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A Method of Summing Infinite Series
Samuel Lubkin '

This paper deseribias & new method of obtaining an equivelent seriea from a given infinits

convergent or divergent series,

than the original and, moregver, the same method may wsually be re

In mpny cases the new zeries is more convendont for pumming

tad indefinitely to

obtain &0 entire sequence of seriez epoh equivalent to the original and aach better than its
ﬁ;edeueﬂam in summing propertics.  1he new method differs from most summing methods
retofore employed io that terma of the transformed serles are not linear funotions of terms

of the original geries.

The paper includes proofs of theoramn indicating the seope of the new

method and comparisons of Tesulta with varicus other methods for meny specific exsmplos.

1. General

Infinite seriez are not always amenable t0 con-
venient summing by ususl methods. Even when
convergent, a gerieg may converge too slowly to per-
mit ready avaluation or may consist of terms which,
individually, require so much lahor in evaluaiion as
to male determination of sufficient terms for sum-

ing even a moderately rapidiy convergent seriea
quite difficult. If the series 18 asymptotic, the mag-
pitude of the smallest term seems to set u Jower bound
on the acevracy of evaluation, For other types of
divergent series, a convenient eumming method may
not be available. ‘This paper presenfs & method of
transforming eeries that may be of value in all thege
gaseg.  To the best of the anthor's knowledge, the
method is original with him, and hes oot been previ-
ﬂusljrlpubliahed, although the author has used it since
1937.

Easentinlly, the method consists of approximating
the series after the firat s terms by a geometric series
whose frst tarm iz the (m+ 1}th term of the original
geries and whoae ratio is the ratio of the {m+2)d term
to the {m-+1)th. Thess approximating sums for
sugcessive values of m may be considered to be sue-
cessive partinl sums of a new series that has the sama
fum &8 the old but has, frequent]y, superior snmming
properties. The process may, in many cases, be re-
peated in on the new series o get & third seviee
with still ﬁtt-er properties. An indefinite number of
repetitions may he poesible, as will be shown in ex-
amples given later.

This method differs from summing methads yaunlly
ernployed in that the terms of the transformed series
are not linear functions of the terma of the original
series. It should nleo be pointed out thaf warious
modifieations of the method are possible such we use
of other types of approximating geries instesd of the
simple geometric series® but losa of gjmplicity i=

L tjmoe tiee st o hadk of this paper, the anthor has learned of s telk presented by
D Bhanks at the Naval Ooinance Labomtary, Whibe Daks, B3, entiibnd “AMath-
chlgficnsl eaquences ireated a3 cranalents'', which bazically consiters ench term of
B sarkes ax the aurn of arretpond ng termae of oOe of Oiee geametrio serbse, When
n eingle peommetrls saries 13 comabdered, hix prosedare rediees Lo ghat disned in
thin Eyapﬂ' More complicatsd, bab generslly owee effective, taoIlrmetins
el (e bl eta of mora than coe com nt goometric serjes.  Filonally, be
has feond 1t possitk 10w ab midnite homber of CEMEPOTEREL in which ¢
the amm can b represenied af 3 Tatke of E@n Seboreiiinta of iofin lbe order, which

raliy cotvrete with considerable mpldity. The anthor aler umderatands that
tho Srasy has i, e S00wELmse paak, & paper under preparation which embod bz

similar materlal, :
* Byt B2 the qum of severwl guorchrie perics ot tlen by Bhaoks it tbe Galk

reforred ta in the rrevione Frotnote.

likely to offeet any gain resulting from use of better
fitting approximations.®

. Summarizing, this paper discusses the transforma-
tion of 8 given infinite series: .

S=Gu+dl+ﬂj+ﬂ-a+ PO +ﬂ-‘+ﬂ-4+1+ - s {1}

0o & Dew Series:

T=ﬁu+ﬁl+bz+&:+ .o +bn+l5a+|+ e {2}
If we define the partial sums by
Se=tytatat ... ta. {3}
and
thbﬂ+bl+ﬁ'ﬂ+ + o +bu| {4}
the T zeries is defined by the relations
Ti=a(1—-R.);
{5)
&y
T"_S"FI+I“R"+|’ ﬂ:}ﬂ
where
R‘za#fa,.il, {(6)

AR LI
defined only for #7>0,
This relation ¢an also be ztated, by minor maniputa-

ticn, &s:

T#-___S# T4
+—1 - 2 . (7)
OT 848 _
o 81=8uiSun oy S

=SS U g ey ®
From these relations, we readily ohtain: :

—_ %,

bﬂ_ 1 _'R| H
{9}

b"_=ﬂ' (1 _}Eu+l_ 1—13.)’ w>9

for the terms of the new series.
Examination of these relationes shows that a finite

¥ Bea, however, tranefrmation B below sl thaorens ov ik jmoperties.



alteration (modification or elimination of a finite
numhber of termas) in the original seriea results ooly in
a finite alterstion in tha transformed series. We also
noie that the conditions R.=1 or ¢.=0 rcauira
apecial consideration. In the former casc, we get
w-1= o to correspond, If this oceurs for a finite
number of values of 5, we may avoid the difficulty by
a suitable finite altoratmn {such as omission of the
ﬁrst N terms where N axceeds any n for which
H,=1) in the original series. If it occurs for an
infinite set of values of n, the transformation has
little value unless the onginal series can be re-
arranged, terms combined, or split into subseries to
avoid this difficulty. If ¢,=0, we may take b,=0
and T“—SR_I—S- and bﬂ+| ﬂ-#.'.llfl{l R#+g} if ﬂ-“_r_]_?iﬂ
but ,==0; aa a set. of relations consistent with thosa
given for a,iﬁl] However, T,==8, at those values
of n for which e, =0 1mphee. that the transformation
iz no better than can be achicved by adding fermns of
the original eeries betweon successive zeros,  Exgmple
3 below is an illustration. The theorems given, how-
ever, are valid without specific limitation if we use
the relations suggested when @,=90 since their
theses Tule out £,=1 at en infinite sof of values
7 sutomatically or the results follow even if this is
the case,
For convenience in later discussion, we add tha
following definitions:

R=lim R,. {10)
Q.=n(l —R,), defined only for a>>0. (11)
Q=lim f},. (12)
Pn= bmlrﬂo= ]J'II:I —Ri}
b1 1 R...—R. 13)
P‘_Gu-_l_ a4l _Rn rfl_Ru+lj{l_ #}, ﬂ:}ﬁ.

Wa shall also make use of nnother transformation
defined by the relations:

W=t wntwe . et we 1.

o (14)
W.=wotwtunt. . ., {15)
I — P S,
=TITP. (16)
From these, we readily obtain:
L aull —Bo 1)
H n I-]+1“2Rg+]_+RAR._+|, ﬂ::-"ﬂ, {17}
— u il — Ry}
BRAE B7 ves ¥ v
Wy=0 ;1= |: 1—R, ]]
* " 2R,y RE," R ]’
. 1-8,., 1—5,_
w:u'—a-u[l "ER.+1+RRR3+1 1 ER +R Rn []rﬂ}l
{19)

The W transformation is similar to the T trans-
formation in that a finite alteration in & causes only
a finite alteration in W. Such an alteration may be
vsed to avoid considerstion of & finite number of
terms for which either 2,=0 or 1—2R.+&.R._,=0.
The transformation is obviously not of value if an
infinite rumber 0f terms have either property. As
for the T teansformation, we shall take w, =0 when-
ever &.=0. The relation 1- 2R.,+RuRn—l#D will
be s,ssured, except for & finite number of terms at
most, by the conditions of the theorems concerned.

In acecord with usual terminology, we shall say

that a seriea E’=$ ¢, with partial sums G.=$ O

i8 more rapidly convergent than 8 if both 8 and &
converge and ('—¢)/(5—8.}), the ratic of the
corresponding remainders, tenda to zero gs » tends
to infinity; is of the same order of rapidity of con-
vergence if both series converge and [(C—O.)/
{8—8.)| remains in value beiween two finite posi-
tive constants for all sufficiently large n: and is no
less rapidly convergent than & if both seriee con-
verge and the ratio of eorresponding remainders iz
bounded as p—es.

The remainder of this paper makes use of the
commen definitions nnd thecrems, generally without
specific acknowladpmaent, Where such material is
helieved lesz well known, reference will be made by
foctnote to & source, For convenience, wherever
poesible, such reference will he mada to the “Theory
and application of infinite seriea” by Konrad Knopp,
Enghsh Edition (1%28} and will consist merely of
nainie Knopp followed by the page number in this
text.

No extensive hibliography iz included in this paper,
The reader will find appropriate references to other
solirces in the book by mentioned shove and
in a report by R. D. Carmichael in the Bulletin of
the American Mathematical Society, 25, pp. 97 to
131 (1918) on the subject ‘““GGeneral nepects of the
theory of summable series’. An extensive biblio-
graphy on similar material will alse be found ln
“Studies on divergent series and summability”
W. B. Ford (Macmillan, New York, N. Y. [191&}{
Since the first draft of this paper, » hook by G. H.
Hardy, titled “Divergent scries”, has been published
by the Uxford University Presa. The following are
several papers dealing with methods of obtaining
sumne of slowly convergent series that appearad more
recantly:

J. A, Bhohat, On u cortein transformation of

i{nﬁnite series, Am, Math. Monthly 40, 226 to 229

1423},

W. . Bickley and J. C. P. Miller, The numerical
summation of slowly eonvergent series of positive

terms, Phil. Mag (7], 22, 754 to 767 {1936).

J.W. Bradshaw Madified continued fractions
for certain series, Am. Math. Monthly 45, 352 to

362 (1838},

J. W. Bradshaw, Modified sertea, Am. Math.

}.ffﬂnt.]:lS} « 486 m 442 {1939).

zasz, Summation of slowly convetrgent
series, present.ed before Am. Math. Soe. Juns 19,
1948,.nnd in Jf. Math. Phya. 28, 272 (1050).



2. Original Series Convergent *

In this section, the transformation T (and, in cer-
tain cases, W) will be considered in connection with
an origina} series &, which is convergeni. Theorems
will be rtated ahd proved that give some of the con-
ditions under which the trooeformation leads to a
convergent series; beginning with one that states
that, in this case, the derived series has the same
gum a8 the original. Since, in connection with g
convergent seriez, the transformation is chiefly in-
tended to permit more convenient numerical evalua-
tion of the sum, we shall he mainly concerned with
the relative rapidity of convergence of the derived
ansd original serics.

It is convenient to have criteria on rapidity of
convergence that invelve relative magnitudes &r in-
dividual tarms of the seriss considered rather than
of remainders. A group of lemmas on this subject
thus precedes the formal part of the discussion. The
section clozes with & number of numerical examples
that show some of the types of behavior that may
be encountered.

Temme 1. X 8 ia convergent with B0 for a

sufficiendly large, then the series ﬂ=$c. converges

wath the mma order of rapidity as S i there exist
constonts A, B, and N sueh thot AB) m'm! Ao,/
a. > B for alf H}N no Jess rapidiy than S if e/,
ta bounded oz n—o; and more rapidly then S if
Cafln—al 38 fi—e o,

Proof: We resirict ourselves throughout to »n suffi-
ciently large without spoeific statement to that offect.
Since K,>>0, all @, arc of the same sign, which wa
may assume to be positive. Then, smee |, ,l'a-..f is
bounded for all cases considered, € converges It

ATreafin > B, wahave A, ¢, Ba, ond Az:. G >

2 sn}Bi‘, n B0 that A7 i. c,./i P T ]
AR>>0,then 4 and B are of likesig and jz e /z: a,.,l

has a vzlua between |A| and | B[ and hence ¢ con-
verges with the sare order of rapidity as 5. If
a0, 18 bounded, 4 and B exist but may be of oppo-

pite gign. JIn this cose, |Zu: o i 2] < Lt whore I}

ia the larger of | A| and |Ei] unduhance {’ converges
ne less rapidly than 8. If ¢.f¢,—0, then, for any
>0, we have e e fu, > —e for n sufficiently large.

