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On the Estimation of an Eigenvalue by an Additive 
Functional of a Stochastic Process, With Special 
Reference to the Kac-Donsker Method1 

R. Fortet 

A " Monte Carlo" method is described for the determination of the eigenvalues and the 
Fredholm determinant of certain Fredholm integral equations with positive kernel T(t,r). 
T h e method is based on a theorem by Kac and Siegert. An appropriate stochastic process 
is constructed from a Poisson process, for the case t h a t r(£,r) depends on < - T only. 

The second pa r t of the paper contains a discussion of the various errors inherent in the 
method of Donsker and Kac for the determination of the lowest eigenvalue of Schrodinger's 
equation. 

1. Introduction 
Kac and Donsker [1, 2 ] 2 have given a "Monte 

Carlo" method for estimating the smallest eigenvalue 
of a linear operator, when this operator is of a cer
tain type. The starting point of their method is to 
consider an additive functional of a Wiener-Levy 
process. In what follows we intend to give: 1°) a 
different method (but which also consists of con
sidering an additive functional of a random process) 
of estimating the smallest eigenvalues of some inte
gral equations with kernals of nonnegative type; 2°) 
some remarks on the Kac-Donsker method. 

2. Integral Equations With Positive Definite 
Kernel 

For this first part, the following theorem will be 
fundamental. Theorem: Let X(i) be a real, Lapla-
cian3 rf,4 defined for a <Ct<J> (a and b finite) and the 
covariance r(£,r) of which is a continuous function 
of (£,T) on the domain (a^t<b, a^T^b). Let us 
consider the rv: 4 

r = (bx2(t)dt (i) 
J a 

and the integral equation: 

f(t)-\(br(t,r)J(r)dT = g(t). (2) 
J a 

If D(\) is the Fredholm's determinant of the equation 
(2), the cf 6 <t>(v) of Y is equal to D(2iv)~K^ 

This theorem was stated by Kac and Siegert [3,4] 
(Kac gave only some weaker results, but the generali
zation is obvious; we gave a proof of the general 
theorem in [5]). I t is easy to give assumptions under 
which the theorem is valid if a= — oo} or b= + °°, or 

i The preparation of this paper was sponsored (in part) by the Office of Naval 
Research. 

2 Figures in brackets indicate the literature references at the end of this paper. 
3 This is, Gaussian. 
< rf, random function; rv, random variable. 
5 cf, characteristic function; fr, function of repartition (i. e., cumulative dis

tribution function). 

a= — oo and b= + °° ; also it follows from a paper by 
Kac [4] that the theorem remains valid if, instead of 
(1) and (2), we consider the rv: 

fbh(t)X2(f)dt, h(t)^0 

and the integral equation: 

f(t)-\ P , r (*'T) f(r)dr = g(t). J Ja^h(t)h(r)JK J UKJ 

But for the principle of the method, it will be suffi
cient to restrict ourselves to the above statement. 

Principle of the method: We consider an integral equa
tion (2), with a continuous kernel of nonnegative type 
r(£,r), and we would like to estimate its smallest 
eigenvalues, and more generally its Fredholm's deter
minant D(\). Now r(£,r), being of nonnegative 
type, may be considered as a covariance of a Lapla-
cian process X(t), which is entirely determined (see 
[8]) by T(t,r). We assume that some random game 
has been set up that implies a realization of X(t) and, 
consequently, of F , as defined by (1). We make n 
independent trials, obtaining n values yu y2, •' • •, 
yn of Y; from these y/s, we can deduce the following 
fr5 Gn(y): 

Gn(y)=-X[number of those y/s which are<t / ] ; 
lb 

and it is well known that Gn(y) is an estimate of the 
fr 6(y) of Y. Hence, we have an estimate <l>„(v) of 
c f *(e) of F b y : 

*»(?)=J*~et»dGn(3/) (Z) 

(the integral is extended from 0 only to + <» because 
Y is ^ 0 ) ; but (3) is equivalent to: 

* . ( » ) = ^ e ' w ' (3)' 
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Now <j>{v) is the m e 6 of the rv Z(v)=eivY; hence 
we obtain an estimate Dn(\) of D(\) by the preceding 
theorem, by putting: 

p-<2">-*W (4) 

