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Abstract 

This report summarizes recent technical work of the Applied and Computational Mathematics 
Division of the Information Technology Laboratory at the National Institute of Standards and 
Technology (NIST). Part I (Overview) provides a high-level overview of the Division’s activi-
ties, including highlights of technical accomplishments during the previous year. Part II 
(Features) provides further details on projects of particular note this year. This is followed in Part 
III (Project Summaries) by brief synopses of all technical projects active during the past year. 
Part IV (Activity Data) provides listings of publications, technical talks, and other professional 
activities in which Division staff members have participated. The reporting period covered by 
this document is October 2021 through December 2022. 
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terials modeling and simulation; mathematical knowledge management; mathematical modeling; 
mathematics of biotechnology; mathematics of metrology; scientific visualization; quantum in-
formation science. 
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Introduction 
Founded in 1901, the National Institute of Standards and Technology (NIST) is a non-regulatory federal 
agency within the U.S. Department of Commerce. Its mission is to promote U.S. innovation and industrial 
competitiveness by advancing measurement science, standards, and technology in ways that enhance eco-
nomic security and improve our quality of life. The technical disciplines represented in the NIST 
Laboratories include physics, electrical engineering, nanotechnology, materials science, chemistry, biotech-
nology, manufacturing and construction engineering, fire research, information technology, mathematics, 
and statistics. The NIST Labs operate in two locations: Gaithersburg, MD, (headquarters—234 hectare/578-
acre campus) and Boulder, CO (84 hectare/208-acre campus). NIST employs about 3 400 scientists, engi-
neers, technicians, and support personnel, and also hosts about 3 500 associates from academia, industry, 
and other government agencies, who collaborate with NIST staff and access its facilities.  

The Information Technology Laboratory (ITL) is one of six major organizational units that make up 
the NIST Labs. ITL’s singular purpose is to cultivate trust in information technology and metrology. This 
is done through the development of measurements, tests, and guidance to support innovation in and deploy-
ment of information technology by industry and government, as well as through the application of advanced 
mathematics, statistics, and computer science to help ensure the quality of measurement science. 

The Applied and Computational Mathematics Division (ACMD) is one of six technical Divisions in 
ITL. At its core, ACMD’s purpose is to nurture trust in metrology and scientific computing. To do so, 
ACMD provides leadership within NIST in the use of applied and computational mathematics to solve 
technical problems arising in measurement science and related applications. In that role staff members  
• perform research in applied mathematics and computational science and engineering, including ana-

lytical and numerical methods, high-performance computing, and visualization, 
• perform applied research in computer science and engineering for future computing and communi-

cations technologies, 
• engage in peer-to-peer collaborations to apply mathematical and computational techniques and tools 

to NIST problems, 
• develop and disseminate mathematical reference data, software, and related tools, and  
• work with internal and external groups to develop standards, tests, reference implementations, and 

other measurement technologies for current and future scientific computing systems. 

Division staff is organized into four groups: 
• Mathematical Analysis and Modeling Group (Timothy Burns, Leader). Performs research and main-

tains expertise in applied mathematics, mathematical modeling, and numerical analysis for 
application to measurement science. 

• Mathematical Software Group (Bonita Saunders, Leader). Performs research and maintains expertise 
in the methodology and application of mathematical algorithms and software in support of computa-
tional science within NIST as well as in industry and academia. 

• High Performance Computing and Visualization Group (Judith Terrill, Leader). Performs research 
and maintains expertise in the methodologies and tools of high-performance scientific computing and 
visualization for use in measurement science. 

• Computing and Communications Theory Group (Ronald Boisvert, Acting Leader; Oliver Slattery, 
Project Leader). Performs research and maintains expertise in the fundamental mathematics, physics, 
computer science, and measurement science necessary to enable the development and analysis of 
current and future computing and communications systems. 