Henca |Ec./i‘,a ]{eﬁ‘-ﬁ us #— = 50 that & con-

verges more ra.pldl than &,
mma 2. If 8 w convergent with R Ry (14+ o)
W1+ R, 170 for n sufficiently large, and the sertes

U—‘);c. has lerme such that ¢,-»0 02 n—c, then
converges with the same order of rapidity as 8 if there
evigd eomglants A, B, end N such the! AR>S0 gnd

A Dnbemy atherwise ptated, nomsnalatore b that ghveo in soction 1. We alae
s T g Ry tida] o epretem b & Beries Atd 144 vam.
F K nopq, p. 147,

A (ent-Cnpi}f(@ni- s ) >R for ol >N no lese
rapidiy than S if (cat-cari}{(@nt2as1) 0 bounded as
n— o ond with greoter ropidity than 8 if (et tapi)!
(@t Bug)—>0 ag B,

Progf: We assume » sufficiently large. Then

a‘n+ﬂ‘n+1 — an(l +R-+1}
an—!"l_an— n 2(1+Hn I:I
R R:n 1(1+Ru+]}|:l+R.-l}
(14+8,_ ¥

The series S®=37(as0+ase) and SP—gy}
2 :

3 {bey_1- 224} both converge and have the sum S
gince S =8, .8 and 82 =5,,—+%. By Lemma
1, the series (7 m=$ {Eun +Canq) COnverges with the
indicated rate for each condition ne compared to series
% and the same holds for the series O'® =g,

i (62n_1 +C2q) 06 compared to S2, Now V=024

{-‘:u+:~£':"->ﬂ”" gimce ¢,—0. Henee OW=0%9,
Furthermore, =% 0% and o= —

U= Hance € converges and =9 <0,
We now have
&—{, =C’ s S
and
O—Cqy OV =L
S__Sh“_gm_sm’

hence proving the letoms in view of the known rates
of convergence of 0% as compared to 59 and O™ az
compatred to S0,

Lemma 3. If S is convergent with R Ry | (1 4+ 8, 1)
(L+Repd >0 and [1+R >R 0 for n suffictently
large, them the sertes (= $ ¢ CoRETYEs No lese rapidiy
than 8 if eofan 18 bounded a8 n— = and more rapidly
than & of cofit,—0 ds t— =,

Proof: Bince S converges, ,~0. Hence, for either
condition, ¢,—+0. Also, for 7 sufficiantly large,

Cat a1 — Ex +ﬂn+1___ ﬂu+1 ‘
L oF - T Ga{l+Fayi} Gayr @oai{l +8Bepi)
{lf_ﬂ Capr| L 1lCny
FAr - T | LW

and iz thus bounded (or—0% when cafe. 15 hounded
for—0). We may now npply Lemina 2,
Remark, Theconditien B8, {1 -I—R,,H]{l + R, )20
is satisfied if R.>0 for all = or if R,<0 and
(14 Rop) (1 +Ra )20 for 8ll n. A special cuse of
tha latter 18 0> R, > -1,

Theorem 1. If both S and T consverge, they hawe
the sgme sum.
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Proof: Suppose T=8, Theun, from (7},
ﬂ'#llll{l -—RHJ=T._1—S#_|_“—}T—S#Q.

Since § converges, 6,—~0. Hence, {from the above,
i—B.—0 ar K,—~1. Therefore, for u sufficiently
large, R,>=0 and all ¢, are of like sign.  In view of
the above, this requires that 1 —&, be of constant
sign for » sufficiently large. Henee, sither £, 71
for all sufficiently large # or B,=71 for all sufficiently
large n. The former is impossible sinee 4,—0. The
Intter, coupled with the constancy of sign of the 4,
states that, for n sufficiently lorge, eithar S or —
consists of positive monotonically decreasing terms.
Convargence of § thus requires that ng,—0." How-
&ver, :

Rty _ 84 .
Hetce we muat have a{l— &K.)—0. This is not pos-
sible since S cotiverges.” Therefore our suppositicn
cannot be true, and =38,

Theorem £, If S iz convergent and [1—R.|>=K >0
fars%ﬁcwnﬁgmrgan then T eonverges, IF, in addition
L+ &> B >0 and BBy 10+ Boy) 1+ R, 1) >0 for
n sufficiently large, 1' converges no lese rapidly than 5.
If furthermore, Koy — B0 a2 o— oo, then T con-

Wrgts writh greﬂ-tsr rapidiy than 5.
vogf: Since 8 converges, a.—0. Hence
Ia'#-llrﬂ' _Rﬂ}l{la'aHKl_?u ﬂnd, from {?}:r T" WS’.—}S‘
, from (13)
1 1 2

SIAS TR R TE A R -o
anid thus remains bounded while, if B, — By—,

[Buir=Ea|

!P"|=|1—R.+.| n—x.

|RH+I_RI|_}
<

Applieation of Lemrae 3 now completes the prood,
orem 3. If 5 converges and R exists =0, —1,
or 1, then T converges with grealer rapidity than 8.

FProof: Bince S converges, |B|<1. But |F|#1 by
hypothesis. Hence, |K|<t. Now B,—E. Hence,
for n sufficiently large, I+R.>{1—[R|)/2>>0. If
R>>0 (or <0}, then B, >0 {or <70 for » sufficiently
large. In either case, #,H. >0 for n suffiviently
large. Wealso note that ¥,—H requires K, — K, —0,
and we therefors satisfy all the conditions of The-
orem 2.

Theorem 4. If 5 converges, R=0, and R. is of
conalant sign for n sufficiently large, then T converges
with greater rapidily than 5.

Proof: Since R,—0, w2 bave 128, 2 >0 for

sufliciently large. Also R,H, ;>0 since B, is of
constant sign, for = sufficiently f&rge. We now
a}g:]l];}; Theorer: 2, noting that H,—0 implies B, ,.,—

. KnopTn, 13- L.
KR, e 255

nverges, B=—1and (1+R.,)f

Theorem 8. If 8
converges with greeler ropidity

(1+R.)7=1, then
thon &,

Proaf: Gince B=—1, we have R,<0 for a suffi-
ciently large. Hence R R. >0 and 1—R,>>1.
From thaorem 2 it follows that T converges so that
b=, Sinee {1-48,.1/(1+R,)—1, it is positive for
n sufficiently large and

1+ Royy 1+Ra

{1+R#41:]{1+R = l+R,| - 1+Ru (1+R.}=:—:’ﬂ,
also
{Rn+1_Rn}_l+R#+'l_
1+E, 1+k, "
Now
bu+bl+] bll I b¢+1
Lyt nyy N L I
P BeifPass
"1+R.+l T+ Bag | 0"
since
P,_'__l_ B..—R, ; 1+ 8, 1 R
1+ 8] | YR, |1+ Renall—Ben][l —E&,|,
antd
Rﬂ.'_l;P_li]: — !Hu+1| th+l-' nil =0,
14+ Besrl 1—Rep|l—Repel | 1+Kaq

We may now apply Lemma 2.

Remarks, The condition (14+R.)f1-+H,)—1 re-
quires that, for n sufliciently large, (1+E,) be of
constant sign. Since § converges, this means that
R.>—1 for all sufficiently large » so that terms
derrease monotonically in magnitude. The converse
is, however, not tree.  The condition can, of course,
alzo he stated a8 (Ko, — 8.1+ E)—=
Theorem 6. I 8 tfonsv:rgﬁs ﬂhitﬁh TJE“:}G and fﬂ*}‘.}
0 for n s-tim' y furge, o COTLVETES. \
1{!{1}&5 ftien, AA(Han—Ro) g!! bounded az n— « then T
than &. If, further,

converges mo  less  rapidly
ni(K gf—Rﬂ}—H] ag n—>w fhep T conperges more
ra uﬁ;,r than 5.

reaf: By hypothesia, for # suﬂ'ieient]% larga,
Go=n{1-BRy>K. Honce 1—R,>»K/n and R,-1—
Km<1. Sioce R0, this means that tcrms of §
that eorrespond te suffictently large » are of like sign
and monotonically decrease In magnitude, Since §
converges, we therefore have =ma,—0 (see foot-
note 8). Hence |g,/(1 —Ba)|= [/ < [na,| (K —0.
Therefore, by (7}, Ty~ F—H,

Furthermaore,

P = |Busi— B =ﬂ{ﬂ+1}|Ru+1"R.]
! -_ll'_—RH-lnl_Rsl |Q1Ql+1|

Afn+1)| By — Byl
< K; ;

231



and iz therefore bounded {or—0) if AR, —R,)
iz hounded (or—0).

We may now apply Lemma 1.

Remarks. The boundeduess of =R, —HR.} ro-
quires that B exist since it assurcs convergence of

the scrics El} (Rari—R;), whose partinl sums
are K., —R,. It does not, however, exclude the
value ’H=1 The condition mey also be stated as

[#Qeyi— (m+13Q.] 12 bounded {or —0).

Theoresn 7. I 8 converges and € existe, then T con-
verges. I, in eddition, n* (., — B, 18 bounded as
n—e then T comverges no less rapidly than 8. I,
Surther, n¥(B.—Ba)—0 a8 n— o then T converges
more rapidiy than 5.

Proof: Since ¢, =n{l —E.}—, wc have 1 —B,—0.
Hence R.>=0 for = sufficiently large. Since &

econverges, §2>1 and thus 2, > % ~=0 for nanfliciently
large. We now apply Theorem 6.

Theorem 8. If 8 converges, ) exisis =1, and n(f).—
{110 a3 n—w, then the sertes L= > Uy Wik

U= (b —0a) [} —1) concerges move rapidiy than
& and has the aame sum,
Froaf: From theorems (1) and (7), we have, with
tﬁhe present hypothesis that T converges and T'=S.
ance

* QTu_Sn QS_S o
U.=%:t¢-m=- Q—_l_}Q_;l_zb

also
P by 11 atl w
.‘_ﬂ""_l‘—Ra-i-] I_anQr!ﬂ-l Qn

I 4D (@an—Qa) 1
¢ LA ¢

since Q> 1 if § converges.

Hence

QP _

a,~ g—1 "

Moreover, a6 shown in the proof of the previous
theorem, existence of & implies P, >0 for n auffi-
ciently large. Woe may thus use Lemma 1 to com-
plete the proot.

Remarks. If any transformation or set of transfor-
mations leads from a convergent series S to & con-

vergent series V=? #, which has the smne sum and

if v e, =L ns n—> o, then the series Z=iz,,
[1]
with z,=(r.—Lg,}{(1—L) converges and haz the

pum N. Z may converge more rapidly than 8.  This
will certainlﬂ the cage, singe 2, fn,—0, if {14+K,|7
K>0 aod BB, (14+8. 01+K._)>0 in view of
Lemmsa 3. The previous theorem is & special caze
of thie, As unother, and simpler case, consider a
series & such that, for a fixed integer &, g, fa—>L =1,
Then we may take the & serieseﬁiﬁplnm terms for

T". That is, wo take
=l a, A I S
E_Ebzl—l'.-'_; 1—L

W shall call this simple transformation the “Ratio™
transformation nnd use 1t 88 one of the comparison
trunsformotions in & later section., In perticular, if
R exists #1, we may vse the Ratio transformation
with k=1 and L= Obvioualy, we may alwa
reduce the trensformation to this particular case by
breaking the original series into & subseries. Other
applications of the general iden will be encountered
n exarnples 4 and 5, where it proves helpful, and in
example 2, where it doez not appear 1o be of
assistance,

In attempting numerical e of the Ralio transfor-
mation or of the U transformation of thecrem 8, we
are handicapped in many cases by not knowing the
conatants i 4k, or L, which appesar in the formulae,
even if we are cortain thoat necessary conditions are

met, We may write the Ratio teansformation for
=1 as
_8,—RBS,_,
Zei="3_F

In this form, if we approximate B by K,, we obtain
the 7 transformation:

Sa"_R#Su—J

Tﬂ—t= l_Rﬂ

= Srr—l"f"—‘l“_:ﬁ‘“_z Sn—l+'1'_:"Rﬂ'

Similarly, noting that P.—1/Q in certain cases, we
may appreximate 1/6) in the exprassion for 7, by P,
lo obtain the W transformation given by (17).
Both the T transformation and the W transforma-
tion have the advantage of heing caleulable without
kmowledge of an analytic expression for the general

ferm, Each term of the former iz completely
determined by the values of a corresponding group
of thres successive termes of &, while four auch terms

are needed to calculate each term of W. Where the
initinl portion of the 5 series has suitakle propertics,
uze of the 7 serics may produce the sum with syl-
ficient aecuracy, even though it mway not be suitable
when terma far out muet be congidered. Otherwise,
at the expenee of increased complexity, weo may use
the W aseries. There are, of course, conditions under
which neither transformation is of value, There are
plso peculior cases where the T traneformation is
usable but not the W. Examples of such conditions
are ineledad in the latter part of this section.

Theorem 8§ K 8 converges, @ exiete  #1,
n{By— G} =0, and nln+1) {h—Q)—n(Q.—
Qi )] =0, then W converges wmore rapidly than S
and haz the same zum.

