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Viscoelastic Properties of Polymer Solutions
By John D. Ferry2

In a concentrated polymer solution, the entanglement of long-chain molecules results in
a transient network structure, to which may be attributed certain aspects of the viscoelastic
behavior of such a system. A suitable mechanical model for representing this network as a
first approximation is a retarded Maxwell element with one spring and two dashpots. Ex-
perimental measurements of mechanical properties of polymer solutions may be made either
by periodic deformation under conditions where inertia forces can be neglected or by propa-
gation of transverse waves. The data are expressed in terms of frequency-dependent
parameters from whick can be derived the constants of the corresponding mechanical model.
A solution of polystyrene in xylene is cited as an example. In this case, analysis in terms of a
recent theory of Kuhn suggests that elastic energy may be stored in the network strands by
twist against the potential hindering free rotation about bonds in the chains.

I. Entanglement in Concentrated
Solutions

The polymer solutions discussed in this paper
lie in the concentration range from 5 to 50 per-
cent—more concentrated than the very dilute
solutions commonly used for measurements of
viscosity and osmotic pressure and other properties
from which the behavior of single molecules is
deduced, but more dilute than the usual commercial
plastic, which may contain from 50 to 100 percent
of polymer mixed with a plasticizer. Solutions in
this range are used in plastics technology—in
spinning, extrusion, and coating processes. Aside
from their technical importance, they are of
interest because of their remarkable mechanical,
optical, and dielectric properties. Their mechan-
ical properties are intermediate between those of
solids and liquids; these solutions are both viscous
and elastic.

Examples may be cited to illustrate three very
different types. Lightly vulcanized rubber swol-
len in cyclohexane to a concentration of 20 percent
is a quivery, elastic gel. A variety of evidence
shows that the long-chain molecules are bound
together at widely spaced points by primary
chemical bonds, forming a network that can be
broken only by chemical decomposition; but there

1 This paper was presented as part of the 1946-47 series of lectures on the
Properties of High Polymers given at the National Bureau of Standards.

2 Department of Chemistry, University of Wisconsin.

is very little hindrance to motion of the chains
except for these occasional cross-links. Poly vinyl
chloride dissolved in cyclohexanone at the same
concentration is a sluggish gel. There are no
primary bonds, as shown by the fact that the gel
can be dissolved by adding more solvent. Never-
theless, the tendency of poly vinyl chloride mole-
cules to associate, segmentwise, with dipole inter-
action (as shown by the ready formation of crys-
talline regions in the solid state [1]3 and association
in dilute solution [2]), makes plausible the con-
cept that there is a network here, also, held to-
gether by secondary bonds caused by association
of the long chains here and there along part of
their length. The expectation that association
can occur anywhere along a molecule would ex-
plain why the gel is sluggish and viscous, in
contrast to swollen rubber where the chains are
tied only at a few points. It also would explain
why a broken gel can "heal" upon standing,
especially if warmed; the associations simply
form again, the rearrangements being facilitated
by heating and cooling the system. Finally, in
polystyrene dissolved in xylene at the same con-
centration of 20 percent, a viscous liquid, there
are evidently not even any secondary bonds be-
tween chains, since the liquid flows with no yield
value. Nevertheless, for very sudden stress, or

s Figures in brackets indicate'the literature references at the end of this
paper.
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alternating stress, the system behaves as a solid.
Such behavior may be at least partly ascribed
to entanglement of the long molecules with each
other at this concentration. Consideration of the
average volume pervaded by a single molecule
[3] leads to the conclusion that, for a molecular
weight of 100,000 to 200,000, entanglement, or
overlapping of the regions that different molecules
on the average pervade, occurs at concentrations
as low as 2 to 5 percent. Thus the entanglement
at a concentration of 20 percent must be consider-
able. The resulting structure probably behaves
as a network, providing it is deformed quickly
enough, before the molecules can move out of the
way of each other. A schematic picture contrast-
ing the structures of these three solutions is shown
in figure 1.

We are concerned here with attempts to obtain
information from measurements of viscoelasticity
about this entanglement, which is common to all
three types of polymer solutions, and we seek it
primarily in solutions like that illustrated in the
third part of figure 1, where primary and secondary
bonds are absent.

II. Choice of a Mechanical Model
It has been customary to represent viscoelastic

behavior by models of elastic elements (springs)
combined w îth viscous elements (dashpots, or
pistons moving in a viscous medium). It is usually
assumed that the viscous elements are New-
tonian—the rate of displacement being propor-
tional to the force applied—and that the elastic
elements follow Hooke's Law—the displacement

Primary Bonds Secondary Bonds Entanglement

FIGURE 1. Schematic illustration of types of networks in concentrated polymer solutions, involving primary bonds,
secondary bonds, and entanglement.

