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On Some Functionals of Laplacian Processes1 

R. Fortet 

Let X(t) be a random function derived, in a sense that is explained in the paper, from 
a Poisson process. It is proved that, under certain assumptions, the distribution of the 

V(u, X(u))du tends to a Laplacian (i. e. normal) distribution as T—><». 

This result is extended to the case that X(t) is itself a Laplacian process by means of a 
theorem stating that, under certain assumptions, every Laplacian process is the limit of 
some random function derived from a Poisson process. 

We shall use the following abbreviations: 
fr: function of repartition. 
cf: characteristic function. 
c: covariance. 
fc: function of correlation. 
rf: random function. 
rv: random variable. 
mq: in quadratic mean. 
ac: almost certain, with probability 1. 
lp : Laplacian process. 
rfP: random function derived from a Poisson 

process. 
em: mathematical expectation. 
emq: standard deviation. 
imq: integral in quadratic mean. 
iac: integral with probability 1. 

Section 1 is devoted to the statement of some 
lemmas; section 2 is to show that, under some general 
assumptions, a lp may be considered as the limit, in 
law, of certain rfP's; section 3 is to state our principal 
result in the stationary case; section 4 is devoted to 
extensions of these results to nonstationary cases; in 
section 5, we indicate some generalizations in another 
direction. 

1. Let Y(t) be a real rf of second order defined over 
(— oo, -j- co), the c y(f,r) of which is .R-integrable (on 
every finite domain); we assume E[Y(t)] = 0; hence: 

L(t,T)=\ Y(u)du imq 

exists, has a null em and an emq <r{t,r) given by: 

a2(tfr)= I 7 (u,v)dudv2 

Jt Jt 

we assume that : (a) there exists a fixed number I such 
that , for any integers n, m, and for any values 
•ti, • • •, tnj TI, . . ., rm w i t h : 

* 1 < * 2 < • • • < * n < T i < . . . < T W Tl—tn^l 

the two (n-dimensional and m-dimensional) rv 
{Y(h)> . . ., m O l a n d j F ^ ) , . . ., F(TW)}are in
dependent; (b) there are two fixed positive numbers 

i The preparation of this paper was sponsored (in part) by the Office of Naval 
Research. 

2 Loeve, Fonctions aleatoires du second ordre, p. 320, in P . Levy, Processus 
•Stochastiques, Paris, 1948, Qauthiers-Villars edit. 

a and b (independent of t and r) such that 

a(r-t)^a2(t}T)^b(r-t) 

at least for (r—£)>0 and sufficiently large; (c) there 
is a finite positive function K(u) such that : 

E\L(t,r)\*£K(T-t) 

for every (£,T), at least for (r—£)>0 and sufficiently 
large. 
Then we have the following lemma: 

Lemma 1: Under the above assumptions (a), (b), 
(c), for every fixed t, the fr of [L(t,t+T)]/[<r(t,t+T)] 
tends toward Laplace's law [with e m = 0 and e m q = l ] 
when T tends toward + oo; and L(t,t+T)/T tends 
toward 0 in probability.3 

Proof: Of course, it is sufficient to consider the 
case Z=0; let L be any positive number, larger than 
Z; we put: 

tn=n(L+l) 

Xn=ftL Y(u) 
Jtn-1 

du 

t:=n(L+l)-l; 

and, if nT is the largest integer such that: nT(L-{-l) ^ 
T, 

Y (u) du 

We have: 

L(0,T) 1 TIT I 

<T(0,T) a(G,T) i±i"'^*(0,T) U 

£JI> 

*(p,T) 

Ebmnl^E[Zr]4 bT-tnT bL + l 
T =a T 

(1) 

(2) 

I t must be pointed out that the Y/s are mutually 
independent; also the X/s are mutually independent; 
hence we have: 

3 We do not know if this rather obvious lemma is or is not already known. 
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l/(L+l) being a quantity that may be arbitrarily 
small, if we choose L sufficiently large. From the 
independence of the X/&, and from (b) and (c) it 
follows that the fr of 

U 

where 
s/E\ZPl 

tends toward Laplace's law [with e m = 0 and e m q = 
1], when T tends toward + °° ; o n the other hand, it 
follows from (2) and (3) that E[U2]/a2(0,T) may be 
as near 1 as we like, if we choose L and T sufficiently 
large. The lemma follows obviously from these 
remarks. 

