W transformation will yield a new series
with the same sum but more rapidly convergent.
Moreover, the transformation can be applied to the
new series, if infinite, to get a third series with the
same sum but still more rapidly convergent. The
process can be repeated as often as desired to yield
successive series, each of which converges more
rapidly than its predecessor and each of which has
the same sum as the original series. If Rp^l,
theorem 11 shows that the same statements hold
for the simpler T transformation. If R=l, an
infinite set of transformed series may be obtained
by the T transformation, each of which has the
same sum as the original series, but each will con-
verge only with the same order of rapidity as the
original.
Example 1:

& = l o * 2 = 1 - 5 + 5 - + + + . . . .

This series is very slowly convergent. To obtain
9-place accuracy with this series would require use
of 109 terms were it used directly. Since, however,
we have

n

n+1 n n2

for this series, it satisfies the hypothesis of theorem
11 and may be subjected to repeated T transforma-
tions with increased rapidity of convergence at each
step. Restricting ourselves to using only the first
9 terms of S, the successive transformed series are

T=.66666 66667 + ^333 33333-.00952 38095

+ .00396 82540-.00202 02020 + .00116 55012

-.00073 26007+ .00049 01961- . . .

T'=69259 25926+;<00068 47183 —.00017 15546

+ .00005 75844-.00002 34397+ .00001 09276

T"=.69314 01274 +.00000 87420-.00000 21874

+ .00000 06721- . . .

T'"=.69314 71197 + .00000 00763— . . .

in which we have omitted the first step in each of the
succeeding transformations since, obviously, the first
term in each of the T series is not smoothly related
to the remainder of the terms. It would not have
affected results were the transformation also applied
to the first terms, the further series merely carrying
additional terms of irregular form with the same
terms as given following these. This initial irregu-
larity is due to the difference in form for the first
term in each transformation from later terms as
shown by (9).

The error of stopping at a given place in any of
the transformations is, in this case, readily approxi-
mated, since each series is alternating. If we con-
sider the final approximants for the successive series
S, T, T', T", and T'" we obtain the sequence:
0.74563 49206; 0.69334 73389; 0.69315 08286;
0.69314 73540; 0.69314 71961; the last value being
correct to better than 2 in the eighth place. This
is not an infinite sequence, since Tr" has too few
terms to permit continuation of the transformation.
If, however, we assume it represents the first terms
of an infinite sequence converging to log 2, without
proof other than appearance, we get the series

U=.74563 49206-.05228 75817-.00019 65103

-.00000 34746-.00000 01580- . . . .

Assuming further that this series is of sufficient
smoothness to justify application of the T trans-
formation, we get

U' = .69315 00873-.00000 27958
-.00000 01029- . . .

J7"=0.69314 71846.

The U series final approximants form the sequence:

0.69314 71961; 0.69314 71885; 0.69314 71846.

Assuming these also are initial terms of an infinite
sequence converging to log 2, we write

17=0.69314 71961-0.00000 00075
-0.00000 00039- . . .,

which transforms into

71804.
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The heuristic process stops at this point because of
lack of terms, but this last value is remarkably close
to the correct value to 10 places of

log 2=0.69314 71806.

In fact, because only 10 digits were carried through-
out the calculations, the agreement is about 1 place
better than could be expected even were the later
steps proved fully justifiable. Note that, by this
method, we have achieved an accuracy using 9 terms
of the original series, which is better than that ob-
tained by summing directly hundreds of millions of
additional terms. The effect of the additional terms
is included by considerations of "smoothness".

We could also have applied the W transformation,
since the hypothesis of theorem 12 is satisfied. In
this case, the successive transformed series are:

^=.68750 00000 + -00694 44444 —.00173 61111

+ .00062 50000-.00027 77778 + .00014 17234

— .00007 97194+ . . .

IF7 = .69313 99632+ .00000 89884-.00000 22983

+ .00000 07115- . . .

71793+ . . .,

omitting steps that involve terms not "smoothly"
related to the remainder because of differences in
form indicated by (19). The final approximants for
series S, W, W, and W" are

0.74563 49206; 0.69311 75595; 0.69314 73648;

0.69314 71794.

Assuming these to be the first terms of an infinite
sequence converging to log 2, we get the series

A = .74563 49206-.05251 73612-.00002 98053

— .00000 01854— . . .

Applying the W transformation to this, we get

A' = 0.69314 71806.

We thus see, as might have been expected, that the
W transformation is more effective than the T trans-
formation. However, the simpler calculations in the
case of the T transformation probably more than
offset the additional number of steps required as
compared to the W transformation.

Example 2:

After seeing how Advantageous the transformations
are when "smootEness" exists, we choose this exam-
ple to show the ill effects of irregularity. This is,
as may be seen by examination, identical with the
series used in example 1 except that the sign is
reversed and odd and even terms are interchanged.
In spite of being only conditionally convergent this
interchange does not affect the sum, which is—log 2.
If the type of irregularity is noted, the best pro-
cedure would be to remove it by rearranging the
series (in this case obtaining the form given in
example 1), by combining terms (in this case ob-
taining the form given in example 5), or by splitting
it into several individually "smooth" series (not
possible in this case since this leads to two properly
divergent series). Suppose, however, we do not
note these possibilities but attempt to work with the
series as it stands. It is obvious that theorems 11
and 12 are inapplicable. So is theorem 5. How-
ever, theorem 2 applies except that l+Rn-^0, and
hence we have no statement about relative speed of
convergence, although we know that the T trans-
formation leads to a convergent series. In fact, we
find that

T=.16667 —. 46667-. 09286-. 07937

— .03535 —.03217 —.01859 —.01737

— .01146— . . . .

The terms are certainly smaller than those of S.
However, the character of the series is changed from
alternating to terms having the same sign, and this
makes the error for a given number of terms of the
same order as that of the original series, being
approximately the average of the errors found for the
original series for consecutive partial sums. We have
thus not gained by the use of the transformation.
Examination of T shows that B exists and has the

value 1 and that n(l — &w/&«_i)—>K f° r ^ even and

—^ for n odd, so that T satisfies theorem 6 and can

itself be transformed into a new convergent series T'.
Of course, even at this step, if the type of peculiarity
were noted, it would be possible to combine pairs of
terms or to separate the odd and even terms into
separate series to be separately summed, obtaining
"smooth" series in either case that would satisfy the
hypothesis of more useful theorems. If, however, we
continue with the transformation to T'} we may note
that, although it converges, its terms are larger than
those of Tsince, from the given limits for n{l—bnjbn_i)

12
we have \Pn'\ ~ -y7 i^°° . In fact, T' is quite similar

in convergence and form to S with terms alternating
12

in sign and tending to -=- those of # for large n. The

Tf series is

T' = .41592 —.52315 —.40310—.32859 —.28078— . . .
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We may now attempt to proceed in accord with the
remark following theorem 8 to get the equivalent
and, we hope, more rapidly converging series

V=-KT'-TS)
which is, numerically,

F = 1.78229 —1.66759 — .03566 — .33997 — .00693

This series, unfortunately, is even worse than T.
The irregularity is much more pronounced.

