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Image Shifts Caused by Rotating a Constant-
Deviation Prism in Divergent Light

By James B. Saunders

The use of the constant-deviation prism for producing monochromatic light introduces
the problem of image shifts that result from rotating the prism when changing from one
spectral line to another. The magnitudes of both the lateral and the axial components of
this shift, for a given rotation of the prism, depend upon the position of the axis about which
the prism rotates. A position for the axis is known that yields zero lateral shift. The
axial shift, however, depends also upon the convergence of the beam and the shape and
optical properties of the prism. In this paper a method is presented for locating the posi-
tions of the axis of rotation for minimum axial and for minimum total shifts of the foci for
both the sagittal and meridian fans of rays.

I. Introduction
The constant-deviation prism, as used in a

parallel beam of light emerging from the collimator
of a spectroscope or monochromator, has been
discussed by Uhler [1, 2] / Forsythe [3], and
Block [4]. These authors were interested only
in the lateral movement of the beam that occurs
when the prism is rotated, as in changing from one
spectral line to another. They gave no considera-
tion to the case of convergent or divergent light
and, therefore, ignored the possibility of axial or
lateral changes in the position of the image.
Such displacements did not enter their problem,
because there is no change in the position of the
image if the rays of light within the prism remain
parallel. As a result of their studies for the case
of collimated light, a unique position of the axis
of rotation for which no lateral shift of the beam
occurs is known. In this paper it is shown that
the same axis serves for noncollimated light as
well.

The magnitude of the lateral shift of a converg-
ing or diverging beam of light is a measure of the
lateral shift of the image. Consequently, the
lateral position of the beam and the axial positions
of the primary and secondary images, as functions

1 Figures in brackets indicate the literature references at the end of this pa-
per.

of the angular position of the prism, determine the
movements of the image point when the prism is
rotated. A simultaneous treatment of these
three functions shows that any two of the shifts
may be practically eliminated by a proper selection
of the axis of rotation.

In most applications of the constant deviation
prism a slit-like source (or its equivalent) is used,
and one of the astigmatic images either becomes of
secondary importance, or its axial movements may
be ignored. In this paper a particular application
of the constant deviation prism is considered in
which one or the other of these images may be
ignored. The treatment applies to the recently
designed interferograph [5], an instrument for
photographing the movements of interference
fringes. A constant deviation prism and a single
achromatic lens are used to form a monochromatic
image of the interference pattern on a photo-
graphic film at a fixed distance. The derived
equations apply to any triangular constant devia-
tion prism, and particular properties are assigned
for an illustration of results.

II. Statement of the Problem

An investigation of the axial image shifts caused
by rotating the prism is facilitated by treating the
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meridian (SouthalPs terminology2 used) and
sagittal rays separately. The primary and sec-
ondary images of a plane that are produced by
these two beams usually do not coincide, nor is
the shift of the two images e^ual for a given rota-
tion of the prism about a specified axis. The
shape and orientation of the source that illumi-
nates the object plane may, and usually do, con-
tribute differently to the astigmatic effect. As-
suming the object to be a point on an interfero-
meter plate that is illuminated by collimated light
from a slit-like source in the focal plane of the
collimator, a cross section of the beam reflected
from this point will approximate a line. When-
ever such a beam passes through a prism and a
single lens to produce a real image of the point,
the astigmatic effect caused by the prism depends
upon its orientation with respect to the slit-like
source. If the slit-like source is parallel to the
refracting edge of the prism, the sagittal rays are
more divergent than the meridian rays. The
difference in divergence is reversed if the refracting
edge is perpendicular to the source. In either
case, the less divergent beam produces an image
with a comparatively large depth of focus, whereas
the depth of focus for the more divergent beam is
relatively small. Consequently, the beam that
has the greater divergence requires more con-
sideration.