Remark: I t must be pointed out that, if Y(t) is 
strictly stationary, the assumption (c) may be sup
pressed, the X/s having, in such a case, the same 
fr; on the other hand, in the general case, (c) may, 
of course, be replaced by some other, more or less 
general, assumption of the same kind. 

We consider now a real rf Y(t), defined over (—- °°, 
+ °°), stationary of second order and the fc y(h) of 
which is continuous; we are always considering 

x »,,)= • j>> du 

but in this stationary case, a2(t,r) depends only on 
(r—t); we have the: 

Lemma 2: For the existence of two positive num
bers a and b such that: 

a(r-t)^a2(r-t)^b(r-f) l(r-t)>0] (4) 

for any t, r, at least for (r—t) sufficiently large, it is 
ufficient that: 

(a) 

(b) 

f*Jy(h)\dh<+*> 

f+my(h)dh?*0 

If F(a)) is the spectral function of y(h)uwe have: 

"°° 1—cos 8co 
a2(r-

where 5= 

lim 
5—>+oo 

- < > - 2 / - . 

a 

•f 

dF(cc) 

T—t; for any e > 0 , we have: 

2 p 1 —cos 5co 
5. »!>.« 

• dF(u)=0. 

Let us assume that, in the interval (—e, + e), F(ui) 
vhas a derivative /(co), and that /(co) is continuous 
for co=0, wi th/ (0) F^O; we have: 

J:1 —cos 8w 

+*1— cosdco 

dF («)= •/«»£ +e 1 —cos 5co 
do)+ 

L/(«)-/(0)N« 

when 5—>+ oo •m£k — COS do* 
doo is equivalent 

to Sd, where S is some fixed number =^0; and 

I I T^—- [/ (w)— j (0)] du\ is bounded by rjd, 
J-e CO 

where rj is a > 0 number, as small as we like if we 
choose e sufficiently small; on the other hand, F(oi) 
has an everywhere continuous derivative f(cS) if 

f m\y(h)\dh<+<*; and, as / ( 0 ) = (+~y (h) dh, 
J-co J—co 

the lemma follows. Besides, we see that, under the 
assumptions (a) (b), there exists a number c such as: 

a2(T)~cT (5) 

when T - > + oo; (5) is more precise than (4). 
2. In what follows, we have to consider: a Poisson 

process N(t) of constant parameter m; if r > / , 
N(r)—N(t) is the number of the jumps between t 
and r, and 

Pr[N(r)-N(t)=K] = e 
-m(T-t) 

Imjr-t)]1 

the derived centered process N*(t)=N(t)—mt; a 
real function R{t,r) of the two variables /, r, defined 
over — oo <7, r < + a>, such that, for every fixed f, 
R2(t,r) is, as a function of r, i-measurable and L-
summable; the process X{t) defined by: 

X(t)= l immq (iac-^= TiJtf, T)diV*(r)}- (6) 

We shall call such a process X(t) a random function 
derived from a Poisson process (rfP). The precise 
meaning of (6) is stated, for instance, by Fortet.4 

I t is known (see footnote 4) that: 
Theorem I: If ra—>+ &y X(t) is tending in law5 

toward the Laplacian process X*(t), the co variance 
r(/ ,r) of which is given by: 

r(*'T)=j-co 
R(t,u)R(r,u)du (7) 

Reciprocally, one may ask under what conditions a 
real Laplacian process X*(t) with c. r(f,r) may be 
considered as the limit in law of some rfP. We 
gave (see footnote 4) a partial answer to this ques
tion, by the following: 

Theorem II: Let the c T(t,r) of X*(t) be a func
tion r(h) oih=r—t only; X*(t) is the limit in law of 
a rfP with a R(t,T)=R(T—t) depending on (r—t) 
only, if and only if: (a) r(h) [which is necessarily 
positive definite as a c] is continuous [hence, it is a 
cf] with an absolutely continuous spectral function; 
(b) R(u) is of the form: 

4 Fortet, Random functions from a Poisson process, Berkeley Second Sym
posium on Mathematical Statistics and Probability (1950). 

5 A process X(t) tends toward the process X*(t) in law if, for any n and any U, 
h. . . . , tn, the fr of the (^-dimensional) rv [X{t\), Xfa), . . . , X(tn)] is tend
ing toward the fr of [X*(ti), X*(t2), . . . , X*{tn)). 
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4= f+" V7H e^e-^d^^71^^1 
-y/2irJ-<x> transtormj, 

where/(co) is the spectral density of r(h), and ^(co) is 
any odd function. 