We may try the W transformation instead. It is
easy to show that its resulting series is convergent.
It is

W= - .12500 - .22917 - .08333 - .05417 - .03333

- .02470- .01786.- . . .

and is certainly no more rapidly convergent than the
T series. If we transform this again, we obtain

which does not appear promising.
We may thus conclude that, if a certain amount of

smoothness is lacking in the original series, the
transformations, while leading to convergent series,
may not help in evaluation but may help in indicating
the character of the irregularity and thus suggest
some method of modifying the original series or one
of its transformations, by grouping, rearranging, or
splitting into subseries.

Example 3:

o + o + o - | + o + o + o + o + - ^ + . . . .

This example shows the effect of a somewhat different
type of irregularity. Here we readily find that T and
PFare identical with Si or any consistent interpretation
of formulae, and hence the schemes have no value.

Example 4-

o , 1_J_I. A
2 4 8^16

JL
32 64 128

This is still another example of irregularity,
readily find that

Here we

o_2/ ! _ ! _ !
3 \ "^2 4 8

, _L i _1__L L .
"t"l6"1"32 64 128*1"

which certainly has the same type of convergence as
S. However, we may now utilize theorem 1, which

2
states that T=S to obtain S=2——S from which we

get the sum S=-. ^This particular series can, ofo
course, be summed more easily by grouping pairs of
terms to give

o , , 1 1 , 1
& 1 + +

which is, except for the first term, a simple geometric
. , 6series converging to —•o

The W transformation, in this case, gives

W = ~ 7 ~ + 7 ~ ~ 7 ~ 7 + l 4 + 2 8 ~

and offers no apparent advantages.

Example 5:

o J L_J_
1.2 2.4 3.8

1
4.16 ' 5.32 6.64 7.128

This is a somewhat less obvious application of the
remark following theorem 8.
We readily find that

9 91

T=- —
5 10.3.8

196

68

33.4.16

497
85.6.64 204.7.128"

155
"66.5.32"

and that terms tend to — of the next to corresponding
o

term in S. We thus take, as a more convergent

series with the same sum 7 = - ( - — Tj with the
two series displaced one term prior to combining,
thus obtaining

I -| fy r* I

21 23 47

25 1200 ' 176 ' 17600 40800 304640 '

which converges more rapidly than the initial
series. A preferable procedure is, of course, to
combine pairs of terms.

Example 6:

o 1 , 1 , 1 , 1 , 1 i
1.2~ r3.4~ r5.6^7.8^9.10^

This is the same series as used in example 1 but with
pairs of terms added. It is readily seen that this
series satisfies the hypothesis of theorem 8 with
Q=2. We may, thus, proceed as there indicated
to get the successive more rapidly converging series:

v=l_ 1
10 180 1170

3

3
12376

2n(2n—
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for which Q=j

and
7' — —-——-L 49

5940 ' 1196910 '

which, as far as we have gone, gives the value
0.693139, which is correct to 8 in the last digit.
Here, also, if desired, we may follow Example 1 in
assuming that the last partial sums of S, V, and V
form the first terms of a reasonably smooth infinite
series and thus improve results somewhat further
with the given number of terms.

We also note that theorem 9 is applicable. If
we use the W transformation, we get

16 l 240 ' 1120

which, so far as we have gone, gives the value 0.69306,
which is in error about 8 in the lalast digit.

Example 7:

This example is included to show that there exist
convergent series, even with a certain type of
smoothness, for which the T transformation leads
to a divergent series. Here T is given by

10 1 5 ^ 3 6 ^ 4 5 78 91~h136' r" " ' '

and terms tend toward ± 1.
The W transformation does, however, lead to a

convergent series albeit no more rapidly so than the
original. The resulting series is

J
120

275
1008"

Example 8:

S=
1 + 1

This is another example showing that there exist
convergent series, even with sufficient smoothness
to have B exist=l, which lead to divergent series
upon application of the T transformation. Here

so that S converges. However,

so that

The W transformation leads, in this case, to a
convergent series since, as may be readily verified,

n2

and

1

Example 9:

S=14 23 2 1

33—2 1 1 43—2 1
2.32.4.5 + 32+42~[~3.42.5.6 + 42

This is an example showing that there exist
convergent series, even with sufficient smooth-
ness to have R exist and have the value 1, which
lead to divergent series upon application of the
W transformation and this despite the fact that
the T transformation leads to convergent series.

Here 0<£3w_2<£W_i<)S'3W<3 2 ~ s o that S con-
verges. However,

Rzn + 2) n+2

so that

Furthermore,

. n+2. n+2
H—^—>—^—>0°.

(n+lf-2
—Rzn-1

azn = {n+lf-2
l-RSn {n+lf{2n+l)~

Hn+l

and

so that

3. Original Series Divergent
General: There has been considerable study made

of methods of assigning meanings to Divergent
Series. One possible way to assign such a meaning
to a Divergent Series S is to consider it as the value
of the function S(x) at x=l, where S(x) is defined for

00

sufficiently small x by the power series 2 an%n and
o

for larger x by analytic continuation or limit proc-
esses. If Rn remains bounded as n-> <», there will
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always be a region in which the power series converges
(certainly when \x\ is less than the lower bound of 1/
|l?n|). If, however, Rn is unbounded, the power series
may converge only at the origin and does not, there-
fore, define an analytic function over any region.
In any case, it may not be possible to find an analytic
continuation or limit for x=l. Another method,
developed by Borel, is to consider the power series

00 a xn

SB{x) — ̂ 2 n \ a s defining some function of x and

then to define the sum of the divergent series S by
the integral

Still another way of treating the matter is to consider
the power series S(x), even if it diverges for all x no
matter how small, as an asymptotic representation
of a function F(l/x). Then, if F{ljx) is defined at
x=l, we may take S=F(l). Since, in general, any
asymptotic series may represent an infinity of
functions, this method requires some additional

limitations in regard to the behavior of F I — 1 to

insure uniqueness.
The use of the transformations discussed in this

paper may, in some cases, lead to "equivalent" con-
vergent series and thus to another definition of sum
of divergent series. In many cases, however, the
transformation merely serves to obtain an equivalent
series, also divergent, but diverging more slowly.
The new series may be easier to sum than the old. In
particular, if the original series can be considered as
the result of substituting a particular value for the
variable in an asymptotic series, the resulting series
may be similarly regarded but with individual terms
smaller than for the original so that, if the error
stopping at any term is limited by the magnitude of
the next term, the transformed series yields a more
precise sum. The theory is, obviously, more difficult
by far than for convergent series and has not been
developed beyond a rudimentary stage by the author.
Heuristic application to particular examples does,
however, indicate considerable power in this method.