Of course, entanglement must exist to some
extent in the first two types of solutions as well as
the third [4]. Under certain conditions, such as
subjection to stress over comparatively long time
periods, which allow opportunity for disentangle-
ment, the effects of transitory overlapping of
chains can no doubt be disregarded in comparison
with those of the more permanent links repre-
sented by primary and secondary bonds. How-
ever, for a complete description, entanglement
must be taken into account in all three systems.
It should be of most significance in experiments
where a solution is subjected to very brief, small
stresses that do not perceptibly distort the net-
work.

being proportional to the force applied. Eyring
and his collaborators [5] have shown that in solids,
especially fibers, nonlinear elements are necessary
to describe mechanical behavior; but in rather
fluid solutions, when the applied stresses are small,
linear springs and dashpots may be expected to
suffice.

If we can imitate the mechanical properties of
a certain polymer solution by one particular
mechanical model, we can also imitate it by many
other mechanical models. This fact was illustrated
by Simha a few years ago [6] and was also empha-
sized in a recent paper by Alfrey and Doty [7].
For example, to represent the behavior of a poly-
mer solution, a Maxwell model may be employed.

54 Journal of Research



The Maxwell element is a spring and a dashpot
in series, and the model employs a number of
such elements in parallel. But if such a Maxwell
model works, then so also will a Voigt model.
The Voigt element is a spring and dashpot in
parallel, and the model employs a number of such
elements in series. By proper choice of the spring
and dashpot constants, these two models will
behave exactly the same under all manner of
conditions—steady stress, abrupt stress, and oscil-
lating stress.

Since we shall have a choice of mechanical
models to represent the viscoelastic behavior of a
high polymer solution, it will be advantageous to
select one that can be interpreted, as far as possible,
in terms of the polymer molecules and the motions
that they undergo when the solution is deformed,
and in which the elastic and viscous elements may
perhaps be identified with molecular processes.
The simplest possible model for the third network
of figure 1 is a spring in parallel with a viscosity
that delays its response to stress and in series with
another viscosity that allows relaxation; this may
be called the retarded Maxwell element (fig. 2).

6

FIGURE 2. Retarded Maxwell element.

The mechanical properties of some polymer solu-
tions as revealed in certain types of experimental
measurements can be represented by this model as
a first approximation. It is certain that a more
complicated model will be required to represent all
mechanical properties. Nevertheless, most of this
discussion will be based on the behavior of the
simple retarded Maxwell element.

It is natural to identify the spring of this
mechanical representation with the average strand
of the network between two temporary points of
entanglement. There are three possible ways in
which such a molecular strand might store elastic
energy, (a) Energy is stored by bond deformation
(stretching and bending); Kuhn [8] has calculated
that the contributions of stretching and bending
to elongation of a fully extended paraffin chain

should be roughly equal and that the force constant
should be proportional to 1/Z, where Z is the
number of atoms in the chain. For Z=100 it
should be about 2,000 dyne/cm, (b) Energy is
stored by twist around the bonds against the
hindering potential, which interferes with free
rotation; Kuhn [9] has calculated that the force
constant should be proportional to 1/Z2. For the
above chain in randomly kinked configuration it
should be about 0.5 dyne/cm, (c) Energy is stored
by decrease in entropy when extension restricts the
chain to less probable configurations; the force
constant is proportional to 1/Z [8], and for the
above chain it is about 0.6 dyne/cm.

Mechanisms (b) and (c) are mutually exclusive;
if the interval of an experiment is too short to
allow rotation over potential barriers into new
positions of minimum potential energy, there can
be no statistical restoring force or "rubberlike"
elasticity; if the interval is long enough to allow
many rotational rearrangements, there can be no
storage of elastic energy against the hindering
potential. The critical time interval is, according
to Kuhn, proportional to Z. The extension caused
by mechanism (a) is probably so small in solutions
that it can be neglected altogether. This mech-
anism is analogous to a very stiff spring in series
with our mechanical model, which is never percep-
tibly stretched by the forces applied.