Proof: With the piven hypothesis, the proof of
theorem & showsa that P,—1/¢=1 and that F—5.
Hence, from (16), W,—8. 80, .70 and Q,—
1 #0 for n sufficiently large sinee @ =1 by hypothests
and =0 gince § converpes.” Hence

TEmpp, p, B



&= l_R=t+:| - I_R#—I
g, 1—2FR. . +R.E..1 1—2R.+R.E._|

Qe — Qa2+ 10 Qs — G+ (G —2 @ )] — R Qulln+ 1)(Qnss— @} — 7 Zn— Qu-1)] S0

(4 {1 — Q) Gl @ — 1] [p(Qu— € )+ G 1 —1]]

with the given bypothesis. Also, aa shown in the
proof of T%eurem 7, existence of tj implies Py 0 for
sufliciently large = a0 that we may apply Lemmsa 1.
p mt;:em m,ﬁ I nﬂ: &ipof‘h;aia of theorem 3, tha};o;;{m

or theorem n W converges more rapidiy
than 8 and has the same sum.

Progf: The proofs of the theorems referred to show
thai, for any of the conditions stated, P,—0 and T
OOD‘F'BTI:SBB Inore rapidlﬁ than 8. Thecrem 1 shows
that T=5. We thus have 1—P,—1 and

=T||_P:.Ss

Wa="9_p.

e T —=N,
while )
S—W, (§8—TWS—8,)—F.
S5—8, 1-F,

—f).
Theorem 11, If Nie an infinite convergent series and
e
By=eot+gtoit ...,

o vodid for ell m=N where the o, end N are con-
stonils, T conyerges more m‘g&ﬂy thae 8 if o1
and with the same rapidity a8 5 4f ap=1. If a;=0
For afl i>0, then T lerminales with less than ¥ fermas.
herwize, T 42 an infinide serics with ratio of esch
lerm to 8 predecessor given by

b Bi, B B
Fs=m=ﬂ'u+g+ﬁ+ﬂ—z+ Ceay

vafid for ol n sufficiently large, where the 8, are
conglants and not ol f= % 10,  Aoreover,
=g It addilion, = U =0 0r 1 2nd fa—on
tf .
Proaf: Let us write

B{x)= oyt ot T ot o4 . . L

This converges for z=1/N by bhypothesis, Ii,
therefore, converges for |x|</1/N and dafines an
analytic funciion in this raage. Also, for s X,
B.,=Rilfn). Wehsave

B_(z)=R[xf1 —x)l=apt mzt{est o)z’

(o 2ot ol . .

R.(zy=Rz{(1t+z)]=m+azt(o— o+
(op—2ayt oz . ..
valid for |¢|</1/{N+1)* end K, ,=K_{1fs) and

Hyy=R, (1fn) &t least for n7>N+1.
f ay#=0,—1, or 1 then, since K{lfn)—a 8 n—s o=,

1 Ecunpp, P 180,

the hypothesis of theorem 3 i satisfied and T con-
verges more rapidly than S.

ﬁ =0, not pll a,=0 since thiz would make
B.=0 for ell *7>N and 5 would terminate contrary
to hypothesis. If & i= the =malleat value of i for
which w0, then »tR =Rz}t for z=1/n and
approaches o, whence all &, have the same sign,
namely that of oy, for n aufficiently large. There-
tore, from theorem 4, it follows that T converges
moare rapidly than S,

If ay=—1, not all @,=0 since thizs would make
R,=—1 for all »>N, which iz imposaible sinea S
converges., Apain, let & be the smallest value of
i for which o;0. Then [14+E(z)]fzt—ea, and

1‘|'Rn+|__{ﬂ+ljk(1+R#+l] n :,__,ﬂ ,]_' -
1+R. eH{1+R.) ‘(ﬂ--l-l) ﬂt(1+ﬂ) —1

and theoremm 5 shows
ra]aiidly than 5.
f ey==1, we have

that 7 econvarges more

Qixi=[1 —R{x)lfx=—on— o —g@*—a2®— . . .

and

@ {)=gzf(1—=)

= — oy — g2 ~={ay+ ag)r* —(ay+ 2agtodz’—. . .

valid for z<71/(IN+1) and {.,==r{l—ER.)=0(1/)
while &, =6 _{1/n) #t least for n >N+1. Hencra

g(z)=[Q(z)—Q-(«)]/z
=z +(Zeay+a)2® (3o + Bagt age®+ . ..

and a{Gh— G 11=¢{1/n}—0 while Q,——m. Sinea
8 vonverges, oq<. —1 % or = —m»1. The proof of
theorem 8 indicptes that, under these conditions,
P.—1/6070, For n sufficiently large, we thua
have 3/2Q7=P.>1/20 and, by Lemma 1, the
ser'is_f-.s T converpes with tha same order of rapidity
a3 i,

If all =0 for i>»0, then R.=aq for all n=N,
We cannot have ay=g in this case, singe S converges.
Hence 1—a,70 , from (9}, &,—a,[1/(1—ap)—
1/{1 —e)]=0 for all w=N and T terminates with
less than AV terms.

Cooversely, if T terminates with XK tertns, then
b,=0 for all #°>K. But if ¢,=0 for any n=N, the
finiteness of the P, makes all subsequent a,=0 so
that 8 terminetes contrary to hypothesis. Hence
a, =0 for n=N. We therefore require P,=10 for
all nz=M, where M ia the larger of K+1 and N,
From (13) it follows that this 1implies Rap— 8.=0
for all #==M =0 that R, is constant in this range

! KEnopp, p- 488,
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and Rz} is equal to By{z)=Ry+0a40°+ 04, . .
for the null sequence x=1/%. ence all a,=0 for
t =01 Tf therefore, not all a,=0 for i>0, T ia
an infinite series. I not all &=0 for =0, let & be
the least value of +7-0 for which a,#0¢. Then

B (2)— R{z)= —kopr* T —(k + 1 ){ap o — K apfp)a* T2
fk + 2) [E't.r+z'“(-rf+ 1 }n'.:+|j'2+

B+ a3,
and

[1 =Bz} (1 —B ()] =(1 —a*~2{1 —agorx —(1 —ay)

ﬂ)
x
—

Furthermore, we have

X(Eﬂz—ﬂi

all valid for [x|=71/4N 410

£y (x)—Rlx)
[2—R([1—&.(x)]

konz™ (k41 Wap— k23 s

P(z)=

S (l—agf (1 —a)®
(& -2ty a— (2 -+ Vero 124 E(k 4 1er, /6] ey
{(1—ag? : o
for k7=2: and
- 2 o ? _E{aa—ug}ﬂf‘_
(et (=)

—Eiu? [2«1—3u,+ 2+ f_—“i}- .y

for k=2, noting that we cannot have ay=1 in thesa
cases, For k=1, ay=1, this becomes

t'—’
e L =
o] Bt S|
.3«; o
—ar]”

while, for ay=1 {and, therefore,‘k=l},

1 1-:::-:!],
=] === —_
Pla) o alm ol

s o dun 20 o),

all valid for sufficiently small [z|."" Then

B Koopp, p. 170,
o Emopp, p. 182

P_{z}=P|:1 iz]

_ka*t (k1Mo t kau" Lyat*?
{T—aF {1 —ag)*
(% + 2} o sz (k + Dexpnf2 + R{k 1+ 1)oaf6] 22
{1 —ay)’
for £7>2; and
. 202" Blegtoagrt
(1—f (1—)?
2o}
IEI—E%[E:I;-]-E%-FEW{—]__“‘J—- .
for k=2: and
_ agmg _ 1 a_
P — e a2t ot T aa]"‘
(]—laq]ﬂ Jo 3o+ 1+3__-___€l||:2ﬂz+ﬂ1}+
L PR
T—a [’
for =1, o=1. Finally, for a,=1,
S W | )
P_{I}__;I_ﬂ! o :;]:[:
[0, 0t 300 o],
oy o o of
We thus get, for || sufficiently small

6oy Bt~ 1) o[ - g

for kpél; and
Gle)=1—2242 [1

for k=1, mp=<1; and
k]
Glz)=1+2 [ﬁ—%ﬂ z?

We may now writa

for o=1.
Flr)=G(n)R(2)= g+ 817+ Fox™+ Baz®+ . . .,

where S,=oy in all eases; 5= when a;==0or 1; and
fa—e; when sg=1. For ax=0, k=1, we have fi=
(b1t e0. For =0 or I, &=1, wa have
=0 =20y =0 unlese oy=20y. In the latter case,
wo find f:=—Zol1 -t o) (1 —og) 70 unless op— —1,
However, we cennct bave |H.]>-1 for all soffi-
ciently lnrge #, and henca 14 B, ¢annot become and
stay negative. Butn{l+E.)—w if 44=—1. Henca
we must bave o0 and thug o » —2= 2 4, a0 that
fi#0. For ap=0, we have Sr=0o.#0. Iu all cazes,
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therefore, not all the 8,=0 for +7>0.  Bui, by inspec-
tion, F,=F{1/n) for x sufficiently larga. Hence our
proof is completa,

Theorem 12, If 8 i3 an infintle contergent series

ﬂ|1+ +_i+ +t-4

iz palid for all 622N uliere the «; and N ave conslants,
then W converges -nwre: rapidly than 8 and has the
BITRE EWM. M?} =0 for all i>0 or  m=1 and
o= logfey ) "%y for 1»2, then W terminates with
less thanm terms.  (Mherwise W is an  infintle
aeries with rofie of each ferm fo 36 predecessor
given by .

ot s

valid for all suficiently lorge n, where the v, are con-
stants and not all v,=0 for {0, Moreover, 1=y
and, if a=0, ny=a.

P,ruof We shall use a large part of the proof of
theorem 11. We note that
glzxt=glzf{l +all=am+ 2aga® (o —ae® -+ . . .
80 thet

Hix)=lg(z)—glzlfz=—az—(4ayt+ ag)r®— . .

valid for |#]<73/(N+1). Therefore,

ﬂ[{ﬂ +1 ]{Q:t+l - Qx}‘- ﬂ{ Qu - Q#_ﬂ] =HI: 1 fﬂ:l —{.

This, coupled with other data from the proof of the
theoram 11, showe that the hypothesis of either
theorem O or theorem 10 is satisfied so that W
converges more rapidly than 5 and heas the same
2uin.
If ull @=0 for i>>0, we have R,=aqy for all a2 N
and w1 since § converges. Hence 1—ay=0 and
waing, (19), wan—=1/(1 e —1/(1a0 =0 for ali
terminates with legs than & terme.
If a]l = [a,fa.]’ tw for 172 and ay=1, we have
=14of{n—azfm) for all a=N. Usmg (19},
wnfan— —(n—agfa ) {1 +eq)+ (R—enfor) {1 +en)=0for
all a>>N since —o, >>1 and 14-0, 70 if § converges.
Thuz W terminates with lezs than N torms,
Let us now consider o= 1 and not gll o=10 for
=0, I k is the smallest index i>>0 for which
a, 70, we obtain

Ax)=[1—R_2)][R (=) —Riz)l—
(1 -k (wlRE—-B_=)]

=(1—agh(k+ ez
(1— g+ 1)+ Dapsa™?

(1 — ek + 2)(k + B [args+ £{R + D) 2]+

DRESa1—h62——0

for k==2; and )
Alxy=6{1 — ogdagz*+ 121 —agea®+
(1—‘:0}[20u4+10w,+12?“i;| P ...

for x=2; both valid for [#]< 1/{N+1.) But, from
(19), WafGs= AnfBa, whera

Ap=(1=Res)(1 — 2B+ R B, _)—
(1—Re )1 =2Busi+ RaRni)
=(1—R, W R. 1 —B)— (1 — B Be— )
and
=(1 2R, + BB, ){1 —2Rui 1+ RaBusr)-

Since 4,70 for az=N as indicated in the proof of
theoremn 11, if W terminates with K terme, we must
have A.=0 for pll =M, where Af is the larger of ¥V
and K+1. But A{#) cannot vanish for all terms of
the null sequence 2=1/n, aZ=M since o, 0. Heanege
A=A/} cannot be zero for all A=A, and W ia
an infinite series. Furthermore, we readily obisin
B(x)=11—2R(z) + B(z)R_(z)] 1 —2B.(2)+ B{z}E ()]
=(1 — o) —4(1 — oz —

[4(1 ~ ag)®oeg—2(1 — ooy — B 1 —ogg)2af]e®—. . .

it k=1; and, for k=1,

Blz)=(1— oy —4(1 — apfex* —
(41 — ooy — 2(1 — gk et —
Thus, for [z suﬁﬁiently emall,

Afz)_
TB(z)

-

S s
(k+2}{k+3){a:+a+k{k+l} }:.,-=+ .. ]
for £7>2; and

I{x}-—{l uﬂ)ﬂ [Eag+12a3:n+

(2Ua.+1ﬂm+%ﬁ)xg+ y ]
for k=2: and

8of
pe= g =] 2t (Bau 22 Yot {12k 200
d2a ap daf 20aq 4
1._.%-{1_%}2'1'(1_"%}!}* }+ . ]
for k=1. From these, we further get
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p-@=p| 12 |=iiay | e+ Dact
(k)R 2+ Rz +(k+D(EA+D)
x{a,,+z+tk+1) =+1+”°{H”"“} 2 ]

or

P (=] Goat 12eut 2a)a+
m{u*+2ua+2+m3&13“” }=+ ]
or
P-(:r}=u [2a1+6{tx:+n|+ = u}}x+
T g
o P S ]

for =2, k=2, and k=1, reapectively. Hence, for
sufficiently small |z|,

_'P( — k‘f‘l e
Oor
g:x}=1—3m+3[1—2’—~3(1‘*f'%} 2

for k=1 and k=1, respectively. We may now write

JiE)=gz)Bla)=ystvsz + 22’ +yer®*+ . . .,

where. y,=c, In all cases and = when op=0.
Al=o, for ay=190, ya=oarl. For q#0, k#1, we have
ry=— (k4 2oy =0, For o=0, k=1, we have
#i—a—3ap 70 unless o;—3e, In the latter case,
we find ye=—0Oan({! +ag)/{1—aa) #0 unless op=—1.
However, if ay=-—1, we must have a >0, and hence
oy 7 — 3= Jexp 8O that y#0. In all cases, therefore,
not all the 4, =0 for i>=0. By mspectmn Fu=1(1 fn}
for n sufficiently large. Henee our pm-o‘f for the
c:n.ﬂua r.uuiﬁl is complete.

