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r An Iteration Method for the Solution of the Eigenvalue 
I Problem. of Linear Differential and Integral Operators l 

By Cornelius Lanczos 

The p rese nt in vestigation designs a syste mat ic method for findin g the latent I'oots and 

t he prin cipa l axes of a matrix, with ou t redu cing t he order of the matri x. It is characterized 

by a wide fi eld of appli cab ili ty a nd great accuracy, s ince t he accum ulat io n of ro undi ng errors 

is a vo ided, t hrough t he p rocess of " minimized ite ratio ns". Moreover, t he mcthod leads to 

a we ll co nve rge nt s uccessive a pp rox imatio n p roccd ure by whi ch t he solu t ion of in tegra l 

eq uatio ns of the Fred holm t .v pe a nd t he so lu tion of t he eige nvalue prob lem of linear diller

en tia l a nd integ ra l o perators rn ay be accom plished . 

1. Introduction 

The eigenvalue problem of linear operators is of 
central impor tan ce for all vibra tion problems of 
phys ics a nd engineering. The vibra tions of elasti c 
structures, the flutter problems of aerodynami cs, 
the stabiLi ty problem of electric networks, the 
atomic and molecular vibrations of par ticle pllYs
ics, ar c an diverse aspects of the same fundamental 
problem, viz., the principal axis problem of qu ad
ra tic forms. 

In view of tlle cen tral impor tance of the eigen
value problem for so many fields of pure and 
applied mathematics, much though t has b ee n de
vo ted to the designing of effi cien t methods by 
which tho eige nvalues of a given linear operator 
may be found . That lineal' operator may be of 
the algebraic or of th e con tinuous Lyp o; that is, a 
matrix, a differen tial operator , or a Fredholm 
kernel function . Itera tion methods playa prom
inen t part in these designs, and the li tera ture on 
the i teration of matrices is very extensive. 2 In 
the English li terature of recen t years the works of 
H. HOLelling [1] 3 and A. C. Aitken [2] deserve 
atten tion. H . Wayland [3] surveys the fi eld in 
its hi storical development, up to recen t years. 
W. U. Kincaid [4] ob Lained addiLional resuLLs by 
improving Lhe converge nce of some of Lhe classical 
procedures. 

, 'rhe prcparation of this paper was sponsored in part by tile Office of 
Naval R esearch. 

2 'r ho basic principles of the variou s itera tion methods arc exhaustively 
treated in the well-known book on .I~ l o mellta l' Y matri ces b y H. A. }-' razer , 
W . J. DUllean , and A. H. Colla r (Cambr idge Unh-ersity P ress, 1938); 
(MacMillan, New Yo rk, N. Y., 1947). 

3 Figu res in brackets indicate the l iterature referell ces at i he end of t his 
paper. 
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The presen t inves tigation, al though star ting 
out along classical lines, proceeds never theless in 
a differen t direc tion. The advan tages of the 
meLhod h ere developed 4 can be summarized as 
follows: 

1. The i terations arc used in the most economi
cal fashion, ob taining an arbi t rary number of 
eigenvalues and eigensolu tions by one single set 
of itera tio ns, without reducing th e o l~del' of Lhe 
ma trix. 

2. The rapid accumulation of fatal ro unding 
errors, common to all itera t ion processes if applied 
to matrices of high dispersion (large" spread" of 
the eigenvailles), is effectively coun LeractecL by 
the method of " minimi zed iteraLions". 

3. The method is directly translatable into 
analytical Lerms, by replacing summation by 
integra Lion. We Lh cn get a rapidly convergen t 
analytical iteration process by which th e eigen
values and eigensolu tions of linear d ifferen tial and 
integral equations may be ob tained. 

II. The Two Classical Solutions of 
Fredholm's Problem 

Since Fredholm's fundamental essay on integral 
equations [5], we can replace the solution of linear 
differential and integral equa tions by the solution 

• The literatu rc available to tile author s howed no evidence that tho 
methods and results o( ihe present investigation have been found before. 
However, A. M. Ost rowski of t he University of TI asle and the Institute for 
N w nerical Analysis informed the author that his method para llels the I 
earlier work of some Huss ian scientists; the references given by Ostrowski 
arc; A. Krylov, I z\'. Aka,!. N auk SSSR 7, 491 to 539 (1931) : N . Luzin, 1zv. 
Akacl. Nauk SSSR 7, 900 to 958 (193 1). On t he basis of the revie"'s of thcse 
papcrs in t he Zcntralblatt, thc author believes t hat the two methods coincide 
only in t he point of depar ture. 'rhe author has not, however, read these 
R ussian papers. 
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of a set of simultaneous ordinary linear equations 
of infinite order. The problem of Fredholm, if 
formulated in the language of matrices, can be 
stated as follows: Find a solution of the equation 

y - AAy= b, (1) 

where b is a given vector, A a riven scalar para
meter, and A a given matrix (whose order event
ually approaches infinity); whereas y is the 
unknown vector. The problem includes the 
inversion of a matrix (A= co) and the problem of 
the characteristic solutions, also called "eigenso
lutions", (b= O) as special cases. 

Two fundamentally different classical solutions 
of this problem are known. The first solution is 
known as the "Liouville-Neumann expansion" 
[6] . We consider A as an algebraic operator and 
obtain formally the following infinite geometric 
senes: 

This series converges for sufficiently small values 
of IAI but diverges beyond a certain IAI=IAd. 
The solution is obtained by a series of successive 
"iterations"; 6 we construct in succession the 
following set of vectors: 

bo= b 

b1= Abo 

bz= Ab l 

and then form the sum: 

(3) 

(4) 

The merit of this solution is that i t requires 
nothing but a sequence of iterations. The draw
back of the solution is that its convergence is 
limited to sufficien tly small values of A. 

The second classical solution is known as the 
Schmidt series [7] . We assume t,hat the matrix: 
A is "nondefectiv e" (i. e. that all its elemen tary 
divisors are linear) . We fur thermore assume that 

, Throughout this paper the term " iteration" refers to the application of 
the gh'en matrix A to a givcn vector b, by formin g the product Ab. 

we possess all the eigenvalues 6 Il i and eigenvectors 
U t of the matrix A, defined by the equations 
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(i = 1,2, ... ,n). (5) 

If A is nonsymmetric, we need also the" adjoint" 
eigenvectors u ;*, defined with the help of the 
transposed matrix A *: 

(i= 1, 2, . .. ,n). (6) 

We now form the scalars 

(7) 

and obtain y in form of the following expansion: 

This series offers no convergence difficulties, 
since it is a finite expansion in the case of matrices 
of finite order and yields a convergent expansion 
in the case of the infinite matrices associated with 
the kern els of linear differential and integral 
operators. 

The drawback of this solution is- apart from 
the exclusion of defective matrices 7-that it pre
supposes the complete solution of the eigenvalue 
problem associated with the matrix A. 

III . Solution of the Fredholm Problem by 
the S-Expansion 

We now develop a new expansion that solves 
the Fredholm problem in similar terms as the 
Liouvill e-N eumann series but avoids the conver
gence difficulty of that solu tion. 

IVe first no tice that the i tcra ted vectors bo, bJ, 
bz, • . • canno t be linearly independent of 
each other beyond a certain defini te bk . All these 
vectors find t,heir place within the n-dimensional 
space of the matrLx A , hence not more than n of 
them can be linearly independent. We thus know 
in advance that a linear identity of the following 
form must exist between the successive iterations. 

• We shall nse the term "eigenvalue" for the. numbers 1'-' defined by (5), 
whereas the reciprocals of tbe eigenvalues: A,= 1/1'-' shall be called "character, 
is tic numbers" . 

7 The characterist ic sol utions of defective matrices (i. e. matrices whose 
elementary divisors are not throughout li near) do not include tbe entire 
n·dimensional space, since such matrices possess less than n independent 
principal axes. 
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We cannot tell in advance wha t m will be, except 
for the lower and upper bounds: 

l~m~n. (10) 

How to establish the relation (9) by a systematic 
algorithm will be shown in section VI. For the 
t ime being we assume that the relation (9) is 
already established. We now define th e poly
nomial 

together with the " inverted polynomial" (the 
coefficients of which follow th e opposite sequence) : 

Furthermore, we introduce~ th e partial sums of the 
latter polynomial : 

S o = 1 

Sl(X) = I + g1A 

S 2(X) = 1 + gIX+ g2A.2 
(13) 

We now r efer to a form lila whi ch can be proved by 
straightforward algebra : 8 

S ,t.(X) _ xmG(x) 
I - Xx 

+ S m_3(X) . X2X 2+ .. ,+ S o' xm- 1xm - 1. 

(14) 

Let us apply this formula operationally, replacing 
x by the matrix A, and operating on th e vector 
bu. In view of the defini tion of the vectors bi • 

the relation (9) gives: 

G(A ) . bo= O, (15) 

and thus we obtain: 

f: ~~ bo = S m-I (}..) bo + S ",_2 (X) Abl + .. . + S oX m- I bm_l , 

(16) 
and hence : 

(17) 

8 In ord er to prevent this paper from becoming too lengthy the analytical 
details of the prcsent investi gation arc kept to a minimum, and in a few places 
t he reader is req uested to interpolate the missing steps. 

If we compare this solu t ion with the earlier 
solut ion (4) , we notice t hat the expansion (17) 
may be conceived as a modified form of the Lioll
ville-N eumann series, because it is composed of 
the same kind of te rms, the differen ce being onJy 
that we weight t he terms xkbk by the weigh t factors 

(18) 

instead of taking them all with the uniform weight 
factor 1. This weighting has the beneficial effect 
that the series terminates after m terms, instead of 
going on endlessly . The weight factors W j are 
very near to 1 for small X bu t become more and 
more important as X increases . The 'weighting 
makes the series convergen t for all values of X. 

The remarkable feature of the expansion (17) is 
its complete geTierali ty. No matter how defective 
the matrix A may be, and no matter how the 
vector bo was chosen, the expansion (17) is always 
valid, provided only that we interpret it properly . 
In particular we have to bear in mind that there 
will always be m polynomials S k(X), even t hough 
every S k(X) may no t be of degree le , du e to the 
vanish ing or the higher coeffi cients. For example, 
it could happen that 

G(x) = xm , (19) 
so that 
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S ", (X) = 1 + OX + OX 2+ 

S k(X) = 1+ 0X + OX2 + + OX' , 

and the formula (17) gives : 

y = bo+ Xb 1+ .. . + }..m- 1bm _ 1• 

(20) 

(21) 

(22) 

IV. Solution of the Eigenvalue Problem 

The Liouville-Neumann series canno t give the 
solu tion of the eigenvalue problem , ince t he ex
pansion becomes divergen t as soon as the param
eter X reaches the lowest characteristic number 
XI. The Schmidt series cannot give th c solut ion of 
the eigenvalue problem since it presupposes the 
lmowledge of all the eigenvalues and eigenvectors 
of the matrix A. On the other hand , the expan
sion (1 7), which is based purely on iterations and 
yet remains valid for all X, must contain implicitly 
the solu tion of the principal axis problem. In
deed, let us write the right side of (1) in the form 

(23) 



Then the expanSIOn (17) loses its denominator 
and becomes: 

W e can now answer the question whether a 
solu tion of the homogeneous equation 

y-AAy= O, (25) 

is possible without the identical vanishing of y . 
The expression (23) shows t hat b can vanish only 
under two circumstances; either the vector b, or 
the scalar Sm(A) must vanish. Since the former 
possibility leads to an identically vanishing y , 
only the latter possibility is of in terest. This 
gives the following condition for the parameter A. 