The two viscous components in the model can
also be interpreted roughly. The parallel viscosity
is the frictional resistance to rearrangements of
chain segments involved in extending the spring,
due to both the viscosity of the solvent and the
interference of neighboring chains. The series
viscosity permits relaxation of stress, due to three
possible processes: (a) rotation around bonds into
new positions of minimum potential energy, (b)
slippage of strand ends by disentanglement, (c)
chemical decomposition resulting in breaking of
strands. The last of these is ordinarily a very slow
process, which may of course be ignored in en-
tanglement networks; the times involved are of
the order of days or months. In the case of
rubbers, the chemical chain scission has been care-
fully studied by Tobolsky [10].

If a polymer solution is subjected to stresses
that are large enough or prolonged enough in time
to produce a substantial distortion of the network
from its normal configuration, it may be expected
that the mechanical properties will appear quite
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different from those measured under conditions
where only slight rearrangements of chain seg-
ments are involved. This discussion is concerned
•only with the latter case—the response of a solu-
tion to small, brief stresses. Although such re-
sponse can be obtained by transient methods, in
which a momentary stress is suddenly applied and
the resulting deformation is subsequently followed,
it is ordinarily more convenient to study the effects
of periodically varying stresses [7, 11].

Experimental measurements of the response of
& polymer solution (or other viscoelastic material)
to sinusoidally varying stress can be expressed in
terms of certain parameters that will be presently
defined. By comparing the frequency dependence
of these parameters with the calculated behavior
of models it is possible to select one—that of fig. 2
or one more complicated if necessary—which will
represent the data, and to obtain numerical values
of the spring constants and dashpot viscosities,
which may be related to the nature of the network
structure and the properties of the individual net-
work strands.

The methods available for measurements of this
sort fall generally into two classes: those in which
the inertia of the material can be neglected in the
equations of motion, and those in which it cannot
[11]. In the former, the size of the sample is con-
siderably less than the wave-length of elastic vibra-
tions, or else the damping characteristics of the
material are so marked that no vibrations are prop-
agated. In the latter, the size of the sample is of
the same order of magnitude as, or greater than,
the wavelength of elastic vibrations, so that
vibrations of one kind or another can be set up and
measured. The applicability of each method thus
depends on the size and consistency of the sample
and the frequency range within which measure-
ments are to be made. One example of each class
will be given here: the electrodynamic method of
Philippoff [12], in which the inertia is neglected,
and the method of propagation of transverse waves
in extended media [13], in which it is not.

III. Experimental Methods in Which In-
ertial Effects in the Medium Are
Neglected
When a sample of material is subjected to

sinusoidally varying shear stress, it responds with
a sinusoidally varying strain, which may be out
of phase with the stress (fig. 3). At a single

Stress

Strain

Time

FIGURE 3. Sinusoidally varying strain in response to
sinusoidally varying stress.

frequency, the mechanical characteristics are
fully described [11] by two parameters, which
may be chosen as \G\, the absolute rigidity, or
ratio of peak stress to peak strain, and ^, the
phase angle between them; or, alternatively, as
G'j the real part of the complex modulus of
rigidity, and rj\ the real part of the complex
viscosity. The relations between these quantities
are as follows,

G=G'+iG"; n=r)'-iri";

\G\= T

(1)

Here G is the complex modulus of rigidity [14]
and n is the complex viscosity [15]. The real
part of the rigidity, G', is the component of stress
in phase with the strain divided by the strain.
The real part of the viscosity; 77', is the component
of stress in phase with the rate of strain divided by
the rate of strain.

In describing the behavior of a mechanical
model, it is customary to assign each spring a
rigidity 6 and each dashpot a viscosity rj, although
dimensions of these constants (dyne/cm2 and
dyne-sec/cm2) are not the same as those of the
force constant of a real spring (dyne/cm) and the
viscous resistance of a real dashpot (dyne-sec/cm).
A given model will show characteristic frequency
dependence of the quantities 6?', rj-} and \G\,
which may be compared with experimental data.
For the retarded Maxwell element (fig. 2), the
frequency dependence of G', rj', and \G\ is given
by the following equations [15, 11]:

(2a)

(2b)

(2C)
where co is 2ir times the frequency, and the charac-
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teristic time constants TS and rP are defined as
rjs/6 and r)P/G, respectively, rjs and t\P being the
series and parallel viscosities. Plots are shown in
figures 4 and 5; the abscissa is log cor̂ , and curves
are drawn for different values of the ratio TP/TS.
At low frequencies rj/=rjs and \G\ = G'=0; the
model behaves like a single viscosity. At high
frequencies, t\f and Gf approach constant values,
and |6?|, a measure of the actual "stiffness,"
increases without limit.