A detailed treatment of this problem of the
lateral and axial shifts is too extensive to be given
here. However, a presentation of the fundamental
equations and their application to a typical, but
particular, case furnished the necessary basis for
their application to other particular cases. The
equations of condition form a system of simulta-
neous equations, the solution of which gives all
the information necessary for a solution in any
special application. Either of two slightly differ-
ent methods of attacking the problem may be
followed. One is to require the differential of the
shifts with respect to the angle of rotation of the
prism to be zero at some specified wavelength of
light. Usually this wavelength should be chosen
near the middle of the visible spectrum. The
second method requires the equality of the image
distances for two wavelengths, one near each end
of the visible spectrum. The second of these

2 The "meridian rays" are those refracted rays of an infinitely narrow homo-
centric bundle of incident rays that lie in a principal plane of the prism. The
"sagittal rays" are those that lie in a plane containing the chief refracted ray
and perpendicular to the principal plane.

procedures was chosen because it seemed somewhat
simpler for this particular presentation.

The following is a sufficient statement of the
general problem for its analytical treatment. A
source 3 of light is located on the axis and in the
left focal plane of the achromatic lens shown in
figure 1. The point at which the axial ray emerges
from the lens is chosen as the origin of a plane
oblique coordinate system with the #-axis coincid-
ing with the axis of the lens. A constant deviation
prism is placed with the center of its entrance face
initially at the point ((-7,0) and with its refracting
edge normal to the plane of the coordinate axes.
Collimated light, from the lens, falls on the first or
entrance face of the prism, is internally reflected
at the second face, and emerges from the third or
exit face at various angles, depending upon the
angle of incidence and the geometrical and optical
properties of the prism. This discussion is limited
to those rays whose angle of emergence, 0, equals
the angle of incidence, a condition corresponding
to minimum deviation. The total deviation of
the rays that emerge under this condition is con-
stant regardless of their wavelengths, and is equal
to the angle of the prism as shown in figure 1.

For the initial conditions of the analytical treat-
ment, it is assumed that the angular position, 02,
of the prism corresponds to the known refractive
index for wavelength, X2, near the middle of the
visible spectrum. The indices for two other wave-
lengths, Xi and X3, one near each end of the visible
spectrum, must also be known. After the prism
has been placed in the above initial position, d2,
all further movements are limited to rotation
about some specified axis that is normal to the
plane of coordinates. The position of the prism
shown in figure 1 is the result of an arbitrary rota-
tion from the initial position. The angle between
the positive x- and y-axes is chosen equal to the
internal angle, w, of the prism that lies opposite
the reflecting face so that the emergent ray will be
parallel to the ?/-axis.

The principal emergent ray is intercepted nor-
mally by a stationary interferometer plate. This
point of interception and reflection (X5, Y5) is
considered the object point. The principal ray
returns from the interferometer along its previous
path and continues along the axis of the lens to
the conjugate plane of the interferometer. The

3 Such a source can be virtual and formed by a plane, half-silvered mirror
that is so orientated that it reflects the light from a real source to the lens.
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image point, therefore, remains on the axis of the
lens regardless of changes caused in the position
of the object point by rotating the prism. Any
lateral change in the position of the object point
is relative to the fixed interferometer and there-
fore corresponds to a lateral change in the position
of the image of the interferometer. Also, a change
in the effective object distance caused by rotating
the prism produces a corresponding change in the
axial or longitudinal position of the image distance.
Consequently, the lateral shifts and effective ob-
ject distances of the object point are a measure of
the lateral and longitudinal shifts, respectively,
of the image of the interferometer. The corre-
spondence between image and object movements
are so well known that this discussion will be
limited to movements of the object point alone.
The problem then is to locate the position, (X, Y),
of the axis of rotation that will result in a mini-
mum shift of the object point as the wavelength
of the light, falling normally on the interferometer,
changes from Xi to X3.

FIGURE 1. Diagram showing the relative position of optical
parts.

The collimating lens, constant deviation prism, and the interferometer
plate are schematically represented. The coordinates of the points that are
indicated by dots are represented by the symbols in the adjacent parenthesis.
The sum of the segments V and (A-V) is A, the length of the entrance face
of the prism, and is the unit of length on which all the computations are based.