(26) 

The roots of this eq uation give us the character
ist ic values A= Ai, whereas the solution (24) yields 
the characteristic solutions, or eigenvalues, or 
principal axes of the matrix A: 

+ SOA;n - lbm_1• 

(27) 

It is a remarkable fact that although the vector 
bo was chosen entirely freely, the particular linear 
combination (27) of t he iterated vectors has in
variant signi ficance, except for an undetermined 
factor of proportionality that remains free , in view 
of the linearity of the defining equation (25) . 
That undetermined factor may come out even as 
zero, i. e., a certain ax is may not be represented in 
the trial vector bo at all. This explains why th e 
order of the polynomial S m(A) need not be neces
sarily equal to n. The Lrial vector bo may not give 
us all the principal axes of A. 'What we can sa,y 
with assurance, however , is that all the roots of 
Sm (A) are true characteristic values of A, and all 
th e Uj obtained by the formula (24) are true char
ac teristic vectors, even if we did not obtain the 
complete solution of th e eigpnvalu e problem. The 
discrepancy between the order m of the poly
nomial G(p.) and the order n of the characteristic 
equa tion 

F(p.) = = 0 (28) 
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will be the subj ect of th e discussion in the next 
section. 

Instead of subst ituting into the formula (27), 
we can also obtain the principal axes Ut by a 
numerically simpl~r process, applying syntheti c 
division. By synthetic division we generate the 
polynomials: 

G(x) = xm- 1+ gixm - 2+ . . . +g:,,-l' 
X- P. i 

We then replace Xi by bi and obtain : 

(29) 

The proof follows immediately from th e equation 

(A - ,ui)Ui-G(A)·bo = O. (3 1) 

V. The Problem of Missing Axes 

Let us assume that we start with an arbitrary 
"trial vector" bo and obtain by successive itera
t ions the sequence: 

(3 2) 

Similarly we star t with the trial vector b~ and 
obtain by iterating with the traIisposed matrix A * 
the adjoint sequence: 

(33) 

Let us now form the following set of " basic 
scalars" : 

(34) 

The remarkable fact holds that these scalars 
depend only on the sum of the two subscripts i and 
k; c. g. 

(3 5) 

This gives a powerful numerical check of the 
iteration scheme since a discrepancy between the 
t wo sides of (3 5) (beyond the limi ts of the round
ing errors) would indicate an error in t he calcula
tion of bk+1 or b:+ 1 if the sequence up to bk and b: 
has been checked before. 

Let us assume for the sake of the present argu
ment that A is a nondcfective matrix, and let us 
analyze the vector bo in Lerms of th e eigenvectors 
Ui, while b~ will be analyzed in tf'rms of the 
adjoint vectors u;: 

(36) 

(3 7) 

( 
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Then the scalars Cj b ecom e: 

wi th 
(3 9) 

The problem of obtaining the J.l . from the c. is 
the problem of " weigh ted momen ts", whi ch can 
be solved as follows : Assuming that none of the 
Pk vanish and that all the A, are distinct, we 
es tablish a linear relation between n+ 1 consecu
t ive Cil of the following form: 

Co 1)0 + Cl 1)l + 

Cl 1)0 + C21)1+ +Cn 1)n - 1 +C" +l = 0 

(40) 

Then the defini tion of the c. shows directly that 
the set (40) demands 

F(J.l .) = 0, (41) 
where 

H ence, by solv ing th e recurren t set (40) wi th the 
h elp of a "progressive algori thm" , displayed in 
the next section, we can ob tain the coeffi cients of 
the characteristic p olynomial (42), whose roots 
give the eigenvalu es J.l • . 

Under the given restricting condi tions none of 
the J.l j roots has been lost, and we could actually 
establish the full characteristic equation (41) . It 
can happ C'n , hOl'level', that bo is orthogonal to some 
axis u;, and it is equally possible that b~ is 
orthogonal to some axis U k . In that case T j and 
r: drop out of the expansions (36) and (37) and 
consequen tly the expansion (38) lacks both 
p j and Pk' This m eans that the scalars Cj are 
unable to provide all the J.l j, since J.l j and J.l k are 
mlssmg. The characteristic equation (4 1) canno t 
be fully established und er these circumstances. 

The deficiency was here caused by an unsui table 
choice of the vectors bo and b~; i t is removable by a 
better choice of the Lri al vectors. H owever, we 
can have ano ther situation where the deficiency 
goes deeper and is n ot removable by any choice of 
the trial vectors. This happens if the J.l j roo ts of 
the characteristic equ aLion are not all distinct. 
The expansion (38) shows that two equ al roots 
Aj and Ak cannot be separated since they behave 
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exac Lly as one single roo t with a double ampliLude. 
Generally, Lhe weigh ted momen ts Cj can never 
show whether or no t there are multiple roots, 
because Lhe multiple roots behave like single roo t . 
Consequently , in the case of multiple eigenvalues 
the lineal' l"OlaLion between the Cj will not be of the 
nth but of a lower order . If the number of distinct 
roo ts is m, then Lh e relation (40) will appear in the 
following form : 

. (43) 

Once more we can establish the polynomial 

bu t this polynomial i now of only mth order and 
factors into the m root factors 

where all the J.l j are distinct. After obtaining 
all the roots of th e poly nomial (44) we can now 
construct by syn thetic division th e poly nomi als: 

a nd replacing Xi by bj we ob tain the prin cipal axes 
of both t and A *: 

This gives a p ar t ial solu tion of t he prineipal 
axis problem, inasmuch as each mul tiple root con
t ributed only one axis. Moreover , we cannot tell 
from our solu t ion which one of the roots is single 
and which one multiple, nor can the degree of 
mult iplicity be established . In order t o get fur ther 
information , we h ave to change our trial vectors 
and go thl'Ough t he i teration scheme once more. 
vVe now substitute into the formulae (47) again 
and can immediately localize all t he single roo ts 
by the fact t hat the vectors UJ associated wi th 
t hese roo ts do not change (apart from a propor
t ionality factor), whereas the Uk belonging to 
double roots will generally change their direction. 



l 

A proper lin ear combination of the new u:, and the 
previous Uk establishes th e second axis associated 
with the double eigenvalue f.lk; we put 

The factors,), and ')'* are determin ed by th e con
ditions that the vectors Uk and u% have to be bi
orthogonal to the vectors ui' and u%'. In the case 
of triple roots a third trial is demanded, and so on. 

An interesting contrast to t his behavior of 
multiple roots associated with nondefective matri
ces is provided by the behavior of multiple roots 
associated with defective matrices. A defective 
eigenvalue is always a multiple eigenvalue, bu t 
here the multiplicity is not caused by the collapse 
of two very near eigenvalues, but by the multi
plicity of the elementary divisor. This comes 
into evidence in th e polynomial G(x) by giving a 
root factor of higher than first order. Whenever 
the polynomial G(x) reveals a multiple root, we 
can tell in advance th at the matrix A is defective 
in th ese roots, and the multiplicity of the root 
establish es th e degree of deficiency. 

It will be revealing to demonstrate these con
ditions wi th th e help of a matrix tha t combines 
all the different types of irregularities that may 
be encountered in working with arbitrary matrices. 
Let us analyze the following matrix of sixth order : 

1 2 3 000 
o 1 4 0 0 0 
o 0 1 0 0 0 
o 0 0 2 0 0 
o 0 0 0 0 0 
o 0 0 0 0 0 

The eigenvalue 2 is the only regular eigenvalue 
of this matrix. The matrix is "singular", because 
the determinant of the coefficien ts is zero. This, 
however, is irrelevan t from the viewpoint of the 
eigenvalue problem, since the eigenvalue "zero" 
is just as good as any other eigenvalue. More 
important is the fact that the eigenvalue zero is J, 

double root of the characteristic equation. The 
remaining three roots of th e characteristic equa
tion are all 1. This 1 is thus a triple root of the 
characteristic equation ; at the same time the 
matrL,{ has a double deficiency in this root, 
because the elementary divisor associated with 

this root is cubic. The matrix possesses only 
four independent principal axes. 

What will th e polynomial G(x) b ecome in the 
case of this matrix? The regular eigenvalue 2 
must give the root factor x-2. The regular 
eigenvalue 0 has th e multiplicity 2 but is reduced 
to the single eigenvalue 0 and thus contributes 
the factor x. The deficient eigenvalue 1 has the 
multiplicity 3 but also double defectiveness. 
Hence, it must con tribute th e root factor (x- 1)3. 
We can thus predict that th e polynomial G(x) 
will corne out as follows. 

Let us verify this numerically. As a trial vector 
we choose 

bo = b~ = 1, 1, 1, 1, 1, 1. 

The successive iterations yield the follow ing: 

bo= 1 1 1 1 1 1 

b1= 6 5 1 2 0 0 

b2 = 19 9 1 4 0 0 

b3= 40 13 1 8 0 0 

b4= 69 17 1 16 0 0 

b5 = 106 21 1 32 0 0 

b6 = 151 25 1 64 0 0 

b~ = 1 1 1 1 1 1 

b;= 1 3 8 2 0 0 

b;= 1 5 23 4 0 0 

b;= 1 7 46 8 0 0 

b:= 1 9 77 16 0 0 

b;= 1 11 116 32 0 0 

b~= 1 13 163 64 0 0 

vVe now construct the Cl by dotting bo with the 
b; (or b~ with th e bl); we continue by dotting b6 

with b;, ... b~ (or b~ with bl , ... b6). This gives 
the following set of 2n+ 1 = 13 basic scalars. 

cj= 6, 14, 33, 62, 103, 160, 241, 362, 555, 884, 
1477, 2590, 4735. 
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The application of the progressive algorithm of 
section VI to these bj yields G(x) in the predicted 
form . We now ob tain by synthetic divisions: 

InverLing Lhese polynomials we obtain the matrix 

- 2 5 - 4 
- 1 3 -3 
- 7 9 - 5 

1 
1 ~) 

The produ cL of this maLrix with Lhe iLeraLion 
matrix B (omiLLing Lhe la st row b6) yields three 
principal axes Ui; similarly the product of th e same 
matrix wiLh the iteration maLrix B* yields lhe 
three adjoint axes u;: 

u(1) = - 8 0 0 0 0 0 

u(2) = 0 0 0 2 0 0 

u (O) = 0 0 0 0 2 2 

u* (1)= 0 0- 8 0 0 0 

u * (2) = 0 0 0 2 0 0 

u * (0) = 0 0 0 0 2 2 

Since G(x) is of only fifth order, while the order 
of the characteristic equation is 6, we know tha t 
one of the axe is still missing. V\Te cannot de
cide a priori whether the missing axis is caused by 
the dupliciLy of Lhe eigenvalue 0, 1, or 2.9 How
ever, a repetition of the iteration with the trial 
vectors 

bo= b~ = 1, 1, 1, 1, 1,0 , 

causes a change in the row u(O) and u * (0) only. 
This designates the eigenvalue u= o as the double 
root. The process of biorthogonali zat ion finally 
yield: 10 

' We bave in m ind the general case and o\'crlook the fact that the over
sim pl ified na ture of the uample makes the dec ision triv ial. 

10 rrhe loader is urged to carry through a similar a nalys is with the same 
matrix, but cban~ing the 0, ° diagonal elements of t he rows 5 and 6 LO 1. 0, 
and to 1,1. 
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UI (0) = 0 0 0 0 1 1 

U2(0) = 0 0 0 0 1 - 1 

u; (0) = 0 0 0 0 1 1 

u;(O) = 0 0 0 0 1 - 1 

VL The Progressive Algorithm for the 
Construction of the Characteristic Poly
nomial G(x) 

The cru cial point in our discussions was the 
establishment of a linear relation between a 
cer tain b", and the previous iLeraLed vectors. 
This relation leads to Lhe characteristic poly
nominal G(x) , whose )'oots G(}J-i) = 0 yield t he 
eigenvalues MI' Then by yntheLic division we 
can immed iaLely ob tain those parLiculal' linear 
combina tions of the iLeraLed veClors bj , which 
give u the eigenvector (pri ncipal axes) of the 
matrix 1. 

