
NIST Internal Report
NIST IR 8540

Report on Secure Hardware Assurance
Reference Dataset (SHARD) Program

Paul E. Black
Vadim Okun

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8540

https://doi.org/10.6028/NIST.IR.8540
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8540

NIST Internal Report
NIST IR 8540

Report on Secure Hardware Assurance
Reference Dataset (SHARD) Program

Paul E. Black
Vadim Okun

Software and Systems Division
Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.IR.8540

October 2024

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.IR.8540

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in
this paper in order to specify the experimental procedure adequately. Such identification does not imply

recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements

NIST Technical Series Publication Identifier Syntax

How to cite this NIST Technical Series Publication:
Paul E. Black, Vadim Okun (2024) Report on Secure Hardware Assurance Reference Dataset (SHARD)
Program. (National Institute of Standards and Technology, Gaithersburg, MD), NIST IR
8540. https://doi.org/10.6028/NIST.IR.8540

Author ORCID iDs
Paul E. Black: 0000-0002-7561-6614
Vadim Okun: 0000-0003-2391-3681

Publication History
Approved by the NIST Editorial Review Board on 2024-09-23

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
https://doi.org/10.6028/NIST.IR.8540

NIST IR 8540
October 2024

Abstract

Significant vulnerabilities have been found in chips. Computer programs and methods have
been developed to prevent, find, and mitigate them. We proposed Secure Hardware Assur-
ance Reference Dataset (SHARD) as a repository of reference examples (test cases) of both
vulnerable and “clean” hardware chip designs. SHARD test cases will enable tool makers

to test their chip designing and checking techniques and allow chip designers to evaluate
those tools. SHARD received preliminary funding through NIST Information Technology
Laboratory’s (ITL) Building The Future (BTF) 2024 program. This reports what we achieved
with that funding.

Keywords

Hardware assurance; hardware vulnerabilities.

Acknowledgments

We thank A.J. Stein, Noah Masom, and Michael Ogata for their contributions.

i

NIST IR 8540
October 2024

Table of Contents

1. Introduction . 1

2. Accomplishments . 1

2.1. Learn About Formats . 1

2.2. Choose Format . 2

2.3. Decide Bug Representation . 2

2.4. Choose Scale of Cases . 2

2.5. Identify Designs . 2

2.6. Papers . 3

3. Future Tasks . 3

References . 4

Appendix A. Web Sites with Possible Designs . 6

Appendix B. Annotated Bibliography of Relevant Papers 7

Appendix C. Annotated Bibliography of Papers Unlikely to Help Further 9

ii

NIST IR 8540
October 2024

1. Introduction

The 2022 United States Creating Helpful Incentives to Produce Semiconductors (CHIPS)
act proposes to vastly reduce the number of errors in digital designs, among other goals.
CHIPS aims for far more powerful design checking tools. Our experience in software as-
surance tools is that developing and evaluating assurance tools requires a large collection
of examples with known bugs. We learned much from operating the Software Assurance
Reference Dataset (SARD) [1] for almost 20 years.

We aim to establish an analogous collection of buggy hardware designs called the Secure
Hardware Assurance Reference Dataset (SHARD): “... there are no publicly available bench-
marks that satisfy our requirements.” [2]. Additionally, it is valuable to the community
to collect examples since web-based resources disappear as people change positions and
funded programs end. We were funded for the following steps:

• Learn what formats are used by hardware assurance tools.
• Identify a few good and bad designs.
• Choose a format (or formats) to make available.
• Decide or discover a format for reporting bugs, e.g., line number.
• Decide the scale of entry: circuits? modules? whole chips? chip sets?

We were awarded $50k through NIST Information Technology Laboratory’s (ITL) Building
The Future (BTF) 2024 program.

This summarizes our success and progress in fiscal 2024.

2. Accomplishments

2.1. Learn About Formats

The first task is to learn what formats and types of chips are most widely used by hardware
assurance tools.