F let us consider g=1 and not all o=
(ag.l'a,}" for ¢>2. Let & be the smallest mdex
i2>2 for w]m:h a7 oyl ) 2y, Then we have

B—1434 0y by

where m=n—asfo, fi—a— (ogfoy) %y, &0, and
k2, If we now write

M) =14+my+ 5;3!""‘ 5:+1!J'l+1 + ...

then r{y) converges for =1{M, where M —-N—am"a,
and hence for y]{l}’ and defines an analytic
function of y in this range. Also, for m>>3M, we

have R,=r{ljm) where m=n—ayfa,, We will,
howevar, find it mbre convenient to use the funstion

D)=+ & "+ . . L

By substitution, we also zat,

D_(3)=Dlyfl—yll=en+ &y* "+ HE—Dédr+
[ el + A1) 8f2] 4404 . ..

ang

D yy=Dy L+ ¥ =ar+ 8y - [ — (k — D] * -
(Bere—k B+ (E— 13 5/2] 0+ L L.

valid for |¥|< 1AL+ 1).
r{y=1+yINy)

r-(=rlyfQ—yl=1+yD {y}1—y)

re{yi=r w1+ wl=1+yD (KL ).
Thus
a(yl=1—r_(gllr+g—* (@l — [ —r @] @ —r- @]
={D_(1l{1 +)Dy)— D) — D () D_{y) —
{1 =) D] M — ")
= —[ay{k — 1) (ke —2V0e+ ek (k — 1)Bps iy +
L=y

By inspection, A.=ga{lfr) and cannot vanish for
aﬁr 8 clently la;rge n osnee e {k—1) (A—2)5,#0,
reviously stated, all 2.0 for » >N, Hence
ces not vanish for all nuﬂi-::mntly large n, and
W iz an infinite series. Also,

Myd=[1-2r(n+r Qe (g [1 —2r L) +r{ydr (]

=[D_(1={1—wXy+y DD_(w1X
[+ D0 — Do+ y I D 01—
=[e (1 + o f 20l — e ) (k4 2o B* '+
Jif(1—7).

It is obviously that

and

Thus
(k—=1)}(k—D2}
|?l|'|:1-‘+‘i‘1!1:|'2

3#—1'&"*‘" Y

_oy)
O

kik—1)
ﬂ|{1 +ﬂ1}’

byt —

and

[y |-kl
=[5 |-

L G kSR =1 E=2)5] ,
:1(1 +¢!:|}= Y '+' ey

Byt l—




80 that
diy=e(ye-ly=1—k—1}y+ . . .,
and
Diy=digiri=1+{a+1-RIy+ . . ..
If _
Flz)=D[afl —ozfoe))=14{e+ 1K)z . . .,
then
Fa=fmy=ret 2454 - - s

where
qe=m(=1) and y,=oq+1—k<{—& since—en >1.

Remarks. The laat theorem shows that, if K, is
an analytic function of 1fn for » sufficiently large,
then the W transformation will yield a new series
with the same sum but more rapidly convergent.
Moreover, the transformation ca.n]i)e applied to the
new geries, if infimitc, o get a third scries with the
same sum but still more rapidly convergent. The
process can be repeated as often as desived to yield
successive saries, each of which converges move
rapidly than its predecessor and each of which has
the same sum a8 the original servies. If Bl
theorem 11 shows that the same statements hold
for the simpler T transformation. If BE=1, an
infinite set of transformed series may be obtained
by the T transformation, esch of which has the
same sum aa the original series, but each will con-
verge only with the same order of rapidity as the
original.

Ergmple 1:

S=log 2=1—%+

1

Jm s

1 1
*7 gty

1 1
ti e

11
3 4
This series is very slowly convergent. To obtain
g-place accuracy with this serfes would require use

of 10° terme were it used directly. Since, however,
we hare

T 1 1
R'=_n+1:_l+ﬁ_?+ B
for this series, it satisfies the hypothegis of theorem
11 and may be su:(imt.cd to repeated T transforma-
tiona with increased rapidity of convergence at cach

gtep. Restricting ourselves to usiog only the ficst
8 terms of &, the euceessive traneformed eeries are

T= 56666 ﬁﬁﬁﬁ?+.$333 33333 — 06852 38005
+ .03 82540 —.00202 Q2020400116 55012

—.00073 26007 +.00048 018961 — . . .

T =.69259 259264:..'1]0068 47183 — Q0G17 15546
+.00005 75844 — 00002 34397 1-.00001 09276
T=.60314 012744 00000 87220-- 00000 21574
+.00000 06721— . . .
™= 60314 71197 4 .00000 007863— . , .

in which we have omitted the first step in each of the
succeeding transformutions since, obviously, the first
term in earh of the T series is not emocthly related
to the remainder of the terms, It would not have
affected results were the trapsformation also applied
to the first terms, the further series mersly carrying
additionasl terms of irregular form with the same
terms as given following these. This initial irregu-
larity is duc to the difference in form for the first
term in epch transformgtion from later terms ue
shewn by (3).

The error of stopping at & given place In any of
the trapsformations is, in this case, readily approxi-
mated, since each series is alternating. 1f we con-
sider the final approximants for the successive saries
ST, T, T, and T we obiein the sequence:
0.74583 402046; (1.69334 73389; 0.8¢315 08286,
0.69314 73540; 0,69314 71981; the last valoe heing
correct to better than 2 in the sighth place, ‘This
it tot an infinite sequence, since 7' has too few
terme to permit contiouation of the transformation.
Ii, however, we assume it represants the first terms
of &n infinite sequence converging to log 2, without
proof other than appearance, we get the series

I7=.74563 49206 —.05228 75817~ .00019 65103
-= 00000 34746— 00000 01580— . . ..

Assuming further that this series iz of sufficient
smoothness to justify application of the T trans-
formation, we get

£77== 60315 00875—.00000 27958
—.0000G 01020— ., . .

I=0.69314 71844,
The I series final approximants form the sequance:
0.60314 T1061; 069314 71385; 0.60314 71846,

Aszsuminyr these also are initial ferms of an mfiniie
sequence converging to log 2, we write

1'=0.69314 71961 —0.00000 00075
—0.00000 00039— . . .,

which tranaforms into

V' =0.69314 71804,
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The hewristic process stops at this point because of
lack of termsz, but this last value is remarkably close
to the correct valuz to 10 places of

log 2=0.69314 71806,

In fact, because only 10 digite were carriad through-
out the caleulations, the agrzement is about 1 place
better than could be expected even were the later
atepe proved fully justifiable. Note that, hy this
method, we have achieved an accuracy using 9 terms
of the original series, which is better than that ob-
tained by summing diractly hundreds of miillions of
additional terms.mgl‘he affect of the additional terms
15 included by considerstions of “smoothness”.

Wae could slso have applied the W trapsformation,
since the hypothesis of theorem 12 is satisfled. In
this case, the sugcessive transformed series are:

W=.88750 00000400694 44444 — 00173 61111
+.00062 50000— 00027 77T784.00014 17234
— (NHIDT B71944 ,
W’'=_69313 00632+ 00000 39884 — 00060 22983
+ 00000 07115— . . .
W=09314 71793+ . . .,

omitting stepe that invelve tertms not “smocthly”
related 1o the remainder beeavse of differences in
form indicated by (19). The final approximanta for
geriea 3, W, W, and W*' are

0.74563 49208; 0.69311 7H585; 069314 73648,
0.69314 T1704.

Assuming these to be the first terms of an infinite
sequence converging to log 2, we get, the series

N=.745663 49206 — 06251 73612 — 00002 980563
—. 000G 01854 — ., . -
Appl¥ing the W transformation io this, we get
A'=0.60314 71806,

We thus see, as might have been expected, that the
W transformsation is more effzctiva than the T trans-
formation. However, the simpler calculations in the
case of the T transformation probably more than
offset the additional number of steps required as
compared to the W transformation.

Frample 2:

1 1 1,1 1.1 1
S=g-1tg—zts—ste—7t

After zecing how advantageous the transformations
nre when “smoothness™ exists, we choose this exam-
ple to show the ill effoctz of irre ity. This is,
ae may be seen by examiration, identical with the
geries used in example 1 except that the sipn is
reversed and odd and even terms are interchanged.
In spite of being only conditionally convergent this
interchange does not affect the sum, which is—log 2.
I ihe type of irregularity iz noted, the best pro-
cedure would be to remove it by rearranging the
seriee {in this ease obtsining the form given in
exatnple 1), by combining terms (in this case oh-
inining the form given io example §), or by sphtting
it into several individually ‘‘smooth’” series {not
poszible in this case since this leads to two properly
divergent seriez). Suppose, however, we do ot
note these possibilitiea but atiempt to work with the
seriea ar it stands. It is obvioue that theorems 11
and 12 are inapplicable. 3o 16 theorem 5 How-
ever, theorem 2 epplies except that | +FR,—0, and
hence we have no statement about relative speed of
convergenee, although we know that the 7 trans-
formation leads te a convergent series. In fact, we
find that

= 16867 — 46687 — 09288 — 07037
—.03535— 03217 —.01860 — 01737
—01146— . . ..

The terms are certainly smaller than those of S.
However, the chargeter of the series iz changad from
alternating {0 terms having tha same sign, and this
makes the error for & given number of terms of the
same order as that of the original series, being
approximately the average of the errors found for the
original series for consecutive partial sums. We have
thus not gained by the use of the transformation,
Examination of T shows that R exists and has the

value 1 &nd that =l —B,u"h..ﬂl—% for »n even and

a—;% for n odd, so that T satiafies theorem 6 and can

itself be transformed into a new convergent series TV,
4 course, even at this step, if the type of peculiarity
were noted, it would be possible to combine pairs of
terms or o separate the odd and even terms mto
separate serics to be scparately sumined, obtaining
“smooth' serzes in cither case that would satisfy the
hypothesis of more useful theorems. If, however, we
continue with the transformation to T, we may note
that, althouph it converges, its terms are larger than

those of Tsince, from the given limits for (1 —&,/b. 1)
we have |P./| ~1_72n—m . Infaet, 7 is quite similar

in convergence and form to § with terms alternating

in sigh and tending to 11,—2 those of & for large . The
T’ series is
T" = 41592 — 52315 — 40310— 12859 — 2B078— . . .
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We may now attempt to proceed in accord with the
remark following theorver: 8 to get the equivalent
and, we hope, more rapidly converging series

v=-1 (T*—E s)
b i
which is, humerically,

V'=1.78220—1.66758%— 03566 — 33997 — 00603

This series, unfortunately, is even worse than T,
The irregularity is much more pronoundced.

Wo may try the W traneformation instead. It ja
epsy to show that its resulting series is convergent.
It is

= — . 125({) — 22017 — 08333 — 05417 — 03333
—. 02470 — 01786 — . . .

and is ¢ertainly no more rapidly convergent then the
T eeries. If we trapsform this again, we ohtain

W'=.10417— 66477 1 .30964 — 440164, . .,

which does not appear promising.

We may thus cunclucE} thet, if a certain amount of
smoothness is lacking in the original series, the
transformations, while leading to convergent series,
may not help in evaluation but may help in indicating
the charpcter of the ivregulavity end thus sugpest
gome method of modifying the original series or cne
of ita transformations, by grouping, rearranging, or
eplitting nto subseries.

Erample 3:
S=1+0—3+0+0+1+
{l+{l+ll—%+(}+ﬂ+ﬂ+ﬂ+ll—ﬂ+ .

