
Journal of Research of the National Bureau of Standards Vol. 45, No. 3 September 1950 Research Paper 2131

Generalization of S. Bernstein's Polynomials to the
Infinite Interval

By Otto Szasz

The paper studies the convergence of P(u, x) to f(x) as u —> °o . The results obtained
are generalized analogs, for the interval 0< x < °°, of known properties of S. Bernstein's
approximation polynomials in a finite interval.

1. With a function j(t) in the closed interval
[0,1], S. Bernstein in 1912 associated the poly-
nomials

Bn{t) = f(l-t)*-f(p/n), "=1,2,3,.

(1)

He proved that if/(£) is continuous in the closed
interval [0,1], then Bn{t)-^j(t) uniformly, as n-> » .
This yields a simple constructive proof of Weier-
strass's approximation theorem.
More generally the following theorems hold:

Theorem A. If f(t) is bounded in [0,1] and
continuous at every point of [a, 6], where 0^a<C
6 ^ 1 , then Bn(t)-^f(t) uniformly in [a,b]. (See
[6], p. 66)\

Theorem B. If j(t) is bounded in [0,1] and
continuous at a point r, then Bn(T)—>F(j). (See
[3], p. 112).

Theorem C. If j{t) satisfies a Lipschitz-Holder
condition

then |/(0~~Bn(t) | <c2n~x/2,Ci,c2 constants (see [7],
p. 53;4). Bn{t) is a linear transform of the func-
tion/^) ; for the infinite interval (0,<») we define
an analogous transform:

P(u;f) =
v=0

^ (uxyj(v/u), (2)

1 Figures in brackets indicate the literature references at the end of this
paper.

We shall prove corresponding theorems of approx-
imation for this transform; u->ca corresponds to
7i-* co in eq 1. We also sharpen theorem B to
uniform convergence at the point r.

Definition: A set of continuous functions P (u, x)
is said to converge uniformly to the value S at a
point #=f, as li-^oo if P(un,xn)^>S, whenever
£„—>f and un-> co y as n-^> °°. An equivalent for-
mulation is: to any e>0 there exists a 5(c) and an
ij(5,€) so that \P(u,x)— S|<€ for \x—f|<6 and

2. In this section we introduce some lemmas
for later application.

Lemma 1. For \ > 0 ,

(3)

(4)

The following identity is easily verified:

it follows that

This proves lemma 1.

Lemma 2. For u^O

S \v-u\ -! (5)

2 M. Kac also considered the transform (2) independently, from a similiar
point of view.
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By Schwarz's inequality and by eq 4 Hence

this proves lemma 2.
Observe that

S (y—u) —f=o,

thus, if u is a positive integer

(6)

by Stirling's formula. Thus the estimate (5) is
the sharpest possible, except for a constant factor.

3. Theorem 1. Suppose that/(a?) is bounded in
every finite interval; iff(x)=O(xk) for some &>0
as x-> <x> and if f(x) is continuous at a point f, then
P(u]f) converges uniformly to/(a?) at x=f.
Consider

0 = 0

+ S = , say

and assume that \x —
Let

for
max |/(aO-/(0| =

then m(6)->

f(v/u)

and

0 as 5-^0. Now

-f(x) =f(p/u) -/(f) +/(f) -/(*),

u * u (7)

x
u

hence, from

and

eq 7

-f(x) | ^ m (25) +m(8)S 2m (25).

Next write

Then

Let

Then

say.

sup |/(x) I = J7(5), for x ̂  5.

Applying lemma 1 with \=u8, we get

Finally, assuming

We apply again lemma 1, with \=u8

then

Summarizing, we find

Letting for a fixed 5,

limsup \P(u'J{x))-j(x)\ S 0(m(25)),u

from which our theorem follows.
It can be shown easily that uniform convergence

at each point of a closed set D implies uniform
convergence over the set D. A similar argument
applies to the transform (1), thus sharpening the
theorems A and B.

4. Theorem 2. If j(x) satisfies the Lipschitz-
type condition
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/2>
(ux)v \v-Ux\

7, p constants, 0 < p ^ 1,

then

uniformly for 0<Cx<C °°, as w—> oo.

W e h a v e , f o r P = l

oo i

\P{u;f)-f(x) \ £e— S ^

by lemma 2. This proves theorem 2 for P = l .
Now from Holder's inequality, for 0 < p < l

Assume that

then

This completes the proof of theorem 2.

Let p = l , and/(x)=c—x, for O^x^c, c a positive constant; / (z)=0 for x^c. Now the condition (8)
is satisfied. Furthermore

Let [uc]=k, then

and, from section 2

Thus Now
lim inf u*

This proves that for p= 1 the order of the estimate
in theorem 2 is the sharpest possible. We do
not know of a similar example for p < l . For
Bernstein's polynomials an exact result has been
given by M. Kac [4].

