
NIST Interagency Report
NIST IR 8493

Vulnerability Test Suite Generator
(VTSG) Version 3

Paul E. Black
William Mentzer

Elizabeth Fong
Bertrand Stivalet

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8493

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8493

NIST Interagency Report
NIST IR 8493

Vulnerability Test Suite Generator
(VTSG) Version 3

Paul E. Black
Software and Systems Division

Information Technology Laboratory

William Mentzer
California State University
San Bernardino, California

Elizabeth Fong

Bertrand Stivalet
International Committee of the Red Cross

Geneva, Switzerland

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8493

October 2023

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

Certain commercial equipment, instruments, or materials, commercial or non-commercial, are identified in
this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2023-10-11

How to cite this NIST Technical Series Publication:
Paul E. Black, William Mentzer, Elizabeth Fong, and Bertrand Stivalet (2023) Vulnerability Test Suite
Generator (VTSG) Version 3. (National Institute of Standards and Technology, Gaithersburg, MD), NIST IR
8493. https://doi.org/10.6028/NIST.IR.8493

NIST Author ORCID ID
Paul E. Black: 0000-0002-7561-6614

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

NIST IR 8493
October 2023

Abstract

The Vulnerability Test Suite Generator (VTSG) Version 3 can create vast numbers of syn-
thetic programs with and without specific flaws or vulnerabilities. Such programs are use-
full for measuring static analysis tools. VTSG was designed by the Software Assurance
Metrics and Tool Evaluation (SAMATE) team and originally implemented by students at
TELECOM Nancy. The latest version is structured to be able to generate vulnerable and
nonvulnerable synthetic programs expressing specific flaws in typical programming lan-
guages. It has libraries to generate programs in PHP: Hypertext Preprocessor (PHP), C#,
and Python. This document may help if you are trying to generate test cases in PHP, C#,
or Python, adding new complexities or flaws or vulnerability, or modifying VTSG to have
new capabilities or to generate test cases in other programming languages.

Keywords

Software assurance; static analyzer; test case generator; software vulnerabilities.

i

NIST IR 8493
October 2023

Table of Contents

1. Introduction . 1

1.1. Strengths and Limitations of VTSG . 4

1.2. History . 5

2. VTSG User Manual . 5

2.1. Command Line Interface . 5

2.2. Example Invocations . 6

2.3. Results and Output . 7

2.4. Code Complexities . 7

2.5. Using ACTS or -n to Select a Subset of Cases 8

3. Advanced User Manual . 9

3.1. Installing Supporting Packages . 10

3.2. Installing VTSG . 10

3.3. Installing Optional Packages . 11

3.4. Adding a New Flaw . 11

3.5. Adding a New Language . 16

4. File Template, Input, Filter, Sink, Exec Query, and Complexity Files 16

4.1. Maintain Indentation with INDENT ... DEDENT 17

4.2. File Template . 20

4.3. Attributes Shared By Modules . 22

4.4. Input Modules . 24

4.5. Filter Modules . 25

4.6. Sink Modules . 27

4.7. Exec Query Modules . 29

4.8. Code Complexity and Test Condition Modules 29

5. VTSG Software Documentation . 33

5.1. Details of Test Case Generation . 33

5.2. Generated Test Case File Names . 36

5.3. Adding New Capabilities to VTSG . 39

References . 40

Appendix A. Summary of Information for Generating C# Cases 41

ii

Appendix B. Summary of Information for Generating PHP Cases 43

Appendix C. Summary of Information for Generating Python Cases 45

Appendix D. Contents of git Repository . 47

List of Tables

Table 1. Options for command line invocation . 6
Table 2. Replacement sequences for characters that are treated in a special way in

XML files. 17
Table 3. Decision table for whether a set of modules is safe or unsafe. 23
Table 4. An example of code for each value of “executed” showing whether “place-

holder” code will be executed. 34
Table 5. Condition IDs, code, and value to which it evaluates defined for C# . . . 41
Table 6. Complexity IDs and pseudocode defined for C# 42
Table 7. Condition IDs, code, and value to which it evaluates defined for PHP . . . 43
Table 8. Complexity IDs and pseudocode defined for PHP 44
Table 9. Condition IDs, code, and value to which it evaluates defined for Python . 45
Table 10.Complexity IDs and pseudocode defined for Python 46

List of Figures

Fig. 1. Just three sources of input, two ways of filtering, four sinks, and two query
executions yield 48 possible test cases. 1

Fig. 2. Overview of VTSG test case generation. The File Template specifies how
pieces are assembled. Input, Filter, Complexity, Sink, and Execute Query
modules provide code. The filter is wrapped with two complexities. An
example test case is in Figs. 14 and 15. 3

Fig. 3. usnistgov/VTSG: button to clone repository. 11
Fig. 4. The result of the Input module connects to the input of the Filter module,

its output connects to the input of the Sink module, and its output connects
to the input of the Exec Query module. 13

Fig. 5. How filters are chosen for a sink. Filters A, B, and C will be used. Filter P
is not used because the flaw type differs. Filter Q is not used because the
output type differs. 14

Fig. 6. How inputs are chosen for a filter and sink. Input 1 is used with Filter A.
Input 2 is used with Filter B. Input 1 is also used with Filter C because
Filter C is “nofilter” and Input 1 matches the sink. 15

Fig. 7. Example Input module. Instantiated at line 14 of Fig. 14. 24
Fig. 8. Example Filter module. Instantiated in lines 19–27 of Fig. 15. 26
Fig. 9. Example Sink module. Instantiated at line 23 of Fig. 14. 28
Fig. 10. Example Exec Query module. Instantiated in lines 25–39 of Fig. 14. . . . 30
Fig. 11. Example test condition module. Instantiated in Fig. 14, line 16. 30

iii

Fig. 12. Example Complexity module with a while loop. Instantiated in Fig. 14,
lines 16–21. 30

Fig. 13. Example Complexity module with a method invocation. The 〈code〉 part
is instantiated in Fig. 14, lines 18 and 19. The 〈body〉 part is instantiated
in Fig. 15. 31

Fig. 14. Main file of example. Line 14 instantiates input code from Fig. 7. Lines
16–19 instantiates complexity code from Fig. 12. Line 16 instantiates
condition code from Fig. 11. Lines 18 and 19 instantiate code from the
〈code〉 part of Fig. 13. Line 23 instantiates critical preparation code from
Fig. 9. Lines 25–39 instantiate query execution code from Fig. 10. 37

Fig. 15. Auxiliary file of example. It instantiates code from the 〈body〉 part of
Fig. 13. Lines 19–27 instantiate filter code from Fig. 8. 38

Fig. 16. Snapshot of files in the VTSG git repository, which is at https://github.com/
usnistgov/VTSG, as of 31 August 2023. 47

Fig. 17. README.md file, which is at https://github.com/usnistgov/VTSG/blob/
master/README.md, as of 8 March 2022. 48

iv

https://github.com/usnistgov/VTSG
https://github.com/usnistgov/VTSG/blob/master/README.md

NIST IR 8493
October 2023

Acknowledgments

Bertrand Stivalet and Aurelien Delaitre, from the National Institute of Standards and Technology
SAMATE team, designed the architecture of the VTSG and managed its implementation. The
project was implemented by students from TELECOM Nancy: Jean-Philippe Eisenbarth, Valentin
Giannini, and Vincent Noyalet. We thank Terry Cohen for her comments and suggestions, which
improved this report. We also thank Charles de Oliveira and Sheryl Taylor for their contributions to
this manual.

v

NIST IR 8493
October 2023

Fig. 1. Just three sources of input, two ways of filtering, four sinks, and two query executions
yield 48 possible test cases.

1. Introduction

Good software must be specified and built well from the beginning; quality cannot be
“tested into” software. But a critical part of essentially all software development is check-
ing the software produced. This checking has two main dimensions: testing, or execution
of the software, and static analysis, or examination of the source code or executable. Static
analysis has the theoretical advantage of considering all possible executions. It “has the po-
tential to efficiently preclude several classes of errors . . . ” [1, p. 7]. Current static analysis
tools check many issues, such as uninitialized variables, buffer overflows, Structured Query
Language (SQL) injections, noncompliance with an organization’s coding standards, and
calling a function with incorrect arguments. Although static analyzers will not catch all
problems, NIST’s “Guidelines on Minimum Standards for Developer Verification of Soft-
ware” [2] recommends that all software development include appropriate static analysis
tools (p. 6).

We can measure how well static analyzers perform using programs having known flaws.
With more than 100 classes of flaws and many popular programming languages, the task
of producing measurement test suites is already daunting. For thorough evaluation each
flaw class should be represented by programs with inputs from different source, various
valid and invalid methods to filter the input data, different ways of conveying data, and
varying sinks. Figure 1 suggests that just three sources of input, two ways of filtering the
input, four sinks, and two ways to execute the query already yields 3 × 2 × 4 x 2 = 48
combinations. Multiply that by distinct flow control complexities with various conditions,
then include “scaffolding” such as initializing variables, importing libraries, and declaring
functions and the need to produce programs without weaknesses to test false positives to
get an idea of the work needed to provide a comprehensive static analyzer test suite. It
would be tedious and error prone to construct these test cases manually.

The purpose of the Vulnerability Test Suite Generator (VTSG) is to generate thousands
of example programs in many languages exhibiting various flaws, which are expressed in
different ways and wrapped in an assortment of programming constructs.

