®

Check for

Updates NIST Internal Report
NIST IR 8561

The Software Assurance Reference
Dataset (SARD)

Paul E. Black

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8561

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8561

NIST Internal Report
NIST IR 8561

The Software Assurance Reference
Dataset (SARD)

Paul E. Black
Software and Systems Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8561

January 2025

U.S. Department of Commerce
Jeremy Pelter, Acting Secretary of Commerce

National Institute of Standards and Technology
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director

Certain commercial equipment, instruments, or materials, commercial or non-commercial, are identified in
this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2025-01-29

How to cite this NIST Technical Series Publication:
Paul E. Black (2025) The Software Assurance Reference Dataset (SARD). (National Institute of Standards
and Technology, Gaithersburg, MD), NIST IR 8561. https://doi.org/10.6028/NIST.IR.8561

NIST Author ORCID ID
Paul E. Black: 0000-0002-7561-6614

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

NIST IR 8561
January 2025

Abstract

The Software Assurance Reference Dataset (SARD) has over 450 000 buggy programs in
five languages covering more than 150 classes of weaknesses. We describe the principles
of the collection and the very diverse content. We explain how to search and access the
programs and the rich documentation and web pages associated with the SARD.

Keywords

Software assurance; static analyzer; test case generator; software vulnerabilities.

NIST IR 8561

January 2025
Table of Contents

1. Introduction 1
1.1. Attributes of a Good Test Suite, 3
1.2. Attributes of SARD Test Cases 4
1.2.1. Review Status 5
1.2.2. Case Versions 6
2. SARD Contents 7
2.1. Cases From Production Software. 7
2.2. Manually Written Test Cases 9
2.3. Generated Cases 10
2.4. Documentation 11
3. Usingthe SARD 11
3.1. Searching for Test Cases 11
3.2. Downloading Test Cases and Test Suites 12
3.3. Using the Application Programming Interface (AP1) 14
References 14
Appendix A. Web Pages Associated with the SARD 17
A.1. SARD Acknowledgments and Test Suites Descriptions 17
A.2. Non-NIST Publications on SARD Content 19
A.3. Other Assurance Tool Test Collections 21
A.4. Other SARD Web Pages, 22
Appendix B. Details of Figure 1 22

il

NIST IR 8561
January 2025

Acknowledgments

We thank Yann Prono and Bapiste Chocot for maintaining the SARD, both the content and web
service software, for many years.

il

NIST IR 8561
January 2025

1. Introduction

One can assess some of the strengths and limitations of software assurance tools using a
corpus of programs with known attributes and bugs. The software engineer can run the
assurance tool on a selection of cases from the corpus to estimate the kinds of bugs the tool
finds and does not find, false positive rates, and the software constructs it handles. As of
April 2024 the Software Assurance Reference Dataset [1] has over 450 000 programs in C,
C++, Java, PHP, and C# covering more than 150 classes of weaknesses. Most of these are
synthetic programs of a page or two of code, but there are over 170 full-sized production
programs and 7770 production variations derived by injecting bugs into a dozen full-sized
applications.

We use “SARD” to mean two different things. First, the collection of programs that can
be used as test material. Second, the service program and website that searches for and
displays test cases and displays test suites and other material. The SARD website is https:
//samate.nist.gov/SARD.

We explain goals and organization, then in Sec. 2 describe the very diverse content of the
dataset. Section 3 explains a little about accessing SARD test cases. Appendix A docu-
ments the current content of web pages associated with the SARD, which are acknowledg-
ments and collection descriptions, citations, other test collections, and other documenta-
tion.

The SARD collection can be viewed as test cases, most grouped into test suites, and some
related documentation. Test cases are programs with three kinds of origins. First are pro-
duction programs such as the Apache Hypertext Transfer Protocol (HTTP) Server, GNU
Image Manipulation Program (GIMP), grep, and Wireshark. Next are production programs
with bugs injected into them. Last are synthetic programs written specifically for testing
purposes. Most synthetic programs are generated by programs, but some are written by
hand.

Figure 1 depicts the quantity, size, and origin of cases in each language. Details of the
figure are in App. B. It is an updated version of Fig. 1 in [2]. Note that production cases,
in green, are plotted double height and extend above and below the language center line.
More details of the content, organization, and use of the SARD are in [3].

https://samate.nist.gov/SARD
https://samate.nist.gov/SARD

NIST IR 8561
January 2025

o SYN
Bar height is log number of test cases == U H - gRO

100

o i (not to scale) oo | B INJ
— a

Java ﬂ@w - -
T o W

-
I
<

Language

Ct+ Duﬂmm om = -

5 10 100 1000 10000 100000

Number of lines of code

Fig. 1. Number of test cases in the SARD by language and size as of March 2024. The
horizontal (X) axis is the number of lines of code plotted on a logarithmic scale. The height of
each bar is proportional to the logarithm of the number of test cases with that many lines of
code. Synthetic cases (SYN), which are created to be test cases, are yellow. Cases of
production code (PRO) are green and are double height above and below the language center
line. Cases with weaknesses injected (INJ) into production code are orange.

Some Terminology

Terms such as “bug” or “flaw” are ambiguous. When examining a few lines of code, we
may see a potential buffer overflow or command injection. However, taking a broader
view, we may find that the relevant variables are filtered or that the input only comes from

2

NIST IR 8561
January 2025

a reliable source, therefore those lines of code are not exploitable. It may be difficult to
even determine if the code is reachable [3]. Therefore, we use weakness, flaw, or bug to
mean a “defect in a system that may (or may not) lead to a vulnerability.” [4, pg. 12]
“A vulnerability is a property of system security requirements, design, implementation,
or operation that could be accidentally triggered or intentionally exploited and result in a
security failure. ... A vulnerability is the result of one or more weaknesses in requirements,
design, implementation, or operation.” [5, Sec. 1.4] Since few of these definitions are
universally accepted, we do not slavishly require any one definition of error, fault, flaw,
weakness, failure, and so forth in the SARD.

Background

The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) group created
this collection in 2005 and originally called it the Standard Reference Dataset, abbrevi-
ated SRD [6]. The name was quickly changed to Software Reference Dataset to be more
specific, then to SAMATE Reference Dataset to be less presumptuous.

In 2013, we learned that the abbreviation SRD conflicted with the federally legislated
Standard Reference Data (SRD). About the same time, we came to desire a more dis-
tinct acronym so that web searches were easier. Several rounds of soliciting suggestions,
brain storming, polling, and discussion produced over two dozen possibilities. The new
name, Software Assurance Reference Dataset, was suggested by Bertrand Stivalet and was
announced at the Static Analysis Tool Exposition (SATE) V Experience Workshop on 14
March 2014.

1.1. Attributes of a Good Test Suite

The purpose of the SARD is to provide researchers, software assurance tool developers,
and end users a set of artifacts with known software weaknesses. Figure 2 illustrates the
three primary attributes that make the artifacts useful. First, the code is realistic, that is,
similar to production code. Second, we know the location and type of all bugs. Third, the
collection has a large enough volume of a variety of representative bugs in various code
constructs and contexts to infer method performance.

Software whose source code that anyone can inspect, so-called “open source” software, is
a resource for production software with enough realistic code, but we don’t know all of the
bugs. We know what each kind of bug is in some synthetic, generated suites, like Juliet
(see Sec. 2.3) and there are mountains of cases, but the code is far from what is usually
written and used. Finally, production code with Common Vulnerabilities and Exposures
(CVE) reports has known bugs. However, we find there are relatively few cases, which
also lack variety. To approach an ideal suite, we have experimented with injecting bugs
into production code to create many cases of realistic code with a variety of known bugs [4,
Sec. 2].

NIST IR 8561
January 2025

Fig. 2. The best test suite has three attributes: realistic code, known bugs, and large volume
and variety. Production software, synthetic cases, and software with bugs identified through
Common Vulnerability and Exposures (CVE) reports each have only two attributes. An ideal
test suite has all three attributes, that is, located in the central white bulging triangular region.
After [7].

