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This report describes NIST’s expected approach to transitioning from quantum-vulnerable 
cryptographic algorithms to post-quantum digital signature algorithms and key-establishment 
schemes. It identifies existing quantum-vulnerable cryptographic standards and the quantum-
resistant standards to which information technology products and services will need to 
transition. It is intended to foster engagement with industry, standards organizations, and 
relevant agencies to facilitate and accelerate the adoption of post-quantum cryptography. 

Keywords 

cryptography; post-quantum cryptography; public key cryptography; quantum computing. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include 
the development of management, administrative, technical, and physical standards and 
guidelines for the cost-effective security and privacy of other than national security-related 
information in federal information systems.   
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This public review includes a call for information on essential patent claims (claims whose use 
would be required for compliance with the guidance or requirements in this Information 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 
directly stated in this ITL Publication or by reference to another publication. This call also 
includes disclosure, where known, of the existence of pending U.S. or foreign patent 
applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign 
patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 
in written or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold 
and does not currently intend holding any essential patent claim(s); or 

b) assurance that a license to such essential patent claim(s) will be made available to 
applicants desiring to utilize the license for the purpose of complying with the guidance 
or requirements in this ITL draft publication either: 

i. under reasonable terms and conditions that are demonstrably free of any unfair 
discrimination; or 

ii. without compensation and under reasonable terms and conditions that are 
demonstrably free of any unfair discrimination. 

Such assurance shall indicate that the patent holder (or third party authorized to make 
assurances on its behalf) will include in any documents transferring ownership of patents 
subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 
are binding on the transferee, and that the transferee will similarly include appropriate 
provisions in the event of future transfers with the goal of binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: pqc-transition@nist.gov   

mailto:pqc-transition@nist.gov
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Cryptographic algorithms are vital for safeguarding confidential electronic information from 
unauthorized access. For decades, these algorithms have proved strong enough to defend 
against attacks using conventional computers that attempt to defeat cryptography. However, 
future quantum computing may be able to break these algorithms, rendering data and 
information vulnerable. Countering this future quantum capability requires new cryptographic 
methods that can protect data from both current conventional computers and the quantum 
computers of tomorrow. These methods are referred to as post-quantum cryptography (PQC).  

In response, NIST has released three PQC standards to start the next and significantly large 
stage of working on the transition to post-quantum cryptography: the Module-Lattice-Based 
Key-Encapsulation Mechanism [FIPS203], the Module-Lattice-Based Digital Signature Algorithm 
[FIPS204], and the Stateless Hash-Based Signature Algorithm [FIPS205]. Historically, the journey 
from algorithm standardization to full integration into information systems can take 10 to 20 
years. This timeline reflects the complexity of companies building the algorithms into products 
and services, procuring those products and services, and integrating those products and 
services into technology infrastructures. 

Even though the transition to post-quantum cryptography is starting before a cryptographically 
relevant quantum computer has been built, there is a pressing threat. Encrypted data remains 
at risk because of the “harvest now, decrypt later” threat in which adversaries collect encrypted 
data now with the goal of decrypting it once quantum technology matures. Since sensitive data 
often retains its value for many years, starting the transition to post-quantum cryptography 
now is critical to preventing these future breaches. This threat model is one of the main reasons 
why the transition to post-quantum cryptography is urgent.  

1.1. Scope and Purpose 

Updating cryptographic technology has occurred many times at different scales, such as 
increasing key sizes or phasing out insecure hash functions and block ciphers. While the 
transition to PQC is unprecedented in scale, it benefits from a level of awareness and 
understanding that previous cryptographic changes did not have. NIST recognizes the 
complexity of migrating the vast array of systems that currently rely on public-key cryptography 
and acknowledges that this transition will demand substantial effort across diverse applications 
and infrastructures with specific requirements and constraints. 

This report serves as the initial step in a broader strategy to manage and guide the transition to 
post-quantum cryptography. This transition will involve the adoption of new PQC algorithms as 
well as the careful deprecation, controlled legacy use, and eventual removal of quantum-
vulnerable algorithms that are currently widespread in technological infrastructures. Public-
private engagement will be crucial on the path toward PQC. Additionally, this report continues 
NIST’s ongoing dialogue with industry, standards organizations, and relevant agencies to 
develop a clear roadmap and realistic timeline for transitioning to PQC. NIST is committed to 
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adopting PQC with the need to minimize disruption across critical systems. 

1.2. Audience 

This document is intended for a broad audience, including federal agencies, technology 
providers, standards organizations, and Cryptographic Module Validation Program (CMVP) 
laboratories. These groups play a critical role in preparing for the migration to PQC by 
developing, implementing, and standardizing the new cryptographic methods necessary to 
secure information in the era of quantum computing. This document should inform these 
stakeholder’s efforts and timelines for migrating information technology products, services, and 
infrastructure to PQC.  
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2.1. Cryptographic Standards 

Federal Information Processing Standards (FIPS) and the NIST Special Publication (SP) 800-series 
specify a broad set of cryptographic primitives, algorithms, and schemes, including many public-
key cryptosystems that will be deprecated and ultimately disallowed as part of the transition to 
post-quantum cryptography. This section identifies quantum-vulnerable algorithms in NIST’s 
existing cryptographic standards as well as the post-quantum algorithm standards that have 
been recently published. Section 4.1 provides the transition plan for the quantum-vulnerable 
algorithms in these standards. 

