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Uniformly Best Constant Risk and Minimax 
Point Estimates1 

Raymond P. Peterson 

In this paper several types of point estimates are compared on the bases of their corre
sponding expected risk. It is shown that constant risk minimax estimates (which are always 
uniformly best constant risk estimates) exist, under certain conditions, for several frequently 
occurring types of parameters and general methods are obtained for constructing these 
minimax estimates. 

1. Introduction 

Let#!, . . ., xn deno te s (not necessarily independ
ent) observed values of a random variable f, which 
is distributed over a space S according to a distribu
tion Pz(x, 0i, . . ., 0S). I t is assumed that Pz(x, 
0i, . . ., 0S) is completely specified except for the 
s unknown parameters 0U . . ., 0S. These param
eters may be represented by a point 6=(d1, . . ., 
0S) in the s-dimensional Euclidean parameter space 
12. Also X—(xi, . . ., xn) is a point in the n-dimen-
sional Euclidean sample space, M. We shall assume 
that Pz(x, 0) is absolutely continuous, that is, £ 
possesses an integrable probability density function 
g^x, 0). Let p(X, 6)=p(x1, . . ., xn, 0) denote the 
joint probability density function of the observa
tions at XeM. 

A statistical point estimate of a parameter 0*. 
which ranges over a subset co* of one-dimensional 
Euclidean space, is a function ft{X) of the sample 
values that takes on values in ut. Let W\fi(X), 0] 
be a nonnegative measurable function denned for all 
0e& and XeM. W[fi(X), .0] is a weight function that 
represents the relative seriousness of taking ft(X) as 
the value of 0* for any particular sample point X. 
The function 

JM 
wift(X),6]P(X,e)dX 

represents the risk or expected loss incurred by using 
ji(X) to estimate 0* when 0 is the true parameter 
point. Thus rfi(0) is denned as the risk function of 

ft(X). The expected risk of fi(X), relative to an a 
priori distribution X(0) of 0 is given by 

R H (\)=( ( W[fi(X),e]p(X,e)dXd\(d). 

We can now define the following classes of point 
estimates in terms of rf.(6) and Rf.{\). 

(1) A minimax estimate of dt is one which minimizes 
sup 77,(0). 
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(2) A constant risk (CR) estimate ft of 0* is one 
such that rfi(6) is constant. 

(3) A Bayes estimate of diy relative to an a priori 
distribution \(0), is one that minimizes Rfi(\). 

(4) A uniformly best (UB) estimate of 0t- is one 
that minimizes Rf.(\) for all possible a priori dis
tributions X(0). 

(5) A uniformly best constant risk (UBCR) estimate 
of Bi is one that is a UB-estimate among all CR-
estimates. 

(6) A constant risk minimax (CRM) estimate is 
an estimate that is both a CR and a minimax 
estimate. 

I t is evident that a UB-estimate is preferable to 
any other, provided that one can be obtained. We 
will show that in several important cases it is reason
able to restrict our choice to CRM-estimates, since 
they possess certain desirable properties and, in most 
cases, are relatively easy to obtain. The concepts 
of a risk function, expected risk, and minimax 
estimates used here are due to Wald [5 to 8]. 

Let 

<Pfi(X)=f^W[fi(X),e]p(X,e)de. (i> 

Theorem 1.1 Letft(X) be a CR estimate of dt and 
suppose that for any other estimate fi(X) there exists 
a probability measure \ (0) over 12 such that 

J\v, (0) d\ (0) < Jpt (0) dl (0). (2) 

Thenfi(X) is a minimax estimate. 
Proof. Let ft(X) be any other estimate and let 

\(0) be a probability measure such that (2) is satis
fied. Then 

c - s u p r 7 i ( 0 ) < f[c-r7 . (0)]dx(0) 

<^\rti{e)-r-ft{e))dl(e)<Q 

where rfi(d) = c (c a constant). Therefore 

c = s u p / v (0)<supr 7 (0), 
e e 

and the theorem follows. 
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Corollary 1.1 Any CR-estimate which is a Bayes 
estimate relative, to some probability measure X'(0) is 
a minimax estimate. 

Proof. This corollary follows immediately from 
theorem 1.1. 

Theorem 1.2. Any CR-estimate ft(X) that is a 
minimax estimate is a UBCR-estimate. 

Proof. Let ft{X) be any other CR-estimate. 
Then 

R7i (X) -Rfi (X) = fjrfi {6)-rfi (d)] d\ (d) 

= c—c = sup rjAS)— sup rf.(0)>O, 
e e 

where __X(0) is any probability measure over 12, 
T'f.(6) = c, rf.(6) = c, (c and c constants). Thus 
J t [X) is a UBCR-estimate. 