Theorem 13. If there is a definition M for the sum
of an infinite series that has the following properties:

A. If summable M with sum C and

2~J dn is summable M with sum D, then ]T} (cn±dn)
o o

is summable M with sum C±D.

summable M with sum C then

cn is summable M with sum C-{-c0, and if both S

' If 2 c

o

oo

and V==S an/(l—Rn) are summable M, then T is
o

summable M with the same sum as S.
Proof: By condition B, we have

Sum V.

Hence, by condition A,

and

But, from (9),

bo=ao-\--

and

Hence,

1-R,

1—rin+l i— t in

SumM T = S.

Remarks. The definitions that satisfy the conditions
of this theorem include Cesao and Holder summa-
bility of any order and absolute Borel summability.

Condition B can be modified to read: "If 2 J cn is
00

summable M with sum C then, if XI cn is summa-
o

ble M, its sum is C+c0", provided we add to the
hypothesis: "and V'=\ 0 + S ^Wp is summable

M." The modified condition is met by Borel sum-
mability without the requirement that it be abso-
lute.12

Theorem 11+: If S is such that \Rn\<M for all n
and if T converges absolutely, then T is the limit as

00

2—>1 of the analytic continuation o

Proof: Consider the series

and the region bounded by the circular arc |s | = l
and the line segments x=0, y= — l/2, x = l/2M, and
y = l — x. If M < 1 , then S converges and, by
Theorem 1, we have T=S = S(1) satisfying the
present theorem in trivial fashion. If M>1,
l /2M<l/2 and the region is as indicated in the
diagram on p. 242. Throughout the region and its
boundary, we have | z | < l . In the left-hand por-
tion, 0 < z < l / 2 M so that

while

\\-Bnz\>\\-Unx\>\-\Rn\\x\>\l2

\1-BH\<1 + \BH\<M+1.

12 W. B. Ford, Studies on divergent series and summability, p . 89 (Macmillan,
New York, N. Y., 1916).
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Hence

In the right-hand portion, we have y>l—x so that

Hence

\l-Rn\/\l-Rnz\<^r2<2(M+l).

Therefore, throughout the region and its boundary,

where

oo

But, by hypothesis, X) \bn\ is convergent. Hence
T{z) is uniformly convergent throughout the region
and its boundary.13 Moreover, fn(z) is a rational
function of z and is therefore analytic except at the
points z=l/Rn and z=l/Rn+u which are poles.
Since convergence of T reverses finiteness of the bn,
we cannot have Rn= 1 for any n. Also, by hypothe-
sis, \Rn=\ <M. Hence these poles do not fall within
the region or on its boundary, and fn(z) is analytic
within the region and continuous throughout the
region and its boundary. Hence T{z) is analytic
within the region,14 and is continuous throughout the
region and its boundary.16 Thus the limit of T(z)
as 2—>1 is T(1) = T. Also, S(z) is a power series
with radius of convergence at least as great as 1/2M,
since S(1/2M) converges, having the ratio of each
term to its predecessor less than or equal to 1/2.

« Whittaker and Watson, Modern analysis, p. 49 (Cambridge University
Press, 1915).

u Modern analysis, p. 91.
» Modern analysis, p. 47.

Hence S(z) is analytic in the double-hatched region
of the diagram bounded by the semicircle (z) = 1/2M
and the y axis and, in particular, converges for z=x
for any x in the range 0<Cx<^l/2M. T(z) is also ana-
lytic in the same region since it is included in the region
previously considered and converges for all points
on the portion of the x axis included. Hence by
theorem 1, T(z) is identical with S(z) in this region
and is therefore an analytic continuation of S(z)
throughout the larger region.

Theorem 15. If S diverges, Rn^>0 for n sufficiently
large, and there are an infinity of values of n for
which Rn<l, then Tdiverges.

Proof: Since S diverges, we cannot have aw=0
for all n sufficiently large. Hence, if there are an
infinity of values of n for which an=0, there must
be an infinity of such values for which aw_!^0, and
hence Rn=0 contrary to hypothesis. If there are
an infinity of values of n for which Rn=l but aw5^0,
we have each corresponding Tw_i infinite and thus
T diverges. Finally, if there are an infinity of
values of n for which JR»<1 , then, for each of these
n, an/(l—Rn) has the same sign as an, and hence as
Sn-x for n sufficiently large so that |Tw_i|>|Sw_i| for
an infinity of values of n and thus is unbounded.

Theorem 16. If S diverges, Rn^>0 for n sufficiently
large, and there is an infinite sequence of values of n,
say ni<Cn2<Cn3<C • • . such that i2n<—>1 as i-^aoy

then T diverges.
Proof: In view of the proof of theorem 15, we

may limit attention to an9^0 and BW>1 for n suf-
ficiently large. Since the an are all of like sign for n
sufficiently large, we may take them as positive for
convenience, an almost identical proof applying if
they are negative. Let, therefore, iVo be such that,
for n>N0, a n >0 and -B«>1. Since jR»f-»l, there
exists a value N>N0 for which RN<^RNQ. Let N,
be the least such value. Then, for every n such
that N0<n<^Ni, we must have Rn>RNQ^>RN^
Starting with Nh we may similarly get a value N2
such that, for A/r,<ri<A4 we have, RU^RN^RNZ.
Combining with the preceding, we then have
Rn^>RN2 for all n such that N0<n<^N2. Continuing
in similar fashion, we get an infinite sequence Nj
with the property that Rny>RNj for all n in the
range N0<n<^Nj and with iV^>iVy.,. Now, from
(5), we have

But an = Rnan_C>RN.an-.i for.
all terms in the braces are positive and

j . Hence
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T(N.-.1)<CSNo—a(No+1)/(RN. —

But Rnt>RN.>l for No^niKN,. Hence RN.-\
—>0 since J5n r->1 and thus T(N.-!)->— oo? so that T
diverges.