2.1.1. Digital Signature Algorithms  

Digital signature algorithms are used to provide identity authentication, integrity 
authentication, source authentication, and support for non-repudiation. Digital signature 
algorithms are used in conjunction with hash functions or eXtendable-Output Functions (XOFs) 
to sign messages of arbitrary length. 

NIST-approved digital signature algorithms were historically specified in FIPS 186 [FIPS186]. The 
current revision of FIPS 186 specifies the Elliptic Curve Digital Signature Algorithm (ECDSA) and 
adopts the RSA algorithm specified in RFC 8017 and PKCS 1 (version 1.5 and higher) and the 
Edwards-Curve Digital Signature Algorithm (EdDSA) specified in RFC 8032. The related SP 800-
186 [SP800186] specifies the elliptic curves to be used with ECDSA and the elliptic curve 
cryptography (ECC) based key establishment schemes in SP 800-56A [SP80056A]. These 
algorithms are vulnerable to Shor’s Algorithm on a cryptographically relevant quantum 
computer. 

FIPS 204 and 205 each specify quantum-resistant digital signature schemes. FIPS 204 specifies 
the Module-Lattice-Based Digital Signature Algorithm (ML-DSA) [FIPS204], which is derived 
from the CRYSTALS-Dilithium submission. FIPS 205 specifies the Stateless Hash-Based Digital 
Signature Algorithm (SLH-DSA), which is derived from the SPHINCS+ submission [FIPS205].  

SP 800-208, Recommendation for Stateful Hash-Based Signature Schemes, specifies two stateful 
hash-based signature (HBS) schemes — the Leighton-Micali Signature (LMS) system and the 
eXtended Merkle Signature Scheme (XMSS) — along with their multi-tree variants, the 
Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT) [SP800208]. These schemes 
are also resistant to attacks by quantum computers. In stateful hash-based signature (HBS) 
schemes, the HBS private key consists of a large set of one-time signature (OTS) private keys. 
The security of these schemes relies on the signer to ensure that no individual OTS key is ever 
used to sign more than one message. Due to this need to maintain state, HBS schemes are not 
intended for general use. 

In the future, NIST intends to develop a FIPS that specifies a digital signature algorithm derived 
from FALCON as an additional alternative to these standards. In addition, NIST is evaluating 
other proposed digital signature algorithms for possible standardization through the Additional 
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2.1.2. Key Establishment  

Key establishment is the means by which keys are generated and provided to the entities that 
are authorized to use them. Current NIST-approved key-establishment schemes are specified in 
SP 800-56A, Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete 
Logarithm-Based Cryptography [SP80056A], and SP 800-56B, Recommendation for Pair-Wise 
Key Establishment Schemes Using Integer Factorization Cryptography [SP80056B]. 

SP 800-56A specifies key-establishment schemes based on the discrete logarithm problem over 
finite fields and elliptic curves, including several variations of Diffie-Hellman and Menezes-Qu-
Vanstone (MQV) key establishment schemes.  

SP 800-56B specifies key-establishment schemes based on the RSA public key cryptosystem. 
This publication includes approved methods for both key agreement and key transport. 

FIPS 203 specifies a cryptographic scheme called Module-Lattice-Based Key-Encapsulation 
Mechanism (ML-KEM), which is derived from the CRYSTALS-KYBER submission. A key-
encapsulation mechanism (KEM) is a particular type of key-establishment scheme that can be 
used to establish a shared secret key between two parties communicating over a public 
channel. The fourth round of the NIST PQC Standardization process is evaluating additional KEM 
algorithms, and NIST anticipates selecting one or more alternatives to ML-KEM in the future. 

2.1.3. Symmetric Cryptography 

Symmetric-key algorithms (sometimes called secret-key algorithms) use a single key to both 
apply cryptographic protection and to remove or check the protection (i.e., the same key is 
used for a cryptographic operation and its inverse). For example, the key used to encrypt data 
(i.e., apply protection) is also used to decrypt the encrypted data (i.e., remove the protection). 
In the case of encryption, the original data is called the plaintext, while the encrypted form of 
the data is called the ciphertext. The key must be kept secret if the data is to remain protected. 
Several classes of symmetric-key algorithms have been approved: those based on block cipher 
algorithms (e.g., AES) and those based on the use of hash functions (e.g., a keyed-hash message 
authentication code based on a hash function).  

Symmetric-key algorithms are used for: 

• Block ciphers 

• Hash functions 

• Encryption using block cipher modes of operation 

• Data authentication using block cipher modes of operation 

• Data authentication using key-hash constructions 
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• Key wrapping 

• Random bit generation 

As discussed in Sec. 4.1.3, the existing algorithm standards for symmetric cryptography are less 
vulnerable to attacks by quantum computers. NIST does not expect to need to transition away 
from these standards as part of the PQC migration.   

