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Real Roots of Real Dirichlet L-Series '
By J]. Barkley Rosser

In the theory of the distribution of primes in arithmetic series, in assigning bounds in
the three prime theorem, and in studying the class number of quadratie fields, a knowledge

of the location of the real zeros of L(s, x) 18 of value,
If proved, this result would be of value in each of the
By a certain computational procedure the conjecture has already
In the present paper, this earlier computational
procedure was tried for each k<227 and failed for k=163,
resent paper, but still the case k=163 remained difficult.

are no positive real zeros for any k.
fields mentioned above.
been verified for each individual k<§7.

procedure is given in the

A long standing conjecture is that there

An improved eompuiational
Finally,

a new formula for L{s, x) was discovered that made it possible to treat many values of k

simultaneously.
adequately.

I. Introduction

Let k be a positive integer. Let x be a real, non-
principal character (mod k) and let

s, =3 X

By a computation using the methods of [1] it was
shown that if 2<k<227 and k=163, then L(s,x)
has no positive real zeros. This computation was
laid out by G. Gourrich. Computation on IBM
equipment was furnished by Miss L. Cutler end
E. Rea under the direction of E. C. Yowell. Compu-
tation on desk computers was furnished by Miss. L.
Forthal and W. Paine under the direction of G.
Blanch.

For k=163, the method of [1] definitely failed., It
seems likely that by making a careful refinement of
the estimates of [1] by means of an extensive compu-
tation, one could handle the case k=163. However,
this did not seem a very profitable undertaking, and
so 8 further study of z(s,x) for positive real s was

. made, and various alternative methods were devised.
Some of these seem clearly superior to the method
of [1]. One such superior method is & generalization
of the method of Chowla (see [3]}). Using this method
and s table of characters (mod k) prepared by Miss
L. Cutler and E. Rea, it was a fairly quick matter for
G. Gourrich to check that if 2<227 and k7163,
then L(s,x) has no positive real zeros, Even by this
method, the case £=163 remained very di_fgcult.
Probably the method will handle the case k=183,
but it seemed clear that even by this method the case
k=163 would require very extensive computations,
and it seemed worthwhile to devise still further meth-
ods. 'This was done, and a method was finally found
by which the case k=163 can be handled rather easily,
with only a minor computation.

In the meantime, Chowla and Selberg (see [7])
have announced still another method for treating
the case k=163.

One may conclude that it is now quite firmly estab-
lished that if k<227, then L(s, x) has mo positive
real zeros.

By means of this formula, the difficult ease of k=163 was finally treated

II. Generalization of Chowla’s Method

Throughout this section, we lay down the follow-
ing conventions. x i8 a real primitive character.
Kgshall be a positive integer, ¢(n) shall be a funetion
of positive integers which is periodic with period K,
L{s, ¢) shall denote the funetion that is got by analytic
continugtion from

s0 that for £{s) >1

L

Ls, =3, 20

LW
-1 N
and f(z,¢) shall denote the function that is got by
analytic continuation from
. “Z_)l(#(n)é‘“‘.
so that for R(z)>0,
flz, @)=2, ¢ln)e™"".

We cite without proof various results, the proofs
for which can easily be derived from the results of
chapter XIII of [5].

eorem 1. Tor g1,

L n
L, =K 23 o1 (.3 )
Corollary. If
Iy
Eﬂb(ﬂ)zos

then L{s,¢) is analytic for all s.

' The preparation of this paper was sponsored (in part) by the Qffice of Naval Research.
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‘Theorem 2.
an integer)

For all z different from 2¢mi/K (m

flz, ¢)_ Egb(n)em nye
Corollary. If
K
E‘#(ﬂ'):o’

then f{z,¢) is analytic for |¢|< 2#/K, and
70, 8=2 o (1— 3 )

Theorem 3. If R{s)>>1, then

ML, = [+ f(z, dida.
Corollary. If
K
E d{n)=0,
then for R(s)>>0,
T L, 9= |2 fla, e

Since.

Z x(n)=0,

a=1

the results stated in the three corollaries hold if we
replace ¢ by x and K by k. In particular, if we can
prove that f(x, x) =0 for >0, it will follow from the
corollary to theorem 3 that L(s,x) has no positive
real zeros, This can be readily proved for many
values of k. The method of proof is as foIlows
With Chowla, we define

doln) =¢m)

¢,+1<n)=§,1 $.(m).

