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On the Estimation of an Eigenvalue by an Additive
Functional of a Stochastic Process, With Special
Reference to the Kac-Donsker Method'

R. Fortet

A AMonte Carlo” method is deseribed for the determingtion of the eigenvalues and the

Fredholm determinant of certain Fredholm inte
The method is based on a theorem by Kae and Siegert,
ig eonztrueted from a Poisson proeess, for the easze that I'(,r)
the paper contains a discussion of the various errors inherent in the

The second part of

equations with itive kernel I'(f,r).
An u"f]:m:prsate stochastio process
epends on {—r only.

method of Doosker and Kae for the determination of the lowest eigenvalue of Behrodinger's

equation.

1. Introduction

KEac and Donsker [1, 2]* have given & ‘Monte
Carlo™ method for estimating the smallest eigenvalue
of a linear operator, when this operator is of & cer-
tain type. The starting point of their method is to
consider an additive functional of & Wiener-Levy
process. In what follows we intend to give: 1°) &
different meihod (but which also consists of con-
gidering an additive functional of & random process)
of estimating the smallest eigenvalues of some inte-
gral equations with kernals of nonnegative type; 2%)
some remarks on the Kac-Donsker method.

2. Integral Equations With Positive Definite
Kemel

Tor this first jpart. the following theorem will be

fundamental. Theorem: Let X{) be a real, Lapla-

cign ? rf,! defined for a <#<7b (a and b finite) and the
covarianee I'{f,7) of which is a eontinuous function

of ({,7) on the domain (e=t=h asc=b). Let us
consider the rv: 4
1]
r=f Xt (@) de (1)
and the integral equation:
A
$O-> [T s dr=g0. @)

If D)) is the Fredholm’s determinant of the equation
(2}, the ef & $(v} of 17 i3 equal lo D{240) 74,

This theorem was stated by Kac and Siegert [3,4]
(Eac gave only some weaker results, but the generali-
zation is obvious; we gave a proof of the general
theorem in [5]). 1t is essy to mive assumptions under
which the theorem is valid if a=— &, or b=+ =, or

f Tha preparation of this paper was eponsored (In part) by the Office of Noval

Hesearch,
t Flgures in breckets indicate Ll literature references st tha end of this paper,
¥ This e, Gaussinn,
pl, ot funetion; rv, rundom varlabbe,
¥ pf, charncteristie function; fr, futtotion of repartitlon (4 o, cumulative dis-
tributlon function).

a=— e and b=+ = ; also it follows from s paper by
Kae [4] that the theorem remains valid if, instead of
{1} and (2), we consider the rv:

r.’; (X (0 dd, kitiz0
and the integral equation:

jo-

But for the principle of the method, it will be suffi-
cient to restrict ourselves to the above statement.

I'tr) s
WJ-H_E}EF} Jr)dr=git).

Prineiple of the method: We consider an integral equa-
tion (2}, with a continuous kernel of nonnegative type
Tit,r), and we would like to estimate its smallest
eigenvalues, and more generally its Fredholm's deter-
minant I{A), Now D'itr), Iming of nennegative
type, may be considered as & covariance of & Lapla-
cian process X(f), which is entirely determined (see
8]) by T'(t,r). We assume that some random game
185 been set up that implies a realization of X (1) and,
consequently, of ¥, as defined by (1), We make »
inde})endent triale, obiaining n values ﬁ., Wa, = =
3. of ¥; from these y,'s, we can deduce the following
ir® Gay):

(£ =;1£}i[numbar of those y/'s which are<"y]:

and it s well known that G,(y) is an estimate of the
fr Fiyy of ¥. Henece, we have an estimate &,(¢) of
ef ¢(r) of ¥ by

do (0= L T ema@, ()

(3)

{the integreal 15 extended from 0 only to 4+ = because
Y is = 0); but (3) 15 equivalent to

P I:vs}'::; @'*’“’ (3’




Now &) iz the me® of the rv Z{r}=¢"F; heoce
we obtain an eatimate D2, (0} of (3} hy the preceding
theorem, by putting:

L
¢ iv)

However, ¢ being real in (3), {4) gives an approxi-
mation of D (3} only for the values of X that ara

purely imaginary; and the roots of I*(x}, which are
real and positive, are not obtained by this procedure.