The technical work of the Division is organized into seven thematic areas; these are described in the sidebar. 
Project descriptions in Part III of this document are organized according to these broad themes.  
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Division Thematic Areas 

Broad Areas 

Mathematics of Metrology. Mathematics plays an im-
portant role in measurement science. Mathematical models 
are needed to understand how to design effective measure-
ment systems and to analyze the results they produce. 
Mathematical techniques are used to develop and analyze 
idealized models of physical phenomena to be measured, and 
mathematical algorithms are necessary to find optimal sys-
tem parameters. Mathematical and statistical techniques are 
needed to transform measured data into useful information. 
We develop fundamental mathematical methods and tools 
necessary for NIST to remain a world-class metrology insti-
tute, and to apply these to measurement science problems.  

High Performance Computing and Visualization. Com-
putational capability continues to advance rapidly, enabling 
modeling and simulation to be done with greatly increased 
fidelity. Doing so often requires computing resources well 
beyond what is available on the desktop. Developing soft-
ware that makes effective use of such high-performance 
computing platforms remains very challenging, requiring ex-
pertise that application scientists rarely have. We maintain 
such expertise for application to NIST problems. Such com-
putations, as well as modern experiments, typically produce 
large volumes of data, which cannot be readily compre-
hended. We are developing the infrastructure necessary for 
advanced interactive, quantitative visualization and analysis of 
scientific data, including the use of 3D immersive environ-
ments, and applying the resulting tools to NIST problems.  

Current Focus Areas 

Mathematics of Biotechnology. As proof-of-concept aca-
demic work in engineering biology meets the market realities 
of bringing lab science to product initiation, there are needs 
to compare biological products, measure whether desired 
outcomes are realized, and optimize biological systems for 
desired behaviors. NIST is working to deliver tools and 
standards to measure such biological technologies, outputs, 
and processes from healthcare to manufacturing and beyond. 
We support this effort with the development and deploy-
ment of innovative mathematical modeling and data analysis 
techniques and tools. 

Materials Modeling. Mathematical modeling, computa-
tional simulation, and data analytics are key enablers of 
emerging manufacturing technologies. The Materials Ge-
nome Initiative (MGI), an interagency program with the goal 
of significantly reducing the time from discovery to commer-
cial deployment of new materials using modeling, simulation, 
and informatics, is a case in point.  To support the NIST role 
in the MGI, we develop and assess modeling and simulation 
techniques and tools, with emphasis on uncertainty quantifi-
cation, and collaborate with other NIST Laboratories in their 
efforts to develop the measurement science infrastructure 
needed by the materials science and engineering community. 
 

Quantum Information  Science. An emerging discipline at 
the intersection of physics and computer science, quantum 
information science is likely to revolutionize 21st century sci-
ence and technology in the same way that lasers, electronics, 
and computers did in the 20th century. By encoding infor-
mation into quantum states of matter, one can, in theory, 
enable phenomenal increases in information storage and pro-
cessing capability. At the same time, such computers would 
threaten the public-key infrastructure that secures all of elec-
tronic commerce. Although many of the necessary physical 
manipulations of quantum states have been demonstrated 
experimentally, scaling these up to enable fully capable quan-
tum computers and networks remains a grand challenge. We 
engage in (a) theoretical studies to understand the power of 
quantum computing, (b) collaborative efforts with the multi-
laboratory experimental quantum science program at NIST 
to characterize and benchmark specific physical realizations 
of quantum information processing, and (c) demonstration 
and assessment of technologies for quantum networking.  

Foundations of Measurement Science for Information 
Systems. ITL assumes primary responsibility within NIST for 
the development of measurement science infrastructure and 
related standards for IT and its applications. ACMD develops 
the mathematical foundations for such work.  This can be 
very challenging. For example, many large-scale information-
centric systems can be characterized as an interconnection 
of many independently operating components (e.g., software 
systems, communication networks, the power grid, trans-
portation systems, financial systems). Exactly how the 
structure of such large-scale interconnected systems and the 
local dynamics of its components leads to system-level be-
havior is only weakly understood. This inability to predict the 
systemic risk inherent in system design leaves us open to un-
realized potential to improve systems or to avoid potentially 
devastating failures. A looming new example of importance 
to NIST is the Internet of Things. We are developing models 
to aid in the development of applications from individualized 
health IT devices to large-scale sensor networks. 