Theorem 17. If S is a divergent series and

is valid -for all sufficiently large n, then the repeated
application of the T transformation to S and to each
derived series in turn will, after m applications, yield
a series T(m) which converges, where m is the smallest

00

integer exceeding — ai/2. Moreover, T(m) = Urn
ioi-o o

Proof: We note that «]<0 since, otherwise,
|i?wj<O for n sufficiently large so that S is an
alternating series with terms steadily decreasing in
magnitude and converges contrary to hypothesis.
Using the analysis of theorem 11 in so far as it
does not depend upon convergence of S, we see
that T terminates if all the at=0 and that, other-
wise, T is an infinite series with ratio of each term
to its predecessor given by

_ , . fli . fa • fa ,
n n2 nz

n - i n n2 nz

where fa = ai + 2. If « i> —2, then a! + 2 > 0 and T
converges since, for n sufficiently large, it is an
alternating series with terms of steadily decreasing
magnitude. If «i + 2 = 0, T will converge if the first
Pi that is not zero is negative; it will diverge if all
the 0* are zero or if «i<C — 2. When T diverges, it
satisfies the same conditions as the hypothesis
prescribed for S. If we repeat the same transfor-

mation on T to get a series JT(2) = 2 D bi2) then either
0

T(2) terminates or is an infinite series with ratio of
each term to its predecessor given by

k (2) O(2)
°n _ 1 I Pi
b^Li n

P8 I

nz

where 0^2)=0i + 2 = ai + 4. By simple induction,
we thus see that, for — at not an even integer, it
will take m successive transformations to obtain a

CO

series T(m) = XI bim) with magnitude of terms decreas-
0

ing for terms sufficiently far out (that is with
0im)>O) so that T(m) will then converge. If — ax is
an even integer, we get /3im~v=0, and it is possible
for J7^-" to converge. In view of theorem 2, Tim)

will also converge in this case.
As concerns the values of T(m), we see from Lemma

4below, that lim 2Ja w z n and l i m y^,ar,.xnl(l—Rny
a;-*l-0 0 # a:-^l-0 O

both exist. Now the limit operation stated is a defi-
nition of summability that satisfies the conditions of
theorem 13. Hence lim ]T) bnx

n= lim
l 0 0 l 0x l - 0 0 # # a : l 0 O

Since T also satisfies the conditions of the lemma,
we similarly get

lim ]?] bn
i2)xn= lim 2 hnx

n so that, by induction,
z->l-0 0 z->l-0 O

lim X l ^ ( w ) x w = lim ^anx
n. Since T(m)converges,

lim S 6w
(m)xw = T(w) completing the proof.

j-»l-0 0

Lemma 4- If S has terms such that

is valid for all sufficiently large n, then lim y^, anx
n

z->l-0 0
CD

and lim 2 anx
n/(l—Rn) both exist.

z->l-0 0

Proof: Let JF7(x)=(l + a;)* S <lnXn where

is an integer. Then F(x)=P(x)+f(x) where P(x) is
a polynomial of degree k—l in x and

•}
Let us designate the quantity in the brackets as Ak(ri).
Then

n n
) .

r

also if
)

r

then

4-2~l

so that
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) ,

and

Ak+1(n)=Ak(n)+Bn+1Ak(n+l)=

Hence we have established the basis for an induction
proving that the form assumed is correct. Thus, for
r& sufficiently large, we have \Ak(n)\<C\oii + k\k/nk and,
for | z | < l , each term in f(x) is less in absolute

value than the corresponding term in f=
o

X\an\/n
k. But the ratio of each term of the latter

to its predecessor is given by \En\(l — l/n)k=l —
(k-\-a1)/n+terms of higher degree in 1/n and k was
chosen greater than 1— <xx so that & + a i > l . Hence
j converges and, hence, f(x) converges for | x | < l .
Also, since P(x) is a polynomial, it is analytic for all

Hence F(x) is analytic at least for \x\ < 1 and wex.
have ^P,anx

n convergent and equal to F(x)/(l + x)k for
o

all so lim ^2
:r->l-0 0

exists; its value is F(l)/2k.

Moreover, the ratio of each term of y^.aJ(l — Rn)

to its predecessor is, for n sufficiently large,

Rn(l— Rn-\) _ -, I Tl i 72 1.78 ,

\-En ~~ " rn'rn2 'rn*'T ' ' '

where y\ = ai as may be shown by an analysis simi-
lar to that used in the proof of theorem 11. Hence
this series satisfies the hypothesis in the same way

00

as 5 and, by similar reasoning, lim V) anx
n/(l — Rn)

z-»l-0 0

e x i s t s .
Example 10: S = l —1 + 1 — 1 + 1 — 1 + . . . .

Here we get bo=l/2 and bn = 0 for all n^>0 so
that T terminates with the first term and T—1/2.
The W transformation also terminates with a single
term of 1/2.

Example 11: 5 = 1 - 2 + 4 - 8 + 16-32+ . . . .

Here again, T terminates at the first term and
T = l / 3 . Similarly for W.

Example 12: 5 = 1 + 2 + 4 + 8 + 16 + 32+ . . . .

This example indicates, in a trivial way, that the
transformation may yield a value for T even if S
is properly divergent. Here T terminates and has
the value —1. W behaves in the same way.

Example 13: 5 = 2 + 5/2 + 17/4 + 65/8+257/16 +
1025/32+ . . . .

)

n'
k+2

This is a less trivial example of a properly divergent
series for which T converges. Here
T= -8+45/7 + 306/217+2340/3937 + 18504/64897
+ 147600/1046017+ . . ., and converges since terms
tend towards 9/2w+1. In fact, the general term for
T can be written as

2n

for n^>l and hence T can be summed directly as
- 8 + 9=1 .

This is consistent with considering S as the sum
of the two series:

#2=1

The sum of the first is —1 by the preceding ex-
ample and the sum of the second is obviously, 2, so
that 5 = 5 i + 5 2 = l in agreement with the preceding.

The W transformation also leads to a convergent
iseries

4 1 3 1 393822 46546812
11 319 +105821 h46521101+

This also sums to 1. The terms tend to 27/2n+1 and
hence this transformation does not give better re-
sults than the simpler T transformation in this case.

Example 14: 5=1—2+3—4 + 5 — 6+7—8+ . . . .