We shall give here a more detailed proof of this 
theorem; if there is a rfP X(t) with R(t)r)=R(r—t) 

and such that we have: 

R2(u)du<i+ oo and tending in 

Taw toward X*(t), we must have by (7): 

depending on (T—J) only, a 

Let us put: 

r(h)=f " R(u)R(u+h) du (8) 

1 f+°° 
a(co)e**(co)=-7= R(u)e~iuUdu [Fourier-Plancherel 

V 2 7rJ - <» transform], 

a(co) being real, even, and ^ 0; \Hco) is odd, R(u) 
being real; then we have (see6 for instance): 

,(/>)= f + a > a(co)^ ( w >a(-o ; )^ ( 

J - ' a
2(o))e-ih<ado). 

Hence, r(h) is necessarily continuous and with a 
spectral density a2(co). Conversely, if r(h) is con
tinuous and has a spectral density/(co), a function 
R(u) exists given by: 

J-co y27T 

where î (co) is any odd function, such that: 

(9) 

r. R2(u)du<+oo 

and satisfying (8). 

I t is more difficult to obtain a result in the general 
case; of course, r ( £ , r X + oo for every t is a necessary 
condition; we suppose it satisfied in what follows; 
in a heuristic manner, we may develop the following 
considerations: Y{t,r) is, as a c, of the nonnegative 
type (see reference cited in footnote 2, p. 301); hence, 
if H is the linear operator defined on L2{— °°, + °°) by 

9(t)=H[f]- • J - 1 T(t,T)f(r)di 

then, under some general assumptions, H is self-
adjoint positive (bounded or not); hence it has7 a 
self-adjoint positive square root K [and only one8], 

6 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 2d ed. 
Clarendon Press, Oxford, 1948). 

7 Bela de Nagy, Spektral darstellung lineares Transformationen des Hilbert-
schen Raumes, Ergebnisse der Math. 5, part 5, p . 52 (Springer, Berlin, 1942). 

8 But in general there are also self-adjoint nonpositive square roots, and also 
non self-adjoint square root?. 

that is to say that: K2=H; under some general 
assumptions, H being an integral operator, K is also 
an integral operator and admits a representation 
of the form: 

g(t) =K[f]=f^K{t, T ) / ( T ) d r 

The relation K2=^H is expressed by: 

T(t, r ) = [+C°K(t,u)K(u, T) du 
J —oo 

and, because K(tjr) is necessarily symmetric, by: 

r@, r ) = f+<*K(t,u)K(T,u) du 

Hence we have found a solution of (7) (and a sym
metric one): we may take R(t,T)=K(t,T); and there 
is at least one rfP, the limit in law of which is X*(t). 
For instance, if r(£,r) is continuous over every finite 
domain and if 

J—CO J —CO 

T%T)dtdr<+oo 

H is completely continuous; all the necessary assump
tions are satisfied; T(t,r) admits the representation: 

r M =S/4«I> 

where the X/s are the eigenvalues of H, and / / s its 
normed eigenfunctions; we have: 

R(t, r)=K(t, T) = S £ ^ W in m q 

Then we may remark that, if we have a solution 
R°(t,r) of (7) for a particular r($,r)=r0(*,T), R(t,r) = 
f(t)R°(t,r) is a solution of (7) for V(t,r)= J(t)f(r) T°(t,r). 
From that we may deduce that for every T(t,r) con
tinuous on every bounded domain, (7) admits at 
least one solution (symmetric or not); the reason is 
that, in such a case, we may find a continuous func
t ion /^ ) and a kernel r°(£,r) such that: (a) r°(2,r) is 

(on every bounded domain); (b) 

[T%r)]2dtdr<+oo; (c) T(t, r)=f(t)J(r)T% r). 

continuous 
•+00 r. 

For instance, we may choose /(£) in the following 
way: let X(a> be the lub\T(f, r)\ when 0 ^ | r | ^ | * | ^ 
a,X /(a)=max [l,X(a)]j we take: f(t) = \'(f)et2. Hence 
we have the: 

Theorem III: Every Laplacian process X*(t), the 
c T(t,r) of which is continuous on every bounded do
main is the limit in law (as m is tending toward + oo) 
of at least one rfP. 

