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Uniformly Best Constant Risk and Minimax
Point Estimates’

Raymond P. Peterscn

In this paper several types of point estimales are compared on the hases of their corre-

apoiding

expected risk. It in shawn that conrtant risk minimar estimates (which are aiwaye
uniformly beat conatant rigk aspimates) axiat, undar certain conditions

Tor aeveral [raguaently

coourring typea of paremeters and general methoda are obiaioed for constructing thess
entimates,

winitosx

1. Intraduction

Let z;, . . ., T, denote a (not necessarily independ-
ent) observed walues of a random weriable £, which
ie distributed over a space S according to & distribu-
o Pyfz, 0, . . ., &). It is assumed thet Pgir,
B, - . ., A} i3 completely specified except for the
4 unkpown parameters 6, . . ., . These param-
cters may be represonted by e point 8=(8, . . .,
4,) in the s-dimenszional Eucﬁdean paramatar space
2. Also X=(x, .. . 2, iz 2 point in the #-dimen-
sional BEuclidean sample apace, &, We shall assume
that Py(z, ¢ is sbsolutely continuous, that iz, §
POBIRASES AL inte?h]e prebability density function
gife, 8. Let p(X, #i=pi{z, . . ., T, 6) denote the
Joint probability éansity funeticn of the obsarva-
tions at XeM. '

A atatistical peint estimate of & perameter 8.
which rangrz over & sybset w, of one-dimensional
Euclidean space, is a fuenction f.(X} of the =amples
values that tekes on valtes in @, Let W[FAXD, 8]
be o nontiegative Measurable function defined for all
el and Xﬁ&. Wf.(X), #] 18 & weight function that
represents the relative seriousness of taking £,(X) a9
the value of #, for any particular sampla point X,
The functicn

0= | W (30,8 (X, 94X

representa the risk or expected loss ineurred by using
Fi{X) to estimata 6; whan 8 i= the true parameter
point.  Thus r; (8} s defined as the righ function of
FilX). The expected risk of 7,{X), relative to an @
priori digtributzon A {# of # is given by

B = [ WD, 8pX, 84X 0.

We can now define the following classes of point
estimates in torms of ry (8) and Ky ().
(17 A minimar estimate of #,isonewhich minimizes
aup rf '{ﬂ],
T Eesoarch
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(2) A condent risk (CR) estimate f; of 4, is one
such that 7y () is constant,

_(3) A Bayes estimate of 6, relative to an a priori
diztribution %{#), is one that minimizes K, (X).

{4} A uniformiy best (UB} estimate of #, is one
that minimizes K, (A} for all possible ¢ prior dis-
tributions A{g).

(5) A uniformly best constant risk (UBCR) estimate
of 8, is onc that iz a UB-estimate among all CR-
ealimates,

(6) A consfont rigf minimor (CRM) estimate is
an cstimato that is both & CR and a minimax
eatimate,

It ia evident that a UB-estitnate is preforable to
any other, provided that one can be obtained. We
wil] show that in several important cages it is reason-
able to reatrict our choice to CRM -cstimages, since
they pos=ess cortain dezirable properties and, in moat.
cazes, are ralatively eaay to obtain. The concepts
of a tigk function, expected risk, znd minimax
esﬁlimtgs used here aro due to Wald [5 to B].

6

o= (WX, 02X, 0d0. (0

Theorem 1.1 Let f(XD) be @ O estvmate of 8, and

suppose that for any other esttmale F(X) there entsts
o probability measure J {0 over @ such that

[roso< (oo

Then f (X} is o minimax extimate.
Progf. Let f,(X) bo any other cstimate and let
E éfi} h?l‘ % probability measure such that {2) is satis-
) én

¢—sup 75, (# :‘-;J;[s —75, (] £X (8)

{2

< [ @—r, @17 @ <o
where #, (f1=c (¢ & constant}. Therefore
c=sup 1, {f) <sup r7,{f),
and the theorem followa.




Corollary 1.1 Any CE-cstimale which is a Bayes
ea!-imm!e reigiive. lo gome probability measure X'(8) i2
o mintor efimale.

Frogf. Thia corollary follows immediately from

theorem 1.1.
Theorem 1.2. Any CR-estimate f(X) that s a

mintmas esfimate 18 UBGR—eMmam
hPrm_f. Let .00 agny othar CE-estimate.
Then

By =Ry, (= ]' LACERCENT)

sup
!‘

rr{ﬂ'}—sup =0,

where A(f) is any probability messure over 0,
?'n{ﬂ}-s, re{f)=e, (¢ and 7 constants). “Thuys

Fo0.X) 130 UBCR cstimate.

