
2. Monobarium aluminate dissolves in barium
hydroxide solutions with precipitation first of
7BaO.6Al2O3.36H2O, subsequently of BaO.Al2O3.-
7H2O in the less basic and BaO.Al2O3.4H2O in the
more basic solutions.

3. Tribarium aluminate is rapidly hydrolyzed by
water, with precipitation of Ba(OH)2.8H2O, BaO.-
A12O3.7H2O, and, subsequently, 2BaO.Al2O3.5H2O.

4. All the hydrated barium aluminates dissolve in
water and are hydrolyzed, with precipitation of
hydrated alumina.

5. The hydrated barium aluminates dissolve in
barium hydroxide solutions with eventual precipita-
tion of the equilibrium solid phases, but frequently
with preliminary separation of metastable inter-
mediate solid phases.

6. The stable solid phases in the system BaO-Al2O3-
H2O at 30° C are: (a) gibbsite (Ai2O3.3H2O) over a
range from approximately zero concentration to
about 52 g of BaO and 2.8 g of A12O3 per liter; (b)
Ba(OH)2.8H2O from 52.9 g of BaO and zero A12O3
to about 55.5 g of BaO and 2.7 g of A12O3 per liter;
(c) probably 2BaO.Al2O3.5H2O (but possibly BaO.-
A12O3.4H2O or gibbsite) over the short range from
52 BaO and 2.8 A12O3 to 55.5 BaO and 2.7 A12O3.

7. 7BaO.6Al2O3.36H2O is a metastable phase, not
sufficiently stable to permit an accurate determina-
tion of its solubility.

8. BaO.Al2O3.7H2O is also metastable, but it may
exist in contact with solution for several months.

9. BaO.Al2O3.4H2O is likewise metastable over the
greater part, if not all, of its range, but its stability
is greater than that of the higher hydrates.

10. 2BaO.Al2O3.5H2O resembles BaO.Al2O3.4H2O
in its degree of stability in the metastable range.

11. No hydrate more basic than 2BaO.Al2O3.5H2O
was found.
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Permeability of Glass Wool and Other Highly Porous
Media'

By Arthur S. Iberall
An elementary treatment is developed for the permeability of fibrous materials of

high porosities, based on the drag of fche individual filaments. It is believed Unit I lie same
treatment is valid for other highly porous media,. A brief historical review is given of
theories relating I he permeability to the s t ructure of porous media. The applicability of
the currently accepted permeability theory, based on the hydraulic radius, only to media,
of low porosities is discussed. Both approaches may be extended to pennii approximate
correlat ion for i n t e r m e d i a t e porosi t ies . Fo r f ib rous m a t e r i a l s of h igh p o r o s i t y , it, is s h o w n
thai the efleei of fluid inertia results iii a permeability thai varies wilh How even ai low
Reynolds Dumber. 'The permeability to gaseous flow is also shown to vary with the abso-
lute gas pressure. This variation is appreciable when the molecular mean free path is of
the same order of magnitude as the separation between filaments or particles in the medium.
Data suitable for the design of linear flowmeters utilizing fibrous materials of high porosity
are given, including da,I a, on I he useful porositv range of fibrous media.

I. I n t r o d u c t i o n

During the war there arose a need in the Bureau of
Aeronautics, Department of the Navy, for rapid
procurement of equipment suitable for field tests of
diluter-demand oxygen regulator's, winch are used

by flight personnel ;ti high altitudes. Duo to dilli-
culties in procurement, and certain disadvantages
in the convenient use of commercially available
flowmeters for (lie measurement of gaseous How, the

S ( ) l development of a suitable flowmeter was undertaken.
After some preliminary consideration, efforts were
centered on the development of ;i constant-resistance
flowmeter utilizing a porous medium ;is the flow-

i nia paper is a 11
Njavj i >epari men! |
t hi' e n d 0 1 i i i is p a p e r

iretical abstract ol a report i" fche Bureau of Aeronautics,
Figures In brackets Indicate i he literature references at
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resistance element. The major advantage of the
constant-resistance (or constant-permeability) flow-
meter is that its pressure drop is an indication of and
proportional to the volume rate of flow, so that an
instrument with linear response can be obtained.

Glass wool appeared to be a suitable porous
medium because it is relatively inactive chemically,
relatively nonhygroscopic, its fibers are strong and
elastic, making in bulk a resilient mass that will'
retain its characteristics; and the fibers can be made
in an almost unlimited range of sizes. A wide range
of permeability is therefore obtainable that is
absolutely essential for latitude in the design of flow-
meters. In addition, the wool is inexpensive and
easy to procure.