1

NIST IR 8493
October 2023

All example programs, or test cases, have a similar structure. In pseudocode, the high-level
structure of test cases that VTSG generates is

imports, definitions, and declarations

input = get_input_from_somewhere()

if input is an attack then

reject it

use the input to construct a query

execute the query

The input is the source of data in the program, e.g., command line, variable, file, or form
method.

In VTSG we refer to the code that checks the input as the filter. That is, it filters the
input with functions or code such as rejecting unacceptable values, sanitization functions,
or substituting a safe default value. In this example, the if input ... reject it code
is the filter.

VTSG refers to the code that uses the input, in this example to construct a query, as the
sink. Information flows from the input source to the sink. The sink is where a sensitive
operation, such as an array access, is executed with potentially unsafe input and where a
vulnerability is triggered.

You can see this high-level program structure within the center gray rectangle of Fig. 2.

A static analysis tool must analyze much of a program, noting its control and data flows,
to accurately track data and determine the conditions when the code in question may be
executed. Only then can it process the few lines of code that embody a problematic piece of
code to determine whether it is actually a weakness. Tracing execution through structures
like while loops, if statements, and function calls exercises static analysis tools’ abilities.
VTSG refers to these data flow and control constructs as complexities. You can see in Fig. 2
that the filter code is wrapped within two control flow complexities. Various conditions
are inserted into complexities to further examine tools’ capabilities. See Sec. 2.4 for an
example.

Finally, additional code may be needed to trigger the vulnerability, for example executing
the query constructing in the sink code. VTSG refers to this as ExecQuery.

The information in this manual is divided into several sections. The next section, Sect. 2,
is a user manual. It explains how to invoke various options in VTSG with currently defined
languages and flaws and the resulting cases. Section 3 explains how to install VTSG and re-
quired supporting packages, add new flaw classes, sinks, inputs, etc., to existing languages

2

NIST IR 8493
October 2023

Fig. 2. Overview of VTSG test case generation. The File Template specifies how pieces are
assembled. Input, Filter, Complexity, Sink, and Execute Query modules provide code. The
filter is wrapped with two complexities. An example test case is in Figs. 14 and 15.

3

NIST IR 8493
October 2023

and how to add a completely new language. Section 4 documents the files to which new
flaws, sinks, or languages would be added. Finally, Sect. 5 explains the internal architecture
of VTSG and offers suggestions about how to enhance or extend VTSG’s capabilities.

1.1. Strengths and Limitations of VTSG

VTSG generates test cases starting with the File Template. It selects Input, Filter, Com-
plexity, Sink, and ExecQuery modules and inserts them into the Template. In the most
general sense, VTSG works like a macro processor. Why, then, bother with VTSG?

• VTSG synthesizes import statements, variable initializations, additional assignments,
and other code as needed.

• VTSG wraps filter code in arbitrary layers of data and control flow complexity.
• VTSG determines if a test case is unsafe (vulnerable) or safe (not vulnerable) depend-

ing on whether the filter is executed and saves them in corresponding collections.
• VTSG matches data types of inputs, filters, and sinks, for example avoiding passing

a string input to a numeric sink.
• VTSG can produce a manageable fraction of all possible combinations, choosing 1

of every N cases or enough cases to try every pair or triple of code.

VTSG is not nearly as powerful as we could wish for. Here are some limitations and
possible future enhancements.

• Have a method of variants. For example, data types are given once, then a “generic”
case is elaborated with each data type. This would yield test cases that are structurally
identical but handle, say, ints, floats, doubles, etc.

• Enhance support for multi-file cases. In particular, be able to handle Python classes.
Also create cases with more than two files, like Juliet cases.

• Support more general structure of generated test cases. For example, put both safe
and unsafe code in the same test case, like Juliet cases have, or have module types
instead of or in addition to input, filter, sink, and execQuery.

• Mark “flaw” lines in any module, not just sinks.
• Allow the user to specify the file names of generated cases. Currently the names are

long. It may be useful to structure the names differently or even just number them.
• Write manifests in Static Analysis Results Interchange Format (SARIF).
• Enhance the Automated Combinatorial Testing for Software (ACTS) interface code

to handle arbitrary depths of nested complexities.
• Have a new test condition value such as “maybe”, “random”, or “indeterminate” for

when the analyzer would not be able to determine. For example, Juliet has
if (random()) {

code

}

4

NIST IR 8493
October 2023

1.2. History

Originally named Vulnerability Test Suite (VTS) generator, version 1 only generated C#
programs. VTS version 2 generated PHP programs [3] in addition. Version 2 was more
customizable to generate other programming languages. VTSG version 3 systematically
maintains indentation, so can also generate Python programs.

The PHP and C# test suites are available in our Software Assurance Reference Dataset
(SARD) [4], URL https://samate.nist.gov/SARD as test suites 103 and 105. The SARD
has additional collections of test cases, such as the C/C++ and Java Juliet test suites and
many other test suites.

VTSG is further work by the SAMATE team to measure software assurance. The test cases
that VTSG generates help us determine how much assurance static analyzers, and other
software assurance tools, can bring. This complements our work collecting test cases in
the SARD. VTSG also supports our Static Analysis Tool Exposition (SATE) [5], which
requires large, varied sets of programs as targets of analysis. We foresee that VTSG will
be able to generate test cases structured as needed in many languages, for most weakness
classes.

2. VTSG User Manual

2.1. Command Line Interface

For users who wish to generate PHP, C#, or Python test suites, a command line interface can
generate all test cases, a specific group of test cases, or a subset of cases based on several
options. For example, the user can generate vulnerable or non-vulnerable test cases based
on selected flaws or groups of flaws, for example, Open Web Application Security Project
(OWASP) categories. The user must specify the programming language. The invocation
command looks like this:

$ python3 vtsg.py -l {php,cs,py} <options>

where <options> are listed in Table 1.

5

https://samate.nist.gov/SARD
https://samate.nist.gov/SARD/testsuite.php
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate

NIST IR 8493
October 2023

Table 1. Options for command line invocation

-h --help Show help and quit
--version Show version number and quit

-l LANGUAGE --language=LANGUAGE

Language of generated cases.
Currently one of php, for PHP
cases, cs, for C# cases, or py,
for Python cases. See Sec. 3.5.

-g GROUP --group=GROUP
Only generate cases in the
specified group. May be repeated.
See Sec. 4.6.

-f Flaw --flaw=Flaw
Only generate cases with the
specified flaw. May be
repeated. See Sec. 4.6.

-s --safe Only generate non-vulnerable cases
-u --unsafe Only generate vulnerable cases

-r DEPTH --depth=DEPTH
Maximum nested depth of
complexities (Default: 1) See
Sec. 2.4.

-n NUMBER --number-sampled=NUMBER
Only write one of every NUMBER
cases generated. See Sec. 2.5.

--ACTS [doi]
Select cases using ACTS.
(Default doi: 2) See Sec. 2.5.
Note: no short option.

-t TEMPLATE DIRECTORY
--template-directory=TEMPLATE DIRECTORY

The language templates directory.
(Default: src/templates) See Sec. 3.5.

-d --debug for programmer use

By default, VTSG generates all consistent combinations of test cases with all flaws in all
flaw groups. If VTSG is invoked with particular flaws (-f) or flaw groups (-g), only sinks
matching those are used. If no flaw group is specified, all flaw groups are used. If no flaws
are specified, all flaws (in specified flaw groups) are used.

VTSG generates both the unsafe (vulnerable) test cases and the safe (not vulnerable) test
cases unless the user selects either only safe (-s) or only unsafe (-u) cases. The options are
mutually exclusive.

2.2. Example Invocations

Show the help message:

$ python3 vtsg.py --help

6

NIST IR 8493
October 2023

Generate all PHP test cases:

$ python3 vtsg.py -l php

This takes about 25 minutes. (Generating all the C# cases takes about four minutes.)

Generate a C# (-l cs) test suite consisting of vulnerable (unsafe) test cases (-u) with SQL
injection vulnerabilities (--flaw=CWE_89) and up to 3 nested levels of complexity (-r 3).

$ python3 vtsg.py -l cs -r 3 --flaw=CWE_89 -u

Generate a Python test suite consisting of every 42nd test case based on Kendra Kratkiewicz’s
work (KK) or Loop on Unchecked Input (CWE606).

$ python3 vtsg.py -l py -n 42 -f KK -f CWE606

Some of the OWASP Top 10 [6] and Common Weakness Enumerations (CWEs) [7] are
encoded. See Apps. A, B, and C for details of what vulnerabilities are encoded in which
languages.

2.3. Results and Output

When invoked to generate test cases, VTSG creates a directory for all the resulting test
cases. The directory is named for the date and time created, for example, TestSuite_03-
08-2022_16h46m35. A language directory, PHP, Csharp, or Python, is created in this
directory. This name comes from the name in the file_template.xml file. See Sec. 4.2.

Under the language directory, VTSG creates one directory for each flaw group, for instance,
OWASP_a1 or Exception. These come from the flaw_group in the sinks.xml file; see
Sec. 4.6. Under each flaw group directory is a subdirectory for each specific flaw, for
instance, CWE78 or CWE_89. These come from the flaw_type entries, which are also in the
sinks.xml file. VTSG also creates a manifest file of all the test cases generated for each
flaw group, named manifest.xml.