The only extensive data with which these model
curves can be compared at present are those of
Philippoff for the real part of the viscosity, rj', in
solutions of cellulose acetate in dioxane [12]. In
his apparatus, a solution is subjected to oscillating

-1.0 1.00

Log o>T8

FIGURE 4. Dependence of Gr and rjr on frequency for the
retarded Maxwell element.

Figures opposite the curves denote values of TP/TS.

2.0

FIGURE 5. Dependence of \G\ on frequency for the retarded
Maxwell element

Figures opposite the curves denote values of TP/T8.

shear stress by a needle moving up and down along
its axis in a narrow tube. The needle is attached
to a rather stiff steel band, which is displaced by
electromagnets whose field coils are energized by
an oscillator and interact in such a way as to pro-
vide an electromechanical feedback. Resonance is
achieved at various frequencies by adjusting the
tension of the band and tuning the feedback cir-
cuit. At resonance, r)' = \f\/aa)\x\, where | / | is the
maximum force acting (determined by the current
drawn, together with a direct-current force-current
calibration), a is a constant with dimensions of
length involving the depth of immersion and the
radii of tube and needle, and \x\ is the maximum
excursion, determined by a micrometer screw.

Values of 77' obtained by Philippoff for solutions
of cellulose acetate in dioxane are plotted against
the frequency in figure 6, and the ratio of rj' to 77,
the viscosity in steady flow, is plotted against the
logarithm of the frequency in figure 7. It appears
to be approaching zero with increasing frequency,
as in the case of the retarded Maxwell element
with r P =0 (the ordinary Maxwell element); thus
the retarding viscosity appears to be negligible, at
least at the higher frequencies. However, the
decrease in 77' is more gradual than for the model,
so that the latter must be modified somewhat to
describe the results. Philippoff obtained an excel-
lent fit with the relation 77 '=5 / [1 + (COT)3/4], where
B and r are empirical constants of uncertain sig-
nificance; B was not equal to 77, although of the
same order of magnitude. Alternatively, a fairly
good fit for r)f/rj as a function of a>rm, where rm is
the reciprocal of the value of co at which 777*7=1/2,
is achieved by the Wiechert-Wagner distribution
of relaxation times [16], with 6, the distribution
parameter, chosen as 0.5. Choice of the best
modification of the model of figure 2 for describ-
ing these results should be facilitated by further
experimental work on this and other systems.

A possible method for measuring 77', and under
some conditions G' as well, for polymer solutions
is based on the use of an electromechanical
transducer [17, 18]. When a needle is oscillated
along its length, as in Philippoff's apparatus, by a
moving-coil loudspeaker, the elastic and viscous
characteristics of the mechanical part of the
system can be calculated from measurements of
changes in resistance and reactance of the coil.
This technique has the advantage that a very low
energy input suffices for measuring the electrical
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FIGUKE 6. Values of t\! for solutions of cellulose acetate in
dioxane, plotted against the frequency (from Philippoff
[12])-

FIGURE 7. Values of rj'r] for solutions of cellulose acetate
in dioxane, plotted against the logarithm of the frequency
(data from Philippoff [12]).

quantities by an impedance bridge, and the
amplitude of motion is therefore extremely small
(undetectable by ordinary methods), so that the
possibility of any non-Newtonian effects is
minimized.
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IV, Experimental Methods in which In-
ertial Effects in the Medium Are Not
Neglected: Propagation of Waves

The simplest case of a mechanical disturbance
that involves the inertia as well as the rigidity and
viscosity of the material concerned is the propaga-
tion of a plane wave of shear in a medium of
infinite extent. If the wave is sinusoidal and
exponentially damped, it is described by the
equation

11 — 11 /?i(.(»}t—%irX/\)-~x/Xn / Q\

where u is the displacement, t the time, x the
distance from the source of vibration, X the
wavelength, and x0 the critical damping distance
(within which the amplitude falls off to 1/e of its
initial value) (fig. 8). For a perfect elastic solid
(in which x0 is infinite) the modulus of rigidity, G,
is given by CO2X2P/4TT2, where p is the density.
It is convenient to define for a polymer solution,
or other viscoelastic medium, an analogous
quantity &=co2X2p/4?r2. The behavior of the
system at any given frequency can then be
characterized by &, and the ratio \/x0 (which is a
measure of the severity of the damping).

