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Wide-Range Phase Control with Constant Attenuation by 
Adjustable Impedance in a Resistance-Loaded Bridged-
Tee Network 

By Myron G. Pawley 

Phase may be shifted through a wide range without change in attenuation by means of 
a properly designed bridged-tee network. Equations are presented, and the necessary 
relations between circuit constants are deduced for phase control using an adjustable resist
ance, inductance, or capacitance located in a suitably selected branch of a bridged-tee 
network. 

I. Introduction 
Bridged-tee circuits are widely used as null net

works [l].1 This paper shows that bridged-tee net
works may be devised for phase shifting or phase 
modulating and gives the necessary relations between 
circuit constants when the phase displacement is 
produced by an adjustable resistance, inductance, or 
capacitance in the proper branch of the tee. Ad
vantages of these circuits will be seen to include: 
wide-range phase shift without change in attenua
tion; common ground for input and output circuits, 
as well as for one end of a single adjustable control 
impedance; large change in phase with small varia
tion in control reactance; ability to work into a low 
resistance load; stability; and simplicity. 
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FIGURE 1. Symmetrical lattice network with resistive load. 

A good general approach to the problem is to first 
consider the lattice network shown in figure 1. I t 
can be shown that the transfer function [2] for this 
circuit can be written [3] as 

E0 R% / _ \ 
(i) 

where 

Vbo--
1 . 

(2) 

Ziao—xi3-f-Za; Zi^o—x^-f-Zft., 

For constant attenuation, a, with phase shift pro
duced by variation in resistance or reactance in the 
circuit, one may write 

(3) 

where a is a constant independent of the variable 
that changes the phase angle 0. Hence, one may 
represent this transfer function geometrically as a 
circular locus with pole at the center. 

II. Variable Reactance Control of Phase 
with Constant Attenuation 

If we desire to use an adjustable reactance as the 
control element, we can examine the expressions in 
terms of the components that Za and Zb of figure 1 
require to preserve the form of eq 3. 

Referring to figure 1 and to eq 2, if 

and 

Za — Ra 

Zb=Rb+jX, 
(4) 

where X may be inductive or capacitative, we obtain 
the lattice network of figure 2, a. Here, 

y* 
1 

Rz-\-Ra 

and 

Vbo = 
1 

l 
R3-\-Rb 

V1+(ra;) 
COS 0. e~jdj 

R3 + Rb 

where 

0 = a r c tan 
X 

[ Figures in brackets indicate the literature references at the end of.this paper. J?3+^?6 

(5) 
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F I G U R E 2. Lattice networks for variable reactance control of 
'phase with constant attenuation. 

A study of the geometry of the vectors represent
ing the admittances ya? and yb0 shows that the desired 
phase shift characteristics will be obtained in the 
circuit of figure 2, a, provided 

Ra=R,+2Rb. (6) 

In this case, 

yao-yi>o=R +RJ 2 ~ c o s d (cos e~J s i n 0)\ 

'm+m[cos 2e~j sin 2e] 

i 
2(R3+Rb) 

£-m 

and eq 1, which represents the transfer function for 
the circuit of figure 1, and for that of figure 2, a, may 
be written 

E0 Ro 

Et ±(R3+Rb) 

where 

X 

-m 

0=arc tan Rz+Rb 

(7) 

Equation 7 is now in the form of eq 3, and there
fore represents the transfer function for a lattice net
work giving constant attenuation when the phase is 
shifted by variation in reactance X. 

Hence, the circuit of figure 1 becomes the desired 
phase shift network, shown in figure 2, a, provided 
Za and Zb are as given by eq 4 and provided the circuit 
constants are related as given in eq 6. 