If the flaw_group is missing or empty, subdirectories for flaw types are created immedi-
ately under the language directory.

Under the flaw directory are directories safe and unsafe for test cases that are not vulner-
able or that are vulnerable, respectively.

After VTSG finishes generating and writing cases, it displays how many safe (non-vulner-
able) and unsafe (vulnerable) test cases it generated in each group and flaw. If a subset was
selected with -n or --ACTS (Sec. 2.5), VTSG also reports the number of test cases selected.

2.4. Code Complexities

VTSG can generate code with the filter nested inside control flow complexities to cre-
ate slightly more realistic source code. Each language defines its own complexities. See

7

NIST IR 8493
October 2023

Apps. A, B, and C for currently defined complexities.

The depth command line option, -r or --depth, specifies the most nested flow control
complexities produced. VTSG generates test cases with all complexities up to the depth
indicated. For example, the default depth, 1, leads VTSG to generate all test cases with no
flow complexities and all test cases with one complexity. The option -r 2 leads VTSG to
generate all cases with no complexities, all cases with one complexity, and all cases with
two nested complexities.

Here is an example of code complexities from cwe_89__I_shell_commands__F_no_

filtering__S_select_from-concatenation_simple_quote__EQ_mysql

__3-2.5-9-21a.cs:
if((Math.Pow(4, 2)<=42)){

switch(6){
case(6):

Class 8 var 8 = new Class 8(tainted 5);
tainted 6 = var 8.get var 8();

tainted 7 = tainted 6;
break;

default:
break;

}
}else{

{}
}

The above has three nested control structures:
Level 1 is the “if/else” statements.

Level 2 is the “switch/case/default” statements.
Level 3 is the call of a method from a Class.

2.5. Using ACTS or -n to Select a Subset of Cases

By default, VTSG generates all compatible combinations of inputs, filters, sinks, exec
queries, complexities, and conditions. The result can easily be tens of thousands of cases.
Yet, a small, carefully chosen subset of cases may suffice [8]. VTSG has two command
line options to select a subset of cases to be written: --ACTS and -n.

ACTS is a combinatorial method to choose cases such that all consistent pairs or triples
or D-way combinations of modules are represented. For an explanation of combinatorial
testing, see [9] especially Sec. 2.1.

Degree of interaction (doi) is the coverage guaranteed. Two-way means every pair of pa-

8

NIST IR 8493
October 2023

rameter values is represented, like every (allowed) input with every complexity. If doi is 3,
then every triple is covered, e.g., every input, sink, and condition combination. Again only
allowed combinations1 are created. The default is for ACTS to generate pairwise coverage,
that is, the default degree of interaction is two.

For example,

$ python3 vtsg.py -l php --ACTS

generates a small set of PHP test cases that has all pairs of compatible modules.

$ python3 vtsg.py -l py -g Exception --ACTS 4

generates a small set of Python test cases that has all 4-way combinations of compatible
modules in the Exception flaw group.

VTSG first generates all consistent combinations of modules, Sec. 5.1. If ACTS is indi-
cated, VTSG writes the list of modules and constraints on compatible modules to /tmp/

VTSG_ACTS_input.xml, runs ACTS, reads the selected sets of modules from /tmp/

VTSG_ACTS_output.txt, and creates a list of matching module combinations. VTSG
then composes the code from modules and writes the test cases.

Currently, the code to write input for ACTS and read its output does not handle more
than one complexity in a case. Therefore, -r (depth) greater than 1 and --ACTS may
not be used together. It should be straight forward to enhance the code, which is in
select_by_acts.py, to handle any number of nested complexities.

The -n (number-sampled) option is another way to select which cases VTSG writes. It
specifies that VTSG should write one of every N cases that are generated. For example, -n
3 directs VTSG to write one of every three cases, that is, case 1, skip 2 and 3, write case 4,
skip 5 and 6, write case 7, and so forth. This option approximates random case selection
(but is repeatable), combinatorial testing (in case ACTS is not installed), random testing
(to spot check generation), and percentage of cases (that is, only write p % of cases). Note
that there is no way to generate mixed fractions such as exactly 2/5 of all cases.

The -n option and --ACTS are mutually exclusive.

3. Advanced User Manual

This section begins by explaining how to install VTSG, including required and optional
supporting packages. Section 3.4 is a brief tutorial on how to add a new flaw class. The
final section explains how to add a language in addition to PHP, C#, and Python.

1The interface code checks which combinations are actually generated and writes ACTS constraints to not
create combinations that never occur. For example, one filter, named “none”, just passes the input value; it
doesn’t filter anything. The filter is marked as need complexity=”0” (See Sec. 4.5), to avoid wrapping it in
any complexity: it would be useless to wrap an “if” or “while” around it. The interface code sees that filter
“none” never has complexities, so constrains ACTS to only match that filter with “no complexity”.

9

NIST IR 8493
October 2023

3.1. Installing Supporting Packages

The following instructions are provided for users who do not have these packages installed
on their Linux machines that use apt for package management. Users who already have
these packages may skip this section.

VTSG is written in Python 3, so Python 3 must be installed. Here is a command to install
it:

sudo apt-get install python3

To download Python source code packages, install the pip Python package manager. Here
is a command to install it:

sudo apt-get install python-pip

You may also have to install the pip Python 3 package manager. Here is a command to
install it:

sudo apt-get install python3-pip

Another way to install pip is:

sudo python3 -m pip install --upgrade pip

3.2. Installing VTSG

To download VTSG from Github, the Git package must be installed. Here is a command
to install it:

sudo apt-get install git

To copy the generic VTSG from GitHub to a local Linux machine, change to a directory
under which you want to install VTSG.

Looking at the GitHub website, you will see a green box labeled “Code”. See Fig. 3. Click
on it, then click on the “copy” icon to copy the web uniform resource locator (URL).

Here is a command to copy the source code and other material to the local directory:

git clone https://github.com/usnistgov/VTSG.git

If you type the ls command, you will see that the VTSG directory was created.

Go into that directory and install the required dependencies with these commands:

cd VTSG

pip3 install --user -r requirements.txt

10

NIST IR 8493
October 2023

Fig. 3. usnistgov/VTSG: button to clone repository.

3.3. Installing Optional Packages

VTSG can use combinatorial testing, specifically ACTS [10], to select cases instead of
producing all possible cases. The ACTS software is freely available. To get ACTS, send
email to Rick Kuhn kuhn@nist.gov [11].

See App. A for packages needed to run C# programs.

3.4. Adding a New Flaw

This subsection is a brief tutorial giving suggestions on how to add a new flaw to an existing
language in VTSG. The subsection after this has suggestions on how to add a new language.
Some guidance on adding new capabilities or features to VTSG itself is in Sec. 5.3.

The easiest way to add a new flaw is to modify a similar existing flaw to present the new
flaw. If nothing is suitable, here is a tutorial for writing a brand new flaw.

There are so many interacting requirements for a flaw, it is best to write it in three steps:
first, write an example of the flaw in regular source code; second, decide how to divide the
code among modules, and third, specify the pieces in VTSG.

3.4.1. Write an Example With the Flaw

As a first step, choose a generated test case and modify the source code to present the target
flaw. Here is the core code of a potential divide by zero guarded by a filter:

if data == 0:

print(’Invalid input’)

sys.exit(1)

print(f’The reciprocal of {data} is {1/data}’)

11

mailto:kuhn@nist.gov

NIST IR 8493
October 2023

You may want to try different variants to find which fits your needs best. For instance, one
variant of this flaw is for the filter to provide a safe value instead of aborting, like this:

if data == 0:

print(’Invalid input’)

data = 1

print(f’The reciprocal of {data} is {1/data}’)

Another variant is for the weakness itself to be guarded by the filter:

if data != 0:

print(f’The reciprocal of {data} is {1/data}’)

else:

print(’Invalid input’)

It helps later checking to write the code so that it demonstrates the failure, instead of failing
silently. In the above code if division by zero is ever attempted, Python aborts with failure
messages. In contrast consider a path traversal weakness. Path traversal is when the user
might access private directories. Here is a simple version. It intends to open a file named
by the user in the /home directory:

tainted_1 = input() # read one line

file = os.path.join(’/home’, tainted_1)

f = open(file, ’r’)

Running this with an input that exploits the weakness, like ../etc/passwd, doesn’t give
any indication that the exploit succeeded. The file is opened and then the program ends.
The following variant is better. It prints a line from the password file to demonstrate the
exploit:

tainted_1 = input() # read one line

file = os.path.join(’/home’, tainted_1)

with open(file, ’r’) as f:

print(f.readline(), end=’’)

3.4.2. Decide What is Input, What is Filter, What is Sink, etc.

The second step is to decide what parts of the code are inputs, what parts are filters (which
will be wrapped in complexities), and what parts are sinks.

If you want to generate cases where some piece of code may or may not be executed, put
that code in Filter modules. The second example above might generate a case like this.
(Comments show the origin of each piece of source code.)

12

NIST IR 8493
October 2023

Fig. 4. The result of the Input module connects to the input of the Filter module, its output
connects to the input of the Sink module, and its output connects to the input of the Exec
Query module.

Complexity

if True:

Filter

if data == 0:

print(’Invalid input’)

data = 1

Sink

print(f’The reciprocal of {data} is {1/data}’)

If the sink is guarded, as in the third example, it may need to be a Filter module. In this
case, the “Sink” module may be empty.