We then have the following known result (see [4
Theorem 4. For >0,

f(xl ¢):(1 _g—:)"f(x’ d’r)

Then, if there is an r for which x,(n) is nonnegative
for »>1, we infer that f {z, x) >0 for >0, and hence
that L (s, x) has no positive real zeros.

For many k’s, we can prove by a brief computa-
tion that there is an r such that x,(n)>0 for n> 1.
For a typieal case, consider k=53 and let x be the
real nonpnnclpal character (mod 53). In this case

x(n), x:(n), and x,(n) are sometimes negative, but
xs(n) is nonnegative for all positive n. The com-
putations on which this statement is based are
given in table 1 (at the end of the paper}). The
method of eomputation of table 1 is particularly
simple, since from the definition of x.., we have

Xr+1(n+ 1)= Xr+l(n) +x:.(n+1).

So for r>1 and n>2, x,(n) is the sum of the num-
bers immediately above 1t and immediately to the
left of 1t in table 1.

We have

xl(n+53)=.xl(53)+:i_;i x(m).

However x,(53)=0 (see table 1) and x is periodic
with period 53. So

xiln4-53)= ﬂg x(m)= x(n).

B0 x;{n} is periodic with period 53. Similarly, xi(n)
is periodic with period 53. However x;(53)=742
(see table 1) so that

Xs(n+53) =T42+ x3(n).

As x3(n)>0 for 1<n<53 (see table 1), it follows
that x3(r)> 0 for n> 1.

In table 2, we have listed those &'s <227 fog which
there is a primitive x and for which we could find
an r such that x,(n)>0 for a> 1. Opposite each k
is listed the least value of r for which x.(n)>0 for
n>1. Opposite 8 in table 2 is given the » corre-
sponding to the character x(1)=1, x(3)=—1,
x(5)=—1, x(7)=1, and opposite 8* iz given the r
corresponding to the character x(1)=1, x(3)—1
x(5)=—1, x%’?)——l The corresponding x's (mod
24) are indicated by entries 24 and 24* mn table 2.
Similarly for 40 and 40*, 56 and 56*, ete,

It will be noted that so far We are using exactly
Chowla’s method (see [3]}, tho our justification
for the method is different from aowla ’s.  As noted
by Heilbronn in [4], there exist values of & such that
no x.(n) is nonnegative for every > 1. In fict one
can prove that k=163 is such a k; for actual com-
putation for k=163 discloses that f{log (10/7), x) i3
negative, so that by theorem 4 there cannot be any
completely nonnegative x,.

Our efforts to find an r for the cases k=43, 67, 88,
123, 148, 173, 187, 188, and 197 were sufficiently
unrewarded that we suspect that for these values
of k also there is no r. At any rate we devised an
improvement of Chowla’s method to handle these
intractable k's (except perhaps k=163).

Theorem 5. If

Fo= | "o f@ds,
then ’
(1+ar—’)F(s)=J; 2 f(2) +af(rz) ).
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Theorem 6. If r is 8 positive mbegey and 8(n) is the
coefficient of n~* in the Dirichlet sertes expansion of

(1+ar—*)Lis, ¢),
f(:c, e):f(x; ¢)+af(?"$, ¢)
We now illustrate the use of these theorems for
the case k=67. Note that for k=67, x(2)=x(3)=
x(8)=—1. So

Lis, 0=TH( —x(p)p™) "

then

1 -1
=I5 e XTI

So the Dirichlet series expangion of
(1-+2"9L{s, %)
L

consists of the Dirichlet series expansion of L(s,x)
with all terms #™* removed for which » is divisible by
2. Similarly, to get the Dmchlet series expansion of

(1427914379 L{s, x),

we remove all terms n~* for which = is chvmble by
either 2 or 3. Similarly for

(1+2750Q+3")1+5")L(s, x)
We now verify by actual computation that

x:(n)> 0 for n>>25. Define ¢(n) to be the coefficient
of »~* in the Dirichlet series expansion of

(14279 Ls, %)

Then
(14270 Lis, 0= | 2 f(a, )d
and _
. f(ms ¢)=f($, X) +f(2$, X)
Now

(1—e P f(z, b =F(z, $)
= flz, 0+ f(22,%
=(1—e ™ f(x, x2) +(1—e *) f(22, xo)
=(I—e 9 {f(z, )+ {1 +e 9/ 2z, x2)} .

f(ﬂ?, ¢3)='f($, X3)+(1 +3_x)2f(2x1 X2)-

As each side of this is a power series in e~%, corre-
sponding coefficients must be equal. So

$2(2n) = x{27) + 22(M) + 32— 1)
$2(204-1)=x2(2n+ 1)+ 2 x2(n).
Recalling that x,{(n)> 0 for n> 25, we see that surely

So

910302—50—56

$:(n)>0 for n>51. Actual computation of ¢.(n)
for- 1<n<50 discloses that actually ¢:(n)>0 for
n>31.