However, v being real in (3), (4) gives an approxi
mation of D(\) only for the values of X that are 
purely imaginary; and the roots of Z?(X), which are 
real and positive, are not obtained by this procedure. 
But we can operate in the two following ways: 

(A) Under the preceding assumptions, Z?(X) is an 
entire function of genus at most 1; hence D(X) is 
representable by an entire series: 

D(\)=a0+^\+ . . .+gx*+ . .„ , (5) 

where the ak's are the derivatives of D(k) for X=0. 
The formula: 

<f>(v)=D(2iv)~* 
shows that <t>(v) is indefinitely differentiate for v 
close to 0 and that the ak'& can be deduced from the 
derivatives of 4>(v) for v=0. These derivatives are 
equal to ilMu i2M2, . . ., ikMk, . . ., where the Mk 
are the moments of F , and these moments may be 
estimated, by some well-known statistical procedures, 
from the y/s; hence we can obtain estimates a% of the 
aks and an approximate representation Dn(\) of 
D(\) by: 

n tbi 

But it is well known by statisticians that, if n is not 
very large, it is difficult to obtain good estimates of 
Mk for &>8; it will be necessary, in general, to adopt 
an approximate representation of D(X) by a poly
nomial of the following type: 

#»*(x)=±;£fx* (6) 
k=l «-! 

with s ^ 8 . But this seems to be sufficient in some 
cases.7 For instance, in order to estimate the 2 or 3 
lowest roots X!, X2, X3, . . . of Z?(X), we can obtain 
numerically the lowest roots Xj, Xn

2, . . . of (6), 
and these X? may be considered as good approxima
tions for Xi, X2, . . . 
(B) We can also employ the following procedure: 
D(\) being an entire function of genus at most 1, 
there are two positive numbers A and p such that: 

for every X and every p'^>p; hence, the function 

k o 

6 ire, mathematical expectation; the mathematical expectation of a rv X is 
represented by E(X). 

7 There is a good method for obtaining estimates of the lowest roots of a Fred-
holm determinant when its first coefficients are known. 

considered as a series in —, has a radius of convergence 

- > 0 , and 
P 

A(«)= f °VxZ>(X)dX 

if St 0 ) > p > 0 ; hence for every X (and particularly 
for X real and > 0 ) , we have: 

DW=^- f+m e-^+WAia+iftdfi (7) 

for any fixed real a > p ; if X is real and < 0 , the inte
gral: 

*(^y£"e^dG(3f) (8) 

has a meaning, and, as a consequence of the pre
ceding theorem, we have: 

Z?(X) = 0 ( - * ' ! ) 2 for X real and < 0 (9) 

Hence we can obtain, by a statistical procedure, an 

estimate of <t> ( — i -= J by (8), then an estimate oiD(\) 

(X<0) by (9), then an estimate of A(a+ip) by (6), 
and finally an estimate of D(\) for X>0 (or for any X) 
by (7). There are two numerical integrations 
[(6) and (7)] to be performed, and this procedure does 
not seem to be of practical interest. 
Realization of the game: Another difficulty lies in the 
practical realization of X(t). This question is also 
interesting from a theoretical point of view. I t may 
happen that there is an obvious procedure for this 
realization, with a sufficiently close approximation. 
This happens for instance if a=0, 6 > 0 and if 
T(t, r) =min(£, r ) ; in this case, X(t) is a Wiener-Levy 
process (with X ( 0 ) = 0 , 0^t<J>) and one can see in 
[2] how it is possible to realize (approximately) X(t)* 

In many cases it is possible to reduce X (t) to a 
Wiener-Levy process, as for instance if X(t) is a 
Markoff process (see [5, p. 198]); that happens if 
T(t1T)=e~k^T~t^ where k is any constant. But in 
general, for a given r(f,r), we do not know if X(t) is 
or is not a Markoff process (to date, there is no 
general theorem about this). On the other hand, 
the reduction of X(t) to a Wiener-Levy process needs 
some computation which, although easy to perform, 
may be lengthy. 