On the other hand, it is obvious that in general (7) 
admits several, and even an infinity, of solutions 
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R(t,r): for instance, if r(£,r) = l , there is an infinity 
of choices for R(t,r) which are functions of r only that 
satisfy (7); another remark is that a r(2,r), given by 
(7) when R(t,r) is given, is necessarily a covariance, 
but is not necessarily a continuous one [see, for ex
ample, the case where: 

R(t9r)=0 if £=0 a n d : = e " r if t^O] 

3. In what follows, we consider rfP X(t) like (6); 
and, V(t,x) being any real, given function of t and x, 
we consider the rf 

Y(t) = V[t,X{t)\ (10) 

and the functionals: 

Z(Z,r) = CrV[u,X(u)]du 

and our aim is to prove that, under some assumptions, 
the fr of L(t,t+T), when this rv is properly normed, 
a,nd for any fixed t, tends toward Laplace's fr when 
J7—>+ oo. And we shall try to extend this result to 
the case where X(t) is not a rfP but a Laplacian 
process. In all cases we shall assume that there is 
% finite positive number M, independent of t and x 
(but, of course, depending on the considered func
tion V) such that for any t, x, x': 

\V(t,x)-V(t,x')\£M\z-x'\* ( ID 

vhere a is any fixed number with 0 < a ^ 1. Of such 
i function V, we shall say that it belongs to the class 
7«; if VeOa and if f(t) is any function of t, it is 
)bvious that V+f belongs to Ca. 

In this section, we restrict ourselves to the station-
try case, in which R(t,T)=R(r—t) depends on (r—t) 
>nly, and V(t,x) = V(x) depends on x only; we begin 
>y considering the case where X(f) is a rfP. 

I t is readily seen that Y(t) is strictlv stationary, 
ha t E[Y(t)], E[\Y(t)\l.E[Y\t)], E[Y(t)Y(t+h)] = 
f{h) exist; from a preceding remark, we may assume, 
vithout loss of generality, that E[Y(t)] = 0; y(h) is 
he fc of Y(t), and it is easy to prove that y(h) is 
continuous; Y(t) is continuous in mq and 

' f tT )~r V[X(u)]du imq 

ixists; E[L(t,r)] — 0; the emq a(j — t) of L(t,r) exists, 
lepends only on (r—t), and is given by: 

(72(r—1)= I I y(u—v) 
Jt Jt 

t is supposed that: 

f ">R2(u)du<:+™ 
, / — 0 0 

dudv 

Ve put: 

<t>(a) = 
J\u\>a 

B\u)du 

and we assume that: 

(12) 

We put: 

&(«) = < 
B(u) if | i t | ^ a 

0 i f | t t | > o 
RM=B(u)-Ba(u) 

(13) 

Xa{t)= l immq j iac-L= {* Ra{t-T) dN* {r)\ 

(14) 

X'a(t)=X(t)-Xa(t)= 

lim mg (iac - L ('Ra(t-r) dN*(r) 
a->-<o,0-»+a>( Yff lJa 

(14') 

and we remark that: (a) if \r—t\^2a) Xa(t) and 
Xa(j) are two independent rv; (b) for every fixed 
t, Xa(t) and X'a(t) are independent rv ; but the two 
processes Xa(t) and X'a(t) are, in general, correlated, 
because Xa(t) and X'a(r) are not necessarily inde
pendent if r 7*t. Now we state the following lemma: 
let RJ(u) (j —1,2, . . ., r) be r real functions such 
that: 

We put: 

* , («)= f [R>{u)]*du 0 = 1 , 2 , 
J\u\>a 

[#(«)]* * * < + » (j=l,2,...,r). 

