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On Some Functionals of Laplacian Processes'
R. Fortat

Let X{f) ba a random fonetion derived, in & sense that is expleined in the paper, from

a Poiason pmce.m
functiooal

It is proved that, under certain assuimptions, the distribution of tha
TR g
Fit, X{u))du tends to & Laplacian (i. < normal) distriboton s Tses,

This result i8 extended to the case that X{{) § iteelf a Laplacian prooess by means of &
theotn stating that, noder certaln assumptions, every Laplaclan proceas 3 tha limnit uf
some random funetion derived from a Poisson ProGess,

We shall vas the fal]uwing shbraviations:
fr: function of repartition.
cof . characteristic function,
¢: covarianece.
fo: function of eorrelation.
rf: random function.
rv: rahdom varishle.
mgq: in quadratic mean.
ac almost certain, with probability 1.
Laplacian process.
IEP mndum unction derived from a Poizson

em mathemat.leal axpactation,
emq: standard devistion.

ime: integral in quadratic mean.
iae: integral with probability 1.

Bection 1 1s devoted to the statement of some
lemmas; reetion 2 is to show that, under some general
sagumptions, a 1 may be cunmc[ared as the [imit, in
law, o certmu *a; mection 3 is to state our prmmpal
result in the smt.mrmry casc; section 4 is devoted to
extensions of these results to nonstationary cases:
section 5, we indicate some generalizations in mmti:mr
direction.

1. Lat ¥'(#) be a real rf of second order defined over
{— @, 4+ =}, the ¢ vfl,r) of which is F-integrable {on
every finite domsin); we assume E[¥{{}]=0; hence:

L, r}=J':Y {10y img

axista, haa a null em and an ﬂ;mq wlf,r) given by:

a=u,T)=J:’J:'—; (u,2) dudn?

wa pssnme that: () there exsts a fixed number { such
that, for any integers %, and for any wvalues

f], - 1y T 'W'.I.
Wbyl ... <hh<n< ... <Ta m—heal

the two (n-dimensional and m-dimensional)
Y{h}l LA I | P’{tt}}m'i{ F[TI}I L ] Yfrﬁ}}m -
ependent ; (b} ihere are two fixed positive numbers
L The of thin paper was apamsored (o part) bor the Oy of Baral

'Loerre Fonotions mhesioires do seoond ordree, 7. 33, In P La Proostaig
Btorhestinnes, Pari, 1448, Ganthisrs. Viilara sdit, “’

vrbuy Ty e -

LI

a2

e and & (independent of ¢ and } auch that
a {T—i} S (e} £h (r—1)

at lonst for (r—#)2-0 and sufficiently large; (c) there )

ip & finite positive function A{w) such that:
ELPSK(r—1t)
far every (4,«), at least for (r—{)>0 and sufficiently

large.

Then we have the following lemma:

Lemma I: Under the sbove sssumptions (&), (),
{c}, for every fixed £, the fr of [L{t24+ T)]flelt s+ T
tenda towar Lapln.ce 8 law [with am =0 ahd ey =1
when T tends toward + co: gnd L{tt+ T)/T tends
toward { in probability.?

FProgf: Of course, it iz sufficient to consider the
eage f=0; let L be any positive number, larger than
I we put:

te=n{L+1) t:=n{L+—1
X,,=J;‘f Y (w) du =-J:I,'}’[u}du

and, if 7 is the largest intager such that: an(L4-0 %

zr=f ¥ (w)du
We hare: "

LD 1

20,7 =@, 25T

=l

a are mutoally
ﬂily Iﬂdﬂp&ndﬂnt-,

zZs 1 B L
E[m]éﬁE st s
It must be pointed out that the ¥

independent; alee the X;'s are mutu
henca we have; "

E[(F{” T};l: Y’) 5.:1;" a.LiI {3

i W do ok Imower iF thin rather obrbcis lemma 1y or 1y ot slpady mown.