This example shows the cifect of & somewhat different

type of irregularity. Here we readily find that T and
areidentical with Sfor any consistent interpretation

of formulae, and hence the schemes have no value,

Ezample 4:

1 1 1,1 1 1 1
S=1ty-1stmtae s it -

This ie still wnother example of imregularity. Here we
readily find that

2 1 1 1,1 1
g(l"'a“z‘“ﬁ"'ﬁ'*ﬁ‘ﬁ-izé* s )

which certainly has the same ::Iy'pe of convergence as
&.  However, we may now utilize theorem 1, which

states that T=5 to obtain S=2—§S from which we

T—2—

get the sum Ség. “This particular series ¢an, of

eourse, be summed more easily by grouping pairs of
terms to give

_ 1 1 1

which is, except for the firat term, a simple geometric

. . b
8eries CONVErging Lo ry

The W transformation, in this case, gives

19,4 6 1, 3 1
i 201 e T
B Fi +T ¥ T+l4+23

and offers o apparent advantages.
Ervomple 5:

1 1 1 1 1

I 1 1 l — s w
S=13— 21 3sTii6T532 asd TiasT "

This is & somewhat less obvious application of the
remeark fuﬂouﬁnﬁlﬁheurem 8,
1

We readily find
2 21 68 155
T_5 lﬂ.3.8+33,4.lﬁ+ﬂﬁ.5,32_

198 _ 497
§5.6.64 204.7.123

!

and that tcrms tend tog of the next to corresponding
term in 5. We thus take, as a more convergent
series with the same sum V=% (B?S —T) with the

two geries displaced one ferm prior t¢ eomhining,
thus obtaining

_8_ 17 1 21 3 47
T 25 12007 176 17600 40800 304640
which cnnver%es more rapidly then &he initial

serics, A preferable procedure iz, of course, to
combine paira of terms.

Erample 6:

1 1 1 1
12734756 72T

vV

+ -

1

8= 9,10

+ .

Thia is the same series 83 vsed o example 1 but with
pairz of terms added. It is readily seen that this
gerigs satisfies the hypothesis of theorem 8 with

Q=2 We may, thus, proceed as there indicated
to et the successive more rapidly converging series:
Yr?r_ 1 _ 1 _ 3 _ . _

10 180 1170 12376
3

n%n— 1Ndn—a)dn+ 1)
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for which =4,

and
4117, 49

L — —
4 _5941)+1 196910

+ .

which, as far a3 we have gone, gives the value
(.693139, which is correct t0 8 in the last digit.
Here, also, if desired, we may follow Example 1 n
asspming that the last partial sums of 8, ¥V, and ¥V
form the first terms of & reasonably smcoth infinite
series and thus impirove results somewhat forther
with the given number of terma.

We also note that theorem ¢ iz aspplicable. If
wa uze the W transformation, we get

I VNS S
=167 246 11207 "’

W

whieh, so far as we have gone, givea the value 1.69306,
which is in error akout 8 in the last digit.

Erample 7:

_qgy 1 1,11 1 1,3, .
S=ltz—3—3tg+g—7-gteT

This ezample ip included to show that thers exist
convergent series, even with a certain type of
smoothness, for which the 7T transformation leads
to & divetgent sertes. Here T is given by

.7 17,31,48 71 97,127
I=3—g—1stsstas— 73 o1 136 "
and terms tend toward 1.

The W transformation docs, however, lead to a

convergent eeries albeit no more rapidly so than the
criginal. The resulting saries ia
17,1 77 1 319, 1 275
Welzt5 120 2e T80 T2z 1008 "
Frample &:
_ 1 1, 2 .1, 3
S—1+1+1+2g 1 2.5_|_1 T 3g+3‘+1+- - ww

This is ahothet exarmple sh-:)winé that there exist
convergent geries, even with sufhgient smoothness
to have B exiat—=1, which lead io divergent series
upon application of the T trapsformation. Here

- a4l
0<S10 1 <San <23 sips

e0 that 8 convergea. However,

_Ging) t
1—Hna (1)

go that

Ton=8m+n+ 17>+ 1) =,

The W transformation leads, in this case, to o
convergent deries since, ns may be resdily verified,

@oa(l —Byair) Ml
1 _2331-}-] +R§=Rz.+t nt

—0

and
a1l —Fiza) N_i
128+ BenBlin-1 25‘1"_}“‘
Ezpmple §:
1 242 1 1
S=ltgtazgtatyt
30-2 (L1 $—2 1
23245 337437 343567 48

Thiz 18 #n example showing that there exist
convergent series, cven with sufficient smooth-
ness to have R exiet and bawve the wvalue 1, which
lead to divergent series upon application of the
W transformation and this despita the faet that

the T transformation leads to+;:}unvergent. BETi0B.
i1

Here 0<Syn_ 1< Spa 1< 53,3 $

verges. However,

*11#+1{1—Rn+9] _ﬂ-+2
1—2EBnat Roms Binpn b

o 50 that § con-

a0 thet

wu+1= 3“_!_1.:.%2}?1.—;_3_, @,

Furthermore,

Qan—1 _ _ (nt1¥—2 0
1 =By p+1F20+1)

[ (n-137—2

T—Rp ntip@stD "

and

Qa1 1 0
1—Runpn 2013

w0 that
T 85,

3. QOriginal Series Divergent

General: There has been consideruble stedy made
of methods of assigning meanings to Divergent
Series. Ome poseible wa¥ to assign such a meaning
to 8 Divergent Series 5 is to consider it as the value
of the function S{z) at =1, where S{z} 1= defined for

sufficiently amall z by the powaer series ; &, and

for larger = by analytic continuation or limit proc-
eazes, If B, remains bounded as si—w, there will
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always be a region in which the power series converges
(certa'm]%;' when |z| i3 less than the lowar bound of 1/
|B.). If, however, K. is unbounded, the power series
Inay converge only at the origin and does not, there-
fore, define an wnalytic funciion over sny region.
In any case, it may not be poasible to find an analytic
continuation or Iimit for x=1. Another method,
developed hy Boral, is to coneider the power series

F]
Hﬂr}u? % a8 defining some function of z and

then to define the sum of the divergent sericz § hy
the integral

g= J:. "ot Sax) da.

Ztill another way of treating the matter is to consider
the power series S(x), even if it diverzes for all x no
matter how =mall, az an asymptotic representation
of a function F{1/z). Then, if F{1/x) i5 defined at
=1, we may take §=F(1). Since, in general, any
agympiotic series may represent an ionfinity of
functions, this method requires some additional

limitations in regard to the behavior of F (:1":') b

InsUre Uniguensass.

The use of the transformations dizcuseed in this
paper may, in some cases, lead to "equivalent” con-
vergent series and thus to another definition of sum
of divergent series. In many cases, however, the
transiormmation merely serves to obtain an equivalent
geries, also divergent, but diverging more slowly.
The new series may be easier to sum than the old. 1In
particular, if the original series can be considered as
the result of substituting a particular value for the
varighle in an asymptotic series, the resulting series
may be similarly rded but with individual terma
smaller than for the original so that, if the error
stopping at any term is limited by the magnitude of
the next term, the transformed seriee yields & tnore

recize sum. The theory is, chviously, more difficult
¥ far than for convergent series and has not been
daveloped beyond a rudimentary stage by the author,
Heuristic application fo particular examples does,
however, indicate considerable power in this method.

Theorem 13, If there s ¢ defintbion M for the sum

of an infinile seres that Ras the following properties:

A If 32 ¢ is summable M with sum ' and
s}

$ d, 1z summable M with sum D, then i {on=+ du}
[i]
iz summable M with sum LD
B. Jf ) ¢, is summable M with sum C then
1]

$ &, iz aummadle M with suem C-o, and i bolth &

and V=i} o, f(1—R.) are summadle AL, then T is
summable M with the same sum a5 5.

Progf: By condition B, we have
Ty

Sum,. I:»‘.H—z:‘: 1 _Rﬂ]=5umﬂ..r V.

Henee, by condition A,

g = Gatr _ da -
Sumu| Tt 3 (1—31.“ 1-R,.)] 0
and
: Al - Tyt iy
Sumy[ag-l-u--—l — Rl+;(a,,—l—1 R 1= Ru)]%umy &,
But, from (9),
— %
bﬂ_ ﬂ".'l+ 1 _R'
and
__ Loty _ &a
bo=a.+ T—fna: I—R. n =0,
Hence,
Bumw I'=5um. 8.
Remorkz.  The definitions that satisfy the conditions

of thiz theorem imelude Cesao and Hilder summa-
bility of any order and abeolute Borel summability.

Condition B can be modified to rend: “Tf 37 ¢, is
j]

summable M with sum GIt.th, if 3 ¢, 13 BUMmMa~-
ble A, its aum is & +e5”, provided we add to the
hypothesia: “and V' =[I]+2 T G‘}g ]is summable
1 T ddnm
M. The modified condition is met by Borel sum-
i:nabﬂ:ity without the requirement that it be abeo-
ute.’
Theorem 14: If § i such that |R.| <M for all n
and if T converges absolulely, then Tz the limil oz

2—1 of the analytic continuation of 3(z}=$ azt,
Prosf: Consider the series

o= (i)

— {l_Ru+1}{1_Rn] bognH
7 (1 —&epz)(1— Bz} "

and the region bounded by the circular are |z{=1
and the line sepments =0, y=-—1/2, ¢=1/21f and

=1—gz. 1 M<1, then S converges and, by

heorem 1, we have F'=5=5{1) satisiying the
present theorem in  triviel fashion. ﬁ' =1,
12M <1/2 and tho region is as indicated in the
dingram on p. 242. Throughout the region and its
boundary, we have |z]<1. In the leit-hand por-
tieh, 0<2<1/2M ro that

|1=Ryz| 2|1 —Raz| 2 1—|R,| 2| > 1/2
while l
fl— B <14 | R < M41,

11W, B_Fard, Studies on divergent sries and sotirobUily, p. 5 {Msomiian,
Mew Yok, M, Y. 1I6).
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1

Henee

In the right-hand portion, we have ¥ >1—z so that

1= Ruzl =1 —RuxF+ B2yt
>V1—RzF B —zy
=1 —R. ¥+ (1+ R, —2B.zV{+2
> |1 —Rajf+2.

Hence
1 —B/|1 —Ru2| < v2<2(M+1).
Therefore, throughout the region and ite boundary,
| F2 ()| <4(M 4 1)%y|,

_(1—RBay) (1 —Rp)b,a™"!
ju(g}'_ [1._R+,,+|z}{l—Rn3} .

But, by hypothesis, $ |ka| is convergemt. Hence

Tz) is uniformly convergent throughout the region
and its boundary® Moreover, f,(2) i a raﬁﬁinal
‘function of z and is therefores analytic exeept at the
gointa g=1/R. and z=1/R..,, which are poles.
ihee convergetce of T reverses finiteness of the &,
we cannot have 7.=1 for any ».  Also, by hypothe-
. gig, JR=| <M. Hences thess polea do not fall within
region or on its boun . and F (2} is analytic
within the region 2nd continuous throughout the
ion and itz houndary. Hence 7Y{z) is analytic
within the region," and 18 continuous throughout the
region and ite boundary.'® Thus the limit of Tz}
as z—1 is T(1}=T. Aleo, 8(z) is 8 power series
with radive of convergence at least as preatas 120,
pince S{1/2M) converges, having the ratio of each
term to its predecessor lezs then or equal to 172,

where

ﬂW{JBitlEkar and Watson, Mopdern anatysis, p. # {Camhbridgs Unlversity
H Modart snalyis, p, 01,
I Modern anslyxis, p. 47,

Hence S(z) is analytic in the double-hatched region
of the diagram bounded by the semicirele (z) =FT;‘I2M
and the y mxis and, in particular, converpes for z=zx
for any « in the range 0« 2<1{2Af., T{z} ia also ana-
I¥ticin the same region since it is included in the region
previcusly considerad and converges for all points
on the pertion of the z axis i]"la(]‘-ﬁldﬂd, Henee by
theorem 1, T(z) is identical with 8{z) in this region
and is therefore an analytic continuation of 5(z)
throughout the larger region,

Theorem 16, I 5§ diverges, B, >0 for n sufficiently
large, and there are an 1glﬁﬂ‘i£y af values of n for
which B, <1, then T dinerges.

FProof: Sinee § diverges, we cannot have a,—0
for all »n sufficiently large. Hence, if there are an
infinity of values of n for which g,=0, therc muat
ba an infinity of such valnes for which ¢._, =40, and
hence Hy=—10 contrary to hypothesis, If thare are
an infinity of values of n for which 2 =1 but g,#0,
we have each corresponding T,_, infinite and thus
T diverges, Finally, if tﬁem are an infinity of
values of » for which B.< 1, then, for each of these
7, Buf{l —&,) has the same sign w3 9., ahd hence as
§,_, for n aufficiently large so that [T, |™>|S._,] for
an infinity of valuez of » and thus i= vnbounded.