If we now define #(n) as the coefficient of ¢ in
the Dirichlet series expansion of

(14279 (1+37)L(s, ),
then

(14279 (1439 T Lis, x)=j;mx"j(:c, O)d

and

S, 0=f(z, o)+ 3z, ¢).

This latter equation gives a relation between #, and
#2. Using this relation with the result ¢,{n)>0 for
n2> 31 leads to the inference that 8,{n)> 0 for n> 95.
Actual computation of 6:(r) for 1<a<94 discloses
that actually 8,{n)>0 for n>41.

We procecd one step further, defining #(n) as
tlfle coefficient of ! in the Dirichlet series expansion
0

(1427914391457 L(s, x)
Then

(142791437901 +5“)P(3)L(s,x)=J: z* " f(s,n)dz.

Also we find that n,(n)>0 for n>29. We now ascer-
tain by actual computation that 5a(n)>0 for n<28,
and so conclude that x>0 for n>1. Fhen

Flz,m)>0 for 2>0. So
(142314371 +5-90(s) L{s,x) >0

for §>>0 and so L(s,x) >0 for s>>0.

For other %’s we proceeded similarly, except that
when x{—1)=1 it was necessary to work with x,,
¢s, 05, etc., instead of with x., ¢», &, etc., because the
latter are penodlc when x(—1)=1.

In table 3 we have listed against % the combination

o1 +p:7 ) L(s, 0,

which was used with that ¥ and also the least value
of # which sufficed with this combination.

We note in passing that we can handle the case
k=43 with the combination

(14279 L(s,x), _

but we need to take r=9, so that it is less laborious
to take the combination :

(142731 +37)Lis,x

for which r=2 suflices.

We suspect that this method will work for k=163.
However for k=163, the combination

(1 + p;*) Lis, %)
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will require at least five factors, and likely inore
then five, and the computations involved appear
to be very extensive. So we sought other methods,

. Another Method

Welet x be a real primitive character,
Define

to)=="1 (5) 1) (1)
de0=(F) " () Lo @

if x(—1)=1,
0= () e ©

if x(—1)=—

We have the known results

H)=§(1—8), )
5(8170:5(1_8; X (5)

Also known is:
Theorem 7. If k; and %, are any real constants,
then for by <o<k,,

1
76T

and £(s, x) are bounded.
Theorem 8. There is a function f{x) with the fol-
lowing properties:
(I} f(x) is analytic for R (x)>0.
(IT) f(x) is positive for z>0.
(IIT) F(z) is monotone decreasing for 27>>-0.
(IV) Forzz>1,

J@< EXP(—%—;))‘(I) exp(%)'

{V} There is a positive constant A such thast for
© >0,
A 2xx
— = .
v ()<

(VI) For ¢>oq,
He) s, 0= J; " o @z,

Proof. Define ¢, as the coefficient of n™* in the
Dirichlet series expansion of {(s)L{s, x), so that
for e>1, _

(LG, 0 =252

Then ¢;=1 and ¢,>>0.
Case 1. x(—1)=1. We have

(G-

@
__J‘ J‘ — exp( -n-n(?)—l-w))dv dw

Multiplying by ¢, and summing gives for ¢ >0,
Es)&s, %)

ol (s

We now treat the integral on the right as a double
integral over the first quadrant. Since the integrand
is symmetric in » and w, we may replace the integral
by twice the integral over the area in the first
quadrant below the 45° ray thru the origin, In this,
we introduce