The development of these flowmeters included an
investigation into the general flow characteristics
of porous media, with particular reference to a
medium consisting of randomly arrayed filaments.
The primary concern in this paper is with the theo-
retical aspects of the permeability of highly porous
media of this type.

II. Permeability of Porous Media

1. Historical Review

The characteristic law of fluid flow through a porous
medium, for sufficiently low flows, is given by

Ap A
=cn, (1)

where
A = cross-sectional area of a cylindrical plug

of a porous medium.
Z—length of the plug.
Q=volumetric rate of flow of fluid through

the plug.
JU = absolute viscosity of the fluid.

.Ap=pressure drop between the ends of the plug.
c = a constant (used indiscriminately through-

out this paper). In eq 1 it is a factor
characteristic of each particular medium.
It is approximately a constant, increas-
ing at high flows, and lor gases, de-
creasing at low absolute pressures.

It is the elucidation of the principal dependence of
t h e f a c t o r c o n t h e s t r u c t u r e o f t h e m e d i u m a n d i t s
i n c i d e n t a l d e p e n d e n c e o n t h e p r o p e r t i e s o f t h e fluid
t h a i i s t h e p r i n c i p a l o b j e c t in t h i s p a p e r . It w i l l h e
u s e f u l t o d e f i n e t h e q u a n t i t y AAp/LQ. a s t h e r e s i s t -
i v i t y o f t h e m e d i u m f o r a g i v e n f l u i d , a n d i t s r e c i p r o -
cal LQ/AAp as the permeability. The quantity c
ma v t hen be referred to as the coefficient of resistivity
of the porous medium, or its reciprocal I /<• as the
coefficient of permeability.

D ' A r c y ' s e x p e r i m e n t s ( i n L 8 5 6 ) 01) t h e f low o f
w a t e r t h r o u g h s a n d s l e d h i m t o e s t a b l i s h e q I , a n d
it is commonly referred to as D'Arcy's equation.

Dupuit (in L863) extended it to partially include
dependence on the porosity of the medium. The
porosity f- is defined as the ratio of the yoluine occu-

pied by voids available to the fluid in a porous
medium to the total volume. He argued that the
apparent velocity QJA in a porous medium was less
than the actual average velocity in the pore spaces,
His expression was thus equivalent to

Ap A
L Q (2)

Slichter (in 1897) considered a granular bed as an
equivalent system of capillary tubes. On this basis
he derived the equation

Ap
d2F(eY (3)

where
d=dimension characteristic of the structure

of the medium. In this instance, it is
the diameter of the granule.

F( e) = empirical function of the porosity.
Many investigators have subsequently attempted

to obtain a generally applicable form of the porosity
function.

The valuable methods of Stanton and Pannell (in
1914) of correlating data on flow through smooth
circular pipes on the basis of the Reynolds number
and other dimensionless groups, were followed by
the concept of Schiller (in 1923) of a mean hydraulic
radius that permitted correlating flow data on non-
circular pipes. The mean hydraulic radius r may
be defined as the ratio of the volume of a medium
filled with a fluid to the surface within the medium
in contact with the fluid. Blake (in 1922) utilized
the idea of a mean hydraulic radius in graphically
correlating data on flow through granular beds in
terms of a Reynolds number and other dimensionless
groups. The results of Blake's work and the theo-
retical exposition of Kozeny (in 1927) on granular
beds may be summarized in the formula

Ap A_ jus2

irc7
(4)

in which S is the surface per uni t volume of a porous
medium in contact with the fluid (.s'=e/r).

The Kozeny, or hydraulic radius, theory (eq 4) is
intended to have general applicabil i ty to all porous
media, because the only properties of the medium
thai, remain buried in the constant c involve the
detailed s t ruc ture of the medium, such as factors
t h a i take into account the shape and configuration
of the fluid path or the shape and orientation of (he
m a t e r i a l p a r t i c l e s . In f a c t , e x p e r i m e n t s w h e r e t h i s
theory is definitely applicable show only modera te
variation of this constant for a variety of shapes.

An extensive list of references, complete up to
I(.K)X, and more complete exposition of the problem
can be found in reference [2],

In L938 and l!):;(.) [3], eq I was modified by Carman
to the form

~L
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in which s0 is the "specific" surface exposed to the
fluid (surface exposed to the fluid per unit volume
of solid material).

The value of c in eq 5 was found to be about 5
for granular materials of low porosities.

Equation 5 was applied to fibrous materials by
Wiggins, Campbell, and Maass [4], and by Fowler
and Hertel [5]. A clear exposition of the hydraulic
radius theory leading to eq 5 may be also found in
reference [4].