Theorem 1.3. Suppose that a CR-estimate ft(X) 
minimizes <j>fi(X) for all XeM and that at lead one 
of the following conditions (A) and (B) is satisfied: 

(A) 12 is compact, 
(B) rf{(6) and fo^X) are uniformly convergent over 

M and SI, respectively. Thenft(X) is both a minimax 
and a UBCR-estimate of 0t. 

Proof. Let ft{X) be any other estimate of 0Z-. 
Then 

<t>7i(X)-d>fi(X)>0 (3) 

for all XeM. Let Mq and 12̂  be compact subsets 
of positive measure of M and 12, respectively, such 
that 

Mq<Mq+1, 2 = 1 , 2 , . 

i = l , 2 , • 

and 

l i m M ^ M , 
q= oo 

lim 12^=12. 

Since W\fi(X)fi] is nonnegative and measurable, it 
follows from Fubini's Theorem (see, for example, [1] 
or [4]) that 

f f W[fi(X),d]p(X,d)dddX 

=fQfMq W[ft(&,<f\P&,<f)dXde (4) 

for all j and q. By hypothesis, 

rft(0) = c, 

where c is a constant. 

Suppose first that condition (A) is satisfied; that 
is, 12 is compact. Then from (4), 

f f W[UX),e]p{X,e)dedX 
JMjn 

= ( ( W[MX),6]p(X,0)dXdO. 
JnJ M 

Since 12 is compact, 

f [<t>7i(X)-<t>ft(X)}dX= f [r7i(d)-rft(d)]dd] 
J M J fi I 

= Jo [rA^)-c]^[s"P r74(0)-c]J^0-
(5) 

But, it follows from (3) that the first integral in 
(5) is nonnegative and therefore 

sup r-{B)>c. (6) 

Now suppose that 12 is not compact, but condition 
(B) is satisfied. From (3) it is seen that either 

^ f f l - ^ s O 

for all XeM or 

4>-1(X)-^i(X)>e>0 

(7) 

(7a) 

over some set M' in M, where M' has finite positive 
measure m'. 

First, consider the.case where (7a) holds. Let Mq 
always be taken so that M'<CMq. Then, from (3), 
(4), and (7a), it follows that 

lim f f {W[fi(X),d]-W[fi(X),d]}p(X,d)dedX 

= T ({w[fi(X),d]-W[fi(X),d]}p(X,d)dedX 

= f [4rft(X)-<l>,t(X)]dX>em'. 
J MQ 

Let -Wi-Wi=W[Ji{X)M-W[fi{X),dl Since, by 
hypothesis, 

f Wi-w%]p{X,e)dX 
J MQ 

is uniformly convergent over My there exists a q0 
such that 

I f [Wt-wMx^dx 
\J MQ 

- f Wi-Wl]p{X,d)dX 
J M 

Also since, by hypothesis, 

f [wi-Wl]p{X,e)de 

<2> 2 ^ 2 " 

(8) 
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is uniformly convergent over ft, there exists a j0 
such that 

I f [Wt-WtfoiXfldO 

- [[Wi-Wilp&Mo 
Jo 

. em' . . 
<7?zr>J>3o, 2m *o 

(9) 

where mQo is the measure of the set M,. Then, from 
(7a) and (9) it follows that 

f f [Wi-wAviX^dXde 

Jai0J
M«o 

JMV>JQ>0 

«= f f [W,-Wj^X,0)d0<LY+a ^ 

>em/- em' em 

Therefore 

em (10) 

From (8) and (10) we have that 

and thus 

[(sUp^(,)-c)+,.l]J%^ ^ ] 

^f [(^)-c)+/3.|]^>^>0.l 
(11) 

If sup rj. (0)—c<0, (11) is impossible since e is arbi-
e l 

trarily small, and therefore 

sup 77,(0) — c > 0 . (12) 
e 

The proof that (12) is true for the case in which 
(7) holds is immediate. Hence, since c = sup rj (0), 

e 
jiiX) is a minimax estimate and by Theorem 1.2 is also 
a UBCR-estimate. 

2. Classes of CR-Estimates 
In this section we shall find classes of CR-esti-

mates for several frequently occurring types of 
parameters. 

2.1. L-Estimates of a Location Parameter 

If p(X,d) can be expressed in the form 

p.&i — O, • • • , %n~0) (13) 

then 0 is called a location parameter. An estimate 
/(#!, . . . , xn) will be called an L-estimate of the 
location parameter 0 provided 

f(Xi+T,. . . ,Xn+T)=f(xu . . .,Xn)+T (14) 

for any real r. 