Complexity

if True:

Filter

if data != 0:

print(f’The reciprocal of {data} is {1/data}’)

else:

print(’Invalid input’)

3.4.3. Write the Modules

Now that you have an idea of how to split up the code, the third step is to write new modules
for VTSG for the flaw. You probably need to write new sinks and filters, but you should
be able to use existing input and exec query modules. Edit the sinks.xml (or filters.xml or
other) file to add them, then run VTSG. It’s likely that nothing is generated the very first
time you try because VTSG cannot find an input and filter compatible with your new sink.

Figure 2 suggests that the result of the Input module connects to and must match the input
of the Filter module, and its output connects to and must match the input of the Sink. These
modules are shown together in Fig. 4. Compatible inputs, filters, sinks, and exec queries
are “connected” in various ways. Remember that VTSG first chooses a sink module then
chooses compatible filter, input, and exec query modules to use with it. A filter is used with
a sink if

1. the filter output_type is “nofilter” or the same as the sink input_type and
2. the filter has a flaw_type that is “default” or is the same as the sink flaw_type.

13

NIST IR 8493
October 2023

Fig. 5. How filters are chosen for a sink. Filters A, B, and C will be used. Filter P is not used
because the flaw type differs. Filter Q is not used because the output type differs.

Figure 5 suggests that filters A, B, and C will be used with the sink. Filter B is compatible
because the flaw_type is “default”; it is compatible with any type of flaw. Filter C is
“nofilter” and just passes the value through. Filter P is never used with that sink because
the flaw_type is not the same. Filter Q is never used because the output_type is not the
same as the sink input_type.

An input is used with a sink and a filter if

1. the filter input_type is “nofilter” and the output_type of the input is the same as
the sink input_type or

2. the filter input_type is something other than “nofilter” and the output_type of the
input is the same as the filter input_type.

Fig. 6 illustrates this matching rule. Input 1 is used with Filter A, and Input 2 is used with
Filter B. Input 1 is also used with Filter C because Filter C is “nofilter” and Input 1 matches
the sink.

Be aware that any string may be in the input_type or output_type. This allows you to
use a kind of “extended types” to connect specific inputs, filters, and sinks. Following is an
example, which is in Python. We wanted the input to be wrapped in complexities, like the
following:

Input

tainted_1 = None

Complexity

if 5 == 5:

14

NIST IR 8493
October 2023

Fig. 6. How inputs are chosen for a filter and sink. Input 1 is used with Filter A. Input 2 is
used with Filter B. Input 1 is also used with Filter C because Filter C is “nofilter” and Input 1
matches the sink.

Filter

tainted_1 = input()

Sink

if tainted_1 is not None:

flaw # no validation - allows arbitrary execution

sys.path += [tainted_1]

print(f’added { tainted_1 } to Python module search path’)

Variables aren’t declared in Python, but we had to initialize the variable to None in case
the input is not executed. We declared the variable in the input module and put the input
code in the filter module, so that the input code would be wrapped in complexities. We
used custom types string,filter_input to connect the sink to the “filter” (i.e., input)
and InitToNone to connect the “filter” to the “input” (i.e., initialization).

3.4.4. Making Sure Case Safety is Computed Correctly

Figuring out how to mark the modules as safe or unsafe can be tricky. The following code
may allow a large negative index access, and, thus, cause an exception. We thought this is
always unsafe.

if index < len(array):

print(array[index])

We discovered the mistake when we executed the cases and “unsafe” cases did not produce
any evidence of a successful exploit. We realized that, if the “input” was a safe hardcoded
value, the code was safe!

15

NIST IR 8493
October 2023

index = 0

if index < len(array):

print(array[index])

The proper marking is that the sink is neither always safe nor always unsafe. A proper filter
or guard can make it safe. See Sec. 4.3.4 for details.

3.5. Adding a New Language

VTSG accesses all the language information files through a single subdirectory. The default
is src/templates. Under this is one subdirectory for each language. Each language subdi-
rectory has six files: file_template.xml, inputs.xml, complexities.xml, filters.
xml, sinks.xml, and exec_queries.xml. The files are described in Sec. 4.

Here are the steps to add another language.

1. decide the short name of the language, e.g., py for Python or php for PHP. Using the
extension of those programs is a good idea.

2. create a directory by that name under src/template
3. copy the six files of an existing language
4. change the name attribute in file template.xml to the language name.

Change language characteristics in all the files. Generate a few cases and execute them to
make sure syntax and other details are correct. It’s best to start by converting just one or
two sinks, inputs, and filters for quick turnaround. Comment out all the rest of the modules
to start. As you convert or add flaws, you may find that some language specifications need
adjustment.

In addition to subdirectories for languages, the src/templates directory has file_rights.
txt, which is copied into each generated test case to declare license rights and authorship,
see Sec. 4.2, and a dtd subdirectory, which has document type definitions (DTDs) for all
of the Extensible Markup Language (XML) files.

You can tell VTSG to look for a language subdirectory someplace else with the -t command
line option, see Table 1.

4. File Template, Input, Filter, Sink, Exec Query, and Complexity Files

These XML files are required for each language. There are a few XML-specific caveats
that must be paid attention to when creating these files. Table 2 lists the symbols that may
cause errors during the process and the XML equivalent replacement necessary to complete
the task without error.

16

NIST IR 8493
October 2023

Table 2. Replacement sequences for characters that are treated in a special way in XML files.

Character Replacement
< <
> >
" "
’ '
& &

VTSG uses Jinja to compose code. In addition to the above XML-special characters, Jinja
recognizes double-curly-brackets ({{ and }}) as introducing Jinja-specific variables and
controls. Do not use pairs of curly brackets in your files, except for VTSG-related variables.

Characteristics of modules and their information are stored in XML files. This section
of the document describes the structure of each type of module and the meaning of each
element and its tags.

Most of the file types have an example followed by an explanation of what it does and what
it generates.

Each language directory has one file of each name. That is, one file_template.xml file,
one inputs.xml file, one filters.xml file, one complexities.xml file, one
sinks.xml file, and one exec_queries.xml file.

All the files, except file_template.xml, may have many modules, that is, alternate
chunks of code, in them. For example, inputs.xml, Sec. 4.4, typically has many input
modules. Each module in inputs.xml provides a method to get input from a different
source, such as command line options or hard-coded values.

4.1. Maintain Indentation with INDENT ... DEDENT

VTSG using Jinja does a haphazard job of producing proper indentation. Indentation does
not matter for many languages. It is critical for Python, however. This section explains
how to use INDENT and DEDENT to ensure correct indentation in the final source code.

4.1.1. Using INDENT ... DEDENT

INDENT ... DEDENT sections may appear in any of the above files. They most often
occur in file_template.xml and complexities.xml files.

Use INDENT and DEDENT lines in code chunks to indicate that any code between those
lines should be indented consistently. For example,

def main():

INDENT

17

NIST IR 8493
October 2023

{{local_var}}

{{input_content}}

{{filtering_content}}

{{sink_content}}

{{exec_queries_content}}

DEDENT

All code produced from the statements between the INDENT/DEDENT lines is consis-
tently indented with the string defined in <indent> </indent>, which appears in
file_template.xml, see Sec. 4.2. That string is typically four spaces.

INDENT sections may be nested. For example, here is a sink module with code that needs
additional indentation.

print(f’file "{ {{in_var_name}} }" ’, end=’’)

{{flaw}}

if os.path.exists({{in_var_name}}):

INDENT

print(’exists’)

DEDENT

else:

INDENT

print(’does not exist’)

DEDENT

If the INDENT lines were not included, VTSG produces the following code (slightly edited
for presentation).

def main():

tainted_0 = input()

tainted_1 = tainted_0

No filter (sanitization)

tainted_1 = tainted_0

print(f’file "{ tainted_1 }" ’, end=’’)

#flaw

if os.path.exists(tainted_1):

print(’exists’)

else:

print(’does not exist’)

Notice that the indentation is not consistent. This is not valid Python code. With INDENT
lines, VTSG produces the following, which is valid Python.

18

NIST IR 8493
October 2023

def main():

tainted_0 = input()

tainted_1 = tainted_0

No filter (sanitization)

tainted_1 = tainted_0

print(f’file "{ tainted_1 }" ’, end=’’)

#flaw

if os.path.exists(tainted_1):

print(’exists’)

else:

print(’does not exist’)

4.1.2. Details of INDENT ... DEDENT

Here are details of using INDENT and DEDENT.

VTSG processes code within INDENT sections line by line. No semantic parsing or anal-
ysis is done.

A section to be fixed is indicated by a line beginning with INDENT, possibly with leading
whitespace. The end of the section is indicated by a line beginning with DEDENT, again
possibly with leading whitespace. Any text after INDENT or DEDENT to the end of the
line is ignored.

Indent sections may be nested.

INDENT and DEDENT lines are removed. For lines within an INDENT ... DEDENT
section,

• first, any leading whitespace is removed, and
• second, if the line is not empty, VTSG adds indentation for each nested INDENT ...

DEDENT section this is in.