2.2. Cryptographic Technologies and Components 

Once PQC algorithms have been standardized, applications will need to be modified to make 
use of them. Many applications include components that are based on standardized protocols 
and security technologies that will need to be revised to support the use of the PQC algorithms. 
In addition, applications are built on top of software cryptographic libraries that either provide 
the implementations of the cryptographic algorithms or provide an interface to hardware 
cryptographic modules. Any software cryptographic libraries and hardware cryptographic 
modules used by an application will also need to be revised to support the PQC algorithms. 
Applications may also rely upon infrastructure components, such as public key infrastructures 
(PKI), that would need to be updated to support the PQC algorithms before the applications 
themselves can migrate to using the PQC algorithms. 

2.2.1. Network Protocol and Security Technology Standards 

Network protocols and security technology standards define the rules for data exchange over 
networks and ensure secure and reliable communication. Examples include Transport Layer 
Security (TLS), Secure Shell (SSH), Internet Protocol Security (IPsec), and Cryptographic Message 
Syntax (CMS). 

These protocols and security technologies often rely on classical cryptographic algorithms that 
are vulnerable to quantum attacks. Updating them to incorporate PQC algorithms is essential to 
maintaining data confidentiality and integrity. This involves revising protocol specifications to 
support new key exchange mechanisms and authentication methods that are quantum-
resistant. In some cases, this will involve simply assigning an identifier for the new algorithm. In 
other cases, more significant changes will be required to accommodate the larger sizes of the 
PQC algorithms or as a result of the new algorithms having different interfaces. 

2.2.2. Software Cryptographic Libraries 

Software cryptographic libraries are collections of cryptographic algorithms and protocols that 
are implemented in software to provide essential cryptographic functions to applications. 
OpenSSL, BoringSSL, Libsodium, and the Java Cryptography Architecture (JCA) are a few 
examples of cryptographic libraries that are used to provide cryptographic support for 
applications.  
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Updating them ensures that developers have access to quantum-resistant cryptographic 
functions without implementing complex algorithms themselves. This transition involves adding 
new algorithms, optimizing their implementations for performance, and ensuring those 
implementations are secure against side-channel attacks. 

2.2.3. Cryptographic Hardware 

Cryptographic hardware modules, such as hardware security modules (HSMs) and Trusted 
Platform Modules (TPMs), provide secure environments for performing cryptographic 
operations and storing sensitive keys. They are used in various applications, from securing 
server infrastructure to protecting cryptographic keys on personal devices. 

Hardware modules must be upgraded or redesigned to support PQC algorithms, which often 
have larger key sizes and different computational requirements. This includes updating 
firmware or hardware to handle new algorithms and ensuring that the modules can perform 
quantum-resistant cryptographic operations efficiently while maintaining the high security 
standards expected of these devices. 

2.2.4. PKI and Other Infrastructure Components 

Public key infrastructure (PKI) systems manage digital certificates and public-private key pairs to 
enable secure communication and authentication across networks. Other infrastructure 
components include certification authorities (CAs), registration authorities, key management 
systems, and directory services. 

PKI components must be updated to issue, distribute, and manage certificates that use PQC 
algorithms and to sign certificates and revocation status information using PQC algorithms. This 
includes supporting new cryptographic algorithms in certificate issuance processes and 
modifying validation and revocation mechanisms. Ensuring backward compatibility and 
interoperability during the transition period is crucial to maintaining trust and security across 
the network. 

2.2.5. IT Applications and Services 

IT applications and services encompass a wide array of software and platforms used by 
organizations, including web applications, databases, communication tools, cloud services, and 
enterprise software. These applications rely on cryptography for securing data, authenticating 
users, and ensuring secure transactions. 

Applications and services must be modified to support PQC algorithms for encryption, digital 
signatures, and key exchange. This requires updating the underlying cryptographic 
implementations, adjusting to changes in key sizes and algorithm performance, and ensuring 
compatibility with updated protocols and libraries. Developers need to refactor code, conduct 
extensive testing, and potentially redesign user interfaces to accommodate these changes. 
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Even though there are no existing cryptographically relevant quantum computers that currently 
threaten levels of security, it will take a significant amount of time to transition to new post-
quantum algorithms. Past cryptographic migrations have taken over a decade, and this more 
complex migration will likely take at least that long.   

Mosca’s theorem emphasizes the urgency of migrating to post-quantum algorithms by 
introducing a simple but powerful timeline: if “X” represents the number of years that data 
must be kept secure, and “Y” is the estimated time needed to complete the transition, then 
organizations must start transitioning to post-quantum algorithms before X + Y exceeds the 
expected time Z for a cryptographically relevant quantum computer to be built. This means that 
even if quantum computers are a decade away, organizations must begin the migration to post-
quantum cryptography today to avoid having their encrypted data exposed once quantum 
computers become operational in the future. This threat, often referred to as “harvest now, 
decrypt later,” underscores the necessity of acting immediately, especially for data with long-
term sensitivity, such as government secrets or medical records. Ensuring security today will 
safeguard it for the future. 

