
NIST Internal Report
NIST IR 8539

Security Property Verification
by Transition Model

Vincent C. Hu

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8539

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8539

NIST Internal Report
NIST IR 8539

Security Property Verification
by Transition Model

Vincent C. Hu
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8539

January 2025

U.S. Department of Commerce
Jeremy Pelter, Acting Secretary of Commerce

National Institute of Standards and Technology
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2025-01-24

How to Cite this NIST Technical Series Publication:
Hu VC (2024) Security Property Verification by Transition Model. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Interagency or Internal Report (IR) NIST IR 8539. https://doi.org/10.6028/NIST.IR.8539

Author ORCID iDs
Vincent C. Hu: 0000-0002-1648-0584

Contact Information
ir8539-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/ir/8539/final, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
mailto:ir8539-comments@nist.gov
https://csrc.nist.gov/pubs/ir/8539/final

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

i

Abstract

Verifying the security properties of access control policies is a complex and critical task. The
policies and their implementation often do not explicitly express their underlying semantics,
which may be implicitly embedded in the logic flows of policy rules, especially when policies are
combined. Instead of evaluating and analyzing access control policies solely at the mechanism
level, formal transition models are used to describe these policies and verify the system’s
security properties. This approach ensures that access control mechanisms can be designed to
meet security requirements. This document explains how to apply model-checking techniques
to verify security properties in transition models of access control policies. It provides a brief
introduction to the fundamentals of model checking and demonstrates how access control
policies are converted into automata from their transition models. The document then focuses
on discussing property specifications in terms of linear temporal logic (LTL) and computation
tree logic (CTL) languages with comparisons between the two. Finally, the verification process
and available tools are described and compared.

Keywords

access control; access control policy; model test; policy test; policy verification.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

ii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

iii

Table of Contents

Executive Summary ..1

1. Introduction ...2

2. Formal Models and ACPs ..3

2.2.1. Static ACPs .. 4

2.2.2. Dynamic ACPs ... 5

2.3.1. Nonconcurrent ACP Combinations ... 7

2.3.2. Concurrent ACP Combinations ... 9

3. Properties .. 14

3.1.1. Linear Temporal Logic .. 14

3.1.2. Computation Tree Logic ... 15

3.1.3. Computation Tree Logic Star .. 16

3.1.4. LTL vs. CTL (and CTL*) ... 17

3.2.1. Safety .. 18

3.2.2. Liveness .. 19

4. Verification Process .. 21

5. Conclusion ... 24

References ... 25

List of Tables

Table 1. CTL vs. CTL* formulae .. 17

List of Figures

Fig. 1. Example automaton of a random rules ACP ..4

Fig. 2. Example automaton of a Chinese Wall ACP ...5

Fig. 3. Example automaton of a Workflow ACP ...6

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

iv

Fig. 4. Example automaton of an N-person Control ACP ..6

Fig. 5. Intersection concept using an example of two automata ...7

Fig. 6. Union concept using an example of two automata ..8

Fig. 7. Concatenation concept using an example of two automata ...9

Fig. 8. Example of a combination of two interleaving automata ... 10

Fig. 9. Shared variables concept with an example of two automata ... 11

Fig. 10. Shared actions concept with an example of two automata .. 12

Fig. 11. Example of E(EX p) U (AG q) in CTL .. 16

Fig. 12. Relationships among LTL, CTL, and CTL* .. 18

Fig. 13. Example of the ACP transition model that satisfies EG p but not AF q 21

Fig. 14. A mutual exclusion access system ... 21

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

v

Acknowledgments

The author would like to express his thanks to Isabel Van Wyk and Jim Foti of NIST and Antonios
Gouglidis of School of Computing and Communications Lancaster University for their detailed
editorial review of both the public comment version and the final publication.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

1

Executive Summary

Faults may be errors or weaknesses in the design or implementation of access control policies
that can lead to serious vulnerabilities. This is particularly true when different access control
policies are combined. The issue becomes increasingly critical as systems grow more complex,
especially in distributed environments like the cloud and IoT, which manage large amounts of
sensitive information and resources that are organized into sophisticated structures. Access
control policies and their implementation often do not explicitly express their underlying
semantics, which may be implicitly embedded in the logic flows of policy rules.

Formal transition models are used to prove the policy’s security properties and ensure that
access control mechanisms are designed to meet security requirements. This report explains
how to apply model-checking techniques to verify security properties in transition models of
access control policies. It provides a brief introduction to the fundamentals of model checking
and demonstrates how access control policies are converted into automata from their
transition models. The report also discusses property specifications in terms of linear time logic
(LTL) and computation tree logic (CTL) with comparisons between the two. Finally, the
verification process and available tools are described and compared.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

2

1. Introduction

Faults can lead to serious vulnerabilities, particularly when different access control policies
(ACPs) are combined. This issue becomes increasingly critical as systems grow more complex,
especially in distributed environments like the cloud and IoT, which manage large amounts of
sensitive information and resources that are organized into sophisticated structures. NIST
Special Publication (SP) 800-192 [SP192] provides an overview of ACP verification using the
model-checking method. However, it does not formally define the automata of transition
models and properties, nor does it detail the processes and considerations for verifying access
control security properties.

Instead of evaluating and analyzing ACPs solely at the mechanism level, formal models are
typically developed to describe their security properties. An ACP transition model is a formal
representation of the ACP as enforced by the mechanism and is valuable for proving the
system’s theoretical limitations. This ensures that access control mechanisms are designed to
adhere to the properties of the model. Generally, transition models are effective for modeling
non-discretionary ACPs.

An automaton is an abstraction of a self-operating transition model that follows a
predetermined sequence of operations or responses. To formally verify the properties of ACP
transition models through model checking, these models need to be converted into automata.
This allows the rules of the ACP to be represented as a predetermined set of instructions within
the automaton.

This document explains model-checking techniques for verifying access control security
properties using the automata of ACP transition models. It briefly introduces the fundamentals
of model checking and demonstrates how access control policies are converted into automata
from transition models. The document then delves into discussions of property specifications
using linear temporal logic (LTL) and computation tree logic (CTL) with comparisons between
the two. The process of verification and the available tools are also described and compared.
This document is organized as follows:

• Section 1 is the introduction.