But we can operate in tha two following waye:

{A) Under the preceding assumptions, D(A) is an
entira functiom of penue at most 1; hence (k) is
representable by an entire series;

D{h}=mn+% A ..

where the 4,'a are t.ha derivatives of DA for k=0,
The forinula:

+i"’-; pLETI (5)

#)=D@in™

shows that ¢ 18 mdﬂﬁmt.ely differentiable for o
elose to 0 and that the 2,'s can be dedueed from the
derivatives of @() [or 1=48. Theze derivatives are
equal to 234, <A, . &M, ., Where the A,
are the moments of ¥, and these momenis may be
eslimated, b}r some well-known statistical pmcedures
frnrm the #,'s; hence wo can obtain estimates of of the
¢y's and an approximate repreaentation D.{A) of
DO by:

tI,: }5;

D=2

2.

But it is well known by statisticians that, if % is not

very o it is difficult to obtain good estimates of
M fo }E it will be neceszary, in e:rﬂ,l ta ndgpt
poroximate represemtation of b}r a pcrlj-

nam of the following type:
IN(N= E F {6)
with <8 But this seems to be sufficient in some

cases.” For instance, in order to estimate the 2 or 3
lowesat roota A, X X, - . o of DAY, we can obtain
pumerically the lowest roots A, 3%, . .. of (&),
and these A7 may be considered as good approximsa-
tione for X, kg, .

(Bl We can also En'lpla"p‘ the following procedure:
22} being sn entire function of genue at most 1,
there are two positive numbers A and p such that:

[DM)] £ Ae’lH

for every k end every p”»p; hence, the funetion

a(s)=; ;f:;

re?nﬂmu-d by FHX,
‘Thero in w gord metbod for nbﬂmms eyhlriibey of (e lewst toats of a Fred-
bolm deéteymimenl when It first woe Beieniy ure Envien,

coneidared as 2 series In %, has & radiug of convergence
1
;:‘-" 0, and \

Alp)= J' e DA

if & (#)2»p>0; hence for every : (and particularly
for h reat and ‘;:xlflj wa have:

D=y [ eatmaarings )

for oy bixed ranl «>>=p; if A is real and <70, the.inte-
' Y +o
(3L

has & meaning, and, 2s & consequence of the pre-
ceding thaorem, wa have:

D=4 (—1'5)

Hence wa can ghtain, hy & statisticel procedure, an
estimate of dr(— i %) by {8}, then an estimate of (W)

5 dag) ®)

for A real and <0 (9}

1{[!] a]ir {9}, then an catimate of Alati8) by (6},
¥ an eatimata of Z}(x) for A 2>0 {or for any X}
hy { 7). There are two numerical integrationa

[(6) and (7}] to be performed, and this procedure does
nut seem to be of practical intereat.
of the game: Another difficulty lies in the
rnctma.] lzat.mn of X{#). Thi= qucstion is also
mtereatl from a theoratml moint of view. It may
hnlg at thers is an obviovs procedure for this
ization, with a sufficiently close apgrmxjma,tmn
This happens for inetance if a=0¢, 50 and if
I'(t, 7} =min(?, X) in this case, X{7} is a Wiener-Levy
rocess (with ﬁ;f' =i}, ﬂﬁ!{b and one can see In
2] howr 1t i3 possible to realize (nppr-:mmu A)'} Xii).®
[n many casee it is possible to reduce X (#) to a
Wiener-Levy process, ks for instance if X(I) is a
Markoff process (see |5, p. 198]); that happens if
T(f,s}=¢ %M, where ¥ is any constant, But in
peneral, for n given Pf,s), we do oot know if X{) iz
or is ook 8 Markofl process (Lo date, there is no
general theorem gbout this). On the other hand,
the reduction of X{#) to a Wicner-Levy process needs
BOITLE mmputat-mn which, although aasy te perform,

mgy be lengthy,
Wo can look for 2 realization of X{¥} in another
direction. First, we mention that, A being &

permanenk pmucsa it cannot be realized rigorousiy:

we can only cbiain & process X*({) that iz an approxi-

?agnn of X(f). Then too, the game concerns, oot
, but

1’*=‘f°x~*{¢) m

= X1 s a Wiener-Tawy proeeat I thar, v Xir) = YiE) [odth v b Indepeorident
of thar. 7. XLu}ttlrluuil.nndintiaa o u:hn w{thm b Bqual by &

and & standard devlatlon epual tn %-,r mnitr%'[o% la ¥he m. e i the
I:rvudu.ct A(E) . Krhm EE ixﬂl+ I(r} é!]]! =0 0Zi<a, the
. of ln'iy sl to ¢, KBt is ooy min SEEE T