We can look for a realization of X(t) in another 
direction. First, we mention that, X(t) being a 
permanent process, it cannot be realized rigorously: 
we can only obtain a process X*(t) that is an approxi
mation of X(t). Then too, the game concerns, not 
F, but 

F * = (bX*2(t)dt. 
Ja 

8 X(t) is a Wiener-Levy process if the r. v. X(T) —X(t) [with T>t] is independent 
of the r. v. X(u) for any u^t, and if it is a Laplacian r. v. with m. e. equal to 0 
and a standard deviation equal to TJT—t. By definition, T(t, T) is the m. e. of the 
product X(f) . X(T)=X(t){X(t)+[X(r)-X(f)]}, and if X(0)=0, 0£t<a, the 
m. e. of this is equal to t, that is to say: min(t, T), since r>t. 
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This substitution is valid only if we can prove that 
thef r of F * is an approximation of that of Y. But, 
because this is an intuitive feature (at least under 
some assumptions), we shall admit it. 

Let N(t) be a Poisson's process, homogeneous and 
with density m; let R(t,r) be an ordinary function 
defined over the domain Df. — <» <^t, r < + o o , and 
such that, for every i, 

jr R2(t,r)dr< + oo (Lebesgue integral.) 

We put: 
N*(t)=N(t)-E[N(t)]=N(t)-mt 

and let X*(t) be the process denned by: 

•X*(t) = l i m m q I i a c - L ("R(t,T)dN*(T$ (10) 

(for the definition of a Poisson process, see for in
stance [7, p. 212]: for the precise meaning of (10), 
see [5]). In what follows, we shall call such an X*(t) 
a "Poisson's rf". 

In general X*(t) may be simply represented by: 

X*(t)=-^(j}R(t,T,)-m (+C° R(t7r)dr) (10)' 

where the r / s are the jumps of N(t). I t is possible, 
from a collection of random digits, to realize correctly 
a Poisson's process: hence it is possible to realize a 
Poisson's rf; in fact, it is possible to think of a device 
(employing electrical noise, or emission of a- par
ticles, etc. . . .) giving X*(t) in a physical way. 

I t has been proved (see, for instance [5]), that, if 
+ oo ? X*(t) tends toward the Laplacian process, 

the covariance T(t,r) of which is given by: 

X+=° Ri},v)R{r}u)du. ( ID 

Hence, for a given r(#,r), the problem of realizing 
approximately a Laplacian process X(t) with co-
variance r(#,r) is solved if we can determine an 

•R{t,r) defined over Di, with 

X+oo 

- . • 
R2(t,T)dr<C+ °° for every t 

and such that (11) would be satisfied, at least over 
the following domain D: 

Hence, the first step is the theoretical study of the 
existence of solutions R(t,r) for (11); but our prac
tical aim will be reached only if there is a solution 
which is easy to determine numerically. We shall 
consider: first a particular case, and second, the 
general case. 

9 mq, in quadratic mean; ac, almost certain (with probability 1); iac rreans: 
stochastic integral with probability 1. For definition of these terms, see [7]. 

(1) Let us assume that there exists a function 
ri(r—t) of (T—t) only, denned over D^ symmetric and 
of the nonnegative type (over Di), and such that 
r(/ ,r) = ri(r—t) over D. We shall put h=r—t, 
Ti(T—t)=r(h); in this case, X(t) is, at least over the 
interval (a, b), a stationary process, and r(h) is a 
positive definite function [see (8)]. I t is sufficient 
to have a solution of 

T i R(t,u) R(T ,U) du ( H ) i 

over Di. I t is possible that every solution R(t,r) of 
( l l ) i depends on (r—t) only, but that is not sure. 
But it is sufficient to look for this kind of solution; 
that is to say, to look for (real) functions R(u) such 
that: 

f mR2(u)du<+ oo r(h)*= {^Riu) R(u+h)du. 

(11)' 

The corresponding X*(t) will be stationary itself. 
We proved in [9] that (11)' has solutions only if r(h) is 
continuous [hence, r(h) is a cf] and if the spectral 
function F(w) of r(h) is absolutely continuous, that is 
to say admits a derivative/(o>); in this case, R(u) is a 
solution of (11)' if, and only if, 

#(tt)='-i= f+0°V7W e** ((a)~iuu du 
V 2 7T J -«° 

[Fourier-Plancherel transform] (12) 

where \f/ (co) is any odd function.10 We can consider 
that this result and (12) give a convenient answer to 
our. problem. 