This falls into the category covered by theorem
17, since

Since ax = — 1 > — 2 we have Tconvergent. We find,
in fact,

T=~ —+— -_i -4_A_
3 15^35 63^99

whose general term may be written as

n 4(2^+1) 4 [2 (n - l )+ l ]

so that it may be summed by inspection to 1/4.
Hence we infer that 5 = 1/4.
The W transformation, in this case, leads to an
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even more rapidly convergent series (terms tending
to l/4n2):

6 12
7 119 ' 527 1519

20. 30
3479

which also sums to 1/4.

Example 15: S=—-\--^—7^~t~~^—of~l~ * * *7

where the Bt are the Bernoulli numbers:

1 „ 5

B—— B- 6 9 1
2~~30 6~2730

1 7
3~~4^ 7 ~ 6

5 = — ^ ^ 3 6 1 7
4~"30 8 510

etc. This is derived from an asymptotic series and
represents, by continuation, the Euler constant

(7=0.577 215 6649 . . .

Putting in the numerical values for the Bu we get

S- .5 + .08333 33333-.00833 33333 + .00396 82540-

.00416 66667 + .00757 57576 —.02109 27961 +

.08333 33333-.44325 98039+ . . .,

with a minimum term of —.00417 so that direct sum-
mation up to the minimum term may be in error
several units in the third decimal. The sum is, in
fact, 0.57897 at this point and is thus in error nearly
2 in the 3rd place. If we transform the series, we
get (omitting the first term as not "smoothly"
related to the remaining terms, see remarks in
Example 1):

T=.57575 75758 + .00193 05963 —.00075 24384 +

.00055 40257-.00068 62537 + .00131 33534-

.00364 48151+ . . . .

The minimum term is only .00055 and we may thus
sum to within several units in the fourth place. We
may repeat the transformation to get:

T' = .57714 67498 + .00010 80665-.00007 16028 +

.00007 10273 —.00010 28454+ . . . ,

with minimum term of only .000071. Kepeating
again, we get:

T" = .5772117490+.00001 71214— .00000 66422 + . . . ,

and a last repetition gives:

27/// = .57721 54337.

This is as far as we can go with the number of terms
initially taken. We may, however, consider the
first terms of the successive series as an infinite
sequence tending towards the desired value and
thus get the equivalent series:

£7=0.5 + .07575 75758 + .00138 91740 +
.00006 49992+ .00000 36847+ . . .

to which we may again apply our transformation to
get:

*7' = .5771726992 + .0000422405 + .0000007157 + . . . .

This may be again transformed to give

U" = . 57721 56678

which is correct to 3 in the 9th place. If we take the
sequence of sums of the U series, we get a new series:

£7=.57721 54337 + .00000 02217 + .00000 00124 ,

which, upon transformation, gives

y = . 57721 56685,

which is as far as we can go with the terms taken, but
which is in error by 4 in the 9th place or somewhat
poorer than U"'. This same type of effect has been
noted in applications of the method to other asymp-
totic series and is due to the fact that the U series
are not convergent but are asymptotic except that we
haven't carried the calculation far enough to get to
negative or increasing terms. In using the method,
the direction and order of magnitude of the error
made at any point is given by the first term omitted
and not by the trend of those included. To show
the behavior in this example more clearly, we may
use an additional 4 terms in the initial series. This
results in the following additional terms in the various
indicated steps:

59=43867/798; B10= 174611/330; Bn=854513/138;

Z?12=236364091/2730

S: +3.05395 43303-26.45621 21212 +

281.46014 49275-3607.51054 63980

T: +.01396 41901 —.07102 98859 + .46478 49878 —

3.81271 04366

T\ +.00021 10382 —.00059 61288 + .00225 39069 —

.01111 11599

J
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T"i +.00000 83147-.00001 39705 + .00003 11716 —

.00009 13367

T'"\ +.00000 04870-.00000 05902 + .00000 08889-

.00000 17155

T™: .57721 56539 + .00000 00313-.00000 00513

Tv: .57721 56658

U: +.00000 02202+ .00000 00119

TJ'\ +.00000 00129-.00000 00014

The sign of the last term shows that U' is not a con-
vergent series of positive terms and it is to be ex-
pected that the trend of transformed values would
show a "break" corresponding to the change in sign.

We might also try the W transformation on this
asymptotic series. We get:

W=.57718 25397 + .00007 71605-.00008 54277+ ...

which has a minimum term of similar magnitude to
the second T transformation.

Example 16: £= + + + + +
This example illustrates the divergence of the T

series when Rn = l for an infinite set of values of n.
In this case, we get °° for the first term of T, the re-
maining terms being indeterminate if (9) is used.
However, use of (5) shows all (T) are infinite. If we
attempt the W transformation in this case, we find
its terms to be indeterminate. We note that any
considerations of "analytic continuation" should give
S= lim 1/(1 —x) - » » .

J-»1-O

Example 17: £ = 1 + 2 + 3 + 4 + 5 + 6 + . . . .

This example illustrates theorem 16 since we
have all R«> 1 but Rn—>1 in this case. The T series
is found to be

T=-l-2-3-4-5-6- . . . ,

which diverges, being precisely the negative of S.
This shows a departure from what might be expected
heuristically since l+2x+Sx2+4xz+ . . . =1/(1— x)2

is positive for #>1 as well as for x<^l. The W
transformation gives even more unexpected results
since it leads to W=0 in closed form, being the
average between the S and T series.

This example also illustrates that, for divergent
series, we do not have the equivalent of theorems
11 or 12, at least for R=l in that one could hardly
expect a "smoother" series than given here.

4. Comparison With Known Methods
Obviously, where use may be made of special

properties, better results may be obtained than by
working with a given series either directly or by

application of any general numerical summing
technique. For example, log 2 need not be obtained
from the series given in example 1 since knowledge
of the properties of the logarithm permits the
development of series better adapted to computing
purposes. Similarly, the series used for the Euler
Constant in example 14 would never be used for
evaluation of the constant since far more convenient
series are available. It is chiefly when a series is
given whose properties are not fully known to the
computer that general summing methods are of
value. Even in such a case, examination of the
terms may indicate a special, convenient method for
summing the particular series. The transformation
discussed in this paper is not to be considered as a
substitute for such methods. For this reason, no
comparison with the method of "summation by
parts" which involves knowledge of the general
expression for the n'ih term and a judicious splitting
of such expressions into factors or with the method of
Borel, which involves recognition of integrating
properties of a function by examination of a series
representing it or with the method of inserting a
suitable variable factor (usually successive powers
of a variable) into each term of a series to obtain a
function of known properties which can be evaluated
under a condition corresponding to unity for each
factor, will be attempted.

Of other summing methods, we will limit ourselves
to the following in our comparison. In the discussion,
we treat these methods as transformations of series
although they are usually expressed as transforma-
tions of sequences. In most cases, moreover, we
assume the original series to be prefixed by a zero
term in order to get more analogous transformation.