We do not know in advance in what relaLion the 
order m of the polynomial G(x) will be to the order 
n of the maLrix A . Acciden tal deficiencies of the 
trial vectors bo, b~, and the presence of mul t iple 
eigenvalue in A can diminish m to any value 
between 1 and n. For this reason we will follow 
a systemaLic procedure that generates G(x) 
gradually, going t lu'ough all degrees from 1 to m. 
The procedure comes a utomatically to a hal t 
when the propel' m has been reached . 

Our final goal is to solve Lbe l'eClll'l'ent set of 
equations: 

+ Cm= O 

(48) 

T his is only possible if the determinant of this 
homogeneous se t van ishes: 

= 0. (49) 

\ 
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Before reaching this goal, however , we can cer
tainly solve for any k< m the following inhomog
eneous set (the upper k is meant as a superscript): 

(50) 

The freedom of hk in the last equation removes the 
overdetermination of the set (48). The proper 
m will be reached as soon as hm turns out to be 
zero. 

N ow a recurrent set of equations has certain 
algebraic properties that are not shared by other 
linear systems. In particular, there exists a 
recurrence relation between the solutions of three 
consecutive sets of the type (50). This greatly 
facilitates the method of solu tion, through the 
application of a systematic recurrence scheme 
that will now be developed . 

We consider the system (50) and assume that 
we possess the solution up to a definite k. Then 
we will show how this solution may be utilized 
for the construction of the next solution, which 
belongE: to the order lc+ l. 

Our scheme becomes greatly simplified if we 
consid er an addi tional se t of eq ua tions that 
omits the first equation of (50) but adds one 
more equation at the end: 

Let us now multiply the set (50) by the factor 

(52) 

and add the set (5 1) . We get a new set of equa
tions that can be written down in the form: 

C017§ +I+CI17i+1 + .. . + CH I= O} (53) 

Ck17~ + l + Ck+ I1J~+ l + . .. + C2k+1 = 0 

262 

provided that we put 

17Z+ ' = qk' l + 1iZ 

Vl e now evaluate the scalar 

which is added to (53) as the last equation. 

(54) 

'What we h:we accomplished is that a proper 
linear combination of the solutions 17~ and 1i; 
provided us with the next solution 17f+ l. But 
now exactly the same procedure can be utilized 
to obtain 1i7+ 1 on the basis of 'ii7 and 177+1. 

For this purpose we multiply the set (51) by 

and add the set (53), completed by (55) but 
omitting the first equation. 
This gives: 

Cl1ilk+I+ C2rr~+ I+ . .. + CH 2 = 0 } 

(5i) 

CH lTi~+1+ CH2Ti~+1+ · · · + C2H2= 0 

provided that we put: 

- k+ l _ -q ;;;;k+ " k+ l 1 1Jl - k ·,1 ·,0 

1i~+1 = ilk 1j'~ + 17i+1 

~ (58) 

"::t~ q,. H ,l" J 
Once more we evaluate the scalar 

(59) 

which is added to (57) as the last equation . 
This analytical procedure can be translated into 

an elegant geometrical arrangement that generates 
the successive solutions 17r and 777 in sLlccessive 
columns. The resulting algorithm is best ex
plained with the help of a numerical example. 

For this purpose we choose the eigenvalue prob
lem of an intentionally over-simplified matrix, 
smce our aim is not to show the power of the 

I 

~ 

i 
I 

\ 
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method but the na ture of the algori thm, whid] 
leads to th e establishment of the character is tic 
equaLion . The limita tion of the method du e to 
the accumulation of round i ng errors will be dis
cussed in the next section. 

Let the given ma trix be: 

5 

° 3 

- 23) 
- 4 
- 13 

We iterate wi th the tri al vector bo= 1, 0, 0, and 
ob tain: 

1 ° ° 13 4 7 
28 24 12 

208 64 11 2 

0 0.5 I 
- - -------

1.5 

We transpose the m aLr ix and j Lera Le wiLh Lhe 
trial vec tor bo*= I , 0, 0, obtaining: 

1 
13 
28 

208 

° ° 5 - 23 
-·1 - 20 
80 - 368 

We do t the first row a r~d th e last row with the 
opposing matrix and ob tain th e basic scalars C; as 
fo llows: \I 

1, 13, 28, 208, 448,3328, 7168. 

These numbers arc written down in a column , 
and the sch eme displayed below is ob ta ined. 

I 2 :2.,1) ~ 

11,= 1 13 - 14 l 147. (j923075 - 163. 4012569 0 0 

q'= - 13 lO.846 15384 1. 0'17463 173 1.1 06~82990 0 

I 1 

]3 I -13 

28 I -2. 1;,0846l6 - 11. 6 1 702 1 2~9 
(60) 

208 1 

4~8 

3328 

71G8 

Instead of disLinguishing b etween Lhe l1 i and 7) t 

solutions we use a uniform procedure but mark 
the successive columns alternately as "fu ll" and 
"h alf columns"; thus we number the successive 
columns a zero , one-half, on e, . . . The sch eme 
has to end at ajv1l column, and the end i marked 
by the vanishing of the corresponding "h ead
number" hi. In our schem e the h ead-number is 
zero already at the half-column 2.5, but the sch eme 
canno t end here, and thus we continue to the 
column 3, whose head-numb er becomes once more 
0, and then the scheme is fini shed. The last 
column gives the polynomial G(x), starting with 
the diagonal term and proccedi ng up wa rd : 

G(x) = l .x3+ O·x2 - 16x+ O, 
=x3 - 16x. 

The head-numbers hi are always ob tained by 
dotting the column below with the basic column 
C;; e. g., at the bead of Lhe column 2 we find the 
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- I. 106182987 -16. 00000000·1 0 

1 0.000000003 - 16 

] 0 

I 

number - 163.4042569. This number lVas ob
Lained by Lhe following cumulati ve mulLiplicaLion: 

448· 1 + 208· (- 1.106382987)+28· (- 13.617021249). 

Th e numbers qi repre en t th e n egaLive raLio of 
two consecutive hi numbers: 

h t+y, 
qt=- 11. ;' 

11 Instead of iterating with A and A· n times, we can a lso iterate with A 
alone 211, ti mes. Any of the col umns of the iteration matrix can now be 
chosen as Ci n umbers s ince these colu mns cOlTcspond 1,,0 a dotting of t. he 
iteration matrix with b~=J, 0, 0, ... , respect.ively 0, 1, 0,0, .. . ; 0,0,1 , 0, 
0, . .. ; and so on. 'rhe transposed matrix is not used bere at all. E . C. 
Bower of t he Douglas Aircraft Co. points out to tbe au thor that from the 
machine viewpoint a uni form iteration scheme of 2n iterations is preferable 
to a div ided scheme of n+n iterat ions. T he divided scheme has tbe ad van
tage of less accumulation o( round ing errors and more powerful checks on the 
successive iterat. ions . rr he un iform scheme has the advant.age that morc 
than one colu mn is at our disposal. Accidental deficiencies o f the b~ vector 
can t.hus be eli m inated, by repeati ng the algorithm w ith a d ifferent col umn. 
("For this pu rpose it is of advantage to start wi tb t he t r ial vecto r bo= I , I, 
1, . . . 1.) I n t he case of a symmetric matr ix it is evident that after n itera
tions the basic sc,lars sboul d be formed, instead of continuing with n more 
iterations. 



v 
e. g. , ql.s= l.106382990 was obtained by the fol
lowing division: 

- (-163.4042569) 
147.6923075 

The scheme grows as follows. As soon as a 
certain column 0, is cO'npleted, we evaluate the 
associated head-number hi; this provides us with 
the previous q-number q,_% . We now construct 
the next column 0,+% by the following operation. 
We multiply the column Oi-% by the constant 
qi-% and add the column Oi: 

OH% = qi- WOt- % + OJ. 

However, the result of this operation is shifted 
down by one element; e. g. in constructing the 
column 2.5 the result of the operation 

l.10638299· (- 2.15384616) + 
(- 13 .617021249) = - 16 , 

is not put in the row where the operation occurred, 
but shifted down to the next row below. 

The unfilled spaces of the scheme are all 
"zero" . 

The outstanding feature of this algorithm is that 
it can never come to premature griej, provided only 
that the first two c-numbers, Co and Cl, are different 
from zero . Division by zero cannot occur since 
the scheme comes to an end anyway as soon as the 
head-number zero appears in one of the full 
columns. 

Also of interest is the fact that the products of 
the head-numbers associated with the full columns 
give us the successive recurrent determinants of 
the Ci ; e.g., the determinants 

1 

and 

1 
13 

1 
13 
28 

208 

13 
28 

13 
28 

208 
448 

1 13 28 
13 28 208 

.28 208 448 

28 
208 
448 

3328 

208 
448 

3328 
7168 

are given by the successive products 

1, H - 141)=- 141, (-:- 141)· (- 163.4042569) = 
23040, and 23040'0 = 0, 

~------

Similarly the products of the head-numbers of 
the half-columns give us similar determinants, but 
omitting Co from the sequence of c-numbers. In 
the example above the determinants 

13, 13 28 13 28 208 
28 208 28 208 448 

208 448 3328 

are given by the products: 

13, 13 '147.6923075 = 1920, 1920·0 = 0 

The purpose of the algorithm (60) was to gener
ate the coefficients of the basic identity that exists 
between the iterated vectors bi . This identity 
finds expression m the vanishing of the poly
nomial G(x) : 

G(x) = 0 (61) 

The roots of this algebraic equation give us th e 
eigenvalues of the matrix A. In our example we 
get the cubic equation 
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which has the three roots 

(62) 

These are the eigenvalues of our matrix. In order 
to obtain the associated eigenvectors, we divide 
G(x) by the root factors : 

This gives, replacing Xk by bk : 

u(O) = - 16bo+ b2• 

u (4) = 4b1+ b2• 

u(- 4) = - 4b1+ b2• 

Consequently, if the matrix 

o 
4 

- 4 

is multiplied by the matrix of the b, (omitting b3), 

we obtain the three eigenvectors Ui: 

\ 



7 = 80 40 = 11(4) 
o 
4 

- 4 
~) . (1~ 
1 28 

o 
4 

24 

0) ( 12 

12 - 24 

24 
40 

8 

12) ( U(O) ) 
- 16 u( - 4) . 

If the same matrix is multiplied by the matrix of the transposed iterations bt * (omitting b;), we obtain 
the three adjoint eigenvectors u;: 

o 
4 

- 4 
~) . (1~ 
1 28 

o 
5 

- 4 

0) ( 12 - 23 = 80 
- 20 - 24 

- 4 
16 

- 24 

- 20) (U *(0) ) 
- 1l2 = 11*(4) 

72 11*( - 4) . 

The soluLion of the entire eigenvalue problem is thus accomplished. 

VII. The Method of Minimized Iterations 

In principle, the previous discussions give a com
plete solution of the eigenvalue problem. We have 
found a systematic algorithm for the generation of 
the characteristic polynomial G(JJ. ). The roots of 
tIllS polynomial gave the eigenvalues of the matrix 
A. Then the process of synthetic division es tab
lished the associated eigenvectors. Accidental de
ficiencies were possible but could be eliminated by 
additional trials. 