This substitution 39 valid only i we can prove that
the frof ¥* is an appmximatmn of that of . Bult,
boacause this is an intuitive featurs {at least under
pome assumptionsy, we shall admit it

Let N(t) be a Poisson’s process, homogeneous and
with density m; let Rif,r) be an ordinary function
defined over the domain o — o <{, < 4+ =, and
guch that, for every ¢,

J‘+w B o)dr< 4 = {Lebesgue integral.}

We put: .
N*)=N{— EIN@)=Ni}—m!

and let. X*{¢} be the process defined hy:
A ; I ] u
X*(0=_lm ELI‘““TH ) R{t,r}dN*{r}] {10}

ffor tha definition of a Polsson process, see for in-
stance [7, p. 212]: for the precise meaning of (10},
see [5]). In what foliows, we ahall call such an X*{f)
8 " FPoisson'e ri’’.

In general X*(f) may be simply represented by:

X*{t}=1r—%(;. Rit,r)—m J’ : Rt odr) (109

where the r/g are the jumps of N{f). It i= possibls,
from a collection of random digits, te realize correctly
a Poisson’s process: hence it is possible to realize a
Poisson’s rf; In {act, it is possible to think of 4 device
{(employing electrical noise, or emission of o- par-
ticles, ete, . . ) giving X*{#) in a physical way.

It has been proved {see, for instance [5]), that, if

m——+ =, A*1) tends toward the Laplacian process,
the coverianes C{f,r) of which is given by:

re, r}=fj* B, Rir ). (1)

Hence, for a given I'(tr}), the preblem of realizing
approximately 2 Laplacian process X(f) with co-
variance Tit+) is solved il we can determine ao
R(t,7) defined over m, with

I_* R, dr <+ =

and such that {11} wounld be satisfied, nt least over
the following domain »:

astrsb.

Hence, the first step is the theoretieal study of the
existence of solutions Rit,7) for (113); but our prac-
tical aim will be reached only if there iz & solution
which iz easy to determine numerically. Wa zhall
consider: first a .particular case, and second, the
peneral case. -

* pre, B quedeatic mean; ac, lioeat cerisin (With prohability 1]; B Weedby:
slochanthe irsgral with pmbﬂ;dll}t;r 1, Faor defimition of them: ierhs, e 7],

for every ¢
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(1} Let us assume that there exista a function
Ty{r—{i) of {r—12) only, defined over p,, symmetric and
of the nonnegative type f{over b}, and =ach that
Tit,r=Tr—8 over . We ghall put A=r—t,
Lyr—=r{k); in this caze, Xt} is, ut loast over the
interval (e, 5, a stationary process, and r(h) is &
positive definite function [see (8)]. It iz sufficient
to have a solution of

Iy (r—f)em J':’ Rit) Rir ) ds

r

{11k

over By. 1t is possible that every solution R{fr} of
11}, depends on {r—¢) ooly, but that is not sure.
ut it is sufficient to look for this kind of solution;
t]]:ut ia to say, to look for (resl) functions H{ux) such
that:

[T radcte o= [""Rw Rutid.
(ay
The corresponding X*{# will be stationary itseli.