1.2. Attributes of SARD Test Cases

A test case consists of one or more files, which express the weakness, and metadata about
the file(s), such as weakness types and locations, language, etc.

Code is typical quality. It is not necessarily pristine or exemplary. Nor is it horrible. The
SARD is not a compiler test. Test cases that are absolutely the cleanest, most excellent
code with great style, except for the weakness, minimizes confounding concerns. These
may be useful for basic research and instruction. But SARD test cases may have style
faults, non-portable code, “code smells”, and extraneous weaknesses.

Some test cases are as small as a few lines of generated code, which clearly represent a
vulnerability. SARD cases range in size up to entire applications, to represent production
code and to allow investigation of scaling.

The SARD software can handle binary (executable) test cases, in addition to source code.
Currently, all cases are source code.

Cases are never removed from the SARD or changed, although newer versions may be
added. This permanence allows research work to refer to, say SARD test case 1552, know-
ing that that exact code can always be retrieved. Later work may thus begin by replicating
previous work.

Many cases with intentionally-flawed code have corresponding cases with that code fixed.

4

NIST IR 8561
January 2025

The corresponding cases are important to test false-positive rates. Sometimes there is more
than one way to fix a flaw, so multiple fixed cases are possible. All cases have a state. The
state is “bad”, that is, it contains code intentionally having flaws, “good”, it contains no
(intentionally) flawed code, or “mixed”, meaning it contains both flawed code and matching
fixed code.

Each test case can have a variety of metadata. The metadata includes the kinds and loca-
tions of weaknesses, programming language, who contributed it and when, hints as to its
quality or suitability, and complementary test cases. Although not every case has metadata
indicating every vulnerability, the vast majority of weaknesses are noted in the metadata,
which can be processed automatically.

Some synthetic test cases occur in complementary groups. For example, a “bad” test case,
that is, a test case with a weakness, may have a complementary “good” test case in which
the weakness is corrected. Pairs of good and bad test cases may help determine false
positive rates of tools. One good case may be related to several bad cases. An example
is in Kratkiewicz’s suite in which each good case has three bad cases with overflows just
outside, moderately outside, and far outside the buffer boundary. See Sec. 2.3 for more
details. Some cases in the Juliet suites have more than one good function for each bad
function.

All test case metadata is available in a manifest file, which uses Static Analysis Results
Interchange Format (SARIF) [8] format. The manifest has information such as the Uni-
form Resource Locator (URL) to download the test case, test case number and version,
kinds and locations of weaknesses, programming language, state, status, creation date,
and author. The manifest for the entire SARD is over one gigabyte. It is available at
https://samate.nist.gov/SARD/downloads/sarifs.json. Its schema is available through the
link sard-schema. json at https://samate.nist.gov/SARD/documentation#resources.

1.2.1. Review Status

Every case has a SARD status giving some information about how well it has been re-
viewed: candidate (C), accepted (A), or deprecated (D). Test cases are “candidates” when
they are added to the SARD. This means they have not been thoroughly reviewed, yet.
Cases are marked “deprecated” when they are found not to be suitable for new work. This
may happen if an unintended significant weakness is found. Often deprecated cases are
replaced by new versions.

An “accepted” test case is one that meets our documentation, correctness, and quality re-
quirements. If a case has a status of “accepted”, you can expect that the source code will

» compile (for compilable languages) or run without fatal errors (for complete inter-
preted languages),

* run without fatal error messages, other than those expected for an incomplete pro-
gram (if it is just functions or modules),

https://samate.nist.gov/SARD/downloads/sarifs.json
https://samate.nist.gov/SARD/documentation#resources

NIST IR 8561
January 2025

* not produce any warnings, unless they are expected as part of the test,
¢ contain the documented weakness if the test case is a bad or mixed test case, and
* contain no known weaknesses at all if it is a good test case.

In addition, an accepted case will have the following documentation:

* adescription of the purpose of the case,

¢ the author’s name,

* if it is submitted by someone other than the author, the contributor’s name,

* its language, e.g. C, C++, Java, or PHP,

* its type, e.g., “source code” or “binary”.

e if it is “bad or “mixed”, the locations of flaw(s), and

* any instructions to compile, analyze, or execute the test. This may include com-
piler name/version, compiler directives, environment variable definitions, inputs that
prove the vulnerability exists, or other test context information. Any drivers, stubs,
include files, declarations, “make” files, and so forth are readily available, too.

The test case description may include the kind of weakness(es), contributing weaknesses in
case of a chain or composite, and code complexities. Typical code complexities are loops,
inter-procedural data flow, buffer aliasing, and use of structures. “In theory only the code
pertaining to the weakness need be examined to determine that it is, indeed, a weakness.
However, analysis tools must handle an unbounded amount of surrounding code to find
sources of sinks [or] determine conditions when the code is executed” [3]. Some cases are
a copy of a base application with an injected weakness, while many synthetic programs
have a base weakness wrapped in different code complexities or using different data types.

Originally we planned to thoroughly assess every test case for suitability and quickly accept
candidate cases. We found that resources are scarce and that the added work to certify a
case as accepted was rarely worth the effort.

1.2.2. Case Versions

Cases have versions. The initial version number of a test case is 1.0.0. The highest num-
bered version is the default.

If the source code of a test case is changed significantly, we increase the major number
(e.g., 1.0.0 — 2.0.0). Typical changes are to fix an extraneous error or update for a revised
programming language standard, e.g., C99 — C11. Even correcting a function name should
change the major number, because a small code change can result in a big change for
software analysis tool reports. The major number does not increase if the Abstract Syntax
Tree (AST) remains the same. That is, changes in formatting, white space, or comments
only change the minor number.

Increase the minor number (e.g., 1.0.0 — 1.1.0) if there are significant changes to the meta-
data, that is, something that appears in the manifest file. Significant information includes

NIST IR 8561
January 2025

weakness identification (Common Weakness Enumeration [9] or CWE number), line num-
bers, or file name. When a new minor version is released, SARD users should compare the
new SARIF file with what they are working on.

Increase the patch number (e.g., 1.0.0 — 1.0.1) for all other kinds of changes, for example,
documentation, README.md, Dockerfile, or compilation instruction. A new patch version
should have no impact on research results based on SARD test cases.

2. SARD Contents

This section describes many of the collections that constitute the SARD. Much of this sec-
tion is adapted from or quotes “SARD: Thousands of Reference Programs for Software
Assurance” [3]. This article was originally published in the CSIAC Journal of Cyber Secu-
rity and Information Systems Vol. 5, No 3.

The SARD has benefited from many contributors. We appreciate them and acknowledge
their work and generosity. These test cases represent considerable intellectual effort to re-
duce reported vulnerabilities to examples, classify them, generate elaborations of particular
flaws, come up with corresponding correct examples, etc. Many of the contributions are
credited on the Acknowledgments and Test Case Descriptions page [10]. The acknowledg-
ments also have more details about the test cases, their sources, links to paper explaining
them, and other information. The content of the Acknowledgment page as of August 2024
is in App. A.1.

In this section we first describe cases from production software. This includes cases cre-
ated by injecting flaws into production software. Next in Sec. 2.2 we describe test suites
written for test purposes. Then we describe suites generated by programs in Sec. 2.3. Each
description includes how to access just that suite or collection of cases. The last subsection
explains some special documentation provided with the SARD.

2.1. Cases From Production Software

Collecting production code allows us to present actual bugs that are found in realistic soft-
ware. We located bugs in several ways:

* Inject bugs into code,

* Use information from bug reports, such as Common Vulnerability and Exposures
(CVE) or the National Vulnerability Database (NVD), https://nvd.nist.gov/,

» Compare earlier versions of the software with later versions to see what code changed
to fix a bug, or

* Debug — test the program, then scan and analyze the code.