• Section 2 provides an overview of formal models and ACPs.

• Section 3 describes properties.

• Section 4 explains the property verification process.

• Section 5 is the conclusion.

• The References section lists cited publications and sources.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

3

2. Formal Models and ACPs

This section explains the application of formal models to ACPs.

2.1. Model Fundamentals

With general computational systems, one method to formally verify the properties of an ACP is
to apply model checking. This process begins by describing the ACP as a transition model and
converting it into an automata system, which is the mathematical structure used to represent
and analyze the behavior of computational systems. The automata deal with the logic of
computation concerning the ACP transition models and include various types, such as finite
automata, Büchi automata, pushdown automata, Turing machines automata, linear bounded
automata, and cellular automata. Both finite and Büchi automata have deterministic and
nondeterministic types (i.e., DFA, NFA, DBA, and NBA).

In static and dynamic ACPs, each access control rule must lead to only one access state. There is
only one permission result for each access request, which means that there are no
nondeterministic state transitions in ACP automata. Additionally, there is generally no
requirement for in-state memory in ACPs, making DFA and DBA sufficient to express ACP
transition models for most access control models, such as attribute-based access control
(ABAC), role-based access control (RBAC), workflow management, separation of duties (SOD),
conflict of interest (COI), and N-person control [SP162]25. The following are some common
features of automata applied to ACP models:

• To represent the rules of an ACP, a deterministic automaton has a finite number of
states, and each state has a unique deterministic transition for every access control
request input or system action. This automaton is used to recognize security properties
that are specified in the temporal logic of regular languages. In contrast,
nondeterministic automata can have multiple transitions for a given input symbol,
including transitions to multiple states or no states at all. Therefore, they are not
applicable to ACPs, even though nondeterministic automata are also used to recognize
regular languages.

• An ACP may require monitoring the current state continuously, so automata must be
capable of handling infinite sequences of inputs. Such automata are called Büchi
automata (BA), which are designed to determine whether a language is accepted in
infinite words. A word is accepted by a BA if there is a run in which some accepting state
occurs infinitely often. In contrast to finite automata (FA), which accept finite words that
must end in an accepting state, BA can accept infinite words as long as there is a run (or
trace) of the automaton that passes through an accepting state.

• Some ACPs may be constructed using “deny” conditions instead of “grant” conditions. In
such cases, they can utilize the complement of DFA language by switching accepting
states to non-accepting states and vice versa for the ACP transition models. However,
this feature applies only to DFA and not to BA.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

4

• To evaluate access permissions, the automaton’s accepting states represent either the
grant or deny permissions of ACP, depending on the default setting and specific system
actions. If an input move triggered by an access request cannot reach an accepting state
(e.g., grant, deny, or specific system actions), it indicates that the request is invalid. In
this case, the request is assigned the default permission while the automaton remains in
the same state.

• An “empty automaton” typically refers to a type of finite automaton that does not
accept any input string nor recognizes any language, including the empty string. An
empty automaton signifies an ACP that blocks all valid access requests. Therefore, if a
valid input access request (e.g., the subjects, actions, and objects of the request are
recognizable) does not transition to any accepting state (e.g., grant, deny, or other
acceptable states), it indicates that the automaton does not correctly represent the ACP.

2.2. ACP Automata

This section illustrates how static and dynamic ACP models are translated into automata.

2.2.1. Static ACPs

Static ACPs regulate access permissions based on static system states that are defined by
conditions, such as attribute propositions and system environments (e.g., time, location). Some
popular static ACP models include access control lists (ACLs), ABAC, and RBAC, where the ACPs
are typically defined by rules that specify access control variables, including subjects, actions,
objects, and environmental conditions. These ACPs are specified by independent (i.e.,
asynchronous) states within an automaton. A current state/next state pair is only included in
the transition relation if it satisfies the ACP rule variables, as illustrated in the example of
random ACP rules shown in Fig. 1.

Fig. 1. Example automaton of a random rules ACP

In the automaton, the access authorization state is initialized as the deny state and transitions
to the grant state for any access request that complies with the rule’s constraints. Otherwise, it

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

5

remains in the deny state. Even though environmental condition variables (e.g., time, location)
may change through monitoring, they do not affect state transitions from the perspective of
the automaton.

2.2.2. Dynamic ACPs

Dynamic ACPs regulate access permissions based on temporal constraints or access status, such
as specified events triggered by permitted access or system counters/variables controlled
and/or monitored by the ACP. The automata typically contain more than one accepting state.
An example of a dynamic ACP is the Chinese Wall model, which enforces a conflict-of-interest
property. For instance, if Subject 1 accesses Object X, then Subject 2 is not allowed to access the
same object, as illustrated in the automaton shown in Fig. 2.

Fig. 2. Example automaton of a Chinese Wall ACP

Valid access requests in this scenario include P1: Subject 1 accesses Object X, P2: Subject 2
accesses Object Y, P3: Subject 1 accesses Object Y, and P4: Subject 2 accesses Object X.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

6

Figure 3 presents an automaton for the Workflow ACP model, where access P3 is only allowed
after P2, and access P2 is only allowed after P1.

Fig. 3. Example automaton of a Workflow ACP

Figure 4 depicts an automaton for an N-person control ACP model in which an object can only
be accessed when the access count X exceeds a specified value n.

Fig. 4. Example automaton of an N-person Control ACP

2.3. ACP combinations

An ACP is not necessarily expressed by a single model. It can also be implicitly embedded by
being mixed with other ACP models or a random set of access rules. Consequently, an ACP
automaton may be represented by combining multiple ACP automata or adding constraint
states outside of ACP models. Such a combined ACP must concurrently manage access to
achieve the unified access control behavior that results from the incorporation or federation of
multiple ACPs or rules. In practical applications, for instance, a local system’s ACP may need to
be integrated with a global ACP (or meta ACP) in a distributed system environment, such as in
cloud computing or IoT devices with centralized access control.