Here is a convoluted example to illustrate the fine points. Suppose this is the code generated
by composing the modules.

if Condition:

INDENT text after INDENT is ignored

line 1

while not True:

INDENT

line 3 - INDENT not at the beginning is ignored

DEDENT

19

NIST IR 8493
October 2023

line above is empty

DEDENT

line 5

If the indent string is specified as <indent>..,</indent>, the following is the result.
(Note: typically, the indent is four spaces. The preceding string with periods and a comma
is only for example clarity.)

if Condition:

..,line 1

..,while not True:

..,..,line 3 - INDENT not at the beginning is ignored

..,line above is empty

line 5

Note: because all leading whitespace is removed from lines in indent sections, using IN-
DENT ... DEDENT anywhere means that every indentation in code that might be nested
within it must be indicated with INDENT ... DEDENT lines.

We chose “DEDENT” because Python’s grammar description uses it.

4.2. File Template

<template name="">

<file_extension></file_extension>

<comment>

<open></open>

<close></close>

<inline></inline>

</comment>

<syntax>

<statement_terminator>;</statement_terminator>

<indent> </indent>

<import_code>using {{import_file}};</import_code>

</syntax>

<variables prefix="">

<variable type="" code="" init=""/>

</variables>

<imports>

<import></import>

</imports>

<code></code>

20

NIST IR 8493
October 2023

</template>

• name: Programming language name, e.g., PHP, Csharp, or Python. This appears in
the manifest. It is also the name of the subdirectory under the TestSuite directory
where all the generated test cases are placed.

• file extension: Extension of the generated files.
• comment: Strings indicating comments.

– open: string to begin a comment that may span many lines
– close: string to end a comment that may span many lines
– inline: string to begin a one-line comment

• syntax: Other language-specific syntax.
– statement terminator: string to show the end of a statement. This is semicolon
<statement_terminator>;</statement_terminator> in PHP, C, Java,
and C#. Python does not have a terminator, so this is the empty string:
<statement_terminator></statement_terminator>.

– indent: string used to indent code, see Sec. 4.1. This is typically four spaces but
can be any string.

– import code: Code to include a library. The code must have the placeholder
{{import_file}}. For example, #include <{{import_name}}>. Note: in-
clude any needed statement terminator. None is added.

• variables: Information about variable names and types and how to include libraries.
– prefix: Any prefix required for variable names. $ for PHP. Leave it empty if no

prefix is required.
– variable: Define each variable type and how to initialize it. (optional)

* type: Names the type. This string does not appear in the generated test case
code. It tells VTSG the type of variable that is being used. The input type
and output type in Input, Filter, and Sink modules use this string.

* code: A piece of code to declare the type of the variable. For some lan-
guages, such as PHP and Python, this field can be blank. This value gives
the variable type when being declared, for example, string var_0;. In
this case, “string” is the value put in this attribute.

* init: Value assigned when this type of variable is initialized.
If variables do not need to be declared in this language, do not include any
<variable ... /> statements or the {{local_var}} placeholder in the code.

• imports: libraries that are always imported. See Sec. 4.3.3.
• code: the template code. It should contain the following placeholders:

– comments: This is replaced by comments in the selected input, filter, sink, and
exec query modules. This is intended to describe the variants, options, and use
of this test case.

– license: This is replaced by the contents of the file_rights.txt file. This
is intended to hold authors’ names, usage and copyrights, contact information,
etc.

– stdlib imports: This is a placeholder for all imports for the generated program

21

NIST IR 8493
October 2023

– main name: Name of the main class
– local var: Location to declare local variables (optional). If variables do not

need to be declared in this language, do not include this placeholder or any
<variable ... /> statements in the variables.

– input content: Location for the Input (required)
– filtering content: Location of the Filter, which will be wrapped with complexi-

ties, if any.
– sink content: Location for the Sink
– exec queries content: Location for the ExecQuery
– static methods: Location for the static functions.

4.3. Attributes Shared By Modules

Many module types use the same attributes. Instead of repeating explanation of these
attributes in each module, we explain them here.

4.3.1. Module Description in Path and Dir Tags

Within the <path> keywords, modules may have one or more <dir> tags. These tags
provide the descriptions of the module that is used in the file name, see Sec. 5.2. For
example, when the key word in a selected input module is “file”, the file name will contain
..._I_file_..., where “I” indicates the input module selected.

If a module has more than one <dir> tag, the strings are joined with dashes. For example,
if a sink has

<path>

<dir>select_from</dir>

<dir>concatenation_simple_quote</dir>

</path>

then cases using that module will have file names containing
_S_select_from-concatenation_simple_quote_.

In the future this should be changed to have one <path> string, instead of multiple <dir>

description strings.

4.3.2. Module Comment

If a sample module has a comment string, it is added to the {{comments}} area in the file
template, Sec. 4.2. This informs the user about the purpose or structure of the input, filter,
sink, and exec query modules included. Below is an example comment string.

<comment>sink: check if a file exists</comment>

Any case using that module will have

22

NIST IR 8493
October 2023

sink: check if a file exists

in the comments area.

4.3.3. Needed Imports

Sometimes the use of code requires some library to be imported or used. This is indicated
with names in <import></import> directives within <imports></imports> sections.

Code statements are synthesized from the import_code in the file template and the name
or names given here.

4.3.4. Marking Modules as Safe and Unsafe

Using some modules in a program for certain flaws may make them safe or may make them
unsafe. For example, prepared SQL statements are always safe from SQL injection vulner-
abilities. In contrast, using a broken cryptographic algorithm is always unsafe, regardless
of how any user input is filtered. Similarly certain hard-coded inputs may always make a
program safe from certain flaws, and some filters may make a program safe from certain
flaws for any user input.

Input, filter, and sink modules can be marked as always safe or always unsafe using
safe="1" or unsafe="1". Modules may be always safe or always unsafe (or neither)
for some flaws and have different safety attributes for other flaws.

Exec query modules may be marked as always safe. (No exec query module can make the
program unsafe.)

A generated program is not safe if any of the selected input, filter, or sink modules are
always unsafe, that is, unsafe="1". A program is safe if any of the selected input, filter,
sink, or exec query modules is always safe, that is, safe="1", and none are unsafe. If no
module is safe, the generated program is unsafe. The filter module must be executed to be
considered. In other words, if a complexity never executes the filter, then the filter’s safe or
unsafe marking is ignored. Table 3 expresses this as a table.

Table 3. Decision table for whether a set of modules is safe or unsafe.

Any module
has safe=”1”

No module is
always safe

Any module
has unsafe=”1” unsafe unsafe

No module is
always unsafe safe unsafe

The Code Complexity Modules, Sec. 4.8.2, explains when a filter may never be executed.

23

NIST IR 8493
October 2023

Fig. 7. Example Input module. Instantiated at line 14 of Fig. 14.

4.4. Input Modules

The inputs.xml file has one or more “sample” input modules. Each module provides one
way for the generated program to get input.

<sample>

<path>

<dir></dir>

</path>

<comment></comment>

<flaws>

<flaw flaw_type="" [safe=""] [unsafe=""]/>

</flaws>

<imports>

<import></import>

</imports>

<code></code>

<input_type></input_type>

<output_type></output_type>

</sample>

24

NIST IR 8493
October 2023

• dir and path, comment, and imports: see Sec. 4.3.
• flaw: may indicate whether this input is always safe or always unsafe. See Sec. 4.3.4

for more details. If this input has the same safe/unsafe value for most types of vul-
nerabilities, put “default” as the flaw_type.

• input type: this string is placed in the manifest. It has no other function in VTSG.
• output type: the type of output. The variable generated with the placeholder
{{out_var_name}} in the code will be that type. An input module is selected if it
matches the input_type of the Filter (or of the Sink, if the Filter input_type is
“nofilter”).

• code: The source code of an input. It should contain the placeholder
{{out_var_name}}. That placeholder will be replaced by the variable name used in
the Filter and Sink. Do not declare this variable.

The case generated from the example Input in Fig. 7 takes an argument from the command
line as Input. The input string can be either safe or unsafe, depending on user input.

4.5. Filter Modules

All filter modules are in the filters.xml file.

<sample>

<path>

<dir></dir>

</path>

<comment></comment>

<flaws>

<flaw flaw_type="" [safe=""] [unsafe=""]/>

</flaws>

<imports></imports>

<code></code>

<input_type></input_type>

<output_type></output_type>

<options need_complexity=""/>

</sample>

• dir and path, comment, and imports: see Sec. 4.3.
• input type: the input type of the filter. The variable generated with the placeholder
{{in_var_name}} will be that type. Declarations of variable in the File Template
give available types, see Sec. 4.2.

• output type: the output type of the filter. The variable generated with the placeholder
{{out_var_name}} will be that type.

• flaw: indicate whether this filter is always safe, always unsafe, or neither for a partic-
ular flaw type. See Sec. 4.3.4 for more details. If this filter has the same safe/unsafe
value for most types, put “default” as the flaw_type.

25

NIST IR 8493
October 2023

Fig. 8. Example Filter module. Instantiated in lines 19–27 of Fig. 15.

26

NIST IR 8493
October 2023

• code: The source code of a filter. It should contain the placeholders
{{in_var_name}} and {{out_var_name}}. Those placeholders will be replaced
by the variable names that will be used in the Input and in Sink. Do not declare these
variables. {{out_var_name}} must receive a value in all possible executions of the
filter.
Tip: To generate a test without functional filtering, just assign out_var_name the
value of in_var_name, e.g.,

{{out_var_name}} = {{in_var_name}};

and make the input type and output type nofilter. This passes the value from the
Input directly to the Sink.