The most widely used hardware design languages (HDL) are Verilog and VHDL (VHSIC (Very
High Speed Integrated Circuit) Hardware Description Language). SystemVerilog is also
widely useful. “SystemVerilog ... combines HDLs and a hardware verification language
... plus it takes an object-oriented programming approach. SystemVerilog includes ca-
pabilities for testbench development and assertion-based formal verification.” [3] Counts
of OpenCores [4] projects confirm this: it hosts 467 designs in Verilog and 471 in VHDL.
Other languages have fewer than 10. All three languages embody register-transfer level
(RTL) abstractions and have standards. VHDL is Institute of Electrical and Electronics Engi-
neers (IEEE) Standard 1076-2008. Verilog is IEEE 1364-2005 and is in the public domain.
SystemVerilog is IEEE 1800-2012. “Designing a complex SoC [System on a Chip] would be
impossible without these three specialized hardware description languages.” [3]

1

NIST IR 8540
October 2024

2.2. Choose Format

The next task is to choose the format and design level to make available.

Given the broad acceptance of the top two (or three, depending on how they are counted)
format, it is clear that Verilog and VHDL should be supported. SystemVerilog should be
supported, too.

Having chosen these, we will support any designs that can be expressed with these lan-
guages.

2.3. Decide Bug Representation

Next we must decide or discover a format for reporting bugs, e.g., line number.

Given the choice of languages, line number and error type are good places to start. Re-
calling what we learned from SARD, we should consider being able to report source, sink,
path, and contributing factors of bugs.

Surely existing chip assurance tools have some current format to report say, you have a
short circuit here. Maybe Static Analysis Results Interchange Format (SARIF) [5] can be
adapted, or maybe there is a SARIF-like format for hardware. This requires further investi-
gation.

2.4. Choose Scale of Cases

An additional task is to decide the scale of entries. That is, should entries be small circuits,
functional modules, whole chips, entire chip sets, or some combination?

We have no conclusion that, say, designs must be larger than 100 gates or that designs
should not be larger than 1 million gates. For now, we will accept all sizes of designs.

We have decided that designs must be all-digital for now; we will not accept designs with
analog components.

2.5. Identify Designs

The final task is to identify a few bad (or good) designs.

We found that thousands of designs are available through chip design or chip assurance
tool web sites. It remains to collect them, label them, and most importantly make them
useful.

2

NIST IR 8540
October 2024

Correctness is a high priority in hardware designs: it is nearly impossible1 to patch an
integrated circuit after it is manufactured. Many of the designs are even proven correct.

Because one strong motivation for these sites is correct designs, not many designs have
(identified) bu gs. To be useful for assurance tool development and evaluation, we must
insert errors into designs or generate buggy designs. Insertion may be accomplished with
automated tools or manually. Generation might be with a relatively simple macro effort
or a full-blown generator, like the Vulnerability Test Suite Generator (VTSG) [7].

Roughly by order of our interest, the sites are

• OpenCores [4], which has about 1000 designs. (The site is no longer actively main-

tained, and the designs are difficult to access.)
• Trust-Hub [8], which has 2815 designs under Hardware.
• Open Source Hardware Association, which has 2839 projects [9]. (Last update was

2021.)
• Library of Arithmetic Units in VHDL [10] and SystemVerilog [11].

Other sites that have additional designs that we may be able to use are

• NLnet Foundation [12]
• OpenTitan [13]
• Efabless [14]
• Micro-Electronics Security Training Center [15]
• System Security Integration Through Hardware and Firmware (SSITH) program [16]
• Synopsis [17]

Notes or comments on these sites are in App. A.

2.6. Papers

We reviewed many papers to find those that may be helpful. Appendix B is an annotated
bibliography of papers that are likely to be useful.

Other papers we reviewed are listed in App. C.

3. Future Tasks

Collect example designs. This task is more than downloading the designs. We must care-
fully document use rights for each design. Most designs also need to be prepared for use,
that is, by documenting existing bugs or injecting bugs.

We need to become familiar with one or more tools. Steps for that are:

1Systems can be designed with extra components, such as spare gates or whole processing elements. These
extra components are “patched in” to repair erroneous functions or add overlooked security processing.
See for example [6].