(2) The general case is much more difficult, and it 
seems that the only result is the following theorem, 
that we proved in [9]. If T(t,r), supposed to be 
defined over DX for instance, is continuous (as a 
function of the two variables t,r) over any bounded 
domain, there is at least one solution for (11), valid 
over Di; but we do not know any easy way to com
pute numerically this solution, or any other solution 
(it is easy to see that, in general, (11) has many, and 
even*infinitely many, solutions). Conclusion: The 
interest of the Monte-Carlo method under considera
tion here would be that it can give simultaneously 
several eigenvalues of (2); but it seems possible to 
perform it only in the case where T(f,r) depends on 
(r—t) only; even in this case, the method is compli
cated, but it might be interesting to try it. 

3. The Kac-Donsker Method 

Let us consider the equation: 

d2* 
K ^ ~ y ( x ) ^ ( x ) = ~ X ^ ( x ) ' (13) 

i° In this paper, T(t,r) and R(t,r) are always supposed to be real. On the other 
hand, it is well known that, if r(h) is a c t , there is a real nondecreasing function 
-F(<o)(-co<w<+co), with: i^(-oo)=o, F(+oo) = i, and such that: 

(Theorem of Bochner). 
'«-£.' ei»»dF(u) 
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where X is a constant; ^(x) and V(x) are functions 
defined over (—00, +.<»); V(x) is given and ^ 0 : 

V(x)^0.n (14) 

Under some general assumptions on V, (13) has 
nonnull solutions only for some positive values Xi, 
X2, . . ., \j, . . . of X (these X/s are the eigenvalues 
of (13); we assume the X/s ordered by increasing 
values). Kac and Donsker (see [2]; we adhere to the 
notation of [2]) try to estimate Xi (their method can 
be extended to X2, X3, . . ., and also to the computa
tion of the corresponding eigenfunctions; but for the 
discussion of the method, we shall restrict ourselves 
to the estimation of Xi), in the following way: 

Let ^j(x) be the eigenf unction corresponding to 
X,; that is to say the nonnull solution of (13) for 
X=X^; we suppose that the ^ / s are normalized. We 
put 

• / . 

L © = V[X(u)]du, (t^O) 

where X(f) is a Wiener-Levy process with X(0) = 0; 
also we put 

Z («; t) = exp. [ - S L (t)] (s ^ 0). 

Kac proved that: 

E[Z(l',t)] = J2 6-V*;(0) [+<°*,(x)&x. 

If t is large, we have: 

(15) 

Hence: 

X ^ l i m -7logE[Z(l;t)] 

or: 

Xi- -j\ogE[Z(V,t)\ if t is large. (16)i 

We can estimate Xi by (16)r, but Kac and Donsker 
showed that, in order to avoid the use of too large 
values of ty it is better to consider two different and 
sufficiently large values of t, tx and t2, and to estimate 
Xt by: 

Xi- ^_J^_ E[Z{VM, (16) 

Now, if Xu X2, . . . , Xk, . . . are mutually inde
pendent rv with the same fr, each with me equal 
to 0 and standard deviation equal to 1, we put: 

Sk=X1-\-X2-T- . . . -\-Xk, 

L„(*)=i S 7 
n k<nt 

FK(«)=exp. [ - L M ( * ) ] . (17) 
11 It is possible to replace (14) by V(x)^k, where k is any constant. In com-

f>arison with some other papers on Monte-Carlo methods, for instance by Wasow 
11] (see also [121), it seems that, in order for the method to be applicable, some 

assumption on V is necessary, but a weaker one than (14) ought to be sufficient. 
I t would be worth while to study this question. We mention that (13) is a 
Schrodinger's equation. 

Kac proved [1] that, under general assumptions on 
V, if n —>+ oo? the fr of i,n(t) tends toward the fr of 
L(f). I t follows that E[Yn(t)] tends toward E[Z{\ ;t)] 
[here, (14) is essential]; hence, we can estimate 
Xi by: 

Xi-
1 E[Yn{U)] 

log ( 1 6 / 

if n is sufficiently large. Hence the procedure is the 
following: ti,t2,n being properly chosen, we perform 
a large number m'of independent realizations F* (#0, 
YHU), . . ., Yzik) and Yl(h), Yl(h), • • -, Yz(U) 
of Y„(h) and Yn{t2); and we estimate E[Yn(tx)] and 
E[Yn(t2)] by the experimental values: 