The circuit shown in figure 2, b, also will be shown 
to satisfy these conditions, and hence will represent 
an example with the desired characteristics. Al
though lattice networks cannot always be converted 
to equivalent bridged-tee networks, this particular 
circuit was chosen because it may be converted to an 
equivalent bridged-tee. The lattice network is not 
generally convenient as a phase shifter, with constant 
attenuation, because simultaneous variation of the 
reactances in two arms would be required. The 
equivalent bridged-tee has the advantage of requiring 
the variation of only one reactance element for 
shifting the phase and of having the ground common 
to one side of the input and output, as well as to one 
end of the variable control reactance. 

Examination of figure 2, b, shows that if we make 
XCl^>Ri, 

za-Y> ) 

Zb=2B2+j(2XL-Xc).) 
(8) 

These forms for Za and Zb correspond to those given 
by eq 4. If, in addition, 

Bi i=i?3+4i?2, (9) 

the condition given in eq 6 is satisfied, and the circuit 
of figure 2, b, provides an example of the desired 
phase shift network. From eq 4, 7, 8, and 9, the 
transfer function may now be written 

E0 R. 3 e - m 

where 
Ei ±(RZ+2R2) 

2XL—Xc1 
$== arc t an . 

Rz-\-2R2 J 

(10) 

Equation 10, therefore, represents the transfer 
function for the circuit of figure 2, b, provided 

and (ID 

Under these conditions, simultaneous variation of the 
reactances in the circuit of the symmetrical lattice 
network of figure 2, b, shifts the phase without 
varying the attenuation. 

An equivalent bridged-tee network [4] shown in 
figure 3 may be derived from the lattice of figure 2, b. 
The variable shunt capacitor, shown connected with 
a dashed line, shows one means of varying the effec-
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tive reactance for producing phase shift. This will 
be described more fully later in this paper. The 
transfer function for this bridged-tee network (not 
including the added capacitative reactance XC2) 
is the same as that given in eq 10 for the correspond
ing lattice network of figure 2, b. 

In the bridged-tee circuit of figure 3, the phase 
may be shifted by varying the inductance, for 
example, with an adjustable core reactor or with a 
saturable reactor. The attenuation will not remain 
constant unless the resistance R2 of the reactor 
remains constant. In laboratory tests, i?2 was 
found not to change appreciably when the circuit 
reactance was changed by varying an external 
capacitance across the high-Q inductor. With this 
mode of operation, the circuit performed closely to 
theoretical predictions. 

FIGURE 3. Bridged-tee equivalent to lattice network of figure 2, b. 

Examination of the transfer function, eq 10, for 
the bridged-tee of figure 3 shows that as the resis
tance R2 of the inductor approaches zero, (Q ap
proaches oo) the attenuation approaches a minimum 
of one-fourth, and the phase sensitivity, with varia
tion in reactance, approaches a maximum. 

When XL is considered the variable in figure 3, 
with C2=0, it is convenient to write eq 10 in a 
different form: 

Let 

8L-- (12) 

In this case, eq 10 becomes 

E0 i?3 

where 
Et 

0=arc tan 

4(^3+2^2) 

(5L-l)XCl 

R3-\-2R2 

(13) 

Equation 13, therefore, represents the transfer 
function for the bridged-tee of figure 3, with C2=0, 
and with 8L proportional to i , as indicated by eq 12. 
As explained previously, for constant attenuation 

with variable phase shift, the conditions given with 
eq 11 are necessary. 

When XC2 is considered the variable in figure 3, it 
is convenient to write eq 10 in another form: 

Assume the Q of the inductor to be high, and that 
the network is adjusted for XL=Xclj2. Let 

8C= xL_xCl 
Xc2 2Xct 

= a>2Z<72<l. (14) 

If we replace XL in eq 10 by the parallel combination 
of XL and XC2 in figure 3, then make XL=XCi/2, and 
substitute for XC2 from eq 14, eq 10 becomes 

E0 Ro 

Et 4(RZ + 2R2) 
-m 

where 

0=arc tan 
Xc^c 

R^-{-2R2 

5c<Cl. 

