
NIST Internal Report
NIST IR 8349

Methodology for Characterizing
Network Behavior of Internet of Things

Devices

Paul Watrobski
Murugiah Souppaya

Joshua Klosterman
William Barker

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8349

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8349

NIST Internal Report
NIST IR 8349

Methodology for Characterizing
Network Behavior of Internet of Things

Devices

Paul Watrobski

Applied Cybersecurity Division
Information Technology Laboratory

Murugiah Souppaya

Computer Security Division
Information Technology Laboratory

Joshua Klosterman
The MITRE Corporation

William Barker
Stratvia LLC

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8349

August 2025

U.S. Department of Commerce
Howard Lutnick, Secretary

National Institute of Standards and Technology
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2025-08-04

How to Cite this NIST Technical Series Publication
Watrobski P, Souppaya M, Klosterman J, Barker W (2025) Methodology for Characterizing Network Behavior of
Internet of Things Devices. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Internal
Report (IR) NIST IR 8349. https://doi.org/10.6028/NIST.IR.8349

Author ORCID iDs
Paul Watrobski: 0000-0002-6449-3030
Murugiah Souppaya: 0000-0002-8055-8527
Joshua Klosterman: 0000-0002-0026-5522
William Barker: 0000-0002-4113-8861

Contact Information
iot-ddos-nccoe@nist.gov

National Institute of Standards and Technology
Attn: Applied Cybersecurity Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 2000) Gaithersburg, MD 20899-2000

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/ir/8349/final, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:iot-ddos-nccoe@nist.gov
https://csrc.nist.gov/pubs/ir/8349/final

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

i

Abstract

This report describes an approach to capturing and documenting the network communication
behavior of Internet of Things (IoT) devices. From this information, manufacturers, network
administrators, and others can create and use files based on the Manufacturer Usage
Description (MUD) specification to manage access to and from those IoT devices. The report
also describes the current state of implementation of the approach and proposals for future
development.

Keywords

access control; device characterization; Internet of Things (IoT); Manufacturer Usage
Description (MUD); network communications.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems.

Supplemental Content

NIST’s National Cybersecurity Center of Excellence (NCCoE) created MUD-PD, an open-source
tool developed as a proof-of-concept to assist in developing MUD files. The tool is described in
greater detail in Section 3.2. See GitHub: https://www.github.com/usnistgov/MUD-PD.

Audience

This report is written for those who would like to build, create, or utilize MUD files, including:

• IoT device manufacturers and developers generating MUD files;

• network administrators deploying MUD files;

• IoT device vulnerability researchers and analysts;

• network equipment developers and manufacturers; and

• service providers that develop and utilize components based on the MUD specification.

https://www.github.com/usnistgov/MUD-PD

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

ii

Document Conventions

This report utilizes several terms for which contradictory or generic definitions exist in
literature. For purposes of this paper, the following definitions have been coined or adopted:

Characterizing is the act of collecting, analyzing, and/or storing information intended to be
used in describing behavior and/or characteristics pertaining to a device. Such characteristics
may include physical properties or supported communication technologies/protocols.

Fingerprinting is the act of collecting information intended to help uniquely identify a device
type.

An Internet of Things (IoT) device refers to a device that can interact directly with both the
physical world and the digital world. IoT devices include sensors, controllers, and household
appliances. NIST IR 8259 defines IoT devices as devices that have at least one transducer
(sensor or actuator) for interacting directly with the physical world and at least one network
interface (e.g., Ethernet, Wi-Fi, Bluetooth, Long-Term Evolution [LTE], Zigbee, Ultra-Wideband
[UWB]) for interfacing with the digital world [1].

A MUD file contains information that describes an IoT device and its network behavior, as
described in the MUD specification [2]. The term “MUD profile” is used throughout existing
literature and is synonymous with “MUD file.” This paper adheres to the use of “MUD file” as
defined in the MUD specification.

MUD file accuracy describes how precisely a MUD file captures the full communication
requirements of an IoT device—in particular, the extent to which it lists all potential
communications that the device may need to perform its intended functions
(comprehensiveness) and the extent to which it avoids listing communications that the device
does not need (correctness). Note that it may be impossible to ensure complete accuracy of a
MUD file even if the file is created by the manufacturer of the device. For some devices, it may
be impractical or even impossible to test every possible situation or network configuration
capable of altering device behavior. In addition, potential communication requirements that
would be revealed by those situations may remain unknown.

Trademark Information

All registered trademarks or trademarks belong to their respective organizations.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

iii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

iv

Table of Contents

Executive Summary ... 1
1. Introduction ... 2

2. Network Traffic Capture Methodology ... 5

2.1.1. IoT Device Life-Cycle Phases ... 5
2.1.1.1. Setup ... 5
2.1.1.2. Normal Operation ... 6
2.1.1.3. Decommissioning/Removal .. 6

2.1.2. Environmental Variables .. 7
2.1.3. Activity-Based and Time-Based Capture Approaches .. 8
2.1.4. Network Architecture and Capture Approach ... 8
2.1.5. Capture Tools ... 9

2.1.5.1. tcpdump .. 9
2.1.5.2. Wireshark/tshark .. 10

2.2.1. Activity-Based Capture ... 11
2.2.2. Time-Based Capture ... 11

3. Analysis Use Cases and Tools.. 14

3.1.1. Wireshark ... 14
3.1.2. NetworkMiner .. 14
3.1.3. Overview of Manual MUD File Generation Process ... 14

3.2.1. MUD-PD Feature Set .. 16
3.2.2. MUD-PD Uses ... 17

4. Future Work ... 19

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

v

References ... 24
Appendix A. Example Capture Environment ... 26
Appendix B. List of Symbols, Abbreviations, and Acronyms .. 27
Appendix C. MUD-PD Tool GUI Overview ... 29

List of Figures

Fig. 1. MUD pipeline for the device manufacturer or developer use case ... 20
Fig. 2. MUD pipeline for the network administrator use case ... 21
Fig. 3. The overarching MUD pipeline, particularly as it may be used for research and development .. 21
Fig. 4. Example capture architecture .. 26
Fig. 5. MUD-PD main window with buttons and list boxes labeled ... 30
Fig. 6. Prompt for providing Fingerbank API key ... 30
Fig. 7. Prompt for creating a new database .. 30
Fig. 8. Prompt for connecting to an existing database .. 31
Fig. 9. Prompt for importing packet captures into database ... 33
Fig. 10. Window listing labeled and unlabeled devices during the packet capture import process 34
Fig. 11. Window prompt for importing a device ... 34
Fig. 12. Window prompting to update the firmware version logged in the database 35
Fig. 13. Prompt for generating a human-readable device report ... 35
Fig. 14. Example device report showing the details of a single packet capture 36
Fig. 15. Prompt for selecting a device for which the MUD file will be generated 36
Fig. 16. Prompt for providing device details including the support and document URLs 37
Fig. 17. Prompt for providing internet communication rules .. 37
Fig. 18. Prompt for providing local communication rules .. 38
Fig. 19. Preview of the MUD file to be generated ... 39

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

1

Executive Summary

Characterizing and understanding the expected network behavior of Internet of Things (IoT)
devices is essential for cybersecurity. It enables the implementation of appropriate network
access controls (e.g., firewall rules or access control lists) to protect the devices and the
networks on which they are deployed. This may include limiting a device’s communication to
only that which is deemed necessary. It also enables identifying when a device may be
misbehaving, a potential sign of compromise. The ability to restrict network communications
for IoT devices is critically important, especially given the increased number of these devices.

Network behavior for most IoT devices is situationally dependent. For example, many IoT
devices are operated and controlled through multiple mechanisms, such as voice commands,
physical interaction with a person, other devices (e.g., a smartphone or IoT hub), and services
(e.g., cloud-based). Each of these mechanisms may result in different network behavior, even if
they achieve the same result (e.g., turning on a lightbulb through a voice command, mobile
app, or physically toggling a switch). Additionally, certain patterns of network behavior may
only occur in specific stages of a device’s life cycle (i.e., setup, normal operation, and
decommissioning). Also, network behavior may change over time as device software is
updated. For these reasons, the expected network behavior of a device needs to be
characterized and understood for all intended scenarios and during each stage of its life cycle.
Otherwise, necessary steps for device setup, operation, or decommissioning may be blocked by
network access controls, preventing them from being performed fully or at all.

This publication describes recommended techniques to accurately capture, document, and
characterize the entire range of an IoT device’s network behavior across various use cases and
conditions. Using this methodology, IoT device manufacturers and developers, network
operators and administrators, cloud providers, and researchers can generate files conforming
to Manufacturer Usage Description (MUD), which provides a standard way to specify the
network communications that an IoT device requires to perform its intended functions. MUD
files tell the organizations using IoT devices what access control rules should apply to each IoT
device, and MUD files can be automatically consumed and used by various security
technologies. MUD files can be augmented for specific network deployments. Network
operators, network administrators, and cloud providers can deploy default or custom MUD files
in conjunction with environment-based network profiles captured using security tools to
protect individual devices as well as entire networks.