For Static Analysis Tool Exposition (SATE) IV [11], SAMATE team members tracked vul-
nerabilities reported as Common Vulnerability and Exposures (CVE) [12] back to source
code changes. This resulted in 228 CVEs located in Asterisk, Chrome, Dovecot, Wireshark

https://nvd.nist.gov/

NIST IR 8561
January 2025

(1.2 and 1.8), Apache Tomcat, Jetty, ISPWiki, Openfire, and WordPress. Each of these has
its own test suite, 90 through 99. Each CVE has one test case containing the file or files with
the vulnerability. The first case in each suite has all the CVEks, files, and identified vulnera-
bilities for that program. These 10 test suites represent hundreds of reported vulnerabilities
and the corresponding source code.

MIT Lincoln Laboratory extracted 14 program slices from popular Internet applications,
BIND, Sendmail, and WU-FTP, with exploitable buffer overflows [13]. That is, they re-
moved all but a relatively few functions, data structures, behaviors, and so forth making
sure the remaining code still has the overflow. They also made “good” (patched) versions
of each slice. These 28 test cases are test suite 88.

The Intelligence Advanced Research Projects Activity (IARPA) Securely Taking On New
Executable Software Of Uncertain Provenance (STONESOUP) program created test suites
in three phases. STONESOUP documents are available at https://samate.nist.gov/SA
RD/documentation#iarpa. For Phase 1 they developed five collections of small C and
Java programs covering five vulnerabilities. Each collection may be downloaded from the
SARD Test Suites page [14] and includes directions on how to compile and execute them
and inputs that trigger the vulnerability. The test cases for Phase 2 were not particularly
different from the Phase 1 cases, so were not saved.

For Phase 3, STONESOUP injected thousands of weakness variants into 16 widely-used
web applications, resulting in 3188 Java cases and 4582 C cases. “Although the base pro-
grams were real-world software, the inserted code snippets, or cysts, were unrelated to the
control and data flow of the base programs. The resulting weaknesses were not represen-
tative of bugs made by real programmers.” [4] The weaknesses covered 25 classes. Each
case is accompanied with inputs triggering the vulnerability, that is proof of vulnerabil-
ity or POV, as well as “safe” inputs. Because the cases represent thousands of copies of
full-sized applications, STONESOUP Phase 3 is distributed as a virtual machine with a
complete testing environment, test suite 113.

The STONESOUP base applications are significant enough by themselves that we describe
them here. They are available from the Test Suite page as Standalone applications, test
suites 3 through 18 and 21. Fifteen applications are GNU grep, OpenSSL, PostgreSQL,
Tree (a directory listing command), Wireshark 1.10.2, Coffee MUD (Multi-User Dun-
geon game), Elastic Search, Apache Subversion, Apache Jena, Apache JMeter, Apache
Lucene, POI (Apache Java libraries for reading and writing files in Microsoft Office for-
mats), FFmpeg (a program to record, convert, and stream audio and video), Gimp (GNU
Image Manipulation editor), and Open Fire. Two additional collections from STONESOUP
are Wireshark 1.8.0, suite 22, and Asterisk, suite 19. The 16th application is JTree, which is
different from the others. It is a single base case injected with weaknesses. When processed
with unzip, it produces 34 subdirectories, each with difference files to create a version of
JTree with an injected weakness.

For SATE VI, SAMATE team members began with widely-used production software. In

8

https://samate.nist.gov/SARD/documentation#iarpa
https://samate.nist.gov/SARD/documentation#iarpa

NIST IR 8561
January 2025

most instances they began by tracking down and documenting reported bugs. They also
injected bugs into some of the test cases. Bug injection seeks to place many known vul-
nerabilities in production software, thus getting closer to the best test cases illustrated in
Fig. 2. A thorough treatise on bug injection, including its potential benefits, reviews of bug
injection efforts, and its use in SATE VI is in Sec. 2 of [4]. Section 2.3 details bug injection
and the collections used in SATE VI. As it explains, “Bugs can be injected with different
degrees of automation. ... bug quality tends to degrade with an increase in automation. In
SATE VI, we used different degrees of automation with successes and pitfalls.” Section 5.2
details issues with automatically injected bugs.

Following is a summary of the SATE VI collections and the approaches used to prepare
them. In WireShark 1.2.0 and DSpace they tracked down and documented reported bugs
then injected others. They injected bugs into Sakai and SQLite. The final case came from
the 2016 Defense Advanced Research Projects Agency (DARPA) Cyber Grand Challenge
(CGC). It consists of “custom-made programs specifically designed to contain vulnera-
bilities that represent a wide variety of crashing software flaws. ... they approximate real
software with enough complexity to stress both manual and automated vulnerability discov-
ery.” [4, Sec. 2.3.6]. The CGC case was ported by Trail of Bits. These collections are not
yet available through the SARD. Until they are, the SATE VI Classic Track page has links to
download them. https://www.nist.gov/itl/ssd/software-quality-group/sate- vi-classic-track.
We are working on these collections to add them to the SARD.

2.2. Manually Written Test Cases

Many companies donated synthetic benchmarks that they developed manually. Fortify
Software, Inc., contributed C programs that manifest various software security flaws. They
updated the collection as ABM 1.0.1. These 112 cases cover various software security
flaws, along with associated “good” versions. These are test suite 6. In 2006, Klocwork
Inc. shared 41 C and C++ cases from their regression suite. These are all a few lines of
code to demonstrate use after free, memory leak, use of uninitialized variables, etc. They
are suite 106. Toyota InfoTechnology Center (ITC), U.S.A. Inc. created a benchmark in
C and C++ for undefined behavior and concurrency weaknesses. The test suite, 104, has
100 test cases containing a total of 685 pairs of weaknesses. Each pair has a version of a
function with a weakness and a fixed version of the function. For more details see [15].
The test cases are ©2012-2014 Toyota InfoTechnology Center, U.S.A. Inc., distributed un-
der the “BSD License,” and added to the SARD by permission. The SAMATE team noted
coincidental weaknesses.

The SARD also includes 329 cases from our static analyzer test suites [5]. These have
suites for weaknesses, false positives, and weakness suppression in C++ (test suites 57, 58,
and 59), Java (63, 64, and 65), and C (100 and 101). The development of suites 100 and
101 from suites 45 and 46 and their validation is thoroughly detailed in [16].

The SARD includes many small collections of synthetic test cases from various sources.

https://www.nist.gov/itl/ssd/software-quality-group/sate-vi-classic-track

NIST IR 8561
January 2025

Frédéric Michaud and Frédéric Painchaud, Defence R&D Canada, created and shared 25
C++ test cases. These test cases cover string and allocation problems, memory leaks, di-
vide by zero, infinite loop, incorrect use of iterator, etc. These are test suite 62. Robert C.
Seacord contributed 69 examples from “Secure Coding in C and C++” [17]. John Viega
wrote “The CLASP Application Security Process” [18] as a training reference for the Com-
prehensive, Lightweight Application Security Process (CLASP) of Secure Software, Inc.
The SARD initially included 36 cases with examples of software vulnerabilities from use of
hard-coded password and unchecked error condition to race conditions and buffer overflow.
Many of the original cases have been improved and replaced.

Hamda Hasan contributed a total of 18 cases in C#, including ASP.NET, with XSS, SQL
injection, command injection, and hard coded password weaknesses.

2.3. Generated Cases
By far the largest number of test cases are synthetic generated by special programs.

One of the first SARD collections came from Massachusetts Institute of Technology Lin-
coln Laboratory. Kendra Kratkiewicz developed a taxonomy of code complexities and
291 basic C programs representing this taxonomy to investigate static analysis and dy-
namic detection methods for buffer overflows. Each program has four versions: a “good”
version, accessing within bounds, and three “bad” versions, accessing just outside, moder-
ately outside, and far outside the boundary of the buffer. These 1164 cases are explained in
Kratkiewicz and Lippmann [19] and are test suite 89.

In 2011, the National Security Agency’s Center for Assured Software (CAS) generated
thousands of test cases in C/C++ and Java covering over 100 CWEs, called Juliet 1.0.
They can be compiled individually, in groups, or all together. Each case is one or two
pages of code. They are grouped by language, then by CWE. In each CWE, base programs
are elaborated with up to 30 variants having complexities added. They soon updated to
version 1.1 [20, 21]. The next year, they extended the collection to Juliet 1.2 [22, 23],
which comprises 61 387 C/C++ programs and 25 477 Java programs in almost two hundred
weakness classes.