We proved in (9] that (11} has solutions only if r{4) is
continuous [hence, #(&) 19 a of] and if the spectral
function Filw) of #{) is abaclutely continuous, that is

to say admits & derivative f{w}; in this caze, K{u) iz 8
aolution of (113 if, and only i,
B T S
o {11,}=_;=J. ,vllj (o}t G —fo T
Ay a7wS —=
[Fourter-Flancherel transform} £12)

where @ {w) 18 any odd function.™ We can congider
that thie result- and (12} give & convenlent answer to
our.problem,

{2} The general caza is much more difficult, and it
seetns Lhat the only result s the followmy theorem,
that we proved in [9]. If T{+}, supposzed to be
defined over », for instanee, 13 continuous (as a
function of the two variables t,7) vver any bounded
domain, there 18 at laast one solution for {11}, velid
aver b,; but we do not know any epsy way to com-

ute numerically this solution, or any other solution
?it js easy to see that, in q&ﬂ&rﬂ.l, {ll;has many, and
even®infinitely many, solutions). Conclusion: The
imnterest of the Monte-Carle method under considera-
tion here would be that it can give simultanecusly
seversl eizenvalues of {21; but it seermns possible to
perform it only in the case where Ttf,r) depends on
{r— 1) only; even in thiz case, the method is compli-
cated, bot it might be interesting to try it.

3. The Kac-Donsker Method

Let u= consider the equation:

KX VOr@=—2@, a3

ar [ thia paper, Tifrd ool f, 1) ara slweys o trbareal  On the ather
Tend it 18 well kngmn g, ifrehl 3w e R, thees & real Dondedrsaatng funealon
Flul[— o b oe), withs F{— ] =iy Fi4ea] =1, nod such Exat:
4= '
r{l}-.l- phbgd F il
-
(‘Thearem of Bochnerk.




where A 12 & constant; ¥{x} and ¥z} are Tunctions
defined over {— =, 4 =) Vir} is given and Z0:

Vigr =01 {143
Upoder some geoeral assumpilons on 17, {13) lLas
nonnull solutions only for some positive values A,
hy, . . g by .. of & {these At are the exgenvalues
of (13); we sssume the A= ordered by increasing
volpes),  Kac and Donsker (see [2]; we adhere to the
notation of [2]) try to estimate & (their method can
be extended Lo A, ha, - . -, and also to the computa-
tion of the currespundin.s' gigenfunciions; hut for the
dizsenssion of the method, we ghall restrict surselves
to the estinration of &), in the following way:

Let ¥,(z) be the eigenfunciion corresponding to
h;; that is to say the nonnoll eolution of {13 for
A=2x,; we auppose that the ¥,'s are normalized. We

put

/]
L= J; ViX@ide, 20

where X(1) is & Wiener-Levy process with X(0)=0;
also we put

Z (g f}=exp. [— L ()]
Kac proved that:

EiZ1;01= 33 ¢ 5%, (0) r+m"l',{z}n'.1:. (15)
If £ is large, we have: .
E1Z0;01~e a0 [0 de.

(& 10).

Henea:
A =lim

I+

—og E[Z(1;)]
ar:

M~—1log E1ZQ;0] i tislotge. (18,
We can estimate &, by (16}, bul Kae and Donsker
showed that, in order to evoid the use of too large
valuea of ¢, it is better to consider two different and
sufficiently large values of ¢, & and &, snd to estimute

b b E(Z
. [&1;4)]
s o8 EiZ(;t (18)
Now, if Ay, X, ..., X, ... are mutually inde-

pendent v with the same ir, each with me sgusl
to O end standard devigtion equal to 1, we put:

Se=X,+X+ ... +X,,

1 S
Lin {t}=ﬁ tguv (#—%
Faly=exp. [~ L. (). (17}

U TN |3 persalbde o remileee (140 hxnl’(x‘.l £, where b b any constant  Io come
o with prnue a ey i Muoobe-Larln metheds, for instanes by Wssow

LI} oo Bbo [12]), it Beerns thal, n order for the methed 10 be apoiicebie, some
sesumpilon oo ¥ 18 reeaegtary, but & weaker gig theo (14) ought to b mafickent.
It he-'ajgrth white Lo stody LB guestion. e mention thas (13) 50

LS

Kac proved [1] that, under general sssumptions on
I, ifrn —+ =, the fr of L,(f) tenda toward the fr of
Lity., Tt follows thet ETY.(f)] tends toward E{Z({1 ;8]
[he]:e, {14) is espential]; hence, we ean estimate
X by:

1

EY )]
g o8

°% B[V (0] ey

Ay~

if » is eufficiently larga. Hencw: the procadure iz the
followang: i), &, # bewg properly chogen, wo perform
a large number mof independont realizations ¥ (),
Yiihh ... IR and YLD, YRUE) . .., FR(l)
of ¥ and ¥ott); and we estimate E[F,4)] and
E[ ¥ )] by the experimental values:

O > 3b IO TR S 3} i)

For further details on the procedure, see [2].