III. Symbols and Abbreviations
The solution of this problem requires a consid-

erable number of symbols. The definition of those
that have not already been given or that are not
obvious from the figures are listed below.

Xi, X2, and X3 are wavelengths of light correspond-
ing to known indices of refraction of, the prism.
Usually these correspond to the C, D, and F
Fraunhofer lines. 6U 02, and 03 are angles of inci-
dence (or angles of emergence) corresponding to
wavelengths Xi, X2, and X3, respectively. 6m is the
value of 0 when dX5/86=0. A is the length of
entrance face of prism. L is the path length of
principal ray in prism.

L2=value of L for X=X2

P=effective object distance for the sa-
gittal rays

pv=value of P for X=X,(y=l, 2, or 3)
AP=absolute magnitude of difference

between largest and smallest
values of P in the range from
0i to 03

Q=effective object distance for the
meridian rays

R=distance from vertex of angle co to
the axis of rotation

V= distance from (X3, F3) to entrance
point of axial or principal ray

V2=1/2A and is the value of Vfor X=X2

W= distance from (X3, F3) to exit point
of principal ray

W2=value of W for X=X2, defined in
eq 14'

(Xc, Yc)— coordinates of the "critical point/'
defined in the text

(Xi} Yt)= coordinates of the "intersection
point/7 defined in the text

X5v—value of X5 for \=\(v=i, 2, or 3)
AX5=absolute magnitude of difference

between largest and smallest
values of X5 in the range from
0i to 03.

IV. Derivations
The following relationships are obtained from

figure 1:
Xx—XZ=V cos(0—co) cscco, (1)

. F 3 - Yi=V cos0 cscco, (2)

X2—Xs=Wcosd cscco (3)
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YZ—Y2=W cos (0+co) cscco,

X— XZ=R sin(co—<

Y—YZ=R sin<£ cscco,

Y5=H-X5 cosco,

(4)

(5)

(6)

(7)

(8)

The principal ray coincides with the x-axis,
therefore,

r,=o, (9)
and since the prism must rotate as a rigid body,
about the axis of rotation,

0-02 = 0-02, (10)

(02 and 02 being the values for 0 and 0 for the
initial conditions mentioned above).

The object distance for the sagittal rays is the
sum of the equivalent air path of the principal
ray [6] in glass, and the path in air, or

p=X1-{-Y5— Y2—L cos(o-+Kco) csc0 (11)

The corresponding distance for the meridian rays
is [6]

— Y2—L cos20 csc0
(12)

The values for L and (V+W), both of which are
derived from figure 2 by applying the law of sines
to the several triangles formed in the figure, are
found to be

L=2V

2A sin(cr)cos(o-^-co)csc( cr+~co )> (13)

and

V-\-W=2A sine coŝ co csc( <T+KCO ). . . . (14)

The application of Shell-s law to this particular
problem gives the equation

(15)sin0=— n Tjco V . . .

from which the values of 61} 02, and 03, correspond-
ing to Xi, X2, and X3, respectively, are obtained.

The above equations, 1 to 15, are sufficient to
derive the abscissa, X5, of the object point; the
object distance, P, for the sagittal rays; and the
object distance, Q, for the meridian rays, in terms

of known constants and the parameters 0, X, and
Y.

The interferograph uses a slit-like source of
light that is parallel to the refracting edge of the
prism; consequently, the effect of the meridian
rays is negligible in comparison to that of the
sagittal rays. The equation for evaluating Q is
therefore dropped from further consideration in
this discussion. Should it be desirable to study
Q, its treatment would be quite similar to that
which will be followed here for P:

FIGURE 2. Geometrical correspondence between equivalent
isosceles and constant deviation prisms.

