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Some General Theorems on Iterants* 
P. Stein2 

If B is a square matrix, then it is known that a necessary and sufficient condition that 
J^n Bn=0, is that the characteristic roots of Bare all of modulus less than unity. An alterna
tive condition is given in this paper, in terms of Hermitian matrices. Further, a generaliza
tion of the result is obtained that covers cases of matrices B whether Bn does or does not 
converge to 0, except for very special matrices. 

Introduction. If B is a square matrix with real 
or complex elements, it is well known that a necessary 
and sufficient condition that lim Bn = 0 is that the 

n—*oa 

characteristic roots of B are all of modulus less than 1. 
In this paper an alternative condition for the 

convergence of Bn to 0 will be given in terms of 
certain Hermitian and symmetric matrices. We 
also obtain a generalization of this result that 
covers matrices B when Bn does or does not converge 
to 0, except for a special class of such matrices B. 

M y thanks are due to Olga Taussky Todd for the 
help and encouragement I received from her in the 
preparation of this paper. M y thanks are also due 
to L. J. Paige for valuable suggestions toward the 
improvement and simplification of the proofs. 

We will consider square matrices B whose elements 
are either real or complex. The conjugate transpose 
of B will be denoted by B*. 

THEOREM 1. A necessary and sufficient con
dition that lim Bn=0 is that there exist a positive 

n—>oo 

definite Hermitian matrix H for which H—B*HB is 
positive definite. 
Corollary 1. If B is real, H may be taken real and 
symmetric. 
Proof: Necessity: Let P be a nonsingular matrix 
such that 

PBP-1=K1+K2+ . . . +Kr, 

where Kt is the Jordan normal form; i. e. 

r 

where ^ nt=n, \ t are the not necessarily distinct 

characteristic roots of B, and J7n*Xn» is a matrix with 
units in the superdiagonal and zero elsewhere. 

Let 8i=5(*i) be the diagonal matrix (e^*"1, €inr\ 
. . ., 1) for i = l , 2, . . .r. 

If Q=^ + d2+ . . . + 8r , then 

K=QPBP-lQ-1=N1+N2+ 

Nt = d1Ki^r1=^iI+etU; 

+Nr, where 

it being understood that / and U are of the correct 
order. 
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Note that 

I-K*K=(I-N1*N1)+(I-N2*N2) + 

+(I-Nr*Nr) (2) 

is positive definite if and only if (I—N^Nf) is 
positive definite for all i. Clearly 

I-NSNt^a-h^I-afcU+X^+tiU+U). 

will be positive definite if 
(3) 

v*y 
y*U*Uy~\. 

y*y 
(4) 

If M = m a x \\t\, we have 

V&u+Wiy a l so yninjy 
y*y y*y 

hence 

« i [ V*&iU+\tU*)y , y*U*Uy 
y*y 

+«i-
y*y ] < 

e,M+€? for all y^O. (5) 

Since lim Bn=0, |X*Kl; hence, from (3), (4), and 

(5), I—Ni*Ni is positive definite for sufficiently small 
values of €*; and so from (2), I—K*K is positive 
definite for such values of et. A change of variable 
y=QPx gives 

y*(I-K*K)y=x*(H-B*HB)x, where H-=P*Q*QP. 

Since H is clearly positive definite, the proof for 
the necessity part is complete. 

Sufficiency:3 Let H be any positive definite Her
mitian matrix for which H—B*HB is positive defi
nite. Since H is positive definite, H=D*D, and by 
making the change of variables Dx=y, 

x*(H-B*HB)x=y*(I-K*K)y>0, (K=DBD~1). 

(6) 
3 This proof was suggested by L. J. Paige. 
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Now, if Xi is any characteristic root of K (and 
hence of B), yt an associated characteristic vector, 
we see that 

yi*(I-K*K)yi=yi*yi-\i\iyi*yi>0. 