The latest version of Juliet is 1.3. We corrected about a dozen systematic problems and
added pre- and postfix increment overflow and decrement underflow cases to C/C++ and
Java suites [24]. That also details known problems remaining. The updated suites are
111 for Java and 112 for C/C++. Both collections are available with extra support, like
Makefiles, as test suites 109, Java, and 116 C/C++. CAS added 28 881 test cases in C#
covering 105 CWEs to Juliet 1.3. They are available as test suite 110.

It is tempting to use the Juliet suites to train machine learning systems. If this is attempted,
it should only be done with the greatest care. Nascimento points out [25, Sec. 5.1.1.1]
several limitations of Juliet, such as

10

NIST IR 8561
January 2025

1. High correlation between function names and important code attributes. ... the
model may rely on [names] to classify the methods rather than effectively learning
the underlying vulnerabilities.”

2. Effectively duplicate instances. All Juliet cases are strikingly similar in structure, and
the variations in data types and conditions may only give the illusion of diversity.

Following an architecture developed by NIST personnel and under their direction, a team
of students at TELECOM Nancy, a computer engineering school of the Université de Lor-
raine, Nancy, France, implemented a generator for PHP cases. They created a suite of
42 212 test cases in PHP covering the most common security weakness categories, includ-
ing XSS, SQL injection, and URL redirection. These are suite 103 and are documented
in Stivalet and Fong [26]. In 2016, SAMATE members oversaw additional work, again by
TELECOM Nancy students, who created a suite of 32003 cases in C#. These cases are
suite 105. The Vulnerability Test Suite Generator (VTSG) has been enhanced to version 3,
which produces test cases in Python [27] in addition to other improvements.

Felix Schuckert et. al. wrote a program that constructs cases structurally similar to those
produced by VTSG. The program uses Abstract Syntax Trees (AST) and decision trees
internally. Details are in [28]. They generated two test suites addressing data flow, test
suite 114, and soundness, test suite 115, for XSS and SQLight. The dataflow test suite has
248 592 cases.

2.4. Documentation

Some suites have extended documentation associated with them. The SARD also makes
this available through a special page. The Documentation page, at https://samate.nist.
gov/SARD/documentation, begins with information about the SARD, including a link
to a SARD manual, a link to a SARIF validator, our theory of test case versioning, and
explanation of search filters.

The next part of the page is a repository for all the documents we host related to the IARPA
STONESOUP program. The last part has Juliet documents.

3. Using the SARD

We hope that using the SARD web interface is intuitive. This section has some points that
may be helpful.

3.1. Searching for Test Cases

The search finds test cases with specific features. Click on “Test Cases” in the top navi-
gation bar. This takes you to a test cases display page with default result. You can search
by criteria such as test case id, test case description, language, weakness type, string in the
source file, etc. See Table 1 for details.

11

https://samate.nist.gov/SARD/documentation
https://samate.nist.gov/SARD/documentation

NIST IR 8561
January 2025

Enter the search criteria in the “Filters” box, then click “Search”. Each filter is a key, a
colon (:), and a value.

Putting the cursor in the “Filters” text box causes a drop-down selection box to appear that

({2l

has all possible key/value pairs (except “q” for arbitrary text search of metadata).

SARD home Test Cases Test Suites Documentation
Filters (help) Submission Date
flaw| Any v 08/28/2024 m API
CWE-194

flaw
Unexpected Sign Extension

CWE-191 Go to page 1
Integer Underflow (Wrap or flaw
Displa) wraparound) 1 2 3 .. Next L

CWE CWE-124 501077-v1.0.0 + Added 3 years ago * candidate * t
Buffer Underwrite (‘Buffer U flaw

PhP | nderflow) Dataflow: global_variable Context: xss_plain Sink: echo_func

CWE CWE-257 501076-v1.0.0 « Added 3 yearsago °* candidate * k
Storing Passwords in a Reco flaw

php ~ Sourcé: _GE [Sanitization: nosanitization Dataflow: factory_reflection Context: xss_plain Sink: echo_func

Fig. 3. The SARD "search bar" showing the filter options drop-down.

Search for a test case just by entering its number, for example “2079”. (You will see the
software use q:, the string search filter.) To get a certain version of a test case, search for
that test case, click on the test case to display it, then select the version from the drop-down
menu box.

Selected cases are the intersection (“AND”) of all filters. Values of the same criteria are in
a union (“OR”). Different criteria are in an intersection (“AND”). For example,

flaw: CWE-120 flaw:CWE-191 language:c
returns test cases that are in the C language and either CWE-120 or CWE-191.

To search by the date of submission, select “Before”, “On”, or “After”, then the date. Select
month, day, or year by clicking on each one and entering the value or by clicking in the
calendar pop up. See Fig. 4.

3.2. Downloading Test Cases and Test Suites

Clicking a test case ID displays that test case. (You can select a previous version of the test
case in the drop-down menu.) Click the down arrow ().

12

NIST IR 8561

January 2025
Table 1. All search criteria with examples.
Criterion Example
q: ANY STRING q: sql injection matches cases whose metadata contains
“sql injection”.
author: AUTHOR author: MIT matches cases created by MIT.
cve: CVE cve: CVE-2014-0160 matches cases related to that CVE.
language: LANG language: java matches cases written in Java.
state: STATE state: good matches good cases; details in Sec. 1.2.
status: STATUS status: deprecated matches deprecated cases; details
in Sec. 1.2.1.
flaw: FLAWNAME flaw: CWE-121 matches cases labeled CWE-121.
file: BASENAME file: CWE121 _Stack Based Buffer Overflow__CWE129_

large_14.c matches cases containing the given file.

The file name must be the basename, that is, without

any leading directory components.

operating system: CPE | operating system: cpe:2.3:0:microsoft:windows:*:
* 1% 1k ok sk okok matches cases created for the Windows
platform. The value must be a Common Platform
Enumeration [29]

application: CPE application: cpe:2.3:a:ffmpeg:ffmpeg:1.2.2:%:*:
* 1% 1% 0k ok matches cases using FFmpeg version 1.2.2.

The value must be a Common Platform Enumeration [29]

You can download any particular test case by accessing the URL https://samate-internal.nist.g
ov/SARD/downloads/versions/NNNN-vV.V.V.zip, where NNNN is the test case ID and V.V.V
is the version number. For example, the latest version of test case 248320, which is 2.0.0, can be
downloaded with https://samate-internal.nist.gov/SARD/downloads/versions/248320-v2.0.0.zip.

There is no method in the SARD for users to download sets of test cases.

It takes effort to find and download many cases. One possibility is to use the Application Program-
ming Interface (API), as indicated in Sec. 3.3. Another approach is to download all the information
about test cases, then select desired test cases and download them.

All test case metadata information is available in one huge manifest. For more information, see
Sec. 1.2.

Test suites can be downloaded by clicking on the download arrow on the right of each test suite in
the Test Suites page https://samate.nist.gov/SARD/test-suites. Each test suite also has a Download
button on its own page.

13

https://samate-internal.nist.gov/SARD/downloads/versions/NNNN-vV.V.V.zip
https://samate-internal.nist.gov/SARD/downloads/versions/NNNN-vV.V.V.zip
https://samate-internal.nist.gov/SARD/downloads/versions/248320-v2.0.0.zip
https://samate.nist.gov/SARD/test-suites

NIST IR 8561
January 2025

SARD home Test Cases Test Suites Documentation

Filters (help) Submission Date

Any v 0882024 m API

Aug 2024 <0
SuMo TuWe Th Fr Sa

1 2 3
4 5 6 7 8 910
1 12 13 14 15 16 17 Go to page 1
18 19 20 21 22 23 24
" N N 25 26 27 29 30 31
Displaying test cases 1 - 25 of 500971 in total a 1.2 3 .. Next Llas
CWE-79 501077-v1.0.0 + Added 3 yearsago °* candidate * ba¢

AN Qniirra: (FT Qanitizatinn: nncanitizatinn Nataflawr alahal wariahla Cantavt: vee nlain Qink: arhn fiine

Fig. 4. The SARD “search bar” showing the “Filters” box, the link to search “help” the
“Submission Date” filter with the date select drop-down, and the “Search” button.