The latest modification of the hydraulic radius
theory [6] involves the introduction of an orientation
factor O, which is defined as the averaged value
of the square of the sine of the angle between a
normal to the particle, fiber, or wall forming the
microscopic flow channel and the macroscopic
direction of flow. The resulting formula is

Ap A
0 (6)

Ko is a shape factor that should be the same for all
channels of the same geometric shape and that should
not vary markedly from shape to shape.

The Kozeny, or hydraulic radius, theory (from eq
4 onward) has thus been carried to a high degree
of refinement. Many investigators, however, have
not felt justified in using any relationship more
complicated than the D'Arcy formula (eq 1), in
which an empirical constant 1/c (the coefficient of
permeability) is obtained experimentally for each
medium investigated.

A theory developed from a different point of
view which may be referred to as the drag t heo ry -
has existed for some time without attracting much
recognition or support. Emcrsleben (in 1925)
attempted a mathematical solution of the hydro-
dynamic problem of the viscous drag of a fluid on ;i
special array of parallel fibers. Burke and Plummer
(in 1928) used the drag on spheres to obtain a law
for the dependence of permeability of a porous
medium on its porosity. The drag theory leads to
a different expression for the dependence of resis-
tivity on porosity than that given by the hydraulic
radius theory. As existing data at that time and
later, particularly on (low through sands, appeared
to be consistent with the hydraulic radius theory,
little attention has been given to the drag theory.

Actually, it appears that neither the hydraulic
radius theory nor the drag theory can be entirely
correct, but (hat each will ha ve a range of application.
This concept is implicit in ftmersleben's solution.
Indeed, data on fibrous materials obtained by
Sullivan in 1942 indicated that the hydraulic radius
theory broke down at high porosities, where one
may expect an elementary viscous drag theory to
apply most satisfactorily.

It, can be easily understood why (here is a separate
range of applicability of these two theories l>\ con-
sidering the extreme cases. For an array of fibers
or particles of large separation, the resistance do
flow can be computed as the sum of the fluid drags
on each element. As (he elements are brought closer

together, adjacent elements will modify the flow
pattern surrounding a particular element. In prin-
ciple, if account could be taken of the effect of the
mutual interference between particles, the drag
theory should be applicable to all porosities. How-
ever, in practice, this is beset by mathematical
difficulties. Thus an elementary drag theory should
fail when applied to low porosities.

In the hydraulic radius theory, the estimate of the
resistance offered by a connected network of flow
channels is based on the product of the area of solid
surface in contact with fluid and an "equivalent"
shearing stress acting on this area. The equivalent
shearing stress is assumed to be that obtained from
the normal velocity gradient that would exist at the
walls of an equivalent channel formed between two
parallel plates [4]. When the separation between
the drag surfaces is small (more exactly, when the
separation is small compared to the radius of curva-
ture of a surface), a valid estimate is obtained.
However, as the separation increases (higher porosi-
ties), the velocity gradient normal to the surface
depends more and more on the ratio of the radius
of curvature at the surface to the separation rather
than on the distance to an adjacent wall. This is
readily seen in the case of two concentric tubes with
axial flow between them. With small separation,
the hydraulic radius theory gives a true account of
the flow resistance in the annulus. As the inner
tube is shrunk, this is no longer true. Thus it turns
out that the hydraulic radius theory is best applicable
at low porosities and the drag theory at high porosi-
ties.

In the present investigation, expressions for the
resistivity of fibrous materials have been derived
from elementary consideration of the viscous drag
of individual elements and were found to be
moderately successful experimentally. This might
be expected, as, in general, fibrous materials under
moderate packing will still have rather high porosity.
It is thus proposed that the same method of attack
is suitable for all materials of high porosity.

The problem of intermediate porosities will be left
untouched. It is possible, by semiempirical methods,
to find expressions t h a t may be expected to fit a p -
proximately the entire range of porosities, or, by
perturbation methods, to extend the range of appli-
cability of each theory individually, or finally, it
may be possible by greal effort, to find one single
mathemat ical solution that is applicable at all
porosil ics.

2. D r a g Theory of Permeabi l i ty

We will under take to account for the permeabili ty

of a random distribution of circular cylindrical fibers
o f t h e s a m e d i a m e t e r o n t h e b a s i s o f t h e d r a g o n
individual elements.

