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Real Roots of Real Dirichlet L-Series l

By J. Barkley Rosser

In the theory of the distribution of primes in arithmetic series, in assigning bounds in
the three prime theorem, and in studying the class number of quadratic fields, a knowledge
of the location of the real zeros of L(s, x) is of value. A long standing conjecture is that there
are no positive real zeros for any k. If proved, this result would be of value in each of the
fields mentioned above. By a certain computational procedure the conjecture has already
been verified for each individual k<67. In the present paper, this earlier computational
procedure was tried for each ft < 227 and failed for k = 163. An improved computational
procedure is given in the present paper, but still the case k = 163 remained difficult. Finally,
a new formula for L(s, x) was discovered that made it possible to treat many values of A;
simultaneously. By means of this formula, the difficult case of A; =163 was finally treated
adequately.

I. Introduction

Let i b e a positive integer. Let x be a real, non-
principal character (mod k) and let

By a computation using the methods of [1] it was
shown that if 2<&<227 and fc^l63, then L(s,x)
has no positive real zeros. This computation was
laid out by G. Gourrich. Computation on IBM
equipment was furnished by Miss L. Cutler and
E. Rea under the direction of E. C. Yowell. Compu-
tation on desk computers was furnished by Miss. L.
Forthal and W. Paine under the direction of G.
Blanch.

For k= 163, the method of [1] definitely failed. It
seems likely that by making a careful refinement of
the estimates of [1] by means of an extensive compu-
tation, one could handle the case fc=163. However,
this did not seem a very profitable undertaking, and
so a further study of L(s,x) for positive real s was
made, and various alternative methods were devised.
Some of these seem clearly superior to the method
of [1]. One such superior method is a generalization
of the method of Chowla (see [3]). Using this method
and a table of characters (mod k) prepared by Miss
L. Cutler and E. Rea, it was a fairly quick matter for
G. Gourrich to check that if fc<227 and k 5*163,
then L(Sjx) has no positive real zeros. Even by this
method, the case k—163 remained very difficult.
Probably the method will handle the case £=163,
but it seemed clear that even by this method the case
fc=163 would require very extensive computations,
and it seemed worthwhile to devise still further meth-
ods. This was done, and a method was finally found
by which the case Ar=163 can be handled rather easily,
with only a minor computation.

In the meantime, Chowla and Selberg (see [7])
have announced still another method for treating
the case Ar=163.

One may conclude that it is now quite firmly estab-
lished that if &<227, then L(s} x) has no positive
real zeros.

II. Generalization of Chowla's Method

Throughout this section, we lay down the follow-
ing conventions. % is a real primitive character.
K shall be a positive integer, <j>(n) shall be a function
of positive integers which is periodic with period K,
L(s, <f>) shall denote the function that is got by analytic
continuation from

so that for

and f(z,<t>) shall denote the function that is got by
analytic continuation from

so that for J2(z)>0,

We cite without proof various results, the proofs
for which can easily be derived from the results of
chapter XIII of [5].

Theorem 1. For s ̂  1,

Corollary. If

then L(s,<l>) is analytic for all s.
1 The preparation of this paper was sponsored (in part) by the Office of Naval Research.
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Theorem 2.
an integer)

For all z different from 2wmi/K (m

Corollary. If

is analytic for |g|<2ir/iiL, and

Theorem 3. If i2(«)>l, then

r(«)i(«,0)= P ^ /
Jo

Corollary. If

then for fl(«)>0,

Since

the results stated in the three corollaries hold if we
replace 0 by x and i£ by it. In particular, if we can
prove that/(a?, x) >0 for x>0, it will follow from the
corollary to theorem 3 that L(s,x) has no positive
real zeros. This can be readily proved for many
values of k. The method of proof is as follows.
With Chowla, we define

We then have the following known result (see [4]).
Theorem 4. For as>0,

Then, if there is an r for which Xr(w) is nonnegative
for n>l, we infer that /(ar, x) >0 for x>0, and hence
that L (.9, x) has no positive real zeros.