3.3. Using the Application Programming Interface (API)

Instead of trying to anticipate every possible use of the SARD, we provide an API. The URL of the
API is https://samate.nist.gov/SARD/api/test-cases/search. Pass parameters as GET parameters.
Parameters are described at https://samate.nist.gov/SARD/documentation#search. The API URL,
or the API button on the search page, returns search results in a JavaScript Object Notation (JSON)
format. With this API, anyone can write other tools by submitting curl commands, for example a
page that displays statistics about test cases.

The following example retrieves the second page of 50 test cases with CWE-194:
https://samate.nist.gov/SARD/api/test-cases/search?flaw % 5B % SD=CWE- 194&page=2&limit=50
The following example retrieves the first 25 test cases with both CWE-191 and CWE-194:

https://samate.nist.gov/SARD/api/test-cases/search?flaw % 5B %5D=CWE-191&flaw%5B % 5D=
CWE-194&limit=25

References

[1] Software Assurance Reference Dataset (SARD). Accessed 25 April 2024. Available at https:
/[samate.nist.gov/SARD/.

[2] Black PE (2018) A software assurance reference dataset: Thousands of programs with known
bugs. Journal of Research of NIST 123(123005):1-3. https://doi.org/10.6028/jres.123.005

[3] Black PE (2017) SARD: Thousands of reference programs for software assurance. CSIAC
Journal of Cyber Security and Information Systems 5(3):6—13. Special Software Assurance
edition — DoD Software Assurance (SwA) Community of Practice: Design and Development
Process for Assured Software — Volume 2: Tools & Testing Techniques.

14

https://samate.nist.gov/SARD/api/test-cases/search
https://samate.nist.gov/SARD/documentation#search
https://samate.nist.gov/SARD/api/test-cases/search?flaw%5B%5D=CWE-194&page=2&limit=50
https://samate.nist.gov/SARD/api/test-cases/search?flaw%5B%5D=CWE-191&flaw%5B%5D=CWE-194&limit=25
https://samate.nist.gov/SARD/api/test-cases/search?flaw%5B%5D=CWE-191&flaw%5B%5D=CWE-194&limit=25
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://doi.org/10.6028/jres.123.005

NIST IR 8561
January 2025

[4]

[5]

[12]
[13]

[14]
[15]

[16]

[17]
[18]
[19]

[20]

[21]

Delaitre A, Black PE, Cupif D, Haben G, Loembe AK, Okun V, Prono Y (2023) SATE VI
report: Bug injection and collection (National Institute of Standards and Technology), NIST-
SP 500-341. https://doi.org/10.6028/NIST.SP.500-341

Black PE, Kass M, Koo M, Fong E (2011) Source code security analysis tool functional spec-
ification version 1.1 (NIST), NIST-SP 500-268 v1.1. https://doi.org/10.6028/NIST.SP.500-26
8vl.1

Black PE (2005) Software assurance metrics and tool evaluation. Proc. Intern’l Conf. on Soft-
ware Engineering Research and Practice (SERP ’05), eds Arabnia H, Reza H (CSREA),
Vol. II.

Delaitre A, Stivalet B, Black PE, Okun V, Ribeiro A, Cohen TS (2018) SATE V report: Ten
years of static analysis tool expositions (National Institute of Standards and Technology),
NIST-SP 500-326. https://doi.org/10.6028/NIST.SP.500-326

(2020) Static analysis results interchange format (SARIF) version 2.1.0, https://docs.oasis-o
pen.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html. Accessed 8 February 2022.

Common weakness enumeration (CWE). Accessed 29 April 2024. Available at https://cwe.mi
tre.org/.

SARD acknowledgments and test suites descriptions, https://www.nist.gov/itl/ssd/software-
quality-group/sard-acknowledgments-and-test-suites-descriptions. Accessed 25 July 2024.
Okun V, Delaitre A, Black PE (2013) Report on the static analysis tool exposition (SATE) IV
(National Institute of Standards and Technology), NIST-SP 500-297. https://doi.org/10.6028/
NIST.SP.500-297

Common vulnerabilities and exposures (CVE), https://www.cve.org/. Accessed July 2024.
Zitser M, Lippmann RP, Leek T (2004) Testing static analysis tools using exploitable buffer
overflows from open source code. Proceedings 12th International Symposium on Foundations
of Software Engineering (ACM SIGSOFT), pp 97-106. https://doi.org/10.1145/1029894.10
29911

Test suites, https://samate.nist.gov/SARD/test-suites. Accessed 31 July 2024.

Shiraishi S, Mohan V, Marimuthu H (2015) Test suites for benchmarks of static analysis tools.
Proceedings of the 2015 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW) ISSREW °15 (IEEE Computer Society), pp 12—15. https://doi.org/10.1
109/ISSREW.2015.7392027

Hoole AM, Traore I, Delaitre A, de Oliveira C (2016) Improving vulnerability detection mea-
surement: [test suites and software security assurance]. Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering (Association for Comput-
ing Machinery). https://doi.org/10.1145/2915970.2915994

Seacord RC (2005) Secure Coding in C and C++ (Addison-Wesley).

Viega J (2005) The CLASP Application Security Process (Security Software, Inc.).
Kratkiewicz K, Lippmann R (2006) A taxonomy of buffer overflows for evaluating static and
dynamic software testing tools. Proc. Workshop on Software Security Assurance Tools, Tech-
niques, and Metrics, ed Fong E NIST-SP 500-265, pp 44-51. https://doi.org/10.6028/NIST.S
P.500-265

(2011) Juliet test suite v1.1 for Java user guide (Center for Assured Software), Available at
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_Java_- _Use
r_Guide.pdf.

(2011) Juliet test suite v1.1 for C/C++ user guide (Center for Assured Software), Available at

15

https://doi.org/10.6028/NIST.SP.500-341
https://doi.org/10.6028/NIST.SP.500-268v1.1
https://doi.org/10.6028/NIST.SP.500-268v1.1
https://doi.org/10.6028/NIST.SP.500-326
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-suites-descriptions
https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-suites-descriptions
https://doi.org/10.6028/NIST.SP.500-297
https://doi.org/10.6028/NIST.SP.500-297
https://www.cve.org/
https://doi.org/10.1145/1029894.1029911
https://doi.org/10.1145/1029894.1029911
https://samate.nist.gov/SARD/test-suites
https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.1145/2915970.2915994
https://doi.org/10.6028/NIST.SP.500-265
https://doi.org/10.6028/NIST.SP.500-265
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_Java_-_User_Guide.pdf

NIST IR 8561
January 2025

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_ C_Cpp_-_U
ser_Guide.pdf.

(2012) Juliet test suite v1.2 for Java user guide (Center for Assured Software), Available at
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_- _Use
r_Guide.pdf.

(2012) Juliet test suite v1.2 for C/C++ user guide (Center for Assured Software), Available at
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for C_Cpp_-_U
ser_Guide.pdf.

Black PE (2018) Juliet 1.3 test suite: Changes from 1.2 (National Institute of Standards and
Technology), NIST-TN 1995. https://doi.org/10.6028/NIST.TN.1995

do Nascimento AFM (2023) A Transformer-based GitHub Action for Vulnerability Detection
Master’s thesis Faculdade de Engenharia da Universidade do Porto. https://repositorio-aberto
.up.pt/bitstream/10216/151941/2/636675.pdf.