3

 NIST IR 8540
October 2024

1. List many hardware assurance tools.
2. Review their inputs and outputs.
3. Investigate if there is a SARIF-like format for bugs.
4. Gain in-group expertise about one, or a few, tools to get a better understanding of

what tools report, how they report them, and how useful they are. We will probably
select tools that we can use at no cost. For example, Makerchip [18] “provides free
and instant access to the latest … open-source tools and proprietary” tools, which
support Transaction-Level Verilog https://www.tl-x.org/ that “adds powerful con-
structs for pipelines and transactions.”

Identify a few entities who would use SHARD, that is, users. Get (informal) agreements
that they will collaborate.

Develop a searchable database and web application, analogous to SARD.

High-level languages, like Verilog and VHDL, are “compiled” to lower-level representations,
such as a netlist. This is analogous to C or Rust being compiled to binary. In the future, we
will support designs in netlist format, too.

The full power of quantum computing is only possible through careful design of low-level
circuits. More expressive languages will be used for quantum computing. Researchers
have not come up with a quantum von Neumann architecture upon which a high-level
quantum algorithm language can be based. Some proposed languages are Quipper [19],
Scaffold [20], and QWIRE [21]. A future quantum language may span what we now con-
sider both the software and hardware levels. In short, we must wait to see what quantum
language(s) we need in order to support our stakeholders.

References

[1] Software Assurance Reference Dataset (SARD). Accessed 25 April 2024. Available at
https://samate.nist.gov/SARD/.

[2] Ahmad H, Huang Y, Weimer W (2022) CirFix: automatically repairing defects in hard-
ware design code. Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS ’22),
pp 990–1003. https://doi.org/10.1145/3503222.3507763

[3] Dekker R (2014) What’s the difference between VHDL, Verilog, and SystemVerilog?,
https://www.electronicdesign.com/resources/whats-the-difference-between/articl
e/21800239/whats-the-difference-between-vhdl-verilog-and-systemverilog.

[4] OpenCores, https://opencores.org/.
[5] (2020) Static analysis results interchange format (SARIF) version 2.1.0, https://docs

.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html. Accessed 8 February 2022.
[6] Chean M, Fortes JAB (1990) A taxonomy of reconfiguration techniques for fault-

tolerant processor arrays. Computer 23(1):55–69. https://doi.org/10.1109/2.48799

4

https://www.tl-x.org/
https://samate.nist.gov/SARD/
https://doi.org/10.1145/3503222.3507763
https://www.electronicdesign.com/resources/whats-the-difference-between/article/21800239/whats-the-difference-between-vhdl-verilog-and-systemverilog
https://www.electronicdesign.com/resources/whats-the-difference-between/article/21800239/whats-the-difference-between-vhdl-verilog-and-systemverilog
https://opencores.org/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://doi.org/10.1109/2.48799

 NIST IR 8540
October 2024

[7] Black PE, Mentzer W, Fong E, Stivalet B (2023) Vulnerability test suite generator
(VTSG) version 3 (National Institute of Standards and Technology), NIST-IR 8493.
https://doi.org/10.6028/NIST.IR.8493

[8] Trust-Hub, https://www.trust-hub.org/.
[9] Open Source Hardware Association Certified open source hardware projects, https:

//certification.oshwa.org/list.html.
[10] Zimmermann R (1998) VHDL library of arithmetic units, https://iis-people.ee.ethz.c

h/~zimmi/arith_lib.html#library.
[11] Scheffler P, Sauter P (2024) Library of arithmetic units, https://github.com/pulp-plat

form/elau.
[12] (2024) NLnet foundation, https://nlnet.nl.
[13] OpenTitan, https://opentitan.org/.
[14] Efabless, https://efabless.com/.
[15] Micro-electronics security training center, https://mestcenter.org/.
[16] System Security Integration Through Hardware and Firmware (SSITH) program, https:

//www.darpa.mil/program/ssith/.
[17] Synopsis, https://www.synopsis.com/.
[18] Makerchip, https://www.makerchip.com/.
[19] Valiron B, Ross NJ, Selinger P, Alexander DS, Smith JM (2015) Programming the quan-

tum future. Commun ACM 58(8):52–61. https://doi.org/10.1145/2699415
[20] Javadi-Abhari A, Patil S, Kudrow D, Heckey J, Lvov A, Chong FT, Martonosi M (2014)

ScaffCC: a framework for compilation and analysis of quantum computing programs.
Proceedings of the 11th ACM Conference on Computing Frontiers CF ’14 (Association
for Computing Machinery, New York, NY, USA). https://doi.org/10.1145/2597917.25
97939

[21] Paykin J, Rand R, Zdancewic S (2017) QWIRE: a core language for quantum circuits.
SIGPLAN Notices 52(1):846–858. https://doi.org/10.1145/3093333.3009894

[22] Leenaars M (2024) Update on libre silicon and OSHW related efforts within NGI and
NLnet, https://wiki.f-si.org/index.php?title=2024-Talk-MichielLeenaars. Presented
at the Free Silicon Conference (FSiC) 2024.

[23] Introduction to OpenTitan, https://opentitan.org/book/doc/introduction.html.

5

https://doi.org/10.6028/NIST.IR.8493
https://www.trust-hub.org/
https://certification.oshwa.org/list.html
https://certification.oshwa.org/list.html
https://iis-people.ee.ethz.ch/~zimmi/arith_lib.html#library
https://iis-people.ee.ethz.ch/~zimmi/arith_lib.html#library
https://github.com/pulp-platform/elau
https://github.com/pulp-platform/elau
https://nlnet.nl
https://opentitan.org/
https://efabless.com/
https://mestcenter.org/
https://www.darpa.mil/program/ssith/
https://www.darpa.mil/program/ssith/
https://www.synopsis.com/
https://www.makerchip.com/
https://doi.org/10.1145/2699415
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1145/2597917.2597939
https://doi.org/10.1145/3093333.3009894
https://wiki.f-si.org/index.php?title=2024-Talk-MichielLeenaars
https://opentitan.org/book/doc/introduction.html

NIST IR 8540
October 2024

Appendix A. Web Sites with Possible Designs

This section lists web sites that may serve as sources of d esigns. We add notes or com-

ments about the sites.

OpenCores [4] collected designs for over a decade.

• The site is no longer actively maintained; the latest front page news was 2021. How-
ever, the latest module update was April 2024.

• The designs are difficult to access.
• The web site allows search by language: Verilog, VHDL, SystemC, Bluespec, C/C++,

and “other”. The designs are divided into many classes, like controllers, crypto chips,
and systems.

Trust-Hub[8] is starting to collect designs that can be used to test tools. See https://trust-
hub.org/#/hardware/fpga.

Open Source Hardware Association https://stateofoshw.oshwa.org

• Latest update was 2021.
• All of the projects [9] appear to have a link to the hardware “source”, but it may take

a bit of link-following to find each one.

Library of Arithmetic Units [10, 11]

• “The library contains various arithmetic operations with multiple architectural choices
for different speed requirements. All operations are paramet[e]rized in width and
performance grade. This project is still under active development; some parts may
not yet be fully functional, and existing interfaces, toolflows, and conventions may
be broken without prior notice.”

• Some units are adder, add with carry, subtractor, 2s complement, comparator, mul-

tiplier, divide, square root, binary-to-Gray converter, and counter.
• The SystemVerilog site was cited in Sauter and Benz’ 2024 “Achieving Competitive

Performance with Open EDA Tools on a 2MGE Open-Source Linux-Capable RISC-V
SoC”. https://wiki.f-si.org/index.php?title=Achieving_Competitive_Performance_w
ith_Open_EDA_Tools_on_a_2MGE_Open-Source_Linux-Capable_RISC-V_SoC

• The SystemVerilog version is “Based on the VHDL library written by Reto Zimmer-

mann.”

Michiel Leenaars’ 2024 “Update on libre silicon and OSHW related efforts within NGI and
NLnet” [22] has links to many open source hardware projects: look for “devices like”.