(L41) being a qoantity thet may be arbitrerily
small, if wa chooae L aufficiently large. From the
independence of the X3, and from (b} and {c) 1
foliows that the fr of

r

Uagxi,

tends toward Laplace’s law [with em=0 and emg=
1], when T tends toward +- = :-on the sther hand, it
follows from (2) and (3) that E[U3)/*(0,7) muy be
- as near | ns wo like, if wo choose L and T sufficient!y
Iarge. The lemma follows obviously from these
remarks,
Remark: Tt moust be pomted out that, if ¥ is
“ sirictly stationary, the assumption {¢} may he sup-
ressed, the X,'m having, in such a case, the same
r; on the other hand, in the general case, {¢) may,
. of course, bha rap]acm:i by soma other, more or less
reneral, assumpiion of the same kind.
We consider nony a. real f ¥(8), defined over {— |
4+ w}, stationary of second crder and the fc y{A) of
~ which is eontinuous; we are always considering

L t, r}m J: "V ) du

- where

but in thiz stationary ease, o*(f,r) dapends only on
{r—#); wo have the:

Lemma 2: For the exisience of two positive num-
bers @ and & such that:

a(r—@o{s—Zb(r—f)  [(+—H2>0] (4)

for any &, r, at leset for (r—{&) sufficiently laxpe, it 1z
* ufficient that:

{(m)

. (&)

It F{w) is the apectral function of +(A), e have:
Fo ] —end S

ot (r —ﬂ=2f S OF ()

JEICIE S

f :’_"—, (Ry dh =0

" whers §=r—¢: for any ¢ >0, we have:

.2 1 —coa §uw
;I_I..E. 3 M}.--u " dF (w=0.

Let ug asgume that, in the interval {—e, 3¢), F{w)
*has a derivative fiw), and that JF{w) is continucus
for =10, with J{0) =0; we have:

R - F 178 ] — B
[ ar =1 @) J' 1t B gt

— w?

. [T i s ) d

wrfve—52——3

b o I [
when i—s+ =, F(0) f L0894 e s equivalent

io fa, where 8 is some fixed number »0; and
| [0 8 1 (=7 (0)) du] is bounded by g5,

where ¢ is & >0 number, as small as we like if we
choose « sufficiently smal] ; oo the other hand, Fe)
haz wn everywhere continuous derivative f(w) if

[Tl ah<o; and, w5 1 0= [y 1 as,

the lemina follows. Besides, we see that, under the
assumptions (a) {(b), there exists a number ¢ such aa:

a?(T~cT (5)

when T4 = (]5} is more precise than (4).
2. In what follows, we have to consider: a Poisson
recesz V() of constant parsmeter m: i -,
{r)—N{f) is the numbor of the jumps between !
nhgd ©, and
[mr—iy &
Ime—n®

PriN(n—-NO=Kl=¢ """ ;

rocess N} =N{#}—-mi; a
real funetion B(f+) of the two variables ¢, r, defined
over — w=-<f 7< + =, such that, for every fixed ¢,
FHEx) ia, a8 o funetion of ¢, I-menasurable and F-
summable; the process X{f) defined by:

the derived centered

Xfi= limmg
e, Bt o

Wa shall call such & process Xff) a random funetion
derived from a Poieson procese {rfP), The precize
meaning of () i3 stated, for instance, by Fortas®
It ia known (see footnote 4) that:

Theorem I; I m—-+ =, X({{) Ig tending in Iow?
towsard the Laplacian prosess X*(#), the covariance
I'(t,7) of which is given by:

oL "Bt 0avrid}- @

e
= [ R Ry v du @)
Recip . one may ask under what conditions &
real Laplacian process X*{#] with ¢. T'if,«) may be

considered a8 the limit in law of some Wi
gave {see footnote 4) a partial spswer to this ques-
tion, by the following:

Thearem ZI: Let the ¢ T'{t,r} of X*(#) be & fune-
tion r(h} of h=r—¢ only; X¥{#) is the limit in law of
a fF with a B{{,ry)=R(r—{ depending on {r—#
only, if and only if: {8) »{A) [which is necessarily
positive definite ns a c] 15 contintous [hence, it is &
cf] with an abzolutely continuous spectral Tunction;
by Riwu} iz of the form:

+ Fortel, Randmm lunetions foom & Fokacn
pominen ot Martwnalicn] Btabist b and Probab
b A, prbeetg X0 tends toward the prooess
[ ..umrru:tth.e{n-dnnmal:rv“‘j‘
ing toward the fe of (A, X000, - - o o A

[t .
I L

li'lm. Berkelay Seoond Fym-
¥
U:: 118 temd-
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Riu)=
__...J' VTG et g=tundy [F'l;umr;erf'rgil’chﬂal
wherre is the spectral density of #(i}, and (w) is

BRI d um:t.mn
e shall give here a more datailed proof of this
theorem; if there. s o P X{) with B, r}=R(r—1)

depenﬂmg on (r—f) cnly, [a.nd guch that we have:

R":t ridr= " F{ﬂ]dﬂ{+ WJ and tending in
w toward X*if, wo must have by (7):

rm}=f:’: R Rtu-+5) du @)
Lt us put:
1 J'+-= _ ,
L P Biupe=t=¥dy [Fourier-Flancheral
= ) transtorm,

renl, even, and g O; ¢ ()} is odd, Blu)

g (s} bei
then we have {sea* for instanes):

betng re

roal;

r{h) EJ._., @lelet¥ 19 g — ) gt¥= P g~ o

=f+ ) a{w)e M,

Hence, r{%) i» necessarily continuous and with s
gpectral density a®(w). onversely, if #{i} 18 con-
tmuous and hes a specirnl density f(w), & function
R{w) exista given by:

R’{ﬂ} - f_-l-: J\_él'_ﬂ.‘llf {w}ﬁ”’ toad gt )

where ${w) i any odd function, sueh that:
f By du<s 4
and satisfving {8).

It ig mors difficult to pbtain a result in the general
case; of course, I'(f,r) <+ « for every {is a necessary
I}Oﬂd.lt.l-‘.}ﬂ we suppose it satisfied in what follows;
in a heuristic manner, we may develop the fu]lawmg
considerations: T fj is, a= a ¢, of nonnegative
E?rp o {goe reference cited in faotnate 2, p. Sl]l}, henca,
if H ig the linear operator definad on L’(— m, 4 m] b},

@=RU1= [ 0t dr

1;1‘:1:31&1+ under some generel assumptiona, H 13 aell-
adjoint positive (boutded or not}; hence it hes? &
gel -adlf.-ml; positive square oot B (and only one “1,

PR, O, "I‘:l:¢'hn1nrsh Thtrpductlon ke the theory of Foorler niegmbs, 2d ed,
Qxfrrd, 1451,

Clareiudin Pres,

i B-e]lg de M Bﬁkhﬂddw!hm 1lg.n ur:]u'tmﬁ "I'rmtdmmspn tkm%'- f}m I;Iil‘lgﬂert
soben Raytoes, iz der hday| tger, Reclin,

! Bub In general them arr Ao nfr-n-ﬂjﬂln!- ﬂmmtfm =T oAtk "and e
not teliad oot scuape viske_

that is to say that: K’—II; under some al
assumptions, I being an inte operator, K is alao
an integral operator snd ita & representation
of the form: :

s0=EU1= [ K Dfydr

The relation K*=H iz expressed by:
I'if, )= J'_ _TK{E,u} Ku, ) du

snd, bacanse A(tr} is necesserily symmatric, by:
T, = [ K0 K0 du

Henee we have Found a solution of {¥) {and & 8
metri¢ one): we may take K{f+)=E{x); and

is ut least one rfP, the imit in llwm.r of which is X*{t}
For instance, if T{f,r) is continuous over every finite
domain and 1f

j. f i, fdidre 4+ =

H is completely continuous; all the necessary assump-
tions are satisfied; I'(f,r) admits the representation:

T}
I, fj=Ej3f ’m}i’{

where the X;"s are the ewenvalues of I, and f,'s its
normed sigenfunctions; we have;