5. Suppose that/(a;) is continuous in the infinite
interval (0,oo).

Let

l

_xu*(ux)v n

~e ak

„ rk/u)y
r]

J(x)=f(log l/t)=<l>(f) is continuous in O ^ ^ l .

Given €>0, we can find a polynomial S akt
k=pn(t) Clearly for

sothat \Ht)-Pn(t)\<*. It follows that

\j{x) -pn(e~x)! <e, 0<x< «>.
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^ e - ^ " S ak exp (MZ exp (—Ar/u))

*o }P{u)/p1^-+'pn(e~x) uniformly in
(0, » ) ; furthermore



and

Here

hence

\P(u;pn) -pn

Thus, the theorem:

Now

\P(u;f-pn)\<e,

-*) -j{x) |.

Theorem 8. If/(#) is continuous in (0, o°) then
P(wJ)-^f(x) uniformly in (0, o°).

6. Theorem 4. If/(#) is r-times differentiate,
J^(x)=0(xk) as x->oo, for some 1T>O, and if
j{T)(x) is continuous at a point f, then Pir)(u;f)
converges uniformly to/ ( r )(x) at #=f.

We write l/u=h, and introduce the notation

Af(yh)=f(v+lh)-f(vh).

A2j(vh) =AAj{vh) =J(v+2h)-2j(v+ lh)+f(vh).

Arj(vh) =AAr~1j\vh)

Lemma 8. We have

ex/h £f Q{h;f) =±,

Differentiation gives

f(vh).

l/v\ ( | J h"

The lemma now follows by induction.
It is known that

where

)/x\<

-x\>5

where we assume that \x—f \<C8. Using the same
device as in the proof of theorem 1, we get theorem
•4. For Bernstein's polynomials see G. Lorentz
[5], and his reference to Wigert's work.

For p = l theorem 2 and formula (6) suggest the
following proposition:

Theorem 5. If f(x) is bounded in every finite inter-
val, if it is differentiate at a point f>0, and if
f(x)=0(xk) for some &>0, £-><», then

Let

max

then

where

Now

/(f+A)-/(f) 4n

as 5—>0. We may write

where

\ev(u) | ̂ n(8) for

Utilizing formula (6) we get

Using the same device as in the proof of theorem
1, and employing lemma 2, we can complete the
proof of theorem 3.

The result can be generalized to higher deriva-
tives. We restrict ourselves here to the case that
/"({•) exists. Thus,
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where

Now

then

for \h\£8, and

where

for (9)

It follows from formulas 4 and 6 that

*>(«;/«0)-/00=£/" 00 +

or

We write

/1 | | ^ «

From (9) and (4),

Hence,

Next write

and note that

S.2

(10)

) >(f+*)

=/(£) -jf(f) - Wu-S)f{S) -

Let

We now employ the formula (see e. g. [2], p. 200)

It follows that

so that

u

Finally, in view otf(x)=0(xk)j we have for

hence

Thus,

Summarizing, from (10) and (11),

lim sup \u{P(u;M - / ( f )} - \

(11)

| ^ 5.

But 8 is arbitrarily small, hence the theorem:
Theorem 6. If f(x) is bounded in every finite
interval, if it is twice differentiate at a point
f>0, and if for some fc>O/(x)=O(ar*), x^<», then

Analogous theorems for Bernstein's polynomi-
als were given in [1] and [8].

8. In the terminology of probability distri-
bution the Bernstein polynomial corresponds to
the binomial distribution. The distribution func-
tion is
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the linear functional Bn(t;f) is

j;J(r/n)dFn(r)=±f(v/n)0

Similarly, P(u;f) corresponds to the Poisson
distribution; the distribution function is

and

/*oo oo

= f(r/u)dG(r,ux) = S
JO v=0

here the term with the largest weight has the
index v^ux. In the Bernoulli polynomial the
term with the largest weight has the index v^tn.

If instead of a function/we consider a sequence
So, Si, S2, . . . , then to the transform (1) cor-
responds

(9)

which defines the generalized Euler summability,
and to the transform (2) corresponds

which gives BoreFs summability method.
9. To approximate a function f(x) over the

whole real axis, we write

say;

obviously

Now

here

P(u;f)=P(u-J1)+P(u-J2);

(ux)v

and if we change x into—x, u into—u, we get

so that our previous results are directly applicable.
Similarly,

thus for negative values of x we need only change
u into —u, and revert to our previous results.

10. It follows from a well-known property of
the Beta function that

hence

so that for any Riemann integrable function

Similarly, at first formally

P(u;f)dx=± fxj{vl

the interchange of integration and summation is
legitimate if the series ^f(v/u) is convergent.
Thus, the formula

is valid if both sides exist. However, it is a deli-
cate question under what conditions

limi £/(»/«)-» ff(x)dx.

An extensive literature deals with this question.
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