Henee, we heve ta consider three errors:

A, A statigtical error, arigine from the fech that
™) wnd L2 are not rigorausly equal te
E[ ¥, {4)] and Y ,(k)];

B. An error eeueed by the fact that E]1¥Y.(6) and
E[¥o(t:}] nre not rigerously equal to E[Z(14,)] and
F[Z{143] [replacement of [16) by {16)];

. An error caused by the [act that (16) is only
a1L gpproximaiion.

There i8 a fourth error, hecause the random digits,
which we are ultimately obliged to use in the compu-
tataonsl procadura, are never perfect random dgits;
but this error seeme to us very small in compsriaon,
to A, B, C. Infact,inall the experimenis performed
to date, of which the author is aware, the results are
in good agreement with a hvpothesis of perfest ran-
domness of the randoin digits ; consequently, we shall
not congider this srror in what fallows. )

Dizcussion of the errors A, B, O It will be con-
venient for the discussion to teke n defivite exampie,
g0 we shall take V(2)=2% hecause in this cnse the
33 and the ¢ = sre known; but we shall ser that
some of the conclustons may depend on V. We
ABSITLE dp {:!].

O, Error (! is the easiest to diseuss. It is not
ronneeted with probability theory. We ean readily
cetimate the proper arder of magnitnde for 2, and #:
if Vb=, M=0707, ... M=23121... M=
'e—'?_j, . . .;if & iz about 3 or 4, and (¢, —1.} about
1 or 2, the ebsolwfe error s about 1/200; wa nead
relatively large values, as: &=>5, =4, to bave the
error pbout 171000, For jurther details, =ee [2].
It what follows, we assume that ¢ and ¢; are definitely
chosen.

B. We know almost nothing about ercor B; when
f; and % sre fixed, it depends ob Lwo elemants: the
ir of the X,'s, and the valuc of n. Let ua assume
that the X’z have the following fr:

PriXi=11=Pr{N =—1)=1k
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The function 17{z)=1? inereases relatively guickiy
with z; and the expected order of magnitude of| S|,
which is 4%, also increases; hence we con admit thet,
in {17) only the 5.'s with bz wi/d, where ¢ is some-
thing like 3, are imporiant.; henee it will be hepeszary,
in otder that B be =mall, that the S,'a, for k=3
have a fr close to Laplace's fr.  From known results,
gee [7], p. 153—, it follows that we st take nd 2= 1000
for a fair approximation, and »g 2000 for a good
approximation. We do not get & precise estimate
of the error B by this argument but we seo that, in
order to be able to take an » which is not too largn,
it is better to take for the X e 8 symmetne Ir;
because in this eage there iz n faster approsach to
Laplace's law. It iz cleariy heat to take the X,'a
{and henca the 5,’s) directly with s Laplace’s law:
this is more complicated from n practical point of
view; however it s possible to realize a Laplacian
rv with & good approximation. In this case, it is
posaible to obtain an estimate of the error. For wo

*can soppose that Sf ' is X (&/n), end if X.(f) is the
of defined by: :

keic

Xn=X (%) for; . i:_;:__l“’

we have

L,{tj=% v [)s. (%)]mﬂ VX, )l du.

I Vizh=x® we can write:
]
n{t}—n.mmﬁ (X*)— X )] d
- L X + X)X ) — X

B — L) S J; " B X0+ X | X — Xl .