3.1. Use Cases 

3.1.1. Code Signing 

Code signing involves digitally signing executables and software packages to verify the author’s 
identity and ensure that the code has not been tampered with. This process is critical for 
maintaining trust in software distribution channels and preventing the spread of malicious 
code. 

The devices that install and execute this code need the ability to verify the signatures on the 
code. In some cases, it is not feasible to update the code that performs the signature 
verification after the devices have been manufactured. When this is the case, it is important for 
the devices to be designed to require quantum-resistant signatures on the executables, if there 
is a risk that the devices will still be in use after cryptographically relevant quantum computers 
become available. 

3.1.2. User and Machine Authentication 

User and machine authentication systems verify identities to control access to resources. This 
often involves cryptographic protocols that use asymmetric algorithms for secure key exchange 
and authentication, ensuring that only authorized users or devices can access sensitive data or 
services. Depending on the protocol, authentication may be performed using either a digital 
signature algorithm or a key-establishment scheme. 

Unlike with encryption, where there is a threat of “harvest now, decrypt later,” an 
authentication system remains secure as long as the cryptographic algorithms and keys used to 
perform the authentication are secure when the authentication is performed. Authentication 
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capable of breaking current, quantum-vulnerable algorithms become available, at which point 
authentication using these algorithms will need to be disabled.  

Supporting quantum-resistant algorithms for authentication will require upgrades to both the 
system performing and accepting the authentication, as well as to any supporting 
infrastructure, such as a PKI. It may also require obtaining hardware cryptographic tokens that 
support the quantum-resistant algorithms. 

3.1.3. Network Security Protocols 

Network security protocols like TLS and virtual private networks secure data transmission over 
public networks. They use cryptographic techniques to provide confidentiality, integrity, and 
authentication between communicating parties. 

Modern network security protocols tend to use separate asymmetric keys for key 
establishment and authentication. While long-term keys are used for authentication, key-
establishment keys are used for a short period of time, usually for a single key establishment. 
This provides the property of forward secrecy, where the compromise of a long-term key does 
not result in the compromise of communication sessions that occurred before the compromise. 

As symmetric keys that are established through the key-establishment process are used to 
provide confidentiality, the “harvest now, decrypt later” threat needs to be considered when 
determining a migration timeline for the key-establishment scheme. The cryptographic 
algorithm used for authentication may be transitioned at a different time, and for that the 
considerations in Sec. 3.1.2 apply. 

3.1.4. Email and Document Signing and Encryption 

Email and document signing employ digital signatures to verify the authenticity and integrity of 
electronic communications and documents. Common algorithms like RSA and ECDSA are widely 
used to create a cryptographic binding between the content and the sender’s identity, ensuring 
that the message has not been altered and that it originates from a legitimate source.  

Secure/Multipurpose Internet Mail Extensions (S/MIME) is a standard for public-key encryption 
and the signing of MIME data. It provides end-to-end encryption and authentication for email 
and file exchanges to ensure that only intended recipients can access the content. As with other 
applications providing data confidentiality, email encryption is subject to “harvest now, decrypt 
later.” 

3.2. PQC-Classical Hybrid Protocols  

The migration to post-quantum cryptography may initially include hybrid solutions that 
incorporate the use of quantum-resistant and quantum-vulnerable algorithms when 
establishing cryptographic keys or generating digital signatures. These hybrid solutions are 
typically designed to remain secure if at least one of the component algorithms is secure.  
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flaw in one of the underlying component algorithms. It may also provide a path for 
accommodating the use of PQC if sector-specific requirements still require legacy quantum-
vulnerable algorithms. However, hybrid solutions add complexity to implementations and 
architectures, which can increase security risks and costs during the transition to PQC. When 
used, hybrid solutions are typically expected to be temporary measures that lead to a second 
transition to cryptographic tools that use only PQC algorithms. 

These trade-offs will vary based on the hybrid techniques used, the applications involved, and 
the vendor and user communities that will develop and deploy them. Implementers and 
standards organizations that specify cryptographic protocols and technologies need to carefully 
consider the security, costs, and complexity of hybrid solutions in their environments.  

Industry and standards organizations are considering a variety of techniques for hybrid 
solutions with key-establishment schemes and digital signatures. NIST intends to accommodate 
the use of hybrid techniques in its cryptographic standards to facilitate the transition to PQC 
where their use is desired. 

Whether hybrid solutions are used or not, quantum-vulnerable and quantum-resistant 
cryptographic algorithms will be fielded and used alongside each other in many applications 
and systems during the transition to PQC to facilitate interoperability. For example, many 
network security protocols support the use of multiple sets of cryptographic algorithms and 
allow two communicating parties to negotiate which algorithms to use in each session. 
Similarly, during the transition to PQC, public key infrastructures using quantum-vulnerable 
digital signature algorithms are expected to be deployed and used alongside those using 
quantum-resistant algorithms. Such approaches are not considered hybrid solutions if each 
session only uses a single cryptographic algorithm for key establishment and/or digital 
signatures. 