(15) 

Equation 15 then represents the transfer function 
for the bridged-tee of figure 3, with 8C proportional 
to (72, as indicated by eq 14. As in the preceding 
case, for constant attentuation with variable phase 
shift, the conditions given with eq 11 are necessary. 

Attenuation and phase characteristic curves, with 
phase shift and attenuation shown as functions of 
shunt capacitance C2, are given in figure 4, a, for the 
bridged-tee network of figure 4, c, operating at a 
frequency of 4,170 c/s. Figure 5, a, shows similar 
curves for the bridged-tee phase modulator of figure 
5, b, operating at 29.1 Mc/s. These curves show the 
large changes in phase that may be secured by small 
changes in capacitance, particularly at the higher 
frequency. Figure 4, a, shows that, even at 4,170 
c/s, 90° phase shift is produced by a shunt capacitance 
change of only 25 ixixi. As shown in figure 5, a, at 
29.1 Mc/s, a phase shift of 90° is produced by a 
capacitance change of only 2 wi. 

Inspection of eq 10, giving the transfer function for 
the networks of figures 2, b, and 3, shows that the 
attenuation is independent of frequency in the lattice 
network as well as in its equivalent bridged-tee 
network. Figure 4, b, shows the attenuation and 
phase curves for the bridged-tee of figure 4, c, when 
62=0 and the frequency is varied. 

III. Variable Resistance Control of 
with Constant Attenuation 

Phase 

If we desire to use a variable resistor as the 
control element for shifting phase, we can examine 
the components of Za and Z6 of figure 1 that will 
make eq. 1 assume the form of eq. 3. 

Referring to figure 1 and to eq. 2, if 

and 
Za=jXa \ 

Zb=Rb+jXb) 
(16) 
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F I G U R E 5. Attenuation and phase characteristics for bridged-tee 
network with variable reactance control {f=29.1 Mc). 

where Xa and Xb are of the same sign, we obtain the 
lattice network of figure 6, a. If we assume | J£ a | » 

Vao=-J 

and 
Xa 

Vbo = 

*V(^)'+i € _ , „ c t a n _ _ _ 

= % s m B-i-'\ 

(17) 

where 

0=arc tan Xb/(Rd+Rb). 

F I G U R E 4. Attenuation and phase characteristics for bridged-tee 
network with (a) variable reactance control (f=4,170~); 
(b) variable frequency 0&2 — O). 

A study of the geometry of the vectors represent
ing the admittances yao and yb0 shows that the desired 
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F I G U R E 6. Lattice networks for variable resistance control of 
phase with constant attenuation, (a) Xa and Xb have same 
sign. 

phase shift characteristics will be obtained in the 
circuit of figure 6, a, provided 

Xa=2Xb. (18) 
In this case, 

yao-ybo=wY- [—i—2 sin 6 (cos 0 - ; sin 6)] 
2Xb 

4^- [COS 20—j sin 20] 
2Xt 

•-J 
-j20 

2Xb 

and eq. 1, which represents the transfer function for 
the circuit of figure 1, and for that of figure 6, a, 
may be written 

where 

Ej.— _ A ^ 3
 C-M, E~ Uxb

e 

0=arc tan 
Xb 

(19) 

Rs-\-Rb 

Equation 19 is now in the form of eq 3, and there
fore represents the transfer function for a lattice 
network giving constant attenuation when the phase 
is shifted by adjusting the resistance Rb. 

Hence, the circuit of figure 1 becomes the desired 
phase shift network, shown in figure 6a, provided 
the necessary relation in equation 18 as fulfilled and 
Za and Zb are as given in eq 16. 