“OpenTitan is an open source secure silicon ecosystem producing both silicon IP and com-

plete top-level designs … including … an integrated secure execution environment … Open-
Titan is administered by lowRISC CIC …” [23]. The list of standard assets and security mea-

sures is at https://opentitan.org/book/doc/contributing/hw/comportability/#security-co
untermeasures

6

https://trust-hub.org/#/hardware/fpga
https://trust-hub.org/#/hardware/fpga
https://stateofoshw.oshwa.org
https://wiki.f-si.org/index.php?title=Achieving_Competitive_Performance_with_Open_EDA_Tools_on_a_2MGE_Open-Source_Linux-Capable_RISC-V_SoC
https://wiki.f-si.org/index.php?title=Achieving_Competitive_Performance_with_Open_EDA_Tools_on_a_2MGE_Open-Source_Linux-Capable_RISC-V_SoC
https://opentitan.org/book/doc/contributing/hw/comportability/#security-countermeasures
https://opentitan.org/book/doc/contributing/hw/comportability/#security-countermeasures

 NIST IR 8540
October 2024

Efabless [14] is a company that produces small chips. Makers or others that want to make
tiny chips can join together on one chip, analogous to ride share launches to space.

• Their GitHub site has 102 public repositories in Verilog. https://github.com/efabless
• OpenLane2 “is an ASIC infrastructure library based on several components including

OpenROAD, Yosys, Magic, Netgen, CVC, KLayout and a number of custom scripts for
design exploration and optimization”. https://github.com/efabless/openlane2

• Tiny Tapeout https://tinytapeout.com, which uses Efabless, may be a source of
designs. Because of the shared nature of chips, the designs themselves are required
to be open source.

• The Open Source Silicon Design Community https://open-source-silicon.dev/ has
a Slack channel and has links to the Caravel chip project, SKY130, “a collaboration
between Google and SkyWater Technology Foundry to provide a fully open source
Process Design Kit (PDK) and related resources …”, and GF180MCU “a collaboration
between Google and GlobalFoundries …”.

The Micro-Electronics Security Training (MEST) Center [15] has webinars, on-site and vir-
tual training, on-campus training, certificates, and long- and short-duration courses. It’s
likely that they have examples of buggy hardware.

Synopsis [17] says they have “… the most advanced chip design, verification, IP integration,
and software security and quality solutions …”. They surely have some internal examples
for regression testing. They may have examples they use for training. They may be willing
to donate them to SHARD.

Appendix B. Annotated Bibliography of Relevant Papers

These papers are likely to be useful. We include comments or notes about each one.

Hammad Ahmad, Yu Huang, and Westley Weimer, “CirFix: automatically repairing defects
in hardware design code” [2]

• There were “32 defect scenarios in the authors’ testbed”. The “benchmark suite of
32 defect scenarios” is available at https://zenodo.org/record/5846419

• The 32 benchmarks are under the “benchmark” subdirectory, which has seven de-
sign subdirectories: decoder_3_to_8, flip_flop, mux_4_1, etc. The opencores
subdirectory has four design subdirectories: i2c, pairing (tate_pairing in the pa-
per), reed_solomon_decoder, and sha3. (7 + 4 = 11) Each of these has a “cor-
rect” base version of the design, e.g., decoder_3_to_8.v, and several versions with
“buggy” in the name, such as decoder_3_to_8_buggy_num.v and decoder_3_to_
8_super_buggy.v. (At least one of the buggy versions is not valid: decoder_3_to_
8_kgoliya_buggy1.v has a comment “This does not compile. Not usable for our
experiments.”) Bugs are seeded, that is, experts inserted defects “from real-life ex-
perience.”

7

https://github.com/efabless
https://github.com/efabless/openlane2
https://tinytapeout.com
https://open-source-silicon.dev/
https://zenodo.org/record/5846419

 NIST IR 8540
October 2024

• Versions with “tb” in the file name, like decoder_3_to_8_tb_t1.v, are part of the
Test Bench, that is, a driver that instantiates the design, supplies inputs, and prints
outputs.