In general, ACP combinations can be divided into two categories: nonconcurrent and
concurrent combinations. A nonconcurrent combination does not require synchronization
between the combined ACPs, while a concurrent combination needs to account for the
synchronization of shared states or variables between the ACPs. To ensure that the combined
ACP functions correctly, it is essential to formally detect any inconsistencies or incompleteness,
such as scenarios in which an access request is both accepted and denied or where the request

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

7

is neither accepted nor denied according to the combined automata [SP192]. Each type of
combination has distinct characteristics.

2.3.1. Nonconcurrent ACP Combinations

In general, nonconcurrent ACP combinations include intersection, union, and concatenation.
These ACPs can be combined offline before the system’s authorization process is executed.

2.3.1.1. Intersection

An access control system that requires its resources to be managed by different ACPs with
common control elements (e.g., subjects, objects, or environmental conditions) means that
organizations O1, O2,…., On have equal authority over a shared resource. To access this
resource, an access request must be granted by each organization, which necessitates the use
of an intersection automaton.

Let Ai represent the automaton of ACPi for organization Oi . The intersection of automata A1,
A2,…., An is denoted as A1∩ A2… ∩ An, which forms a new automaton in which the set of states,
transition functions, initial states, and accepting states are defined such that it accepts a “string
of access requests” (“string” for brevity) if and only if A1, A2,…., An accept it. In other words, the
new automaton recognizes the “language that represents all possible access request
sequences” (“language” for brevity) that contains only those strings accepted by A1, A2,…., An. A
string is accepted by the intersection automaton if and only if it is accepted by the behavior of
all original automata. The intersection operation requires the Cartesian product (i.e., dot
product) of the state spaces of A1, A2,…., An: A1× A2… × An (or A1• A2… • An). This means that the
resulting automaton consists of states that combine the states from A1, A2,…., An. The
intersection operation focuses on the common language recognized by all automata, while the
product operation emphasizes the combination of the behaviors of the automata. Figure 5
illustrates the concept of intersection using an example of two automata: A ∩ B.

Fig. 5. Intersection concept using an example of two automata

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

8

2.3.1.2. Union

An access control system allows any subject from the joined systems to access the resources
managed by any of them (e.g., coupon discounts offered to all customers of allied businesses).
This union operation can be implemented using a union automaton, which simply merges
multiple automata into a single one and enables each automaton to operate independently
without consulting the others.

For example, let Ai represent the automaton of ACPi, which is the ACP of the joined business Bi.
The union of automata A1, A2,…., An is denoted as A1 ∪ A2…. ∪ An and forms a new automaton
in which the set of states, transition functions, initial state, and accepting states are defined and
operate independently in each Ax. An initial state is added to the union of the automata to
accept all access requests and determine which Ax should handle an input access request.
Figure 6 illustrates the union concept with an example of two automata: A ∪ B.

Fig. 6. Union concept using an example of two automata

2.3.1.3. Concatenation

Access control systems that manage the sequence of user requests or processes should
consider concatenating ACPs for workflow operations. For instance, this approach is essential in
an assembly line that requires approval in a predefined sequence by different work units, each
of which has its own unique ACP.

Let Ai represent the automaton of ACPi, which corresponds to work unit Wi. The concatenation
of automata A1, A2,…., An involves connecting these automata end to end such that the output
of the first automaton serves as the input to the next. Formally, A1 + A2…. + An denotes the
automaton that results from linking the accepting states of A1 to the initial state of A2, the
accepting states of A2 to the initial state of A3, and so on. This process effectively creates a new
automaton that recognizes strings accepted first by A1, which then pass through the

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

9

subsequent concatenated automata until reaching An. Figure 7 illustrates the concept of
concatenation with an example of two automata: A + B.

Fig. 7. Concatenation concept using an example of two automata

2.3.2. Concurrent ACP Combinations

Concurrent (i.e., interleaving or parallel) ACP combinations can be represented by an
automaton in which each ACP automaton signifies a process or component, and transitions
between states represent possible actions or events that can occur in parallel. These automata
typically operate concurrently, allowing multiple AC authorization processes to be executed
simultaneously, similar to multi-threaded programs, distributed systems, and hardware circuits.
Analyzing concurrent automata can provide insights into the authorization processes of ACPs
when they interact and address related issues, such as race conditions, deadlocks, and
communication protocols. Generally, concurrent automata involve independent and shared
variables as well as shared actions. This type of combination is performed online while
authorization is in progress.

2.3.2.1. Independent

Some situation-awarded ACPs rely on synchronized states to determine access permissions
(e.g., air traffic control systems monitor multiple runway situations to manage access to
runways). Such systems can employ independent concurrent automata for safety checks,
similar to a traffic light system that only permits specific light combinations. The interleaving of
independent systems operates in a way that allows their states to change dynamically and
interleave with one another, meaning that the authorization processes run independently and
disregard the order in which they are executed. This type of combination is a variant of the
nonconcurrent intersection combinations (see Sec. 2.3.1). Each ACP has its own set of
environment variables so that instead of sharing variables or actions, they share system states.
Formally, A1 III A2…. III An, where Ai represents the automaton of ACPi for concurrent access

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

10

control system Si’s ACP, and the symbol III is the interleaving operator. Figure 8 illustrates the
concept of independent concurrency with an example of two automata: A III B [BK].