As a matter of fact, however , the "progressive 
algorithm" of the last ection has its serious l imi
ta tions if large matrices arc in vol \Ted. Le t u 
assume that there is considerable "dispersion" 
amona the eiaenvalues which means that the ratio o 0 , 

of the largest to the smallest eigenvalue is fairly 
large. Then the succes ive iterations will grossly 
increase the gap , and after a fpw iterations the 
small eigenvalues will be practically drowned out. 
Let us assume , e. g. , that we llave a 12 by 12 mat
rix, which requires 12 iterations for the generation 
of the charaeteristic equation. The relatively mild 
ratio of 10:1 as the "spread" of the eigenvalues is 
after 12 iterations increased to the ra tio 1012 :1, 
wmch means that we can never get through with 
the iteration scheme because the rounding errors 
make all iterations beyond the eighth entirely 
valueless. 

As an actual example, taken from a physical 
situation, let us consider four eigenvalues, which 
are distributed as follows: 

1, 5, 50, 2000 . 

Let us assume, furthermore, that we start with a 
trial vector that contains the four eigenvectors in 
the ratio of the eigenvalues, i. e., the eigenvalue 
2000 dominates ,vith the amplitude 2000, eompared 
with the amplitude of the eigenvalue 1. After 
one iteration the amplitude ratio is increased to 
4.106 after two iterations to 8. 109 • The later , 
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iterations can give us no new information, since 
they practically repeat the second iteration, multi
plied every time by the factor 2000. The small 
eigenvalues 1 and 5 are practically obliterated and 
cannot be reseued, except by an excessive accuracy 
that is far beyond the limitations of the customary 
digi Lal machine . 

We will now develop a modifica tion of the cu s
tomary iteration technique that dispenses with 
thi difficul ty. The modified scheme eliminates 
the rapid accumulation of rounding error , which 
under ordinary circumstances stroys the value 
of high order iterations. The new technique pre
ven ts the large eigenvalues from monopolizing the 
sce ne. It protects the small eigenvalues by con
stantly balancing the distribution of amplitude in 
the most equitable fashion. 

As an illustraLive example, let us apply this 
method of "minimized iterations" to the above
mentioned dispersion problem. If the largest 
amplitude is nOl'mali;>;ecL to 1, then the initial 
distribu tion of amplitudes is characterized as 
follows: 

0.0005, 0.0025 , 0.025 , 1. 

Now, while an ordinary iteration would make 
this distribution still more extreme, the method 
of minimized iterations changes the distribu tion 
of amplitudes as follows: 

0.0205 0.1023 1 - 0.0253. 

We see that it is now the third eigenvector that 
gets a large weight factor, whereas the fOUTth 
eigenvector is almost completely in the back
ground. 

A repetition of the scheme brings about the 
following new distribution: 

0 .2184 1 - 0.1068 0.0000. 

, 
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It is now the second eigenvector that gets the 
strongest emphasis. 

The next r epeti tion yields: 

1 - 0.2181 0.0018 0.0000, 

and we see thai the weight shifted over to the 
smallest eigenvalu e. 

After giving a chance to each eigenvalue, the 
scheme is exhausted, since we have all the infor
mation we need. Consequently the next mini
mized iteration yields an identical mnishing of 
the next vector , thus bringing the scheme to its 
natural conclusion. 

In order to expose the principle of minimized 
iterations, let us first consider the case of symmetric 
ma trices: 

A*= A. (63) 

:Moreover , let us agree that the multiplication of 
a :rector b by the matrix A shall be denoted by a 
pnme: 

Ab = b' . (64) 

Now our aim is to establish a linear identity 
between the iterated vectors. We cannot expect 
that this identity will come into being righ t from 
the beginning. Yet we can approach this iden tity 
righ t from the beginning by choosing that linear 
combination of the iterated vectors b; and bo 
which makes the amplitude of the new vector as 
small as possible. H ence, we want to choose as 
our new vector bl the followin g combination: 

(65) 

where ao is determined by the condition tha t 

(b~ - IXobo) 2 = minimum. (66) 
This gives 

(67) 

Notice that 

(68) 

i.e. the new vector bl is orthogonal to the original 
vector boo 

' iV e now continue our process. From bl we 
proceed to b2 by choosing the linear combination 

(69) 

and once more IXI and f30 are determined by the 
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condition that b; shall become as small as possible. 
This gives 

(70) 

A good check of t he iteration b; is provided by the 
condition 

.e71) 

Hence, the numerator of f30 has to agree with the 
denominator of a l' 

The new vector b2 is orthogonal to both bo and hi' 
This scheme can obviously be con tinued. The 

most remarkable feature of this successive mini
mization process is, however , that the bes t linear 
combination never includes more than three terms. 
If we form b3, we would think that we should put 

(72) 

But actually, in view of the or thogonali ty of h2 to 
the previous vectors, we get 

(73) 

H ence, every ne'w step of the minimization process 
requires only two correction terms. 

By this process a succession of orthogonal vectors 
is genera ted : 12 

(74) 

until th e identity relation becomes exact, which 
means that 

(75) 

If th e matrix A is not symmetric, then we 
modify our procedure as follows: We operate 
simultaneously with A and A *. The operations 
are the Fame as before, with the only difference 
that the dot products are always formed between 
two opposing vectors. The scheme is indicated 
as follows: 

b~ 

b ~ = b~' - IXob~ 

12 'l"'he idea of the successi ve ortbogonalization o( a set of vectors was pro b
ably first employed by O. Szasz, in conn ection witb a determinant theorem 
of Hadamard ; cf. Math . lis p h ys. Ja pok (in Hungarian) 19, 221 to 22i, ( 1910). 
'rhe method found later numerous importan t applications. 
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1\ 

(76) 

Operationally the prime indicates mul tiplica
tion by th e matrix A. H ence, the succession of 
bi vector represents in fact a successive set oj 
polynomials. R eplacing A by th e more familiar 
letter x, we have: 

bo= l · bo 

bl = (x-ao) bo 

b2= (x-a l) bl - {3obo 

b3= (X- a2) b2 - {3lb l 
(77) 

This gradual generation of the ch aracteristic 
polynomial G(x) is in complete harmony wi th the 
procedure of th e " progressive algorithm", dis
c ussed in section VI. In fact , the successive poly
nomials oj the set (77) are identical with the 
polynomials joul1d in the full columns of the progres
sive algorithm (60). This explains the existence of 
the r ecurrence r elation 

(78) 

without additional "I, 8, terms. The 
existence of such a r elation is a characteristic 
feature of the recurrent set of equations that are at 
the basis of the entire development. 

Although the new sch em e goes basically through 
the same steps as the previously discussed "pro
gressive algorithm", it is in an incomparably 
stronger position con cerning rounding errors. 
Apart from the fact that the rounding errors do 
not accumulate, we can e:fl'ectively counteract their 
influence by constantly ch ecking the mu tual 
orthogonality of Lhe gradually evolving vectors 
bi and b:. Any lack of orthogonality, caused by 
rounding errors, can immediately b e corrected by 
the addition of a small correction term. 13 By this 
procedure the orthogonality of the gen erated 

13 See sectiou IX, eq 90. 
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vector system does not come gradually out of gear . 
However , quite apart from the numerical advan 

tages, th e biorthogonality of the vectors bi and b ~ 
has further appeal b ecause it imitates the behavior 
oj the principal axes. This is analytically an 
eminently valu able fact that makes the transition 
from th e itcrated vectors to th e principal axes ft 

simple and strongly convergent process. 
In order to see th e method in actual operation, 

let us apply it to th e simple example of section 
VI. I-Ier0 the matrix A is of third order, and 
thus we have to construct the vectors bo, bl , bz, b3, 

and th e corresponding ad joint vectors. W e ob
tain the following r es ults : 

bo= 1 

b~ = 1 3 

o 

4 

o b~= 1 

7 b~' = 13 

1·13 
0'0 = ---= 13 

1 

o 0 

5 - 23 

o 4 7 b~= o 5 - 23 

b;=-141 - 28 - 79 

1677 
0'1 = - 141 

b;'=- 141 - 69 279 

{30 = - 141 = - 141 
1 

=- 1l.8936 1702 

b2 = 0, 19 .5744680 , 4.25531914 

b;= O, - 9.53191490 , 5.44680854 

b;= O, - 17.02127656,3.40425542 

b;' = 0, 16. 34042562, -32.680 5142 

180.78768715 
0'2 = - 163.4042553 

(3 - - 163.40425746 
1- - 141 

= - 1.106382981 = l.158895443 

0, o 0, 

The associated polynomials become: 

Po= l 

Pl(X) =x- 13 

P2(X) = (x+ 11.89361702) (x- 13) + 141 

= x2- 1.10638298x - 13 .61702126 

P3(X) = (x+ l.106382981) (x2+ 10638298x -

13.61702126) - 1.158895443 (x- 13) 

o 



Comparison with the scheme (60) shows that 
the coefficients of these very same polynominals 
appear in the full columns 0, 1, 2, 3, of the pro
gressive algorithm of section VI. 

VIII. Solution of the Eigenvalue Problem 
by the Method of Minimized Hera tions 

The biorthogonal property of the vector system 
bi, b; leads to an explicit solution of the eigen
value problem, in terms of the vectors bi - Let us 
first assume that the matrix A is of the nondefec
tive type, and let us analyze the vectors bi in terms 
of the eigenvectors Ui- The method by which the 
vectors bi were generated, yields directly the 
relation 

b j=P i (J..Ll)U I + Pi(J..L2)U2+ - - 0 + Pi(J..Lm) Umo (79 ) 

If this relation is dotted with 11,;, we obtain, in 
vicw of the mutual orthogonality of the two sets 
of axes: 

(80) 

Let us now reverse the process and expand the 
Ui in terms of the bi: 

(81) 

The dotting by b; yields: 

(82) 

Let us denote the "norm" of bk by (Tk : 

CTk = b" 0 b:, 
while the norm of Uk will be left arbitrary_ 
the expansion (81) becomes: 

(83) 

Then 

bo bl ( ) b2+ Ui = - +Pl (J..L i) - +P2 J..L i -
(To (Tl (T2 

+ ( ) bm_1 
p m- l J..L t --. 

(Tm _ l 

(84) 

This expansion contains the solution oj the prin
cipal axis problem. The eigenvectors U j are gen
erated in terms of the vectors bi' which are the 
successive vectors of the process of minimized 
iterations. The expansion (84) takes the place of 
the previous "S-expansion" (27), which solved the 
eigenvector problem in terms of the customary 
process of iteration. 

The adjoint axes are obtained in identi cal 
fashion: 

4- ( ) b:-1 ,pm- I J..Li -- . 
Um-l 

(85) 

~---------------
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The expansion (84) remains valid even in the 
case of defective matrices. The only difference is 
that the number of principal axes becomes less _ 
than n since a mul tiple root J..L il if substituted into 
(84) and (85) cannot contribute more than one 
principal axis.l4 However , a defective matrix ac
tually possesses less than n pairs of principal axes, 
and the above expansions give the general solution 
of the problem. 

An interesting alternative of the expansion (84) 
arises if we go back to the original Fredholm 
problem and request a solution in terms of the 
minimized vectors bi , rather than the simply iter
ated vectors of the expansion (17) . One method 
would be to make use of the Schmidt series (8), 
expressing the U j of that series in terms of the bi, 
according to the expansion (84) . However, the 
Schmidt series holds for nondefective matrices 
only, while we know that a solution must exist 
for any kind of ma trices . 