Mathematical Knowledge Management. We work with 
researchers in academia and industry to develop 
technologies, tools, and standards for representation, 
exchange, and use of mathematical data. Of particular 
concern are semantic-based representations which can 
provide the basis for interoperability of mathematical 
information processing systems. We apply these representa-
tions to the development and dissemination of reference 
data for applied mathematics. The centerpiece of this effort 
is the Digital Library of Mathematical Functions, a freely avail-
able interactive and richly linked online resource, providing 
essential information on the properties of the special func-
tions of applied mathematics, the foundation of mathematical 
modeling in all of science and engineering. 

 



Summary of Activities for Fiscal Year 2022 5 

Highlights 
In this section we identify some of the major accomplishments of the Division during the past year. We 
also provide news related to ACMD staff.  

Recent Technical Highlights 

ACMD has made significant technical progress on many fronts during the past year. Here we highlight a 
few notable technical accomplishments.  

• July 1, 2022 marked the 75th anniversary of the establishment of the first mathematical unit on the 
NIST (NBS, at the time) org chart. This was known as the National Applied Mathematics Laboratory. 
(By 1954 the organization’s name had been changed to the Applied Mathematics Division.) To com-
memorate this anniversary ACMD and the NIST Statistical Engineering hosted a celebratory online 
symposium1 on June 28-30, 2022, which attracted 256 attendees. Twenty talks focusing on NIST 
history were presented. Featured external speakers included David Alan Grier (a science historian 
from George Washington University), Karen Kafadar (University of Virginia), Douglas Shier (Duke 
University), and Youssef Saad (University of Minnesota). Videos of all of the presentations are avail-
able on the conference website. In addition to the symposium, an online timeline of major events in 
the history of mathematics and statistics at NIST was released2 as well as a repository historical 
records from the Statistical Engineering Division3 

• X-ray tomography is capable of imaging the interior of 3D objects non-invasively, with applications 
in biomedical imaging, materials science, electronic inspection, and other fields. The reconstruction 
process can be a challenging, ill-conditioned inverse problem. Recently, deep learning has been 
adopted for tomographic reconstruction. Bradley Alpert of ACMD, working with colleagues in NIST 
PML, Sandia National Laboratories, and the Massachusetts Institute of Technology, has developed a 
physics-assisted generative adversarial network for this task. The new method can reduce the photon 
requirement with limited projection angles to achieve a given error rate, which may further enable 
low-photon nanoscale imaging. This is being applied to imaging of nanoscale integrated circuits. See 
page 27. 

• Sea-ice formation and defect development in metal alloys share an important feature: a so-called 
mushy layer. Such phenomena are the result of complex fluid mechanical activity, thermal and chem-
ical transport, phase transformations, nonlinear dynamics, and pattern formation. Directly observing 
real-world mushy layers is a challenge, and hence mathematical modeling has been a key to develop 
understanding of such phenomena. ACMD faculty appointee Daniel Anderson and colleagues this 
year published an excellent summary in Physics Today of the historical development and current 
status of research in this area. See page 50. 

• Quantitative PCR (qPCR) is routinely employed in healthcare diagnostics, forensics, and biotechnol-
ogy research. It can determine the concentration of a specific sequence of nucleic acids present in a 
sample. However, quantification is limited by systematic and subjective bias, as well as the lack of a 
quantitative expression for uncertainty. Robert DeJaco and Anthony Kearsley of ACMD, working 
with colleagues in NIST MML, have developed an improved mathematical model which can reduce 
several sources of bias and quantify the uncertainty in fluorescence. It also provides new insight into 
PCR dynamics, sources of error, and limits of detection. See page 17. 

• Simon Su, William Sherman, and Judith Terrill of ACMD have developed a transportable virtual 
reality (VR) system that approximates immersive VR for use at conferences and similar venues. This 

 
1 https://www.nist.gov/news-events/events/2022/06/75th-anniversary-mathematics-and-statistics-nist 
2 https://www.nist.gov/mathematics-statistics/mathematics-and-statistics-nist-timeline 
3 https://www.nist.gov/itl/sed/historical-information 

https://www.nist.gov/news-events/events/2022/06/75th-anniversary-mathematics-and-statistics-nist
https://www.nist.gov/mathematics-statistics/mathematics-and-statistics-nist-timeline
https://www.nist.gov/itl/sed/historical-information
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project has grown out of an effort to enable researchers and developers to have local (i.e., in their 
office) access to immersive interfaces using consumer tracking technology. The system was on dis-
play at the 2022 Supercomputing conference. See page 70. 