B, -y=K(, in mq

7

Then we may remark thet, if we have a solution
RBUtr} of (7) for & pertienlar i =T%tr), B{l,=)=
JE B, 7Y is a solution of (7) for T{e,r) =F{E)f{r} T, 7).
From that we mey deduce that for every T'{h,r) con-
tinuons on every hounded domain, {7) admitz e
leaat ona solation (aymmetric ar not); the resason is
that, in such a cage, we may find & continuous fune-
tion F{i} and & kernel T(t,7} auch that: fa) T(4+) is

continuous (on every bounded domaind: (b) fﬂ
|7 g, opdtds <+ @5 () T D=7 ST,

For instance, we may choose #{f) in the following
way: let A(z) be the boub|I{, 7| when 05| &1 &
o, A () =max [1,h{e)]; we take: f{=2"{Oett. Hence
we have the:

Theorem I11: Every Laplacian process X™*{f), the
¢ T'{{,v) of which iz continuouz on every bounded do-
mnin 8 the limit in law {ne m is tending toward 3 =}
af at least one riP.

Un the other hand, 1t is obvious that in
admits sovomml], and even an mfnity, o ?

enaral {7}
solutions

i




R{t,r): for inatanco, if T'{f,r)=1, there is an infinity
of chaicea for #(f,r) which are functions of r only that
satisly (7); another remark ie that a T'(4,#), given by
{7) when B({,r} is given, is necessarily & covarianes,
but js not necessarlly = continuous one [ses, for ax-
ample, the case where:

Rit,r) =0 if {=0 and: =e~" if {=0|
3. In what follows, we consider rfP X(f) like

and, ¥(f.2) being any resl, giren function of ¢ an
we gonsider the of

¥

Fif =11, X(t)] (10

and the funetionals:

L, x) -J:'V[u, Xu) du

snd our aim ia ko prove that, under some assumptions,
tha fr of Liti- T, when this rv is pmpﬁrl;y' normed,
abnd for any fixed &, tends toward Laplace’s fr when
T—+ . And we shsll try to extend this result to
the casa where X(# is not a rfP bui & Laplacian
procesa, In all casea we ghall sssume thet there is
1 finite positive number A, independent of £ and »
tbut, of course, depending on the considered func-
tion ¥} such that for any ¢, z, ¢:

|V~ Ve = Ma—z'|= {11)

whers = is sny fxed aumber with0-"==<1. Ofanch
s function ¥V, we shall say that it helongs to the clags
e if Vs and i F(#} iz any function of £ it is
shyioue that V4-f belongs te .

In this section, we rostrict ourselves to the station-
IV casa, In which Bt r)=R{r—¢) depends on {r—i)
imly, and (e} =TTz} depends on r anly; wo bagin
»¥_considering the case where X(f) is & r%vli'

It is rendily seon that Y{f} is strictly statiopary,
hat E[¥Y )], EN¥{)|), EY), E[¥OFEb)]—=
#{h) exist; from a preceding remark, we may nsspma,
vithout loss of genarality, that E[Y{I=0; v} Is
he fe of ¥it), and it is easy to prove that y(h} is
ontintous; F{} is gontinuous in mq and

L, r)em J: VX )] du

tmg

xists; E[Lit,s}=0; the emq ¢{r—1) of L{f,v} axisls,
lepends only on {r—+t), and is given by

o (r~t}=ﬁf7 (u— ) dudv
t is supposad that:

rHR‘*{uJ du <+ o
¥e put: )

& (d)= fl RO
a6

and we asspme that:

|7 etar dact = az
We put:
B, Biw)il [4|=a P
{ﬂ-}l—{ﬂ if [l >a ()= F{u)— B, (z)

(13)

"‘:(‘}i_l.i_‘ﬂ,},‘ﬂm{i“ —ﬁf&{z—ﬂ JN*(TJ}
(14

X.0=X{)—X,{f)=
. .1 ¥
Jﬂfﬁ'ﬁu{ e THL Rt dN* (x)

(14"

and we remark that: (a) if '|ra—-!L22¢;, X, (ty and
X} are two independent rv} (b} for cvery fixed
£, AL and ALY aro indapam:inmt rv; but the two
rocoases X,00) and X,{t) ara, in general, eorrelated,
Em&um X.(t) and X (r) arc not necessarly inde-
ndent if r 288,  Now we atate the following lemma.:
et BYu) (F=1,2, . . ., ba # real functions such

that:
|7 marac e G120,
We put:
¢,{a]=.£ul}u [BH{ulidn (j=1,2,..., 9

K= lmmg
.1 e . .
{mﬁﬁ R'i—r)dN {r)}(j—l,E, A

Let 17z} bo r functions of the cless C,, siuch that:
E{V,[X'{f]1=0 {(J=1,2, ...,7