• options: By default, filters are wrapped in complexities. Complexities may be dis-
abled by adding options with need_complexity="0". In other words, if
need_complexity is in <options /> with anything other than “1”, VTSG does
not generate any variations with complexities.

The example Filter file in Fig. 8 makes sure the Input contains only a number. The flag safe
is 1, because you cannot cause an SQL Injection (CWE 89) with only numbers.

4.6. Sink Modules

All sink modules are in the language’s sinks.xml file.

<sample>

<path>

<dir></dir>

</path>

<flaw_type flaw_group=""></flaw_type>

<safety safe="" unsafe=""/>

<comment></comment>

<imports>

<import></import>

</imports>

<code></code>

<input_type></input_type>

<exec_type></exec_type>

</sample>

• dir and path, comment, and imports: see Sec. 4.3.
• flaw type: the flaw group is a general category of vulnerability. Generated test cases

are placed under the flaw group subdirectory, then in the flaw type subdirectory under
that. If the flaw group is missing or empty, flaw type subdirectories are created im-
mediately under the language directory. The user can limit cases generated to certain
flaw groups with -g command line options or certain flaws with -f options.

• input type: the input type of the sink. The variable generated with the placeholder

27

NIST IR 8493
October 2023

Fig. 9. Example Sink module. Instantiated at line 23 of Fig. 14.

{{in_var_name}} will be that type. If the sink does not require an input, this type
should be none. The code should not contain the placeholder {{in_var_name}}.
Declarations of variable in the File Template give available types, see Sec. 4.2.
The input type specifies the kind of data this sink needs from the filter (or from the
input). VTSG only selects filters whose output types are the same as this input type.
If the filter input type is “nofilter”, then VTSG selects input modules whose output
types are the same as this input type.

• exec type: link a sink to the exec queries. It must have the type of an ExecQuery. If
it does not require an ExecQuery, exec type should be none.

• safety: whether the sink is always safe or always unsafe. For example, a deprecated
function may be marked (always) unsafe. See Sec. 4.3.4 for more details.

• code: The source code of a sink. It should contain {{in_var_name}}. It will be
replaced by the variable name used in the Filter. Do not declare this variable.
The placeholder {{flaw}} indicates that the next line is the location of the flaw. In
other words, if this case is unsafe, the manifest reports a flaw at the line following
this. In unsafe cases, {{flaw}} is replaced with the one-line comment string, see
Sec. 4.2, and “flaw”. Nothing appears in safe cases.

The Sink example in Fig. 9 concatenates the filtered string with an SQL query. This block
of code can only be used for SQL Injection. Whether or not it is vulnerable depends on the
input string.

28

NIST IR 8493
October 2023

4.7. Exec Query Modules

All query execution modules are in the language’s exec_query.xml file.

<exec_query type="" safe="">

<path>

<dir></dir>

</path>

<comment></comment>

<imports>

<import></import>

</imports>

<code></code>

</exec_query>

• type: the type of the ExecQuery. This is used in the exec_type tag of the Sink to
link them together during generation process. The type should only contain letters,
numerals, and underscore (“ ”).
The C# language currently supports many database management systems, including
ORACLE, MySQL, MSSQL, PostgreSQL, SQLite, and XPATH. The syntax of each
ExecQuery must be compatible with its associated database system language.

• safe: whether the ExecQuery always makes the case safe. See Sec. 4.3.4 for more
details.

• dir and path, comment, and imports: see Sec. 4.3.
• code: The source code of a query. It does not contain placeholders. It should be

linked to the corresponding variable from the Sink. The linking is done through the
”exec type” attributes within the XML files.

The block of code in the Exec Query example, Fig. 10, executes the SQL query, used for
database management systems, including MySQL, Oracle, PostgreSQL, and SQLite. This
example is vulnerable.

4.8. Code Complexity and Test Condition Modules

All test condition and code complexity modules are in the language’s complexities.xml
file. This file has a <root> with one <conditions> part and one <complexities>

part. All condition modules are inside <conditions>. All complexity modules are in-
side <complexities>.

<root>

<conditions>

<condition ...>

...

</condition>

....

29

NIST IR 8493
October 2023

Fig. 10. Example Exec Query module. Instantiated in lines 25–39 of Fig. 14.

Fig. 11. Example test condition module. Instantiated in Fig. 14, line 16.

Fig. 12. Example Complexity module with a while loop. Instantiated in Fig. 14, lines 16–21.

30

NIST IR 8493
October 2023

</conditions>

<complexities>

<complexity ...>

...

</complexity>

....

<complexities>

Fig. 13. Example Complexity module with a method invocation. The 〈code〉 part is
instantiated in Fig. 14, lines 18 and 19. The 〈body〉 part is instantiated in Fig. 15.

4.8.1. Test Condition Modules

<condition id="">

<code></code>

<value></value>

</condition>

31

NIST IR 8493
October 2023

• id: string indicating this condition. Appears in the test case file name. Typically this
is a number.

• code: the source code of the conditional test.
• value: either <value>True</value> or <value>False</value> depending on

whether the code always evaluates to true or false.

4.8.2. Code Complexity Modules

<complexity id="" type="" group="" executed="" in_out_var="i"

need_condition="" indirection="" need_id="">

<code></code>

<body></body>

</complexity>

• id: string indicating this complexity. Appears in the test case file name. Typically
this is a number.

• type: Used types are: if, switch, goto, for, foreach, while, function, and
class. If the type is class, source code in the <body></body> is placed in an
additional file that is created for this case. Invocation statements are generated for
function and class types.
An extra variable is created for foreach type complexities (with group loops). No
other type has any effect on VTSG.

• group: Used groups are: conditionals, jumps, loops, functions, and classes.
No group, other than loops, has any effect on VTSG.

• executed: whether the placeholder will be executed or not. Four values are allowed:
– 0: Never executed
– 1: Always executed
– condition: Executed if the condition is true
– not condition: Executed if the condition is false

Table 4 gives example code for each value.
• in out var: whether the variable (from the Input) will be used or transformed in the

Complexity before being used in the Filter. If the variable is neither used nor trans-
formed, do not use this attribute. Three values are allowed:

– in: the variable is used before the placeholder
– out: the variable is used after the placeholder
– traversal: the variable is used in the placeholder

If this attribute is used, the code should contain the following placeholders:
{{in_var_name}}, {{out_var_name}}, and {{var_type}}.

• need condition: “1” if this complexity needs a condition. This complexity is also
combined with conditions (see Sec. 4.8.1) if executed is condition or
not_condition. (optional)

• indirection: “1” if the code is split into two chunks (call and declaration) or calls a
function. The body tag should be present when calling a function.

32

NIST IR 8493
October 2023

• need id: “1” if the code has a placeholder, {{id}}, to generate a unique identifier
(ID) for the Complexity. This ID to generate a label, a parameter, or a function name
in a nested context.

• code: the source code of the Complexity. Code or body should contain
{{placeholder}} where the Filter is inserted. It may also contain {{condition}}

where the Condition is inserted.
• body: additional source code not in the main execution flow, e.g., functions or

classes. This code is placed in a separate file if the type is class. (optional)

VTSG can put several complexities in one test case. The example in Sec. 5.2 has two
instances of Complexity: a control flow complexity and a data flow complexity. The control
flow complexity specification is in Fig. 12. It is instantiated in lines 16–21 of Fig. 14. Line
16 is the instantiation of the control flow condition specified in Fig. 11.

The data flow complexity is a method call within the while loop. The specification is in
Fig. 13. The <code> part is instantiated in lines 18 and 19 of Fig. 14. The <body> part is
instantiated in Fig. 15.

5. VTSG Software Documentation

This section has high-level documentation of VTSG and directions to help add extensions
or new features.

5.1. Details of Test Case Generation

Each test case is constructed based on the file template, as shown in Fig. 2. Test cases are
programs in a specific programming language. Each test case is generated by assembling
the modules according to the Template. The template may direct construction of a simple
test case with just an Input and a Sink. The Filter code may be embedded in data and
control flow Complexity code.

VTSG generates test cases with two broad steps. First, VTSG selects sink, filter, input, exec
query, and complexities that are compatible with each other and consistent with any flaw
group or flaw constraints the user gives on the command line. Second, VTSG composes
source code from the selected modules, synthesizing variable and function names, and
writes the file(s). The user may specify two ways that VTSG selects a subset of cases to
write; see Sec. 2.5.

The structure of the VTSG code itself is broadly

for each specified sink

for each filter

for each input

for each exec query

for up to DEPTH combinations of each complexity

33

NIST IR 8493
October 2023

save this set of modules

for each set of saved modules

compose this set of modules into code for a test case

The code is more complicated because only compatible modules are selected. In addition,
some sinks do not need any input or filtering at all, see Sec. 4.6. The code is actually
structured as a series of function calls to allow types of modules to be skipped.

Table 4. An example of code for each value of “executed” showing whether “placeholder”
code will be executed.