,r) 

Xj(f)= l immq 
a—» — oo, /S—*+ oo 

{iac-±=£R'(t-T)dN*(T)}(j=l,2, . . .,r) 

Let T (̂aj) be r functions of the class Ca, such that: 

E{Vj[Xi(f)]} = 0 0 = 1 , 2 , . . . , r ) - " 

We put: 

£ ( 0 = ± V i [ * ' 0 ) ] 
. 7 = 1 

Of course, Z(#) is a strictly stationary rf; let 
p(h)=E[Z(t)Z(t+h)] be its fc. In what follows, S 
is some finite fixed positive number, not necessarily 
the same in all the formulas; we have the following: 

Lemma 3: \p(h)\=S 
&><&> 

I t is sufficient to prove this in the case r=2; B'a(u), 
B'J(u), Xi(t), X'J(t) being defined as in (13), (14), (14)', 
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we put: 

hen 

Za(t)=V1[Xl(t)\+V2[X2
a(t)} 

E[Za(f)]=E[Za(t)-Z(t)] 

=E{(V1\Xl(t)}- VAXKW + iVjXM- ViX%t)])} 

and by (11): 

\E[ZM\ ^S{E[\X'a\t)\°]+E[\X'a\t)\
a]} 

By Holder's inequality, we obtain: 

\E[Za(t)}\ ^s{Uaf+Uaf] (15) 
because: 

E{[X'J(Q]2}= {+"[B'J(u)Ydu= f [R\u)]Hu=^{a) 
J -a* J \u\>a 

We put: 
Aa(t) = Za(t)-E[Za(t)} 

Ba(t) = E[Za(t)]+Z(t)-Za(t) 
We have: 

Z(t) = Aa(t)+Ba(t) • 

E[Aa(t)]=E[Ba(t)] = 0 

and, if \t\ ̂ 2a,^l a(0) and Aa(t) are two independent 
r.v.; we have from (11) and (15): 

\BM\ ZS\Maf+Uaf+\X:\t)\« + \X'M"\ 

Hence, from Holder's inequalities: 

E(\Ba{t)\*)=S [^(af + Uaf]2 (16) 

On the other hand, it is easy to see that: 

E(\Mt)\2)^S (17) 

hence, if a=hj2, we may write: 

P(h)=E[Z(0)Z(h)]= 

E[MO)Bk(h)+Mh)Bk(0)+B>(0)Bk(h)] (lg) 
2 2 2 2 2 2 \ ° / 

(16), (17), (18) and Schwarz's inequality prove the 
Lemma 3. By exactly the same method, we may 
prove that: 

Lemma 4- If we put: 

YS)= Vr^it)], F2(i) = VJX1®], • • • Jr= Vr[X\t)} 

(under the same assumptions as above on the Xj's 
and the V/s) and: 

E[Yj(t)Yk(t+h)] = yjk(h), 

we have: 

M*)l** [§*'(*)'] 
(where S may be chosen independent of j and k). 

Now, we return to the rf Y(t) defined by 

Y(t) = V[X(t)] 

and with fc y(h), 

L{t,r)= VY{u)du 

By (9) and the lemma 3 (with r = l ) , we have: 

(+a\y(h)\dh<+ °° 
J - 0 0 

0 

We shall assume that: 

J y(h)dh; 15*0 (19) 

I t follows by the lemma 2 that there are two posi
tive numbers I and m such as: 

1(T-t) ^ <T\T-t) ^m{r-t) (r>*) 

at least for (r*—t) sufficiently large; let a be any posi
tive number, we put: 

Ya(t) = V[Xa(t)] 

Aa(f) = Ya(t) -E[ Ya(t)] Ba(t) = Y(t) - Ya(t) + 

E[TM 

La(t,r)~ I Aaiu)du L'a(tyr)= J Ba(u)di 

We have 
Y(t) = Aa(t)+Ba(t) 

L(t,r) = La(t,T) + L'a(t,T) 

and we remark that: 

(a) if \T— £ |^2a , Aa(t) and Aa(r) are two independ
ent rv; by lemma 3, applied to Aa(t), the fc ya(h) of 
Aa(t) is such as: 

lu 

|7.(A)|£S*(D* 

on the other hand we have: 

Ximya(h) = yQi). 
#_>_{_ 00 

This follows obviously from: 

Mt)=Y(t)-[Y(t)- Ya(t)]-E[Ya(t)], 

(20) 

(21) 
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from (12) applied to Ya(t), and from: 

| Y(t) - Ya(t) | = | V[X(t)] - V[XM | =g M\X'M |« 

I t follows that, for any a: 

r. | 7 a ( A ) | r f A < + o o 

and that, for any sufficiently large a, by (19): 

/ : 
ya(h)dh-^0 

Hence for any sufficiently large a, by Lemma 2, there 
are two positive numbers lx and mx such as: 

li{r-t)^E[La{tiry\^ml{r-t) 

and ^4a(0 being a strictly stationary process, it fol
lows from Lemma 1 that, for any fixed t and when T 
is tending toward + <» y the fr of 