Wa puat: ,
Zfﬂ=§l’f[x‘ (t]

Cf coursa, Z{#) is a strictly stationary tof; let
plhI=EIZIZ(# kY] be its fo. In what follows, &
13 spme finite Axed positive number, hot neceasarily
the same in all the formulas; we have the following:

Lemma 3 |o0)|=5(Ze(5F)

It iz sufficient to prowe this in the case r=2; Rif),
R @), Xi), X7{f) being defined a8 in (13), (14}, (14)',




we put:

3=Eﬂ= Vulxiiﬂ] + V!IXE(m

hen .
E|Z8) = E{Z,ity—Zit)]
=F [ VX — VIIX 6O+ VX0 — VAN
oand by (11}
| BIZ0) & 8 { E(LX 1]+ E1IX 201}
By Hiélder's inequality, we obtain:

EIZ0) S S ol +auied ] 013)

becanse:
B(X50P) = IR de= [ (R du~ o)

We put:
Asty= Z,ig) — B[ ZatD))

Buty=E[Z{) + Zt)— ZAt)
Zih= Adf)-+ Balt}
E [-ﬂ‘i.:[ﬂ] = E[B-:ml =1

Wa have:

and, if ¢ z2a,4,(0) and A,{) are two independent
r.v.; we have from {11) and (15):

| BB 5 8| ou(a¥ + eala +] X0+ X200

Hernee, from Hilder's innqualities:

E(BD=8 [ #lef+a@i | (18
Omn the other hand, it is easy to see that:
E(lAPaS {17}

hence, if a=4{2, we may write:

piht=E[Z{MZ(h)]=
E [d%{ﬂ}BE (e} ca h}B%{ﬂ}'I-B%{ﬂ}B% &) (1)

£16), {17), {18) and Schwarz’s inequality prove the

Lemme 3. By exactly the sanie method, we may
prove that:
Lemma 4:  If we put:

in=wx', FO=V.[X{),... Y= V[0

{under the same assumptions ss above on the X%
and the Va) and:

E[Y Yt + k)l =yalhl,

wa have:

O [;Z{ # (g)]

{where 5§ may be chosen independent of 7 ond k).
Now, we return to the rf Fif) defined by

Y=vixy
and with fe k),

Lg, r]=£ Youdu
By (9) and the lemma 3 (with r=1), we hawe:
S
| w4 o
We shall assume that:

_rr“ WA 0

SUN

It follows by the lemma 2 that there are two posi-
tive numbers { and m such as:

Hr—0= e r—H=mir—4 {r =t

at least for (v —1) sufficiently large; let a be any posi-
tive number, we put:

Yoty =V[X:6]

AN =T.H—EY0  B=Y@u- Y+

E[Y0

L, f:|=J:' A fdu L;u,f}=ﬁ B iupdu

We have
Fill= A0+ Bitd

Lit, ry=Latt, v+ Liit,r)
and we remark that:
fay if |[r—1 & 2e, 4,08 and A.(r) ore two independ-

ent rv; by lernma 3, applied to 4,8, the fo (8 of
At 18 such as:

el 5 S @) (20)

on the ather hs:nl:] we have:

Lim ~yg{k}=nr{f).
d—r 3 o

This follows obvionsly {rom:
A=Y@ ~[Y@H— Y- Bl T,

(21)
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from (12) applied to ¥,(1, a;:nd from:
| ¥ )= Yoty = | VIXE] =V [X0]| = M| X[

Lt follows that, for eny o
+=
J7 hlar<+ o
and that, for any sufficiently lavge a, by (19):
+=
[ vidnmo

Henee for any sufficiently larpe 2, by Lemma 2, there
are two positive numbers I and i, such as:

Lir—O =EILG r P Emdr—1)
and A, () being a striclly stationary d|:rn-uess, it fol-

lowrs from: Lemmg 1 that, for ooy fixed ¢ and when T
i3 tepding toward + =, the fr o

__ L+ T
NEILQ+T7

tends toward Laplace's fr [with em=0 and emg=1];
on the other hand, putting:
§=ﬂ'+ﬂl

a=u—

we may write

t+T T s a
r J‘ i — i?}tft&tfi}-:lfu-l:rh E[J- "Hade |48
Je ¢ 2)0s £

where 8 and g8 are two lunctions of §, easy to deter-
mine; in the same way:

J.H-T J. Thu—odudy —=— {H_Th E[J:E’n(a}da]dﬁ

From (20} and (21), it follows that:
L+ T
bim, — = i (22)
TH p D)
unﬂunnl;,r in T.

fh) We may apply the lemma 3 to 8.0}, in Lhe

following waoy: r=2, Vilzl=¥ (x}l Vlrl=Vi{z)—
E[Y,)), B'—Riu), Ri—R,{x); as
palulZla)  dolu) < glu),

we obtain that, 4 (%) being the fo of Bo):

vk <89 (;—*')

11 I8 useful, for the peoal, 1o divkle Lbe numweratoe st Lthe denom aldor by T,

And, becguse:
B )= {VIXu— VX0l +HELY 5]

it follows from {12) [applied to F ()] and from (3}
that, for every fixed A

lim y.(h)=

gabfm

0.

From this we may daduce, as in (a), that:

lim LELte+T—=0

L r

uniformly in T.
Now, from all these facts and from Lemma, 1, it
follorwrs Lhe:

Theorem I'V: Under the above hypothesis, when
T tends toward 4+ = and for every fixed ¢, the fr of

Litp+- T}
7{ T}

tends toward Laplace’s Ir [with em=0 and emg=1].
More generally, considering Zi) defincd by

2= 2 V,[X0)
as above, under the same asaumptions, and if we put:
M, )= |zt
£

ohviously we obtain in the =ame way that:

Thearem T: When Itends loward + =, then, for
every fixed ¥, the fr of

M, e+T)

1
YE[M{+T7

tends toward Laplace's fr, at least if, 4(h) beibg the
fc of Z(1}, we have:

J' _+d sthidh =<0

On the other band, considering Y=V [X(H
(j=1.2,. .., under the above assumptions, an
mssuming that, if y,0k) 13 the fo of ¥,(1}, wo have:

I

f_h-r,{h}dﬁ;éﬂ (G=1,2,. ..
putting:
pin)= [ VHdu, or—0—EIL

it iz epay to prave that:
Theorewn VI: Forevery Rxed ¢ as T tends toward
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-+ e, the fr of the r~dimension rv {M= vy
(T}

IL{:E-E;—TJ} tends toward an r-dimensional Laplace’s

fr.

In order to prove theorem VI, we have to use
Lemma 4, a reasoning very similar {0 that which
gives Lamms 1, and to prove that, when T—+ =,

LD+ Ty, L4 T)
E{ o {T) X ¢s{T) }

hes & limit. That is not difficult, with (5) and a
reazoning similer to that which leads to {22}."

FExtenston to the ease of ¢ slafionary Laplacion process:
Let A*(f} be a Laplacian stationary process, with
fe r{k); from theorem LI we koow that X*{) is the
limit o law (whan m—+ =) of the fdP X{#) with
f(u) given by (9); let us assume that there is 4 chaice
of ¥{w} in (B) in such & way that, ¢(a) always being

How) du,
o] =»e
we have:

J' P das + o (23)
Introducing, as shove, X, (1} snd X)), wa know, hy
thegrem I, or, better, by & more al theorem of
13] that the two-dimensionsl rf [ .:SEL A9 tends
it law toward & two-dimensional Laplacian vf { X7,
K%} {when m—+ «), and we zee immediately
that we may consider that:

XH=X20+ X8 {24)