ok

*

x=+/ow
y=v+w

as new variables of integration, getting

Es)E(s, %)
m4f 8- 1d:tf {EcsexP( ﬂj%) }_\/ydyélzz
We take

so=t [ {Saea(-T) -2 ©

and conclude (II) and (VI) of our theorem. We put
y =2z +2in eq 6 and get

f(x):‘ij;”{ﬂz:lc” exp( m(2x+z)) .‘/_m
' (7}

Then (I) and (III) of our theorem are evident.
Further, for ¢ > 1, we write




fla)=4 exp(—gjfx)fw{ile, exp m(?-’*;c-l-z) er)}\/_m

2xz =n(2+4-2) } dz
<4 ex ¢, expf ———
p( ) “gl p( vk +1/_ 2 4tz
27z P
< —2TV3 11 Rkl 18
<o =) o)
So (IV) holds. Multiplying by ¢, and summing gives for
By eq 7, using only the first term of the series, we pyme Y 8 ° o
get, L g 2mnx
st K024 [, 5 { 5 oo o (27 .
f(x)>4f exp( ) : ”
vz “4x+ We now take
>4 _r(2x+z)) s '
f exp( ‘/— m f(z)—2-\/k ﬁgl Cy (8)
> 4 and conclude (1), (I}, (111}, and (V1) of our theorem.
= Vdz+1 We can easily show that for z>1,
So (V) holds, _21rx 27
In the relation f@)<exp ( {f (1) exp (‘/75 }
Kyo)— fmexp (—2 cosh &) do | g;;:i Sso (IV) holds. Using the first term of eq 8
(see [5], p. 384, Example 40) put cosh ¢ =14-¢. There @) >2+4F exp (_2” .
results
Kz)= f exp {(—z(14+f)—— q/t“—}-2t So we may take A=2+k in (V).
Soforz>0 Theorem 9. For all s
(2rn:r) J‘ ox ( 2rnz(l +t)) E(3) (s, ")"f((-:_ﬁ +f @z f(@)de.
P JET 2l |
Proof. Use the method of Heilbronn (see [8]).
Putting t—z/2:c, we get Theorem 10. For R(x)>>0,
2rny m(2:c-|—z)) (1 : .
=4 — )= _
4B,(PT )= [ "en e 71(2)=2s@+@—151, 0.
S0 by eq 7, Proof. Comparing (VI) of theorem 8 with theorem
. gives for o >y
2rnx
=4
) chKo( 7k ) J::c-’—lf(x)d:c— £1,%) +f "j(z)dz
Case 2. x(—1)==—1. By the duplication for- . ._
mula for the gamma function We can rewrite this as
L, & g\~ etn/2 841 Y J‘I o _ j‘l a—2
xn (E) (E) r( L )n , T @dr=H1,9 | s
-3 ! £—1 ! = 1
—2~/_( ) I(s)n —5(1,_x)ﬁx da:+J;a: =f(—x-)dx

eI C ) R R (GO OIE



Replacmg z by ¢™* in these integrals and using the
unigueness theorem for Laplace transforms, we infer
that for 0<la<{1

J@=#1,%) e— 1)4% f (%)

So our theorem holds for 0<{z<{1. Then by an-
alytic continuation, it holds for £ (z)>0.

fif we let z— o in this result, we have z f{z)—>0
an

(3) > 1(1)>0.

So we have an alternative proof of the known result
that £(1, x)>>0. If we differentiate both audes and
put x-—l we infer:

Theorem 11.

£(1, 0=—Ff1)—25(1).

Another consequence of theorem 10 is that

f&=0(3)

as x—0.. Hence in (VI) of theorem 8, we can take
= 1 ]
Theorem 12. For 0<s<1,

~ 8@ 0= [T @ e e, 0 —ef@)da
Proof. Use theorem 9.

It is clear from this that if ¢ f(z) <1, x) for1<a,
then L{s, x)>>0 for >0, There are many &’s for
which zf{(z)<&(1,x) for 1<z. TFor example, let
x(—1)=—1 and ¥ <39. Then

27
'ﬁ>1n

Hence by eq 8

=2k g, exp (27
x2f(x)=2 v%ic,x exp :r{n_a:

However, with 2x/vE>1,

zexp(— 2rnx
vk

is decreasing for z>1. So zf(z) is & decreasing

function for x>>1. So we have only to prove

SY<&1, x).

So, by theorem 11, it suffices to prove

- > (D).
However
—rW=2vkZe. 1,_exp 2};‘
2xn
>24k Ecnexp( o
>,

If x(—1)=1, one can carry out similar reasoning
based on eq 7, since

f‘”"’( r wm

is & decreasing function. of z.