For many Jc's, we can prove by a brief computa-
tion that there is an r such that Xr(n)>0 for n> 1.
For a typical case, consider k—53 and let x be the
real nonprincipal character (mod 53). In this case

xi(n), and X2W are sometimes negative, but
Xz(n) is nonnegative for all positive n. The com-
putations on which this statement is based are
given in table 1 (at the end of the paper). The
method of computation of table 1 is particularly
simple, since from the definition of Xr+i we have

So for r> 1 and n> 2, Xr(n) is the sum of the num-
bers immediately above it and immediately to the
left of it in table 1.

We have

However xi(53) = 0 (see table 1) and x is periodic
with period 53. So

So xi(n) is periodic with period 53. Similarly,
is periodic with period 53. However ( )
(see table 1) so that

As X3W>:0 for l<w<53 (see table 1), it follows
that xzW> 0 for n> 1.

In table 2, we have listed those k's<227 foi; which
there is a primitive x and for which we could find
an r such that Xr(n)>0 for n> 1. Opposite each k
is listed the least value of r for which Xr(^)^0 for
n>l. Opposite 8 in table 2 is given the r corre-
sponding to the character x(l) = l, x(3) = —1,
x(5) = — 1, x(7) = l, and opposite 8* is given the r
corresponding to the character x(l) —1? x(3) = l,
x(5) = —1, x(7) = —1. The corresponding x̂ s (mod
24) are indicated by entries 24 and 24* in table 2.
Similarly for 40 and 40*, 56 and 56*, etc.

It will be noted that so far we are using exactly
Chowla's method (see [3]), though our justification
for the method is different from Chowla's. As noted
by Heilbronn in [4], there exist values of k such that
no XrM is nonnegative for every n> 1. In fact one
can prove that fc=163 is such a k; for actual com-
putation for k=lQ3 discloses that/(log (10/7), x) is
negative, so that by theorem 4 there cannot be any
completely nonnegative Xr-

Our efforts to find an r for the cases k=43, 67, 88,
123, 148, 173, 187, 188, and 197 were sufficiently
unrewarded that we suspect that for these values
of k also there is no r. At any rate we devised an
improvement of Chowla's method to handle these
intractable fc's (except perhaps k —163).

Theorem 5. If

then

ar

F(8)= r
Jo

8)F(s)= f"
Jo

xs-1J(x)dx,
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Theorem 6. If r is a positive integer and d(n) is the
coefficient of n~s in the Dirichlet series expansion of

(l+ar-s)L(s,
then

We now illustrate the use of these theorems for
the case A=67. Note that for k=67, x(2)=x(3) =
x(5) = - l . So

(l+2~0(l+3

So the Dirichlet series expansion of

( l+2-)£(«, x)

consists of the Dirichlet series expansion of L(s,x)
with all terms n~s removed for which n is divisible by
2. Similarly, to get the Dirichlet series expansion of

we remove all terms n - for which n is divisible by
either 2 or 3. Similarly for

, x).

We now verify by actual computation that
X2(n)> 0 for n> 25. Define <t>(n) to be the coefficient
of n~s in the Dirichlet series expansion of

Then

and

Now

« j X )= fw

Jo

So
, X 2 ) } .

x2).

As each side of this is a power series in
sponding coefficients must be equal. So

<t>2(2n) =

corre-

Recalling that

910302—50-

^ 0 for n> 25, we see that surely

<l>2(n)>0 for n>51. Actual computation of <t>2(n)
for r<n<50 discloses that actually <t>2(n)>0 for

If we now define 6{n) as the coefficient of n~s in
the Dirichlet series expansion of

then

and

This latter equation gives a relation between 02 and
02. Using this relation with the result <t>2(n)>0 for
n> 31 leads to the inference that 62(n)> 0 for n> 95.
Actual computation of B2(n) for l<w<94 discloses
that actually 82(n)>0 for w>41.