• Generic computational tasks can be mapped to finding the ground state of a Hamiltonian. This is the 
basis for adiabatic quantum computing. Here one initializes a system in an easy-to-prepare ground 
state, after which a time-dependent evolution is performed to transform the system into one whose 
ground state encodes the solution to the desired problem. However, adiabaticity, i.e., slow evolution, 
is not a requirement, it is simply a (demanding) condition that guarantees success. This does not 
exclude the existence of non-adiabatic schedules that take the system to the desired target state more 
quickly. In a paper to appear in Physical Review Letters, Yi-Kai Liu and Lucas Brady of ACMD and 
colleagues describe general conditions that constrain how fast annealing can be successfully per-
formed, including beyond the adiabatic regime. See page 94. 

• Classical and quantum error correction lies at the intersection of computer science, engineering, phys-
ics, and mathematics. Classical coding theory has been around for more than 70 years, yielding an 
enormous literature collection. Quantum error correction is more recent but arguably more diverse, 
encompassing subfields from solid-state physics to complexity theory. Collecting and accurately syn-
thesizing knowledge in this field is as formidable as it is useful. Victor Albert of ACMD and 
colleagues have created and actively maintain the Error Correction Zoo to categorize and organize 
known classical and quantum error-correction schemes. See page 91. 

• ACMD’s Quantum Network and Component Metrology Project focusses on the characterization of 
quantum network links, components, and protocols. Measurement protocols and tools are developed 
in our lab and deployed in our NIST Gaithersburg quantum network testbed as well as in the regional 
DC-QNet4. Last year’s highlights include a demonstration to synchronize quantum network nodes to 
below 200 ps over 128 km distance, distribute entanglement over more than 130 km distance, and 
measure wavelength-dependent loss in optical fibers with some surprising results. See page 96. 

• Quantum technologies are poised to revolutionize communication, time keeping, navigation, as well 
as fundamental science. However, at present such technologies often require expert knowledge and 
constant human intervention to initialize, optimize, and operate, limiting their wide-scale adoption. 
Justyna Zwolak and Lisa Ritter of ACMD are working with NIST PML colleagues to develop ma-
chine learning (ML) systems for autonomous closed-loop initialization, optimization, and operation 
of a quantum system: laser-cooled atoms. Such work serves as a baseline for how to apply ML tools 
to challenging problems in laboratory apparatus and field-deployable sensors, where performance 
guarantees and uncertainty quantification are essential. See page 22. 

• Automatic viral exposure notification apps primarily operate based on the hard distance/time thresh-
olds outlined by health organizations (e.g., 2 m/15 min by the CDC or 1 m/15 min by the WHO) to 
determine exposure. However, the possibility of virus transmission through inhalation for longer dis-
tances or shorter times still remain. Kamran Sayrafian, Brian Cloteaux, and Vladimir Marbukh of 
ACMD have developed simulations to analyze the performance of automatic exposure notification 
by comparing the exposure results when soft or hard thresholds are used. Their work provides insight 
as to how soft threshold parameters can be optimized for factors such as the surrounding environment 
(e.g., indoor vs. outdoor), an individual’s health, the severity of the outbreak in the community, etc. 
See page 112. 

• Barry Schneider of ACMD continues to provide leadership in the development of a culture of open 
science within the atomic, molecular, and optical physics community. This is being done through 
support of the Science Gateway for Atomic Molecular and Optical Science, which is providing access 
to advanced computational tools and related educational materials. See page 34. 