Thus we conclude by a very simple reasoning,
which does not even involve ingpection of the values
of x, that for k<39, L(s, x) has no positive real
Zeros.

For larger k's, we would need to know the values
of x(n) for some of the smaller values of n. How-
aver, usually a knowledge of the values of x(n) for
1< +k would be more than ample.

Unfortunately, . this method is not general, In
particular, it fails for £=163. Indeed (as we will
show in the next section) for k=163, *

FA>E1, %

so that it is impossible to have zf(x}<&(1, x) for
z>1. 5o for k=163, more subtie methods are re-
quired.

IV. Treatment of £=163

Throughout this section, let k=163.

Then x(—1)=-—1. Also, the class number of —k
is unity, so that '

&1, 0=+E. 9
Temporarily define
9(zy=41, 0 —2f(). (10)
Lemma I. For 1<z < k{27, g(z)<0.
Proof. Using the first term of eq 8, we get

2xx

9@ <E(1,0—2kz exp (__

<t (2o (-27)

21r$
T exp ——

4
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is increasing for 1<z <+k/2r, it suffices to prove
L .
§<9XP (_'
However, for k=1 63,
exp (—— =0.61,

and our lemma is proved.
Lemms 2. For (Vk/2m<z, ¢'(@)>0.

Proof. For (vk/2w) <z,

Liron (-2

and for n>1
dii: { T exp 2mm)<0

Multiplying by 2¢,+k and summing gives

£ (2f@)<0

for (vk/2x)<z. This establishes our lemma.

Lemma 3. 'There is & number a such that:
I 1<a.-
(II) * For 1<z<a, g{x)<0.

(11I) For a<x, g{x)>0.
Proof. Obvious by lemma, 1, lemma 2, and the fact

that
E’i‘f gl@)=4#1, 0>0.

Indeed, wehave ¢ > +/k/2x, but this fact isnot needed.

Lemma 4. For 1/2<s<1,
_ )i, %)
as—l_i_a-:

is & monotone, nondecreasing function of s.

Proof. By theorem 12,
K0 (e gle)
a 1+a—a I at— 1_+_a—s
So
D HEs,0Y_ ("0 z"‘+m"}9_(£)
bs{ a“‘+a”'} Jx bs{_a"‘+a“ x dz.
However,

E%x"‘_—f—x“‘}_((am)”"—l)(log z—log a)

o8 aa—l_{_a—s - (ax)“(a"‘-{—a,")z

(x*'—a®* ) (log 2 {log a)
(ax)s(as—l+a—s)2

+

So for 1/2< s, we see that
0 {:}:"1-{—2:“}

E? aawl_i_a—a
is negative if 1 <2<a and positive if a<z. So by
lemma 3, we see that for 1/2<s

{x' ‘+:c"} g(x)

— l+a—a T

is nonnegative for 1<%. Thus our lemma is proved.
If we can prove that the function

_ 8%
a&‘—l "‘1"&1"

is positive at s=1/2, we can cenclude that it is posi-
tive for §2>1/2. As it is unchanged by replaci

by 1—s¢, we could conclude that it is pomtlven%or
0<s<1 So we have proved:

Lemmsa 5. If L(s, x) s pomtwe for s=1/2, then
it is positive for s>0.

We have now reduced the problem to that of
proving that L(i/2,x)7>0. This result is proved in
[7]. Alternatively, one can compute L{1/2,x) explic-
itly by means of the formuls

_2(x6a) )
163
HON
This is not exactly an agreeable computation, but
by using & table of the incomplete gamma funetion,
it is net unduly laborious. The computation was

carried out by Miss S. Marks under the direction of
G. Blanch, and the value

nw T
163/

L %:x =0.06910

was obtained.