Stivalet B, Fong E (2016) Large scale generation of complex and faulty PHP test cases. 2016
IEEFE Intern’l Conf. on Software Testing, Verification and Validation (ICST), pp 409—415.
https://doi.org/10.1109/ICST.2016.43

Black PE, Mentzer W, Fong E, Stivalet B (2023) Vulnerability test suite generator (VTSG)
version 3 (National Institute of Standards and Technology), NIST-IR 8493. https://doi.org/
10.6028/NIST.IR.8493

Schuckert F, Langweg H, Katt B (2022) Systematic generation of XSS and SQLi vulnera-
bilities in PHP as test cases for static code analysis. 2022 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pp 261-268. https://doi.org/
10.1109/ICSTW55395.2022.00053

Common platform enumeration (CPE). Available at https://csrc.nist.gov/projects/security-co
ntent-automation-protocol/specifications/cpe.

Boland T, Black PE (2012) Juliet 1.1 C/C++ and Java test suite. IEEE Computer 45(10):88-90.
https://doi.org/10.1109/MC.2012.345

Danial A, Snel S, jolkdarr, Beckmann C, MichaelDimmitt, Roman, Wilk J, et al (2021) cloc:
v1.90. https://doi.org/10.5281/zenodo.5760077.

16

https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.1_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://doi.org/10.6028/NIST.TN.1995
https://repositorio-aberto.up.pt/bitstream/10216/151941/2/636675.pdf
https://repositorio-aberto.up.pt/bitstream/10216/151941/2/636675.pdf
https://doi.org/10.1109/ICST.2016.43
https://doi.org/10.6028/NIST.IR.8493
https://doi.org/10.6028/NIST.IR.8493
https://doi.org/10.1109/ICSTW55395.2022.00053
https://doi.org/10.1109/ICSTW55395.2022.00053
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.5281/zenodo.5760077

NIST IR 8561
January 2025

Appendix A. Web Pages Associated with the SARD

Along with the SARD, we host other web pages. For convenience, here is the content of those pages
as of August 2024.

Appendix A.1. SARD Acknowledgments and Test Suites Descriptions

https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-case-descrip
tions

The first part of this page credits those who contributed test suites or test cases to the SARD and
includes a short description for each suite. We appreciate them. These represent considerable intel-
lectual effort to reduce reported vulnerabilities to examples, classify them, generate elaborations of
particular flaws, come up with corresponding correct examples, etc. This page acknowledges those
people, groups, companies, and entities who have generously shared with everyone.

Contributors are listed in alphabetical order:

ABMO6 Fortify Software, Inc., now HP Fortify, contributed ABM 1.0.1, which is a collection of small,
synthetic C programs in flawed and flaw-free forms. The test cases cover various software
security flaws, along with good or fixed versions. This is an update of FSIOS5. These test
cases are in test suite 6.

BCS15 Bertrand C. Stivalet and Aurelien Delaitre designed the architecture and oversaw develop-
ment of a test generator by TELECOM Nancy students to create 42212 test cases in PHP.
See [26]. Test suite 103.

BCS16 Bertrand C. Stivalet and Aurelien Delaitre designed the architecture and oversaw develop-
ment of a more modular and extensible test generator based on [BCS15] by TELECOM
Nancy students to create 32 003 test cases in C#. Test suite 105.

CAS10 National Security Agency’s Center for Assured Software created over 45000 test cases in
C/C++ and 14 000 in Java covering over 100 CWEs, called the Juliet test suite. They can be
compiled individually, in groups, or all together. The C/C++ or Java cases and supporting
files can be downloaded from the Test Suites page. Individually they are in test suites 68
(C/C++) and 69 (Java).

This was superseded by Juliet 1.1 [CAS12].

CAS12 National Security Agency’s Center for Assured Software released Juliet 1.1, which is ex-
tended to over 57 000 test cases in C/C++ and almost 24 000 in Java. They can be compiled
individually, in groups, or all together. It is described in [30]. The C/C++ or Java cases and
supporting files are in test suites 26 (C/C++) and 28 (Java).

This was superseded by Juliet 1.2 [CAS13].

CAS13 National Security Agency’s Center for Assured Software updated its Juliet test suite to ver-
sion 1.2. The new suite contains over 61 000 test cases in C/C++ and 25000 in Java. The
C/C++ or Java cases and supporting files can be downloaded from the Test Suites page. In-
dividually they are in test suites 86 (C/C++) and 87 (Java).

This was superseded by Juliet 1.3 [NIST17].

CAS20 National Security Agency’s Center for Assured Software created almost 29 000 test cases in
C# covering 105 CWEg, called the Juliet test suite for C# version 1.3. The C# test cases and
supporting files can be downloaded from the Test Suites page.

17

https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-case-descriptions
https://www.nist.gov/itl/ssd/software-quality-group/sard-acknowledgments-and-test-case-descriptions

NIST IR 8561
January 2025

DRDCO06

FSI05

HH11

TIARPA12

IARPA14

ITC14

KLOCO06

MLLO5a

MLLO5b

MS06
NIST17

Frédéric Michaud and Frédéric Painchaud, Defence R&D Canada http://www.drdc-rddc.gc
.ca/, created 25 C++ test cases. These test cases, plus a 26th with a main() including them
all, are in test suite 62. Jeffrey Meister, NIST, entered them.

Fortify Software Inc., now HP Fortify, contributed a collection of C programs that manifest
various software security flaws. Those flaws include (1) Buffer Overflow (2) Format String
Vulnerability (3) Untrusted Search Path (4) Memory Leak (5) Double Free Vulnerability (6)
Race Condition (7) Direct Dynamic Code Evaluation (8) Information Leak, etc.

Hamda Hasan contributed C#, including ASP.NET, test cases with XSS, SQL injection, com-
mand injection, and hard coded password weaknesses. You can find these cases by searching
for “Hamda”.

The Intelligence Advanced Research Projects Activity (IARPA) created a test suite for Phase
1 of the Securely Taking On New Executable Software Of Uncertain Provenance (STONE-
SOUP) program. The test suite consists of small C and Java programs, along with inputs
triggering the vulnerability and build and execute directions. It comprises five collections of
test cases: memory corruption for C, null pointer dereference for C, injection for Java, nu-
meric handling for Java, and tainted data for Java. The five collections, about 450 test cases,
may be downloaded as test suites 29, 30, 32, 33, and 34.

The Intelligence Advanced Research Projects Activity (IARPA) created a test suite for Phase
3 of the Securely Taking On New Executable Software Of Uncertain Provenance (STONE-
SOUP) program. The test suite is a collection of 7770 C and Java test cases based on
16 widely-used open source programs in which vulnerabilities have been seeded. IARPA
STONESOUP documents are available at the SARD Documentation page. It may be down-
loaded in a virtual machine as test suite 113. Alternatively, the test cases can be viewed and
downloaded individually as test suite 102.

Toyota InfoTechnology Center (ITC), U.S.A. static analysis benchmarks for undefined be-
havior and concurrency weaknesses. 100 test cases in C and C++ containing a total of 685
pairs of intended weaknesses. The test cases are © 2012-2014 and distributed under the
”BSD License.” See [15]. Test suite 104.

Klocwork Inc. shared 41 cases in C and C++ from their regression test suite. The test cases
are © 2000-2005 Klocwork Inc. All rights reserved. See the test cases for details. Since
then, some cases have been deprecated and replaced. Test suite 106.

MIT Lincoln Laboratory developed a comprehensive taxonomy of C program buffer over-
flows and 291 diagnostic C code test cases representing this taxonomy. Each test case has
three flawed versions (with buffer overflows just outside, moderately outside, and far outside
the buffer boundary) and a patched version (without buffer overflow). Examples of using
these test cases are in [19]. Test suite 89.

MIT Lincoln Laboratory extracted 14 model programs from popular internet applications
(BIND, Sendmail, WU-FTP) with known, exploitable buffer overflows. These programs
have the portion of code with the overflows. Patched versions are also available. Examples
of using these model programs are in [13]. These 28 test cases are test suite 88 and test cases
1283 to 1310.

Michael Sindelar, UMass-Ambherst and NIST, wrote test cases for threading.