La(t,t + T) 

jE[La(t,t+Ty] 

tends toward Laplace's fr [with e m = 0 and e m q = l ] ; 
on the other hand, putting: 

we may write: 

where ft and /32 are two functions of 0, easy to deter
mine; in the same way: 

I I yo(u—v)dudv-=-\ M ya(a)da\dp 

From (20) and (21), it follows that: 

±E(La(t,t+m 
l im - = 1 9 

a—»+oo 
(22) 

f «2(T) 

uniformly in T. 
(b) We may apply the lemma 3 to Ba(t), in the 

following way: r=2, Vi[x] = V(x), V2(x) = V(x) — 
E[Ya(t)], Rl=R(u), R2=Ra(u);ns: 

* i W ^ * W <t>2(u)^ct>(u), 

we obtain that, y'a(h) being the fc of Ba(t): 

IY:(A)I£<S-*(J) 2 

fl It is useful, for the proof, to divide the numerator and the denominator by T. 

And, because: 

Ba(t)={V[X(t)]-V[Xa(t)}}+E[Ya(t)] . 

it follows from (12) [applied to Y„(t)] and from (8) 
that, for every fixed h: 

limy'a(h) = 0. 
a—>-f-oo 

From this we may deduce, as in (a), that: 

lim ±E[L'a(t,t+Ty] = 0 
a—>+co 1 

uniformly in T. 
Now, from all these facts and from Lemma 1, it 

follows the: , 
Theorem IV: Under the above hypothesis, when 

T tends toward + «> and for every fixed t, the fr of 

L(t,t+T) 

tends toward Laplace's fr [with e m = 0 and e m q = l ] . 
More generally, considering Z(t) defined by: 

Z(t)=±VAX\t)] 

as above, under the same assumptions, and if we put: 

M(t,r)= fTZ(u)du, 

obviously we obtain in the same way that: 
Theorem V: When T tends toward + oo ? then, for 

every fixed t, the fr of 

y'ElMitJ+Ty] M(t>t+T) 

tends toward Laplace's fr, at least if, 8(h) being the 
fc of Z(t), we have: 

f " 8(h)dh^0 

On the other hand, considering Yj(t) = Vj[Xj(t)] 
(j=l,2, . . . , r), under the above assumptions, and 
assuming that, if yj(h) is the fc of Yj(t), we have: 

yj(h)dh 9*0 ( i = l , 2 , . . . ,r), 

putting: 

L\t,j)= J*' Y\u)du, . a%r-t)=E[L% rf\ 

it is easy to prove that: 
Theorem VI: For every fixed t, as T tends toward 
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+ oo the fr of the r-dimension rv < — ?
 /rrTi—-> • '• • ; 

( <ri\T) 

— ,rh\—- ( tends toward an r-dimensional Laplace's 
o-r(i) ) 

fr. 
In order to prove theorem VI, we have to use 

Lemma 4, a reasoning very similar to that which 
gives Lemma 1, and to prove that, when T - ^ + oo, 

\ <Til 

t+T) U(t,t+T)\ 
(T) A &2(T) I 

has a limit. That is not difficult, with (5) and a 
reasoning similar to that which leads to (22).10 

Extension to the case of a stationary Laplacian process: 
Let X*(t) be a Laplacian stationary process, with 
fc r(h); from theorem I I we know that X*(t) is the 
limit in law (when m—>+ oo) of the fdP X{t) with 
R(u) given by (9); let us assume that there is a choice 
of \f/(o)) in (9) in such a way that, <j>(a) always being 

we have: 

f R\u) du, 
J\u\>a 

J+oo a 

4>(aYda< + 

(23) 

Introducing, as above, Xa(t) and X'a(f), we know, by 
theorem I, or, better, by a more general theorem of 
[3] that the two-dimensional rf {Xa(t), X'a(t)} tends 
in law toward a two-dimensional Laplacian rf {X* (t), 
X'a*(f)} (when m - ^ + oo), and we see immediately 
that we may consider that : 

x*(t)=x:(t)+x:*(t) (24) 