The circuit shown in figure 6b, also will be shown 
to satisfy these conditions, and hence will represent 

an example with the desired transfer function. 
Although, as mentioned before, lattice networks 
cannot always be converted to equivalent bridged-tee 
networks, this particular circuit was chosen because 
it may be converted to an equivalent bridged-tee. 
As in the previous case, this lattice network is not 
generally convenient for use in phase shifting because 
for constant attenuation, simultaneous proportional 
adjustment of the resistance in two arms would be 
required. The equivalent bridged-tee has the ad
vantage that the phase may be shifted by adjusting 
only one resistance element. I t also offers the 
advantage of a common ground for one side of the 
input and output and one end of the adjustable 
phase-control resistor. 

Examination of figure 6b, shows that, if we assume 
the Q of the inductor to be high, 

and 

7 -i. ' XLXQ 
Z",~J 2Xc-XL'i 

Zb=2R2—jXc. 

(20) 

These forms for Za and Zb correspond to those given 
by eq 16. If, in addition, 

XjjXc 

or 
XL—2Xc 

XL=4:XC, 

-2Xc,l 
(21) 

the condition given in eq 18 is satisfied, and the 
circuit of figure 6b, provides an example of the 
desired phase shift network. From eq 16, 19, 20, 
and 21, the transfer function may now be written 

Eo= • # 3 +J26 
Et J ±XC ' 

where 

0=arc tan 
Xc 

Rz-\-2R2j 

(22) 

Equation 22, therefore, represents the transfer 
function for the circuit of figure 6, b, provided 

and 
Q (inductor) > 1 , ^ 

XL=±XC^2RZ. j 
(23) 

Under these conditions, simultaneous variation of 
the resistances R2 in the circuit of figure 6, b, shifts 
the phase without varying the attenuation. 

Figure 7 shows the equivalent bridged-tee net
work [4] corresponding to the lattice of figure 6, b . 
The transfer function for this bridged-tee network 
is the same as that given in eq 22 for the correspond
ing lattice network of figure 6, b . In this bridged-
tee network (fig. 7), the phase may be shifted, with
out variation in attenuation, by varying the single 
resistance R2. Examination of eq 22 shows that the 
magnitude of the attenuation is proportional to the 
ratio Rzl±Xc. This ratio must, however, be con
sistent with the relation given with eq 23, in order 
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FIGURE 7. Bridged-tee equivalent to lattice network of figure 6, b. 

300 

250 

UJ 
£ 200 
e> 
UJ 

o 
t «50 
x 
<n 
w i i i i i i 
< 100 I 1 1 1 1 1 -o 
x 
Q. 

50 

V^~™T"^H 

^ . ^ 

a 

0 2000 4000 6000 8000 10000 
RESISTANCE R2 , ohms 

a 

L=l.4hy 

1000 
r-^nyimf^—i Q = 94 

. 0 0 4 .004 

< 
3 
Z 
UJ 

1000/1 < 

FIGURE 8. Attenuation with phase characteristics for bridged-tee 
network with variable resistance control (f= 4,170) ~. 

that the attenuation remain constant with variatiou 
in phase when R2 is varied. 

Attenuation and phase characteristic curves, with 
phase shift and attenuation shown as functions of 
control resistance R2, are given in figure 8, a, for 

the bridged-tee network of figure 8, b, operating at 
4,170 c/s. 

IV, Geometrical Interpretation 

Equation 1 shows that the transfer function for 
the phase shift networks discussed in this paper may
be considered as the difference between two ad
mittances, except for a constant multiplier. 

Figure 9, a, shows plots of the admittance loci 
yao and yb0 for the bridged-tee circuit of figure 3, 
wherein the phase is shifted by varying the react
ance without producing any change in attenuation. 
Examination of eq 5 shows that, for this circuit, 
yao is a constant vector independent of reactance X, 
whereas yb0 is a vector whose origin rests at the 
extremity of the horizontal diameter of a circular 
locus and whose terminus moves along the circle 
as the reactance X is varied. Examination of figure 
9, a, shows that if the length of the vector yao is made 
equal to the radius of the circular locus for yh0, the 
difference yao—ybo, representing the transfer func
tion for the circuit of figure 3, will appear as a vector 
of constant length rotating in a circle, as pictured in 
figure 9, b. The attenuation is thus seen to remain 
constant when the phase is changed by adjusting the 
value of the reactance X. These relations are repre
sented analytically in eq 5 to 7, inclusive. Equation 
6 gives the analytical relation corresponding to the 
equality in length of the vector yao with the radius of 
the circular locus for yb0} as pictured in figure 9, 
a, and, b. 