U* («0=^Z)7i(*i) U«(ti-

For further details on the procedure, see [2]. 
Hence, we have to consider three errors: 
A. A statistical error, arising from the fact that 

Um(ti) and Um(t2) are not rigorously equal to 
ElYnfa)] md E[Yn(h)]; 

B. An error caused by the fact that E[Yn(fi)] and 
E[Yn(t2)] are not rigorously equal to E[Z(\)tx)] and 
E[Z(l;t2)] [replacement of (16) by (16)']; 

C. An error caused by the fact that (16) is only 
an approximation. 
There is a fourth error, because the random digits, 
which we are ultimately obliged to use in the compu
tational procedure, are never perfect random digits; 
but this error seems to us very small in comparison 
to A, B, C. In fact, in all the experiments performed 
to date, of which the author is aware, the results are 
in good agreement with a hypothesis of perfect ran
domness of the random digits; consequently, we shall 
not consider this error in what follows. 

Discussion oj the errors A, B, C: I t will be con
venient for the discussion to take a definite example, 
so we shall take V(x)=x2, because in this case the 
X/s and the ^ / s are known; but we shall see that 
some of the conclusions may depend on V. We 
assume t2<C.ti-

C. Error C is the easiest to discuss. I t is not 
connected with probability theory. We can readily 
estimate the proper order of magnitude for ti and t2: 
if V(x)=x2, Xi-0,707, . . ., X2=2,121 . . ., X,= 

J , . . .; if t2 is about 3 or 4, and (ti—t2) about 
-y 2 

1 or 2, the absolute error is about 1/200; we need 
relatively large values, as: t2=5, ti = S, to have the 
error about 1/1000. For further details, see [2]. 
In what follows, we assume that tx and t2 are definitely 
chosen. 

B. We know almost nothing about error B ; when 
ti and t2 are fixed, it depends on two elements: the 
fr of the Xk's, and the value of n. Let us assume 
that the Xks have the following fr: 

Pr(Xk=l)=Pr(Xk=-l) = l 
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The function Y{x)=z2 increases relatively quickly 
with x; and the expected order of magnitude of^-l, 
which is -y/k, also increases; hence we can admit that, 
in (17) only the Sk& with k^nt/d, where d is some
thing like 3, are important; hence it will be necessary, 
in order that B be small, that the Sk's, for k^nt/3 
have a fr close to Laplace's fr. From known results, 
see [7], p. 153—, it follows that we must take nt ^ 1000 
for a fair approximation, and nt ^2000 for a good 
approximation. We do not get a precise estimate 
of the error B by this argument but we see that, in 
order to be able to take an n which is not too large, 
it is better to take for the Xk's a symmetric fr; 
because in this case there is a faster approach to 
Laplace's law. I t is clearly best to take the Xk's 
(and hence the Sk'&) directly with a Laplace's law: 
this is more complicated from a practical point of 
view; however it is possible to realize a Laplaciah 
rv with a good approximation. In this case, it is 
possible to obtain an estimate of the error. For we 
can suppose that Sj^/n is X (k/n), and if Xn(t) is the 
rf defined by: 

Xn(t)=x(-)for: -£t< 
k + 1 

n 
we have 

*.(Q~?v [x (£)]=£viXM]du. 

If V(x) = x2, we can write: 

h(t)--Ln(t)= T [X2(u)-X2
n(u)]du 

=£ [X(u)+Xn(u)][X(u)-Xn(u)]du; 

E(\i@--L.(t)\)g PE(\X(u)+X n (u) \ \X(u)-XM\)du. 
Jo 

By Schwarz's inequality, we have 

E{\X{v)+Xn{u)\\X{u)-X„(u)\) 

<, yE{ [X(u)+Xn(u)]2} XE{ [X(u)-Xn(u)}2} 

*V(-+»SX"4) 
where kn is the largest integer such that: kjn^u. 
I t follows that: 

# ( | L ( 0 - L W ( 0 | ) ^ 2 / 3 ^ 
-y/n 

Hence; 

Z(l;t)-Yn(t) = e~Mt)-e-^n^=e-Mt)[1_eMt)-i,n(t^ 

6 L ( o - L n ( o _ 1 + ^ [ L ( o - L n ( 0 ] [ L ^ _ L w ^ ] O < 0 < 1 

Z ( l ; 0 - r f l ( 0 = - [L(0-L J I ©]-«" L ' ( l ) + f l L ( , ) -^ ( , ) 