This publication also presents MUD-PD, an open-source tool developed by the NIST National
Cybersecurity Center of Excellence (NCCoE) to help automate the characterization of IoT
devices and subsequent creation of MUD files. This tool can be used to catalog and analyze the
collected data, as well as generate both reports about the device and deployable MUD files.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

2

1. Introduction

The National Institute of Standards and Technology National Cybersecurity Center of Excellence
is working to improve the ability of network administrators and operators of IoT networks to
identify, understand, and document network communication requirements of IoT devices.
Documenting the types of devices and communication behaviors of those devices can allow
creation of files based on the Manufacturer Usage Description (MUD) specification, which can
be used by network administrators to manage access to and from those devices [2].

The Document Conventions section defines several terms used throughout the report. Readers
should review these definitions before proceeding.

1.1. Challenges for Securing IoT Devices and Their Networks

To properly secure networks, network administrators need to understand what devices are on
the network and what network communication each device requires to perform its intended
functions. In the case of networks that include IoT devices, it is often difficult to identify each
individual device, much less know what network access is required by each device to other
network components, and what access other network components need to each device. To
address this challenge, many organizations are implementing IoT device fingerprinting and
characterization methods to identify the types of devices on a network.

Once the IoT device type is known for each device, the network administrator can begin to
manage security and network access for the devices [3]. This involves collecting information
regarding the devices’ characteristics and behavior. Approaches like those of the Princeton IoT
Inspector [4] and ProfilIoT’s use of machine learning [5] are being used to characterize and
identify IoT devices, which can provide insight into security and privacy issues associated with
each device. However, not all fingerprinting and characterization schemes are equivalent. These
schemes are often created based on a limited set of data derived from network traffic that
allows them to accurately identify just the device type. The network traffic information used to
develop these schemes includes packet headers, network ports, packet timing, handshakes, and
other information that might be unique to a particular IoT device [6][7]. Given the limited set of
data used to develop the fingerprints, the fingerprints do not necessarily contain the
information required to determine a device’s full range of potential behaviors. This paper will
describe an approach to characterize a device’s behaviors more comprehensively.

Comprehensively characterizing the network behavior of IoT devices is made difficult by several
factors. For example, IoT devices are often subject to internal changes that may affect their
behavior. These changes can be caused by software updates, firmware updates, and new or
supplemental hardware. External changes can also occur with hardware replacements,
integrations with other IoT devices, connections to new networks, and more. These changes
can increase the complexity involved in tracking an IoT device’s behavior and, by extension,
increase the difficulty of accurately characterizing an IoT device. User activities can also
significantly affect an IoT device’s behavior. For example, two identical cameras created by the
same manufacturer may display drastically different behaviors if they are used for different
purposes. Additionally, behaviors may be distinct for different firmware or hardware revisions

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

3

of the same device. Many IoT devices are also created as variants based on the design of an
existing IoT device, which can make their behaviors appear similar, even if the IoT devices are
technically distinct from one another.

The goal of the MUD specification [2] is to provide a standard method for IoT devices to “signal
to the network the access and network functionality they require to properly function.” This is
accomplished by using a MUD file, which can allow network operators, network administrators,
and cloud providers to know what access control rules should apply to the IoT device. However,
if a network operator, network administrator, or cloud provider deploys an IoT device based on
an inaccurate MUD file, the device’s functionality can be severely impaired or potentially lead
to vulnerabilities. Therefore, it is imperative that any MUD file be as accurate as possible.

A MUD file’s accuracy is based on two concepts: comprehensiveness—the extent to which it
lists all potential network communications that the device may need to perform its intended
functions, and correctness—the extent to which it avoids listing network communications that
the device does not need. However, because a manufacturer may not be able to predict all
operational environments in which a device is used, there is no guarantee that all
manufacturer-provided MUD files are comprehensive. The final decision of what actions a
device may perform is ultimately up to the local network administrator [2] tasked with
implementing the device; they may decide that the device’s MUD file should be more or less
restrictive than the MUD file provided by the manufacturer. Additionally, a network
administrator may wish to create a MUD file for a device without a manufacturer-provided
MUD file.

1.2. Purpose and Scope

While MUD is not the only way to characterize the behavior of IoT devices, it does support
many options and mechanisms for protecting IoT devices and the network through
documenting device intent. This report describes a way to build an accurate MUD file based on
network traffic data that reveals information about the IoT device’s potential network behavior.
Developing MUD files consists of two major steps: traffic capture and traffic analysis. The
methodology described in the report is designed to create an accurate set of network traffic
data, capturing as much of the IoT device’s potential behavior as possible. The methodology
seeks to allow for analysis of the full range of IoT device network traffic behaviors that can
reasonably be expected. This includes examining a variety of factors that could potentially alter
an IoT device’s behavior at each stage of the device’s life cycle.

Manufacturers, developers, network operators and administrators, cloud providers, and
researchers can take advantage of the methodology to develop a comprehensive data set that
can be used for generating MUD files, investigating security and privacy concerns, developing
machine learning algorithms, and more. The methodology described has been developed on
Internet Protocol (IP)-based networks, but it can potentially be utilized with other types of
networks as well. It is important to note that this type of analysis assumes that:

• the IoT devices have not been tampered with or compromised by a malicious actor at
any point in the analysis process, and

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

4

• the IoT devices are operating as their manufacturers intended.

In addition to prescribing a methodology for capturing an IoT device’s behavior on a network,
this report also explores how the NCCoE-developed MUD-PD tool can leverage this behavior
information to create MUD files. MUD-PD requires a diverse set of network traffic captures to
generate accurate MUD files. The tool extracts and aggregates pertinent information that
allows the creation of accurate MUD files without manually parsing a large set of network
traffic data. This tool can drastically reduce the time and effort required to generate MUD files
compared with manually creating MUD files.

Enforcement of rules generated from the MUD file is outside the scope of this report. Several
different approaches are described in the NCCoE Practice Guide, Special Publication (SP) 1800-
15, Securing Small-Business and Home Internet of Things (IoT) Devices: Mitigating Network-
Based Attacks Using Manufacturer Usage Description (MUD) [8]. That project provided a
practical example of implementing MUD-based access control in real-world network
environments using commercially available products. This report supports and extends that
effort by offering a structured process for developing accurate MUD files. Together, these
resources provide a foundation for developing and operationalizing MUD files for IoT security.

IoT device detection and identification are also out of scope, other than a description in Section
2.1.5 of two tools that support manual device identification and analysis.

1.3. Report Structure

The rest of this report is organized into the following sections and appendices:

• Section 2 discusses traffic capture strategy, tools, example procedures, and
documentation.

• Section 3 discusses analysis of network communications, privacy implications, and MUD
file generation.

• Section 4 explores possible future work, such as developing enhancements and
additional features of MUD-PD, and continuing research in the area of device
characterization.

• The References section defines the references cited throughout the publication.

• Appendix A presents an example capture environment that supports analysis of both
wired and wireless IoT devices.

• Appendix B contains an acronym list.

• Appendix C contains a detailed overview of the MUD-PD tool and how it can be used to
generate MUD files.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

5

2. Network Traffic Capture Methodology

Properly generating an accurate MUD file requires a comprehensive data set that reflects the
greatest possible range of intended device behaviors for each networked device. In the case of
MUD files that can and will be used for network security and access control, it is imperative that
each generated file be sufficiently accurate to prevent false reporting of legitimate network
activity and placing restrictions on devices that may prevent them from functioning properly.
The methodology described in this section is designed to support capture of the information
needed for IoT device analysis and MUD file generation.

This methodology is based on network traffic and does not account for device behavior that
cannot be observed from network traffic. Observed device behaviors outside the scope of this
methodology should be documented through other means.

2.1. Capture Strategy

Capturing a wide range of intended device behaviors requires that communications to and from
the IoT device be captured under a wide range of states and environmental conditions
throughout the device life cycle. This section describes network traffic capture approaches,
strategies, and tools. The information listed in this section (i.e., the life-cycle phase,
environmental variables, and type of capture) should be documented for each network capture.
It is important to document information about every connected device on the network, as it
enables a more complete analysis of the behavior of any given device.

2.1.1. IoT Device Life-Cycle Phases

Various taxonomies are used to describe IoT device life cycles, but this report organizes device
life-cycle components into three broad phases for IoT device traffic analysis: setup, normal
operation, and decommissioning/removal.

2.1.1.1. Setup

The setup phase includes everything needed to initially connect an IoT device to a network and
to take configuration actions necessary for the device to be fully functional and ready to begin
normal operations. Setup typically begins with a wired or wireless connection of the device to
the network. Once the device is connected, setup processes can include firmware updates;
connections to smart hubs, smartphones, and other devices; and other processes that must be
completed. While following the manufacturer’s instructions may be adequate for most
situations involving setup behaviors, deviation from those instructions may be necessary to
capture the device’s behavior under some circumstances (e.g., not connecting an IoT device to
an associated cloud service may result in unique behavior for devices that a manufacturer
assumes will be connected to a cloud service). Initial connection to cloud/internet-based
services may be required for some devices. This phase may also include connection of an IoT
device to a smartphone or another device that is expected to manage the device (such as a
controller/smart hub).