Theorem 16, If § diverges, R.=0 for n sufficiently
farge, and there iz on infinile seipuence of values of n,
say MM e< . . . such that R, =1 oy o=,
then T diperges.

Frogf: In view of the proof of theorem 15, we
may limit attention to e,=0 and £, =1 for n sui-
ficiently large, Since the a, are all of like sign for »
sufficiently e, we may take them aa positive for
convenience, an almost identical proof applying if
they are negative. Let, therefore, & ba sucﬂm tEat.,
for n2=N,, 0,0 and j?,,}l. Since R, —1, there
exists a value N>N, for which By<{By,. Let N,
be the least such walue. an, for every # such
that Ny<n< N, we muet have R.> oo B
Starting with N\, we may sintlarly get a value N
euch that, for &, <a< N: we have, %E,ERN]}RN&
Combining with the preceding, we then have
B, =Ry, for all 7 such that N,<n< ¥, Continuing
in similar fashion, we get ao iafinite saquence N,
with the property that R.>>Bw, for all = in the
range Ny <n-< N, snd with N;>N,_,., Now, from
{51, we have

Tm',-:;=qu;|'ﬂ-;xn+1j+ﬂ-{~o+:}+. ot B e —
ff_r{ﬁ,-l;ffRn',_l}
=8y, —{ 8wt o5 — By @ eyl +
sy =By Bpunlt o Ao -0y~
Rﬁriﬁ.[ﬁ,-z_}]}ffﬂyf‘—ll

But g,=F.8..12> By 0c-1 for NySne<N; Hence
all tcrms in the braces are positive and
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T{,l.r'_.q}{ Syu—ﬂ{NoJ-IJ.'r(Rﬂ'f_ 1}

Butr R'I}R"f:}l fﬂl‘ NQ':_:H;{NJ. HEII.E'E Rﬁj—l
—{0 since B, —1 and thus Ty .;—— =, so that T
diverges.

Theorem 17. If N iz a divergent series and

Bo=—1+2 422450

iz palid for ali sufficiently large wn, then the repeated
Wojt&a T transformabion to 8 and o each

series in furn will, after m applications, yield
& serfes T wﬁwﬁmmges where m ie the smatlest

inleger exceeding — 2. Moreover, T'® = lim $ L
10

Frogf: We note thet o,<0 since, otherwise,
|Ra1<Z1 for s sufficiently large so that & is an
elternating series with terms steadily decreasing in

itude and converges contrary to hypothesie,
Using tha a.naljrms of theorem 11 in snj?ar as it
does not depen on convergence of S, we see
that T t.Bnmuat-es LP all the a;=0 and t.hat., other-
wise, I i3 an infinite series with ratic of each term
10 ite predecessor given by

% +ﬁl+ﬂ2+ﬂﬂ-+
where fh=ay+2. If &y7»—2, then &4 +2>0and T

converges since, for n suﬂ'iclenﬂ:,f large, it iz an
alternating series with terms of stendily decreasing

itude. If ai+2=0, T will cony e:f the first
B: that is not zero is negauve, it will diverge if all
the B, are zero or if o< —2. When T diverges, it
catisfies the same conditions as the hypothesis
prescribed for 8. If we repeat the same transfor-

mation on T to get a geries T™ = i} b then either

T'? terminates or iz an infinite serma with ratic of
each tarm to its predecessor given by

X
bbw l___1+ﬂ1 +ﬂt +Iﬂa + .y
where g =g +2=n+44. By simple induetion,

we thus sea thai, for —a; not an even integer, it
will take m successive transformations to obiain a

& with magnitude of terms decreas-

m[E for terms sufficiently far out (that is with
"0} so that '™ will than converge. If —a is
an even integer, wa pet 5" =0, and it ia possible
for T'™~" {5 convergs. In view of theorem 2, T
will alag conv in this casge.

- As coneerns the values of T™, we see from Lemma,

-
geries ==

4 below, that Tim gf;a.x*md limnfﬂ:a.z»,r{z-ﬂg
1=

P
both exist. Now the limit operation stated ig a defi-
nition of summability that aatisfiea the mndltmns of

Henee lim 3 2",
ence 1mEﬁ.’c Hlu;,az

Sinece T alao satisfies ’tﬁ: cﬁndltmns of the lemma,
wo aimilarly get

theorem 13.

[ $L P
,_.1_0¥ by %= lim ﬁ baz" 30 that, by induction,

r—l—0
(M} oM )
zEEG [ RS =1]_1‘\11]:_1“; a,2". Since T eonverges,
Iiﬂ] by =T completing the prool.
T

Eemma 4. If 5 hos tering such that

R=—1+2 424800

i wthid for all auificiently large m, then ﬁmn
I—s —|
and Tim 33 a.z"f{(1—Ra) botk exia.

T.x"

Froof: Let Fx)=(1+1)* > Gx2" whera 71—

is an integer. Then F(z)=P{(z)+f(z) where P(z) is
a polyonomial of degree ¥—1 10 2 and

=3 o x***[1+fcm+t+"‘ k1) By iRoyat
WRH+1RH+2RI+I L+

Bop 1 BaoBuys . .

. R#+i:]'

Let us designate the quantity in the brackets as A,fr).
Then

Afny=1+Bupr= “' T+

{ﬂ-{-l}’ {n.+1F
) {ag—aﬂ
e T

TR

also if
A‘{n)=ﬂ1(d|+1}{d]+2il. - {ﬂ1+k—l}+
W[ P
ML BBy
then
_afe 413 o+2) . .. (wm+k—1}
An+1)= 17 +
ik | Gdk) + ...
fo+ 101" {nt1)+2
go that

3



el Dt . lokk—1) oo+ Dot . - (ot k=D=bik),

R!!+|A-|t{ﬂ'+]:|: (ﬂ.+1)k {ﬂ+1}‘t+l
ey e +2) ... {a1+i’—l}+a|{m+1}{d‘x+2} < s (ﬂl+k_1:|{al+k}_ﬁlfk}+ L
=— o Py

and

Apyi(m)=Adn)+ R Adn+ 1=

Hence we have established the bosis for an industion
proving that the form sssumed is correct. Thus, for
» sufficiently large, we bave | Ayn)|< |+ E&[fn* and,
for |x]<1, ench term in f{x) i2 less in absolute
value than the corresponding term in f =?|th + kN
*|a,|fnt. But the ratio of cach terim of the latfer
to ite Predaceasur ia given by |R.{1—Ifnf=1—
{k+ or)fn+terms of higher degree in 1fn and ¥ was
chosen greater than 1 —«, o that ko >>1. Heneo
f converges and, hence, f{r) converges for |x|<1.
Alzo, since P{2) is a polynomial, it is analytic for all
x. Henee F(+)ie enalyiie at least for [z] <1 and we

have éa.x‘ convergent and equal to F{z)(l+x)* for
all bz|<Z1 so li{n[}i}u#x' exists; itz value is F(1)/2%

Moreover, the ratio of each term of ﬁ:awf{l—R.}
to its prodecessor is, for » sufficiently large,

.Rlll:l _RI—1}=

i el & e v 3 2

m " W

where vy=«, 83 may be shown by an analysis simi-
iar to that used in the proof of theorem I1. Hence
this series satizfies the hypothesis in the same way

a8 & and, by similar reasoning, h:I_lﬂZ:] 2,2t — R,
exista.
Erample 10; S=1—1+1~-1+1—-1+4+ .. ..

Here we get bo=1/2 and &,=0 for all #7>0 =n
that T terminates with the first term and T=1/2.
The W transformation also terminates with a single
term of 1/2.

Erample 11: §=1—214—8+16—32+ . . ..

Here
T=1/3.

Example 12: §=1+2+4+8+164+324 .. ..

m, T terminates ot the firet term and
I"%ﬂimila,rl-_t,r for W.

This example indicates, in a trivial way, that the
transformation may yield a valua for T even if 8
is properly divergent. Here T terminates snd has
the valua —1. behaves in the same way,

Example 18: §=2+5/24 17/4465/8+257/16+
1026/32+ . . ..

244

ﬂlfﬂtl‘l‘ 1){ﬂl+2:| .

> (a.+5=]_[_51(i?+1}

.nk+2

4 .-

ﬂt-t-l

This is a less trivial example of a properly divergent
series for which T converges. Here
T=—8445/74206/217 4 2340/3037 4 18504 /64897
4 147800/10460174- . . ., and converges since terma
tend towards 9/2"*  In fact, the general term for
T can he written gs

0 2:1—] an
ﬁ,,'——ﬂ [2!#—]_1 _223{-1_1]

i'«:u:3 _Ti}l and hence I can be summed directly as
~—h4+0=1,

This is consistent with considering & as the sum
of the two aeries:

Si=1+2+4+8+16+ ...
Se=1+1/241/M441/841116+4 . . ..

The sum of the first is —1 the preceding ex-
ample and the swm of the second is ohvicusly, 2, so
that 8=5,18:=1 in agreement with the preceding.

The W transformation also leads to & convergent
seTieg

_92 4131
W"u 3190 +

383822 | 46546812

Tos8z1 TaBserion ¢

Thiz also sums to 1. The terms tend to 27/2* and
hence this transformation does not give better re-
sults than the simpler T transformation in this casae.

Erample 14 8=1—243—4+5—6+7-8+

This falls into the category covered by theorem
17, since

a1

1
n=——=—1.—.—.

_ Sinee oy = —1.>—2 wohave T'convergent. Wefind,
in faet,
1 2,3 4 &

T=3—BtE—smte

whose general term may be written as

_(=1t
42n+ 1} 4[2n—1)-+1]

Ba

8o that it may be surnmed by inspeciion to 1/4.
Honee we infer that =14,
The W transformation, in this case, leads to &n



even more rapldly convergent series {(terms tending
to 1/4n?):

2 i2 20.

2_8 . 30
7110 ' 527 1519

We 3479

_I_
which alao sumes to 1/4.

ol B _By B B,
Erample 16: 8 2+2 atg $+ ’

where the B; are the Berponlli numbars:

B—t B3
Bi=z  Bi=gros
B—)  Bi—p
Bmge Bl

etc. This is derived from an asymptotic series and
repregents, by continuation, the Euler constant

=0.577 215 6Ga49 . . .

Putting in the numerical values for the B, we got
&= 5-+.08333 33233 —.m833.33333+.ﬂ0395 §2540—
0416 6G8E6T 1 00757 57576— 02108 27961

08323 33333 — 44325 DROA04 . . .,

with a minimuom term of — 00417 s¢ that direct sum-
mation up to the minimum term may be in error
several units in the third decimal. sum is, in
fact, 0.57897 at this point and is thus in error nearly
2 in the 3rd place. If we transform the series, we
get (omitting the first ferm as net “smoothly™
related io the remaining terms, sea remarks in
Example 13:

T'= 57575 75758400193 05963 — 00076 24384+
A055 40257 — 00068 62537 100131 33534 —
00364 45161+ . L L .

The minimutn tert is only 00055 and we may thus
gum to withity severzl vnits in the fourth place, Wa
may repeat the transformation to gat:

T= 57714 67498400010 80665 — 00007 160284
LH0007 10273 — 00010 28454+ . . . ,

with minimum term of only .000K071. Repeating

again, we got:

T"= 47721 I'?d:ﬁﬂ.;{.:.ﬂﬂﬂﬂ! 71214 — 0000066422+ . .,
and a last repatition gives:
I""=_R7TT31 64337.

This iz gs far as we can go with the number of terms
initially talen, We may, however, consider the
first terme of the successive series Az an infinite
sequence tending towards the desired walue and
thus get the equivalent series:

U=0.54.07575 75758 + 00138 01740
000G 40092+ 00000 368474 . . .

to which we may agnin apply our transformation to
get:

I7r=_57717 26992 00004 22405+ 0000007157 +. ...

This may be again transformed to give
= 57721 BO6TS

which is correct to 3 in the 9th place. If we take the
sequence of sums of the I7 series, wo get 8 new seriea:

I7=_57721 54337 4- 00000 (22174 00000 00124, . . .,
which, upon transformation, gives
Vi=.57721 58685,

which is as far as we can go with the terms taken, but
which 1z in ercor by 4 in the 9th place or somewhat
poorer than U/, This same typa of effect has been
noted in applications of the method to other ssymp-
totie series and is due to the fact that the 7 series
are not convergent but are asymptotic except that we
baven't carried the calculation far enough to get io
negative or increasing terma, In uwsing the mcothed,
the direction and order of maﬁitude of the error
made at any point is given by the first term omitied

~and not b}r the frend of those included. To show

the behavior in this example more clenrly, we may
use an additional 4 terme in the initial series. This
results in the following edditional terma in the various
indicated steps:

By=43867/708; B.=174611/330; B,,=8584513/138;

Bhe=236364001 /2730

8t 4-3.05305 43303 —260.45621 212124
281 46014 40275—3607.51054 63930

T 4-.01306 419H —.07102 938594 40478 49878 —
3.81271 04366

T +.00021 10382—.00059 61288+ .00225 39060 —
A11171 11599
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T +.00000 83147 —.00001 39705+ .00003 11716—
L0009 13367
T4+ .0000¢ 04870—.00000 056021 00000 03389 —

L0000 17155
7% 67721 5653200000 ()313—.00000 00513
Tv: 57721 56658
I - 0000 02202 4 00000 00119
rr:
The sign of the lest term shows that L™ is not & con-
vergent series of positive terms and it i to be ex-
pected that the trend of transformed values would
show & “broak’ corrcsponding to the change in sign.
We might also lm%vtha W transformation on this
ssymptoiic series. e pok:

W=.57718 25307 +.00007 71605—.000058 542771 ...