• Each design subdirectory has a run.sh, which customizes the generic run commands,
in vcs_sim_command, for each buggy version and runs the commands. Edit the pa-
rameters in run.py, which is in /prototype, to have it save the output. There are
other files, such as oracle*.txt, which are expected output.

• CirFix reports how “fit” a fix would be once produced.
• “We chose six projects from undergraduate VLSI courses … we include a project from

each of the key cores listed on the OpenCores [4] website”

Roselyne Chotin and Gabriel Gouvine, “Moosic: Writing a Yosys Plugin for Design for Trust”,
2024. Slides at https://wiki.f-si.org/index.php?title=Moosic:_Writing_a_Yosys_Plugin_f
or_Design_for_Trust

• A Yosys plugin that takes a netlist design and “locks” it by adding extra gates depen-
dent upon a key. Without the key, the circuit produces garbage.

• This may be useful as an obfuscator or to test comparators: does the original netlist
and the “locked” netlist compute the same function (when key inputs are set prop-
erly)?

Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh
Khattri, Jason M. Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran, “HardFails: In-
sights into Software-Exploitable Hardware Bugs”, 2019. https://www.usenix.org/confe
rence/usenixsecurity19/presentation/dessouky They injected bugs to make 30 buggy
RTL-level versions of RISC-V.

Cynthia Sturton, “Hardware is the New Software: Finding Exploitable Bugs in Hardware
Designs,” January 28, 2019 https://www.usenix.org/conference/enigma2019/presentat
ion/sturton

• They found 5 general bug classes (see slide 26)
• 18 security properties written (see slide 33)
• Total of 25 security properties after mining and looking at other bugs (see slide 42)
• They tracked down 31 actual (production) bugs in a RISC-V design.
• They found “new bugs in the open-source RISC-V and OR1k CPU architectures.”

Edu4Chip https://github.com/Edu4Chip is an EU collaboration between many universities.
One tape-out per year per school. There is one master or base chip. https://github.com
/Edu4Chip/Didactic-SoC

A. Klaiber and S. Chau, “Automatic detection of logic bugs in hardware designs,” Proceed-
ings 4th International Workshop on Microprocessor Test and Verification - Common Chal-
lenges and Solutions, Austin, TX, USA, 2003, pp. 47-53, doi: 10.1109/MTV.2003.1250262.
They verified a piece of hardware they were designing.

8

https://wiki.f-si.org/index.php?title=Moosic:_Writing_a_Yosys_Plugin_for_Design_for_Trust
https://wiki.f-si.org/index.php?title=Moosic:_Writing_a_Yosys_Plugin_for_Design_for_Trust
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/enigma2019/presentation/sturton
https://www.usenix.org/conference/enigma2019/presentation/sturton
https://github.com/Edu4Chip
https://github.com/Edu4Chip/Didactic-SoC
https://github.com/Edu4Chip/Didactic-SoC

NIST IR 8540
October 2024

Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh
Khattri, Jason M. Fung, Ahmad-Reza Sadeghi, and Jeyavijayan R ajendran. “ HardFails: in-
sights into software-exploitable hardware bugs”, Proceedings 28th USENIX Conference on
Security Symposium (SEC’19). USENIX Association, USA, pp. 213-230.

• Video presentation: https://www.usenix.org/conference/usenixsecurity19/prese
ntation/dessouky

• HackDAC is available: https://github.com/hackdac/hackdac_2018_beta It may be
difficult to install.

Appendix C. Annotated Bibliography of Papers Unlikely to Help Further

We record these here so we don’t waste time studying them again.

Tai-Ying Jiang, C-NJ Liu, and Jing Ya Jou. 2005. “Estimating likelihood of correctness for
error candidates to assist debugging faulty HDL designs.” 2005 IEEE International Sympo-

sium on Circuits and Systems. IEEE, 5682-5685, Vol. 6, doi: 10.1109/ISCAS.2005.1465927
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1465927

• They give a formula to “estimate likelihood of correctness” of a design. Their ex-
periments were based “on five designs written in Verilog HDL.” They mutate them
(“arbitrarily change some statements”) resulting in 50 mutated designs.