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

6

Setup failure situations can also produce connectivity behaviors different from those
anticipated by the manufacturer. For example, a device that is configured to connect with a
controller, smart hub, or cloud service may be unable to do so for any number of reasons,
including lack of internet connection and blocked ports.

2.1.1.2. Normal Operation

The “normal operation” phase captures an IoT device’s behavior for the majority of its service
life after it has been set up and is performing its intended functions. This phase covers a wide
range of behaviors, such as human-to-device interactions, controller or smart hub-to-device
interactions, and cloud service-to-device interactions. It also covers device-initiated behaviors
that can occur without human interaction. Software and firmware updates may occur with or
without human initiation or interaction and can cause an intended change in device behavior.
Capture of both human-initiated updates and automatic updates is important, though capture
of automatic updates may be more challenging. Other types of interactions during normal
operation may include remote control through smartphones and cloud-based services. Normal
operation failure situations, such as being unable to access required resources, can also
produce anomalous behaviors. “Unexpected” scenarios, including removing essential devices,
removing the controller/smart hub, or performing a hard reset on the IoT device, are still
considered normal operation and should also be examined.

2.1.1.3. Decommissioning/Removal

The final phase in an IoT device’s life cycle (before the device is reused elsewhere or reaches
end-of-life) includes the process of de-registering the IoT device from other devices, such as
controllers/smart hubs, and/or cloud services (decommissioning) and removing it from the
network (removal). If manufacturer instructions for this process exist, they should be included
as part of the capture-planning process if possible. If no instructions exist, a factory reset is
generally the recommended procedure for decommissioning and removal. In either case, a
factory reset should be included as part of the capture-planning process. Factory reset brings
the device back to its initial configuration. (Note: Firmware updates may not be rolled back
during the factory reset process.)

This report treats the factory reset process as an element of the decommissioning/removal
phase because a factory reset can sometimes de-register the device from a cloud service and/or
disconnect the IoT device from the network. Inclusion of other types of removal situations is
also recommended because IoT devices can sometimes be removed from a network without
taking prior decommissioning actions. If the device is used in a different role or by a new
owner, subsequent actions are treated here as falling within a new setup phase. Capture plans
should cover both device-initiated behaviors and behaviors triggered by human interaction
during decommissioning and removal.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

7

2.1.2. Environmental Variables

The IoT device should be examined under a wide variety of environmental conditions to
capture the largest possible range of intended device behaviors. For example, if an IoT device is
not permitted access to the internet, it may not be able to complete some of the
communications on which it relies to function as intended (e.g., cloud-based manufacturer
support services or network time services). This can cause the IoT device to exhibit different
behaviors on the network than those originally anticipated or documented by the
manufacturer. As discussed in Section 1.1, there is currently no guarantee that the
manufacturer-provided MUD file will cover every communication pattern that the device may
exhibit. For example, it is possible that the device’s behavior may have changed due to updates
of third-party libraries. Behaviors like this need to be captured to provide a more accurate
characterization of the IoT device.

This subsection provides an example set of environmental variables that can be applied during
each of the three life-cycle phases described in Section 2.1.1. This is not a complete list, but
depending on the device type and design, each of the variables has the potential to change the
behavior of an IoT device. For consistency and to limit confusion, these variables should persist
throughout the duration of a network traffic capture process and should not be added or
removed after the capture has begun. There are exceptions to this rule, such as capturing
behaviors when emulating an internet outage. Any deviations from persistent variables should
be clearly documented.

• No internet refers to removing the internet access from the local network to which the
IoT device is connected. This can limit an IoT device’s access to resources.

• Preferred DNS servers blocked denotes testing a device’s behavior when its preferred
Domain Name System (DNS) servers have been blocked. For example, an IoT device may
be configured to rely on DNS servers managed by the manufacturer. If access to these
DNS servers is restricted, the IoT device’s functionality will be reduced unless
compensating measures are taken.

• Device isolation indicates that the device is alone on the local network; that is, no other
devices are connected except essential network or other communication components
needed for the IoT device to function properly. For example, if the IoT device needs to
be controlled by a controller/smart hub or smartphone, this device may also be
connected during the capture.

• No human interaction means that no human interaction or configuration of the device
has taken place for the duration of the capture activity. The device will not be
preprogrammed by the analysts to take any actions prior to the start of the capture
process.

• Controller/smart hub control indicates that the device has been or will be connected to
a controller/smart hub during the capture. An IoT device connected to a
controller/smart hub will typically display different behavior than a device that is not
connected. Additionally, some, or all, of the communication for multiple devices may be

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

8

observed as traffic transmitted to/from the controller/smart hub. As a result, the MUD
file generated for a smart hub controller could potentially be the union of MUD files for
multiple devices.

• Same manufacturer means that at least one device from the same manufacturer has
been connected to the network before the capture has begun. It is likely that a network
may have two IoT devices from the same manufacturer. Additionally, many
manufacturers have been working to create their own IoT “ecosystems.” Because some
IoT devices are designed to communicate with other IoT devices from the same
manufacturer, connecting multiple devices from the same manufacturer may reveal
additional behavior not seen when only one device from that manufacturer is connected
to the network.

• Full network indicates that enough active devices to simulate an IoT application are
connected to the local network before the beginning of the capture. As the purpose and
scope of networks that support IoT devices can vary widely and are often application-
dependent, it is up to the analyst to determine how many and/or what variety of
devices is considered a full network. The presence of other devices on the same network
may affect the behavior of IoT devices being characterized.

• Notable physical environment indicates that the physical environment has changed
significantly before or during the packet capture. Many IoT devices contain sensors that
track aspects of the physical environment, including light, temperature, and sound.

2.1.3. Activity-Based and Time-Based Capture Approaches

Activity-based captures are focused on IoT device behavior solely during a specified set of
actions. For example, capturing IoT device setup behaviors does not require a specific amount
of time; its beginning and completion are determined only by the duration of the setup process.

Time-based captures are focused on capturing IoT device behavior during a specific time
period. For example, capturing IoT device behaviors throughout an entire day of normal
operation can allow observation and documentation of a wide range of behaviors (e.g., device-
initiated behaviors). Some behaviors may be observed only over a longer term. One example of
this property involves devices that “learn” the user’s behavior and modify functionality
accordingly. These devices may behave in a different way over the weekend than during the
week or when the learned pattern is broken, such as on a holiday or when the user is traveling
for an extended period.

2.1.4. Network Architecture and Capture Approach

To fully capture the network behavior of devices, all network traffic between all hosts on the
local network and all communications entering and leaving the local network to and from
external sources on the internet need to be captured. In cases of smaller and/or simpler
networks, capture of network traffic directly from a single gateway may be sufficient because
the gateway will receive all communication both to and from external sources and among all

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

9

network devices on the local network. An example of a capture setup using a single gateway
can be found in Appendix A. In larger or more complex networks, where network traffic does
not flow through a single gateway, the capture of network traffic from multiple locations
throughout the network is recommended where possible. These capture locations should be
carefully chosen to ensure that all relevant traffic can be properly captured.

The capture approach adopted may depend on the available hardware. The capture device will
need sufficient resources to store all captured traffic. The absence of sufficient processing
power, memory, or storage is likely to cause network packets to be dropped and may
compromise the accuracy and integrity of the capture.

In some cases, a device may have additional network interfaces that enable communication
that cannot be observed by the local network gateways. For example, a ZigBee hub may
interface with a ZigBee network as well as a Wi-Fi network. Ideally, the traffic on both networks
should be captured for analysis. In some instances, a device’s secondary interface enables
communication to an entirely external network, as in the case of 3G, 4G, and 5G devices. It is
ideal to capture this communication as well, but it may be difficult or impossible to do so. In any
case, however, it is important to document any additional network interfaces a device may
have, as they may be alternative vectors for information to travel. Documentation procedures
are discussed in depth in Section 2.3.

Once network capture locations have been determined, the method of capture should be
chosen. Capture of traffic directly on the chosen gateway/router/switch is ideal if the network
device’s resources are sufficient for the task. This allows capturing network traffic from any or
all of the Ethernet ports and wireless radios managed by the network device and saving the
captured information directly. It is not always possible to capture traffic directly on the network
device, but alternatives are available for situations that do not permit capture in this manner.
For example, placing a network tap in-line on a wired IoT device can provide access to the
desired communication. Another alternative is using a mirrored or switched port analyzer
(SPAN) port to send all traffic from a port or virtual local area network to a capture device that
is listening on the selected mirror port or SPAN port. For IoT devices that communicate over a
wireless network, using a wireless network adapter in promiscuous mode will allow capture of
wireless traffic. However, wireless capture is not always an ideal option, as there may be
instances where interference with capturing wireless traffic is unavoidable (e.g., due to wireless
isolation being used).

2.1.5. Capture Tools

Various tools are available for capturing network traffic. Two of the most widely used are
tcpdump and Wireshark/tshark, although organizations can select the tool most appropriate to
their use case.

2.1.5.1. tcpdump

tcpdump is a lightweight command-line-based tool that can be used on Cisco IOS, Junos OS, and
many Linux-based router and switch operating systems. Packet captures (pcaps) can be saved

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

10

to a standard pcap file format, which is commonly used to store network traffic data. The
following command demonstrates tcpdump usage:

bash$ tcpdump -i eth0 -s0 -n -B 2000000 -w capture.pcap

• “tcpdump” starts the capture program.