-+ 00000 00129— 00000 D0014

which has a minimum term of similar maghitude to
the second T transformaetion,

Erample 16: S=14141+F14+1F141 . . ..

Thiz example illustrates the divergence of the T
series when f,=1 for an infinite set of values of =.
In this case, we got o for the firat term of T, the re-
maining terms baitg indeterminate if (¥ iz used.
However, use of (5) shows all (T} are infinite. If we
attempt the W transformation in this cese, we find
it torms to be indeterminate. We note that any
considerations of “analytic continugtion’ should give

= limnll."(l—:u]—iw.

F—a]-=|

Exgmple 17: S=14+24+3+44+51+06+ . . ..

Thie example illustratezs theorem 16 since we
have all K> 1 but R,—1 in this case. The T =eries
iz found to ba

F=—1—2—3—4—5—86— ...,

which diverges, being precisely the negative of 5.

This shows u departure from what might be avpected
heuristically sinee 142243224224+ . . =17{1—a¥*
iz positive for ¥>1 as well as for z<{1. The W

transformation gives even more ynexpected results
gince it leads to W=0 in closed form, being the
average betwoen the § and T series. ]

This example also illustrates that, for divergent
eeries, we do not have the equivalent of theorems
11 or 12, at least for =1 in that one could bardly
expect a *'smoother’” series than given here.

4, Comparison With Known Methods

Obviouely, where use may be made of special
properties, hetter results may be obtnined than by
working with & given scries either directly or by

a,pp]i]hca,t-mn of any general numeresl summi
technique. For example, log 2 need not be obtaine
from the szeries given in example 1 since knowledge
of the properties of the logarithm permits the
devalopment of series hetter adapted to computing
%urpos,es. Similarly, the aseries nsed for the Euler
onstant in example 14 would never be used for
evaluntion of the constant since far mora convenient
geries are mvailable. It iz chiefly when n series is
given whose propertica are not fully known to the
computer that general summing methods are of
value. Even in such a case, examination of the
terms may indicate & special, convenient mathod for
sumuning the particular series. The trensformation
dizcussed in this paper is not to be conridered as a
substitute for such methods. For this reason, ne
eomparison with the method of “suymmation by
parta” which involves knowledge of ihe general
expreasion for the a'th term and a judicious splitti
of such expressions inte factors or with the methﬂdntg
Borel, which involves recognition of integrating
properties of & fupction by exatnination of & series
representing it or with the method of inserting a
guitable variable factor (usually suceessive powers
of a variable) into each term of a seriee to obiain &
function of known properties which can be eveluated
under a condition corresponding to unity for each
factor, will be attempted. :
Of other summing mathode, we will limit ¢ursel ves
te the following in our comparison. In the discussion,
we treat these methods as transformations of seriee
although they are usually cxpressed as transforma-
tions of mequences. In most cases, MOTeOVer, we
sgsume the original seriez to be prefixed by a zero
term in order to get more anzlogous transformation.

4.1. The Euler Transiocrmation
This vonststs in replacing the series § 5$ a, by
the series
E= i .
[1]
where

1

€5r_|=2 L 78

31=% (2ot )

1 -1}

=51 [an+m.+ o1 et
E{-,-i'-_;—::[-—mas-i- .. -I—ﬂa.‘_l-i-a,.]-

The transformation is of particular value when the
o; are such a2 to cause e, to vanish for a2k =since,
in this case, the & series termingtes permitiing com-
plete summing. This apecial case oceurs when
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a,=(—1)" P{r} where Pin) is a polynominal in .
It iz to be noted that, in this case, § is divergent
with ,——1 and an analytic function of 1/n, ITtis
further 1o he noted that thiz tranaformation doss not
improve convergence when S is a convergent series
of terros of the same sign but actually leads to a new
series of slower convergence than the original.

4.2, The Heélder Translormation

This iz usnally expressed a= u group of transforma-
tions of various “ranks.'"” However, transformation
of rank r can be considered as # repetitions of trans-
formations of firat rank and we therefore resirict
ourselves to the simplest case. The transformation
then changes the series

S=$ & into the series H=§:‘, t, where

2
Ay 5

b= gl (agt2a)

1
ha=m}[ﬂg+2m+3i&z+ e

agy_+(n+1)a,).

This transformation cannot lead to 2 terminating
seriea if the original series is infinite. Like the Euler
transformation, this transformation leads to a more
slowly convergent series if 8 is 8 convergent series
all of whose terms are of like sign.

4.3. The Cesdro Transformation

This is aleo usually stated as a group of transfor-
mations of various “ranks’” of complexity. Tha firat
rank is identical with the Hélder transformation.
We shall take the third rank as indicative of what
may be achieved with the more complex forms. The
Cesire transformation of third rank chanpes the

geTies N =%} ay into the series 0=7" ¢, where
n

%o

= Fl

1
'c|—_-4_.5 {Eau‘l‘ 2&-1}

3
U ey o Yy R L

frt+1im - 2a,+nin—13 3a.+ ... +3+ 200, +
2{ﬂ+1}ﬂ-ul-

~ This transformation alsc cannot lead to a terminat-
ing series if the original scries is nonterminating. It
also leads to n more slowly convergent scries if S is
convergent with all terms of same sign.

4. 4. The Hiesz Transformation

This transformation alao has various “ranks” of
complexity., The first rank is identical with the
Hillder transformation. We shall take the third rank
a8 indicative of the more eomplex forms. The Resz
transformation of third rank changes the series

S=é &, into the series P=“2p,,, where
[1] n

22 1
= ?—?)EH'? a

m+1)° fp—10

e nd
Pa= m+2}*_{n+1}“]“‘“+|:|:u+2}ﬂ_iﬁ¥'i? ot
98 1 1
' ‘+[cn+2:ﬁ_(n+n*]“""*(nwhﬂ“"

Thiz transformation, like the preceding, lesds o e
more slowly convergent sevies if 5 is converpent with
all terms of the same sipn. Moreover, gﬂ::annot
terminate if & does not do so.

4.5. The ds la Vallee Poussin Transformation
This consists in replacing the series § ai @y by

the aories L=i£, where
u

1
£1=’ﬁ {egtat1)

1 2% Faln—1)

ey [ e A s LA

, nen!
T aA3n+H4). . 2e+ D)

{n+17.nt! . ]
r+3nt+4). .. (In+2) "

aa—t+

Like most of the other transformations, this tratis-
formation leads to & more slowly convergent series
if & is convergent with all terms of like sign.
L terminates only when 4, is of the form:

#n=(—1}[ +ﬂ(;1+ 2y Agt+(n— Unin+2Ziin+3) 4, +

(ntm) An
(r—m+1){r+1)

..t

where the A, are constants and m is finite.

247



4.6. The "Hatio" Transformation
This consists in replacing the series S=ia# by
1]
the series Z=$ 2, where

Ty

2“=m for ﬂc’:i‘
2_=€h1——fﬂgn:_t for n>k.

This trensformation leads to & more rapidly con-

vergent {more zlowly divergent) series wherover
045 ,R1 as n—>w. We shll take ¥ us the

smallest integer for which thia is true. ‘This transfor-

mation leads to a'terminating series when aa%*"=R
: n
for n sufficiently large.

It is again pointed out that the transformations
in this paper differ from al} of the above in oot being
linear. oreover, except for the “Ratio"” trans-
formatien, all of the above have terms dependent
npon ao incressing number of terms of the initial
geries, while the transformealions considered in thie
}I}a.hper depend upon only 3 or 4 terms of the original.

15 tends to make compuiztion easier than for
most of the other transformationa but mskes results
Imore sansitive to “irregularities’’. However, results
hecome essontislly independent of which term in the
origingl geries is considered as the first.

t may be of interest to consider the various
methods applied to the examples previouwsly dis-
cusaed, a.lLEﬂugh this does not necessarily give a
comparizon of general validity.

Ereample 1;
{_1)’1-1"
S=1-12+18—1A+1/5—16+ . .. + =y .,
-5yt i 1.1, =
T=3+35 105t 252 295553 +n{4n*—1}+ ’
i, 1 1,1 1 1 _ L, g e
=16 141 576 * 1600 3600 © 7056 tane—yt
1,1,1, 1,1, 1 1
E=stitmtatmtmt  towt
21,1 1 3 1 1 o =n,
Z=3ti~1tu—nte toamyyt
H:nl+|]+..l_+ﬂ+l+|]+ P +—1_+{}+ e
2 12 30 2n(Zn—1) ’

1,1 1 1 1 1
Ltitmiemtamt

T Tr T LR

1
vy

1,1,1,3,9 1 3 L L—(—1)F
C=ttwtetntmtet  TminnTs) [1+2n{ﬂ.+2}]+ o

p_lyli 25 47 107

111 73
s +72 1 285 500 T 1300 T 3528

3 '?2+

Examination indicates that W converges more rap-
idly than any of the others for the first portion of the
peries while £ is fastest for later portions, with W and
T next and the remazinder sll of lower order of
rapidity. The crossover point between E and T in
size of terms is at 8 terms. However, all terms in E
are of the same sign while T has terme alternating in
gign se that the crossover for emor in summing is
further cut at 10 terms. Corresponding croseover
values for ¥ and W are 14 terme and 15 terms.  Zjs
superior in convergence to the remaining 4 because its

+ .

1

TSV

(@at— 1)+ {1+ . . ..

terms alternate in sign although of the same order of
magnitude, [t is further wort. nut.l'ﬁg that H, C and
P are irregular between even and odd terms. This
same type of irrepularity occurs in L if no zero is pre-
fixed to & prior to trancforming it. Under the same
conditions, the irre ity in H does not take the
simple form of vamshing of even terms, The labor
of computation is {not nsing the general form for the
terms) Jenst for Z, somewhat higher for T, hizher atill
for # and W, with ' and F worst in this respect.

Repetition of any transformation leads to a series of
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peorer convergence except in the case of T, W, and Z,
which improve-convergonca again to a similar degree
a8 the first application. For this expmple, therefore,
there appear to be no favorabls featurse in use of the
H, L or Ptransformations. Eis best if the peneral
form i6 recognized and ne repetition is required. T
is probably best otherwise, althouph the higher ra-
idity of convergence of W may justify its greater
bor of computation.

Erample £:

1 1 1.1 1 1 1
S=g—itg3hg— st - tm—moat -
p=l_ 7 13 5 7 283
6 15 140 63 108 Ti5

Sn—3 . 8n—1 _

2ald4n—31(dn—1) (Zn—1¥18n7 -1} "7
WL 1 1 13 1 8
TR 48 12240 30 3360

1 _ Ani4dn—1 _
2al2rn—1} Bnind1)(4a:-1) "~
el 1 5 35 19 47

4 § 32 192 192 &840 T °°
Zol 1 3 1 1 1 & __

32 8 24 12760 T am(Zn—0)

1

dn{Zn—1) f
g=11 1 5 1_ 7
T4 4 168 48 24 1) '
gl 119 107 155 6001

4 12 240 1680 3024 166320 '
ol 1_ 38 73 67 187
B 40 80 1680 1680 5040 "7

poly 7 _ 49 701 _ 877 8167
T187144” 230¢ 19200 21600 211680

The pencral terms for &, H, L, C, and R are not of
simple form but, for large =, they tend t.o-—-%:_—-
[
kﬂzﬂr S L —@,E—E nnd—i-l-?%j: respestively.
" 2ny'n ) 7
The irregularity thus makes all the methods poorer,
terms being of higher order of magnituda T in
exampie 1, except for £ which, however, has terms
of constant sign in this case instead of alternating
sign, Nome of the transformations has improved the
rapidity of convergence and the last 4 have mada it
poorer. Rapetition of any transformation leads to
poorer resulta,

Erampic &:

1 1 !
S=1-40-c4+0+0+7+04+0+0—5+ . . .,

1 1 1

T=1+0-5+0+0++0+0+0—+ . . .,

W=1+u*%+n+n+i+n+ﬂ+u—§+ o
1.1 1 1 1 15 b 17
E=gtiti6~ 3 16 256 128 1oz’ " "

Z not applicahle,

Hegtt bbbt tant -
P=g+316™ 3550+ 5300 Tosdo M T48TFET

7 and W ocbviously are identical to the original,
Tha others are of doubtful assistance. Such a series
should, of course, be handled by omitting the zero
terms.