Figure 10, a, shows plots of the admittance loci yao 
and yh0 for the bridged-tee circuit of figure 7, wherein 
the phase is shifted without variation in attenuation 
by changing the value of the resistance. Examina
tion of eq 17 shows that for this circuit, yao is a con
stant vector (along the axis of imaginaries) inde
pendent of resistance Rb, whereas yb0 is a vector 
whose origin rests at the extremity of the vertical 
diameter of a circular locus and whose terminus 
moves along the circle as the resistance Rb, is varied. 
Examination of figure 10, a, shows that if the length 
of the vector yao is made equal to the radius of the 
circular locus for yb0, the difference yao—yi>o, repre
senting the transfer function for the circuit of figure 

lyaor2iyboU-o 

FIGURE 9. Admittance loci for bridged-tee of figure 3. 
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FIGURE 10. Admittance loci for bridged-tee of figure 7. 

7, will appear as a vector of constant length rotating 
in a circle, as pictured in figure 10, b. The attenu
ation is thus seen to remain constant for change in 
phase produced by changing the value of resistance 
Rb. These relations are represented analytically in 
cq 17 to 19, inclusive. Equation 18 gives the analyti
cal relation corresponding to the equality in length 
of the vector yao with the radius of the circular 
locus for yb0, as pictured in figure 10, a, and b. 

V. Related Null Network 

Referring to figure 9a, which shows plots of 
admittance loci related to the bridged-tee circuit of 
figure 3, it can be seen that if ya0 is made equal in 
magnitude to the diameter of the circular locus for 
yb0, as shown by the dashed line of figure 9, a, the 
difference yao—Vbo will be a circular locus with the 
pole at the extremity of the horizontal diameter. 
Hence, as the reactance X is varied continuously, the 
resultant vector will shrink to a null when the vectors 
for ya0 and yb0 become equal. The corresponding 
analytical conditions can be derived readily from the 
relations given in eq 5. This manipulation results 
in the well-known relations for this bridged-tee when 
used as a null network. 

I t is interesting to observe that the only adjust
ment required to change the null network to the 
phase shift network of figure 3 is to change Rx from 
i?1=4i?2, for the null condition, to the value given 
by eq 9 for the bridged-tee phase shift network. 

VI. Impedance of Bridged-Tee Networks 

The image impedance of the symmetrical lattice 
of figure 1 (with Rz omitted) is 

: -yjZaZb. (24) 

For the lattice network of figure 2,b, and its 
equivalent bridged-tee shown in figure 3 (with Rz 
omitted), the image impedance may be determined 
from the values of Za and Zb given in eq 8. If 
2XL=XC\, 

z0=^RxR2. (25) 

This is the input impedance the bridged-tee of 
figure 3 would have if Rs in the input were shorted, 
and the load were given the value 

Bs==2o==^E1B2, (26) 

Solving eq 9 and 26 simultaneously, we obtain 

-Bi=i?3=4ii2, (27) 

for the input impedance of the bridged-tee of figure 
3 if Rz in the input were shorted. The impedance 
looking back into this network from the load is 

R0—RZ=4:R2, (28) 

if the source impedance is equal to Rs. The input 
and output impedances given by eq 27 and 28 for the 
bridged-tee of figure 3 are minimum values existing 
when 2XL=Xci. These impedances become reactive 
when the phase is shifted by varying the circuit 
reactance from this value. 