Fig. 8. Example of a combination of two interleaving automata

2.3.2.2. Shared Variables

For ACPs that require shared variable control (e.g., n-person control, mutual exclusion, and SOD
models), their shared variables (e.g., the number of accesses or indicators of current access
states) are essential for authorization processes. If these shared global variables are managed
by automata in an independent concurrent combination (as described in an independent
combination) and each ACP is permitted to modify them, then conflicts may arise that lead to
inconsistent results for the same variables. Therefore, the concurrent automaton for shared
variables must incorporate change actions as inputs for state transitions rather than merely
interleaving states. Formally, this can be represented as TS(S1 III S2…. III S2) instead of S1 III S2….
III Sn, where TS represents the transition model. Figure 9 illustrates the concept of shared
variables with an example of two automata, where x is a shared variable, and f(x) and g(x) are
actions that modify x.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

11

Fig. 9. Shared variables concept with an example of two automata

A common example of a shared variable combination automaton is the enforcement of a
limited number of concurrent accesses to an object. In this case, the authorization process for a
subject consists of four states: idle, entering, critical, and exiting. The subject typically starts in
the idle state. When the user requests access to the critical object, the subject transitions to the
entering state. If the limit on concurrent access has not been reached, the subject then moves
to the critical state, and the current access count is incremented by 1. Once the subject finishes
accessing the critical object, it transitions to the exiting state, and the current access count is
decremented by 1. Finally, the subject moves from the exiting state back to the idle state. The
shared variable automaton can be modeled in the following example in pseudocode [SP192].

{ VARIABLES
count, access_limit : INTEGER;
request_1 : process_request (count);
request_2 : process_request (count);

…….
request_n: process_request (count);
/*max number of user requests allowed by the system*/
access_limit := k; /*max number of concurrent access*/
count := 0; act {rd, wrt}; object {obj};
process_request (access_limit) {

VARIABLES
permission : {start, grant, deny};
state : {idle, entering, critical, exiting};
INITIAL_STATE (permission) := start;
INITIAL_STATE (state) := idle;
NEXT_STATE (state) := CASE {

state == idle : {idle, entering};
state == entering & ! (count > access_limit): critical;
state == critical : {critical, exiting};

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

12

state == exiting : idle;
OTHERWISE: state};

NEXT_STATE (count) := CASE {
state == entering : count + 1;
state == exiting : count -1;
OTHERWISE: DO_NOTHING };

NEXT_STATE (permission) := CASE {
(state == entering)& (act == rd) & (object == obj): grant;
OTHERWISE: deny;}

}
}

2.3.2.3. Shared actions

In some ACPs, the authorization process requires a “handshaking” between systems. These
handshakes are initiated by the results of permitted actions on objects that are managed by
other systems. Shared actions in concurrent systems reflect the behavior of these handshake
actions between the states of different systems.

Shared actions automata are similar to concatenated automata. However, the former operates
concurrently rather than sequentially. This concurrent combination of shared actions is typically
applied to policy-based access control (PBAC) models in which permission decisions are
dynamically made based on the context of the actions of each combined ACP. Formally, let Ai
represent the automaton of ACPi for the shared action system Si’s ACP. The shared automaton
is formally expressed as A1 II A2…. II An, where II denotes the handshake operator. Figure 10
illustrates the concept of shared actions with an example of two automata, where X, Y, and Z
are actions, and Y is the shared action.

Fig. 10. Shared actions concept with an example of two automata

Concurrent automata are constructed from multiple transition models of ACPs. An accepting
state (e.g., grant or deny) of the combined automata must be one of the combinations of the

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

13

individual accepting states from all of the automata. In the worst-case scenario, for n ACPs, the
maximum number of states of the combined automata is O(2n).

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

14

3. Properties

Properties are typically expressed as logical propositions that are constrained by path
quantifiers or temporal conditions. They are used to verify whether they hold true throughout
the transition model, thereby ensuring that certain critical aspects of system behavior remain
consistent across different states or executions of the system.

3.1. Property Specifications

To verify a transition model using automata, property statements (i.e., propositions expressed
in Boolean functions) are supplemented with constraints or terms that define system behavior.
Generally, properties can be specified in three ways:

1. Path quantifiers or temporal operators, such as U, G, F, and X

2. Finite automata

3. Regular expressions, including ω-regular expressions

While these three methods can be mathematically transformed into one another, it is often
more intuitive, efficient, and expressive to use path quantifiers and temporal operators to
specify access control security properties. Therefore, without a loss of generality, this
document will focus solely on using path quantifiers and temporal operators to demonstrate
property verifications in two categories of languages: LTL and CTL.

3.1.1. Linear Temporal Logic

Linear temporal logic (LTL) [NU] is a formal logic used to specify and reason about the behavior
of systems over time, particularly in the fields of model checking and formal verification. It is
often used in model-checking algorithms that operate on transition models or Kripke structures
to verify temporal properties. LTL describes system behavior over linear time, meaning that it
considers a single path of execution of events or states within the system. It employs temporal
operators as a formalism to specify how the properties of the system evolve over time, thus
forming a comprehensive logical framework.

In LTL, Boolean operators are used to specify transition states and path formulas, including
negation (¬), which represents logical NOT; conjunction (∧), which represents logical AND;
disjunction (∨), which represents logical OR; implication (→), which represents logical
implication; and biconditional (↔), which represents logical equivalence. Common temporal
operators in LTL include:

• X (Next): Xp means p holds in the next state.

• F (Eventually, finally, or somewhere): Fp means p will hold at some point in the future.

• G (Globally or always): Gp means p holds at every point in the future.

• U (Until): p U q means p holds until q holds, where p and q are properties (e.g., in
Boolean propositions).

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

15

For example, GFp (infinitely often) means that Fp is true at infinitely many points along the
trace. FGp (eventually forever) indicates that Gp will be true at some point in the future and will
remain true thereafter. An LTL expression can be a combination of temporal operations and
propositional logic, such as F(¬p1 ∧ X(¬p2 ∪ p1)).

3.1.2. Computation Tree Logic

Computation tree logic (CTL) [NU] is a formal language used for specifying and reasoning about
system behavior through a tree representation of the transition model, particularly in the fields
of model checking and formal verification. It describes overall events or states over branching
time, meaning that it considers multiple paths of system execution simultaneously.

In contrast to LTL, which does not use path quantifiers in its state formulas and focuses solely
on a single path of execution, CTL utilizes Boolean operators in conjunction with path
quantifiers and temporal operators to construct logical formulas that describe properties across
multiple paths. The main path quantifiers in CTL are:

• A (For all): A p means p holds for all paths (tree branches) starting from the current
state.