Erample 4:
1 1 1,1 ,1 ) Vit et DL

S=l+g—i st % TRl g
2 1 i L {_1}5 {_1}n+1

I
T=2—3—atetia—as—  Tyaws g o

{_ljn+1

3(_1:|r|+1

Wegti—s7tgtg trgh=—Tma
1,3,7 .13 .17, 3 LBV . i 1)
E—§+§+ﬁ+m+m+m— - +-‘T§(ﬁ) s (E+n arctan 5 J+.. .,
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2.2 6
Z=5t5—%

_1,1.5.3 17 5
H_2+3+45+sn Tigg T

AFTTRETT

11, 23 151 , 3133
507280 T 2880 T ag0d T

1.1
L=§+2+

_1,1,11,853,309 71
G_4+5+S{I+5ﬁﬂ+448[l+ 1344+‘ s

1145 8921 . 38123 11135
6012 ' 32000 1 332000 T 1693441 - -

1, 41
P=gtaet

The general terms for the Jatter series are some- ] have larger terme than the original saries and have
what complicated but, for # sufficiently lerge, they | all terms of the same sign as well, & hae terms of
28 &8 R4 84 peculiar variation with somewhat slower overall con-
5 3 g and —— for H, L, €, | vergence than the original. T and W are similar to
255 125m* 2on 25m i : 1
\ . the original in most respects. Z is best, of course,
and P, respectively. The last four series are there- | in giving a closed form sum, snd is the only one of
fora definitely unsatisfactory for summing singe they | the proup that is any improvement. over tha eriginal,

tond to

Erample §:
L1 1 1. 1 1 =T (—1)"
8=3-s 22 ea 160 363 " tenaETEayn.Ee T
_2 717,81 4 T (—1)"(8n—1) (—1p-Bnt48et]) L
P=i—mtszstanz W60 260127 " T Den—1) 257t D@at 1Kt 5 2o T
1,9 113 533 , 409 547 331 (= 1)"~¥168*—Sn+1)

et g — — — — L B
W=gt353t624 5200 T 0800 73096 36765 T @ —1)En—5)7n—1)- a1 T

{—1)"48n*+ 400 — dn—3)
alZa+ 1(2r—5)7n+6)- 2°"

1,8,5, 1 20 137 1[5V = . /x ™ 1
By tntigTisa 5120 2576 ta [(ﬁ) VZsin (I“""’ arctan E)"E{l"‘ T

+ -

_2_ 1,1 1 1,1, ° (=1 (—1)

Z=3— 1o 15 w0 300 g0t T tEamED) o @A LEeEa) =T
1,1,1,3 .7, 13

H=tzitmTomt oot "

1,1, 11, 9, 197 , 399
L=gti{st1s6 " 506 T 10320 T 35218 T "

17 , 51 , 148 127
150 T22a0 8960 T 10752"

1,85 ,°707 , 407 , 3673 , 36023
16 132 13824 T izs00 T i7z00 T 2370816 T ©

1,1
G=§+1—Iﬁ+

P=

The last four series have ierms tending towards | transformation leseding to a faster converging series.

1 b 3 a ] ) T and W lend to series of similar order of conve ca
Fn® TEn? Bt and Q“‘-SPW“WF]F . Z i8 the only | aa the originial while the remainder are of slower
convergence. :
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Exawmple &

11,1 1,1 1
S=trztsatsetaet gt

_8, 7 19 109 |, 5% gn'—4n—3 _

T=s+Tsot1i70 12876 T 0110 tomEa—Dan—s@nsn

3

11,1 1 1
W=tTetsmtireotmeet g

Z not applicable.

The remaining transformetions oll lead to series
converging more slowly than the originel since §
has terms all of the same sign. T Is not usable
directly since ita convergence is similar to that of

1)(2n—11(2n—3}+‘ '

& but, as indicated in a previous section, 1t can be
combined with § to obtain 8 more convergent series,
if its trond is known. W obvionsly converges more
rapidly than 5.

Erample ¥:
B A
s
R AT S Yo
Bttt +ﬁ1}2—+ [2.2%%sin nfd+1]+. . . ,
Zegtpatsismat i tee e T
Hephgtig+0otgtgt '+2(2n+11}(4n+1}+4:2n+1}1(4n+3}+4|:n+1}1{4n+3}+“+' o
L—ptptaet i Zeda |
C=gt3+istastamat ’+(4n=3—1]+4n(£+1}[1+%]+' T

The L and P series have termes of the order of 1/52
for large m. For this series, therefore, & gives the
most rapid tonvergence, altbough with terms of
peculiar varigtion, whila T diverges. £ i= more
rapidly convergent than 8. All remsining methods
ég:hge terms of similar order of convergence to thai of
he o series. Z is thus preferable io all those
listed for ease of summing and is, in addition, much
simpler to evaluate.

FEvpmples 8 and 8. Thess wers inserted for theo-
retical interest t¢ show that the Zand W transform-
ations were not related in the senee that the field
of application of either included that of the other.
In neither example is the Z transformation applica-
ble and, in both examples, all the other transform-
ations considered lead to series of slower conver-
gence since terms ate all of the same sign.
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Ervample 16:
S=1—-141—-14+1—14+1—14. .,

1 1 1 1

otio TaTE
1

@t

1 1.1
Heg—5ts
i

+

F2n+1)

L=

by -

1,1 1 3 3 1
C=itzmtaottaotTooteat ot

3 3
an— D) Taan—nt "

1,20 23 79 23 153,

P=gt31 32 2000 T 1000 TR2az T T

12074 L4n+3 | 129"+ 10u+1
SnZ 1P B 12nt1yF

For this example, T, W, E, Z, and L ull lead to
series terminating with o single texm, H, ¢, and P
lead to convergent series. though the terms in
H are of higher order of magnitude, they are of alter-
nating sign and trivial to sum. Since ﬁ—

1 2 . o "
%—H=m. £ ia l‘eﬂ.-d]l}f summed to &

4+

total of :l‘i Also, we bave

12ﬂ’+14ﬂ+3J_ 127+ 10041

En(2nt+1y ' B(n+13(2r+1F
-2 371 1
Snin41} 8\rn ntl

g0 that P is readily summed to %‘l'%:%' We thus
see that all methods are consistent with each other
in this exampla but that X, ', and P sre most
difienit to apply and evaluate.

Erpmple 11

S—=1—244- 84164324 . .. {2+ ...,

1 1,1 1,1 1 (1),
21t e et Pt

Z—

3 23,19 45

_i 1,3 23,19 45
H=5-gti—g5tsp—gt '

b | =+

1 1 1 1

1
L=3—§t60 140 530 595

1
376

+

1 1,1 1,381 1
C=g-mwtonatam 5T

301 73 821
8000 DO0O ' 24690

1 7 7
P=gtmtemt o
For this case, T, W, and Z lcad to termingting series
while ® snd L lend to convergent eeries (termas for
the Tatter tend to 2 UNT) wuh &, €, and P
not of sufficient power to lead to series that conv .

Furthermore, if a similar series of larger moduloe
were taken, say

Sr=1—6F+586—21641206—=T77761 . .. +
(—m+ ...,
we wotld bave Eand I diverge as well with
1 5, 26 136, 625 3125
3 4T8 T2 6
(=1)"

L —
E'= B

5#
_2_‘(5 +...

+ ...+

and

13_37. 7

sl B 13 37,7
Lim=g T2 28t *

— 1% n
with terms tending to §(—~—12}—"—-ﬁ (%) How-

cver, in this case, £and L could be repeated to obtain
equivalent sonvercent series. It is easy to sum & as
wiven mnee it is a peometric serios. 1t is found o
agree with the sin%e tarm values obtained for T, W,
and Z. Tt can he shown that L also soms to ¥,



Erample 18:
S=14+2+4484164 ... 42+ . . .,
=—1,

All other transformatiors lead to properly divergent
series. Thus T, W, and Z are the only methods that
aerign meaning to this type of properly divergent
series. They agree in value assigned,

Krample 15:

o 5,17 65, 357 1025 gin 41
S=2ta+ + o+ T apt o e teees

45,306 2340 18504
T=—8+7 Y37 t30e toasgr T - -+
ﬂ.ﬂl-l(2h+])
[-29“—1_1]{2!l+'|_1}

+ ...

92 4131, 306822 | 46546812
W=11—31e T 106821 Taeszior T 0
2722 1) )2 4 1)
(F- i Y2725 1 1) boaoe g
_ 3,3,3, 3,3, 38 3
I=—ldgtytgFTtmteat Tt

As for the preceding example, all other iransforma-
tions lead to properly divergent series. £ is easily
summed to give —24-3=+11 in agreement with the
sum of the T or W geries. Z is, of course, simpler
to apply and sum than is T and either is simpler
thinn Wy -

FEzample 14:

S=1—-2+3—4+45—-86+...—(—1¥at+.. .,

1

2 .3 4,5 {(—1rn
CR T T TR TR

Tani—1

T= e

s 6 12 20 . 30
T Tt Ee7 Tsi0t3ere T

(=1¥nlnt1)  _
f2ai—1¥2rF 44011}

W=

ok

1
E=gy—

b= B3 M

(LT T
+
|

|

T

|

(Y T Y PR
+

+

-+
+
]
|
LG TR T

- r1 1 1 oo
276 30 70 136 4Rt —1)
1t 1,1 3 3 1

=322 140140 BaT T
— 3 + 3 _— s
aan’—1) " 4(an—1)

-y

C

!
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Now we have the identities:

n I n 1 i
4ni—1 4(2n—1} " £(2n41)
nin+1) 1 " 1
12w+ dnt1) #2r'—1) 4@r*t4n+1)
I B
20dn*—1} 4(2n—1} 4{2n+1)
nlldnt1 ani -1
Sn¥2n+1F Sr+1H2Zn+ 1Y

_2nt1 1 1
TEHR-LLIE a0 SrT1)

Hence we may readily sum all of the convergent
Also, from

example 10, the Z and H series may be summed by
repetition or otherwise to this same sum. All the
pivenn methods are therefore consistent for this
example. ¥ is best since it terminates. T is not
quite 28 good as W, {, or P in rate of convergence.

series gbove, obtaining :II in &ll cases.

Erample 158;
1,1 1 1 1 1 691
8=g+is— oot 352 220 132 32760 T
1 {—1"Br

19 i 241 169 20011

T=35V 10800 320298 T 305040 12274a5z T

2900 1 31

=540 19966 362880 T

w

13,3 . 89 37 , 209 | 32,
E—=SitieeT 10080 5060 T 147840 %0080 T

Z=not applicable,
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11 13 a6l 67

13, 1
He=g+o0t o501 1300 T 138600 105105 T~
13,1, 19, 83, GO, 1817
- L=a5 150t 3150 25520 T Ficeoo T jooscee T

25,7, 07 79, 529 | 45229
C=g+ 5007 19600 T i4700 T 1203600 T 135120

181 | 1V77 387 | 125879

£0
P—36 T iz080 T 181420 T 56000 T 2aeazoo0 T

In applying all transformations, the firat term in 8
was omitted during transformation and then added
fo the first term of the result since it is not smoothly
related to the following terms. Terms far out in

each sories tend to have va]ues—%s-lﬂ

(—1w'B, (—1)'B. (—1yB, _+=(—1)B,

n' 2n-2% 2nt Bx . 20
—3‘:“;1 By md—~ "B qor 1 W, B, H, L C,

and P respectively. Hence all the series divarge.
However, these values are not apgll:oxi.mated during
the early portions of the series which are the most

important for sumiing. In these early portions,

iven above, W appears best, while T is convenient

ecause it is easier to compute than most of the
others. All the transformations can be repeated
on the later portions of the series to obtain, with
suitable manipulation, any desired aceuracy of
evaluation. }ﬁwevar, only T and W have earlier
terms fitting smoothly with later terms as concerns

sign.
lﬁmp!es 16 and 1T7: These were included in earlier
diecuzsion to show the behavior of the I and W
jransformations when B=1. The £ transformation
is not applicable in either case, while all the other
transformations considered lead to properly divergent
series since S is of that character,

The suthor is preatly indebted to Alexander M.
Ostrowski, Otto Szasz, and Franz L. Alt for pointing
cut several errors in the first draft of this paper.
He iz particularly indebted to Olga Taussky, whe
carciully mvicwcg arta of the fing]l manvscopt and
whosze sugpestions led to materigl improvement of
the paper. Ida Rhodes also contributed substentially
by checking the numerical work.
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