By Schwarz's iﬁequﬂlila;.r, we have
E{| Xw) -+ X () X () — Ko fu))

S vE{[Xu+ X @l X E{ [ X — X0

g\f(wa %Xu—%-_)

where £, is the largest integer such that: £,/n S u.
It follows that: .
E|nify B =2/3 Ll
L —L. B =2 —
( ! 7
Henen;
Z(1 B — Yo (=gl —g—Lp it = g-LIO[] _ gLt =T, (0]
e bR LIl O M) B P g

Z(1) = Yul) = — (L@ Ly (D] - £~ V4 L=t
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L} aned 1(f) being =0, we have:

ﬂ - E—Lfl] +RLE — L, {ir e 1
Henes -

|z{ljg_rﬁ{ﬂ| = |L|{t'}_1-n|:ﬂ[

BZO-EY.0ls2s L a8)
.

An analogoua result may he obtained for Vi) =[xzl
with a equals to any nonhepative number; and
more generully for s large o of nonncgative
functions V{z). For V(=|z} with —l%u <0
{see appendix) it seems more difhieult to obtain a
limitation like (18],

But {18} givea on upper hound for sn sheolute
erpar, and we need rather 8 bound for & relative arror;
Bt il feems more difficult to obtain this,

On the other hand, we are not sure that [18) is
the least upper bound for the absolute error; about
this, we ran say two things:

(1) In {18) the orders of megnitude with respect
to n and with respect to ¢ seem to be the right orders;
henee the abeolute error i3 increasing when ¢ is In-
crea-ﬂiJEJ_.g for & given fixed #n. We know that, for
error C, we have te take f sufficiently large. With
Virl=2 the following bed feature appears, which
wil]I-Thn called. the feature “F." in what follows. Tt
i3 that

E(Z(1;0)=[ch{t42)] [s0e sppendix (23)]

ia exponentially decreasing when i—+ = ; hence the
relative error is quickly mereasing. For instsnce,
if 'we choose t=5 (wlﬁc]vz is not a very large valuel,

we hnve
E[Z(1;58)]=0M3 . ..,

and if we use (18), we find that we have to take
ng3 i order to have a relative error about
17100,

F) aeems to be related to the fact that V(z)=x?
is hot bounded ae z— -} o

(2} From the experimenta performed to date, ihe
error B aeems ameller than indicated by {18}; prob-
ably, the cocfficient 3 in {18) may be replaced by &
smaller one; this does not eliminate F,, but it does
perhaps indicate that F, ia mot very important
practically. -

A We shall now discuse the probable order of
magnitude of the error A, az & function of m; this
order, for the relative error, is ofu+'m, where u is
the me of ¥, () and ¢ its standard deviation, We
know peither p nor «; bul (18] shows that g 18 cloze
to E[Z{1;}], i = ie large (but that is necessary for
B). It is easy to obtein an &nalogous ineguelity
which shows that ¢ is close to the standard deviation
of Z(14); it is possible to avoeid this inmerference of
two unknown quantities 4 end &, with a slight
modification of eur procedure, but. it seems sufficient
for aur purpose to identify p with E{Z(1#)] and «
with the standard deviation of Z{1:),




With V (z)=z* we know that g—[ch{tyZ)]"*,
that 12 to say: u=0,043 for 1=>5; we have also [sea
sppendix {21]]:

EZ(1;9fl=Ele ™0 =E[Z(2;t}]| =(ch 20 *
that is te gay, if ¢=35:

E[Z{1;5F}=0,000853.
- Henee

a*=E[Z(1 ;5] —[E[Z(1;5)]F~10"*.75.8

Eﬁﬂ.

- To have a negligible probability of a reletive error
of more than one percent, we have to take m=24 10
which is a4 very large number. The reason is that we
Bl;':uunter a second bad feature, the following feature
BTN N

'E'ire have;

#=EIZ{1;8] =[ch{t2]#
ot=E[Z{1 ;| —{B{Z{1 ;6] ={ch 2~ — (ch4/2 ) ~".

Hence if ¢ 1s Inrge (in fact, for $23;

o LS
3 8

eyl e o~2%e
1 £

¢ _~T Fi¥E-m

— E

M

which fends townrd+ m=when -4 =,

Another aspect of the same fact is the following:
more generally, we take V{z)=|z|*, with &«>>-1
(see appendix); let @i{a) and a) be the fr's of
L({} and 1{1); we can write:

E12( ;)= J; " erad Git; ).