Theorem 1.3. Suppoese thet a OB-estimoate §f{X)
minimizes ¢ (X) for all XM and thal al least one

of the follpwing conditions {A) and (B} iz salisficd:

(A) Q5 compact,

(B} rr,{8) end &,(X) are uniformly convergent over
M and O respectively.  Then (X} iz both g minimar
and & UBCH-estimate of 8.

ThPmuf. Let fi(X) be any other estimate of &.
en

ﬁi{m - '#I;EX} :3 0
for all Xedf. Let Af

(3]

be compeact subsets

of positive messure of M a.m:f %, respectively, such
that
Mﬂ'{:Mf'l"l QZI,E, L]
ni{:ﬂ.ﬂl: j= L2,...
and
hm M,= M,
q:-:n
]iln ﬂ',=ﬂ.
==

Since W{f{X)H 13 nonnegative and measarable, it
follows from Fubini‘s Theorem (gee, for example, [1)
ar [4] that

J , fn; WLF(X), ApX Hd6dX

_ f ) f 10 P L), 0P X X de (4)

for all 7 and ¢. By hypothesis,
rf{{ﬁ:] =a,

where ¢ is & conustant.

_ Suppoese first that condition (A) is satisfied; that
1z, E_: is compact. Then from {4,

5D

|, | wusem)apcx, gdeax
_ f ) J' WX, (X X de.
Since £ is compact,
[ w0 —agXnax= [ 10 —r.81ae

— [ mo—ade<l swp mio—c| [ 20

But, it follows from (3) that the first integral in
{5} iz nonnegative and therefore

{5)

(6]

Now suppose that @ is not cempact, but condition
(B} is satisfied. From (3) il s seen that either

1, X) — b (X) =0

zup #7, (8 > .

(7}
for wll Xeddf or
1K) — 8 (X > >0 (70}

over some set M in M, where M* has finite positive
mesdure m'.

First, consider the.case whers (7a) holds. Let M,
olwaya he taken so that M <M, Then, from (3],
(4Y, and {7a), it followa that

tim [ [, W08~ WLAC0,0lp(X,0 dsaX
=Lf,.r W(F40 8] — W0, )p(X 81484 X

=fM (87, X) — & (XX > e,

Let W, — W= WI7,(X),8 — W[ (X8
hypethesis,

Bince, by

J' [F.—W.]p(X,HdX

iz uniformly convergent over M, there exists & g,
such that

[, [Fe-Wilp 02X

®
— [, P—wlpxpax|<p g2

Alse gince, by hypothesis,

f (T —Wlp X008



Lol Rl i A

is uniformly convergent over 2, there exists a j

auch that
| j o, W WilniX 0o

. ®)
= [ P— Wilp(X ds| < S § 2

where m,, is the measure of theset A, . Then, from
{7a) and (9) it follows thet

. N J o W= WlplX, paxas
-Lﬁ J %m—w.lpme}dm
- Mh[p[glwi—wi]pcx,a}da+u

o’
Emﬂu:l X, |aof <1,

. i’
..J'M“J;[W,_nr,]p(x,mm¥+a ?

Therafore

’ —_ . enm’
J;J n_['u'ulw.—wflp{x,mtia}-—z-- (10)

From (8) and (10) we have thet
oS- wipr pax -+ Jan> 5 i<,

and thus

[(sw o2} ] ,, 2

iy an
2 [, [eno—oyteg Jart0.

If sup 7, () —c <0, (11} is impossible since ¢ is arbi-
'
trarily small, and thercfora

Bup r7{f—c20. (12}

The

{7) hol

Ji{X}is & minimax estimate and by Theorem 1.2 is also
a UBCR-eatimate,

2. Classes of CR-Estimates

In this eection we shall find classes of CR-esti-
mates for aeveral frequently occurmming types of
parameters.

roof that (12) iz trre for the ecase m which
is tmmediate. Hence, since c=ap 17, (@),

2.). L-Estimates of a Locaton Parameter
If p{X.8} can be expressed in the form

play—8, ..., 2,—8 (13}

then # iz eallod a loeqiion parametsr. An satimate

iz, . . ., 24) will be called an L-estimate of the
lecation parameter 8 provided
ot b=, wmr (14)
for any real r.
2.2. 5 Estimates of o Scals Parameder
If p{X, &) can be expressed in the form
i @
# P(’Fl” —;): FEU, (15}

then ¢ is called a scole paramoter. An estimate

Mz, oo ., 2y will be called an S-velimale of the
goale parameter § provided
f{lu-'l'-h LR Pzn}='#f{$l: ey J"’rl.}r p=dQ . (lﬁ‘}
and
FIFPI - -] | B (17
2.3. L(5)-Estimates of a Logation Paramecter (Scale
Parometer Unknown)
Suppose 5 X, #) is of the form
ﬂ;np(xl_ﬁl! Cee m._ﬁl)' ER:_}‘]'; {13}
& t;

where #, and & are unknown parameters. Then an
eztimate Ffi{m, . . ., z) will be called ap L{&}-
esfimate of the location paramoter & (the scale
arameter & nnknown) provided that f,(X) is an
cilimate, that is, {14} iz satisfied, and alsg