Thus, |X<|<1 for all characteristic roots of B, and 
hence Bn will converge to 0. 

To prove the corollary, we suppose the elements of 
B real. Let H be the matrix of the theorem, then 
H=A-\-iS, where A is a real symmetric matrix, and 
S is a real skew-symmetric matrix. If H is positive 
definite, then it is known that A is positive definite. 
Again 

H-B*HB=H-B'HB=A-B'AB+i (S-B'SB). 

A—BrAB is symmetric and S—B'SB is skew-sym
metric. If H—B'HB is positive definite, then 
A—B'AB is positive definite. Hence we may use A 
in place of 7J in the theorem. 

We give a sufficiency test for the nonconvergence 
of Bn to 0. 

Theorem 2. Ij there exists a nonpositive-definite 
matrix H such that H—B*HB is positive definite, then 
l imi? w ^0 . 
ra-»oo 

For proof, we observe that if H is not positive 
definite, a vector x may be found such that x*Hx<0. 
Further, if H—B*HB is positive definite, the se
quence x*B*nHBnx is decreasing. Hence lim Bnx^0 

and sol im £ n ^ 0 . 
n—•» 

I t may be observed that the condition that 
H—B*HB should be positive definite may be 
weakened to H—B*HB at least positive-semi-
definite, provided H is not positive-semi-definite. 

Now we shall prove a generalization of the neces
sity part of theorem 1. 

Theorem 3. Let B be a matrix whose characteristic 
roots of modulus 1 have multiplicity no greater than 
two. Then there exists a nonzero Hermitian matrix Hi 
such that Hi-B*HiB>0. 

Corollary 2. Ij B is real, Hx may be taken real and 
symmetric. Proof. Using the expression (2) for 
(I—K*K), we see that 

I-K+R-K^I-K+IQK^I-NSNt-NSil-

N1*N1)N1] + . . . + [I-Nr*Nr-Nr*{j[-Nr*Nr)Nr] 

and again, this will be positive semidefinite if 

(7 - iV,* iV i ) - iV,*( / - iV i *iV, )^ = ( l - X i X , ) 2 / -

2ei(l-liXi)E + e^iU*E+\iEU+eJJ*EU], (8) 

{ E = (\t U+ \tU* + et U*U)}, is positive semidefinite. 

Obviously, by a proper choice of et, (8) can be 
made positive definite if B has no characteristic roots 
of modulus 1. 

If B has a characteristic root such that X*Xi= 1, the 
right side of (8) vanishes for roots of multiplicity 1. 

For roots of multiplicity two, (8) becomes ( 2 \ 

and hence can be made positive semidefinite. 
Now a simple change of variables, y=QPx, as in 

Theorem 1, yields 

y*[(I-K*K)--K*(I-K*K)'K\y. 

= x*[(H-B*HB)-B*(H-B*HB)B]xZ:0T 

where H=¥*Q*QP. Thus the Hi of our theorem is 
chosen as H—B*HB. 

If the multiplicity of a root of modulus 1 is three or 
greater, the right side of (8) is not positive semi-
definite since it will always contain the principal 

s u b m i n o r e ? ^ %+2^x} 

Hence the method used in the proof of this theorem 
does not yield an Hi in these cases. 

I t may be observed that lim Bn=0, if and only if 
ft—»oo 

Hi is positive definite. For, if B has no roots of 
modulus equal to 1, then from the proof of the 
theorem it follows that Hi—B*HiB is positive 
definite, and the results follow from the sufficiency 
part of Theorem 1 and from Theorem 2. If B has a 
root of modulus 1, then since Hi=H—B:¥HBy we 
may show, as in the proof of the sufficiency part of 
Theorem 1, that Hi is at best positive semidefinite, 
and hence also not positive definite. In this case 
also lim B n ^ 0 . 

n—»» 
Corollary 2 may be proved in the same way as 

corollary 1 of theorem 1. 

Los ANGELES, October 12, 1951. 
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