The input and output impedances of the bridged-
tee of figure 7 may be shown to vary from —j4Xc/3 
when R2=0 to — j±Xc when E 2 = 0 0 - For inter
mediate values of R2j these impedances include a 
resistive component. 

VII. Applications 

The bridged-tee phase shifting circuits described in 
this paper were developed originally for use with 
variable-resistance, or variable-reactance telemeter
ing pickup devices to produce phase modulation in 
multiplex time-division telemetering systems and 
frequency modulation in multiplex frequency-division 
telemetering systems. Other possible applications 
include use as a phase shifter in servo loops including 
two-phase motors, and use as a phase modulator at 
high frequencies. The circuit of figure 5, b, with 
phase and attenuation characteristics shown in figure 
5, a, was demonstrated successfully in the laboratory 
as a phase modulator at 29 Mc/s. In this applica
tion, modulation was effected by variation of shunt 
capacitance with a reactance modulator. Alter
nately, the shunt capacitance could be varied by 
utilizing a barium-strontium titanate element whose 
capacitance changes with variation in modulating 
voltage. 

For voltage modulation of phase, the bridged-tee of 
figure 7 was tested with the variable resistance R2 
replaced by a biased varistor as shown in figure 11, b . 
Static tests at 7,250 kc indicated excellent linearity 
of phase versus bias voltage over a 90° phase shift, 
as shown in the experimental curve of figure 11, a. 
The nonlinear characteristic of the biased varistor 
compensates for the nonlinear phase characteristic of 
the bridged-tee network, resulting in a remarkably 
linear phase response over the 90° range. As seen 
from the theory of the bridged-tee phase shifter 
above, this range of modulation is effected with no 
change in attenuation. The loading effect of the net-
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work during modulation is not generally serious, 
since the input reactance of the network decreases to 
only — j4:Xc/S ohms when R2 becomes zero. 

Another application of the bridged-tee of figure 3 
is suggested by the previously mentioned property 
of this network of giving constant attenuation with 
variation in frequency as shown in figure 4, b. Two 
bridged-tee networks in tandem, properly adjusted, 
result in a constant phase shift independent of fre
quency over a wide range. This combination of 
bridged-tee networks may have advantages over lat
tice networks that have been described recently [5, 6] 
for this purpose, particularly since the bridged-tee is 
single-ended and functions when loaded. Hence, no 
phase-inverting and isolating vacuum tube amplifiers 
should be required with this bridged-tee arrange
ment, although the attenuation through the two 
bridged-tee networks may be a disadvantage in some 
applications. 
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Stability of Dextrose Solutions of Varying pH 
By Emma J. McDonald 

A study has been made of the rate of the initial decomposition reaction taking place in dex
trose solutions of varying pH. From the change in direct optical rotation over a period of 
time velocity constants have been calculated for eight values of pH. The results indicate that 
dextrose solutions are most stable at about pH 4. 

I. Introduction 

A great deal of work has been reported in the 
literature concerning the decomposition of reducing 
sugars in acid and in alkaline solutions. However, 
there is little to be found that gives an explanation or 
measure of the relation that exists between the pH 
and the stability of aqueous dextrose solutions. 
The wide use of dextrose solutions as standards in 
methods of sugar analysis has led to this investiga
tion. In addition, aqueous solutions of dextrose 
ibid application in the practice of medicine where the 

solutions are stored in a sterile condition in ampoules 
or in bottles. A great variety of food products, both 
naturally occurring and manufactured, contain dex
trose, often as one of the main constituents. Fruit 
juices, honey, table sirups, and molasses are examples 
of this group. 

In the presence of aqueous acids, dextrose under
goes condensation reactions, forming disaccharides 
and possibly higher oligosaccharides. The products 
of this primary reaction, as is to be expected, are of 
great variety as the mode of attachment of two dex
trose molecules is unselective and depends upon the 
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