4.1. The Euler Transformation

This consists in replacing the series # = X) an by
o

the series

where

n(n—\)
2! a2+

n(n—l)(n —
3!

The transformation is of particular value when the
at are such as to cause en to vanish for n>k since,
in this case, the E series terminates permitting com-
plete summing. This special case occurs when

246



an=(— l )n P(n) where P(n) is a polynominal in n.
It is to be noted that, in this case, S is divergent
with Rn—>— 1 and an analytic function of 1/n. It is
further to be noted that this transformation does not
improve convergence when S is a convergent series
of terms of the same sign but actually leads to a new
series of slower convergence than the original.

4.2. The Holder Transformation

This is usually expressed as a group of transforma-
tions of various "ranks." However, transformation
of rank r can be considered as r repetitions of trans-
formations of first rank and we therefore restrict
ourselves to the simplest case. The transformation
then changes the series

= ]C an into the series H " = S hn where
0 0

1
~(n+l)(n+2)[

This transformation cannot lead to a terminating
series if the original series is infinite. Like the Euler
transformation, this transformation leads to a more
slowly convergent series if S is a convergent series
all of whose terms are of like sign.

4.3. The Cesaro Transformation

This is also usually stated as a group of transfor-
mations of various "ranks" of complexity. The first
rank is identical with the Holder transformation.
We shall take the third rank as indicative of what
may be achieved with the more complex forms. The
Cesaro transformation of third rank changes the

00 00

series S = ^2 an into the series C = S cn where

_a0

1
= 4.5

cn =(n+l)(n+2)(n+S)(n+4)
[(n+2)(n+l)ao+

This transformation also cannot lead to a terminat-
ing series if the original series is nonterminating. It
also leads to a more slowly convergent series if S is
convergent with all terms of same sign.

4.4. Thf Riesz Transformation

This transformation also has various "ranks" of
complexity. The first rank is identical with the
Holder transformation. We shall take the third rank
as indicative of the more complex forms. The Reisz
transformation of third rank changes the series

S = ^LJ an into the series P=^2pn, where

23 I

° 1

23

1 + 7

This transformation, like the preceding, leads to a
more slowly convergent series if S is convergent wi th
all terms of the same sign. Moreover, P cannot
terminate if S does not do so.

4.5. The de la Vallee Poussin Transformation

This consists in replacing the series S = ]>^ an by
n

00

the series L=^2ln where
o

7 do

' +

22n
(n+3)

n2.n\

32n(n—l)

an-i

(n+\f.n\ an *

Like most of the other transformations, this trans-
formation leads to a more slowly convergent series
if S is convergent with all terms of like sign.
L terminates only when an is of the form:

(n+m)\Am "I

where the At are constants and m is finite.
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4.6. The "Ratio" Transformation

This consists in replacing the series S=
00

the series Z=^2 zn where
o

for

n by

1-R

r—* for n>k.
1-R

This transformation leads to a more rapidly con-
vergent (more slowly divergent) series wherever

———>i?7̂ 1 as 7&—> oo. We shall take k as the

smallest integer for which this is true. This transfor-

mation leads to a, terminating series when —^=R

for n sufficiently large.
It is again pointed out that the transformations

in this paper differ from all of the above in not being
linear. Moreover, except for the "Ratio" trans-
formation, all of the above have terms dependent
upon an increasing number of terms of the initial
series, while the transformations considered in this
paper depend upon only 3 or 4 terms of the original.
This tends to make computation easier than for
most of the other transformations but makes results
more sensitive to "irregularities". However, results
become essentially independent of which term in the
original series is considered as the first.

It may be of interest to consider the various
methods applied to the examples previously dis-
cussed, although this does not necessarily give a
comparison of general validity.

Example 1:

= 1-1/2 + 1/3-1/4 + 1/5-1/6+ . . . +v—

= 3+30"~105+252"~495 + 858~ " ' " +5

-ii+J___i_+_J L . . J
"16^144 576^1600 3600^7056

n

y

12 r 24 40^60

, + 0 +

4~ r10" r15" r70" r 280^42

8 ^ 7 2 ^ 2 8 8 ^8 ̂ 7 2 ^ 2 8 8 ^ 800 ̂  1800 r3528
73 , _107_ ,

"r3528"r

2n(2n — l)

3
i 1

Examination indicates that W converges more rap-
idly than any of the others for the first portion of the
series while E is fastest for later portions, with W and
T next and the remainder all of lower order of
rapidity. The crossover point between E and T in
size of terms is at 8 terms. However, all terms in E
are of the same sign while T has terms alternating in
sign so that the crossover for error in summing is
further out at 10 terms. Corresponding crossover
values for E and W are 13 terms and 15 terms. Z is
superior in convergence to the remaining 4 because its

terms alternate in sign although of the same order of
magnitude. It is further worth noting that H, C and
P are irregular between even and odd terms. This
same type of irregularity occurs in L if no zero is pre-
fixed to S prior to transforming it. Under the same
conditions, the irregularity in H does not take the
simple form of vanishing of even terms. The labor
of computation is (not using the general form for the
terms) least for Z, somewhat higher for T, higher still
for H and W, with C and P worst in this respect.
Repetition of any transformation leads to a series of
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poorer convergence except in the case of T, W, and Z,
which improve-convergence again to a similar degree
as the first application. For this example, therefore,
there appear to be no favorable features in use of the
H, L,C, or P transformations. E is best if the general
form is recognized and no repetition is required. T
is probably best otherwise, although the higher ra-
pidity of convergence of W may justify its greater
labor of computation.