Hence, we prefer to proceed in a somewhat 
different fashion_ We expand y directly in terms 
of the vectors bi : 

(86) 

We substitute this expansion into the equation 
(1) , replacing b; by 

(87) 

Then we compare coefficients on both sides of the 
equation. The result can be described as follows : 

Let us reverse the sequence of the a i-coefficients 
and let us do the same with the {3;-coefficients. 
H ence, we define 

{3o = {3m-2 

(88) 

am_l = ao 

" The reader is urged to carry through the process of minimized iterations 
and evaluatiou of the principal axes for the defective matrix 

1 
o 
o D 

which has only one pair of principal axes; (choose the trial vector in the form 
bo= b~= J , 1, 1). 

; 

< 
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We now construct the followillg "reversed" set 
of polynomials: 

Po = 1 

(89) 

= G(x) 

Then the solution of the Frcdholm problem (1) 
is given by the following expansion : 

Y = G()J.) [bm- l+ PI ()J.) bm- 2(U)bm-2+ . . . + Prn- l(u) bo], 

(90) 
where we have put 

] 
)J. = - ' 

}.. 
(91) 

The expansion (90) is completely genel'al and 
remains valid, no matter how the vector bo of the 
right side was given, and how regular or irregLllar 
the matrix A may be. The only condition to be 
satisfied is that the vector b~-while otherwise 
chosen arbitrarily- shall be free of accidental 
deficiencies, i. e. , b~ shall not be orthogonal to 
some U k if bo is not simultaneously orthogonal to 
u;. 

The expansion (90) leads once more to a solu
tion of the eigenvector problem, this time obtained 
with the help of the "reversed" polynomials 
Pi (X): 

The expansions (92) and (84) actually coincide
except for a factor of proportionality-due to 
algebrai.c reasons. 

o 
( 

12 
80 

- 24 

1.10638298 
5.10638298 

-2. 9361702 DO 4 
19.57446808 
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In order to see a numericfi,l example for thi 
solution of the eigenvalue problem let us return 
once more to the simple problem of section VI. 
The minimized bi and b; vectors associated with 
this matrix were given at the end of section VII. 
together 'with the associated polynomials Pi(X), 
vVe now construct the revel'sed polynomials 
Pi(X) . For this pUTpose we tabulate the a l 

and (3 j: 

13 
- 11.89361702 

- 141 
1.158895443 

- 1.106382981 

"Ve reverse the seq uence of this tab ulation : 

- 1.106382981 
- 11 .89361702 

13 
1.58895443 
- 141 

and construct in sLl ccession: 

Po= l 

PI (x) = x + 1.106382981 

152 (X) = (x + 1l.836 1702)PI (x) - 1.5gS95443 

= x2+ 13x+ 12 

P3(X) = (x-13) p 2(x) + 141 

The last polynomial is identical ,,,ith P3(X) = G(x). 
The zeros of this poly nomial are: 

)J.z= 4 , ).£3= - 4; 

substitu ting these values into P2 ().£) , PI (JI. ), Po we 
obtain the matrix : 

( 
12 
80 

- 24 

1.10638298 
5.10638298 

- 2.8936 1702 D 
The product of this matrix with the matrix of the 
bi vectors gives the tlu'ee principal axes Uj: 

o ) ( 12 24 
7 = 80 40 

4.25531914 - 24 8 

12) (U(O) ) 
40 = u (4) 

- 16 u (- 4) 
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1Il complete agreemen t wi th the previous result 
of section VI , but now ob tained by an en tirely 
differen t method. If the b-matrix is replaced by 
the b*-rnatrix, th e adjoint axes u*(O), u* (4) . 
u*( - 4) are ob tained. 

IX. The Lateral Vibrations of a Ear 

In order to study t he power of t l:e method in 
connection with a vibration problem of large 
dispersion, the elastic v ibrations of a bar were 
investigated . The bar was clamped a t one end 
and free at the other. 'Moreover, the cross section 
of the bar changes in the middl e, as shown in 
figure 1. 

FIGU R E 1. E lastic haT, clamped at one end, JTee at the 
otheT; the moment oj ineTt ia makes a jump in the middle 
in the ratio 1 :2 . 

The change of the cross section was such tha t the 
moment of inertia jumped from the value 1 to 2. 
The differential equation that describes the vibra
t ions of such a bar is the following four th-order 
equat ion: 

with the boundary condi tions: 

and 

y eO) = 0 

y' (O)= O 

y" (l ) = 0 } 

y"'(l) = 0 

(93) 

(94) 

k(x) = 1 (O ;2;X < -D' k (x) = 2 (~ <x;2; Z} (95) 

The differential opera tor a/dx was replaced by the 
difference operator /:::,. / /:::,. x, with /:::"1 = 1. The length 
of the bar was chosen as l= 13, thus leading to a 
12 by 12 matrix ; (sin ce y(O)=y (l )= O). 

The first step was the invers ion of the matrix . 
This was easily accomplished, sincc a matrix that 
is composed of a narrow band around the diagonal 
can be inver ted with li ttle label' . The eigenvalues 
Jl. i f the inver ted matrix are t he reciprocals of the 
original At: 

(9 6) 

The general theory has shown that the iteration 
scheme applied to an arbi trary matrix au toma ti
c:.tlly yields a bior thogonal set of vectors bi and b; ; 
they can be conceived as the building blocks from 
which the entire set of principal axes m:ty be gener
ated. In the present problem dissipative forces 
are absen t, which makes the matrix A symmetric 
and the problem self-adj oint . H ence, 
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(9 7) 

and we get through wi th a single set of iterations. 
N ow the general procedure would demand that 

we go through 12 minimized itera tions before th e 
otage b12 = 0 is attained. H owever, t he study of a 
"ystem with high dispersion has shown that in 
"uch a system the method of minimized iterat ion s 
practically separates t he various vibrational 
modes, starting wi th the highest eigenvalue and 
descending systematically to the lower eigenvalu es, 
pro vided that we employ a trial vector bo which 
weigh ts the eigenvec tors approximately accord
ing to the associa ted eigenvalues. In the presen t 
problem the t rial vector 1, 0, 0 . .. , was not used 
dir ectly but i terated with t he matrix A, and then 
iterated again . The thus obtained vector b~ 
was employed as the bo of the minimized iteration 
scheme. 

The strong grading of the successive eigen
vectors has t he consequence t hat in k minimized 
iterations essentially only the highest k vibration al 
modes will come in to evidence . This is of eminent 
practical value, since it allows us to dispense with 
the calcula tion of the very low eigenvalu es (i. e., 
very high frequencies since we speak of the eigen
valu es of the inverted matrix), which are often of 
li t tle physical interest, and also of little mathe
matical inter es t, in view of t he fact that th e 
replacing of t he d opera tor by the /:::,. operator be
comes in the realm of high frequencies more and 
more damaging. 

Whether the isolation actually takes place or 
not can be tested wi th the help of the Pi(X) poly 
nomials, which accompany the iteration scheme. 
The ord er of t hese polynomials constantly increases 
by 1. The correct eigenvalues of the matrix A 
arc ob tained by evaluating the zeros of the last 
polynomial Pm (x) = O. What actually happens, 
however , is that t he zeros of the polynomials 
Pi(X) do not change much from the beginning . 
If the dispersion is strong, then each new poly
nomial basically adds one more root but correct s 
the higher roots by only small amounts . It is 

~ ________ ~ ________ ~L-~------
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I thus well possible that the senes of largest roots 
in which we are primarily interested is practically 
established with suffi cicnt accuracy after a few 
iterations. Then we can stop, since t he later 
iterations will change the obtained values by negli
gible amounts . The same can be said about t he 
vibrational modes associated with these roots. 

This consideration suggeEts the following succes
sive procedure for the approximate determinat ion 
of the eigenvalues and eigenvectors (vibrat ional 
modes) of a matrix. As th e minimization scheme 
proceeds and we constantly obtain newer and 
newer polynomials Pi(X) , we handle th e last poly
nominal obtained as if it were th e final polynomial 
Pm (x). We evaluate the roots of this polynomial 
and compare them with the previous roots. 
Those roots that change by negligible amounts arc 
already in their final form. 

A similar procedure hold for the evaluation of 
the eigenvectors U i . H ere the biorthogonality of 
the vectors bi and bj - which is reduced to simple 
orthogonality in the case of a symm etric matrix
is of very great help . Let us assume that the 
length of the vectors bt is normalized to 1, by 
replacing bi by bd.Jai' Then the expansions (84) 
and (85) show that the following matrL'C must be 
an orthogo nal - although in the diagonal terms not 
normalized- matrL'C : 

PI (ILl) 
-J;I 

PI (IL2) 
.J;; 

Pz(ILI ) --:;-;;-
P2(IL2) 

.J-;;-

The dot-product of any two rows of this matrix 
must come out as zero- thus providing us with a 
powerful check on the construction of the Pi poly
nomials and the correctness of t·he roots IL t, which 
are the roots of the equaLion Pm(IL)=OY In th e 
case of strong dispersion, the transformaLion 
matrix (98) is essentially reduced to t he diagonal 
terms and one term to the righ t and to the left of 
the diagonal; i. e. , t he eigenvector U k is essentially 
a linear combination of three b-vectors only, VlZ. , 

bk - Z, bk - ; . and bk • 
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These general conditi OlJs are well demonstrated 
by the tabulation of the fin al r esults of the above
mentioned bar problem. The minimized itera
t ions were carried tlwough up to m = 6. On the 
basis of these iterations the firs t six eigenvalues 
and the first five vibrational modes of the clamped
free bar were evaluated. The iterations 'were con
stantly waL<:hcd for orthogonality. After obtain
ing a certain bt , this bt was immediately dotted 
with all the previous bj . If a certain dot-product 
bt • bj came out as noticeably different from zero, 
the correction term 

(99) 

was addf'd to bt , thus compensating for the in
fluence of rounding errors. By this procedure the 
10 significan t figure accuraey of the calculation" 
was constantly maintained. 16 

The roots of the successive polynomials Pt(x) are 
tabulated as follows: 

1'1 

2256. 926071 
. 943939 
. 943939 
. 943939 
. 943939 
. 943939 

1'2 

48. 1610705 
. 2037751\ 
. 2037825 
. 2037825 
.2037825 

5. 272311428 
.3!l5958260 
.356269794 
. 31\6269980 

1'6 

-----1----------

" Due to reasons of a lgebra, t he orthogonali ty of the ma tri x (98) holds not 
on ly for the final m but fo r an y value oj m. 

!6 In a control experimen t t hat imita ted t he conditi ons of the vibrating bar 
but with a more regular m3trix, the results wero analyticall y predi ctable and 
the computational results open to an exact check. 1'hi s example v iv idl y 
demon strated the astoni shin g degree of n oninterference of orthogon al vectors. 
The spread of tbe eigenvalues was 1 : 3200. The t ria l vector Do strongly 
over-emphasized t he largest e igen value, containing the lowest ancl the highest 
eigenvectors with an amplitude raLio of 1 : 108; (this means that if tbe \"ector 
of thc smalles t eigen value were drawn with t he length of 1 in ., t ho vector of 
the largest e igenva lue, perpendicular to the previous one, would span th e 
distance from Los A nge les to C hicago). T heslightest in clina tion be tween the 
two vectors would fa tall y inj ure the chances o f the smallest e igen value. 
"\'hen the enti re computation scheme was fini shed, the anal yti cally required 
eigenvalues were computed and the compariso n madc. The entire set Of 
ei{len!Jalues , including the last , agreed l.vitl~ a l1wximum error Of 2 units in the 
ninth signifi cant fi.gllTe , thus demonstra tin g tha t t he method is com pletely 
free of the cumulation of roundi ng errors. Tlhe autbor is indebted to 
Th1i ss Fannie l\i[ , Gorcion, of the N ational 13l1L'eau of Standards, for the 
e:nincntl y c.lJ'eful and skilled performance of the computi ng operation s. 