I t w i l l b e a s s u m e d t h a t t h e ( l o w r e s i s t i v i t y o f a l l
r a n d o m d i s t r i b u t i o n s o f t h e s a m e fibers p e r u n i t
v o l u m e w i l l n o t d i f f e r , a n d t h a t it w i l l b e t h e s a m e
a s t h a t o b t a i n e d w i t h a n e q u i p a r t it i o n o f l i b e r s i n
t h r e e p e r p e n d i c u l a r d i r e c t i o n s , o n e o f w h i c h i s a l o n
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the direction of macroscopic flow. It will be further
assumed that the separation between fibers, and the
length of individual fibers are both large compared
to the fiber diameter (high porosities), and that the
disturbance due to adjacent fibers on the flow around
any particular fiber is negligible.

If it be assumed that fluid inertial forces are
negligible (low local Reynolds number) an equation
can be derived by equating the pressure at two
planes perpendicular to the direction of macroscopic
flow to the viscous drag force on all elements between
the planes. It is assumed that the pressure drop
necessary to overcome the viscous drag is linearly
additive for the various fibers, whether parallel or
perpendicular to the flow.

It was estimated from Emersleben's paper [7] that
the drag force per unit length of a single fiber sur-
rounded by similar fibers all oriented along the
direction of flow and with moderate separations is
approximately given by

(7)

where

/=drag force per unit length of fiber.
v=velocity of the fluid stream distant from the

filament.

If it be assumed that there are n filaments per unit
volume, and that n/3 filaments are arrayed in each of
the three perpendicular directions, the total drag
force in a unit volume due to the n/3 filaments
parallel to the flow can be equated to the pressure
drop per unit length, so that

Ap Aim
(8)

It is estimated from Oseen's solution for a cylinder
perpendicular to a stream that partially takes into
account fluid inertia (sec Lamb's "Hydrodynamics")
that the drag force for such filaments is given by

/ •

4TT

2-ln I! (9)

in which

In It natural Logarithm of (lie local Reynolds
number.

7?= Reynolds number , defined as </rp/n.
<l fiber d iameter ,
p fluid densi ty .

The drug force on each of the two sets of n/3 fila-
men t s per unit volume, arrayed perpendicular to the
fluid f low, c a n b e e q u a t e d t o t h e p r e s s u r e d r o p per
unit length, giving

1 TTII

3(2-1711!) (10)

Linear superposition or simple addition of the three
sets of pressure drops necessary to overcome the drag
of the three sets of filaments results in the total
pressure gradient of

Ap 4irn 4—In R
X = "~3~2 — In R (11)

The number of fibers n per unit volume, which is
also equal to the total fiber length per unit volume,
may be eliminated, as the apparent density of a
fibrous pack in vacuum <rp is equal to the product of
the fiber volume and the fiber density <rf, or

IT ]2

a v=-. d no-f.

Eliminating n, eq 11 reduces to

Ap f6/xy ap 4 — In R
3 afd

22~lnR

(12)

(13)

The velocity profile between fibers is assumed to
be sufficiently flat for high porosities so that the
velocity may be taken as constant. The velocity v is
therefore related to the volumetric rate of flow Q and
the macroscopic cross sectional area of a plug A by
the relation

Q
v=- A (14)

It follows from the definition of the porosity e that

1 - 6 = ' (15)

With the use of these two relations, eq 13 may be
put in the form

Ap A
L Q

1 — 6 A—lnR
ed2 2-lnR'

16M 4:-In R
3 (af-ap)d

2 2—In /.'
(16)

Although the derivat ion, as given, assumed an
incompressible fluid, it can be readily shown that
the derived equat ions are unchanged for a compres-
sible fluid, flowing isothermally, if the volumetric
(low at the ar i thmet ic mean pressure Qm is used in
eq 16. It is therefore applicable to both liquids and
gases. However, it will be shown later, that an
addit ional correction must be made to eq 16 for gases
at low absolute pressures.

If eq (') is compared with eq 16 and their ratio is
interpreted in terms of the shape factor of the hy-
draulic radius theory, it is possible to predict the
general variation of the shape factor A,, at high
porosity. At low porosities, A,, is cons tan t , but
at high porosities it should become asymptot ic to

Kt> (17)

where c is a constant.
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This prediction is qualitatively compatible with
the data given in reference [6].

Another significant implication in eq 16 is that the
resistivity (or permeability) is not a constant but
varies slowly with Reynolds number. The theo-
retical variation of the resistivity is shown in table 1.