It iz clear that, if |r—f=2¢, XM and X¥(+) are
independent; thot, for every £, XX and X *{) are
independent ; but the two of X7 ) and Aj*( are
corrclated ; the fe’s of XE{n, X*#), the correlations
between X*(f} and X(), X*it and X.¢(f), X*(0)
and X;*f) being the same as those between i"{t}
and X (), X} and X[(t), X.(f and X((f}. Whai-
ever m is, it 13 clear &lso that the preceding method
may be applied to X™{t) as well aa to X1, and with-
out an gmnge; in particuler, we may conclude:
(a} frem lemma 3, that (24) is b representatlon
if X{f} be & sum of two Laplacian processes, the
second of which i& in =ome sensc negligibla if @ is
larga, the firat being of a weli-defined and very sim-
ple and special form; this decomposition is valid for
a wide ¢ of statiohary ]mpﬂ.ciﬂn rocosscs [it
would bo intereating to replace (23), which defines
this class, by a mora direct assumption on r(A)], and
seemis b0 ug bo be the most Mtereeting feature which
wa encounter in this gsection; it must be pointed out
that thiz decomposition is not a classical spectral de-
composition; in such a spectral decomposition, whick
is valid for any etationary r.f. of secomd order, the
B 'Theorsm IV wep sl stated by Plano-Laplame, o Bor owriaines fonsibons

sinticnmabres, Theals ( Parls, 145), Msgson edit., bt under sonue very
much slronger B3sumpiLone.
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terms of the sutn sre weorrelated: but o {24),
AXE snd X2*(1) are correlated. ;

{b) Theoram IV and Theorem V are immediately
a%]ilicn.ble with X*{t} ihstepd of X{f); it is alsa pes-
gible to state the squivalent to Theorem VI.

4. Now, wa take the case in which B, is any
function of {f+), but we assurme that iz &
nonnggative fanetlon (k) such as;

BOISRE—n) [ Bwducte

and such that, i .

d-{u]wfh.}_ﬂ"’ (wiw,
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and T'(2,x) may depend on £
It :]E-l clegr thet the preceditg method may be applied,
i M

R =R, rtif |r—2| =, =0 if jr—&|>a

RUL ry= B r{ =R 1)
and s0 on. The limitations given by Lemima 3 and
4 are atill valid; we start hy considering, not X{#@,
but its Laplacian hmit m law X*{f); let y*"{n,z)=
E SVIX"‘{ﬁ}]V[X‘{-u}]}be the e of F*EH="T11¢ X3,

an
L*{;,f;=f ¥ *{u)du.

It is ensy to see thai there is a function Kir—#)
such as:
EQL o[BS Kir—2) {25}

iz valid for every (t,r}. Consequently, by Lomma 1, -
the analogue of theorem IV yields, if we supposa
that:
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[thiz limit i= independent of ¢ this assumption ik
to replace (19})]. And we may point cut that we -
have far X"} & decomposition analogous (o (24).
But it 18 &n open problem to characterize, directly
on their c., the Laplacian processes such that there
is & corresponding function f{tr) setisfying the pre-
ceding assumptions. But we may mention that, in
the alectrical applications it 13 known ¢ priori that the
interfering Laplacion processes are of the above con-
sidered kmd.

Now, if wa take the case of X(f) instead of X*{1),
we may follow exactly the same procedure; the o
exception is that, now, the limitation anslogous to
(25) is not automaticoally satisfied, and we need a
supplementary agsumption, like, for instance:




2[( [ re—ntano) J<+ =

in order to have {25).

5. On the other hand, it would be useful to have an
assurmption on 17 weaker than (11); considering only
the stationary case, it is essy to see that (11) may be
replaced by the weaker assumption that:

V@ -Vl Sxze—" {0=2a<1l) {(26)
where the positive function of » A(z) s such as:
. z
E(pxe—=)<+ o @n

or

\ _
E(nxe @) <+
If x{(z) is bounded by:
Az) €A+ Bzl

whp:l:;iA B, # ure any positive numbers, (28) is slways
aatasied,

If a=1, ressonings hava to be slightly modified,
but it is readily seen that weaker assumptions like
the preceding one may be accepted. .

But it would be uzeful to have assumptions such
that ¥V may have some discontinuities,

(28)

Lioa AwaeLEs, December 18, 1951,