3.2.1. Hybrid Key-Establishment Techniques 

A hybrid key-establishment mode is defined here to be a key establishment scheme that is a 
combination of two or more components that are themselves cryptographic key-establishment 
schemes. The hybrid key-establishment scheme becomes a composite of these component 
schemes.  

NIST currently allows a generic composite key-establishment technique described in SP 800-56C 
[SP80056C]. Assume that the value Z is a shared secret that was generated as specified by SP 
800-56A or 800-56B and that a shared secret T is generated or distributed through other 
schemes. The value Z’=Z||T may then be treated as a shared secret and any of the key 
derivation methods given in SP 800-56C may be applied to Z’ to derive secret keying material. 

NIST intends to update SP 800-56C so that the value Z may be generated as specified by any 
current and future NIST key-establishment standards. This will include SP 800-56A, SP 800-56B, 
FIPS 203, and any additional post-quantum key-establishment standards. The desired property 
of hybrid techniques is that derived keys remain secure if at least one of the component 
schemes is secure. Security properties can be complex, and for composite key establishment 
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application in mind. NIST intends to offer guidance on various key combiners in the forthcoming 
SP 800-227, Recommendations for Key Encapsulation Mechanisms.  

Additionally, the output of the key-establishment scheme specified in FIPS 203 is a shared 
secret key which is a shared secret that does not require further key derivation. NIST 
emphasizes that any shared secret key generated as specified in FIPS 203 may be used as the 
value Z in the generic composite mode described in SP 800-56C. These same properties will 
apply to any future FIPS which standardize KEMs. 

3.2.2. Hybrid Digital Signature Techniques 

Common techniques for hybrid digital signatures involve the use of dual signatures, which 
consist of two or more signatures on a common message. It may also be known as a hybrid 
signature or composite signature. The verification of the dual signature requires all of the 
component signatures to be successfully verified, such as by creating a single logical composite 
signature from two or more component signature algorithms. 

Dual signatures could be used to sign user data (e.g., a document or e-mail) or digital 
certificates that contain references to user key pairs within a PKI. Existing NIST standards and 
guidelines accommodate their use provided that at least one component digital signature 
algorithm is NIST-approved. 

NIST leaves the decision to each specific application as to whether it can afford the 
implementation cost, performance reduction, and engineering complexity (including proper 
and independent security reviews) of a hybrid mode for key establishment or the use of dual 
signatures. To assist external parties that desire such a mechanism, NIST will accommodate the 
use of a hybrid key-establishment mode and dual signatures in FIPS 140 validation when 
suitably combined with a NIST-approved scheme. 
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NIST’s cryptography standards provide comprehensive guidance on a broad spectrum of 
cryptographic mechanisms that are essential for securing sensitive information across both 
federal and nonfederal systems. These standards cover fundamental areas that are crucial for 
ensuring the confidentiality, integrity, and authenticity of data, such as encryption algorithms, 
digital signatures, hash functions, key establishment, and random number generation. 
Additionally, NIST’s standards define key-management practices and offer frameworks for 
securely generating, storing, distributing, and destroying cryptographic keys.  

Beyond individual algorithms, NIST standards provide guidance on cryptographic protocols that 
secure communications, such as the TLS protocol, which protects internet data exchanges. They 
also specify requirements for cryptographic modules through the CMVP to ensure that 
implementations meet stringent security standards. NIST has also developed PQC standards to 
safeguard systems against future quantum attacks. Through collaboration with industry, 
academia, and other stakeholders, NIST continually updates its cryptographic standards to 
address evolving security threats and technological advances. 

National Security Memorandum 10 (NSM-10) establishes the year 2035 as the primary target 
for completing the migration to PQC across Federal systems [NSM10]:  

“Any digital system that uses existing public standards for public‑key cryptography, or 
that is planning to transition to such cryptography, could be vulnerable to an attack by a 
Cryptographically Relevant Quantum Computer (CRQC). To mitigate this risk, the United 
States must prioritize the timely and equitable transition of cryptographic systems to 
quantum-resistant cryptography, with the goal of mitigating as much of the quantum 
risk as is feasible by 2035.” 

This date reflects the urgency of transitioning to cryptographic methods that can withstand 
future quantum threats. However, it is important to recognize that migration timelines may 
vary based on the specific use case or application. Some systems, particularly those with long-
term confidentiality needs or more complex cryptographic infrastructures, may require earlier 
transitions, while others may adopt PQC at a slower pace due to legacy constraints or lower risk 
profiles. Flexibility in migration planning is essential to balance the urgency of securing critical 
systems with the practical challenges that different sectors face during this transition. NIST will 
work to ensure that these varying timelines are acknowledged and supported while maintaining 
the overall goal of achieving widespread PQC adoption by 2035. 

4.1. NIST Cryptographic Algorithm Standards and Guidelines 

SP 800-131A [SP800131A]  [SP800131A] describes the transitions associated with the use of 
cryptography by Federal Government agencies to protect controlled unclassified information. 
The document addresses the use of algorithms and key lengths specified in FIPS and NIST SPs. 
During the transition to post-quantum cryptography, NIST will revise SP 800-131A with more 
detailed guidelines and schedules.  
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800-131A to indicate the approval status of an algorithm: 

• Acceptable means that the algorithm and key length/ strength in a FIPS or SP are 
approved for use in accordance with any associated guidance.  