• “-i eth0” instructs tcpdump to start capturing packets from the interface eth0.

• “-s0” sets the snapshot length to an unlimited size, allowing capture of larger packets.
tcpdump normally truncates IPv4 packets that are larger than 68 bytes.

• “-n” turns off host name resolution, which reduces the processing and buffer resources
needed to capture properly.

• “-B 2000000” sets the operating system capture buffer size to 2,000,000 kibibytes,
allowing capture of a greater amount of network traffic. Packet drops can still occur in
the driver and in the kernel, so it is important to ensure the capture hardware is
adequate to the task.

• “-w capture.pcap” saves network traffic to a file named capture.pcap.

2.1.5.2. Wireshark/tshark

Wireshark is one of the most readily available packet capture and analysis tools, and it is open
source. Wireshark provides a graphical user interface (GUI) during both capture and analysis. It
also has a command-line-based capture utility called tshark, which can perform both capture
and analysis functions. tshark can also be installed on many Linux-based router and switch
operating systems to add enhanced packet capture capabilities over tcpdump, but it was not
implemented in this experiment.

Wireshark is supported by Windows, macOS, and a wide range of Unix and Unix-like platforms,
including Linux and Berkeley Software Distribution (BSD). Use of Wireshark as a capture tool
often involves setting up a mirrored/SPAN port or a network tap to ensure that Wireshark can
capture as much relevant network traffic as possible. Wireshark also supports putting network
interfaces into promiscuous mode, which is often necessary to properly capture wireless
network traffic. Wireshark/tshark supports the PCAP Next Generation Dump (PcapNg) file
format, which allows addition of metadata to network traffic captures. See Section 2.3 for
further details.

2.2. Capture Procedures

This section lists example procedures for capturing network traffic. These examples focus on
capturing directly from a router. Ideally, the dataset used to generate a MUD file will include
the widest range of device behavior possible, including device setup, normal operation of the
device, and decommissioning/removal of the device. The procedure is purposely generalized to
be applicable to many situations and may be modified/customized as required. See Appendix A
for an example of a network in which these procedures could be used.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

11

2.2.1. Activity-Based Capture

Activity-based captures may include processes like device setup, decommissioning/removal, or
any other activities that may be performed with the device. An example process for this capture
type is as follows:

1. Select, implement, and document environmental variables to be used for this capture.
See Section 2.1.2 for more information about environmental variables.

2. Start packet capture on router.

3. Begin predetermined device activities.

4. Complete device activities.

5. End packet capture.

6. Transfer packet capture file from router to external storage for analysis.

2.2.2. Time-Based Capture

Time-based captures will give additional information about a device’s behavior over a longer
time period, including when a device is not engaged in user activity. An example process for this
capture type is as follows:

1. Select, implement, and document environmental variables to be used for this capture.
See Section 2.1.2 for more information about environmental variables.

2. Start packet capture on router.

3. Allow device to continue operating until the predetermined amount of time has
elapsed.

4. End packet capture.

5. Transfer packet capture file from router to external storage for analysis.

2.3. Documentation Strategy

After each network traffic capture has been completed, it is important to ensure that the
conditions and other applicable details are thoroughly documented and linked to each packet
capture. Documenting the life-cycle phase, environmental variables involved, and other
important factors can greatly help with subsequent analysis of the network traffic. Options for
recording this information include editing the file name, using a text document, storing
information in a database, or recording metadata to the capture file itself.

Note that the MUD specification [2] does not include mechanisms for allowing or blocking
traffic under specific conditions. However, it may be useful to a network administrator to be
able to trace network activity to a particular event. For a situation like this, and to gain a better
understanding of a device’s behavior, it is important to keep a log of the activities, actions
performed, and environmental variables during each capture.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

12

There are a number of ways to document this information. The simplest is to manually write
descriptions for each capture and store the text documents along with the captures. This
approach is not scalable and may lead to mistakes where capture-document pairs are
separated. An alternative is to use the comment field in the PcapNg. PcapNg extends the
capabilities of the libpcap format. Wireshark can convert pcap files to PcapNg, and comments
can be added by using the GUI. The terminal-based interface to Wireshark, tshark, allows
inclusion of comments while taking a network capture. The following command allows insertion
of a text description of the capture environment and variables. This way, the information is
contained within the capture itself.

bash$ tshark -w capture.pcapng --capture-comment "Example comment."

• The same -i, -s, -n, and -B options used in Section 2.1.5.1 (tcpdump) can be used
here.

• The default file type for tshark captures is PcapNg.

• The --capture-comment option allows text comments to be added during a capture.

Use of the comment field in PcapNg may still not be an optimal solution. PcapNg is limited in
that it requires further manual interaction for the information to be consumed and used by
interested parties. As the comment field allows arbitrary text input, it is possible to embed
information in JavaScript Object Notation (JSON) format. JSON is computer parsable/readable.
Consequently, the NCCoE developed a Python-based tool to format the desired information as
JSON and insert it into the comment field of a PcapNg file. This tool is included with MUD-PD,
which is described in Section 3.2. This can be initiated at the start of a capture or inserted
afterwards; however, the tool inserts the information into an existing file. As JSON is somewhat
human-readable and the data being added is fairly simple, a user can still understand the
necessary information from the output. An example format is as follows:

{
 "details": "Example of capture details",
 "lifecyclePhase": "normal operation",
 "internet": true,
 "humanInteraction": true,
 "preferredDNS": true,
 "isolated": false,
 "controllerHub": false,
 "mfrSame": true,
 "fullNetwork": false,
 "physicalChanges": false,
 "durationBased": true,
 "durationInteger": 60,
 "durationUnits": "seconds",
 "actionBased": false,
 "action": ""
}

This format aligns with the Python dictionary (dict) datatype which enables easy reading and
writing. As such, if a dictionary object, envi_vars, is defined as the example format above, it
can be inserted into a packet capture file as follows:

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

13

python3> import src.pcapng_comment
python3> insert_comment(filename_in="./capture.pcap",
 comment=envi_vars,
 filename_out="./capture_commented.pcapng")

• filename_in is the existing pcap or PcapNg capture file.

• comment is the Python dict object containing the metadata.

• filename_out is an optional input that defines the name of the outputted file. If
omitted, the output filename will be the input filename without the file extension and
“_commented.pcapng” appended to the end.

The tool can insert the metadata into either a pcap file after converting it to PcapNg, or a direct
copy of a PcapNg file. This tool is integrated graphically in MUD-PD as described in Section
3.2.2.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

14

3. Analysis Use Cases and Tools

This section describes several use cases for the characterization methodology along with
sample analysis tools.

3.1. Manual MUD File Generation

Currently, MUD files are often generated manually, and although there are tools such as MUD
Maker [9] that allow a user to input the necessary values without concern for the computer
syntax, most MUD files are still written by hand and require significant effort to complete. After
capturing the necessary data through network traffic captures (as described in Section 2),
manual analysis is needed to extract the information. Relevant information often includes
network destinations with which the IoT device has communicated, ports and protocols
utilized, and other data regarding the device’s behavior. This may be achieved using network
traffic-analysis tools like Wireshark and NetworkMiner, which enable extraction of the
information necessary for a MUD file.

3.1.1. Wireshark

Wireshark is a well-known open-source tool for network traffic analysis (as well as for packet
capture, as discussed in Section 2.1.5.2 It can be run on Windows, macOS, and Linux. It supports
deep packet inspection for hundreds of protocols, which allows the user to sift through packet
bytes and extract the relevant information. Analysis can be performed using a wide array of
display filters, and results can be exported in a variety of formats. In addition, Wireshark
includes decryption support for Transport Layer Security (TLS) and Wi-Fi Protected Access
(WPA)/WPA2/WPA3. The combination of capabilities allows analysis needed to generate a
MUD file from the packet capture file generated as described in Section 2.

3.1.2. NetworkMiner

NetworkMiner is another popular open-source network traffic-analysis tool, and it is built and
maintained by Netresec. It is officially supported only on Windows but can be run in macOS
through Mono. While it can also be used for packet capture, NetworkMiner’s strengths lie in
processing network traffic captures and displaying relevant information quickly and easily. It
automatically displays network hosts involved and extracts files, images, messages, and
credentials. NetworkMiner also compiles a list of individual sessions between hosts and DNS
requests throughout the network traffic capture. NetworkMiner does not have the deep packet
inspection capabilities that Wireshark has, but it is a quick and helpful tool that complements
Wireshark’s depth.