" 
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The successive ortho<!Onal transformation ma
trices (98) show likewise strong convergence. 
We tabulate here only the last computed trans
formation matrix (rounded off to four decimal 
places), which expresses th e first six eigenvectors 

. 0028 0 r -+8 1 .0316 
-. 0316 1 

l 
0 .0044 -. 1520 
0 - .0010 .0335 
0 .0002 - .0087 

We notice how quickly the elements fall off to 
zero as soon as we are beyond one element to the 
right and one to the left of the main diagonal. 
The orthogonal reference system of the b j and 
the orthogonal reference system of the U i are 
thus in close vicinity of each other. 

The obtained five vibrational modes UI .. . , Us 

(U6 being omitted sinee the lack of the neigh
bour on the right side of the diagonal makes the 
approximation unreliable) are plotted graphically 
in figure 2. 

.5 .--'-'--'-~--r-'--'--'--'-''-'-~~~U~I' 
Uz 
U3 

U 4 

Us 

2 4 6 8 10 12 14 

FIGURE 2. The first five lateral vibrational modes of the elastic 
bar, shown in figure 1. 

1'1=2256.94; 1'2= 48.20; 1'3=5.36; 1'.=1.58; 1',=0.59 

X. The Eigenvalue Problem of Linear In
tegral Opera tors 

The methods and results of the past sections 
ean now be applied to the realm of continuous 
operators. 'rhe kernel of an integral equation 
can be conceived as a matrix of infinite order, 
which may be approximated to any degree of 
accuracy by a matrL1:: of high but finite order. 
One method of treating an integral equation is 
to replace it by an ordinary matrix equation of 
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U 1, ••• , 116 m terms of the first SiX nor

malized b t! .J (J i vectors, making use of the roots 

of P6(U) = 0. The diagonal elements are nor

malized to 1: 

0 0 0 

l .0004 0 0 
. 1497 . 0081 0 

1 . 2693 . 0249 J 
- .2793 1 .4033 

. 0779 - .3816 1 

sufficiently high order. This procedure is, from 
the numerical standpoint, frequently the most 
satisfactory one. However, we can design meth
ods for the solution of integral equations that 
obtain the solu tion by purely analytical tools , 
on the basis of an infini te convergent expansion, 
such as the Schmidt series, for example. The 
method we are going to discuss belongs to the 
latter type. We "will find an expansion t hat is 
based on the same kind of iterative integrations 
as the Liouville-N eumann series, but avoiding the 
convergence difficulties of that expansion. '1'he 
expansion we are going to develop converges 
under all circumstances and gives the solution of 
any Fredholm type of integral equation, no 
matter how defective the kernel of that integral 
equation may beP 

Let us first go back to our earlier method of 
solving the Fredholm problem. The solution 
was obtained in form of t he S-expansion (17). 
The difficulty with this solution is that it is based 
on the linear identity that can be established 
between the iterated vectors bi. That identity 
is generally of the order n; if n grows to infinity, 
we have to obtain an identity of infinite order 
before our solution can be constructed. That, 
however, cannot be done without the proper 
adjustments. 

The later attempt, based on the method of 
minimized iterations, employs more adequate 
principles. We have seen that to any matrix, 
A, a biorthogonal set of vectors bi and b: can 
be constructed by successive minimizations. The 
set is uniquely determined as soon as the first 
trial vectors bo and b~ are given. In the case 
of the inhomogeneous equation (1) the right side 
b may be chosen as the trial vector bo, while b~ 
is still arbitrary. 

11 'rhe Volterra type of integral equations, which have no eigenval ues and 
eigensolutions, are thus included in our general considerations. 

I 
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The construction of these two sets of vectors 
is quite independent of the order n of the matrix. 
If the matrix becomes an integral operator, the 
bt and b: vectors are transformed into a bior
thogonal set of functions : 

ct>u(x) , 

ct>~(x) , 
(100) 

which arc generally present in infinite number. 
The process of minimized iterations assigns to 
any integral operator such a set, after ct>o (x) and 
<p~(x) have been chosen. 

Another important feature of the process of 
minimized iterations was the appearance of a 
successive set of polynomials Pt(J1- ) , tied together 
by the recurrence relation 

This is again en tirely independent of the order n 
of the matrix A and rema,ins true even if the 
matrix A is replaced by a Fredholm I ernel f{(x,~). 

We can now proceed as follows. ' Ve stop at 
an arbitrary Pm(x) and form the r eversed set of 
polynomials Pi(J1- ) , defined by the process (88). 
Then we construct the expansion: 

Ym(X) = P:CJ1-) [ct>m- I (x) + PI (J1-) ct>m-2 (X) + 

+ Pm-I(J1- )ct>O(x) ]. (1 02) 

This gives a successive approximation process that 
converge well to the solution of the Fredholm 
integral equation 

y (x) - )...J{y (x) = ct>o(x). (103) 

In other words: 

y (x) = lim Ym(x). (104) 
11}. - Hx) 

By the same token we can obtain all the eigen
values and eigensolutions of the kernel f{(x,~), 

if such solutions exist. For this purpose we 
obtain the roots J1- i of the polynomial Pm(J1- ) by 
solving the algebraic equation 

(105) 

The exact eigenvalues J1- t of the integral operator 
f{(x,~) are obtained by the limit process : 

lim Pm (J1- i) = 0, (106) 
m --->a> 
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where the largest root is called J1- 1, and the sub
sequent roots are arranged according to Lheir 
absolute values. The corresponding eigenfunc
tions are given by the following infinite expansion: 

(107) 

where J1- i is the ith root of the polynomial Pm(J1-),IS 
As a trial function ct>o(x) we may choose for 

example 

ct>o = const.=l. (108) 

However, the convergence is greatly speeded up 
if we first apply the operator f{ to this function, 
and possibly iterate even once more. In other 
words, we should choose ct>o = J{'l , or even ct>o = f{2'1 
as the basic trial function of the expansion (1 07). 

We consider two particularly in teresting ex
amples that are well able to illustrate the nature 
of the successive approximation process here dis
cussed . 

(A) The vibrating membrane. In the problem 
of the vibrating membrane we encounter the fol
lowing self-adjoint differ ential operator: 

- ix (xy' ). (109) 

This leads to the eigenvalue problem 

d 
- dx (xy ') =)...y (O ~x~ 1), (110) 

with the boundary condition 

y(l) = 0. (111) 

The solution of the differential equation (110) is 

(112) 

where J o(x) is the Bessel-function of the order zero. 
The boundary condition (Ill ) requires that)... shall 
be chosen as follows: 

(113) 

where ~ i are the zeros of J o(x) . 

18 This expansion is Dot of the nature of the N eumanll series. because the 
coefficients of the expansion are not rigid but constantly changing with the 
n um berm of approximating terms, 

m 
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N ow the Green's function of the differential 
equation (110) changes the differential operator 
(109) to the inverse operator, which is an integral 
operator of the nature of a symmetric Fredholm 
kernel function K(x, ~) . Our problem is to obtain 
the eigenvalues and eigenfunctions of this kernel. 

If we start out with the function ¢o(x)= l , the 
operation K¢o gives 

I - x, 

and repeating the operation we obtain 

x2 ;) 
- -x+-, 4 4 

and so on. The succeSSive iterations will be 
polynomials in x. Now the minimized iterations 
are merely some linear combinations of the ordi
nary iterations. H ence the orthogonal sequence 
¢ i(X) will become a sequence of polynomials of 
constantly increasing order, starting with the 
constant ¢ o= 1. This singles out the ¢k(X) as the 
L egendre polynomials P k (x), but normalized to 
the range 0 to 1, instead of the customary range 
- 1 to + 1. The renormalization of the range 
transforms the polynomials P k(x) into Jacobi 
polynomials Gk(p, q; x), with p = q= I [S], which 
again are special cases of the Gaussian hypergeo
metric series F(a, (3, 'Y ; x), in the sense of F(k + 1, 
- k, 1; x); hence, we get: 

¢o = 1 

¢1(x) = 1- 2x 

¢2(X) = I - 6x + 6x2 

¢.(x) = I - 12x + 30x2- 20x3 

(114) 

Thc associated polynomials pb) can be obtained 
on the basis of the relation: 

This gives: 

Pu = 1 

PI (x) = 2x - 1 
(116) 

P2(X) = 24x2-1Sx + 1 

P3(X) = 720x3 - 600x2+ 72x- 1 

In order to obtain the general recurrence relation 
for these polynomials it is preferable to follow the 
example of the algorithm (60) and introduce the 
"half-columns" in addition to the full columns. 
Hence, we define a second set of polynomials C[k(X) 
and set up the following recurrence relations: 

We thus obtain, starting with Po= I and qo= 2, 
and using successive recursions: 

Po= 1 

PI (x) = 2x- I ql (x) = I2x-8 

P2 (x ) = 24x2- ISx+ 1 

P3 (X) = 720x3 -

q2 (X) = 240x2- 192x + 18 

q~ (x) = 10080x3- 8640x2+ 
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600x2+ 72x- I 1200x - 32 

(lIS) 

The zeros of the Pm(x) polynomials converge to 
the eigenvalues of our problem, but the conver
gence is somewhat slow since the original fun ction 
¢o = 1 does not satisfy the boundary conditions 
and thus does not suppress sufficiently the eigen
functions of high order. The zeros of the qi poly
nominIs give quicker convergence. They are 
tabulated as follows, going up to Q5(X) : 

~I 

0.66117 
. 69 15.1 
. 119 1116016 
. 6916602716 
. 6916602760 

~ 2 

0. 1064 
. 130242 
. 1312564 
. 13127J J5 

~3 ~4 

. 035241 ______________ _ ._ 

. 051130 .OJ4842 ___ _ 

.0532011 .025582 . 00720 
-------1------1----- ----- ------

. 6916602761 . 1;)127l23 . 0534138 . 028769 . 01794 

(119) 

The last row contains the correct values of the 
eigenvalues, computed on the basis of (113) : 

(120) 

",Ve notice the excellent convergence of the schem e. 
The question of the eigenfunctions of our prob

lem will not be discussed here. 
(B) The vibrating string. Even modes. Another 

interesting example is provided by the vibrating 
string. The differential operator here is 

-- ----- -------~------------------ ----------



(121) 

with the boundary conditions 

y( ± 1) = 0. (122) 

The solution of the differential equfltion 

(123) 

under the given boundary conditions is: 

Yi= COS (2i+ 1) i x (even modes). (124) 

YJ = Sll1 J7rX (odd modes). (125) 

This gives the eigenvalu('s: 

, ,_ (2i +2 1 ~)2 
1\ - .. (even mod es) , (126) 

and 

(odd modes). (1:::7) 

If we star t with the trial function <Po = I , wo will 
get all the oven vibrational modes of the string, 
while <Po=x will give all the odd vibrational modes . 
'-IVe first choose the previous alternative. 