TABLE 1. Theoretical variation of resistivity with Reynolds
number for a porous plug of randomly arrayed fibers

Reynolds
number,

dQP

/iAt

0__
lO-5

1<H
lO-3

10-2
10-i
1-.-

Factor pro-
portional to
resistivity,

16 4- ln R
3 2- ln R

5.3
6.1
6.3
6.5
6.9
7.8

10.7

This slow variation of resistivity with flow is
quite characteristic of many elements in which the
flow is nominally viscous and was immediately
found experimentally in the first glass wool flow-
meters that were studied. While in general it is
reasonable to assume that this effect is associated
with fluid inertia, it is often difficult to account for
it precisely. In fact, a common method of separat-
ing the resistance into two additive components, one
proportional to the viscous resistance, and the other
proportional to a kinetic energy loss, often fails in
securing added precision in describing experimental
results with linear flow elements.

In eq 16, it is noteworthy that the effect has been
associated with an intrinsic variation of drag with
Reynolds number. An extremely interesting mathe-
matical interpretation of eq 16 is possible. The
slow variation of a logarithmic expression, as that
give in oq 16, can be closely approximated by an
exponential form.

(18)

This type of relation is often successfully used for
linear flow elements without apparent theoretical
justification. At least in the case of highly porous
fibrous media it has been shown to have theoretical
validity.

T h e q u a n t i t y Qx r e p r e s e n t s to a h i g h d e g r e e t h e
point variation of Reynolds number, where the best
value of x depends on the Reynolds number.

For the resistance law given by eq L6, the best
value of x is

(I!))
(2 - lnA ' ) (4 - ln li)

In r e f e r e n c e 111, e q I<> w a s u s e d f o r c o m p a r i s o n w i t h
e x p e r i m e n t a l d a t a on g l a s s wool a n d fair a g r e e m e n t
f o u n d , so t h a t i t s e s s e n t i a l va l id i ty appears e s t a b -

lished. While it is apparent that eq 16 was derived
from elementary considerations, to which many
refinements are possible, particularly as to the sta-
tistical distribution function for drag and second-
order effects of porosity, lack of extensive experi-
mental data make these refinements dubious. As
an illustration of the possible accuracy of eq 16,
some selected data of fair accuracy obtained subse-
quent to the issue of reference [1] permitted close
fitting by the formula

*2.A=$U ^ 2.4-lnfl
LQ ^ (af-o-p)d

2 2-ln R l Z U ;

Although at first sight, the change in numerical
constants appears drastic, it can be shown to repre-
sent moderately reasonable changes in the amount
and relative weighting of the parallel and perpen-
dicular fiber drags.

The main conclusion from all the experimental
data obtained is that the coefficient of the resistivity
function always fell in the approximate range of
5 to 10, and that the variation of resistivity with
Reynolds number is less than given by eq 16, but
not as small as given by eq 20.

3. Limits of Linearity

I t is well known that a laminar flow regime does not
persist around elements producing drag in a fluid
stream at Reynolds numbers much greater than 1.
Even at Reynolds numbers less than 1, the drag
force will not remain strictly proportional to the
velocity. Furthermore, even when drag is almost
proportional to velocity for an indivdual element,
this may not necessarily hold true for an array of
similar elements, even though widely spaced.

The value of the resistivity given by eq 16 may
therefore not be expected to apply for Reynolds
numbers much greater than 1. However, experi-
mental data indicated no inconsistencies up to a
value of Reynolds number even as great as 1.2.
Therefore, as a round measure of the limit of flow
linearity, a Reynolds number of 1 may bo assumed.

The resistance of a given porous plug used as a
flowmeter may therefore be expressed as

Ap f^p\ /4 — In
<2 U L \ 2 InHmax-\n QIQ

max\ /

i n a x / \

111

4—In
(21)

where the subscript max refers to the values of
quantities at the maximum or full scale How.

4. Pressure Variation of Resistivity at Low Pressure
for Gases

At low absolute pressures, the How of gas along a
tube does nol obey I'oiseuille's law, the How being
somewhat larger for a given pressure drop than
predicted by this law. At low gas pressures the
resistance to How in a tube may be derived by the
methods of statistical mechanics [Sj.
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The essential idea is that at low pressures, where
the separation between walls is of the order of the
mean free path, molecules will suffer few collisions
with each other, and therefore should be capable of
being urged to drift, or "flow", by an infinitesimal
pressure gradient. However, there will be a loss of
momentum suffered by molecules that collide with a
stationary boundary (the tube wall). This loss of
momentum is computed by assuming that, with a
finite pressure gradient, the velocity of a molecule
consists of its drift, or flow, velocity, superimposed
on its Maxwellian thermal velocity; and that as a
result of collisions with a wall, the molecule will be
diffusely reflected, that is, it will give up its drift
velocity and be reflected with some random Max-
wellian velocity. The average velocity profile for
gas flowing at low absolute pressures in a tube will
therefore consist of a flat portion between the walls
of constant velocity equal to the drift velocity, and
a portion near the walls that falls very rapidly to
zero, so that the velocity profile looks essentially
flat-topped. This represents the model for molec-
ular "drift" flow in a tube. At high pressures,
viscosity is used to account for the flow resistance.