• E (There exists): E p means there exists at least one path (tree branch) starting from the
current state where p holds, where p and q are properties (e.g., in Boolean
propositions).

CTL combines these path quantifiers with LTL temporal operators. Some common combinations
include:

• AX (For all next): AX p means p holds in all next states.

• EX (Exists next): EX p means there exists a next state where p holds.

• AF (For all future): AF p means p will eventually hold on all paths.

• EF (Exists future): EF p means there exists a path where p will eventually hold.

• AG (For all globally): AG p means p holds globally on all paths.

• EG (Exists globally): EG p means there exists a path where p holds globally.

• A (p U q): Means p holds until q holds on all paths.

• E (p U q): Means there exists a path where p holds until q holds.

CTL is usually expressed in a formula that uses path quantifiers to modify proposition logic and
other path quantifiers. For example:

• AG(p → ¬q): For all paths globally, if p is true, then q is not true.

• E (p ∨ q) U r: There exists a path where p or q holds until r holds.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

16

Figure 11 shows an example of E(EX p) U (AG q) [YC].

Fig. 11. Example of E(EX p) U (AG q) in CTL

3.1.3. Computation Tree Logic Star

Computation tree logic star (CTL*) is an extension of CTL that allows for more flexible
combinations of path quantifiers and temporal operators, including nested temporal
modalities. This extension leads to more complex and expressive formulas compared to CTL.
The key differences include:

• In CTL, path quantifiers (A, E) must be immediately followed by temporal operators (X, F,
G, U). In contrast, CTL* does not impose this restriction, and path quantifiers can be
used without an immediate temporal operator. Consequently, formulas in CTL* can be
either state formulas or path formulas. State formulas are evaluated at individual states,
while path formulas are evaluated over paths. This means that in CTL, each X, U, F, and
G can only have one associated E or A, whereas CTL* does not have this limitation.

• Unlike CTL, which uses Boolean operators solely for state formulas, CTL* allows for the
combination of both state and path formulas. For instance, it can express properties,
such as “there exists a path where, globally, some condition holds until another
condition is satisfied,” which is represented as AG(Fp → EXq). This means that along all
paths globally, if p eventually holds, then q must hold in the next state.

• CTL does not allow for the negation of the path formula (e.g., ¬ E ¬ (p ∪ q)), but CTL*
does.

The differences between CTL and CTL* are defined by their grammar, as outlined below:

• CTL grammar

o State formulae: φ := true|pi | φ1 ∧ φ2 | ¬ φ1 | E α | A α

o Path formulae: α := X φ1 | φ1 U φ2 | F φ1 | G α1

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

17

• CTL* grammar

o State formulae: φ := true| pi | φ1 ∧ φ2 | ¬ φ1 | E α | A α

o Path formulae: α := φ| α1 ∧ α2 | ¬ α1 | X α1 | α1 U α2 | F α1 | G α1, where φ, φ1
and φ2 are state formulae, and α, α1 and α2 are path formulae

Table 1 shows comparisons of CTL and CTL* formulae examples [YC2].

Table 1. CTL vs. CTL* formulae

Legal CTL formulae CTL* (illegal CTL) formulae
E F p A F G p

E F A G p E G F p
A X p A p

A F p ∧ A G q A (F p ∧ G q)
A (p U (E G q)) A (p U (G q))

CTL is a subset of CTL*. It is easier to use and more efficient in terms of model-checking
algorithms but also less expressive. While CTL cannot express all of the properties that CTL*
can, it provides a good balance of expressiveness and efficiency for many practical applications.
In contrast, CTL* offers greater expressiveness but comes with increased complexity in model
checking [HR].

3.1.4. LTL vs. CTL (and CTL*)

Some properties that are expressible in LTL may involve temporal operators that cannot be
directly translated into CTL due to its branching nature. For example, LTL can more naturally
express properties, like “the next state satisfies property 𝑝𝑝 until property 𝑞𝑞 is satisfied.”
Notably, CTL* can express a broader range of properties compared to CTL, including some that
resemble those that are expressible in LTL. Compared to LTL, CTL* allows for nested temporal
modalities and the use of Boolean connectives at the top level of the formula, which enhances
its expressiveness and capability to capture complex temporal behaviors.

From a complexity perspective, although CTL* encompasses both CTL and LTL, CTL algorithms
are generally more efficient than both, as the CTL* algorithm is more complex, and LTL
algorithms tend to have exponential complexity. Additionally, composing CTL properties is
somewhat more challenging than composing LTL properties, which can also be expressed using
CTL*. While CTL* is more expressive than CTL, it still has certain limitations compared to LTL,
particularly concerning the structure of temporal formulas and the types of properties that can
be expressed. Therefore, when choosing between LTL, CTL, or CTL* for security property
specification, one must consider efficiency, comprehensibility, and expressiveness based on the
size of the ACPs and the complexities involved (i.e., static versus dynamic and single versus
combinations). The relationships among LTL, CTL, and CTL* are illustrated in Fig. 12 along with
example formulas.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

18

Fig. 12. Relationships among LTL, CTL, and CTL*

3.2. Security Properties

From the perspective of ACP property verification, LTL is more suitable for expressing security
properties that can be evaluated over a single linear path, such as “eventually, a permission
decision is made,” or “always, no invalid access occurs.” For combined ACPs, LTL can effectively
verify security properties for intersection and concatenation types of nonconcurrent ACPs as
well as for independent and shared action types of concurrent ACPs because the transition
model of these combinations does not branch out into separate paths unless it involves
dynamic COI ACPs. However, LTL properties may not be sufficient for verifying combined
automata that loop in a sequence without passing through others, which can be addressed by
CTL (or CTL*) (see Sec. 3.1.3). Thus, CTL (or CTL*) can be applied to the union of nonconcurrent
ACPs and shared variables in concurrent types of ACP combinations, as both will branch out
into different paths, regardless of whether the ACPs are static or dynamic. If a security check
involves multiple combined or mixed ACPs, even if LTL is sufficient, it is reasonable to first
consider CTL because its expressive capability is superior to LTL while still being more efficient
than CTL* in terms of algorithm complexity.