• Deprecated means that the algorithm and key length/strength may be used, but there is 
some security risk. The data owner must examine this risk potential and decide whether 
to continue to use a deprecated algorithm or key length. 

• Disallowed means that the algorithm, key length/strength, parameter set, or scheme is 
no longer allowed for the stated purpose. 

• Legacy use means that the algorithm, scheme, or parameter set may only be used to 
process already protected information (e.g., to decrypt ciphertext data or to verify a 
digital signature). 

 
Transition schedules are primarily driven by the level of cryptographic protection that a given 
algorithm and associated parameter set can provide, which is described as a rough measure 
known as security strength. Historically, the security strength that an algorithm could provide 
was defined in terms of the amount of work (i.e., the number of operations) that is required to 
break the algorithm (i.e., an algorithm has s bits of security strength if breaking the algorithm 
requires 2s operations of some kind, where s = 112, 128, 192, or 256). However, there are 
significant uncertainties in estimating the security strengths of post-quantum cryptosystems 
given the difficulty of accurately predicting the performance characteristics of future quantum 
computers, such as their cost, speed, and memory size. 

While NIST guidelines continue to use bit-length security strengths to describe the level of 
protection offered by an algorithm and parameter set against attacks by classical computers, 
post-quantum security is described using a collection of broad security categories. Each 
category is defined by a comparatively easy-to-analyze reference primitive, whose security 
serves as a floor for a wide variety of metrics that are deemed potentially relevant to practical 
security. NIST based its classification on the range of security strengths offered by the existing 
standards in symmetric cryptography. Table 1 provides a summary of these security categories.  

Table 1: Post-Quantum Security Categories 

Security 
Category Attack Type Example 

1 Key search on a block cipher with a 128-bit key AES-128 

2 Collision search on a 256-bit hash function SHA-256 

3 Key search on a block cipher with a 192-bit key AES-192 

4 Collision search on a 384-bit hash function SHA3-384 

5 Key search on a block cipher with a 256-bit key AES-256 
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Table 2 lists currently approved quantum-vulnerable digital signature algorithm standards.  

 

Table 2: Quantum-vulnerable digital signature algorithms 

 

 

NIST’s long-term cryptographic algorithm transition plans are outlined in SP 800-57pt1 (Part 1) 
[SP80057]. These guidelines had projected that NIST would disallow public-key schemes that 
provide 112 bits of security on January 1, 2031. However, based on the need to migrate to 
quantum-resistant algorithms during this timeframe, NIST intends to instead deprecate classical 
digital signatures at the 112-bit security level. Organizations may continue using these 
algorithms and parameter sets as they migrate to the post-quantum signatures identified in 
Table 3. 

 

Table 3. Post-quantum digital signature algorithms 

Digital Signature 
Algorithm Family Parameters Transition 

ECDSA 
[FIPS186] 

112 bits of security strength 
Deprecated after 2030 

Disallowed after 2035 

≥ 128 bits of security strength Disallowed after 2035 

EdDSA 
[FIPS186] ≥ 128 bits of security strength Disallowed after 2035 

RSA 
[FIPS186] 

112 bits of security strength 
Deprecated after 2030 

Disallowed after 2035 

≥ 128 bits of security strength Disallowed after 2035 

Digital Signature 
Algorithm Family 

Parameter Sets Security 
Strength 

Security 
Category 

ML-DSA 
[FIPS204] 

ML-DSA-44 128 bits 2 

ML-DSA-65 192 bits 3 

ML-DSA-87 256 bits 5 
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4.1.2. Key Establishment 

Table 4 lists currently approved quantum-vulnerable key-establishment.  

Table 4: Quantum-vulnerable key-establishment schemes 

 

Digital Signature 
Algorithm Family 

Parameter Sets Security 
Strength 

Security 
Category 

SLH-DSA 
[FIPS205] 

SLH-DSA-SHA2-128[s/f] 
SLH-DSA-SHAKE-128[s/f] 

128 bits 1 

SLH-DSA-SHA2-192[s/f] 
SLH-DSA-SHAKE-192[s/f] 

192 bits 3 

SLH-DSA-SHA2-256[s/f] 
SLH-DSA-SHAKE-256[s/f] 

256 bits 5 

LMS, HSS 
[SP800208] 

With SHA-256/192 
With SHAKE256/192 

192 bits 3 

With SHA-256 
With SHAKE256 

256 bits 5 

XMSS, XMSSMT 

[SP800208] 
With SHA-256/192 
With SHAKE256/192 

192 bits 3 

With SHA-256 
With SHAKE256 

256 bits 5 

Key 
Establishment 

Scheme 
Parameters Transition 

Finite Field  
DH and MQV 
[SP80056A] 

112 bits of security strength 
Deprecated after 2030 

Disallowed after 2035 

≥ 128 bits of security strength Disallowed after 2035 

Elliptic Curve 
DH and MQC 
[SP80056A] 

112 bits of security strength 
Deprecated after 2030 

Disallowed after 2035 

≥ 128 bits of security strength Disallowed after 2035 

RSA 
[SP80056B] 

112 bits of security strength 
Deprecated after 2030 

Disallowed after 2035 

≥ 128 bits of security strength Disallowed after 2035 
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rather than fully disallow classical key-establishment schemes at the 112-bit security level.  
Organizations may continue using these algorithms and parameter sets as they migrate to ML- 
KEM or other approved quantum-resistant techniques. However, in order to mitigate the risk of  
“harvest now, decrypt later” attacks on network communications, application-specific  
guidance, as described in Sec. 4.2, may require or recommend migration to quantum-resistant  
key establishment schemes before the classical schemes are generally disallowed.   