The two frequency-dependent parameters G
and \/x0 determined from wave propagation can
be used interchangeably with the two parameters
Gr and t\f determined from experiments that do
not involve the inertia of the material. They are
related by the following equations:

(4a)

(4b)

^ [4TT 2 +(X/X 0 ) 2 ] 2

8 167T3X,fao
% [4TT2+(X/ZO)2 ]2 '

FIGURE 8. Exponentially damped sinusoidal wave.
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It is useful to calculate the frequency depend-
ence of 6 and \/x0 for mechanical models, for
direct comparison with experimental data. For
the retarded Maxwell element (fig. 2), the behavior
is as follows [11]:

G=O
1+CO2(TP+TS)2

0)TS-\- •

(5a)

(5b)

Plots are shown in figures 9 and 10. Damping is
severe at low frequencies because of the series
viscosity and at high frequencies because of the
parallel viscosity. Only at intermediate fre-
quencies is the damping small enough to permit
measurement of wave propagation (for practical
purposes, when \/x0 is less than 3 or 4). The
larger the ratio TP/TS, the smaller is the frequency
range within which waves can be observed.

Shear waves may be set up in a solution con-
tained in a rectangular cell by driving a thin plate
up and down in its own plane with a loudspeaker
[13]. If the cell is long enough in the direction
of wave propagation so that the wave is damped

lOfl G)TS

FIGURE 9. Dependence of G on frequency for the retarded
Maxwell element.

Figures opposite the curves denote values of TP/TS.
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log uTs

FIGURE 10. Dependence of \/x0 on frequency for the
retarded Maxwell element.

Figures opposite the curves denote values of TP/TS.

out before it reaches the end, no reflection occurs,
and the medium may be considered of infinite
extent in this direction. As for the sides of the
cell, through which the wave is observed, a recent
investigation [19] shows that their influence on 6? is
negligible but that they do affect the damping
somewhat.

If the solution exhibits strain double refraction,
the wave, can be observed by stroboseopic polar-
ized light flashing at the frequency of vibration.
By introducing a double quartz wedge inclined at
a small angle to the direction of wave propaga-
tion, a pattern is obtained that is closely related
to the wave itself (fig. 11), and from which values
of X and x0 can be calculated. The corresponding
values of G and \/x0 (the latter subject to a small
correction for the effect of the sides of the cell [19])
are then plotted against the logarithm of the fre-
quency and compared with the curves of figures
9 and 10, or, if necessary, similar curves for more
complicated models.

Wave propagation data for one system,4 cellu-
lose xanthate in aqueous sodium hydroxide solu-
tions, follows almost quantitatively the behavior
of a retarded Maxwell element. Results on con-
centrated solutions of polystyrene in xylene [20]

4 The author is indebted to the Laboratory of E. I. duPont de Nemours
and Co. at Richmond, Virginia, for permission to refer to these results.
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FIGURK 11. Pattern for transverse waves propagated in
4U5-percent polystyrene in xylene, 15° C, 1,250 c/s.

are in qualitative agreement with the behavior of
a retarded Maxwell clement with a very small
ratio of TP/TS, and within a small frequency range
it semiquantitative fit can be obtained (fig. 12).
Studies over a wider frequency range are in prog-
ress. The rigidity G is found to be proportional
to the third power of the concentration.

V. Interpretation of Model Constants

From model constants experimentally deter-
mined in this way, it should be possible to distin-
guish among the various molecular mechanisms
of elasticity and relation mentioned in section II.
The first step is to relate the rigidity of the entangle-
ment network with the elasticity of a single strand.

We define a strand as a segment of a molecule
between two points of entanglement, and for a
rough calculation assume that, although the strands
are randomly kinked, the vector joining the ends
of each strand is of uniform length, I, and that
one-third of these vectors are parallel to each of
the x, y, and z axes. (Random orientation should
affect the result only by a small numerical factor.)
If a 7/2-plane cuts v strands per square centimeter
running in the x direction, then the modulus of
elasticity is E=vd, where K is the spring constant

(force per unit extension) of a single strand. Fur-
ther, v=Nslj3, where Ns is the number of strands
per cubic centimeter, one-third of which run in the
x direction [10], and G=E/3 (Poisson's ratio being
negligibly different from 1/2), so G=KNSP/9.