A shorter computation resulis if we use theorem 9.
Putting $=1/2 in this, we see that it suffices to prove
that

—45(1,x)+2£w$_”2f(x)dm

is negative. 'That is, using eq 8 and eq 9, it suffices

to prove
2mnx
. -1 - dz
1>ﬂ§3=1 ¢ f exp( N ) z
That is, it suflices to prove
1 o € n
— > 2 erfe | 2 ""_)
V2yE A=A vk
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where

erfc (y)=\/%_w-f: exp (—% # ] dt-

Now for k=163, we have x(p)=—1 for every prime
p with 2<p<37 So for n<40, ¢,.=1 when n is a
perfect square, and zern otherwise.
show

> i ()

ooy

that is, we need only show
0.1979> erfe (0.992 1)+é erfe (2(0.9921))

So we need only

+—31- orfe (3(0.9921))+- - -

Using & four-place table of erfc, we get

erfc (0.9921)=0.1606

%erfc (2(0.9921)=0.0118

%erfc (3(0.9921))=0.0005

+ erfc (4(0.0021)=0.0000

As 0.1979>>0.1729, we conclude that L(1/2, x)>>0.

V. Miscellaneous Results
If L{s,x) is to be positive for 0< s, then from

&) Lis, )= L " (e, 0z

we see that

f 2= f(x, Y d

must be positive even when f(z,x) 18 negative for
some z (&s when £=163). In an effort to prove this
for various %k’s, we undertook to find more about
the behavior of f(z,x). Nothing particularly useful
for our purpose was discovered. However miscel-
laneous results were found, and we list them without
proof,
Theorem 13. For s£1,

I‘(I

Lis, ¢)=—~10—9) f (—2) ' f(z, Pz

where the contour begins at + = on the real axis,

encircles the origin counterclockwise once, and

returns to} « on the real axis, and where the con-

tour does not encircle any of the points 3 2rmifK

(m a positive integer), and where|arg(—z2)| <.
Theorem 14. 1If

K
g ¢(ﬂ')=0s
then
JFo0,¢)=(— 1)“L(“m, &)
Defins
Tu=T(n, K, =330 (1-5) "
Theorem 15. For M>1,

TM=(

S 1,

where AY{1*) denotes the N-th difference of z* evalu-
ated at x=1. That is
N N r M
A=~ 1 B 1) ),,,,(1 .
Theorem 16. If
K
EQS(‘”’):O!
then *

O =3 T, D= BT

(1) (m)(m—1)(m—2)

where B, 18 the m-th Bernoulli number as defined on
p- 125 of [5].
Theorem 17. For # positive and small

fa, 9=e A1 —e7,

where
1[7d d d
A= (@) GEre) - (Gtr)re].
Theorem 18. If x is a primitive real character

and x(—1)=1, then:

(1) For lz|<2f,

__\ﬁ; = AL
= BE0"(32)" Letam .

512



@) For|z|<?_;§,z¢2f_m
; S 0=tE 5201
fe, x)~—£k_ 1 T ()
T 2xio r“ 1 Fz N2 _ (4) F 211'??1% 2xr/
'{‘(ﬁ or 2 k

il a1 EO G s

T m=i
(3) Forz #2Tm1’ T DM‘/_ kZ)m 5 i
x 2 = STy & 7
| 1+(2—z
=
f(z B -\/_—_fg_ x(?‘) 1 Tasre 1. Cha
o ke § G | +( l racters and sums of characters (mod 53)
n
: xim) anin) (7} x:m)
(4) For zs= 21rm1, : § : 1 ;
k :’ -1 2 1 2
P a A
- -1 -1 i
M- : 1
f(z,x)=ﬂ Zl(—l)’“(’—fi)mﬂf, ; i ? —f, a
T el 27 (2+2m, %) v i 0 0 i
3 1 i : !
3
11 :
M) e i ] :
I () W F = R i g 3 :
— 1 kz q 15 _} g }é ig
kz N . 18 8
Theorem 19. If ; | g : :
x is & pr = ; - i
and aorp M R primitive real character 2 S 2 33 -
- B 2 31 198,
22 - : 2
| 2 z _1 a m
(1) For 121<T", s % E i 8
% i i % e
3n
. 2l o3 2| 3| B
P ) oy 2 ! 0 " 49
) b i 4
S —nm(55) Lam, . o = 0 o i
2 2xR 2 ; : - : . i
(2) For |z)< 2 T, s & : : g
k -1 —45 g ggz
‘J_ §§ { :; 18 700
fle, =YK 1 1IN
Fig B4 2| 1| B
1 +( 41 —1 X m
4 L -3 3 T4
. b 3 1) &
) 45 -1 i
+_ ) m kz N Y _1 T42
= ,,,Za( ()" Latem, 09— 2 25 1IN
pitim(’ 48 i 0 : 1
= 19 1 ? i o
N 2rm1’ 2 i 1 1 41
or z 7 2 2 E 1 s
—1
s 3| 3| =
4] 742
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Tapik 2. Values of k and corresponding values of r

k l r \ k r k r 4 r
3 1 56 1 100 2 166 2
4 1 56 1 111 1 167 1
5 2 ne* 2 113 2 148 2
7 1 57 2 115 4 168* 2
-3 2 58 1 116 1 172 2
B* 1 60 2 118 1 177 2