Knudsen found that, for a given pressure gradient
at any absolute pressure, a large fraction of the drift
velocity can be added to the "viscous" velocity to
obtain a composite velocity in good agreement with
experiment. The fraction of the computed drift
velocity was semiempirically determined to range
from 0.81 to 1, depending on the ratio of mean free
path to wall separation. The effect of this super-
position leads to a result that encompasses the en-
tire pressure range. One term, the Knudsen term,
becomes predominant at low pressures, while the
other term, the Poiseuille term, becomes predominant
at high pressures. In the intermediate pressure
range (above 1 mm Hg absolute pressure), although
small, the Knudsen term is not negligible.

Application of the same theory to porous media of
a random filament nature leads to the result that the
molecular drift flow at low pressure (>'m is approxi-
mately given by

where subscript /// refers to conditions at the mean
pressure, and
2?o=arbitrary reference pressure, chosen as I a tmos-

phere.
(/>/p),,- pressure to density ratio for the gas a t

the mean plug tempera ture .

F o l l o w i n g K n u d s e n , o . s i of t h e dr i f t How is s i m p l y
a d d e d t o t h e v i s c o u s ( l o w o f e ( | I d , s o t h a t t h e t o t a l
H o w a t m e a n c o n d i t i o n s i s

1 2 In II (aj ffp)d
2 AA/>

r>.:; l In //

(Tj(l

(23)

The approximate value 10 was chosen for the
resistivity function in the Knudsen term in the
bracket.

The form of eq 23 is thus

(24)

where b is the coefficient of the Knudsen term.
Experimentally, a linear variation of permeability

Qm/Ap with the reciprocal mean pressure ratio
PolPm was always obtained. In fact, fair agreement
was found with the theoretically computed cofficient
b in practically all cases, although this result may
have been purely fortuitous.

III. Range of Useful Porosities of Fibrous
Materials

The following section, largely based on speculative
considerations, is irrelevant to the development of
the theory of permeability of porous media. How-
ever, it is of utility in the design of flowmeters. In
a flowmeter, it is desirable to pack the fibrous
material to such a density that it will remain rela-
tively rigid under vibration, shock, or differential
pressure overload.

The following theoretical and experimental con-
clusions, while tentative, furnish a rough guide in
determining usable porosity limits for design purposes:

1. The upper limit to the porosity of a fibrous
material is obtained with a free pack and is ap-
proximately 0.98. The minimum ratio of free pack
to fiber density <sv[of is thus approximately 0.02.
The usable upper limit of porosity is set by other
design considerations.

2. The lower limit to the porosity of a fibrous
material is approximately 0.50.

3. To a crude approximation, the compressibility
of all fibrous materials is the same, and equals
0.0021 lb/in.3 of pack per pounds per square inch of
pressure load.

4. Fibrous materials have fairly reproducible and
constant compressibility characteristics on increasing
load but show erratic hysteresis with decreasing
load. Therefore all packing adjustments on fibrous
plugs should be made with increasing load.

The approximate constancy of the free-pack den-
sity, it is believed, is related to the geometric-mech-
anical problem of the minimum number of filaments
that mus t be introduced into a given volume to bind
and form a stable pack.

The lower limit to the porosity of librous materials
may be estimated by considering a close packed array
of fibers perpendicular to each other in three direc-
tions. The porosity for such an array was computed
to be 0.41. Experimentally, porosities as low as 0.5
were obtained. While lower porosities can be ob-
tained, it is believed that serious compression of the
m a t e r i a l r a t h e r t h a n l i b e r b e n d i n g w o u l d t a k e p l a c e .

The approximate constancy of compressibility of
various materials is probably related to the similar
small variation m the ratio of elastic modulus to
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density for many elastic materials. Various models
for the compressibility of a fibrous pack demonstrate
the dependence of pack compressibility on this pa-
rameter.

In lieu of any other information, the variation of
pack density with pressure loading for increasing
load may be taken as

where
= 0.02o-/+0.002lP, (25)

<rp=pack density.
i f h

pp y
af=density of the fiber (in the same units).
P=pressure loading. The constant 0.0021 has

the units lb/in.3/psi.
The theoretical range of pack density ratio is ap-

proximately 0.02 to 0.50. The practical range of
pack density ratio for flowmeter design is probably
0.1 to 0.3.