Successive iterations give 

(128) 

and we notice that the minimized iterations will 
now b ecome a sequence of even polynomials. The 
transformation X2=~ shows that these polynomials 
are again J acobi polynomials Gk(p, q; x2), but now 
p = q= t, and we obtain the hypergeometrie func
t ions F(k + J;,-k, J;; X2): 

<Po = 1 

<PI (x) = 1- 3x2 

<P2(X) = 3 -30x2+ 35x4 (129) 

CP3 (x) = 5 - 105x2+3 15x4 - 231x6 
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Once more we can establish the associated 
polynomials Pi(X) , and the recurrence relation by 
which they can be generated. In the present case 
the recurrence relations come out as follows: 

Pn (x) = (4n- 1)xqn_l (x) -Pn-l (X) } 

qn(x) = (4n+ l)Pn(x) -qn-l (x) 

starting with Po = l , qo= 1. This yields 

Po = l 

PI(x) =3x- l 

P2(X) = 105x2 - 45x+ 1 

P3(X) = 10395x3-4725x2+210x-l 

qo = 1 

ql(x) = 15x - 6 

q2(X) = 945x2- 420x+ 15 

q3(X) = 135 135x3-62370x2+ 3150x-28 

(130) 

(131) 

The successive zeros of the qj(x) polynomials, 
up to Q5(X), arc tabulated as follows : 

----1-----1--------
0.40000 

. 405059 

.405284733 

. 40528'17346 

. 4052847346 

0.02351 
.044856 
.045030LO 
.0450:)16322 

0.011397 .................. . 
.015722 0.00455 . . ...... . . 
.016192 . 00752 0.00216 

1----1-----1-·-------
. 4052847346 .04503 16371 .016211 .00827 . 00500 

The last row contains the correct eigenvalues, 
calculated from the formula: 

(132) 

The convergence is again very conspicllous. 
(0) The vibrating string, Odd modes. In the 

case of the odd modes of the vibrating string, the 
orthogonal functions of th e minimized itera
t ions are again related to the Jacobi polynomials 
Gk(p, q; x), but now withp = q= 3/2. Expressed in 
terms of the hypergeometrie sCI'Lrs we now get the 
polynomials of odd orders 



rPo = x 

rPl (x) = 3x- 5x3 

rP2(X) = 15x- 70x3 +63x5 (133) 

rP3(X) = 35x-3 15x3 + 693x5- 429x7 

The associated P i(X) polynomials are generated 
by the following recurrence relations: 

p ,,(x) = (4n+ l )xqn_l (x) - Pn- I (x) } 

qn(x) = (4n + 3)Pn (x) - qn-I (x) 

star t ing wi th Po = l , qo = 3. We thus get 

Po = l 

Pl (x)= 15x- 1 

P2(X) = 945x2- 105x + 1 

P3(X) = 135 135x3- 17325x2+ 378x-1 

qo= 3 

ql (x) = 105x-1 0 

Q2(X) = 10395x2- 1260x + 21 

q3(X) = 2027025x3 - 270270x2+ 69 30x-36 

) 

(134) 

(135) 

The table of the zeros of qi(X), up to q5(X), IS 

given as follows: 

J.'I 

-----1-----1---- - -- ---
0. Og52 

.10126 
· 10112106 
· 1013211 836 
· 1013211836 

0. 01995 
.02500 
. 02&123 
. 02533024 

0.00701 __ ___ __ __ _________ _ 
. 01068 0.00307 
.011215 .00550 . 00156 

1----,1----1----------
· 1013211836 .0253302?6 .011258 .00633 . 00105 

The last row contains the correct eigenvalues 
calculated on the basis of the formula: 

(136) 

XI. The Eigenvalue Problem of Linear Dif
ferentialOperators 

Let Dy (x) be a given linear differential operator, 
with given homogeneous boundary conditions of 

sufficient number to establish an eigenvalue prob
lem. The probl('m of finding the eigenvalues and 
eigenfun ctions of this operator is equivalent to the 
problem of the previous section in which the eigen
value problem of linear integral operators was in
vestigated. Let us assume that we know the 
Green's function K(x,~) of the differential equation 

Dy= p. (137) 

Then K is the reciprocal operator of D which pos
sesses the same eigenfunctions (principal axes) as 
the operator D, whereas the eigenvalues of K are 
the reciprocals of thc eigenvalues of D . 

H ence, in principle the eigenvalue problem of 
differential operators needs no special investiga
tion. Actually, however , the situation in most 
cases is far less simple. The assumption that we 
are in the possession of the Green's fun ction asso
ciated with th e differential equation (137) is often 
of purely theoretical significance. Even very 
simple differential operators have Green's func
t ions, which are outside the limits of our analytical 
possibilities. Moreover, even if we do possess 
the integral operator K in closed form , it is still 
possible that the su ccessive integrations needed 
for the cons truction of the successive orthogonal 
functions rPl (x), rPz(J.), . . . go beyond our analyt
ical facili ties. 

In view of this situation we ask the question 
whether we could not relax some of the practically 
too stringent demands of the general theory. We 
may lose somewhat in accuracy, but we may gain 
tremendously in analytical operations if we can 
replace some of the demands of the general theory 
by more simplified demands. The present section 
will show how that may actually be accomplished. 

Leaving aside the method of minimized itera
t ions, which was merely an additional tool in our 
general program, the basic principle of our entire 
investigation, if shaped to the realm of integral 
operators, may be formula ted as follows: 

We start out with a function jo(x) , which may 
be chosen asjo(x) = 1. We then form by iterated 
integrations a set of new functions 

jl (x) = 1(10 (x), j z (x) = Kjl (x), ... ,fm (x) = Kjm_1 (x). 

(138) 
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Then we try to establish an approximate linear 
relation between these functions, as accurately as 
possible. For this purpose we made use of the 
method of least squares. 

We notice that the general principle involves 



two processes: (a) the construction of the iterated 
set (138); (b) the establishment of a. close lineal' 
relation b etween them. It is the first process 
where t.he knowledge of the integral operator 
K = D - I is demanded. But let us observe that 
the relation betvleen the successive jt-functions 
can be stated in reverse order. "Ve then get: 

If we start witli the function j",(x) , then the suc
cessive functions of lower order can be formed 
with the help of the given D operator and we can 
completely dispense with the use of the Green's 
function . 

Now the freedom of choosing jo(x) makes also 
j m(x) to some extent a free function. Yet, the 
successive functions j;(x) do not have the same 
degree of freedom. AlLbough jo(x) need not sat
isfy the given boundary conditions, jl (x) of neces
sity satisfies the e co nditions, whereasjz(x) satisfies 
them more strongly, since not only j2(X) but even 
Dj2(X) satisfies the given boundary conditions. 
Generally, we can say that an arbitraryj,, (x) need 
not satisfy any definite differential or integral 
equation, but it is very restricted in the matter of 
boundary concli tions: it has to satisfy the bound
ary condilions "to the n i h order." This means 
that no t only j ,, (x) itself, but the whole cries of 
functions: 

have to satisfy the given boundary conditions. 
To construct a functionj,,(x) with this property 

is not too difficult. V\Te expandj,, (x) into a linear 
set of powers, or periodic functions, or any other 
kind of functions we may find adequate to the 
given problem. The coefficients of this expansion 
will be determined by the boundary condi
tions that are satisfied by j,,(x) and the iterated 
functions (140). This leads to the solution of 
linear equations. In fact, this process can be 
systematized to a regular recurrence scheme that 
avoids the accumulation of simultaneous linear 
equations, replacing them by a set of separated 
equations, each one involving but one unknown. 

"Ve have thus constructed our set (138), al
though in reverse order. \Ve did no t use any 
integrations, only the repeated application of the 
given differential operator D . The fu'st phase of 
our problem is accomplished. 

vVe now turn to the second phase of our program, 
viz., the e tablishment of an approximate linear 
relation between the iterated functionsji (x). The 
method of least squares is once more at our dis
posal. However, here again we might encounter 
the difficulty that the definite integrals demanded 
for the evaluation of the at and (31 are practically 
beyond our means . Once more we can simplify 
our task. The situation is similar to that of 
evaluating the coefficients of a Fourier series . 
The "best" coefficients, obtained by the method 
of least squares, demand the evaluation of a set 
of definite integrals. Yet we can get a practically 
eq ually close approximation of a function j(x) by 
a finite trigonometric series j(x) , if we use the 
method of "trigonometric interpolation." In
stead of minimizing the mean square of the error 
.f(x) - j(x) , we make j(x) equal to .f(x) at a sufficirn t 
number of equidisLant points. This leads not to 
integrations but to simple sLlmmations. 

The present situation is quite analogous. To 
establish a linear relation b etween thej;(x) means 
that the last functionj,.., (x) is to be approximated 
by a lineal' combination of the previous functions . 
Instead of using the method of least squares for 
this approximation we can usc the much simpler 
method of intcl'polation, by establishing a linear 
relation between the successive j l(x) in as many 
rC(uidistnnt points as we have coefficients at our 
disposal. For the sake of beLLer convergence, it 
is preferable to omit'!o(x)- which docs not satisfy 
the boundary condition and thus contain the 
high vibrational modes too pronouncedly- and 
establish the linear relation only from jl(X) on. 
For example, if we constructed a trial function 
j 3(X) which, together with the iteratedjz(x) = Dj3(X) 
and doubly iLera t,ed jl(x) = D2j(x) satisfies the 
given boundary conditions, then we can choose 
two points of the region, e.g., the two endpoints, 
where a linear relation of the form 

shall hold. This gives the characteristic poly
nomial G(x) in the form 
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(142) 

The two roots of this polynomial give us an ap
proximate evaluation of the two highest J.L h (or 
the two lowest Ai), i.e. , J.L1 = l /A;, and M: = 1IAz. 



whereas the corresponding eigensolutions are 
obtained by synthetic division : 

which gives 

U1(X) = g:!2(X) + g:.fl (x) } 

U2(X) = g;' j 2(X) +g~'jl (x) 

(143) 

(144) 

(The last root and its eigenfunction are always 
considerably in error, and gives only rough in
dications.) 

The remarkable feature of this method is that 
i t completely aroids any integrations, r equiring only 
the solution of a rela tively small number of linear 
equ ations. 

The following application of th e method demon
stra tes its practical usefuln ess. The method was 
applied to obtain the first three eigenvalues of the 
lateral vibrations of a uniform bar, elamped at 
both ends. The given differen tial operator is here: 

wi th t,he boundary conditions 

y (± 1) = 0 y' (± l )=O. 

Only the even modes wer e consid ered, expanding 
y (x) in to even powers of x. The approximations 
were carried out to first, second, and third order. 
The obtained eigenvalues are tabulated in the 
following t able, th e last row containing the correct 
eigenvalues given by Rayleigh [9] 

1'1 1" 1'3 

1-----1----------
0. 0:;2:14 13 
. 0:n9GRIl 
. 03196:1958 

O. OJ 1963996 

0. 0007932 
. 0010870 

0. 0010945 

0. 0000788 

0. 0001795 

We no tice that the general convergence behavior 
of this method is exactly the same as that of th e 
analytically more advanced, but practically mu ch 
more cumbersome, method of minimized iterations. 

XII. Differential Equations of Second 
Order; Milne's Method 

If a linear differential equation of second order 
Ivith two-end boundary condi tions is changed into 
a difference equation and then handled as a matrix 
problem, singularly favorable conditions exist for 
th e solution of the eigenvalu e problem . The ma
trix of the corresponding difference eq uation con
tains only diagonal terms plus one term to the right 
and one to the left . If we now star t to itera te wi th 
th e trial vector 

bo= l , 0, 0, .. . , 0, (145) 

we observe that th e successive i terations grow by 
one element only, as indicated in th e following 
scheme where th e dots stand for the nonvanishing 
components : 

(146) 

bn- 1 = 

Under these conditions the est ablishment of the 
linear identity between the itera ted vectors is 
grea tly simplified since it is available by a succes
sive recurrence scheme. The coefficien ts of the 
eq uation 
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are directly at our disposal, since th e last column 
of the last two vectors gives g1l th en the previous 
column gives g2' . . . , until finally th e fu'st 
column gives gn. The construction of th e basic 
polynomial G(x) is thus accomplished and the 
eigenvalues }.r directly available by finding the 
roots of th e equation G(}.) = 0. 