3.1.3. Overview of Manual MUD File Generation Process

The process for generating/developing a MUD file begins with a set of network communication
capture files. The assumption is that this set includes diverse behaviors such as those described

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

15

in Section 2. For each network communication capture file, the following steps may be
performed:

1. Inspect packets to locate and record:

a. IoT device (source) addresses (media access control [MAC], IPv4/6)

b. destinations

i. addresses (MAC, IPv4/6)

ii. domain names

c. protocols and ports (Transmission Control Protocol [TCP]/User Datagram
Protocol [UDP], IPv4/6)

i. source-initiated (the IoT device being characterized)

ii. destination-initiated (a device outside the IoT device being characterized)

2. Identify the destination devices and servers:

a. type of device

b. manufacturer

Once all of this information has been collected for every packet capture, the final steps are to
consolidate it and write the MUD file. The information should be consolidated into a unique list,
as some devices and protocols may appear in multiple network communication capture files
and each device may have been assigned different IP addresses over time. While IP addresses
are not used in MUD files, capturing them can be useful for tracking source and destination
pairs. As mentioned above, writing the MUD file may be done manually in a simple text editor
or through text entry into MUD Maker [9]. Before any MUD file is deployed, it should be
manually verified, and the contents of the MUD file should be confirmed to accurately depict
the intended and accepted communication requirements of the IoT device. For example, IP
addresses that have not been converted to a domain name may hinder the implementation of
the MUD file and should be resolved before deployment, as stated in the MUD specification.

3.2. MUD-PD

The NCCoE developed an open-source tool, MUD-PD, as a proof-of-concept for how to reduce
the barrier to entry for organizations to create accurate MUD files for their devices. MUD-PD
supplements currently available methodologies for writing MUD files that use packet inspection
tools like Wireshark and NetworkMiner. Several approaches to automated MUD file generation
currently exist. These include one devised by a researcher at the University of Twente [10], an
open-source tool created by the University of New South Wales (UNSW) called MUDgee [11],
and an open-source tool called muddy [12], which was created by Lucas Estienne and Daniel
Innes at the Internet Engineering Task Force (IETF) 105 Hackathon.

The MUDgee tool takes a single network traffic capture file and generates a MUD file based on
the observed network behavior. MUDgee assumes that all the activity seen is intended and is

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

16

non-malicious. While the core of the MUD file generation function in MUD-PD was originally
built upon MUDgee, it is now built upon a fork of muddy. Another project, lstn/muddy, was
developed as a Python and command-line tool to mirror the functionality of MUD Maker. The
fork of muddy, usnistgov/muddy [13], leverages the rich code base of lstn/muddy to create a
Python object that is more portable and easier to integrate. This fork allows the user to input
the desired rules in any order and formats the output according to the format outlined in IETF
RFC 8520 [2]. Some optional features of this RFC are not included, but the core data and format
are supported. The NCCoE uses this fork of muddy to generate a complete MUD file based on a
collection of network traffic captures.

The initial version of MUD-PD required that the user manually enter all the metadata as the
network capture files are imported. While this functionality is still present, it has been
enhanced and the user interface has been simplified. Because MUD-PD now supports the
PcapNg file format, JSON-formatted data about the capture environment can be embedded in
and extracted from the capture file itself. This enhancement simplifies the import process,
enabling automatic ingestion of metadata. Combining the network capture data and
documented network environment metadata allows both for greater portability of relevant
information and for the MUD file-generation process to be more comprehensive and
automatable, requiring little user input.

MUD-PD parses and extracts data from packet captures and organizes it in a relational
database. The GUI allows the user to examine individual packets or any combination of packets
when inspecting the network communications of specific devices. As the metadata about the
physical actions and activities that occurred during the network captures is also stored, the user
can gain greater insight on correlations between the network activity and physical world (e.g.,
the network traffic corresponding to a user action or device actuation). In addition to being an
exploratory tool intended to aid MUD file development, the database at its core can be queried
through any MySQL interface, allowing for uses and analyses beyond MUD-PD.

Additional functions built into MUD-PD include generation of a human-readable device report
that summarizes the devices (i.e., MAC addresses and previously logged device names) and
general metadata for each individual network traffic capture. Another significant added
function is the automated generation of a MUD file. The MUD file can then be used as is or
modified by the developer or network administrator as they see fit to protect the device and
MUD-enabled network. MUD files are generated through a custom user interface to a fork of
muddy. This interface leverages an enhanced version of muddy’s data pipeline while using the
rich preprocessed data stored in the database.

3.2.1. MUD-PD Feature Set

This subsection provides a high-level overview of MUD-PD. Appendix C provides a detailed
description of the tool. MUD-PD has three main functions:

• Information import: The first function is to import network traffic captures. During this
step, the user is provided the opportunity to input metadata about the capture. The
goal of importing the network traffic capture is to parse the packets—extracting

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

17

features of interest such as the source, destination, ports, and protocols. This
information is at the heart of MUD files. Parsing and importing the network traffic
captures permits MUD-PD to identify local network devices and allows them to be
labeled as devices of interest.

• Database viewing: The second function is to present the user with a view of information
of interest that has been imported into the database. The user can view a list of all the
imported packet captures and the devices seen in any of the selected network traffic
capture files. The user can then select a device or combination of devices to view some
information about the packets coming from or to them. For deeper inspection, the user
can open the file separately in a packet capture analyzer such as Wireshark or
NetworkMiner.

• File generation: The third and most useful function is to generate device reports and
MUD files. The device reports summarize the captures in which the device is found,
including metadata of the capture environment and a summary of what other devices
were communicating on the local network. A wizard walks the user through generating
a MUD file from the data in the database and user input. It is up to the user to
determine whether the MUD files created are accurate enough to be put in service.

3.2.2. MUD-PD Uses

MUD-PD is primarily intended to be a tool in support of MUD. It may be one component of a
greater workstream that enables MUD research and deployment. There are several possible
pipelines that depend on specific use-cases, each of which is described in greater detail in
Section 4.2.

While there are MUD-specific features to MUD-PD, it is relatively purpose-agnostic. While its
primary intention is to assist in generating MUD files for IoT devices, the data it stores can be
analyzed in other ways for other purposes. Because the data set will inevitably get large and is
labeled, machine learning techniques could be applied in an effective manner. The applications
of machine learning and this data set are plentiful, including those not foreseen.

As Section 3.3 discusses, the same data collected for generating MUD files can be used to
examine the privacy implications of these devices. Investigation into what the devices are
communicating (the content of the communication) rather than simply how they are
communicating can lead to a deeper understanding and greater awareness of the implications
of putting smart devices in our homes.

3.3. MUD-PD Support for Privacy Analysis

As mentioned above, MUD-PD is a tool that can be applied for more purposes than generating
MUD files for IoT devices. While MUD files define the suggested behavior of a device, and one
could argue that the content communicated is a component of a device’s behavior, they do not
necessarily capture the privacy implications associated with the device or its associated
networks. In the case where the intended use of MUD-PD is to investigate privacy, the NCCoE

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

18

recommends this tool be used only in a research and development setting, as there are no
security guarantees for the stored data. Use in an uncontrolled setting may result in a violation
of confidentiality. To understand the privacy implications in such a setting requires
understanding the data content being transmitted from the device to outside services. This may
be challenging, depending on the device and the protocols implemented, as the content in the
network packets may or may not be encrypted (e.g., metadata such as destination IP address,
port). Even where they are encrypted, the protocol under analysis may be susceptible to a
machine-in-the-middle attack that reveals some or all of the contents of the packets. Utilizing
such an attack may be useful for an investigation into privacy, but again, should be
implemented with caution and only in a controlled research and development setting.

There may be some moral, ethical, and privacy implications in implementing such an evaluation
technique. These should be mitigated by limiting use of the tool to a controlled environment
(i.e., a laboratory) and by adhering to the NIST Privacy Framework [14] and the Common Rule
for the Protection of Human Subjects [15]. The same techniques for collection and logging can
be beneficial to privacy investigations—tracking what potentially private information is
transmitted and tracing the risks to all the devices and parties involved.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

19

4. Future Work

The NCCoE’s currently scoped project on MUD implementation has concluded. This section
outlines considerations for additional areas of research and development on device
characterization and MUD-PD that could be carried out by the community.

An existing challenge concerns having confidence that any methodology prescribed for
characterizing devices is robust with respect to security and reliability. Additional analysis use
cases and tools, including alternative device characterization approaches (e.g., fingerprinting),
could also be demonstrated and documented to help expand and confirm the efficacy of the
methodology. Additional situations and environmental variables that could modify the behavior
of an IoT device need to be identified and documented. Support for storing capture
environment variables within a PcapNg file as an official option would also benefit the
community of packet capture analysts.

4.1. Extending MUD-PD Features

The NCCoE encourages any interested members of the community to consider continuing the
development of enhancements and additional features. MUD-PD was to serve primarily as a
proof-of-concept. There is room for improvement of existing features including streamlining,
simplifying, and speeding the collection, logging, and file generation processes. The usefulness
of generated device reports could also be improved from community and user feedback. These
reports could be expanded to list the ports used, as well as the specific hosts and servers with
which the device has communicated.

A number of enhancements to the usability and user experience of the MUD-file generation
process itself should also be considered. This includes presenting the user with coarse
estimates or warnings of the potential quality of the produced MUD file that can be expected
based upon the network traffic captures selected, with the goal to highlight where gaps and
deficiencies may exist in the resulting MUD file.

MUD-PD could be extended to extract and catalog additional data from capture files to
investigate the privacy implications of IoT devices. To do so will require that packet payload
information be extracted and stored. This includes strings, images, credentials seen, and
certificates. It may also be worth logging whether packets are encrypted as well as the type and
strength of the cryptographic algorithm.