The constant deviation prism is represented by the heavy line enclosure,
with its reflecting face opposite the internal angle &>. The mirror image of this
prism, as reflected in its reflecting face, is completed with the heavy broken
lines. The image of the exit face coincides with the exit face of the correspond-
ing isosceles prism, which is completed with light lines. Consequently, the
path in glass for any given ray of light is the same for either prism and depends
upon the dimensions and shape of the prism, the position of the entrance
point, and the angle of incidence.

V. Illustrative Application
To illustrate the solution of this problem for an

important particular case, a constant deviation
prism of the Pellin and Broca [7] type is selected
that has refractive indices such that 0J? 02, and 03

are 54°, 55°, and 56°, respectively. The values
of co and <T are 90° and 75°, respectively. By sub-
stituting the angles of this prism into the general
equations and eliminating Yx and X2 by means of
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Y3=Vcos6,

X,=XS=X,+W cosfl,

Y2=Y3+W sine,

B cos<t>=X-Xs,

R sin<t>=Y-Y3,

eq 7 and 9, they reduce to the corresponding prime
numbered equations given below.

(2')

(30

(40

(50

(6')

(80

(ioo

(HO

(130

(140

(15')

72=(1—tan 0)[F-.R sin (0+<t>2-82)] +

p=x1+r5-r2+|icsce,

n = 2 sin0.

On eliminating X3, F3, and PP by substitution
from eq 1', 2', 3', 4', and 14', the following equa-
tions were obtained:

J ^ ^ - V sin0+(V2+i A-v)cos0, (16)

0. (17)

Similarly, by eliminating Xz, F3, and 0 from eq 1',
2', 5', 6', and 10', it follows that

XX=V sind+X-R cos(0+<£2-02), (18)

V cos$=Y-R sm(6+fa-d2). (19)

On substituting the value of V from eq 19 into
eq 13' and 18, they become

L=L2+y2 A+[R sin(0+tf>2-02)-F] sec0, (20)

Xi=X+ Y tan0—R cos (<j>2—62) sec(9 (21)

The value of V in eq 19 and Xx in eq 21 are
substituted into 16 and 17 to give the following:

X 5 = X - r + f l { s i n (0+02-02)-

cos (0+«2-02)]+ (Wa+5 4) cos 0, (22)

-4) sin 6. (23)

By replacing F5, L, Xlf and F2 in eq 11' by their
equivalents in eq 8', 20, 21, and 23, respectively,
the equation for P becomes

P=X+Y(2 tan 0-1-esc 20)+H+

(W%+\A) sin 0 + | (Za+f A) esc 0+

R[(l—2 tan 0+csc 20) sin
cos (0+4>2-02)]. (24)

According to the above-described initial posi-
tion of the prism for wavelength X2, it follows

that for this position 0=02, Xi = G, and V=^ A.

By applying these initial conditions to eq 1', 2',
5', and 6', and by eliminating Xz and F3, solu-
tions are obtained for the initial values of R and
<j> (i. e., R2 and fa) in terms of known constants
and the coordinates, (X, F), of the axis of rota-
tion. They are

, . _ 2F— A cos 02 , (25)
t a n <t>2~2X-2G+A sin 02

2= (X-G+^A sin 02)
2 - i A cos 02)2. (26)

By substituting these values of R and fa into eq
22 and 24, and after choosing values for X and
F, the changes in X5 and P, for any rotation of
the prism, are obtained.

Equation 22 may be written in the form

(0+5), (220

where a = X—Y, and /3 and 5 are related by the
expressions 0 cosd = R [sin (fa—02) + cos (fa—02) ],