Filp, ooy ) =whiid, . o0, X) (1%}
for any real u.
2.4. S{L)-Estimates of a Seale Parameter (Location
Parameter Unknown}
Let p{X, 8) be of the form
;n P (ﬂf'lg_ﬂlJ Chay 2:.3_31), 5320 {20}
F'l ]

where & and & are unknown parameters, Theo an
eatimate fo{E, . . ., %} 13 called on S(L)-estimate
of the scale parametor g; (the location parameter 8,
unkoown) provided that f.(r) 15 an S-ssttmeite, that
ie, f20X) satisfies (16) and (17}, and also

fi{xl+rr =roy mﬂ+f:|=j!(mh = oy I"}

for al] real 7.

2.58. D-Estimates of the Differsnce Between Two
Location Parametera

et piX, ¥, 8 &)
fuoetion Of Ire v

(213

be the joint probability density
., on and #, . . ., ¥, whera

3l




X snd ¥ ere samples from two populations with
unknown locanion parameters & and 8 5, respec-
tively. Then p(X, d, &) i of the form

plo—8 .. Ta— 0 h——8, .., y—0—0). (22)

An estimate f{X, T} will be called & D-estisnede of
the difference § provided

f{$1+#t = z1'|'|-I_f:"::| :-?rl'?i; + 4t 'yu+}'}
=f(zlr = omy mlll'll l;"I! L ] 'yﬂj'+ {}k'—-“}
for all real x &and A

2.6. R-Estimates of the Ratio of Two Scale Parameters
Let p{X, ¥, #, 5) be of the form

oty (G0 b

Jpﬂ”

(23}

Im ¥n

b

8 g0

{24}
where X and ¥ are samples from two populations
with unknown scale parameters # and pf, respec-

tively. An estimate #{X, Y} is called nn F-eslimaie
ol the ratio p provided

Ll | T

fﬂjﬂ!., ey j.a"” }l’y” oy hy.}
Y
=;j{3]]1 v oen Fmy Ty - - *Jyl] [:25}
for all w, x>0

We now show that any estimate belonging to one
of the classes 2.1 to 2.6 13 & CR-estimate provided
that the weight function W, is of proper form. The
following aix theorems are stated as one.

Theorems 2.1 8o 2.6, Lel the denaily function p be
of ﬂa-e form given ih elasses £.1 do 2.8 and Est ﬂ;e
lfumtmn W be of e form {]] H[{f
}2) W= if(XH], {3) W[ﬂz' ffl(XJ 4} “ '-'5"

z{X)]f (5} ijf(ff -
an (1 (3} L{ IR '[‘H S } (5]'
E’ﬁ R-ﬁmmu&a‘ the m Function 7y, (6} iz constand.

Proof. We shall prove only theorem 2.3, as the
others ure proved in exactly the same manncr,
Consider the risk function

"n{ﬂn,ﬁ‘z}=f” J’“ W[UIX} IEI.:Iﬁ|=

n—8

-p( E')d;r, oL dE,. {26)
Let
!';=—-ET=-—; {#=1,2,..., 8L (27
Since (X} i an L(S)watimate
f,{X32~31=f1{x1,. 5; .r,}—ﬂ1=ﬂ(i:.gﬂ.' B "I‘ﬂ:ﬂ])
=il . . - Eule (28}

Thus, making the transformation (27) and using
{28) in {28), we have
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tadt .. dn,

= | o [ WUt

which is completely independens of # and thercfore
rr, () 18 constant.

3. CR-Minimax Estimates

As & direct consaguencs of Theorem 1.3 and Theo-
rems 2.1 to 2.6 we have the following six theoremns
which are stated ss one,

T?warﬁmﬂ 3.1 te 3.6. Jf af least one of conditions
{A) ond (B) in Theorem 1.3 iz satisfied and {f the

MfuﬂcMn W, muj!.hefonn (LW {X1—4l,
(2} W Y4(X)], {3}Wﬁ‘: ' (XJ 3‘: J1: (4} ‘3{ lfz("ﬂ
5 WX, Y)—4,(6) ¥
{2) 8, (3} L(S), (4) S(L), 5) D {ﬁ} Rreatimede which
mARtmizes {wijﬂ J"iﬂed by formaula (I for all X,
{;f, YieM is ¢ minimez (and glso o TRCE) eeltmale
of 8.