We proceed one step further, defining rj(n) as
the coefficient of n~s in the Dirichlet series expansion

Then

)r(«)£(«,x)= fJo

Also we find that r)2(n)>0 for w>29. We now ascer-
tain by actual computation that r}3(n)>0 for n<28,
and so conclude that i73(n)>0 for T&>1. TJhen
J(x,rj)>Oior x>0. So

s)T(s)L(s,x)>0

for s>0 and so L(s,x)>0 for
For other k's we proceeded similarly, except that

when x(—1) = 1 it was necessary to work with X3,
03, 63, etc., instead of with x2, 02, #2, etc., because the
latter are periodic when x(—1) = 1.'

In table 3 we have listed against k the combination

whicli was used with that k and also the least value
of r which sufficed with this combination.

We note in passing that we can handle the case
k=4:3 with the combination

but we need to take r=9, so that it is less laborious
to take the combination

for which r=2 suffices.
We suspect that this method will work for £=163.

However for £=163, the combination
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will require at least five factors, and likely more
than five, and the computations involved appear
to be very extensive. So we sought other methods.

III. Another Method

We let x be a real primitive character,
efine
We

Define

if x(-i)=i,

if x ( - i ) = - i .

We have the known results

€(*)=€(!—*),

Also known is:

(3)

= l and cn>0.
Case 1. x(—1)=1. We have

(D So

(2)

Multiplying by cw aad summing gives for

, x)

" J . Jo
(4)
,«< We now treat the integral on the right as a double
^ ' integral over the first quadrant. Since the integrand

is symmetric in v and w, we may replace the integral
by twice the integral over the area in the first

Theorem 7. If *, and h are any real constants, q u a d r a n t b e l o w t h e
s

4 5 o r a y t h r u t h e o r i g i n I n t h ig>
then for k1<<r<k2, q

we introduce

and Z(s, x) are bounded.
Theorem 8. There is a function j(x) with the fol-

lowing properties:
(I) f(x) is analytic for R(x)>0.

(II) j(x) is positive for x^>6.
(III) /(a;) is monotone decreasing for af>0.
(IV) Fora?>l,

(V) There is a positive constant A such that for

A
. exp

(VI) For

= f" x-lj{x)dx.
Jo

as new variables of integration, getting

We take

and conclude (II) and (VI) of our theorem. We put
y —2x +z in eq 6 and get

(7)
Proof. Define cn as the coefficient of n~s in the

Dirichlet series expansion of £(s)L(s, x), so that Then (I) and (III) of our theorem are evident,
for <r>l, Further, for x > 1 , we write
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So (IV) holds. Multiplying by cn and summing gives for
By eq 7, using only the first term of the series, we

e x Pl
We now take

dZ ~1>wexp(-~) (8)

and conclude (I), (II), (III), and (VI) of our theorem.
W il h h f

> 4 / 2TX\ C1 / _ wz\ dz.^ and conclude (I), (II), (III), and 07
— /Z7XT 6X^ I fh ) In 6X^ \ fh ) FZ We can easily show that for x> 1,

So (V) holds.
In the relation

if (2)= r°°exp (—2 cosh <t>) d<i> aP^ s o ^ ^ holds. Using the first term of eq 8
0 Jo gives

(see [5], p. 384, Example 40) put cosh <t> = 1 +t. There / (^)>2 -yfk exp / 2 ^ \
results \ -y/k/

exp (—g(l+fl) So we may take ^L=2V^ in (V).
o V* +2£

Theorem 9. For all sSoforaf>0

4ilol —•?=- ) = 4 exp [ 1- J )
\ Vfc / ^° \ V^ / jt2+2t Proof. Use the method of Heilbronn (see [8]).

Putting t=z\2x, we get Theorem 10. For fi(x)>o,

^ /2TUX\ M f
00 / 7rn(2x + ^ ) \ ^^

4 /in0( ' r- 1=4 exp I
x-\-z

So by eq 7, Proof. Comparing (VI) of theorem 8 with theorem
gives for

)=4ScAf

Case 2. %(— 1)=*— 1. By the duplication for-
mula for the gamma function We can rewrite this as

(1x-1f(x)dx = &l,
Jo

Jo Jo \a5
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Replacing x hj e~l in these integrals and using the So, by theorem 11, it suffices to prove
uniqueness theorem for Laplace transforms, we infer
that for 0 < > < l

However

So our theorem holds for 0<£<O. Then by an-
alytic continuation, it holds for R (x)^>0.