2+-^ A.2—02) — ^

By eliminating 8 from these equations, an

expression relating /3 and R is obtained. A

study of this relationship will show that when /3=0,

the value of R is imaginary, except for the particu-

lar case when fa=:d2—TTr. Also, for this particu-

lar value of fa, R=-j=(W2+^A). When these

values for fa and R(=R2) are substituted into eq
25 and 26, the resultant values for X and F are
found to coincide with the coordinates of the point
(Xe,Yc), found by Bloch [4] and Uhler [2], for
which there is no variation in X5 as the prism is
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rotated. This point, designated here as the
"critical point" (see fig. 3, B), is the intersection
of the reflecting face of the prism with the bisector
of the opposite angle, co, when the prism is in the
position of initial conditions. For values of 0
other than zero, the conditions for smallest change
in X5 require that a maximum or a minimum of
X5 must fall at 0=02, which is midway between
0i and 03. This condition is realized by equating
the value for X51 to that for X53, which yields the
straight line, X+Y=Xc-\-Yc, and which is repre-
sented by E—E in figure 3, B. If the axis of
rotation is located at the critical point, then
X51=X52=X52=constant for all values of 0. The
critical point, therefore, lies on line E-E.

While eq 24 does not exactly represent a simple
sine curve, it does so to a close approximation
over the limited range of rotations involved in
this problem. Consequently, the above discus-
sion relating to the variation in XSj as shown by
eq 22, applies equally well to the variation of P
as shown by eq 24. The straight line D-D in
figure 3 bears the same relation to P that line
E-E does to X5. The point on D-D that corre-
sponds to the critical point is indicated by the
dot above line E-E. The change in P over the
range 0i to 03 and for this point as axis of rotation
is not zero but amounts to only a few microns if
A is less than 10 cm. The intersection of E-E
and D-D (Xt, Yf) is designated as the "inter-
section point."

VI. Results

The variation in X5 with 0, in the range from
54° to 56°, is shown in figure 4, A, for several
points selected along the line E-E as positions for
the axis of rotation. Similarly, in figure 4, B,
the same variation is shown for several points
selected along the line D-D. The curves are
labeled with the abscissas of the corresponding
selected points. If the maxima and minima of a
curve fall outside this range, as for curves labeled
X= 0.525, 0.531, and 0.560, the value of X5

FIGURE 3. Relation of image shifts to position of axis.

A, Variation of image shifts, as the coordinates of the axis of rotation of the
prism are changed; B, initial position of the prism and the relative position
of the axis of rotation for minimum image shifts. The abscissa scale is com-
mon to both parts of this figure. All scale values are based on the length of
the entrance face as the unit. The loci of the axis of rotation for minimum
image shifts with respect to the angle of rotation are: for the lateral shift,
E—E, for the axial shift corresponding to the sagittal rays, D—D, and for the
axial shift corresponding to the meridian rays, F—F.
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FIGURE 4. Variation in lateral position of image.

The change in the lateral position, Xs of the image, with respect to 6, as
the axis of rotation is moved along line EE of figure 3, B, is given in figure
4, A. The same change in image position, X5, as the axis of rotation is moved
along line DD of figure 3, B, is shown in figure 4, B.

increases or decreases throughout this range as
the prism is rotated and the total absolute shift,
AX5, equals \X51—X5Z\. If a maximum or a
minimum (indicated by circles on some of the
curves) falls within this range, say at 6=6m, the
variation in X5 is opposite for the two ranges,
0i to 6m and 6m to 03. If 6m differs from 02, the
total absolute shift is the greater of the two values,
\X5m-X51\ and \X5m-X5,\. If 0W=02 (as for all
curves in fig. 4, A) the shift is AX5=\X5m—X51\ =

Constant-Deviation Prism

\X5m—X53|, since, in this case, X5i=X5S as was
the requirement for the determination of line E-E.

The value of AX5 corresponding to all points
along E-E of figure 3, B, is represented by the
broken curve ^ '-E' / of figure 3, A; the values for
points along the perpendicular (not drawn) to
E-E at the in.terseqtion point are represented by
E"-E") and those for points along-the perpen-
dicular to E-E at the critical point are represented
by E'"-Er".

The value of AP corresponding to all points
along D-D of figure 3, B, is represented by the
solid line D'-Dr of figure 3, A) the values for points
along E-E are represented by D"-D"; and those
for points along the perpendicular to E-E at the
critical point are represented by D'"-Dnt.