IV. Design of Linear Flowmeters

A convenient procedure is outlined in this section
for designing a linear flowmeter on the basis of the
theory developed in section II. It is assumed that
the basic problem is to design a linear flowmeter
that will possess a desired resistance Ap/Q, which is
constant within given limits over a desired flow
range 0— Qm&x for a given fluid. To meet these re-
quirements, compromise choices must be made of
fiber diameter, cross-sectional area of the flow-
metering plug, plug density, and plug length.

A scheme, involving the use of a simple chart, has
been evolved for design purposes. In the interests
of clarity, the theory by which the design chart was
devised will be sketched.

Equation 23 sets forth the law of isothermal gas
How for a fibrous plug sis

1 2 - I n R (af~ap)d
2 AAp

Of— Op

a, (I
£s &.1 (23)
Po V\

The same equation holds for liquids, except that the
bracketed expression bas the value unity.

As it is assumed that this law holds only for high
porosities, the small correct ion term in the bracket
may be evaluated for a porosity of unity so that eq 23,
for gases, becomes

1 2—In R Qf—Oj
l~5T3 4—lni? or, mL

f """" (26)

It will be c o n v e n i e n t , in t h i s s e c t i o n , to drop the
subscript m, which denotes mean isothermal condi-
tions, leaving it, understood.

From the definition, the Reynolds number is

It
(I p Q af

A(af 0 „)
('27)

These equations may be regrouped by the following
definitions:

where
Of

(28)

L=actual plug length.
£0=fictitious plug length (length of plug if

compressed to a porosity of 0.50).

07

in which
fraax Of

Mnax 1
: 7? ~'

-"max e

(29)

M=mass flow (M=pQ).
Mmax=maximum mass flow for which the

flowmeter is to be used.
Rmax=corresponding maximum Reynolds num-

ber.
Mo=fictitious flow (mass flow at which the

Reynolds number is unity if the medi-
um had unit porosity).

(30)

The quantity (QL0/Ap)0 is a fictitious value for the
flow per unit pressure gradient (the value for a
Reynolds number of zero). It is closely related to
the true value by the relation

QL0J2-\nR/Q £

Ap 4—In R\Ap
(31)

The definitions, eq 27 through 30, and eq 31 contain
the desired solution.

Equation 30 may be plotted as a generalized chart
applicable to all fluids, or, by choice of fluid param-
eters, as a design chart suitable fora specific fluid.
I t is presented in generalized form in figure' 1 as a
logarithmic plot of (Q/Ap)L0 against- 11M „ for
constant values of ^.1 and d/n respectively. The use
of figure 1 or 6Q 30 leads to values of A, L, and </ fora,
porous plug tha t nominally will have the desired
resistance Ap/Q. The besi choice of these parameters
depends upon the deviat ions from constant resistance
t h a t m a y be tolerated.

As the permeability theory developed has only
nominal cer ta in ty , it is not to be expected that a,
desired resistance will be experimentally obtained
with any great accuracy, so that in general, a moder-
ate amount of resistance adjustment will be found
necessary. (Illustratively, this may be accom-
plished by variation of the.weight ol glass wool used.)
Therefore Little distinction need be made as to the
nominal design value of ApjQ. T h e value (Ap/Q)0

may thus be regarded as the resistance at full scale,
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FIGURE 1. Design chart for linear flowmeters

(See text for explanation of its use.)

10' 10' 10'

establishing a nominal straight line calibration for
the flowmeter. The variation of (2— In/?)/(4— IILR)
with flow may be regarded as determining the ex-
pected deviation from linearity, which may be
characterized by its maximum value as either a
quadratic deviation, or, more accurately, as an
exponential deviation. The maximum deviation
from a straight line fitted to the maximum flow and
pressure drop is given in table 2, computed on the
basis of eq Hi. Any desired degree of linearity
therefore determines a maximum value of Reynolds
number to use for design purposes.

TABLE 2. Theoretical maximum deviation from linearity for a
fibrous pi no flowmeter

Reynoldsnum-
ber at lull scale

How, Rm H

1
10-'
1<H
10-'
in '
io-«
10 •

Maximum dif-
ference between

true Mow and
linear approxi-

mation

Percentage o)
lull scale iiini

6 . -ri

I . I

(I. 7

. : ;

.3

Location of
maximum

Percentage o)
full 8CaU !l<nr

48
43
•11
40
40
40
39

For gases, eq 31 indicates a change in resistance
with absolute pressure, which depends on the fiber
diameter d. Any desired degree of uniformity in
the resistance over a range of absolute pressures can
be secured by proper selection of d.

Finally, practical consideration of size and the
usable porosity range of 0.7 to 0.9 determine the
length L and cross-sectional area A.