I t is clear that, if \T — t\^2a, X*(t) and X*(r) are 
independent; that, for every t, X*(t) and X'a*(t) are 
independent; but the two rf X* t) and X'a*(t) are 
correlated; the fc's of X*(t), X'a*(t), the correlations 
between X*(l) and XH(t), X*(t and X'*(t), X*(t) 
and X'a*(t) being the same as those between X(t) 
and Xa(t), X(t) and X'a(f), Xa{t) and X'a(f). What
ever m is, it is clear also that the preceding method 
may be applied to X*(t) as well as to X(t), and with
out any change; in particular, we may conclude: 

(a) from Lemma 3, that (24) is a representation 
if X(t) be a sum of two Laplacian processes, the 
second of which is in some sense negligible if a is 
large, the first being of a well-defined and very sim
ple and special form; this decomposition is valid for 
a wide class of stationary Laplacian processes [it 
would be interesting to replace (23), which defines 
this class, by a more direct assumption on r(h)], and 
seems to us to be the most interesting feature which 
we encounter in this section; it must be pointed out 
that this decomposition is not a classical spectral de
composition; in such a spectral decomposition, which 
is valid for any stationary r.f. of second order, the 

io Theorem IV was first stated by Blanc-Lapierre, in Sur certaines fonctions 
aleatoires stationnaires, Thesis (Paris, 1945), Masson edit., but under some very-
much stronger assumptions. 

terms of the sum are uncorrelated: but m (24), 
Xt(t) and X'a*(f) are correlated. 

(b) Theorem IV and Theorem V are immediately 
applicable with X*(t) instead of X(t); it is also pos
sible to state the equivalent to Theorem VL 

4. Now, we take the case in which B(t,r) is any 
function of {t,r)T but we assume that there is a 
nonnegative function R(u) such as: 

\R(t,r)\^B(t-r) J+ o . i?(tft)rftt<+«> 

and such that, if 

# ( • a ) = I i 
J M i > « 

E*{u)du, 

-co 
<l>(a)2du<l+ oo 

and V(t,x) may depend on t. 
I t is clear that the preceding method may be applied, 
with: 

Ra(t,T)=R(t,T) if \T-t\^a, = 0it | T —*|>a 

R'a(t,T)=R(t,T(-Ra(t,r) 

and so on. The limitations given by Lemma 3 and 
4 are still valid; we start by considering, not X(t), 
but its Laplacian limit in law X*(t); let y*(u,v) = 
E [V[X*(u)]V[X*(v)]}be the c of Y*(fi) = V[t,X(f)]9 
and 

L*(t,r)= {TY*{u)du. 

I t is easy to see that there is a function K{T—() 
such as: 

E(\L*(Lr)\s)^K(T-t) (25) 

is valid for every (t,r). Consequently, by Lemma 1, 
the analogue of theorem IV yields, if we suppose 
that : 

1 rt+T r*t+T 
lim inf ^ y*(u,v)dudv>0 

[this limit is independent of t; this assumption is 
to replace (19)]. And we may point out that we 
have for X*(t) a decomposition analogous to (24). 
But it is an open problem to characterize, directly 
on their c , the Laplacian processes such that there 
is a corresponding function R(t,r) satisfying the pre
ceding assumptions. But we may mention that, in 
the electrical applications it is known a priori that the 
interfering Laplacian processes are of the above con
sidered kind. 

Now, if we take the case of X(t) instead of X*(t), 
we may follow exactly the same procedure: the only 
exception is that, now, the limitation analogous to 
(25) is not automatically satisfied, and we need a 
supplementary assumption, like, for instance: 
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*[(/: B(t-r)\dN *(r)|)3]< + 
in order to have (25). 

5. On the other hand, it would be useful to have an 
assumption on V weaker than (11); considering only 
the stationary case, it is easy to see that (11) may be 
replaced by the weaker assumption that : 

\V(x)-V{x')\^\(x)\x-x'\« ( 0 ^ o < l ) (26) 

where the positive function of x \(x) is such as: 

sGxTOU1--) <+~ (27) 

or 

£ ( | X [ X * © ] | I ^ ) < + » (28) 

If \(x) is bounded by: 

X(s) SA+B\x\t 

when A, B, 0 are any positive numbers, (28) is always 
satisfied. 

If a = l , reasonings have to be slightly modified, 
but it is readily seen that weaker assumptions like 
the preceding one may be accepted. 

But it would be useful to have assumptions such 
that V may have some discontinuities. 

Los ANGELES, December 18, 1951. 
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