Table 5 lists current quantum-resistant key establishment schemes. At this time, ML-KEM is the  
only approved post-quantum key-establishment scheme based on public key cryptography.  
Additional algorithms are still being considered as part of the fourth round of the NIST PQC  
Standardization process. NIST expects to select one or more alternatives to ML-KEM in the  
future.  

Table 5: Post-quantum key-establishment schemes  

  

4.1.3. Symmetric Cryptography   

NIST’s existing standards in symmetric cryptography — including hash functions, XOFs, block  
ciphers, KDFs, and DRBGs — are significantly less vulnerable to known quantum attacks than  
the public-key cryptography standards in SP 800-56A, SP 800-56B, and FIPS 186. In particular, all  
NIST-approved symmetric primitives that provide at least 128 bits of classical security are  
believed to meet the requirements of at least Category 1 security within the system of five  
security strength categories for evaluating parameter sets in the NIST PQC standardization  
process (see Table 1). NIST has a few symmetric cryptography standards at the 112-bit security  
level, which will be disallowed in 2030. Applications should move away from these when  
transitioning to post-quantum cryptography.  

Table 6: Block ciphers  

Key Establishment Scheme Parameter Sets Security Strength Security Category 

ML-KEM 
[FIPS203] 

ML-KEM-512 128 bits 1 

ML-DSA-768 192 bits 3 

ML-DSA-1024 256 bits 5 

Block Cipher Parameter Sets Security 
Strength 

Security 
Category 

AES 
[FIPS197] 

AES-128 128 bits 1 

AES-192 192 bits 3 

AES-256 256 bits 5 
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Table 7: Hash functions and XOFs 

 

4.2. Application-Specific Standards and Guidelines 

NIST develops and maintains standards and guidelines addressing cryptography used in certain 
security technologies, protocols, and systems. For example, FIPS 201-3 and its supporting 
technical guidelines in NIST Special Publications specify the Personal Identity Verification 
standard, including security and interoperability requirements for PKI-based credentials used to 
authenticate federal employees and contractors. Other Special Publications provide guidance 
on the configuration and use of cryptographic technologies, such as NIST SP 800-52 Revision 2 
on the use of TLS servers and clients. These standards and guidelines are regularly updated to 
address changes to underlying standards and technologies as well as new threats. 

Throughout the migration to PQC, NIST will revise its documents to provide more detailed 
guidelines for deprecating quantum-vulnerable algorithms, tailored to relevant applications. 
While NIST’s cryptographic algorithm standards may continue to specify quantum-vulnerable 

Hash/XOF  
Algorithm 

Family 

Variants Collision  
Security 
Strength 

Collision 
Security 
Category 

Preimage 
Security 
Strength 

Preimage 
Security 
Category 

SHA-1 
[FIPS180] 

SHA-1 80 bits < 1 160 bits 1 

SHA-2 
[FIPS180] 

SHA-224 
SHA-512/224 

112 bits < 1 224 bits 3 

SHA-256 
SHA-512/256 

128 bits 2 256 bits 5 

SHA-384 192 bits 4 384 bits 5 

SHA-512 256 bits 5 512 bits 5 

SHA-3 
[FIPS202] 

SHA3-224 112 bits < 1 224 bits 3 

SHA3-256 128 bits 2 256 bits 5 

SHAKE128 128 bits 2 128 bits 2 

SHA3-384 192 bits 4 384 bits 5 

SHA3-512 256 bits 5 512 bits 5 

SHAKE256 256 bits 5 512 bits 5 
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guidelines may specify earlier transitions for certain cryptographic algorithms, techniques, and 
protocols used within these applications. These guidelines will be developed based on the 
expected impact that a cryptographically relevant quantum computer would have on these 
applications as well as the level of support for PQC in the relevant standards, products, and 
services. NIST expects to prioritize the migration to quantum-resistant key-establishment 
schemes within these updates to protect against “harvest now, decrypt later” attacks, 
particularly in interactive protocols like TLS and IKE. 