Example 2:

2 ^4 3^6
1

2ft—1

"6 15 140 63 198 715 " *

8ft —3 8ft—1
2ft(4ft—3)(4ft —1) (2ft-l)(16ft2-l)

W=- 1 11 1 13 83_
"8 48 12 240 30 3360"

1 8ft2+4ft—1
2n(2ft—1) 8ft(ft+l)(4ft2-l) "

1 1 5 2 5 1 9 4 7
4 8 3 2 1 9 2 1 9 2 6 4 0 ' * ' '

1
4

1
4

1

3
8

1
24

1
12

1
60

4ft(2ft-l)

JJ ± 1 JL O ± 4

4~4~~T6~48~~24~~l20~~* * ' '

T_l 1 19 107 155 6991
4 12 240 1680 3024 166320

73 67 187
8 40 80 1680 1680 5040

701 877 8167
16 ' 144 2304 19200 21600 211680

The general terms for E, H, Ly C, and R are not of
2simple form but, for large n) they tend to ? —

log n VTT 3 log n 1 3 log n ,. ,
—̂ —> ^ = ^ 2 a n ( i 2 ; respectively.

n2 2n-y/n n2 n2

The irregularity thus makes all the methods poorer,
terms being of higher order of magnitude than in
example 1, except for Z which, however, has terms
of constant sign in this case instead of alternating
sign. None of the transformations has improved the
rapidity of convergence and the last 4 have made it
poorer. Repetition of any transformation leads to
poorer results.
Example 3:

#=I+I+J_JL_JL_i6__J 17.
2 ^ 4 ^ 1 6 32 16 256 128 1024^

Z not applicable,

+ I _ _ _ + 4 + +
2^6 24 40 60r42r56r224r90

2"r6"r120~r56"r840 176^ ' * ' '

4^20^40^280^140^336

p _ l
8

37 407 211 391 3107
3456+3200'"i~10800~t~148176~+~

T and W obviously are identical to the original.
The others are of doubtful assistance. Such a series
should, of course, be handled by omitting the zero
terms.

Example 4:
1 1 1
2 4 8

(— \Y+l (— l)n+1

22n~1 22n

3 3 ^ 6 ^ 1 2 24 ' * ' ' 3.22n"3 2n-2 ' ' ' >

io . i _ 6 _ I , A + J _ _ i ( - i ) + 3(-i)
7 7 7 7 1 4 2 8 ' " 7 . 2 2 n ~ * 7 _ 2 2 r a - 3 " • " • • • >

sin ( i
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7 4 + 2 6

2~r3~r48~r80~r480~r 168"1"' " *'

z = l 1 11 23 151 3133
2~t~4~l~80~h280i~2880~[~88704i~* ' "'

r = = l 1 11 53 309 71
4" r5" r80^560^4480" r1344" r# ' *'

p = = l , 41 1145 3921 38129 11135
8"t"216"h6912+32000't"432000"t"l69344"i"

The general terms for the latter series are some-
what complicated but, for n sufficiently large, they

28 68 84 , 84 , TT T „
a n d f H L> C>

t0 f ° r

and P, respectively. The last four series are there-
fore definitely unsatisfactory for summing since they

have larger terms than the original series and have
all terms of the same sign as well. E has terms of
peculiar variation with somewhat slower overall con-
vergence than the original. T and W are similar to
the original in most respects. Z is best, of course,
in giving a closed form sum, and is the only one of
the group that is any improvement over the original.

Example 5:

s=A_A_!+J_ . J__ J | (-1)*
2 8 24^64^160 364 ~r2n>22n

49 71TJ1 7 17 31
5 80i~528~t~2112 '8160 26112

= = ] ._9^ 113^^533^ ^09^_

+ •• •

547 331
6 ' 52 ' 624 3200 ' 9600 12096 96768

(—l)n(8w.2—
n(n

(-iy-\8n2+8n+l)
*,+ 5).22w+1"

(-I)n-\16n3-8n+l)
_1X22n-l

n(2n+l)(2n-5)(7n+6)-22n

^ii A J 5_4__A 9̂
' y i ' o o ' moTiAO/ i rrion

137
4^32^192^1024 5120 24576 " ( T̂  ) V2 sin (Z+n arctan ̂ )~^ \+

5 lO"1"^ 80 300~r960"r
, ' 5n(n+l).22n+1 i + 3 ) . 22w

4 ^ 2 4 ^ 9 6 ^ 3 2 0 ^ 9 6 0 ^ 2 6 8 8 ^

y . _ l . 1 1 1 9 197 899
4~t"l6H~480~t~896 + 40320+
4 ' 16 ' 480 ' 896 ' 40320 ' 354816

127
8^16^480^2240^8960^10752

p= 1 . 35 ! 707 . 407 3673 36023
16"t~432+13824~t"l2800"i~17200'i~2370816~f"

The last four series have terms tending towards

J_̂  _J 3^ and _3_
5n2' 25?i2? 5n2' 5n2

respectively. Z is the only

transformation leading to a faster converging series.
T and W lead to series of similar order of convergence
as the originial while the remainder are of slower
convergence.
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Example 6:

rp 3 • 7 . 1 9
~~5~t~180~i~5 t 1 8 0 i 1 1 7 0 1 2 3 7 6 t i 0 7 1 0

109 . 59

— 1)+

+ -3)(4n+l)

16^240^1120^3360

Z not applicable.

Sn(n— i-3)

The remaining transformations all lead to series
converging more slowly than the original since S
has terms all of the same sign. T is not usable
directly since its convergence is similar to that of

S but, as indicated in a previous section, it can be
combined with S to obtain a more convergent series,
if its trend is known. W obviously converges more
rapidly than S.

Example 7:

,s=i+I_I_I+I+I_I_I+
T 2 3 4^5^6 7 8^" " "

r = J7__17 , 31 4 9 _ 7 1 _ (
10 15"t"36"t"45 81 •• •"*"

=17 , I _2L_± , 319 J__
12+6 120 20i"840i"42

2n

12 ' 6 120 20 ' 84(T 42 1008 ' ' ' >^

^ ^ [ 2 . 2 ^ 8 ^ ^ / 4 + 1] + . . . ,

(~l)w+1 , (-1)"

t+64 + 160 384 ' ' *+(n+l).2w+1

1_ 1_ l_
8 15 24"

1 , 1 1 1
iy(2n+ + l)(4n+3)

J 2 + 4 + 15 + 40+45+36 + * ' ' '

4"r5"r15"r35"r28O"r2l" t"

_^l 41 71 47 433 4325
8"t"216"t" 432 "^400"^ 5400 i"74088 i"

The L and P series have terms of the order of 1/n2

for large n. For this series, therefore, E gives the
most rapid convergence, although with terms of
peculiar variation, while T diverges. Z is more
rapidly convergent than S. All remaining methods
give terms of similar order of convergence to that of
the original series. Z is thus preferable to all those
listed for ease of summing and is, in addition, much
simpler to evaluate.

Examples 8 and 9. These were inserted for theo-
retical interest to show that the T and W transform-
ations were not related in the sense that the field
of application of either included that of the other.
In neither example is the Z transformation applica-
ble and, in both examples, all the other transform-
ations considered lead to series of slower conver-
gence since terms are all of the same sign.