2.2. S-Estimates of a Scale Parameter 

If p (X, 0) can be expressed in the form 

«--*(£•••4") e*°> (15) 

then 0 is called a scale parameter. An estimate 
f(xi, . . . , xn) will be called an S-estimate of the 
scale parameter 0 provided 

J(ftXu . . . , fXXn)=flj(xu . . . , Xn), 
and 

f(xu . . . , xn)>0. 

M ^ >0 (16) 

(17) 

2.3. L(S)-Estimates of a Location Parameter (Scale 
Parameter Unknown) 

Suppose p(X, 0) is of the form 

02 p{-i>r"--'-Jrf 02>O, (18) 

where 0X and 02 are unknown parameters. Then an 
estimate ji(xi, . . . , xn) will be called an L(S)-
estimate of the location parameter Bx (the scale 
parameter 02 unknown) provided that fi(X) is an 
L-tstimate, that is, (14) is satisfied, and also 

/ i (/iXi, . . . , M2») = M/I l«i, • • 

for any real /x. 

«n) (19) 

2.4. S(L)-Estimates of a Scale Parameter (Location 
Parameter Unknown) 

Let p(X, 0) be of the form 

„(• Xi — Oi 

e2 ' 
^n »-0l\ 

02>0 (20) 

where 6X and 02 are unknown parameters. Then an 
estimate/2(zi, • • • > xn) is called an S(L)-estimate 
of the scale parameter 02 (the location parameter 6X 
unknown) provided that /2(#) is an S-estimate, that 
is,/2(-X) satisfies (16) and (17), and also 

j2(xl + r, . . . , ^+r)=/2(^ l l 

for all real r . 

, z j (21) 

2.5. D-Estimates of the Difference Between Two 
Location Parameters 

Let p(X, Y, 0, 8) be the joint probability density 
function of xu . . . , xm and ?/i, . • • i yn, where 
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X and Y are samples from two populations with 
unknown location parameters 0 and 0+5 , respec
tively. Then p(X, Y, 0, b) is of the form 

piXi—6, t-e,yi-e-6,.. m,yn-e-B). (22) 

An estimate f(X, Y) will be called a D-estimate of 
the difference 8 provided 

jixx + p, . . . , xm+», Vi + \, . . . , y»+X) 

=f(xu . . . , 3m, 2ft, . . . , 2/w) + (X—M) (23) 

for all real /* and X. 

2.6. i?-Estimates of the Ratio of Two Scale Parameters 

Let p(X, Y, 0, p) be of the form 

e~ l ( p * ) " " p ( ^ 
yi 
7o' i)' e. P>o 

(24) 

where Z a n d 7 are samples from two populations 
with unknown scale parameters 0 and p0, respec
tively. An estimate f(X, Y) is called an It-estimate 
of the ratio p provided 

jhixi, . . . , M#m, Xyi, . . . , Xy„) 

(25) 

for all /z, X>0 
We now show that any estimate belonging to one 

of the classes 2.1 to 2.6 is a CR-estimate provided 
that the weight function Wt is of proper form. The 
following six theorems are stated as one. 

Theorems 2.1 to 2.6. Let the density function p be 
of the form given in classes 2.1 to 2.6 and let the 
weight function Wt be of the form (1) W[f(X) — 0]1 
(2) W[6-f(X)l (3) W[B^ (fl(X)^e1)]f (4) W[B^ 

MX)], (5) W[f(XJ)-b]y (6) W[p~f(X, Y)]. Then, 
iff, is an (1) L, (2) S, (3)L(S), (4) S(L), (5) D, 
(6) It-estimate, the risk function rf. (0) is constant. 

Proof. We shall prove only theorem 2.3, as the 
others are proved in exactly the same manner. 
Consider the risk function 

Let 

•n 

u= 

••>-er)dXl' 

Xf — di 
, (i = l , 2 , . . .,n). 

dxn. (26) 

(27) 

Since j\{X) is an L(S)-estimate 

MX)-ey Uxu. . .,xn)-

=/.&, 

1 r (Xy -e1 X n I 

Thus, making the transformation (27) 
(28) in (26), we have 

• • 1 

and 

02 / 

(28) 

using 

rttW* 
• / - " . - / - • 

Wlfiifx,..., tn)]p(th . . . , tn)dti... dtn, 

which is completely independent of 0 and therefore 
rfi (0) is constant. 

3. CR-Minimax Estimates 

As a direct consequence of Theorem 1.3 and Theo
rems 2.1 to 2.6 we have the following six theorems 
which are stated as one. 

Theorems 3.1 to 3.6. If at least one of conditions 
(A) and (B) in Theorem 1.3 is satisfied and if the 
weight function Wt is of the form (l)W[f(X) — B], 

(2) W[e-f{X)i (3) W[e^\MX)-el)]^) W[e2-%(X)], 
(5) W[f(X, Y)-8], (6) W[p-f(XJ)l then any (1) L, 
(2) S, (3) L(S), (4) S(L), (5) D, (6) It-estimate which 
minimizes (<t>fX) [as defined by formula (l)]for all X, 
(X, Y)eM is a minimal (and also a UBCR) estimate 
of St. 