We define a point of entanglement as occurring
wThen two monomer units occupy neighboring
pseudolattice cells (in the sense used in the
theory of thermodynamic properties of polymer
solutions [21]), and the four chain segments
attached to these two units are suitably oriented
to support stress (fig. 13). Each monomer unit
has z neighboring cells, where z is the coordina-
tion number of the pseudolattice; of these, two
are always occupied by adjacent monomer units
in the same chain, the molecular length being
considered so great that the chain ends can be
neglected. Assuming that the concentration of
monomer units in the remaining cells is the same
as in the solution as a whole, the number of points
of entanglement per cubic centimeter is Nc=pe-
(z—2)v(NZ)2, where N is the number of polymer
molecules per cubic centimeter, Z the degree of
polymerization, and v the volume of a monomer
unit, and pe expresses the probability of orienta-
tion for entanglement. The value of pe may be

FIGURE 12. Dependence of G (open circles) and X/x0 (filled
circles) on frequency for a solution of polystyrene in xylene,
concentration 0.89 g/cm3; temperature 21.6° C.

Curves are drawn from equations 5, with G=1.64X105 dyne/cm2, TS=
4.0X10-4 sec, and TP/TS=0.016.
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FIGURE 13. Illustration of a point of entanglement.

expected to be smaller than 1/4, and it may be
considerably smaller.

If the number of entanglement points per chain
is large, NS=2NC. Thus G=2pe(z-2)v(NZ)2-
K12/9. NOW K depends on the strand length, in
a manner determined by the elasticity mecha-
nism. Although a previous discussion [20] cited
bond bending as a possible mechanism here, it
now seems likely that this deformation would be
too small to be detectable, and that the choice
is between the other two mechanisms listed
above. If.the strand elasticity is due to twist
against the potential hindering free rotation,
K should be proportional to 1/ZS

2, according to
Kuhn [9], while if it is a rubberlike elasticity,
K should be proportional to 1/Z5, where Zs is the
number of monomer units per strand. The
value of I2 is a function of Zs; for a randomly
kinked chain, l2=AmbZs, where Am and b are
lengths related to the dimensions of the monomer
unit and the chain flexibility [9]. The product
d2 should then be independent of Zs in the case
of rubberlike elasticity and inversely propor-
tional in the case of hindered rotation elasticity.
Since Zs=NZ/Ns=l/2pe(z-2)vNZ, and NZ is
a measure of the weight concentration, it follows
that for rubberlike elasticity the rigidity should
be proportional to the square of the concentration
and for hindered rotation elasticity it should be
proportional to the third power. The observed
concentration dependence in polystyrene-xylene
solutions corresponds to the latter mechanism.

If the spring represents hindered rotation elas-
ticity, the series dashpot may represent relaxation
by rotation over the energy barrier, also treated
by Kuhn [9]. The relaxation time for this
process is proportional to Zs and hence inversely
proportional to concentration. The value of
TS derived from damping measurements [20]
does decrease with increasing concentration in the
polystyrene-xylene case, although the data avail-

able at present do not permit a test of inverse
proportionality.

It is of interest to make a more detailed calcu-
lation based on the equation of Kuhn. Kuhn's
expression for K is 192q/cp^j^AmbZ], where q is the
potential barrier, <pM the angle between successive
positions of minimum energy (here 2TT/3), and j ^
the number of chain bonds per monomer unit
(here 2). Substituting this into the above expres-
sion for G, and noting that v=Mo/NoP2=c/p2NZ,
where Mo is the molecular weight of a monomer
unit (here 104), iV0 Avogadro's number, p2 the
density of the polymer (here 1.05), and c the con-
centration in grams per cubic centimeter, we obtain

For Noq we choose a value estimated by Kuhn
from viscosity and flow double refraction of dilute
solutions of polystyrene in cyclohexanone, ll,40Q
cal, and set 2=6. Then substitution of the ex-
perimental value of G for the polystyrene solution
described in the preceding section determines the
unknown probability pe as 0.0020. According to
this rather remarkably small value, only one pair
of monomers in five hundred that occupy neigh-
boring cells in the pseudolattice become entangled.
The average number of monomer units in a net-
work strand (Zs) at the concentration of this,
solution, 0.39 g/cm3, is then about 160.

Further work will be necessary to distinguish
the possible roles of intramolecular rotation and
slippage at the points of entanglement in stress,
relaxation. In any case, it appears that the very
low value of the probability factor pe may repre-
sent the necessity of rather tight kinking at each
point of entanglement to permit support of stress
over the time intervals involved in these experi-
ments.

VI. Summary

Dynamic studies of the mechanical properties
of concentrated polymer solutions may be applied
to gain information concerning molecular entangle-
ment, especially in cases where linear molecules
are intertwined with no junctions by primary
or secondary bonds among them. Frequency-
dependent parameters obtained from direct meas-
urements of response to sinusoidal stress, or
from the propagation of transverse waves, are
compared with the calculated behavior of mechan-
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