251



Example 10:

_1
= 2

= 2 6^6 10^10 14+14

1 1
2(271+1) ' 2(271+1)

4(4TI2-1) l 4(4n2-l)

P^I+J^L+J^, 79
o I o "i a • /i o o •

23 153
I o o o o I8 ' 216 ' 432 ' 2000 ' 1000 ' 8232

12TI2+14TI+3 12TI2+10TI+1
8TI(2 + 1)3 + 8 ( 7 1 + 1 ) ( 2 T I + 1 ) 3 + '

For this example, T, W, E, Z, and L all lead to
series terminating with a single term. H, C, and P
lead to convergent series. Although the terms in
H are of higher order of magnitude, they are of alter-
nating sign and trivial to sum. Since -—r——

2TI+1

2^F3 = (2TI+1) 2 (2TI+3) : ° i s r e a d i ly's»m™d to a

total of —• Also, we have

127i2+14n+3 . 12TI2+ 1 0TI+ 1
8TI(2TI+1)3 +8(

= 3/I 1_\
S\n Ti+1/

1 3 1so that P is readily summed to ^+77=9^ We thus
see that all methods are consistent with each other
in this example but that H, C, and P are most
difficult to apply and evaluate.

Example 11:

£=1-2+4-8 + 16 + 32+

1
3'

1

;=I_I+I_JL . _i_J_
2 4^8 16"1~32 64

2 2"h4 20^20 14"1"

60 140 630 693

4 20^10 14^280

_ _ _ 73 827
r~%^72~tlm'JrS000 9000+24696

For this case, T, W, and Z lead to terminating series
while E and L lead to convergent series (terms for

the latter tend to with H, C, and P
not of sufficient power to lead to series that converge.
Furthermore, if a similar series of larger modulus
were taken, say

£"=1-6 + 36-216 + 1296-7776+

we would have E and L diverge as well with

„___! 5 25 125 625 3125
2 4 + 8 16 + 32 64 + * * *

+

(-1)"
2 (§)• + • • •

and
,=J. _5 13__37 7
~~2 6 + 12 28+6

with terms tending to \24y> How-
ever, in this case, 2? and L could be repeated to obtain
equivalent convergent series. It is easy to sum E as
given since it is a geometric series. It is found to
agree with the single term values obtained for T, W,
and Z. It can be shown that L also sums to %.
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Example 12:

5=1 + 2+4 + 8+16+ . . . +2"+ . . . ,

T=-\,

W=-\,

Z = - l .

All other transformations lead to properly divergent
series. Thus T, W, and Z are the only methods that
assign meaning to this type of properly divergent
series. They agree in value assigned.

Example IS:

5 ,17 65 257 1025
...+-

T =
45 306 2340 18504

"*" 7 "h217"h3937"1"64897"*"
9.2n-i(22«_

4 1 3 1

11 319 +105821
27-2"-2(22"-2+

3 9 6 8 2 2 46546812
46521101 ' ' *

1+l)(22w+l)
4-7-22w-2+l)(24n-7-22w+l)

As for the preceding example, all other transforma-
tions lead to properly divergent series. Z is easily
summed to give — 2 + 3 = + 1 in agreement with the
sum of the T or W series. Z is, of course, simpler
to apply and sum than is T and either is simpler
than W.

Example H:

5=1-2 + 3-4 + 5-6+. . .-(-l)w7i+. . .,

"3

= 7~~ll9

15 n 35 63 l 99

6 , 12 20

4 n 2 - l ' r

30
1519 ' 3479

1 1 1

=I_1 ,I_I,I_i
2 2"r2 2^2 2

2 2^2 2^2

2 6 30 70 126 ' ' \ 2(4™2-l)"

= 4 20 + 20 140 + 140 84"

1 . 17
8 ' 72 288 ' 800 1800

8n2(2n+1)2 8(n+ l)\2n+1)2 1

Now we have the identities:

1 , 1n
4n2— 1 4(2n—1) ' 4(2n+l)

n(n+l) _ 1 l
(2TI 2 -

1 1
- l ) 4(2n+l)

1)2 8(n+ l)2(2n+1)2

2n+l

Hence we may readily sum all of the convergent

series above, obtaining — in all cases. Also, from

example 10, the Z and H series may be summed by
repetition or otherwise to this same sum. All the
given methods are therefore consistent for this
example. E is best since it terminates. T is not
quite as good as W, C, or P in rate of convergence.

Example 15:

691Y 1 i 1 1 I 1 L _ _ 4 _ _ ~ ^^ •*• l -
>~"2"r12 120~r252 240"r132 32760"1"

12

19
3 3 ^

(—l)nJ5n
2n

79 241 169 29011
33^40920 320292 ' 305040 42274452

TF=?^+ X 31
5040 ' 12960 362880

89 299 323
24^16Q ' 10080 ' 8960 ' 147840 ' 366080

Z=not applicable,
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IT 13 , 1 , 11 13
24 " r 90 "*" 1680 "*" 4200

461 67
24 ' 90 ' 1680 ' 4200 ' 138600 105105

83 6759 18175
24 ' 80 ' 3150 ' 23520^2910600^11099088

7 97 79 5279 45229
48 ' 600 ' 12600 ' 14700 ' 1293600 ' 15135120-t- • • • »

181 1777 387
\* 1 O1 A A A I I

125879_
96 ' 12960 ' 181440 ' 56000 ' 24948000

In applying all transformations, the first term in S
was omitted during transformation and then added
to the first term of the result since it is not smoothly
related to the following terms. Terms far out in

each series tend to have values—^—

o ( — 1 ; ir nn {—1; nn (—1; lnn y

n7 2n-2n 2n2 8n-22n

z ^ r 1 for T> W> E> H> L> c>
-and P respectively. Hence all the series diverge.
However, these values are not approximated during
the early portions of the series which are the most

important for summing. In these early portions,
given above, W appears best, while T is convenient
because it is easier to compute than most of the
others. All the transformations can be repeated
on the later portions of the series to obtain, with
suitable manipulatian, any desired accuracy of
evaluation. However, only T and W have earlier
terms fitting smoothly with later terms as concerns
sign.
Examples 16 and 17: These were included in earlier
discussion to show the behavior of the T and W
transformations when B=l. The Z transformation
is not applicable in either case, while all the other
transformations considered lead to properly divergent
series since S is of that character.

The author is greatly indebted to Alexander M.
Ostrowski, Otto Szasz, and Franz L. Alt for pointing
out several errors in the first draft of this paper.
He is particularly indebted to Olga Taussky, who
carefully reviewed parts of the final manuscript and
whose suggestions led to material improvement of
the paper. Ida Rhodes also contributed substantially
by checking the numerical work.

WASHINGTON, November 2, 1950.
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