4.2. Developing a MUD Pipeline

A set of pipelines could be considered to address additional use cases focused on MUD file
development. Three use cases have been considered: (1) a device manufacturer or developer
that needs to provide a MUD file for its users; (2) a network administrator who may wish to
inspect an official MUD file or a device’s adherence to said file and who may wish to augment
or modify its allowed behavior; and (3) a researcher who may be interested in all of the above
in addition to investigating the intricacies of existing MUD rules and proposed extensions.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

20

In the first use case, a device manufacturer or developer might find it useful to have access to a
suite of interoperable tools that make the generation, inspection, and validation of MUD files
easy and straightforward (Fig. 1). To begin the process, the two options are to build a MUD file
by hand by using a tool like MUD Maker [9] or to generate one from a capture of network
traffic by using MUD-PD or MUDgee. The next steps are to inspect the MUD file, which can be
done visually using the MUD Visualizer [16], and validate that no rules are missing that should
be present and no rules are present that should not be—and to edit rules where necessary.
After a number of iterations through these steps, manufacturers may reach a point where they
are confident in the MUD files and publish them for user consumption. The process depicted in
Fig. 1 can also be used to generate MUD files for devices without a manufacturer-provided
MUD file.

Fig. 1. MUD pipeline for the device manufacturer or developer use case

In the second use case, it may be useful for network administrators to have a view of the
network with an overlay of the MUD rules that have been defined by a manufacturer (Fig. 2). To
drive this capability, they must be able to ingest a MUD file and compare it against the behavior
observed on the network. The MUD file may be manufacturer-defined or user-defined. When
the MUD file and observed behavior are inspected and compared, the network administrator
could be presented with a diagram highlighting where the observed behavior does not comply
with the MUD file. The UNSW researchers have developed a tool for comparing a provided
MUD file with observed activity [17]. One also could imagine the MUD Visualizer tool being
extended to include this capability. Because the network administrator may also be interested
in reducing or expanding a device’s capabilities (i.e., tailoring it to their specific network), the
ability to build and/or edit MUD files would be desirable. MUD files can currently be
built/written using MUD Maker, but there is not a dedicated tool for editing MUD files. To assist
in live network administration and monitoring, it may be useful for the comparisons to be done
on the fly on a live network, issuing live reports or warnings when noncompliance is detected.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

21

Fig. 2. MUD pipeline for the network administrator use case

The third use case is more open-ended. Researchers may want access to all the same tools
useful to manufacturers and network administrators, and even more. There could be interest in
studying existing MUD files, investigating the implications of various MUD rules, or offering
extensions (see Fig. 3). For researchers, it may be useful to emulate a network of devices based
on the MUD files to understand how networks scale and devices interact.

Fig. 3. The overarching MUD pipeline, particularly as it may be used for research and development

This figure demonstrates how many existing and proposed future tools relevant to MUD can be
leveraged to achieve the research and development goals of the use cases described above.
Several boxes in Fig. 3 are labeled with existing tools that could potentially fill the associated

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

22

roles in their current state or with future development. The boxes that lack a dashed outline
have not been associated with any existing tools that could potentially fill the role.

There are a number of ways in which a MUD file may be generated or selected. MUD files may
come from the manufacturer, be generated by the user using network captures through MUD-
PD or MUDgee, or be written by hand with assistance from MUD Maker and Wireshark and/or
NetworkMiner. These MUD files can then be used for several purposes or processed in several
ways. Some purposes or processes may require using one version of MUD file, while others may
require two or more, as indicated by the n in Fig. 3.

When using a MUD file with live analysis of network activity, there is the potential for real-time
MUD compliance reporting. Additionally, extensions to MUD’s functionality are being proposed
for use within the tool. Interest has been expressed in developing other MUD reporting tools.
For example, the UNSW researchers have been using MUD in combination with software-
defined networking to develop an intrusion detection system as well as a tool for detecting
volumetric attacks, both of which have the potential for live reporting. These are called MUDids
and MUDlearn, respectively [18][19]. MUD files can also be visualized using the MUD Visualizer
tool that is paired with MUD Maker. This tool could potentially be extended to compare two
MUD files for offline compliance and manual validation. Furthermore, tools are being proposed
for automated validation of MUD files and network emulation based on these files.
Development of application programming interfaces (APIs) for these tools would greatly
enhance interoperability and future development. The NCCoE hopes that the community of IoT
manufacturers, developers, network administrators, and researchers will continue to
contribute to improvements in this area.

4.3. Open Problems for the Community

While the NCCoE has decided to conclude feature development for MUD-PD, members of this
community of interest are encouraged to consider addressing the following open problems and
questions:

• Because it may be impossible to capture all potential aspects of an IoT device’s
behavior, how can the accuracy of a MUD file be measured?

o What other situations and environmental variables could modify the behavior of
a device?

o How can the correctness of a MUD file be verified (and ensure that unnecessary
behavior is not included)?

o What combination of captures is needed to create a comprehensive MUD file
(and ensure behavior that should be permissible is not omitted)?

• What are other applications of a MUD-PD tool or its data sets?

• What other tools should be considered for connecting in the MUD pipeline (or other
pipelines)?

• What features are desirable for a tool like this?

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

23

• What other extractable features of packet captures might be of use to developers,
network administrators, and researchers?

• How can the quality and efficiency of the tool be improved?

• How can a prescribed methodology for characterizing devices be ensured to be robust in
its security and reliability?

o How can its efficacy be objectively demonstrated? How do alternative device
characterization approaches (e.g., fingerprinting) compare?

• Are there widespread use-cases for including capture environment variables within a
PcapNg file such that it should be included as an official option in the specification?

o What environmental variables should be included in such an option?

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

24

References

[1] Fagan M, Megas K, Scarfone K, Smith M (2020) Foundational Cybersecurity Activities for
IoT Device Manufacturers (National Institute of Standards and Technology, Gaithersburg,
MD). https://doi.org/10.6028/NIST.IR.8259

[2] Lear E, Droms R, Romascanu D (2019) Manufacturer Usage Description Specification.
(Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8520.
https://doi.org/10.17487/RFC8520

[3] Thangavelu V, Divakaran DM, Sairam R, Bhunia SS, Gurusamy M (2019) DEFT: A Distributed
IoT Fingerprinting Technique. IEEE Internet of Things Journal 6(1):pp 940-952.
https://doi.org/10.1109/JIOT.2018.2865604

[4] Huang DY, Apthorpe N, Acar G, Li F, Feamster N (2019) IoT Inspector: Crowdsourcing
Labeled Network Traffic from Smart Home Devices at Scale. arXiv preprint.
https://arxiv.org/abs/1909.09848

[5] Meidan Y, Bohadana M, Shabtai A, Guarnizo JD, Ochoa M, Tippenhauer NO, Elovici Y (2017)
ProfilIoT: A Machine Learning Approach for IoT Device Identification Based on Network
Traffic Analysis. Proceedings of the Symposium on Applied Computing (SAC ’17) (ACM,
Marrakech, Morocco), pp 506-509. https://doi.org/10.1145/3019612.3019878

[6] Bezawada B, Bachani M, Peterson J, Shirazi H, Ray I, Ray I (2018) Behavioral Fingerprinting
of IoT Devices. Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware
Security (ASHES ’18) (ACM, Toronto, Canada), pp 41-50.
https://doi.org/10.1145/3266444.3266452

[7] Aneja S, Aneja N, Islam MS (2018) IoT Device Fingerprint using Deep Learning. 2018 IEEE
International Conference on Internet of Things and Intelligence System (IOTAIS) (IEEE, Bali,
Indonesia), pp 174-179. https://doi.org/10.1109/IOTAIS.2018.8600824

[8] Dodson D, Montgomery D, Polk T, Ranganathan M, Souppaya M, Johnson S, Kadam A, Pratt
C, Thakore D, Walker M, Lear E, Weis B, Barker W, Coclin D, Hojjati A, Wilson C, Jones T,
Baykal A, Cohen D, Yelch K, Fashina Y, Grayeli P, Harrington J, Klosterman J, Mulugeta B,
Symington S, Singh J (2021) Special Publication 1800-15: Securing Small-Business and
Home Internet of Things (IoT) Devices: Mitigating Network-Based Attacks Using
Manufacturer Usage Description (MUD) (National Institute of Standards and Technology,
Gaithersburg, MD). https://doi.org/10.6028/NIST.SP.1800-15

[9] Lear E (2020) MUD Maker Tool. Available at https://mudmaker.org/mudmaker.html
[10] Schutijser CJTM (2018) Towards Automated DDoS Abuse Protection Using MUD Device

Profiles. (University of Twente, Enschede, The Netherlands). Available at
http://essay.utwente.nl/76207/

[11] Hamza A, Ranathunga D, Gharakheili HH, Roughan M, Sivaraman V (2018) Clear as MUD:
Generating, Validating and Applying IoT Behavioral Profiles. Proceedings of the 2018
Workshop on IoT Security and Privacy (IoT S&P ’18) (ACM, Budapest, Hungary), pp 8-14.
https://doi.org/10.1145/3229565.3229566