But, if =E[1{l1)] and if § is the standard deviation
of L (1}, we can deduce from a remark in the sppen-

" dix, ard an integretion by parts, that:

o
EZ0;0=—a[ -2 J' G(B)e~da,
Zi0=—@(~5)+ [ @@e-da
With o being sny fixed positive numnber, we put:
ml+%
A= 7 preda
a

+ = 1t
B@it— [z G@rdase s
Hence

E[Z(1 ;:}1=—G(—§)+ Ale )+ Bl

n

Wa known by [2] that;
E|Z(1;0)= et

where ¢, —+0 if =+ =. Hencs, if a>>¢ wo have

M=— lim 1lag[ua(~1 +A[a;ﬂ:|
f—rfen t- ﬁ‘
and this is valid for any e >0:—&{—w/8) +Alg; 2)
iz depending only on the values of G{u) for:—yfi=<
s —wid+a. Hence » i3 a local characteristic of
&{e}, in the neighborheod {(and to the right} of the
value a=-—9/d; hence a pgood estimation of X, 13
equivalent 15 & d £ statistical estimetion of
G%a}l implying, for instance, & good estimstion of
gseveral derivativen of o) for a=—~2/§. It 1=
abvious and well known that such an estimation is
vory difficult,
ut this conclusion may become wrong if aZ0;
that is to say, if =0, the feature F; may disappear,
Conclusion: We ¢an conclude that the Kae-
Donsker method gives an asymplotic estimation of
A ; that is to say that we must take ¢ sufficiently
larpe [we saw that values like 4 or 5 are scarcely
sufficient]; but when t is large, features Fy and F;
imply that % and m have to be vr:rg large, The
computation will therefors be & lengthy one if even
only very nominal accuracy is to be achiaved. This
is walid for VE:}=::’ and for n large class of some
inereasing 17 of the same kind.
for Vizl=|xla

But we saw that F, may disap
' may also Jiaappanr in such &

with &< 0; perbaps F, 4
case, and consequently tﬁe method may be much

better. Henee, it seems that we have two problems:
fa) Te exgmine if there is s class of 7's auch as
fel::am F; and F, disappear for 17 belonging to this
class,
fb) To examine if the method can be improved,
even when ¥, and F, are present, eventually by
some change in the method or in the procedure,

Con roblem {b), we report the fellowin
remark by . Kane: if we consider, instead o
FAVACR )P

E{Z(1 0 [X@E1},
then he has proved that:
E{Z(1;8) - il X 0]} =2t (0} (19)
Henee
=1 Z(Lta X )] 2
M= O 20X ) (20)

Now (20) iz no lopger an asymptotis resnlt and we
can choose {; mod % 85 we like. Henee we bave the
following method: wa usn Z(1; 8¢ |X(#)] instead of
Z{1;); and with & and f; sufficiently sm ;

disappears, and also Fy, at least in the case V(x) =2%.
The difficulty is that we have to kmow ¢; i
advance. But in practice we need only a rough

approzimation of ¢y; it may even be sufficient,
i1 7., Kone WiF] nocas eyt $be proct aned sotne cotphetiientary ex plaations.




ractically, to opersie, instead of ¢y, with any
unctlion ¢ such that

4w
2 vt aa
is amall, (In thiv caee, (19) is nof rigorous, but
mey be a sufficient approximation), TUnder these

conditione, it seems possible to determine such &
by & preliminary rough experiment; it would be
interesting to try it, but in any ease the Eac-Donaker
method beeame more complicated.

It appears that in genersl [even if V(x) »29, this
procedure will avold #,; but in some interesting
casen, F, ptill remains, For instance, Kac has
studied a three-dimensionsi case, where (13) is
replaced by \

1
5 4% - ¥=— (134}

whera
_ -1
P Ifx!_i_yﬂ_i_z?: V,:;

Tt is & complicated case, because (13a) has not only
8 dizerete spectrum, but also & continuoua one.
Hewever the method ean be applied, with s 3-
dimensionsl Wiener-Levy process [X(t), ¥(8), #(1)],
and potting

t 1
L0 ) VR w2

It heppens that, with the introduction of ¢, as above,
we can avold 7, but not F, in the zenss that the
ratic «/¢ rempins large even for small £, The reason
is that for small ¢, [ X% Y21+ Zi)]-% is very

useful device in many Moate Carlo methods is
“importance zampling'' which eonsists in playing
the game not with the natoral distribution {unetions,
but with some other distribution functions con-
veniently chosen, But here the pame iz played
with the distributior function of the A}z, and Kae
kas proved that this distribution function is practi-
owlly irrelevant.