• They make no mention of making the mutants available. As of 2009 Jiang was pur-
suing a PhD according to https://ieeexplore.ieee.org/author/37279308000

Kai-hui Chang, Ilya Wagner, Valeria Bertacco, and Igor L Markov. 2007. “Automatic error
diagnosis and correction for RTL designs”. In 2007 IEEE International High-Level Design
Validation and Test Workshop. IEEE, 65-72. https://web.eecs.umich.edu/~valeria/resear
ch/publications/IWLS07RTLDiag.pdf

• The seven examples were “selected from Open-Cores[4] (Pre norm, MD5, MiniRISC,
and CF FFT), the picoJava-II microprocessor (Pipe), DLX, and Alpha. Bugs … were
injected into these benchmarks, with the exception of DLX and Alpha, which already
included bugs.”

• Table 2 lists 21 bugs.
• Many designs have multiple bugs.

Jiann-Chyi Ran, Yi-Yuan Chang, and Chia-Hung Lin. 2003. “An efficient mechanism for de-
bugging RTL description”. Proceedings The 3rd IEEE International Workshop on System-

on-Chip for Real-Time Applications, 2003. pp 370-373. https://ieeexplore.ieee.org/docu
ment/1213064 They experiment “on four designs written in Verilog”. Table 2 seems to say
that they made 10 variations of each design.

Roderick Bloem and Franz Wotawa. 2002. “Verification and fault localization for VHDL
programs”. Journal of the Telematics Engineering Society (TIV) 2 (2002), pp 30-33. https:

9

https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://github.com/hackdac/hackdac_2018_beta
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1465927
https://ieeexplore.ieee.org/author/37279308000
https://web.eecs.umich.edu/~valeria/research/publications/IWLS07RTLDiag.pdf
https://web.eecs.umich.edu/~valeria/research/publications/IWLS07RTLDiag.pdf
https://ieeexplore.ieee.org/document/1213064
https://ieeexplore.ieee.org/document/1213064
https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs
https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs

NIST IR 8540
October 2024

//www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_i
n_VHDL_Programs

Stefan Staber, Barbara Jobstmann, and Roderick Bloem. 2005. “Finding and fixing faults.”
In Advanced Research Working Conference on Correct Hardware Design and Verification
Methods. Springer, pp. 35-49. https://www.semanticscholar.org/paper/Finding-and-fixi
ng-faults-Jobstmann-Staber/e34670945b5be85db9866491510f6f441cfed7f1

• They have three examples in Figs. 6, 7, and 8. They are written in a Verilog-like
language.

• They “assume that a (partial) specification is given in linear-time temporal logic (LTL)
…”.

J. C. Madre, O. Coudert, and J. P. Billon. 1989. “Automating the diagnosis and the rectifi-
cation of design errors with PRIAM”, In 1989 IEEE International Conference on Computer-

Aided Design. Digest of Technical Papers. 30-33. DOI: 10.1109/ICCAD.1989.76898

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer, “A Sys-
tematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each” in
2012 34th International Conference on Software Engineering (ICSE). Available at https:
//clairelegoues.com/assets/papers/legoues12icse.pdf This deals with software, not
hardware.

10

https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs
https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs
https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs
https://www.researchgate.net/publication/240767493_Verification_and_Fault_Localization_in_VHDL_Programs
https://www.semanticscholar.org/paper/Finding-and-fixing-faults-Jobstmann-Staber/e34670945b5be85db9866491510f6f441cfed7f1
https://www.semanticscholar.org/paper/Finding-and-fixing-faults-Jobstmann-Staber/e34670945b5be85db9866491510f6f441cfed7f1
https://clairelegoues.com/assets/papers/legoues12icse.pdf
https://clairelegoues.com/assets/papers/legoues12icse.pdf

	Introduction
	Accomplishments
	Learn About Formats
	Choose Format
	Decide Bug Representation
	Choose Scale of Cases
	Identify Designs
	Papers

	Future Tasks
	References
	Appendix Web Sites with Possible Designs
	Appendix Annotated Bibliography of Relevant Papers
	Appendix Annotated Bibliography of Papers Unlikely to Help Further

