A Note on Bounds of Multiple Characteristic Roots of a Matrix'

P. Stein²

If $A \Rightarrow (a_{is})$ is an $n \times n$ matrix, and if C_i are the circles, center a_{is} and radii $\sum_{i=1}^{n} |a_{is}|$, and if

 λ is a characteristic root with m independent characteristic vectors, Olga Taursky proved the following two results:

(1) If λ lies outside all but one circle C_i , then *m* cannot be greater than 1.

(2) If m=n-1, then λ is an inner or boundary point of at least m circles C_i .

In this note the gap between these two results is closed, and it is shown that λ lies in at least m circles C_i , for all finite values of m and n, $m \leq n$.

If
$$A = (a_{ij})$$
 is an $n \times n$ matrix and if C_i are the circles with centres a_{ii} and radii $\sum_{i=1}^{n} |a_{ii}|$, Olga Taussky²

proves these two theorems.

Theorem A. A characteristic root λ , which is an inner or boundary point of only one C_{i} , cannot have two independent characteristic vectors correspond-

ing to it. Theorem B. If A has a characteristic root λ of multiplicity n-1, with n-1 independent characteristic vectors, the λ lies in at least n-1 circles C_i .

In this note it is proved that

Theorem C. If λ is a characteristic root of A with $m \leq n$ independent characteristic vectors corresponding to it, then λ lies in at least m circles C_i .

Theorem C is a generalization of both Theorems A and B and closes the gap between them. Theorem C contains the following generalization

of a well-known theorem about determinants (for definitions and references, see, O. Taussky, A recurring theorem on determinants, Am. Math. Monthly 56, 672 (1949)).

Theorem D^{4} Let A be a matrix that cannot be transformed to the form $\begin{pmatrix} P \\ O \end{pmatrix}$ $\begin{pmatrix} U \\ o \end{pmatrix}$ by the same per-

mutation of the rows and columns, where O consists of zeros, and P and Q are square matrices. Let

further
$$|a_{tt}| \neq \sum_{\substack{i=1\\i=1\\i=1}}^{n} |a_{ts}|$$
 for at least one value of *i*. If

the rank of the matrix A is n-m, where $0 \le m \le n$ then there must be at least m values of i for which the inequalities

$$|a_{tt}| < \sum_{\substack{s=1\\s_{s} \neq i}}^{n} |a_{ts}|$$

bold.

We require this lemma:

Lemma. If X_0 $i=1, 2, \ldots, m$, are m independent vectors with components $x_{is}, s=1, 2, \ldots, n, n \ge m$, we may construct a set of *m* independent vectors Y_i , with components y_i , which are linear combina-tions of the vectors X_i and which have the property that we may select components of maxima moduli corresponding to each Y_{t_i} so that no two such selected components have the same subscripts.

We may suppose $m \ge 2$.

We choose $Y_1 = X_1$. Let $y_{1s_1} = x_{1s_1}$ be a component of maximum modulus of Y_1 . Choose α_1 and α_2 so that

$$x_1 y_{1s_1} + \alpha_3 x_{2s_1} = 0.$$
 (1)

and

$$Y_2 = \alpha_1 Y_1 + \alpha_2 X_2. \tag{2}$$

Since $y_{is_1} \neq 0$, $\alpha_2 \neq 0$, and so since X_i and X_2 are linearly independent, $Y_2 \neq 0$. Let y_{2n} be a component of maximum modulus of Y_2 . By (1) and (2) $y_{2_1}=0$, hence $s_2\neq s_1$. Further, Y_1 and Y_2 are linear combinations of the vectors X_1 and X_2 and are independent. The construction is thus complete for two independent vectors Y_i . If $m \ge 3$, we choose three numbers β_1 , β_2 , β_3 so that

$$\beta_1 y_{1r_1} + \beta_2 y_{2s_1} + \beta_3 x_{3r_1} = 0$$

$$\beta_1 y_{1t_2} + \beta_2 y_{2t_2} + \beta_3 x_{5t_2} = 0$$

and Since

$$Y_1 = \beta_1 Y_1 + \beta_2 Y_2 + \beta_2 X_3$$

$$\left. \begin{array}{c} y_{1s_1} & y_{2s_1} \\ y_{1s_2} & y_{2s_2} \end{array} \right| = y_{1s_1} y_{2s_2} \neq 0,$$

 $\beta_s \neq 0$, and $Y_z \neq 0$. The argument used above may now be repeated to show that if y_{2i_n} is a component of maximum modulus of Y_3 , then $s_3 \neq s_1$, $s_3 \neq s_2$. Further, Y_3 has the other properties required of Y_4 .

This work was performed on a National Bureau of Standards contract with the University of California at Los Angeles and was sponsored (in part) by the Office of Naral Respired.
³ University of Natal, Durban, South Africa, and University of California at

Los Angeles. † O. Taussky, Bounds for characteristic roots of mutrices II, J. Research NBS 46, 124 (1981) RP2184. 4 This was pointed out by O. Taussky.

This would complete the construction for three vectors $X_{i_{i}}$.

If $m \ge 4$, the other properties may be continued step by step till all the independent vectors Y, are exhausted. This completes the proof of the Lemma. To complete the proof of Theorem C, given the set of *m* independent characteristic vectors X_i , corresponding to the characteristic root λ , we construct the set Y_i of the Lemma. Since Y_i are linear combinations of X_i , they are also characteristic vectors corresponding to the characteristic root λ . Hence we have the system of equations

$$\sum_{i=1}^{n} a_{ii} y_{ii} = \lambda y_{ii}, i = 1, 2, \ldots, m; t = 1, 2, \ldots, n.$$

In particular we have

 $\sum_{i=1}^n a_{i_i} y_{i_i} = \lambda y_{i_i}$

and so

$$(\lambda - a_{t_i t_i}) y_{i t_i} = \sum_{\substack{i=1 \ i \neq i}}^n a_{t_i i} y_{i t_i}$$

Dividing through by y_{i_1} , and taking the moduli of the two sides, since $|y_{i_1}| \ge |y_{i_1}|, s=1, 2, \ldots, n$ we get that λ lies in the circle C_{i_2} .

Since $s_i \neq s_j$, $i \neq j$, we conclude that λ lies in *m* different circles C_i . This concludes the proof of the theorem.

Los Angeles, October 18, 1951.