NIST will also coordinate with standards-developing organizations and industry to ensure that 
critical security protocols and technologies are updated to support PQC in a timely manner, 
recognizing that different application areas will have different risks, security needs, and 
adoption challenges.  
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Appendix A. Glossary 645 
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679 
680 
681 

682 
683 

684 
685 
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acceptable 
Approved for use. An allowed algorithm and key length/strength in a FIPS or SP is approved for use in accordance 
with any associated guidance. 

approved 
FIPS-approved and/or NIST-recommended. An algorithm or technique that is either 1) specified in a FIPS or NIST 
recommendation, 2) adopted in a FIPS or NIST recommendation, or 3) specified in a list of NIST-approved security 
functions. 

asymmetric (cryptography) 
Cryptography that uses two separate keys to exchange data — one to encrypt or digitally sign the data and one to 
decrypt the data or verify the digital signature. Also known as public-key cryptography. 

block cipher 
An invertible symmetric-key cryptographic algorithm that transforms one block of information at a time using a 
cryptographic key. The resulting output block is the same length as the input block. 

certificate 
A set of data that uniquely identifies a public key that has a corresponding private key and an owner that is 
authorized to use the key pair. The certificate contains the owner’s public key and possibly other information and 
is digitally signed by a certification authority (i.e., a trusted party), thereby binding the public key to the owner. 

cryptographic module 
The set of hardware, software, and/or firmware that implements approved cryptographic functions (including key 
generation) that are contained within the cryptographic boundary of the module. 

cryptographically relevant quantum computer 
A quantum computer which is capable of actually attacking real world cryptographic systems that would be 
infeasible to attack with a normal computer. 

deprecated 
The algorithm and key length may be used, but the user must accept some security risk. The term is used when 
discussing the key lengths or algorithms that may be used to apply cryptographic protection. 

digital certificate 
See certificate. 

digital signature 
The result of a cryptographic transformation of data that, when properly implemented, provides a mechanism to 
verify origin authenticity and data integrity and to enforce signatory non-repudiation. 

disallowed 
The algorithm or key length is no longer allowed for applying cryptographic protection. 

dual signature 
A dual signature consists of two (or more) signatures on a common message. It may also be known as a hybrid 
signature or composite signature. 

encryption 
The process of transforming plaintext into ciphertext using a cryptographic algorithm and key. 

eXtendable-Output Function (XOF) 
A function on bit strings in which the output can be extended to any desired length. 
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forward secrecy 687 
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704 
705 
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708 

709 
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716 
717 
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720 

721 
722 

723 
724 

725 
726 
727 

Providing protection against the use of compromised old keys that could be used to attack the newer derived keys 
still in use for integrity and confidentiality protection. 

hash function 
A function on bit strings in which the length of the output is fixed. Approved hash functions (such as those 
specified in FIPS 180 and FIPS 202) are designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to find any input that maps to any new pre-specified output. 

2. (Collision-resistant) It is computationally infeasible to find any two distinct inputs that map to the same 
output. 

KEM combiner 
A function that takes in two or more shared secret keys and returns a combined shared secret key. 

key agreement 
A (pair-wise) key-establishment procedure where the resultant secret keying material is a function of information 
contributed by two participants so that no party can predetermine the value of the secret keying material 
independently from the contributions of the other party. Contrast with key-transport. 

key derivation 
The process of deriving a key in a non-reversible manner from shared information, some of which is secret. 

key encapsulation mechanism (KEM) 
A set of three cryptographic algorithms (KeyGen, Encaps, and Decaps) that can be used by two parties to establish 
a shared secret key over a public channel. 

key establishment 
A procedure that results in establishing secret keying material that is shared among different parties. 

key transport 
A (pair-wise) key-establishment procedure whereby one party (the sender) selects a value for the secret keying 
material and then securely distributes that value to another party (the receiver). Contrast with key agreement. 

key wrapping 
A method of protecting secret keying material (along with associated integrity information) that provides both 
confidentiality and integrity protection when using symmetric-key algorithms. 

legacy use 
The algorithm or key length may be used only to process already protected information (e.g., to decrypt ciphertext 
data or to verify a digital signature). 

message authentication code (MAC) 
A cryptographic checksum on data that uses a symmetric key to detect both accidental and intentional 
modifications of data. 

mode of operation 
An algorithm for the cryptographic transformation of data that features a symmetric key block cipher. 

public key infrastructure (PKI) 
A framework that is established to issue, maintain and revoke public key certificates. 

public key cryptography 
 Cryptography that uses two separate keys to exchange data — one to encrypt or digitally sign the data and one to 
decrypt the data or verify the digital signature. Also known as asymmetric cryptography. 
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security category 728 
729 

730 
731 
732 

733 
734 
735 

736 
737 
738 
739 

740 
741 
742 

A number associated with the security strength of a post-quantum cryptographic algorithm, as specified by NIST. 

security strength 
A number associated with the amount of work (i.e., the number of operations) that is required to break a 
cryptographic algorithm or system. 

shared secret 
A secret value that has been computed during a key-establishment scheme, is known by both participants, and is 
used as input to a key-derivation method to produce keying material. 

shared secret key 
A shared secret that can be used directly as a cryptographic key in symmetric-key cryptography. It does not require 
additional key derivation. The shared secret key must be kept private and must be destroyed when no longer 
needed. 

symmetric key cryptography 
A cryptographic algorithm that uses the same secret key for its operation and, if applicable, for reversing the 
effects of the operation (e.g., an AES key for encryption and decryption). 
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