If we let a;—> oo in this result, we have xf(x)->0
and

So we have an alternative proof of the known result
that {(1, x)>0- If we differentiate both sides and
put 3 = 1 , we infer:

Theorem 11.

If x(— 1)= 1., one can carry out similar reasoning
based on eq 7, since

Another consequence of theorem 10 is that

/(*)=o ( 0
as z—>0. Hence in (VI) of theorem 8, we can take
<r*=l. <

Theorem 12. For 0 < s < l ,

, X)-xj(x)}dx.

Proof. Use theorem 9.

It is clear from this that if xj(x) < £(1, x) for 1 < x,
then L(s, x)>0 for s > 0 . There are mari^ k's for
which &/(a;)<£(l,x) for l<x. For example, let
x(—1) = —1 and &<39. Then

is a decreasing function of x.
Thus we conclude by a very simple reasoning,

which does not even involve inspection of the values
of x, that for &<39, L(s, x) has no positive, real
zeros.

For larger k's, we would need to know the values
of x(n) for some of the smaller values of n. How-
ever, _asually a knowledge of the values of xW for
n<^Jk would be more than ample.

Unfortunately, this method is not general. In
particular, it fails for & = 163. Indeed (as we will
show in the next section) for £ = 163, *

X)

so that it is impossible to have xf(x)<%(l, x) for
x>l. So for £ = 163, more subtle methods are re-
quired.

IV. Treatment of £ = 163

v ^
Hence by eq 8

n exp (

nx exp ( — )•

However, with

is decreasing for
function for x > 1.

> So »/(x) is a decreasing
So we have only to prove

Throughout this section, let k=l$3.
Then x(— 1)==~ 1- Also, the class number of -yj—k
is unity, so that

f(l, x)=Vfc- (9)

Temporarily define

(10)

Lemma 1. For l<x< V&/2ir, fif(x)<0.
Proof. Using the first term of eq 8, we get

exp ( —

As

x exp I —
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is increasing for l<a<V&/27r, it suffices to prove So for l/2<«,- we see that

b (xs-

However, for fc=

and our lemma is proved

Lemma 2. For

Proof. For (V

d

and for

Multiplying by 2cn^k and summing gives

is negative if l < x < a and positive if a<^x. So by
lemma 3, we see that for l/2<s

g(x)

is nonnegative for 1 < x. Thus our lemma is proved.
If we can prove that the function

, x)

is positive at s=l/2, we can conclude that it is posi-
tive for s>l/2. As it is unchanged by replacing s
by 1—s, we could conclude that it is positive for
0<s<l. So we have proved:

Lemma 5. If L(s, x) is positive for s= 1/2, then
it is positive for s>0.

We have now reduced the problem to that of
proving that i(l/2,x)>0. This result is proved in
[7]. Alternatively, one can compute i(l/2,x) explic-
itly by means of the formula

for (V^/2TT)<X. This establishes our lemma.

Lemma 3. There is a number a such that:
(I) l<a.

(II) For l<x<a,-flf(x)<0.
(Ill) For a<x, g(x)>0.
Proof. Obvious by lemma 1, lemma 2, and the fact

that
Lim g(x) = £(l, x)>0.

Indeed, we have a > -yfic/2T, but this fact is not needed.
Lemma 4. For 1 / 2 < S < 1 ,

is a monotone, nondecreasing function of s.
Proof. By theorem 12,

So

£(s)S(s,x)__ f x ' ^ + g " 1 ff(x) 7
— o i l o I o 1 l o (Jb JJ •as~1 + a~s J i as x + a s x

3 ( fW€(g,x)l f°° & j a 8 " ^ ^ " ^ flf(a) ,
^r~ \ ;—r~i zi== I ^r~ i—^—i—; *i ^ ^

os ( a ' -^a"*) Ji os(ds 1 + a s) x
However,

5 ( r =((ax)2s-1-1) (log a-log a)

aj+log a)

e x p ( "

This is not exactly an agreeable computation, but
by using a table of the incomplete gamma function,
it is not unduly laborious. The computation was
carried out by Miss S. Marks under the direction of
G. Blanch, and the value

•G - * ) - - 06910

was obtained.
A shorter computation results if we use theorem 9.