Value of
“executed”

When
executed example code

0 never

switch(6) {

case(6):

break;

default:

{{ placeholder }}

break;

}

1 always

switch(6) {

case(6):

{{ placeholder }}

break;

default:

break;

}

condition
when

condition
is true

if ({{ condition }}) {

{{ placeholder }}

} else {

{}

}

not condition
when

condition
is false

if ({{ condition }}) {

{}

} else {

{{ placeholder }}

}

34

NIST IR 8493
October 2023

Here is a slightly more detailed overview of those steps, which are in generator.py:

for each sink:

if this sink is the type specified:

use this sink

if input is needed:

select_filtering()

else:

select_exec_queries()

def select_filtering():

for each filter:

if filter is compatible with sink:

use this filter

select_input()

def select_input():

for each input:

if input is compatible with filter and sink:

use this input

select_exec_queries()

def select_exec_queries():

if sink needs exec_query:

for each exec_query:

if exec_query is compatible with sink:

use this exec_query

recursion_or_save()

else:

recursion_or_save()

def recursion_or_save():

if input_type is not none:

recursive_select_complexity()

else:

save_test_case()

... and so forth

The vtsg.py script creates a new object of the Generator class. The program iterates
through defined sink modules, selecting those specified by the user, see Sec. 2.1, or all
of them if the user does not specify. It subsequently selects all compatible filters. It then
goes through all inputs. The <input_type> and <output_type> must be consistent with

35

NIST IR 8493
October 2023

the “Filter” and “Sink” XML tags. Then an exec query and complexities are selected that
are compatible with the currently selected sink module. See 3.4.3 for details on module
compatibility. When VTSG has selected a set of modules, it saves them as one test case.

When VTSG finishes generating all possible test cases, it then selects the cases to compose
or selects all of them, as directed by the user; see Sec. 2.5. Then VTSG goes through the se-
lected test cases one by one. For each one it composes the code of their modules to generate
the source code for a test case. The process of composing modules to generate source code
is based on XML metadata tags. After the imports and class definition declaration for the
specific program language, VTSG adds the “Input” <code> to the test case. Then it adds
the “Filter” <code>, plus its <flaw type> and safety indicator, and the “Sink” <code>.
Finally, VTSG notes the “ExecQuery” type and adds its <code> to the test case. VTSG
then writes the test to one or more files. The location of the files is described in Sec. 2.3.
Section 5.2 describes how VTSG names the files.

5.2. Generated Test Case File Names

This section describes how the names of test case files are created.

VTSG creates directories and subdirectories for the test cases that it generates. The direc-
tory structure is described in Sec. 2.3.

VTSG names test case files as FLAW__I_INPUT__F_FILTER__S_SINK__EQ_EXEC_
QUERY__NMBCPLX-CMPLX1[.COND]-CMPLX2[.COND]x.EXT

• FLAW: Flaw type, e.g., CWE 89, BF, or STR30-PL, see Sec. 4.6.
• INPUT: Input description (dirs), see Sec. 4.3.1 (optional)
• FILTER: Filter description (dirs) (optional)
• SINK: Description (dirs) of the critical function
• EXEC QUERY: ExecQuery description (dirs) (optional)
• NMBCPLX: The number of complexities.
• CMPLX1[.COND], CMPLX2[.COND], . . . : List of complexities. CMPLX is the id

in the code complexity module, see Sec. 4.8.2. If the complexity has a condition,
COND is the id in the test condition module, see Sec. 4.8.1. Tables 6, 8, and 10 in
the language appendixes list complexity IDs defined in C#, PHP, and Python. Tables
5, 7, and 9 list condition IDs defined in C#, PHP, and Python. (optional)

• x: Sequence of the file within the test. If the test consists of just one file, there is no
sequence letter. If the test consists of more than one file, that is, when the complexity
type is class, see Sec. 4.8.2, the main file is “a”, and other files, such as classes,
are “b”, “c”, “d”, etc. (optional)

• EXT: file extension, given in file_template.xml, see Sec. 4.2.

File names reflect the entire case, not just the code in a particular file. If a case consists of
more than one file, as in the example used in this manual, all files have identical names,
except for the final sequence letter.

36

NIST IR 8493
October 2023

Fig. 14. Main file of example. Line 14 instantiates input code from Fig. 7. Lines 16–19
instantiates complexity code from Fig. 12. Line 16 instantiates condition code from Fig. 11.
Lines 18 and 19 instantiate code from the 〈code〉 part of Fig. 13. Line 23 instantiates critical
preparation code from Fig. 9. Lines 25–39 instantiate query execution code from Fig. 10.

37

NIST IR 8493
October 2023

Fig. 15. Auxiliary file of example. It instantiates code from the 〈body〉 part of Fig. 13. Lines
19–27 instantiate filter code from Fig. 8.

38

NIST IR 8493
October 2023

As an example of a file name, consider the test case used in this manual. The case consists
of two files. Fig. 14 is the main file of the example. Fig. 15 is an auxiliary class file. The
code in the main file invokes the class at line 18.

The name of the main file is CWE_89__I_shell_commands__F_func_preg_match-
only_numbers__S_select_from-concatenation_simple_quote__sql_server

__2-11.7-20a.cs. The name of the class file, Fig. 15, is identical, except for the file letter
“b” instead of “a” at the end.

The extension, cs, shows that it is a C# file. We understand the file name as follows:

CWE 89: Improper Neutralization of Special Elements used in an SQL Command (’SQL
Injection’) [12]

The input comes from shell commands, see specification in Fig. 7.

The filter is func preg match-only numbers, Fig. 8.

The sink is select from-concatenation simple quote sql server, Fig. 9.

The last part, 2-11.7-20, describes the complexities. The first number, 2, means this
has two complexities. Tables 5 and 6 help us decode them. The first, outer complex-
ity is 11 with condition 7. 11 means a while loop, Fig. 12, with condition 7 meaning
Math.Sqrt(42)<=42, which always evaluates to true, Fig. 11. The second, inner com-
plexity is 20, meaning the sink code is executed in the class body, Fig. 13.

“a” means this is the main file.

5.3. Adding New Capabilities to VTSG

VTSG is written in Python 3. The VTSG git repository is at https://github.com/usnistgov/
VTSG. The list of files and the README.md file are given in App. D.

New VTSG capabilities often allow the user who is describing programming languages
or adding flaws to make new mistakes. For example, suppose input modules now have
a parallel attribute, which must have one or more types of processing, such as Single
Instruction, Single Data (SISD); Multiple Instruction, Single Data (MISD); Single Instruc-
tion, Multiple Data (SIMD); Multiple Instruction, Multiple Data (MIMD); Single Program,
Multiple Data (SPMD), or Massively Parallel Processing (MPP). What should VTSG do
when the user gives an input module a parallel attribute but no type of processing? VTSG
code could just crash with a traceback about NoneType object. This does not help the user.

If the user can make a mistake, such as mismatched attributes or invalid fields, VTSG
should explain what the problem is, where it arose, why it is invalid (e.g., where the infor-
mation will be used), and what are the correct approaches or alternatives. For example, for
an empty <dir></dir> in an input module, VTSG reports

[ERROR] Invalid empty <dir></dir> in the inputs file.

39

https://github.com/usnistgov/VTSG

NIST IR 8493
October 2023

A dir string is required; it is used in the name of the generated file.

In case of an error due to a bug in VTSG itself, it may crash. In theory, VTSG developers
will find and fix all bugs before the user runs it.

References

[1] Black PE, Badger L, Guttman B, Fong E (2016) Dramatically reducing software
vulnerabilities: Report to the White House Office of Science and Technology Pol-
icy (National Institute of Standards and Technology), NIST-IR 8151. https://doi.org/
10.6028/NIST.NIST.IR.8151

[2] Black PE, Guttman B, Okun V (2021) Guidelines on minimum standards for devel-
oper verification of software (National Institute of Standards and Technology), NIST-
IR 8397. https://doi.org/10.6028/NIST.NIST.IR.8397

[3] Stivalet B, Fong E (2016) Large scale generation of complex and faulty PHP test
cases. 2016 IEEE Intern’l Conf. on Software Testing, Verification and Validation
(ICST), pp 409–415. https://doi.org/10.1109/ICST.2016.43

[4] Black PE (2018) A software assurance reference dataset: Thousands of programs with
known bugs. Journal of Research of NIST 123(123005):1–3. https://doi.org/10.6028/
jres.123.005

[5] Delaitre A, Black PE, Cupif D, Haben G, Loembe AK, Okun V, Prono Y (2023)
SATE VI report: Bug injection and collection (National Institute of Standards and
Technology), NIST-SP 500-341. https://doi.org/10.6028/NIST.NIST.SP.500-341

[6] (2017) OWASP top 10 web application security risks, https://owasp.org/www-projec
t-top-ten/. Accessed: 17 June 2020.

[7] (2020) Common weakness enumeration, https://cwe.mitre.org/. Accessed: 17 June
2020.

[8] Kuhn DR, Wallace DR, Gallo Jr AM (2004) Software fault interactions and implica-
tions for software testing. IEEE Transactions on Software Engineering, Vol. 30, pp
418–421. https://doi.org/10.1109/TSE.2004.24

[9] Kuhn DR, Kacker RN, Lei Y (2010) Practical combinatorial testing (National Institute
of Standards and Technology), NIST-SP 800-142. https://doi.org/10.6028/NIST.SP.
800-142

[10] Yu L, Lei Y, Kacker RN, Kuhn DR (2013) ACTS: A combinatorial test genera-
tion tool. 2013 IEEE Intern’l Conf. on Software Testing, Verification and Validation
(ICST), pp 370–375. https://doi.org/10.1109/ICST.2013.52

[11] (2023) Combinatorial testing, https://csrc.nist.gov/Projects/automated-combinatorial
-testing-for-software. Accessed: 13 June 2023.