All lines in figure 3,.-A, are composed of one or
more straight sections except Dn-Dn and E"-En\
These have curvature only where their abscissas
are in the neighborhood of the abscissa of the
intersection point, (Xt, Yt). The nature of this
curvature is shown more clearly in figure 5 by a
sufficient enlargement of the scales. The cor-
responding curves are identified by their designa-
tions. The curvature is caused by the change in
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FIGURE 5. Enlargement of a small part of figure S, A.
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the range covered by AX5 as 6m moves through the
range from 6X to 03.

As there is usually some error in placing the
prism relative to the chosen axis of rotation, a
study of figure 3, A, will show that locating the
axis of rotation at any point along line E-E of
figure 3, B, and over the range shown by this
figure should be about equally good insofar as
AX5 is concerned. If the critical point should be
chosen for the axis and an error of only 0.01X^1
were made in its placement, the resultant value
for AX5 could be three times as large as it could be
if the axis were accurately placed at the inter-
secting point. Also, an error in placement at the
intersecting point that exceeds 0.02^4 cannot pro-
duce a AX5 in excess of the largest AX5 that can be
caused by an equal error of placement at the criti-
cal point. In the immediate neighborhood of the
intersecting point the values for both AP and
AX5 are small; values for AP (curve D"-D") in-
creasing rapidly as the axis moves along E-E from
this point and remaining almost constant (curve
D'-Df) as the axis moves along D-D) values for
AX5 (curve E"-E") increasing rapidly as the axis
moves from this point along D-D and remaining
almost constant (curve E'-E') as the axis moves
along E-E; and both increasing more or less
rapidly for intermediate directions. Consequently,
the point of intersection of D-D and E-E is
chosen for the axis of rotation.

In case the meridian focus is dominant, the
recommended point for the axis of rotation of the
prism would be at the intersection of lines E-E
and F-F (fig. 3, B), since F-F bears the same rela-
tion to the meridian rays that D-D does to the
sagittal rays.

This enables a designer to produce a mono-
chromator consisting of a prism and a single
achromatic lens for which the image distance is
equal for three selected wavelengths of light.
The treatment described here was used in the
design of an instrument for the automatic record-
ing of changes in interference phenomena [5].

A single simple lens may be used with a con-
stant deviation prism to obtain a monochromator
having a common focus for two selected wave-
lengths of light. By equating the right side of
eq 22, for X51, to that for X5Z and the right side of
eq 24, for Px, to that for P3, two linear equations
in X and Y are obtained. The simultaneous solu-

tion of X and Y for these equations give the
position of the axis of rotation desired. If the
lateral shift is unimportant, the focus may be
made common to light of three wavelengths.

VII. Conclusions

The above treatment shows that when a con-
stant deviation prism is usefrl with a single lens to
form an image of a fixed source or object, the image
moves when the prism is rotated to change the
color of the light. The magnitude of this image
shift is found to depend upon the position of the
axis about which the prism is rotated, the optical
and geometrical properties of the prism, and the
dimensions of the system. A survey of the litera-
ture shows that the lateral component of this image
shift may be completely eliminated by choosing
the axis at a certain point relative to the prism and
the optical axis of the lens. In this paper it is
shown that the lateral component of the shift will
be negligible if the axis is chosen in the neighbor-
hood of the above-mentioned point and on a
certain straight line that passes through it. Simi-
larly, it is found that the longitudinal (or axial)
component of the shift will also be negligible if
the axis is chosen in the neighborhood of another
point and on a straight line that passes through it.
These two straight lines intersect at a point that is
conveniently located for the axis of rotation of the
prism.

A fixed focus monochromator for ultraviolet
work may be made by using a suitable isotropic
crystal for the prism and collimator. This can be
accomplished by placing the axis of rotation so
that the change in effective object (or image)
distance, produced by rotating the prism, is just
sufficient to cancel the chromatic aberration of the
lens.
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