Security properties are formally specified to identify faults in ACP models that may lead to
privilege leaks or block authorized access. The two main categories of property checks — safety
and liveness — are applied to access control security property assessments using LTL and CTL to
detect faults in the automata of the ACP’s transition models.

3.2.1. Safety

In model checking, safety refers to the assurance that something undesirable never occurs. This
is a fundamental property of an ACP that ensures the absence of safety threats, including
privilege leakage, privilege conflicts, and privilege escalation to unauthorized or unintended
principals. Safety can be specified using LTL or CTL languages, which can generally be proven for
ACP transition models that describe the safety requirements of any configuration [IR7874].
Formally, a safety property p in LTL or CTL is said to satisfy an ACP transition automaton A if
there is no violation of the rules defined by the logic in p. It is assumed that A will eventually

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

19

reach an accepted permission state after taking actions that comply with input user access
requests. If certain properties cannot be expressed in LTL or CTL, they cannot be verified, as the
verification algorithms are limited to handling regular expressions (i.e., invariants) that are
defined by the associated function BadPrefixed Set (¬p) [SF].

An example of safety properties for ACP with random access rules is to ensure that all access
requests that comply with specified constraints are granted, while all non-compliant requests
are denied. The system state for access authorization is initialized as the deny state and
transitions to the grant state for any access request that meets the constraints outlined in the
corresponding rule (i.e., constraint 1. . . .AND constraint n). The system remains in the deny
state for any requests that do not comply. The properties of the static constraints can be
verified using the following CTL properties:

AG (constraint 1 & constraint 2 & constraint n) → AF (access state = 1)

AG (constraint a & constraint b & constraint m)→AF (access state = 1)

AG ! ((constraint 1 &constraint n) | (constraint a & constraint m) |. . .) →

AF (access state = 0)

Specifications of the form “AG (p) → AF (q)” indicate that for all paths (the “A” in “AG”) and for
all states globally (the “G”), if p holds, then (“→”) in the next state (the “F” in “AF”), q will
eventually hold on all paths [JO].

SOD is another safety property that is more dynamic than others. It refers to the principle that
no user should be granted enough privileges to independently misuse the system. For example,
the person who authorizes paychecks should not also be the one who can prepare them. SOD
can be enforced either statically (i.e., by defining conflicting roles that cannot be executed by
the same user) or dynamically (i.e., by enforcing control at the time of access). An example of a
CTL property is G(¬critical1 ∨ ¬critical2), which specifies that processes cannot simultaneously
be in the critical section and in a semaphore scheme for processes 1 and 2, where critical1
represents that process 1 is in the critical section, and critical2 represents that process 2 is in
the critical section [SP192].

3.2.2. Liveness

In model checking, liveness refers to the guarantee that something good eventually happens,
ensuring that a transition model does not encounter a deadlock (i.e., where the system waits
indefinitely for an event) or a livelock (i.e., where the model repeatedly executes the same
operations without progress). An example of a livelock is the Dining Philosophers problem 26 in
which philosophers could endlessly alternate between thinking and trying to eat without ever
succeeding, often due to issues with scheduler fairness in concurrency.

Threats to liveness in an ACP include privilege blocking and cyclic inheritance (e.g., a Workflow
dynamic ACP could cause a deadlock if the work process involves cyclic dependencies). The
liveness check for an ACP determines whether every access control request will eventually

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

20

receive a meaningful decision (e.g., grant, denial, or other action). Temporal and quantifier
operators used in LTL or CTL for liveness verification include:

• G p: Always p

• F p: Sometimes p

• G F p: Infinitely often p

• A F G p: Infinitely often p for all paths

Here, p represents an accepting access control decision (e.g., grant, denial, or another
meaningful action). For example, the CTL property GF critical1 ∧ GF critical2 specifies that each
process visits the critical section infinitely often in a semaphore scheme for processes 1 and 2,
where critical1 indicates that process 1 is in the critical section, and critical2 indicates that
process 2 is in the critical section.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

21

4. Verification Process

This section introduces the general method and NuSMV tool for checking ACP transition
models.

4.1. General Method

A property is an invariant that must hold true throughout the execution of a system, such as
“the property p is always true.” Since ACPs can be translated into transition models (see Sec. 2),
verifying a security property involves checking whether it can be satisfied by the automaton of
an ACP’s transition model (i.e., all traces in the transition model satisfy the property p).
Formally, a transition model TS satisfies a security property p if Trace(TS) ⊆ p, where Trace(TS)
represents all possible executions of the transition model’s state change path. For example, Fig.
13 shows a transition model that satisfies the CTL property EG p but not AF q.

Fig. 13. Example of the ACP transition model that satisfies EG p but not AF q

Consider a mutual exclusion access control system with atomic propositions AP = { s1, s2, s3,
s4}, where s1 represents “process 1 is in the critical state,” s2 represents “process 1 is in the
wait state,” s3 represents “process 2 is in the critical state,” and s4 represents “process 2 is in
the wait state.” The transition model of the mutual exclusion ACP, as shown in Fig. 14, satisfies
the CTL property AG ¬ (s1 ∧ s3), which means that in all paths of the transition model, s1 and
s3 will never occur simultaneously [BK].

Fig. 14. A mutual exclusion access system

Checking the safety of an automaton in an ACP transition model involves verifying that no
forbidden or error states (indicative of access faults) can be reached from the initial state under
any sequence of transitions. The first step in the verification process is to analyze the

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

22

automaton’s structure to identify which states are considered faults according to the ACP’s
security requirements. Next, code is implemented using a graph traversal algorithm (e.g.,
depth-first search [DFS] or breadth-first search [BFS]) that is applied to the automaton’s graph
representation, where access states are nodes and access transitions are edges.

Checking an automaton’s liveness in an access control system involves verifying that it is
possible to eventually reach an access request decision state from every reachable state. The
first step in the verification process is to analyze the automaton’s structure to identify which
states are access request decision (accepting) states. Then, either implement code as described
for the safety check above to determine whether there is a path from each state to an
accepting state, or check whether each state in the original automaton is reachable in the
reverse automaton starting from any accepting state.