For purposes of clarity, a design procedure is given
in some detail below:

1. Determine the following constants of the fluid
to be metered: M, p, p/p (for gases).

2. Decide upon the maximum How Qmax to be
metered, the desired resistance Ap/Q, the maximum
amount of nonlinear deviation that may be tolerated,
and in the case of gases, the absolute pressure range
in which the flowmeter is to be used, and the cor-
responding range of resistance Ap/Q thai may be
tolerated.

3. Decide upon the maximum practical range that
may be used for A, L, and </.

4. F rom table 2, choose the maximum value of
/ i \n a x that will give the desired linearity. Smaller
values of Rmft, will give belter linearity but may
require such large plug areas as to be impractical.
A rough empirical criterion is to consider a design
band 1 decade wide. Compute minimum and maxi-
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mum values of Mo (eq 29) assuming minimum and
maximum values for both Rmax and e. The range of
* may be taken as 0.7 to 0.9. Compute the cor-
responding values for fx Mo and mark out the vertical
band corresponding to these limits in figure 1.

5. For the maximum and minimum limits assumed
for both L and e, compute the corresponding limits
for Lo (eq 28). Compute the corresponding values
of QL0/Ap and mark out the horizontal band cor-
responding to these limits in figure 1. Steps (4) and
(5) result in a design rectangle on figure 1 within
which a solution is possible.

6. Further limit this design rectangle by excluding
regions of figure 1 representing greater and lesser
area A (really /JLA) than desired.

7. For gas flow, compute the maximum tolerable
value of the coefficient of the Knudsen term b and
the corresponding minimum value of fiber diameter
d. Exclude regions of figure 1 representing smaller
values of d (really d/fi). One may then choose
design parameters corresponding to any point in
the design region that has not been excluded.

8. When the flowmeter is built and tested, adjust-
ment of the resistivity can then be made by the
principal technique^of changing the weight of glass
wool used.
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vided by the Office of Naval Research under a proj-
ect on Basic Instrumentation of Scientific Research.
Grateful acknowledgement is also due W. A. Wild-
hack, at whose suggestion and under whose super-
vision the development of the glass wool flowmeter
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Density, Refractive Index, Boiling Point, and Vapor
Pressure of Eight Monoolefin (1-Alkene), Six Pentadiene,

and Two Cyclomonoolefin Hydrocarbons1

By Alphonse F. Forziati,2 David L. Camin,! and Frederick D. Rossini3

Density (at 20°, 25°, and 30° C), refractive index (at seven wavelengths at 20°, 25°,
and 30° C), vapor pressure, and boiling point (from 48 to 778 mm Eg) of 16 highly purified
samples of hydrocarbons of the AIM NBS series were measured for S monoolefin (1-alkene),
(> pentadiene, and 2 cyclomonoolefin hydrocarbons.

The data on refractive index were adjusted by means of modified Cauchy and Hart-
mann equations, and values of the constants are given for each compound.

The data on vapor pressure were adjusted by means of the method of least squares
and the three-constant Antoine equation. The values of the constants are given for each
compound.

Values were calculated for the specfic dispersions, (nF—nc)ld and {nK — nn)l<i.

As a cooperative investigation of the Nat ional
Bureau of S t a n d a r d s , the I1. S. Office of Rubber
Reserve, and the American Petroleum [nstitute
Research Project (>, measurements of density, re-
fractive index, vapor pressure, and boiling point,
were made on highly purified samples of ei<j:ht
nionoolclin (1-alkene), six pentadiene, and two
cyclomonoolelin hydrocarbons of the API NBS
series.

The compounds measured were made available
'This investigation was performed at the National Bureau "f Standards :is

part of the work of the American Petroleum [nstitute Research Project 6 on the
"Analysis, purification, and properties <>i hydrocarbons."

Formerly Research Associate on the American Petroleum [nstitute Research
Project <'..

1 Present address: Carnegie [nstitute of Technology, Pittsburgh 13, Pa.

through (lie American Petroleum Ins t i tu te Research
Project 11 on the "Collection, calculat ion, and
compilat ion of data on the properties of hydrocar -
bons . " T h e samples were purified by the American
Petroleum Ins t i tu te Research Project 6 on the
"Analysis , purification, and properties of hydro-
carbons," Iron) material supplied by the following
laboratories:

L-Pentene, by the Phillips Petroleum Co., Bartles-
ville, Okla.

l-IIexene, l -heptene, l-noneiie, L-undecene, and
1,4-penfadiene, by the American Petroleum Ins t i tu te
Research Project 45, at the Ohio S ta le University,
(Jolumbus, Ohio.
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