Putting s=l/2 in this, we see that it suffices to prove
that

, - 1 / 2'j(x)dx

is negative. That is, using eq 8 and eq 9, it suffices
to prove

That is, it suffices to prove
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where

Now for £=163, we have x(p) = — 1 for every prime
p with 2<p<37. So for w<40, cw=l when n is a
perfect square, and zero otherwise. So we need only
show

erfc 16 ^ —=.

that is, we need only show

0.1979> erfc (0.9921)+^ erfc (2(0.9921))

+ ~ erfc (3(0.9921))H .
o

Using a four-place table of erfc, we get

erfc (0.9921) = 0.1606

ierfc (2(0.9921)) = 0.0118
z
| erfc (3(0.9921)) = 0.0005
o

i erfc (4(0.0021)) = 0.0000

As 0.1979>0.1729, we conclude that Z(l/2, x)>0.

V. Miscellaneous Results

If L(s,x) is to be positive for 0<s, then from

we see that r
Jo

must be positive even when J(x,x) is negative for
some x (as when &=163). In an effort to prove this
for various k's, we undertook to find more about
the behavior of/(#,%). Nothing particularly useful
for our purpose was discovered. However miscel-
laneous results were found, and we list them without
proof.

Theorem 13. For

where the contour begins at +°° on the real axis,
encircles the origin counterclockwise once, and
returns t o+ oo on the real axis, and where the con-
tour does not encircle any of the points ±2wmi/K
(m a positive integer), and where|arg(—z) \ <w.

Theorem 14. If

K

then

Define

Theorem 15. F o r M > l ,

/ 1\M M

K

N=0

where Aisr(lM) denotes theiV-th difference of deva lu -
ated at x=l. That is

/ -* \ \7" ^ "^ / -* \ -r l Y •

Theorem 16. If

then

2
n=l

(m+l),
2!

— l)(m—2)

J2
r=0

4!

where 5 m is the m-th Bernoulli number as defined on
p. 125 of [5].

Theorem 17. For x positive and small

where

Theorem 18. If % is a primitive real character
and x(— 1)= 1, then:

(1)

m=0
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(2) 2TTR , 2irmi

'>x) ir £i r

—Y (4) For

M

m=0

(3) For •Has;

kz

(4) For z 7* T—>

2m+1

Theorem 19. If x is a primitive real character
and x(—l) = — 1 , then:

(1)

( 3 ) F o r 2 7 ,2=i ,

TABLE 1

n

1
2
3
4

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53

. Characters and sums of characters (mod 53)

x(«)

l
-l
-l
l

-l

l
l

-l
l
l

l
-l
l

-i
l

l
l

-l
-l
-l

-l
-l
-l
l
l

-l
-l
l
l

-l

-l
-l
-l
-l
-l

l
l
l

-l
l

-l
l
l
l

-l

l
l

-i
l

-l

-l
l
0

Xl<»)

1
0

-1
0

-1

0
1
0
1
2

3
2
3
2
3

4
5
4
3
2

1
0
i

0
1

0
-1
0
1
0

-1
-2
-3
-4
-5

-4
Q

-2
Q

-2

-3
-2
-1
0

-1

0
1
0
1
0

-1
0
0

X2(?0

1
1
0
0

-1

-1
0
0
1
3

6
8
11
13
16

20
25
29
32
34

35
35
34
34
35

35
34
34
35
35

34
32
29
25
20

16
13
11
8
6

3
1
0
0

-1

-1
0
0
1
1

0
0
0

xs(»)