L(Q and L„(£) being ^ 0 , we have: 

0 < 6~L(0 +6Ij{t) ~fiLn (*> < 1 
H e n c e 

| Z ( 1 ; 0 - F W © | ^ | L © - L W © | 
f3/2 

\E[Z(l;t)]-E[Yn(t)]\^/3 ~ (18) 

An analogous result may be obtained for V(x) — \x\a 

with a equals to any nonnegative number; and 
more generally for a large class of nonnegative 
functions V(x). For V{x) = \x\a with — l < o ; < 0 
(see appendix) it seems more difficult to obtain a 
limitation like (18). 

But (18) gives an upper bound for an absolute 
error, and we need rather a bound for a relative error; 
but it seems more difficult to obtain this. 

On the other hand, we are not sure that (18) is 
the least upper bound for the absolute error; about 
this, we can say two things: 

(1) In (18) the orders of magnitude with respect 
to n and with respect to t seem to be the right orders; 
hence the absolute error is increasing when t is in
creasing for a given fixed n. We know that, for 
error C, we have to take t sufficiently large. With 
V(x)=x2 the following bad feature appears, which 
will be called, the feature "Fx" in what follows. I t 
is that 

E[Z(l;t)] = [ch(t^2)]~" [see appendix (23)] 

is exponentially decreasing when t—>+ °° ; hence the 
relative error is quickly increasing. For instance, 
if we choose t=5 (which is not a very large value), 
we have 

E[Z(1;5)]** 0,043 

and if we use (18), we find that we have to take 
71^3000 in order to have a relative error about 
1/100. 

Fx seems to be related to the fact that V(x) = x2 

is not bounded as x->+ °°. 
(2) From the experiments performed to date, the 

error B seems smaller than indicated by (18); prob
ably, the coefficient % in (18) may be replaced by a 
smaller one; this does not eliminate F1} but it does 
perhaps indicate that Fx is not very important 
practically. 

A. We shall now discuss the probable order of 
magnitude of the error A, as a function of m; this 
order, for the relative error, is a/fi-y/m, where M is 
the me of Yn(t) and a its standard deviation. We 
know neither /x nor a; but (18) shows that /* is close 
to E[Z(l;i)], if n is large (but that is necessary for 
B). I t is easy to obtain an analogous inequality 
which shows that a is close to the standard deviation 
of Z( l ;t); it is possible to avoid this interference of 
two unknown quantities /x and a, with a slight 
modification of our procedure, but it seems sufficient 
for our purpose to identify /* with E(Z(l;t)] and a 
with the standard deviation of Z(l;t). 
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With V (x)=x2, we know that fi=[ch(t^2)]~y% 
that is to say: /* —0,043 for t=5) we have also [see 
appendix (21)]: 

E[Z(l;t)2] = E[e-2^] = E[Z(2;t)] = (ch2t)-1A 

that is to say, if t=5: 

E[Z(1;5)*\ = 0,000953. 
Hence 

c*=E[Z(l',5)*\-{E[Z(l',5)]Y~10-*-75.S 

^~2. 

To have a negligible probability of a relative error 
of more than one percent, we have to take m=4.104 , 
which is a very large number. The reason is that we 
encounter a second bad feature, the following feature 
"Fa": 

We have: 

t = E[Z(l;t)] = [ch(tTf2]-» 

<T 2 = J E[Z( l ; i ) 2 ] -{^[Z( l ;0 ]} 2 =(^20- H - (c^V2^) - 1 . 

Hence if t is large (in fact, for t^>2): 

12 e V 2 <r~2*e 2 

~^2 e 

which tends toward + °°when £->+ » . 

Another aspect of the same fact is the following: 
more generally, we take V(x)=\x\a, with a > — 1 
(see appendix); let G(t;a) and 0(a) be the fr's of 
i,(t) and L ( 1 ) ; we can write: 

E[Z(l;t)] = f+" e-«dG(t;a). 

But, if V=E[L(1)] and if 8 is the standard deviation 
of L (1), we can deduce from a remark in the appen
dix, and an integration by parts, that: 

E[Z(1 ;*) = - < ? ( _ £ ) + £ " G(fi)e-'da. 