[12] (2020) CWE-89: Improper neutralization of special elements used in an SQL com-
mand (’SQL injection’), https://cwe.mitre.org/data/definitions/89.html. Accessed: 18
June 2020.

[13] Kratkiewicz KJ (2005) Evaluating Static Analysis Tools for Detecting Buffer Over-
flows in C Code Master’s thesis Harvard University.

40

https://doi.org/10.6028/NIST.NIST.IR.8151
https://doi.org/10.6028/NIST.NIST.IR.8151
https://doi.org/10.6028/NIST.NIST.IR.8397
https://doi.org/10.1109/ICST.2016.43
https://doi.org/10.6028/jres.123.005
https://doi.org/10.6028/jres.123.005
https://doi.org/10.6028/NIST.NIST.SP.500-341
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.6028/NIST.SP.800-142
https://doi.org/10.6028/NIST.SP.800-142
https://doi.org/10.1109/ICST.2013.52
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software
https://cwe.mitre.org/data/definitions/89.html

NIST IR 8493
October 2023

Appendix A. Summary of Information for Generating C# Cases

This appendix documents the flaws, flaw groups, conditions, and complexities currently in
the C# language files. It also gives instructions how to compile and run the test cases.

The following flaws are currently defined for C#. The flaw group is in parentheses.

• SQL Injection (CWE-89) (OWASP a1)
• XPath Injection (CWE-91) (OWASP a1)
• LDAP Injection (CWE-90) (OWASP a1)
• OS Command Injection (CWE-78) (OWASP a1)
• Path traversal (CWE-22) (OWASP a4)
• Information Leak Through Error Message (CWE-209) (OWASP a5)
• Storing Password in Plain Text (CWE-256) (OWASP a2)
• Use of Insecure Cryptographic Algorithm (CWE-327) (OWASP a6)
• NULL Pointer Dereference (CWE-476) (OWASP a9)

Here are the conditions currently available to be used in code complexities. We explain
condition modules in Sec. 4.8.1. Table 5 shows the ID, the code, and whether it always
evaluates to true or false.

Table 5. Condition IDs, code, and value to which it evaluates defined for C#

ID Code Value
1 1==1 True
2 1==0 False
3 4+2<=42 True
4 4+2>=42 False
5 Math.Pow(4, 2)<=42 True
6 Math.Pow(4, 2)>=42 False
7 Math.Sqrt(42)<=42 True
8 Math.Sqrt(42)>=42 False

41

NIST IR 8493
October 2023

Here are the complexities currently available in C#. We explain the concept of code com-
plexities in Sec. 2.4 and the format of complexity modules in Sec. 4.8.2. The brief descrip-
tive pseudocode reminds the reader of the complexity. See the complexity.xml file for
the specific code.

Table 6. Complexity IDs and pseudocode defined for C#

ID Pseudocode
1 if condition code
2 if condition code else
3 if condition else code
4 if condition code else if not condition
5 if condition else if not condition code
6 if condition code else if not condition else
7 if condition else if not condition code else
8 if condition else if not condition else code
9 switch code executed

10 switch code not executed
11 while code
12 do code while
13 for code
14 foreach code
15 goto code not executed
16 goto code executed
17 function body executes code
18 input passed via function then code
19 code then output passed via function
20 class body executes code
21 input passed via class then code
22 code then output passed via class

To compile and run C# test cases, install mono and mcs. The Mono project created mono
as an open source platform that implements the .NET Framework. Class libraries and C#
compilation are enabled by mcs. See the mono github repository.

Here is a command to install mono:

sudo apt-get install mono-complete

Here is a command to install mcs:

sudo apt-get install mcs

42

http://github.com/mono/mono

NIST IR 8493
October 2023

On a Mac, install Homebrew first. See the Homebrew home page. Then use homebrew to
install mono. See directions to install mono using Homebrew.

The script compilationTester.sh uses mcs to compile all the C# cases that are gener-
ated.

Appendix B. Summary of Information for Generating PHP Cases

This documents the flaw, flaw group, conditions, and complexities currently in the PHP
language files.

The following flaw is currently defined for this language. The flaw group is in parentheses.

• SQL Injection (CWE-89) (OWASP injection)

Here are the conditions currently available to be used in code complexities. We explain
condition modules in Sec. 4.8.1. Table 7 shows the ID, the code, and whether it always
evaluates to true or false.

Table 7. Condition IDs, code, and value to which it evaluates defined for PHP

ID Code Value
1 1==1 True
2 1==0 False

43

https://brew.sh/
https://formulae.brew.sh/formula/mono

NIST IR 8493
October 2023

Here are the complexities currently available in PHP. We explain the concept of code com-
plexities in Sec. 2.4 and the format of complexity modules in Sec. 4.8.2. The brief descrip-
tive pseudocode reminds the reader of the complexity. See the complexity.xml file for
the specific code.

Table 8. Complexity IDs and pseudocode defined for PHP

ID Pseudocode
1 if condition code
2 if condition code else
3 if condition else code
4 if condition code else if not condition
5 if condition else if not condition code
6 if condition code else if not condition else
7 if condition else if not condition code else
8 if condition else if not condition else code
9 switch code executed

10 switch code not executed
11 while code
12 do code while
13 for code
14 foreach code
15 goto code not executed
16 goto code executed
17 function body executes code
18 input passed via function then code
19 code then output passed via function
20 class body executes code
21 input passed via class then code
22 code then output passed via class

44

NIST IR 8493
October 2023

Appendix C. Summary of Information for Generating Python Cases

This documents the flaws, flaw groups, conditions, and complexities currently in the Python
language files.

The following flaws are currently defined for Python. The flaw group is in parentheses.
Flaws in the “Exception” flaw group are caught by the Python runtime. These are un-
likely to be vulnerabilities (except denial of service). “KK” flaws are adapted from Kendra
Kratkiewicz’s work [13].

• Operating system (OS) Command Injection (CWE78) (OWASP a1)
• Path traversal (CWE22) (OWASP a4)
• Information Leak Through Error Message (CWE209) (OWASP a5)
• Loop on Unchecked Input (CWE606) (Other)
• Relative Path Traversal (CWE23) (Other)
• External Control of System or Configuration Setting (CWE15) (Other)
• Divide by Zero (CWE369) (Exception)
• Improper Validation of Array Index (CWE129) (Exception)
• Buffer Overflow (KK) (Exception)

Here are the conditions currently available to be used in code complexities. We explain
condition modules in Sec. 4.8.1. This table shows the ID, the code, and whether it always
evaluates to true or false.

Table 9. Condition IDs, code, and value to which it evaluates defined for Python

ID Code Value
1 1==1 True
2 1==0 False

2u True True
2v False False
3 4+2<=42 True

3u 5==5 True
3v 5!=5 False
4 4+2>=42 False
5 math.pow(4, 2)<=42 True
6 math.pow(4, 2)>=42 False
7 math.sqrt(42)<=42 True
8 math.sqrt(42)>=42 False

45

NIST IR 8493
October 2023

Here are the complexities currently defined. We explain the concept of code complexities
in Sec. 2.4 and the format of complexity modules in Sec. 4.8.2. The brief descriptive
pseudocode reminds the reader of the complexity. See the complexity.xml file for the
specific code.

Table 10. Complexity IDs and pseudocode defined for Python

ID Pseudocode
1 if condition code
2 if condition code else
3 if condition else code
4 if condition code elif not condition
5 if condition elif not condition code
6 if condition code elif not condition else
7 if condition elif not condition code else
8 if condition elif not condition else code

11 match case code not executed
12 match case code executed
13 no match case code executed
14 no match case code not executed
20 while condition code break

20n while condition break code
22 for range(0, 1) code
23 for array if value code
50 function body executes code
51 input passed via function then code
52 code then output passed via function
70 class body executes code
71 input passed via class then code
72 code then output passed via class

46

NIST IR 8493
October 2023

Appendix D. Contents of git Repository

Fig. 16. Snapshot of files in the VTSG git repository, which is at https://github.com/
usnistgov/VTSG, as of 31 August 2023.

47

https://github.com/usnistgov/VTSG

NIST IR 8493
October 2023

Fig. 17. README.md file, which is at https://github.com/usnistgov/VTSG/blob/
master/README.md, as of 8 March 2022.

48

https://github.com/usnistgov/VTSG/blob/master/README.md

	Introduction
	Strengths and Limitations of VTSG
	History

	VTSG User Manual
	Command Line Interface
	Example Invocations
	Results and Output
	Code Complexities
	Using ACTS or -n to Select a Subset of Cases

	Advanced User Manual
	Installing Supporting Packages
	Installing VTSG
	Installing Optional Packages
	Adding a New Flaw
	Adding a New Language

	File Template, Input, Filter, Sink, Exec_Query, and Complexity Files
	Maintain Indentation with INDENT ... DEDENT
	File Template
	Attributes Shared By Modules
	Input Modules
	Filter Modules
	Sink Modules
	Exec_Query Modules
	Code Complexity and Test Condition Modules

	VTSG Software Documentation
	Details of Test Case Generation
	Generated Test Case File Names
	Adding New Capabilities to VTSG

	References
	Appendix Summary of Information for Generating C# Cases
	Appendix Summary of Information for Generating PHP Cases
	Appendix Summary of Information for Generating Python Cases
	Appendix Contents of git Repository