[12] Estienne L, Innes D (2019) muddy. Available at https://github.com/lstn/muddy
[13] Watrobski P, Klosterman J (2021) muddy. Forked from muddy

(https://github.com/lstn/muddy), Estienne L and Innes D. (National Institute of Standards
and Technology, Gaithersburg, MD). Available at https://github.com/usnistgov/muddy

https://doi.org/10.6028/NIST.IR.8259
https://doi.org/10.17487/RFC8520
https://doi.org/10.1109/JIOT.2018.2865604
https://arxiv.org/abs/1909.09848
https://doi.org/10.1145/3019612.3019878
https://doi.org/10.1145/3266444.3266452
https://doi.org/10.1109/IOTAIS.2018.8600824
https://doi.org/10.6028/NIST.SP.1800-15
https://mudmaker.org/mudmaker.html
http://essay.utwente.nl/76207/
https://doi.org/10.1145/3229565.3229566
https://github.com/lstn/muddy
https://github.com/lstn/muddy
https://github.com/usnistgov/muddy

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

25

[14] National Institute of Standards and Technology (2020) NIST Privacy Framework: A Tool for
Improving Privacy through Enterprise Risk Management, Version 1.0. (National Institute of
Standards and Technology, Gaithersburg, MD). Available at https://www.nist.gov/privacy-
framework

[15] U.S. Department of Health and Human Services, Office for Human Research Protections
(2020) Federal Policy for the Protection of Human Subjects (‘Common Rule’). Available at
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html

[16] Andalibi V, Lear E (2020) MUD Visualizer Tool. Available at
https://www.mudmaker.org/mudvisualizer.php

[17] Hamza A, Ranathunga D, Gharakheili HH, Benson TA, Roughan M, Sivaraman V (2019)
Verifying and Monitoring IoTs Network Behavior using MUD Profiles. arXiv preprint.
https://arxiv.org/abs/1902.02484

[18] Hamza A, Gharakheili HH, Sivaraman V (2018) Combining MUD Policies with SDN for IoT
Intrusion Detection. Proceedings of the 2018 Workshop on IoT Security and Privacy (IoT
S&P ’18) (ACM, Budapest, Hungary), pp 1-7. https://doi.org/10.1145/3229565.3229571

[19] Hamza A, Gharakheili HH, Benson TA, Sivaraman V (2019) Detecting Volumetric Attacks on
loT Devices via SDN-Based Monitoring of MUD Activity. Proceedings of the 2019 ACM
Symposium on SDN Research (SOSR ’19) (ACM, San Jose, California), pp 36-48.
https://doi.org/10.1145/3314148.3314352

https://www.nist.gov/privacy-framework
https://www.nist.gov/privacy-framework
https://www.hhs.gov/ohrp/regulations-and-policy/regulations/common-rule/index.html
https://www.mudmaker.org/mudvisualizer.php
https://arxiv.org/abs/1902.02484
https://doi.org/10.1145/3229565.3229571
https://doi.org/10.1145/3314148.3314352

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

26

Appendix A. Example Capture Environment

This appendix presents an example capture environment that supports analysis of both wired
and wireless IoT devices. Example procedures for capture are identified in Section 2.2. The
following components compose the example environment and are depicted in Fig. 4:

• a home router with tcpdump capability for capturing all network traffic, both wired and
wireless (Linksys WRT1900ACS running OpenWRT) with external storage (such as a flash
drive) to increase capture storage capacity of the home router

• a computer running Linux or macOS (can be used for both capture and analysis as
needed)

• IoT devices to characterize (camera, smart light, smart TV, smart switch)

• other devices that interact/communicate with the IoT devices (such as smart
hubs/controllers/smartphones)

Fig. 4. Example capture architecture

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

27

Appendix B. List of Symbols, Abbreviations, and Acronyms

API
Application Programming Interface

BSD
Berkeley Software Distribution

DHCP
Dynamic Host Configuration Protocol

DNS
Domain Name System

E/W
East/West

FOIA
Freedom of Information Act

GUI
Graphical User Interface

IETF
Internet Engineering Task Force

IoT
Internet of Things

IP
Internet Protocol

IT
Information Technology

ITL
Information Technology Laboratory

JSON
JavaScript Object Notation

MAC
Media Access Control

MUD
Manufacturer Usage Description

NCCoE
National Cybersecurity Center of Excellence

NIST
National Institute of Standards and Technology

N/S
North/South

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

28

OUI
Organizationally Unique Identifier

pcap
Packet Capture

PcapNg
Packet Capture Next Generation Dump File Format

RFC
Request for Comments

SDN
Software-Defined Networking

SPAN
Switched Port Analyzer

TCP
Transmission Control Protocol

TLS
Transport Layer Security

UDP
User Datagram Protocol

UNSW
University of New South Wales

URL
Uniform Resource Locator

WPA
Wi-Fi Protected Access

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

29

Appendix C. MUD-PD Tool GUI Overview

This appendix provides a detailed description of the MUD-PD tool as of the date of publication.

Upon starting MUD-PD for the first time (installation instructions can be found at
https://github.com/usnistgov/MUD-PD), the user is greeted with the MUD-PD main window
(Fig. 5). The labels contained in Fig. 5 highlight the components of this window:

• (A) button to connect to an existing database

• (B) button to create and (re)initialize a database

• (C) button to import a capture file

• (D) button to generate a MUD file

• (E) button to generate a device report

• (F) box to show a list of imported capture files

• (G) box to show a list of active local network devices

• (H) box to show a list of communications

• (I) button to inspect a previously imported capture file

• (J) toggle to limit view of communications to north/south (i.e., external) traffic or
east/west (i.e., internal) traffic

• (K) toggle for a future feature described below

• (L) buttons to select how many packets to view in the communication box

https://github.com/usnistgov/MUD-PD

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

30

Fig. 5. MUD-PD main window with buttons and list boxes labeled

When running MUD-PD for the first time, and until dismissed or completed, the user is
prompted to optionally provide a locally stored Fingerbank API key (Fig. 6). Fingerbank and the
automated features the API key enables are briefly described in Appendix C.2.

Fig. 6. Prompt for providing Fingerbank API key

The next step is to select the button labeled B to initiate the prompt to create a new database
(Fig. 7).

Fig. 7. Prompt for creating a new database

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

31

Every time MUD-PD is run from this point forward, the user can select the button labeled A to
connect to an existing database (see Fig. 5 and Fig. 8). When connected to an existing database,
the button for creating a new database may also be used to reinitialize the database, wiping all
existing data. The process is irreversible, so this should be done with caution.

Fig. 8. Prompt for connecting to an existing database

After connecting to a database, the user can examine any data contained within it. Referring to
Fig. 5, the user can view a list of packet capture files (pcap or PcapNg) that have been imported
thus far in the Captures box (F) on the left side. On the upper right is the section called Devices
(G), which contains a list of local devices communicating in the selected capture files. The
lower-right section called Communication (H) contains a list of the packets sent by the selected
devices in the capture files. Above these boxes is a short toolbar with some options. From left
to right, these are: connect to a database (A), create a new database (B), import a capture file
(C), generate a MUD file (D), and generate a device report (E).

The Captures list (F) contains metadata for the imported capture files, including the time of
capture, the event captured, the duration of the capture (in seconds), the file location, and any
additional details input during the import process. Below the list is an option to inspect (I) the
currently selected packet capture. If more than one capture is selected, only the capture closest
to the top will be opened. Inspecting a packet capture presents the same window that is
opened when importing a capture file but allows the user to update/modify the details in the
database. The details are identical to the import process, which is covered in detail in Appendix
C.1. The user can select any number of capture files, which will modify the list of devices to
show any/all local devices that have sent or received packets during the captures.

The Devices list (G) includes information that either can be inferred from capture information
or that has been input by the user during the import process. This includes the manufacturer,
the model, a unique name for internal/lab use, the MAC address, and the general category of
the device. The selection of an entry in the Devices list will determine what is listed in the
Communication box. The user can either select “All…” to view all the packets communicated
across the network, or a single device to view only the communication to/from that device. The
user may select multiple devices to view the communication to/from any of the selected
devices.

The Communication list (H) displays parsed packet information such as the time, MAC address
of the sender, IP version, source and destination addresses, scope of traffic, innermost protocol
layer, transport protocol, source and destination ports, and packet length. The IP version is
given as either 4 or 6. If it is blank, the packet is below the IP layer (i.e., layer 3). By scope of

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

32

traffic, we mean whether it would be considered east/west (i.e., internal/local network) traffic
indicated by a value of 1, or north/south (i.e., to/from an external address/network) indicated
by a value of 0. The source and destination ports are those of TCP or UDP. The user can choose
to filter by north/south (N/S) or east/west (E/W) traffic and can select the number of packets
displayed (J). When two devices are selected, the two additional buttons (K) allow the user to
view traffic either between the two devices or involving either device. Last, the user may select
to view the first 10, 100, 1000, or 10,000 packets that satisfy the above filters (L).