¢ grentest hope seeme in the following direction.
Coneidering the case Vixl=2® for instance, we saw
that the problem reduces to a good statistical detor-
mination of (e} for o close to »3. Let m be the
total number of samples; let N, be the number of
the esmples for which

—35L()s —§+a

where & is & piven positive small number. The
determination of &{a), in the necighborhood of
—v{d, ey be considered goed if &, is greater than a
definite nymber N; we can stop the game for the
firat m such that

No>N

74

and, by chance, this may happen for o relatively
small m: in other words, we can follow & sequential
procedure.

On the other hand, the fact that X, i= s local
characteristic of &(a) in the neighborthood of —afs
does mean that the knowladge of & («) for some other
values of &« eannot give information about X, We
can consider the general problem of the statistical
analyzis of the results with respact to the spectrum
of (13); but in the present state of the etatistics,
there seems to be little hope in this direction.
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8. Appendix

At} belng & Wiener-Levy procass, with X i) =0, wa eon-
sider the rolfowing functicoal: .

L(!J=£|Xfu}I*du (00,

This stochestlc integral has s Toeaning when o> —1, in the
following sense: X (] boing ae @ continuous funetion, (X (|
iz o A conlintous funstion, and the integral -

'_ﬁx(u 3=
1 3

exist=, but mey be infinite. But if al>—1, 1t s ac fioite,
beceuae (o the Brat place,
¥ L]

| MR E;
e i =Ku*,
E(|X(u)] v,m_[__rzle dz=Ru
whera
'!
1 [+e 3
KE=— - dhrs
.ﬁ;j'__ryle ¥

end K i <+ = Jf o> = 1. Thereforn




a
E[I.[!J-]=£E[X{u)|'du= rc:_':u“duc: + @,

the BGrst member of the equelity fellowing from Fubini®s
Theorenn. In what fodlows e supposs »7>— 1. Now Lt

1+
haa the sarme law as & ° L1} does, besauas, if we put u=iy,

we have

Lif} =1J;l X ()| ndy

and i we conmider X ()i , it may be considered as a
Wiaper-Lovy protess o reapect to ¢ poly ; hence wa bave
4
Lity=t “L |F (P o
1 .
where-[’ |¥ (e~ du han the same law as L {1) does.

An an application of the precading formuls, tho value of
E1E{s4)] tor a=2 will now be computed,
We know, by the theorem of Pnrt I, tha.t the of ¢ic] ef L{1}

in equal to D(2is) ’, where D3} i the Fredholm's determinang
of the Integral wquation
f{i}l“?-_{.lmiﬂ{i,r}fi'r)dn (1)

sloea T e)=roin (L] for & Wisner-Lovy proeess; from {21)
we deduce

716 =:.ff,r(fj dr +n_[1,r{f}df,

Hence f{01=0; then
sy=x [ #yas

DTIITO— Bl ——T

henoe (11 =0; then
FrrgEym =af{1].

Henee (21) i3 equivalent to (22], with the boundary eonditlans
FOr=f{13=90. The sclutions of (22} are

Fi4y=A con v i+ B sin 4.

In order to have A0 =F(11=0 we must bave 4=0 and
‘.ﬁ:—w’.l'i (142K k=0, 1, 2, . . .); henoe, putting k=), we
Ri:

A
pim=nl1— J-n
*[ ?(l+2k]’] k

{22)

1]

g
5 (1428)

vos p=ros ().
Therefors
1
¢lry=eon (4] 2
Nam{s} i equad to B¢} henee, in the notation of the

NE PRECS
i

1 =i
E(Z {s;1)]= ElemMmg iey= (conivTe) *={ebv2a) ™.
Mow, from an earlier remark, we have
B2 {5:8)]|=Be=ilil]= B [e=+'L0] = B [Z {«1; 1}].

Henoe

!
ElZ (a3t} =leh G420 % (23)
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