 
4 https://www.nist.gov/news-events/news/2022/06/dc-area-us-government-agencies-announce-washington-metropolitan-quantum 

 

https://www.nist.gov/news-events/news/2022/06/dc-area-us-government-agencies-announce-washington-metropolitan-quantum
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Technology Transfer and Community Engagement 
The volume of technical output of ACMD remains high. During the last 15 months, Division staff members 
were (co-)authors of 59 articles appearing in peer-reviewed journals, 39 papers in conference proceedings, 
and 9 published in other venues. Fifteen additional papers were accepted for publication, while 42 others 
are undergoing review. Division staff gave 82 invited technical talks and presented 64 others in conferences 
and workshops. Staff members were co-inventors on six patents undergoing review. 

ACMD continues to maintain an active website with a variety of information and services, most notably 
the Digital Library of Mathematical Functions, though legacy services that are no longer actively devel-
oped, like the Guide to Available Mathematical Software, the Matrix Market, and the SciMark Java 
benchmark still see significant use. During calendar year (CY) 2021, the division web server satisfied more 
than 6.9 million requests for pages during more than 647 000 user visits. Another indication of the success-
ful transfer of our technology is references to our software in refereed journal articles. For example, our 
software system for nano-magnetic modeling (OOMMF) was cited in 252 such papers published in CY 
2022 alone.  

Members of the Division are also active in professional circles. Staff members hold a total of 14 edito-
rial positions in peer-reviewed journals. For example, Barry Schneider is an Associate Editor-in-Chief for 
IEEE’s Computing in Science and Engineering. Staff members are also active in conference organization, 
serving on 23 organizing/steering/program committees.  

Service within professional societies is also prevalent among our staff. For example, Bonita Saunders 
is a member of the Board of Trustees of the Society for Industrial and Applied Mathematics (SIAM). Staff 
members are also active in a variety of working groups. Ronald Boisvert and Andrew Dienstfrey serve as 
members of the International Federation for Information Processing (IFIP) Working Group 2.5 on Numer-
ical Software, Donald Porter is a member of the Tcl Core Team, Bruce Miller is a member of W3C’s Math 
Working Group, and Sandy Ressler is a member of the W3C Advisory Committee. Barry Schneider repre-
sents NIST on the High-End Computing (HEC) Interagency Working Group of the Federal Networking 
and Information Technology Research and Development (NITRD) Program. Further details can be found 
in Part IV of this report. 

Staff News 

The summer of 2022 marked the first return to campus in two years for many Division staff members, 
though an increase in telework flexibilities allowed staff members to phase in their return slowly. We are 
currently experiencing a more truly hybrid working environment than before the pandemic. While this pro-
vides staff with greater opportunities to balance work life with homelife, it continues to pose challenges for 
the types of seamless interactions needed for state-of-the-art research. We are compensating for this in a 
number of ways. All of our Division seminars are now hybrid affairs to allow participation by both local 
and remote staff. The Division Chief holds weekly open online office hours in which staff can drop in to 
ask questions and discuss concerns. In addition a monthly online Division “tea” provides an opportunity 
for informal staff interaction wherever they might be. 

Once again, this year ACMD experienced an unusually large number of staffing changes. We welcomed 
two new permanent staff members and four new NRC Postdoctoral Associates, while bidding farewell to 
four NRC postdoc and one temporary Federal staff member. We continue to host a large number of guest 
researchers, 38 at last count, 22 of whom work on the NIST campus with the rest being off-site collabora-
tors. We provided internship opportunities to 23 students, including 14 graduate students, six undergraduate 
students, and three high school students. See Table 3 on page 129 for a list of our interns. 

Further details on our staff changes and awards are provided below. 
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Arrivals 
In November 2021 Zachary Grey made the transition from NRC Postdoctoral As-
sociate to a full-time permanent ACMD staff member in Boulder. Zach received a 
Ph.D. in Computational and Applied Mathematics from the Colorado School of 
Mines in November 2019. His research interests focus on the use of differential 
geometry to solve real-world problems, including those requiring dimension reduc-
tion and uncertainty quantification. At NIST he has worked with CTL staff on 
optimizing unlicensed band spectrum sharing with subspace-based pareto tracing. 
He also established a collaboration with the National Renewable Energy Labora-
tory on optimizing the shape of wind turbine blades. 