With a being any fixed positive number, we put: 

*8at 2 

Hence 

(*bat 2 

A(a;t)= G(0)e~ada 

B(a;t) = f \+iLQ(P)e-*da^t 
Jdat^z 

E[Z(l;t)] = -G^^+A(a]t)+B(a]t). 

-hat 2 

We known by [2] that: 

£[Z(l;<)] = «(-xi+-i>« 

where €i—>0 if t->+ QD . Hence, if QQ>0, we have 

X^-^lim i log[-<?(-£)+;!(«;<)] 

and this is valid for any a>0;—G(— vj8) +A(a; t) 
is depending only on the values of G(n) ior-. — v/d^ 
n^—v/8-\-a. Hence Xi is a local characteristic of 
G(a), in the neighborhood (and to the right) of the 
value a=^—v/8; hence a good estimation of Xi is 
equivalent is a good local statistical estimation of 
G(a) [implying, for instance, a good estimation of 
several derivatives of G(a) for a=— v/8]. I t is 
obvious and well known that such an estimation is 
very difficult. 

But this conclusion may become wrong if a ^ 0 ; 
that is to say, if a^0, the feature F2 may disappear. 

Conclusion: We can conclude that the Kac-
Donsker method gives an asymptotic estimation of 
Xi; that is to say that we must take t sufficiently 
large [we saw that values like 4 or 5 are scarcely 
sufficient]; but when t is large, features Fx and F2 
imply that n and m have to be very large. The 
computation will therefore be a lengthy one if even 
only very nominal accuracy is to be achieved. This 
is valid for V(x)=x2 and for a large class of some 
increasing V of the same kind. 

But we saw that F2 may disappear for V(x) = \x\a 

with a < 0 ; perhaps Fx may also disappear in such a 
case, and consequently the method may be much 
better. Hence, it seems that we have two problems: 

(a) To examine if there is a class of T7's such as 
features Fx and F2 disappear for V belonging to this 
class. 

(b) To examine if the method can be improved, 
even when Fx and F2 are present, eventually by 
some change in the method or in the procedure. 

Concerning problem (b), we report the following 
remark by M. Kac: if we consider, instead of 
E[Z(l;t)\, 

E{Z(l;t)HX(t)]}, 

then he has proved that :1 2 

Hence 
E{Z(l;t) • HX(t)]}=e~^U0). 

X i = -
1 log Z{\;h)UX{m' 

(19) 

(20) 

Now (20) is no longer an asymptotic result and we 
can choose t\ and t2 as we like. Hence we have the 
following method: we use Z(\)t)^\[X(t)\ instead of 
Z ( l ; t); and with t\ and t2 sufficiently small, Fx 
disappears, and also F2, at least in the case V(x)—x2. 

The difficulty is that we have to know \pi in 
advance. But in practice we need only a rough 
approximation of ^ ; it may even be sufficient, 

12 M. Kac will soon publish the proof and some complementary explanations. 

73 



practically, to operate, instead of \f/u with any 
function yp such that 

J - . - ' ^(x)\[/2(x) dx 

is small. (In this case, (19) is not rigorous, but 
may be a sufficient approximation). Under these 
conditions, it seems possible to determine such a \p 
by a preliminary rough experiment; it would be 
interesting to try it, but in any case the Kac-Donsker 
method became more complicated. 

I t appears that in general [even if V(x)^x2], this 
procedure will avoid Fx) but in some interesting 
cases, F2 still remains. For instance, Kac has 
studied a three-dimensional case, where (13) is 
replaced by: 

(13a) 2 ^ - - * = - ^ 

where 

r = V ^ + < / 2 + 2 2 , 
1 

v=7 
I t is a complicated case, because (13a) has not only 
a discrete spectrum, but also a continuous one. 
However the method can be applied, with a 3-
dimensional Wiener-Levy process [X(t), Y(t), Z(t)], 
and putting 

L© -r. ^X2(u)+Y2(u)+Z2(u) 
du. 

I t happens that, with the introduction of ^ as above, 
we can avoid Fu but not F2, in the sense that the 
ratio 0-//X remains large even for small t. The reason 
is that for small t, [X2(t) + Y2(t)+Z2(t)]~y> is very 
large. 