Professor W. E . Milne of th e Oregon State Col
lege and the Institute for Numerical Analysis, 
applied th e general theory to t his problem, but 
with th e following modification. I nstead of iterat-

" We call the eigenvalues here A;, sinee tbe operator D is not inverted into 
an integral operator K. 



ing with the given matrix A, }.ifilne considers the 
regular vibration problem 

(148) 

where the operator D has the following signifi
cance: 20 

(149) 

The differential equation (148) is now converted 
into a difference equation , with D.x = D.t = h. 
Then the value of u(ih, jh) arc determined by 
successive r ecursions, starting from the initial 
conditions 

u(ih, 0) = 1, 0 , 0, 0, 
and 

u(ih, h) = u(ih, - h). 

, 0, (150) 

(151) 

The linear identity b etween th e n + 1 vectors 

u(ih, 0), u(ih , h), ... ,u(ih, nh), (152) 

leads to a trigonom etric equation for the character
istic frequencies 1' 1, of the following form 

cos nyih+An _ 1 cos (n - 1)v//,+ ... +Ao=O. 
(153) 

We then put 

(154) 

On the other hand, the regular iteration m ethod 
gives the eigenvalues );; of the operator D.U, de
fined in harmony with the operator Du but with 
the modification that t he operation d/dx is re
placed by the operation D. / D.x. The);. are in the 
following relation to the Vi of eq 153 and 154 : 

[

. 71, ') 2 

- - S111 2 V'J " ,= p;= h 
2 

(155) 

It is of interest t.o see that the valu es (154) of 
}.i[ilne are much closer to the true eigenvalues than 
the value obtain ed by iterations. The values 
of M ilne remain good even for high frequ encies, 
whereas the iteration method gives gradually 
worse results; this is to be exp ected since the error 
committed by changing the differential equation 

" See J. R esearch N B S 45, 245 1950 RP2132. T he variable "s" of Milne is 
changed to x and his A' to A, to avoid coniliets with the notations of tbe 
present paper. 
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to a difference equation must come in to evidence 
with ever increasing force, as we proceed to the 
vibrational modes of higher order. 

The following table illustrates the situation. 
I t contains the results of one of Milne's examples; 
("Example 1"). Here 

D= - - +2 - , (d2 d) 
dx2 dx 

with the boundary conditions: 

u(O) = u(l ) = 0. 

(156) 

(157) 

1 
}.i[ol'eover, h was chosen as 8" and n = 7. The 

column -JXk gives the correc t fr equencies, the 
column -J~ gives the frequencies obtained by 
Milne's m ethod, while the column ~>:'k gives the 
frequencies obtained by the iteration method. 

k -J').., 
I 

,f;l -Jr. 
-

1 3.2969 3. 2898 3.2667 
2 G.362J 6.3457 fl. 1806 
3 9. 4777 9.4507 R 9107 
4 12.600l 12 .. 1661 11. 3138 
5 15.7:J98 1.1. (,820 J3. 2891 
6 18. 8761 18. 7870 14. 7.181 
7 22. 0139 21. 8430 15. 6629 

Actually, it is purely a maLter of computational 
preference whether we follow the on e or Lhe other 
sch eme since th ere is a rigid r elation between the 
two schemes. The frequencies Vi obtained by 
Milne's m ethod ar e in the following relation to 
the frequencies Vi obtained by the matrix iteration 
m ethod: 

. h 
sm'2 P i _ 

vi - h--=Vi 
'2 Vi 

(158) 

H ence, th e r esul ts obtained by the one schem e can 
be translated into the results of the other scheme, 
and vice versa. 

This raises the question, why it is so beneficial 
t o t ransform th e frequencies Pi of the D.U operator 
to the frequencies Vi by th e condition 

. 71, h - (159) sm 2 vi=2 1' /. 

The answer is contained in th e fact that the cor
rection factor 

. 71, 
sm 2 Pi 

- 71,--

21' 1 

(160) 



,... 

IS exactly the factor that compensates for the 
transition from du/dx to D.uj D.X, if u(x) is of the 
following form: 

(161) 

where the constants Ct and 8i are arbitrary. 
N ow it so happens that for large frequencies Vi 

the first term of the operator (158) strongly over
shadows the other terms. The differential equa
tion of the eigenvalue problem for large Vi thus 
becomes asymptotically: 

(162) 

the solution of which is given by (161). This 
asymptotic behavior of the solution for large 
frequen cies makes it possible to counteract the 
damaging influence of the error caused by the 
initial transition to the difference equation. The 
correction is implicitly included in Milne's solu
tion, while the results of the matrix iteration 
scheme can be corrected by solving eq 159 for 
the Vi .21 

XIII. More-Dimensional Problems 

The present investigation was devoted to 
differential and integral operators that belonged 
to a definite finite range of the variable x. This 
variable covered a one-dimensional manifold of 
points. However, in many problems of physics 
and engineering the domain of the independent 
variable is more than one-dimensional. A few 
general remarks may be in order as to the 
possibility of extending the principles and methods 
of the present investigation to manifolds of higher 
dimensions. 

Although the general theory of integral equa
tions reveals that the fundamental properties of 
an integral equation are essentially independent 
of the dimensionality of the variable x, yet from 
the practical viewpoint the eigenvalue problem 
of higher dimensional manifolds does lead to 
difficulties that arc not encountered in manifolds 
of one single dimension. The basic difference is 
that an essentially more-dimensional manifold of 

21 1~h is experience is valuable, since in many eigen value problems similar 
conditions hold ; the eigcnfunctions of large ordcr can often he asymptotically 
estimated. in which case thc crror of the "'-process may be effectively cor
rected . For example t he valucs fJo i found in scction IX for tbe lateral vibra
t ions of an inhomogeneous bar may be corrected as follows: 

fJo i un corrected: 2256.944 , 48. 2038, 5.3563, 1.5830, 0.59, (0.25) 

fJo i corrccted: 2258.924, 48.4977, 5.4577, 1.6407, 0.62, (0.28) 

eigenvalues is proj ected on a one-dimensional 
manifold, thus causing a strong overlapping of 
basically different vibrational modes. A good 
example is provided by the vibrational modes 
of a rectangular membrane. The eigenvalues are 
here given by the equation 

where m l and m2 arEi two independent integers, 
while a l and a z are two constants determined by 
the length and width of the membrane. 

As another illustration, consid er the bewildering 
variety of spectral terms that can be found within 
a very narrow band of frequencies, if the vibra
tional modes of an atom or a molecule are studied. 
To separate all these vibrational modes from each 
other poses a difficult problem that has no analogue 
in systems of 1 degree of freedom where the differ
ent vibrational states usually belong to well sep
arated frequencies. 

It is practically impossible to expect that one 
single trial function shall be sufficient for the 
separation of all these vibrational states. Nor 
does such an expectation correspond to the actual 
physical situation. The tremendous variety of 
atomic states is not excited by one single exciting 
function but by a rapid succession of an infinite 
variety of exciting functions, distributed accord
ing to some statistical probability laws . To imi
tate this situation mathematically means that we 
have to operate with a great variety of trial 
functions before we can hope to entangle the very 
dense family of vibrational states associated with 
a more than one-dimensional manifold. 
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In this connection it seems appropriate to say 
a word about the physical significance of the 
"trial function" CPo(x) that we have employed for 
the O'eneration of an entire system of eigenfunc-

b 

tions. At first sight this trial function may appeal' 
as a purely mathematical quantity that has no 
analogue in the physical world. The homogeneous 
integral equation that defines the eigenvalues, and 
the eigenfunctions, of a given integral operator, 
does not come physically into evidence since in 
the domain of physical reality there is always a 
"driving force" that provides the right side of the 
integral equation; it is thus the inhomogeneous 
and not the homogeneous equation that has direct 
physical significance. 

If we carefully analyze the method of successive 
approximations by which the eigenvalues and the 
eigenfuncLions of a given integral operator were 
obtained, we cannot fail to observe that we have 



basically operated wi th the inhomogeneous eq ua
tion (103) and our trial function cPo (x ) serves 
merely as the "exciting fun ction" or " drivingfol'ce." 
Indeed, the solution (1 07) for the eigenfunctions 
is nothing but a special case of the general solu
tion (102), but applied to such values of the param
eter A, which make the denominator zcro. This 
means that we artificially generate the state of 
"resonance", which singles out one definite eigen
value Ai and its associated eigenfunction cPi(X). 

From this point of view we can say that, while 
thc separation of all th e eigenfunctions of a multi
dimensional operator might be a practically 
insuperable task- excep t if the technique of 
"separation" is applicable, which reduces the more
dimensional problem to a su ccession of one
dimensional problems- yet it might not be too 
difficult to obtain the solution of a given more
dimensional integral equat ion if the right side 
(i. e. , physically, the" driving forcc" ) is given as 
a sufficiently moo th function that does not con
tain a too-large variety of eigenfunctions. Then 
the convergence of the method may still suffice 
for a solution that gives the output function with 
a practically satisfactory accuracy. This is the 
situation in many antenna and wave-guide 
problems that are actually input-output problems, 
rather than strict resonance problems. In other 
words, what we want to get is a certain mixture 
of weighted eigenfunctions, which appear phys i
cally together, on account of the exciting mccha
nism, while the isolation of eaeh eigenfunction 
for itself is not demanded. Problems of this 
type are much more amenable to a solution than 
problems that demand a striet separation of the 
infinite variety of eigenfunctions associated with 
a multi-dimensional differential or integral oper
ator. To show the applicability of the method 
to problems of this nature will be the task of a 
future investigation. 

XIV. Summary 

The p rescnt investigation establishes a syste
matic procedure for the evaluation of the latent 
roots and principal axes of a matrix, without 
constant reductions of the order of the matrix. 
A systematic algorithm (called "progressive 
algorithm") is developed, which obtains the linear 
identity between the iterated vectors in succes
sive steps by means of recursions. The accuracy 
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of the obtained relation increases constantly, 
until in the end full accuracy is obtained. 

This procedure is then modified to the method 
of "minimized iterations", in order to avoid the 
accumulation of rounding errors. Great accuracy 
is thus obtainable even in the case of matrices 
that exhibit a large dispersion of the eigenvalues . 
:Moreover, the good convergence of the method in 
the case of large dispersion makes it possible to 
operate with a small number of iterations, obtain
ing m successive eigenvalues and principal axes 
by only m+ 1 i terations. 

These results are independent of the order of 
the matrix and can thus be immediately applied 
to the realm of differential and integral operators. 
This results in a well-convergent approximation 
method by which the solution of an integral equa
tion of the Fredholm type is obtained by succes
sive iterations. The same procedure obtains the 
eigenvalues and eigensolu tions of the given integral 
operator, if these eigensolutions exist. 

In the case of differential operators , the too
stringen t demands of the least square method may 
be relaxed. The approximate linear iden tity be
Lween the iterated functions may be establish ed 
by interpolation, thus dispensing with the evalua
tion of definite in tegrals. Moreover, the itera
tions may be carried out with Lhe given differen
tial operator i L elf, instead of reverti ng to the 
Green's function, which is freq uently not available 
in closed form. The entire procedure is then free 
of integrations and requires only the solu tion of 
linear equa lions. 

The present investigation contains the resul ts 
of years of research in the fields of network analy
sis. flutter problems, vibration of antennas, solu
tion of systems of linear equations, encountered 
by the author in his consulting and research work 
for the Boeing Airplane Co., Seattle, Wash. The 
final conclusions were reached since the author's 
stay with the Institute for Numerical Analysis, 
of the National Bureau of Standards. The 
author expresses his h eartfelt thanks to C. K . 
Stedman, head of the Physical Research Unit of 
the Boein.g Airplane Co. and to J . H. Curtiss, 
Acting Director of the Institute for Numerical 
Analysis, for th e generous support of his scientific 
endeavo rs. 
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