Conversely, it has been shown by Kallianpur [3] 
that, " under mild restrictions", the minimax esti
mate in the above cases minimizes <t>fi and also 
belongs to the corresponding class of CR-estimates. 
For example, incase 3.3, the minimax estimate of 0t 

minimizes fa^X) given in Theorem 3.3 and is an 
L(S) estimate. 

4. Determination of General Classes of 
CR-Estimates 

Suppose the joint probability density function 
p(X, 0) is of the form 

p(X,d) = h(v(x1,d),. .,i7(z»,0)) n dxt 

where rj(xt, 0) possesses the n first partial derivatives 
drj(Xi,6)/dXi continuous in xiy ( i = l , 2, .... n). 
Let M be an ^-dimensional interval (at <Xi<bi) such 
that 

7] (at, 6)=ct 

ri(bt, d)=diy ( i = l , 2 , . . .,n) 
(29) 

where the at, bt, ct and dt are constants (possibly 
infinite) which are independent of 0. Let £(x,y) 
and \f/(B) be arbitrary functions such that the weight 
function V[?(ft(X), $(6))] is non-negative and 
measurable over the product space MXQ. Then 
we define the risk function of an estimate ft(X) of 
Bi to be 

rfXeh • r 
J M 

- f 

VMfi(X),m)MX,6)dX 

V[t(ft(X),m)Mn(xuQ, 

n{xn,o)) n <>y(x(J) 
dxi 

dx(. 

r (30) 
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The following theorem yields a method for deter
mining general classes of CR-estimates, that is, 
estimates that possess constant risk functions. 

Theorem A.1. Ij jtiX)=jt{xl9 . . . , xn) is such 
that 

jMxu<i),... Mxn,e))=t(ji(X),+(e)) (3i). 
then the risk Junction rf (0) is constant. 

Prooj. Let /*(X) be any estimate satisfying (31) 
and let 

*« = i?(i<,0), (i = l, 2, . . . , n). (32) 

Then, from (31) and (32) we have 

f ( / « W , * ( 0 ) ) = / , & , . . . ,tn). (33) 

Let Tdenote the n-dimensional interval {Ci<U<di). 
Applying the transformation (32) and using (29) 
and (33) in (30) we have 

rfi(S)= f V[t(fi(X),m) 
JM 

. h(v(xl!e),..., v(xn,e)) H ^ g ^ dxt 

=JT
vUSu • • • . tn)]h(tu . .., tn)dtx . . . dtn = C 

where C is a constant. 

5. Examples 
As an example to illustrate the usefulness o: 

theorem 4.1, let 

and choose V=(J— d)2. In this case we choose 

n(z„ e) =Xi-o, m =0, f(/(Z), *(*)) =J(X)-e. 

Then (31) becomes 

/ fa-*, . • . ,x»-$) =/(*!,. • . ,xn)-9. (34) 

Thus, for example, any weighted mean 2 3 aixi> 
n 

^2 at=l is a CR-estimate of 0. 
i=l 

If we take 

and choose 

then we can take 

and (31) becomes 

J ^ 1 / 2 ' ' • • » ^1/2^— fl • ^ 

On the other hand, if we are estimating 01/2 by J(X), 
we take f(6) = 01/2 and (31) becomes 

J ^0l/2> * • * > fri*)~~ 01/2 * ^ ° / 

In these examples, conditions (34), (35), and (36) 
show the reasonableness and generality of the re
spective classes of CR-estimates. 

Theorem 4.1 together with Theorem 1.3 can be 
used to obtain many results similar to Theorems 
3.1 to 3.6, that is, to construct CR-minimax esti
mates and to throw light on their general desira
bility. The lower bound for Rfi(\), where/,- is any 
CR-estimate, is readily seen to be rjt (0), where j . is 
a CR-minimax estimate. This lower bound is 

R7i^)=jj"fi(e)d\(d)^cy 

where c is a constant. 
In a recent paper, [2], Hodges and Lehmann have 

illustrated some properties of minimax estimates. 
They mention, for example, that it has not been 
possible to obtain a general comparison between 
minimax estimates and unbiased estimates with uni
formly smallest variance, if such exist. We can, 
imposing certain restrictions on the form of the 
probability density function p(X,d), obtain the CR-
minimax estimates with uniformly minimum vari
ance and show that these estimates are unbiased. 
Also, a relationship exists between CR-minimax and 
maximum likelihood estimates. 
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