A useful device in many Monte Carlo methods is 
"importance sampling" which consists in playing 
the game not with the natural distribution functions, 
but with some other distribution functions con
veniently chosen. But here the game is played 
with the distribution function of the Xk's, and Kac 
has proved that this distribution function is practi
cally irrelevant. 

The greatest hope seems in the following direction. 
Considering the case V(x)=x2, for instance, we saw 
that the problem reduces to a good statistical deter
mination of G(a) for a close to v/8. Let m be the 
total number of samples; let Nm be the number of 
the samples for which 

-fsi<l)S-f+-« 

where a is a given positive small number. The 
determination of 6(a), in the neighborhood of 
— v/8, may be considered good if Nn is greater than a 
definite number N; we can stop the game for the 
first m such that 

Nm>N 

and, by chance, this may happen for a relatively 
small m: in other words, we can follow a sequential 
procedure. 

On the other hand, the fact that Xx is a local 
characteristic of G(a) in the neighborhood of — v/8 
does mean that the knowledge of 6(a) for some other 
values of a cannot give information about X^ We 
can consider the general problem of the statistical 
analysis of the results with respect to the spectrum 
of (13); but in the present state of the statistics, 
there seems to be little hope in this direction. 
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5. A p p e n d i x 

X(t) being a Wiener-Levy process, with X(0)=0, we con
sider the following functional: 

At) = f*\X(u)\«du (*>0). 

This stochastic integral has a meaning when a > —1, in the 
following sense: X{t) being ac a continuous function, \X(t)\" 
is ac a continuous function, and the integral 

•JWoi- du-

exists, but may be infinite. But if a > — 1, it is ac finite, 
because in the first place, 

E{\X{u)\« = -L= (+(°\x\«e 2udx=Ku2, 
•yJ2iruJ-co 

where 

K-
V2 kf->< 

and K is < + » if « > — l. Therefore 
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E KOl-X1 E\X(u)\«du=K pdu< + < 

the first member of the equali ty following from Fubini 's 
Theorem. In what follows we suppose a > — 1 . Now L(2) 

I+\ 
has the same law as t L ( 1 ) does, because, if we p u t u = tv, 
we have 

*(t)=tP\X(tv)\ldv 

and if we consider X(tv)/^t , it may be considered as a 
Wiener-Levy process in respect to v only; hence we have 

L(0=«1+*J[V(«')|- dv 

where I |Y(v) | a dv has the same law as L (1) does. 

As an application of the preceding formula, the value of 
E[Z(s;t)] for a = 2 will now be computed. 

We know, by the theorem of Pa r t I, t h a t the cf <f>(v) of L ( 1 ) 
_ I 

is equal to D(2iv) 2, where Z)(X) is the Fredholm's determinant 
of the integral equation 

f(i)^\£mm(t,r)f(r)dr, (21) 

since r ( £ , r ) = m i n (/,r) for a Wiener-Levy process; from (21) 
we deduce 

f(t) = \^rf(r)dT + \tJt
1f(r)dr. 

Hence / ( 0 ) = 0 ; then 

rW=\jt
lf(r)dr 

hence / ' (1) = 0; then 

f"W = -\f(t). (22) 

Hence (21) is equivalent to (22), with the boundary conditions 
/ (0) = / ' (1) = 0. The solutions of (22) are 

f(l)=A cos V^ t + B sin V ^ -

In order to have / ( 0 ) = / ' ( l ) = 0 , we must have 4̂ = 0 and 
\ = x 2 / 4 (1 + 2A;)2 (& = 0, 1, 2, . . . ) ; hence, put t ing X=ju2, we 
have 

D(X) = n r i - r - ^ — l = n f i '—l-
* [ ^ ( l + 2fc)2J kl |<1 + 2*)J 

COS M = COS (V^)« 

Therefore 

<£(*;)=: cos (-y/2iv) *. 

Now 4>{v) is equal to E[eivL^]; hence, in the notat ion of the 
preceding pages 

_ i _ l 

E[Z(s;l)] = E[e-»^W]=<t>(is) = (cosi^) 2=(ch-y/2s) 2. 

Now, from an earlier remark, we have 

E[Z (s;t)] = Ele-^^]=Ele-'^^]=E[Z (st2;l)]. 

Hence 

ElZ(8;t)] = [ch(tjte)] 2. 

Los ANGELES, January 26, 1951. 
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