11 1 61 2 120 1 179 2
12 2 65 2 13+ 2 181 2
13 2 68 1 124 2 183 1
15 1 6% 2 127 2 184 2
17 2 71 1 128 2 184* 2
19 2 73 2 131 1 185 2
0 1 6 2 132 1 101 1
21 2 7 7 133 2 193 2
23 1 il 1 136 2 105 2
24 1 83 b3 135* 1 159 1
24 2 54 i 137 2 201 2
28 2 B85 2 13% 2 203 2
20 2 87 1 140 2 oM 2
31 1 RR* 2 m 2 05 2
33 2 80 2 143 1 208 2
35 1 . 3 145 2 a1 3
37 2 o2 2 140 2 212 1
39 1 o3 2 151 1 a3 ]
40 2 85 1 152 1 ny 1
40* 1 a7 2 152+ '] 27 3
41 2 101 2 168 2 219 2
44 2 103 1 156 2 220 2
47 1 164 2 147 2 a 2
51 2 104* 1 159 1 an 2
52 2 105 2 161 2 227 2
53 3 7 2 164 1

TaBiE 3. TValues of & and corresponding combinations and
values of r
k Combination r

43 | (142-9(143~) L{s,x)

67 | (1420} (1+3"') (1454 L{a,20

143 L8, x

l+2";(1+'i";L(s x)

148 | (1481463 (1F7 ) Els.0)
1+2-')§1+3")(1 45} Lis,x)

187 El+zH) 1439 (159 L (3,0

143~ L2, x)

197 | (49 Lin,x)

b3 £ G e G0 b M R b
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Forced Oscillations in Nonlinear Systems'
By Mary L. Cartwright

This paper shows how the approximate form of the golutions of a certain nonlinear
differential equation cccurring in radio work may be obtained from certain general results

and gives the proof of the general results in detail.

The proof of the general statement

depends on a type of method that ean be applied with minor modifications to any equation

£k F(2) d+g(x)=kp{D),

of the type

where p(t) has period 2=z/), and J: p(t)di is bounded for all ¢, f{z) =1 for |z| >4, and

gl{x)fz> 1 for |z|>a.

For some years Professor J. E. Littlewood and I
have been working on nonlinear diflerential equa-
tions ? of a2 type which ocecur in radio work and

elsewhere. One of the most interesting of thess
equations is
d=k(1—aYi+2—bk) cos (M+-a), (1)

especially for I large and 0<76<72/3. Our attention
was drawn to it by a remark of van der Pol,? which

1 Thiz paper contains materlal presented in lecture form to the staft of the
Ingtitizte for Numerical Analysis of the Nationsl Burean of 8tandards on Tanusry
28, 148, Miss Cartwright was s eonsultant at the IN A at the time this leeturs
wag delivered.

2 Bep M. L. Cartwright s.ncl I. E, Littlewood, J. London Math. Soc. 20, 180~
189 (1045}, and Ann. Math. 48, 472484 (1047} also M. L. Cartwright, J, Inst.
f‘l;e:%l‘.ﬁg (}ladlo Sectilm) 2% (III), 88-96 (1948, and Proc. Cambridge Phil. Sec.

t B, van der Pol, Proe. Inst, Radio Eng, 22, 1051-1086 {1534).

suggested that it corresponded to & physical system
investigated by him and van der Mark.! For
certain values of the parameters the physical system
had two possible stable oscillations, one of period
4nwfx and one of period (2n+1)2x/A. As a matter
of fact in the case of (1), owing to the strictly
symmetrical nonlinear function 1—x%, the period
4nx /X does not occur, but for certain values of b there
are two stable oscillations of periods Zn £+ 1)2x/\.

It would take too long to give & complete proof
of this statement here, but I propose to show how
the approximate form of the solutions may be
obtained from certain very general results, and give
the proof of the general results in detail. The proof

1 B, van der Pol and J. van der Mark, Nature 120, 353-364 (1927

’
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