Paul E. Black, Charles de Oliveira, and Eric Trapnell updated the Juliet 1.2 test suite [CAS13],
originally from National Security Agency’s Center for Assured Software, to version 1.3.
They fixed more than a dozen problems affecting thousands of test cases, including getting

18

http://www.drdc-rddc.gc.ca/
http://www.drdc-rddc.gc.ca/

NIST IR 8561
January 2025

all but Windows-specific cases to compile in Linux, and added 6140 cases of pre- and post-
increment and decrement over- or underflow. The C/C++ or Java cases and supporting files
can be downloaded from the Test Suites page. Individually, they are in test suites 108 (C/C++)
and 109 (Java).
RC06 Roderick Chapman, Altran Praxis, contributed an array access out-of-bounds case (1484)

that occurs if the compiler generates code one way but not if it generates code another way.
The C language does not specify which way.

RCS06 Robert C. Seacord contributed 69 examples from “Secure Coding in C and C++” [17]. Ro-
main Gaucher, NIST, wrote the descriptions and entered the examples.

SSWO05 Secure Software Inc. published CLASP [18] (Comprehensive, Lightweight Application Se-
curity Process) in 2005. Volume 1.1 Training Manual, Chapter 5, Vulnerability Root-Causes,
has coding examples of software vulnerabilities.

Appendix A.2. Non-NIST Publications on SARD Content

The second part of the Acknowledgments page lists publications about work that uses SARD cases
or work that comments directly on them. They are listed newest first.

Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin, “VulCNN: An image-
inspired scalable vulnerability detection system,” 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE), 2022, pp. 2365-2376, https://doi.org/10.1145/3510003.3510229

“...we focus on detecting vulnerability in C/C++, therefore, we only select functions
written in C/C++ in SARD. Data obtained from SARD consists of 12,303 vulnerable
functions and 21,057 non-vulnerable functions.”

Matteo Mauro, “Regole di Programmazione per la Safety e Security: Analisi, Strumenti e Re-
lazioni” (“Programming Rules for Safety and Security: Analysis, Tools and Relations”), Bachelor
Thesis, Universita Degli Studi Firenze, 2018, unpublished.

Mauro ran several static analyzers for MISRA rules on some Juliet test cases. The
goal was to study which MISRA rules can also be helpful for security.

Gabriel Diaza and Juan Ramén Bermejo, “Static analysis of source code security: Assessment of
tools against SAMATE tests”, Information and Software Technology, 55(8):1462-1476, August
2013. https://doi.org/10.1016/.infsof.2013.02.005

“The study compares the performance of nine tools (CBMC, K8-Insight, PC-lint, Pre-
vent, Satabs, SCA, Goanna, Cx-enterprise, Codesonar) ... against SAMATE Refer-
ence Dataset test suites 45 and 46 for C language.”

Anne Rawland Gabriel, “NIST Tool Boosts Software Security, FedTech”, 8 February 2013. https:
//fedtechmagazine.com/article/2013/02/nist-tool-boosts-software-security

19

https://doi.org/10.1145/3510003.3510229
https://doi.org/10.1016/j.infsof.2013.02.005
https://fedtechmagazine.com/article/2013/02/nist-tool-boosts-software-security
https://fedtechmagazine.com/article/2013/02/nist-tool-boosts-software-security

NIST IR 8561
January 2025

“Using the SARD test suites for internal testing and evaluation allows our researchers
to gain insight into how their technology fares against a wide range of vulnerabilities

E)

Robet Auger, “NIST publishes 50kish vulnerable code samples in Java/C/C++, is officially krad”,
cgisecurity.com blog, 31 March 2011.

He calls the Juliet test suite “a fantastic project” and says, “If you’re new to software
security and wish to learn what vulnerabilities in code look like, this is a great central
repository ...”

Cristina Cifuentes, Christian Hoermann, Nathan Keynes, Lian Li, Simon Long, Erica Mealy, Michael
Mounteney, and Bernhard Scholz, “BegBunch: benchmarking for C bug detection tools”, Proc. 2nd

International Workshop on Defects in Large Software Systems; held in conjunction with Int’l Sym-

posium on Software Testing and Analysis (ISSTA 2009), Chicago, Illinois, July 2009.

Describes BegBunch. Compares BegBunch with the SARD and other collections.
Henny Sipma, “SAMATE Case Analysis Report”, Kestrel Technology, April 2008.

This is “An application of CodeHawk to a NIST benchmark suite.” The first page reads
“CodeHawk Buffer-overflow Analysis Report: Benchmarks 115-1278”. CodeHawk
found a previously-unrecognized buffer underflow vulnerability in case 834.

John Anton, Eric Bush, Allen Goldberg, Klaus Haveland, Doug Smith, and Arnaud Venet, “Towards
the Industrial Scale Development of Custom Static Analyzers”, Kestrel Technology, 2006.

“The SAMATE database will provide the basis for studying the specification lan-
guage.” Specifically uses cases 1314 and 54.

The following mention the SARD in passing.

Redge Barthomew, “Evaluation of Static Source Code Analyzers for Safety-Critical Software De-
velopment”, 1st International Workshop on Aerospace Software Engineering
(AeroSE 07), 21-22 May 2007.

Robert C. Seacord and Jason A. Rafail, “Secure Coding Standards”, Third Annual Cyber Security
and Information Infrastructure Research Workshop (CSIIRW 2007), eds Frederick Sheldon, Axel
Krings, Seong-Moo Yoo, and Ali Mili, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 14—
15 May 2007, pp. 70-72. https://www.lulu.com/shop/frederick-sheldon-and-seong-moo-yoo-and-
ali-mili-and-axel-krings/proceedings-of-2007-cyber-security-and-information-infrastructure-wor
kshop/ebook/product-1447877.html

20

https://www.lulu.com/shop/frederick-sheldon-and-seong-moo-yoo-and-ali-mili-and-axel-krings/proceedings-of-2007-cyber-security-and-information-infrastructure-workshop/ebook/product-1447877.html
https://www.lulu.com/shop/frederick-sheldon-and-seong-moo-yoo-and-ali-mili-and-axel-krings/proceedings-of-2007-cyber-security-and-information-infrastructure-workshop/ebook/product-1447877.html
https://www.lulu.com/shop/frederick-sheldon-and-seong-moo-yoo-and-ali-mili-and-axel-krings/proceedings-of-2007-cyber-security-and-information-infrastructure-workshop/ebook/product-1447877.html

NIST IR 8561
January 2025

Appendix A.3. Other Assurance Tool Test Collections
https://www.nist.gov/itl/ssd/software-quality- group/other-assurance- tool-test-collections

These are other assurance tool collections and benchmarks that we are aware of. Test collections
in this list must be designed to assess the capabilities of assurance tools. Tool test collections may
include requirements analysis tool tests, design model analysis tool tests, source code analysis tool
tests, static and dynamic binary analysis tool tests. Test collections listed may include a harness or
a test framework.

BUGZ00 and ManyBugs.

Christopher Steven Timperley, Susan Stepney, and Claire Le Goues, (2018), “Poster:
BUGZ00 - A Platform for Studying Software Bugs”, 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 446-447, DOI:
10.1145/3183440.3195050.

Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie
Forrest, and Westley Weimer, (2015), “The ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs”, IEEE Transactions on Software Engineering (TSE), vol. 41, no. 12, pp.
1236-1256, December 2015, DOI: 10.1109/TSE.2015.2454513.

Software-artifact Infrastructure Repository (SIR): This provides programs for experimenting with
testing and analysis techniques and materials facilitating that use. The primary purpose of the tests
and testing framework is generation of experiments in software fault testing. That said, extension
of the test suites and test objects is encouraged by the developers. http://sir.unl.edu/

¢ Test Suite Type: Source Code for Specific Versions of Open Source Applications

* Number of Programs: 85

* Number of Bugs: 572+

* Average Number of Lines of Code: 38,825

¢ Languages: Java, C, C++, C#

* Supports Multiple Versions of Test Cases: Yes

» Test Harness: Yes

* Documentation: Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel, “Supporting Con-
trolled Experimentation with Testing Techniques: An Infrastructure and its Potential Impact”,
Empirical Software Engineering, vol. 10, pp. 405-435, 22 July 2005. https://doi.org/10.100
7/s10664-005-3861-2

FaultBench: is a set of real Java programs for comparison and evaluation of actionable alert identi-
fication techniques (AAITs) that supplement automated static analysis.