To support the implementation of verification algorithms, tools such as the NetworkX (Python)
library [NX] for graph representations and traversal algorithms and AutomataLib (Java) [AJ] or
the Automata package (Python) [AP] for handling automata-related operations can be used.
Additionally, automata can be formally described and verified using tools such as NuSMV [NU]
or SPIN [SP].

4.2. NuSMV Tool

NuSMV [NU] is a symbolic model checker that was developed by the Formal Methods and Tools
group at the University of Trento and Cadence Berkeley Labs. It is used to formally verify finite-
state systems and supports the verification of systems modeled in hardware description
languages, software systems, protocols, and safety-critical systems. Widely used in both
academia and industry, NuSMV offers robust capabilities for various verification needs. It allows
users to define systems in a modular fashion using the SMV language, which is based on the
concept of transition model verification. NuSMV checks whether the model satisfies the
specified properties using CTL path quantifiers or LTL temporal logic formulas. If a property is
violated, it provides a counterexample to help identify the issue [SP192].

NIST’s Access Control Policy Tool (ACPT) [AC][HX] utilizes NuSMV to provide access control
security requirement verification for both static and dynamic ACPs in various combinations.
ACPT helps eliminate the possibility of creating faulty access control models that could either
leak information or prohibit legitimate information sharing. Similarly, NuSMV is used by other
ACP verification tools, such as MOHAWK [MO][SP192].

4.3. Comparison With Other Model-Checking Methods

Other model-checking methods applied to ACP security property verification have their own
trade-offs when compared to traditional model checking. For instance, Margrave [CL] is a
software tool suite that was designed to verify safety requirements against ACPs written in
XACML [XA]. Margrave represents XACML ACPs as multi-terminal binary decision diagrams
(MTBDDs) and allows users to specify various forms of safety requirements in the Scheme
programming language. Margrave’s API can verify these safety properties, and if there are any
counterexamples that violate the properties, they are produced. The chief innovation of

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

23

Margrave’s approach lies in its use of full first-order predicate logic, which quantifies individuals
in a domain and reasons about their properties and relationships using quantifiers like “for all”
(∀) and “there exists” (∃).

Margrave supports query-based verification and provides query-based views by computing
exhaustive sets of scenarios that yield different results. It offers the benefits of static
verification without requiring authors to write formal properties. Its strength comes from
selecting an appropriate policy model in first-order logic and embracing both scenario-finding
and multi-level policy reasoning.

The Z language, commonly known as Z notation [ZL], is based on axiomatic set theory and first-
order logic, making it suitable for describing and modeling ACPs [HU]. In Z notation, creating an
AC model involves using set theory to provide a robust foundation that allows for specifications
to be structured and modularized. Schemas are used to encapsulate access control state
variables and their invariants as well as operations that modify the state. This approach
supports syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving for model verification. Many proof obligations are easily
proven, and even in more challenging cases, generating the proof obligation significantly aids in
determining whether a property specification in the AC model is meaningful.

In terms of specifying security properties on ACP transition automata, the LTL and path
quantifier properties of CTL are not classified as first-order logic properties compared to the
other major model-checking methods. However, they can express many properties that first-
order logic cannot and can be applied to both static and dynamic ACP models. Additionally,
when applied to different ACP models by combining their transition models, property
specification that uses LTL and CTL provides well-defined rules for operations that other
methods lack.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

24

5. Conclusion

This document explains how to apply model-checking techniques to verify security properties in
ACPs. It begins with a brief introduction to the fundamentals of model checking and
demonstrates how ACPs are converted into automata through their transition models. The
document then discusses property specifications in terms of LTL and CTL with comparisons
between the two. This is followed by an examination of access control security properties using
both logics. Finally, the verification process and available tools are described and compared.

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

25

References

[AC] National Institute of Standards and Technology (2024) Access Control Policy Testing:
Beta Release of Access Control Policy Tool. Available at
https://csrc.nist.gov/projects/access-control-policy-tool/beta-release-of-access-
control-policy-tool

[AJ] TU Dortmund University (2024) AutomataLib. Available at
https://github.com/LearnLib/automatalib

[AP] Python Software Foundation (2024) automata-lib 8.4.0. Available at
https://pypi.org/project/automata-lib/

[BK] Baier C, Katoen JP (2008) Principles of Model Checking (MIT Press, Cambridge, MA).
Available at https://mitpress.mit.edu/9780262026499/principles-of-model-
checking/

[CL] Clarke EM, Fujita M, McGeer PC, McMillan K, Yang JC, Zhao X (1993) Multi-terminal
binary decision diagrams: An efficient data structure for matrix representation, IWLS
’93: International Workshop on Logic Synthesis (IWLS ’93) (Tahoe City, CA). Available
at
http://www.cs.cmu.edu/afs/cs/Web/People/emc/papers/Technical%20Reports/Mul
tiTerminal%20Binary%20Decision%20Diagrams_An%20Efficient%20Data%20Structu
re%20for%20Matrix%20Representation.pdf

[HR] Huth M, Ryan M (2004) Logic in Computer Sciences – Modelling and Reasoning
about Systems, Cambridge Section 3.6.1. Available at
https://downloads.regulations.gov/PTO-P-2021-0032-0138/attachment_2.pdf

[HU] Hu VC (2002) Dissertation: The Policy Machine For Universal Access Control,
Computer Science Department, University of Idaho. Available at
https://dl.acm.org/doi/10.5555/936065

[HX] Hwang J, Xie T, Hu V, Altunay M (2010) ACPT: A Tool for Modeling and Verifying
Access Control Policies. 2010 IEEE International Symposium on Policies for
Distributed Systems and Networks (POLICY 2010) (IEEE, Fairfax, VA), pp. 40-43.
https://doi.org/10.1109/POLICY.2010.22

[IR7316] Hu VC, Ferraiolo DF, Kuhn DR (2006) Assessment of Access Control Systems.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Interagency or Internal Report (IR) NIST IR 7316.
https://doi.org/10.6028/NIST.IR.7316