1
2
2
2
1

0
0
0
1
4

10
18
29
42
58

78
103
132
164
198*

233
268
302
336
371

406
440
474
509
544

578
610
639
664
684

700
713
724
732
738

741
742
742
742
741

740
740
740
741
742

742
742
742
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TABLE 2. Values of k and corresponding values of r

k

3
4
5
7
8

8*
11
12
13
15

17
19
20
21
23

24
24*
28
29
31

33
35
37
39
40

40*
41
44
47
51
52
53

r

1
1
2
1
2

1
1
2
2
1

2
2
1
2
1

1
2
2
2
1

2
1
2
1
2

1
2
2
1
2
2
3

k

55
56
56*
57
59

60
61
65
68
69

71
73
76
77
79

83
84
85
87
88*

89
9X
92
93
95

97
101
103
104
104*
105
107

r

1
1
2
2
1

2
2
2
1
2

1
2
2
7
1

1
1
2
1
2

2
3
2
2
1

2
2
1
2
1
2
2

109
111
113
115
116

119
120
120*
124
127

129
131
132
133
136

136*
137
139
140
141

143
145
149
151
152

152*
155
156
157
159
161
164

r

2
1
2
4
1

1
1
2
2
2

2
1
1
2
2

1
2
2
2
2

1
2
2
1
1

9
2
2
2
1
2
1

ft

165
167
168
168*
172

177
179
181
183
184

184*
185
191
193
195

199
201
203
204
205

209
211
212
213
215

217
219
220
221
223
227

r

2
1
2
2
2

2
2
2
1
2

2
2
1
2
2

1
2
2
2
2

2
3
1
6
1

2
2
2
2
2
2

TABLE 3. Values of k and corresponding combinations and
values of r

k

43
67
88
123
148
173
187
188
197

Combination

(l+2-)(l+3-)£(s,x)
(1+2-) (1+3--) (l+5-0£(*,x)
(l+3-)Z(*>x)
(1+2-) (l+5-)Z(*,x)
(1+3-0 (1+5-0 (l+7-0Z(*,x)
(1+2-0 d+3-0 (l+5-0X(s,x)
(1+2-0 (1+3-0 (l+5-0X(s,x)
(l+3-0Z(s,x)
(l+2-0£(*,x)

r

2
3
4
2
3
4
3
3
2
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Forced Oscillations in Nonlinear Systems'
By Mary L. Cartwright

This paper shows how the approximate form of the solutions of a certain nonlinear
differential equation occurring in radio work may be obtained from certain general results
and gives the proof of the general results in detail. The proof of the general statement
depends on a type of method that can be applied with minor modifications to any equation
of the type

x + k f(x)x+g(x)=hp(t),

where p(t) has period 2TT/X, and I p(t)dt is bounded for all t, f(x)>l for \x\ >a, and

g(x)/x> 1 for | x | > a .

For some years Professor J. E. Littlewood and I
have been working on nonlinear differential equa-
tions 2 of a type which occur in radio work and
elsewhere. One of the most interesting of these
equations is

x=Jc(l — — bk\ cos (\t+a), (1)

especially for k large and 0<6<2/3. Our attention
was drawn to it by a remark of van der Pol,3 which

1 This paper contains material presented in lecture form to the staff of the
Institute for Numerical Analysis of the National Bureau of Standards on January
28, 1949. Miss Cartwright was a consultant at the INA at the time this lecture
was delivered.

2 See M. L. Cartwright and J. E. Littlewood, J. London Math. Soc. 20, 180-
189 (1945), and Ann. Math. 48, 472-494 (1947); also M. L. Cartwright, J. Inst.
Elec. Eng. (Radio Section) 95 (III), 88-96 (1948, and Proc. Cambridge Phil. Soc.
45,495 (1949).

3 B. van der Pol, Proc. Inst. Radio Eng. 22, 1051-1086 (1934).

suggested that it corresponded to a physical system
investigated by him and van der Mark.4 For
certain values of the parameters the physical system
had two possible stable oscillations, one of period
4:7iir/\ and one of period (2n + l)27r/X. As a matter
of fact in the case of (1), owing to the strictly
symmetrical nonlinear function 1—x2, the period
Amr/X does not occur, but for certain values of b there
are two stable oscillations of periods (2n ±- 1)2TT/X.

It would take too long to give a complete proof
of this statement here, but I propose to show how
the approximate form of the solutions may be
obtained from certain very general results, and give
the proof of the general results in detail. The proof

* B. van der Pol and J. van der Mark, Nature 120, 333-364 (1927)
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