¢ Test Suite Type: Source Code (via CVS) for Multiple Versions of Open Source Applications
* Number of Programs: 6

* Number of Bugs: 780

» Average Number of Lines of Code: 4973

* Language: Java

* Supports Multiple Versions of Test Cases: Yes

* Test Harness: No

* Documentation: Sarah Heckman and Laurie Williams, “On Establishing a Benchmark for

21

https://www.nist.gov/itl/ssd/software-quality-group/other-assurance-tool-test-collections
http://sir.unl.edu/
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/s10664-005-3861-2

NIST IR 8561
January 2025

Evaluating Static Analysis Alert Prioritization and Classification Techniques”, Proc. Sec-
ond Int’l Symposium on Empirical Software Engineering and Measurement (ESEM 2008),
October 9-10, 2008, Kaiserslautern, Germany. https://doi.org/10.1145/1414004.1414013

OWASP Benchmark Project is a suite of synthetic test cases designed to evaluate the speed, cov-
erage, and accuracy of vulnerability detection tools. It includes both test cases with weaknesses
and without weaknesses (to test for false positives). The test suite is updated periodically. https:
/lowasp.org/www-project-benchmark/

* Test Suite Type: Source Code

* Number of Programs: Over 2500

* Number of Bugs: Over 1300

* Average Number of Lines of Code: 53 (As of version 1.2)
* Language: Java

* Supports Multiple Versions of Test Cases: Yes

» Test Harness: Yes

Appendix A.4. Other SARD Web Pages

More important parts of these pages have been incorporated into this report. We list there pages
here for completeness.

“Software Assurance Reference Dataset (SARD) Manual”

https://www.nist.gov/itl/ssd/software-quality-group/software-assurance-reference-dataset-sard-ma
nual

This page has sections on the purpose of the SARD, test cases, test suites, future enhancements, and
some history.

“SARD Design Issues”
https://www.nist.gov/itl/ssd/software-quality-group/sard-design-issues

This page discusses many of the design issues and decisions of the SARD.

“SARD Manual: What the Test Case Status Means”
https://www.nist.gov/itl/ssd/software-quality- group/sard-manual- what-test-case-status-means

This page explains what the SARD Candidate, Accepted, and Deprecated statuses mean.

Appendix B. Details of Figure 1

The figure showing the language, size, origin, and quantity of cases in the SARD required compli-
cated processing heuristics. There are undoubtedly inaccuracies in the heuristics, but they should
not invalidate the general appearance of Fig. 1.

Classification of test cases as synthetic, production, or production with injected weaknesses may
not be correct for all cases. This information is not part of metadata for test cases. We derived this

22

https://doi.org/10.1145/1414004.1414013
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://www.nist.gov/itl/ssd/software-quality-group/software-assurance-reference-dataset-sard-manual
https://www.nist.gov/itl/ssd/software-quality-group/software-assurance-reference-dataset-sard-manual
https://www.nist.gov/itl/ssd/software-quality-group/sard-design-issues
https://www.nist.gov/itl/ssd/software-quality-group/sard-manual-what-test-case-status-means

NIST IR 8561
January 2025

information during processing for this figure based on the author’s knowledge of the source of cases
and on examination of text and code in the cases. The designations are likely sufficiently correct.
Following is the actual code.

if 149249 <= testcase_id_int <= 157018:

kind = ’INJ’
elif 148804 <= testcase_id_int <= 149041:
kind = ’PRO’

elif 1 <= testcase_id_int <= 231333:
the rest of 2017 SARD is synthetic
kind = "SYN"
elif 231334 <= testcase_id_int <= 231338:
STONESOUP Digium - new versions
kind = "INJ’
elif 231339 <= testcase_id_int <= 231380:
STONESOUP Wireshark
kind = *INJ’
elif 501108 <= testcase_id_int <= 501377:
SATE VI injected cases
kind = *INJ’
elif author in ("Felix Schuckert", "NSA/Center for Assured Software")
or author.startswith("Daniel Marjam"):
synthetic PHP or Java cases

kind = "SYN"

elif author == "WordPress Foundation":
kind = "PRO"

else:

print(f’Do not know the kind of case {testcase_id_int}’)
sys.exit (1)

It is infeasible to assign a measure of number of lines of code in every case. Some cases are only test
or build material. Other cases include configuration files or setup scripts. Many test cases duplicate
support files for thousands of files; we don’t count such repeated “library” files. Specifically, if
there is a src/testcases or src/main/java/testcases directory, the program only counts
files there, not in a src/testcasesupport directory.

We compared test case classification and lines of code with data used in the 2017 paper [3]. Slight
differences remain that we have not accounted for. The 2017 paper and our notes for it didn’t have
enough details for us to understand all the differences. We do know that we counted lines of code
slightly different; we believe the current count to be more accurate. In 2017, we counted files with
extension .jsp in all test cases; now we only count them in some cases. In 2017 C files in scripts
subdirectories were counted, e.g., case 153829; we do not include them here. We do not include
cases that have been deprecated since 2017.

We document here our concerns about inaccuracies in assignment to kind and lines of code because
we did not perform exhaustive cross checks, audits, and sanity checks. Some checks we performed
turn up some errors, which we corrected. Further examination did not seem to be worth the effort.

23

NIST IR 8561
January 2025

We used cloc 1.90 [31] to count the source lines of code. We invoked it as
cloc --sum-one --include-ext=c,cc,cpp,java,php,phps,cs,aspx, jsp

This only counts lines in files ending in one of those extensions, ignoring comment and blank lines.

Plotting the Data

We grouped the logarithm of test case sizes into buckets for plotting. Values of groups range from
0 to 5.5 inclusive in steps of 0.05. Here’s the pertinent Perl code, where $LoC is the lines of code.

sub logl0 {
my $n = shift;
return log($n)/log(10);

$precision = 20;

$LogLoC = 1logl0($LoC);
$bucket = int($LogLoC * $precision);
$numbTCs [$bucket] ++;

Each bucket is plotted with a rectangle. The left edge of the rectangle aligns with the X axis position.
For synthetic, yellow, and injected, orange, cases, the rectangle height is the logarithm of the number
of test cases plus one. We added one so buckets with count of one are visible!. Synthetic case
rectangles go from the language center line upward. Injected rectangles go downward from the
center line. Since there are so few production cases, we decided to make production rectangles
extend from where the top of a matching synthetic rectangle would be to where the bottom of a
matching injected rectangle would be. This makes them twice the height of synthetic or injected
rectangles. Here’s the R code:

data$size <- loglO(data$numTestCases + 1) # +1 so log 1 case is not O
some arbitrary number to scale above size to rect sizes
scaleSize <- 1/8
SYN and PRO extend upward
data$ytop <- ifelse(data$kind==’SYN’,
data$y + scaleSizexdata$size/2, data$y)
data$ytop <- ifelse(data$kind=="PRO’,
data$y + scaleSizexdata$size/2, data$ytop)
INJ and PRO extend downward
data$ybottom <- ifelse(data$kind==’INJ’,
data$y - scaleSizexdata$size/2, data$y)
data$ybottom <- ifelse(data$kind==’PRO’,
data$y - scaleSizex*data$size/2, data$ybottom)

The bars at the top showing the size for 1, 100, and 5000 cases follow the same sizing computation.

I'The logarithm of 1 is 0, which would be no height.

24

	Introduction
	Attributes of a Good Test Suite
	Attributes of SARD Test Cases
	Review Status
	Case Versions

	SARD Contents
	Cases From Production Software
	Manually Written Test Cases
	Generated Cases
	Documentation

	Using the SARD
	Searching for Test Cases
	Downloading Test Cases and Test Suites
	Using the Application Programming Interface (API)

	References
	Appendix Web Pages Associated with the SARD
	SARD Acknowledgments and Test Suites Descriptions
	Non-NIST Publications on SARD Content
	Other Assurance Tool Test Collections
	Other SARD Web Pages

	Appendix Details of Figure 1