Conversely, it has bean ahown by Kallisnpur [3]
that, “under mild reatrictions’, the minimax esti-
mate in the above cases rninimizes #y, and also
helongs to the corresponding cless of CR-sstimates.
For example, in case 3.3, the minimax estimate of &
minimizes ¢;,(X) given in Theorem 3.3 and is an
L{S) estimate,

4. Determination of Genheral Classes of
CR-Estimates

Suppose the joint probahility density function
g, £ ia of the form

iz, &)

:‘T{:-rﬂ}} H az

P{Xr B:j: !'I.l{'l;[ir-[, 9:]:, L]

where 5(z,, #) posscsses the = fiest 12l derivatives

Onlr, f) /2 contineous in &, (=1, 2, .... &}

Let M be an n-dimensional interval (g, {x;{bi} such
wl{a;, 8)me,

that
293
‘“:ﬁh E}Edl’: o] ﬂ'} } {

where the o, &;, ¢ and d; sre constants (possibly
infimte} which are indcpendent of 8. Let rixs)
and ¥(#) be nrbitrary functions such that the weight
function VIi(fd{X), ¢(#)] i= non-negative and
measiurable over product speaca MAZ Then
we d?:-ﬂm the nsk function of an estimate f;{X) of
#, to ba

{i=1,2, ..

-

= | VIEA00, o pCX, 0X
~ [ VU, Walitatend,. .., + (30

#(2e ) 11 a““’”"}d 2.




The followi araf theorem yields a method for deter-

mining gen classes of CR-estimates, thet ie,

estimater that pozsess conatant risk fum:tmns
i:‘he-}ram 41. It fAlX)=Fdz,. . ., za} 5 such

fl{ﬂ[xlsmr L :ﬂ{tuﬂ}}:;{.ﬁmr*(ﬂj] {31}

then the risk function v, (8} is constand.

Froof,  Let f;{X) be any estimate satisfying (31)
and let

hz‘l‘ﬁf‘ira}r ﬁ'=1: 2,. .., ﬂ'}- (32
Then, from: (31) and {32) we have
FAAD, @y =fith, . . . L) (33)

Let T denole the s-dimensional interval (e, <t <d,).
Applying the trensformation (32} and using (29)
apd (33} in {307 we have

k0= [ VI8

) ﬁ{ﬂ{.’ﬁ.,ﬂ, S e ) ilzll %f;:;:rm dzx,
=J'TFLL{EJ, A T Y R A VS s,
where (! is a coustant.
5. Ezamples

Aa an example to llustrate the usefulness of
theorem 4.1, lot

1 I3 - i}
P =m0 5 577

In this case we chooge

XD, v mf(X)--9.

and choose V= (f—8"
"-":xf: ﬂ.] Exi_"&: 'P‘:ﬂj =a:
Then {31) becomes

Flz—2. . ., —&,

s ¥n) {34)

ra—H=Fflr,. ..

Thus, for ezxample, any weighted mean éﬂ;xh

B
§ a,=1 iz & CR-estimnate of &

If we take

l:,:'=

3 Ia
I, 7,80

P{X:ﬂ=mﬂ_zi

G-y

then we can take

and chooae
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i

vz Omgh  vh=8 (@), W=l
and (31) booomes
f (a”!’ 3”!) f{zh oy fu] {35}

On the other hand, if we are estimating ¥ by f{X0,
we teke ¢{8) =6"* and (31} bacomes

f(ﬂ,x,. ..

In these exemples, conditions (34), (35}, and (38}
show the reasonableness and generality of the re-
spectiva clasaes of CR-estimates,

Theorem 4.1 together with Theorem 1.3 can be

used to obtain many resulte similar fo Theorems
3.1 to 3.6, that is, to comstruct CR-minimax esti-
ruetes and to throw light on their genersl daegira-
hility.. The lower bound for E; (\), where §, is any
CR-eatimate, ia readily seen to be 57, (8), where f, is
a CHE-minimax estimata. This lower bound is

Ry = J;r;.w:: A =:,

LT ¢ M

H W‘: gz - {3 ﬁ‘)

whern £ 1= & constant.

In & recent paper, [2], Hodges and Lahmntm have
Mustrated some properties of minimex estimates.
They mention, for example, that it hae not been
posaible to obtain 2 general comparizon between
minimax sstimates and unhiased estimates with uni-
formly smallest variance, if euch exist. We can,
lmpos certain Testrictions on the form of the
pmbag:ﬁty density function p(X.#}, obiain the CR-
minimax estimates with uniformly minimum vari-
anca and show that these pstimates ars unbiased.
Alzo, & relationship exista between CB-minimex and
maximum likelihood eatimates.
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