C.1. Importing a New Packet Capture

The potential of this tool begins to be realized when importing a packet capture file. Here, the
user is prompted to select the file to import (Fig. 9). If the file is a PcapNg file, MUD-PD will
automatically search for embedded metadata, otherwise the user can input metadata
regarding the capture. This includes the phase of the device life cycle being captured. In most
cases, this will be normal operation. The other two options are setup and removal, as described
in Section 2.1.1. The user can also select all the environmental variables that apply, including
whether:

• internet connectivity was enabled

• the device’s preferred DNS was enabled

• the device was isolated on the network

• there were notable physical environmental changes

• the capture was of a full network of devices

• a controller or hub was involved

• a device of the same manufacturer as the primary device of interest was connected

• there was human interaction with the device

Whether the capture was duration-based or action-based should also be selected. The specific
duration (in seconds) or action can be input, which is highly recommended for auditability and
ease of use.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

33

Fig. 9. Prompt for importing packet captures into database

C.2. Viewing and Importing Devices

During the packet capture import process, the user is presented with lists of the labeled and
unlabeled devices that were seen in the capture file (Fig. 10). A labeled device is one that has
been seen in a previously imported capture and has had related data imported to the database.
An unlabeled device may have been seen in a previous capture but has not yet had any
additional data imported. This packet capture import window also includes the time and date of
the capture, which is extracted from the capture file, but can be edited if the user believes
either or both are incorrect for some reason. The left list is the unlabeled devices. MUD-PD
attempts to look up the manufacturer based on the Organizationally Unique Identifier (OUI),
which is the first 24 bits of the MAC address, and also lists the IP addresses (both v4 and v6
when available). The user can select any device in this list and import additional details into the
database, moving it to the list of labeled devices on the right. In addition to the information
found in the unlabeled list, this window includes all the information available in the device list
of the main window (Fig. 5). The state of the device (i.e., the firmware version) can also be
updated here. This field is not used in any automated processes of MUD-PD but can be queried
through MySQL.

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

34

Fig. 10. Window listing labeled and unlabeled devices during the packet capture import process

Selecting the “Label Device” button in Fig. 10 presents the user with a window with fields for
adding or modifying the manufacturer, model, internal name, category, notes, and list of
capabilities (Fig. 11). The manufacturer and model are required fields. In addition to being
required, the internal name must be unique. The device category and notes are optional fields
but may be useful for documentation and future analyses. The capabilities consist of MUD, Wi-
Fi, Ethernet, Bluetooth, ZigBee, ZWave, 3G, 4G, 5G, and other. Other than MUD, all the
capabilities are network interfaces, of which at least one must be selected. The MAC address of
the device is also listed but may not be modified, as this is determined from the capture itself
and is used as an identifier. In addition, integration with the Fingerbank API is included,
assisting the user by identifying the device model based on the Dynamic Host Configuration
Protocol (DHCP) fingerprint and MAC address. To enable this feature, the user must obtain and
enter a valid Fingerbank API key as shown in Fig. 6.

Fig. 11. Window prompt for importing a device

After the metadata has been input and the “Import” button in Fig. 11 has been selected, the
user is prompted to optionally input the firmware version of the device (Fig. 12). While the

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

35

firmware information is not used in MUD-PD currently, it may be worth documenting for future
research or analysis.

Fig. 12. Window prompting to update the firmware version logged in the database

This window can also be reached by selecting a labeled device in Fig. 10 followed by clicking the
“Modify State” button in the case where a firmware update has been received or the firmware
version needs to be modified.

C.3. Generating Device Reports

The process for generating a device report is straightforward (Fig. 13). The user may generate
reports for any combination of devices or a single device. After selecting the device(s) for which
to generate the report, the list of packet captures is updated to only those in which the device
has sent or received packets. The user may select all or any combination of packets to report
on.

Fig. 13. Prompt for generating a human-readable device report

The generated report lists the packet captures in which the device is seen, including the hash of
the file. The example report, shown in Fig. 14, contains only one file (i.e., example_file.pcap),

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

36

whereas a typical report may contain many. The capture metadata is also listed for each file. In
addition, listed under each capture file are the other local devices seen on the network during
the capture. The internal name (if the device is labeled) is also given. A future version of this
report may include more specific information about the communication to/from the device,
similar to what would be listed in the device’s MUD file (if it had one).

Fig. 14. Example device report showing the details of a single packet capture

C.4. Generating a MUD File

Generating the MUD file requires more user input and involves more steps than generating the
device report. When the user clicks the “MUD Wizard” button (D in Fig. 5), the user is first
prompted to select a device for which to generate a MUD file (Fig. 15).

Fig. 15. Prompt for selecting a device for which the MUD file will be generated

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

37

The next step is to fill in the device details (Fig. 16). Here the support URL (i.e., MUD URL),
documentation URL, and device description can be provided. Additionally, the user may select
which types of communication to define in the MUD file: internet, local, same manufacturer,
other named manufacturers, network-defined controller (my-controller), and controller.
Internet and local communication may automatically be selected if traffic involving the device
has been identified going N/S or E/W, respectively.

Fig. 16. Prompt for providing device details including the support and document URLs

Proceeding to the next page provides the user with the ability to define a list of rules for the
given communication type (Fig. 17). The layout of the window is the same for each of the six
communication types. For internet and local communication, the window is populated with a
list of hosts that were observed to have communicated with the device in any of the packet
capture files stored in the database. DNS resolution is attempted for all internet hosts, while
the IP addresses for all local hosts are only for the user’s reference, since they are not used in
the MUD specification [2].

Fig. 17. Prompt for providing internet communication rules

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

38

The window for local communication rules (Fig. 18) functions slightly differently from the
internet communication rules window. As the local traffic observed may be defined in a more
fine-grained manner than general local traffic (i.e., it may fall under one of the other
communication types such as same manufacturer or controller), these local rules can be copied
or moved to any of the other non-internet communication types that were selected to be
defined. Each of the windows for the remaining communication types also allows rules to be
copied or moved.

Fig. 18. Prompt for providing local communication rules

For each remote host observed to be communicating with the target device, the
communication protocol (i.e., TCP or UDP) is automatically selected based on the observed
communication. The local and remote ports are also automatically filled based on the observed
communication. If the ports are blank or listed as “any,” any port will be allowed. The initiation
direction can be manually specified (i.e., by selecting “thing” or “remote” in the “Initiated by”
drop down) to indicate whether the IoT device or the host, respectively, must be the party to
start the communication. By default, “either” is selected, indicating that either side may initiate
the communication.

The MUD specification [2] defines several conditions that apply to the protocol, ports, and
initiation direction. If “any” protocol is allowed (i.e., both TCP and UDP), the ports and initiation
direction are ignored. If TCP is selected, the ports and initiation direction can be specified. If
UDP is selected, the initiation direction is ignored, and communication can be initiated by either
side.

Not all communication types (i.e., local, same manufacturer, and network-defined controller)
define a host in the communication rules. For these communication types, any input intended
to define the remote host is ignored. Local communication rules allow any local device to follow
the indicated rules, same manufacturer uses the manufacturer hostname specified on the
second page, and network-defined controllers are defined by the local network administrator.

Once all the desired communication type rules have been defined, the user is provided with a
preview of the resulting MUD file (Fig. 19). The “Advanced mode” toggle at the bottom of the

NIST IR 8349 Methodology for Characterizing
August 2025 Network Behavior of IoT Devices

39

window allows advanced users to manually modify the outputted MUD file at their own risk.
There is no guarantee that a modified output file will be formatted or defined correctly.

Fig. 19. Preview of the MUD file to be generated

	Executive Summary
	1. Introduction
	1.1. Challenges for Securing IoT Devices and Their Networks
	1.2. Purpose and Scope
	1.3. Report Structure

	2. Network Traffic Capture Methodology
	2.1. Capture Strategy
	2.1.1. IoT Device Life-Cycle Phases
	2.1.1.1. Setup
	2.1.1.2. Normal Operation
	2.1.1.3. Decommissioning/Removal

	2.1.2. Environmental Variables
	2.1.3. Activity-Based and Time-Based Capture Approaches
	2.1.4. Network Architecture and Capture Approach
	2.1.5. Capture Tools
	2.1.5.1. tcpdump
	2.1.5.2. Wireshark/tshark

	2.2. Capture Procedures
	2.2.1. Activity-Based Capture
	2.2.2. Time-Based Capture

	2.3. Documentation Strategy

	3. Analysis Use Cases and Tools
	3.1. Manual MUD File Generation
	3.1.1. Wireshark
	3.1.2. NetworkMiner
	3.1.3. Overview of Manual MUD File Generation Process

	3.2. MUD-PD
	3.2.1. MUD-PD Feature Set
	3.2.2. MUD-PD Uses

	3.3. MUD-PD Support for Privacy Analysis

	4. Future Work
	4.1. Extending MUD-PD Features
	4.2. Developing a MUD Pipeline
	4.3. Open Problems for the Community

	References
	Appendix A. Example Capture Environment
	Appendix B. List of Symbols, Abbreviations, and Acronyms
	Appendix C. MUD-PD Tool GUI Overview
	C.1. Importing a New Packet Capture
	C.2. Viewing and Importing Devices
	C.3. Generating Device Reports
	C.4. Generating a MUD File