[IR7874] Hu VC, Scarfone K (2012) Guidelines for Access Control System Evaluation Metrics
(National Institute of Standards and Technology, Gaithersburg, MD), NIST
Interagency or Internal Report (IR) NIST IR 7874.
https://doi.org/10.6028/NIST.IR.7874

[JO] Hu VC, Kuhn DR, Xie T, Hwand J (2011) Model Checking for Verification of
Mandatory Access Control Models and Properties. International Journal of Software
Engineering and Knowledge Engineering 21(1):103–127.
https://doi.org/10.1142/S021819401100513X

[MO] Jayaraman K, Ganesh V, Tripunitara M, Rinard M, Chapin S (2011) Mohawk:
Automatic Verification of Access-Control Policies. Proceedings of the 18th ACM

https://csrc.nist.gov/projects/access-control-policy-tool/beta-release-of-access-control-policy-tool
https://csrc.nist.gov/projects/access-control-policy-tool/beta-release-of-access-control-policy-tool
https://github.com/LearnLib/automatalib
https://pypi.org/project/automata-lib/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
http://www.cs.cmu.edu/afs/cs/Web/People/emc/papers/Technical%20Reports/MultiTerminal%20Binary%20Decision%20Diagrams_An%20Efficient%20Data%20Structure%20for%20Matrix%20Representation.pdf
http://www.cs.cmu.edu/afs/cs/Web/People/emc/papers/Technical%20Reports/MultiTerminal%20Binary%20Decision%20Diagrams_An%20Efficient%20Data%20Structure%20for%20Matrix%20Representation.pdf
http://www.cs.cmu.edu/afs/cs/Web/People/emc/papers/Technical%20Reports/MultiTerminal%20Binary%20Decision%20Diagrams_An%20Efficient%20Data%20Structure%20for%20Matrix%20Representation.pdf
https://downloads.regulations.gov/PTO-P-2021-0032-0138/attachment_2.pdf
https://dl.acm.org/doi/10.5555/936065
https://doi.org/10.1109/POLICY.2010.22
https://doi.org/10.6028/NIST.IR.7316
https://doi.org/10.6028/NIST.IR.7874
https://doi.org/10.1142/S021819401100513X

NIST IR 8539 Security Property Verification
January 2025 by Transition Model

26

Conference on Computer and Communications Security (CCS ’11) (ACM, Chicago, IL),
pp. 163-174. https://dl.acm.org/doi/10.1145/2046707.2046727

[NU] Fondazione Bruno Kessler (2023) NuSMV: a new symbolic model checker. Available
at https://nusmv.fbk.eu/

[NX] NetwokX developers (2024) NetworkX: Network Analysis in Python. Available at
https://networkx.org/

[SF] NPTEL (2015) Safety properties described by automata. Available at
https://www.youtube.com/watch?v=DzbqwlUw2-g

[SP] Spin developers (2024) Verifying Multi-threaded Software with Spin. Available at
https://spinroot.com/spin/whatispin.html

[SP162] Hu VC, Ferraiolo DF, Kuhn DR, Schnitzer A, Sandlin K, Miller R, Scarfone KA (2014)
Guide to Attribute Based Access Control (ABAC) Definition and Considerations.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) NIST SP 800-162, Includes updates as of August 02, 2019.
https://doi.org/10.6028/NIST.SP.800-162

[SP192] Hu VC, Kuhn DR, Yaga D (2017) Verification and Test Methods for Access Control
Policies/Models. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) NIST SP 800-192.
https://doi.org/10.6028/NIST.SP.800-192

[WP] Wikipedia (2024) Dining philosophers problem. Available at
https://en.wikipedia.org/wiki/Dining_philosophers_problem

[XA] OASIS Open (2023) XACML resources. Available at http://docs.oasis-open.org/xacml/
[YC] CTL* (2016) NPTEL National Program on Technology Enhanced learning. Available at

https://www.youtube.com/watch?v=_2E5Q3CZ7g4&t=56s
[YC2] CTL (2016) National Program on Technology Enhanced learning. Available at

https://www.youtube.com/watch?v=Blh060Hgbm8
[ZL] Potter B, Sinclair J, Till D (1996) An Introduction to Formal Specification and Z

(Prentice Hall PTR, Upper Saddle River, NJ), 2nd Ed. Available at
https://dl.acm.org/doi/10.5555/547639

https://dl.acm.org/doi/10.1145/2046707.2046727
https://nusmv.fbk.eu/
https://networkx.org/
https://www.youtube.com/watch?v=DzbqwlUw2-g
https://spinroot.com/spin/whatispin.html
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-192
https://en.wikipedia.org/wiki/Dining_philosophers_problem
http://docs.oasis-open.org/xacml/
https://www.youtube.com/watch?v=_2E5Q3CZ7g4&t=56s
https://www.youtube.com/watch?v=Blh060Hgbm8
https://dl.acm.org/doi/10.5555/547639

	Executive Summary
	1. Introduction
	2. Formal Models and ACPs
	2.1. Model Fundamentals
	2.2. ACP Automata
	2.2.1. Static ACPs
	2.2.2. Dynamic ACPs

	2.3. ACP combinations
	2.3.1. Nonconcurrent ACP Combinations
	2.3.1.1. Intersection
	2.3.1.2. Union
	2.3.1.3. Concatenation

	2.3.2. Concurrent ACP Combinations
	2.3.2.1. Independent
	2.3.2.2. Shared Variables
	2.3.2.3. Shared actions

	3. Properties
	3.1. Property Specifications
	3.1.1. Linear Temporal Logic
	3.1.2. Computation Tree Logic
	3.1.3. Computation Tree Logic Star
	3.1.4. LTL vs. CTL (and CTL*)

	3.2. Security Properties
	3.2.1. Safety
	3.2.2. Liveness

	4. Verification Process
	4.1. General Method
	4.2. NuSMV Tool
	4.3. Comparison With Other Model-Checking Methods

	5. Conclusion
	References