Simon Su joined ACMD as a permanent staff member on November 8, 2021. He 
comes to us from the Army Research Laboratory where he served as an expert in 
large-scale scientific data analytics and visualization, including immersive virtual 
reality. He will continue work on such topics in ACMD’s High Performance Com-
puting and Visualization Group. Simon holds a Ph.D. in Computer Science from 
the University of Houston (2001). He also has experience working at a variety of 
academic labs, such as the Desert Research Institute, the University of Louisiana, 
and Princeton University, as well as in industrial labs, such as Ball Aerospace, and 
Lockheed Martin. 

Camilo Montoya joined ACMD as an NRC Postdoctoral Associate on June 21, 
2022. Camilo holds a PhD in mathematics from Florida International University, 
where he explored the geometric relation between the Laplace-Beltrami spectra and 
eigenfunctions on compact Riemannian symmetric spaces and the Borel-Weil the-
ory using ideas from symplectic geometry and geometric quantization. At NIST 
Camilo is working with Howard Cohl to study fundamental solutions for linear elliptic partial differential 
equations on Riemannian manifolds which are symmetric spaces, which can be thought of as special func-
tions. 

Deborah McGlynn joined ACMD as an NRC Postdoctoral Associate on September 26, 2022. She received 
a PhD in Civil and Environmental Engineering from Virginia Tech. In her thesis she studied the chemical 
impacts of biogenic volatile organic compounds (BVOCs). Such compounds, which are emitted by natural 
ecosystems, are highly reactive and can have a significant effect on atmospheric composition, including 
ozone formation. At NIST she is working with Tony Kearsley and colleagues on the development of ma-
chine learning methods for classification and uncertainty quantification of microplastics in the NIST Mass 
Spec Database. 

On December 5, 2022, William Earwood began a two-year NRC Postdoctoral Associateship in ACMD. 
He received a PhD in Chemistry from the University of Mississippi, where he developed new theoretical 
methods and resulting computer software for calculating term energies and dipole polarizabilities of lithi-
umlike ions. At NIST, William will work with Barry Schneider on numerical methods for the time-
dependent Schrodinger equation needed to study atomic and molecular systems exposed to short pulse, 
intense electromagnetic radiation. The methods and software will be used to calculate polyatomic excitation 
and ionization cross-sections, but these new methods are quite general and have applications to other areas 
of chemistry and physics. 

Stephen Sorokanich joined ACMD as an NRC Postdoctoral Associate on December 19, 2022. Stephen 
received a Ph.D. in Applied Mathematics and Mathematical Physics from the University of Maryland Col-
lege Park in May of 2022. For his thesis he carried out a mathematical analysis of several models for the 
dilute interacting Bose gas and the phenomenon of Bose-Einstein condensation (BEC). In that work he 
developed the spectral theory for a family of approximate Hamiltonians via their transformation by a non-

 

 
Figure 1. Two new perma-
nent staff members joined 
ACMD in late 2021: Zach-
ary Grey (top) and Simon 
Su. (Photos provided by the sub-
jects.) 
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Hermitian pair excitation operator. At NIST he will work with Howard Cohl to study the nonlinear evolu-
tion of rotating self-gravitating incompressible inviscid bodies, an application of ellipsoidal harmonics. 

A number of new guest researchers with projected tenures of six months or more have come on board this 
past year. 

• Kaitlyn Hood, Assistant Professor of Mathematics at Purdue University, is working with Paul Pa-
trone, Tony Kearsley, and colleagues on theoretical and computational models of fluid-mediated 
particle-particle interactions in optofluidic flow meters. The work is associated with the NIST-in-
a-Drop Innovations in Measurement Science project led by ACMD. 

• Joel Bowman, retired Professor of Chemistry at Emory University who has relocated to the Wash-
ington area, is working with Barry Schneider, Tony Kearsley, and colleagues on the application of 
AI and deep learning to problems in chemical physics. 

A sharp increase in quantum information funding to support NIST research in quantum networking, includ-
ing the development of DC-QNet, a multi-agency quantum networking testbed, has led to the engagement 
of a host of new guest researchers working on our quantum communications experimental program. These 
include the following postdoctoral researchers: 

• Sesha Challa (Pavan Kumar), Pusan National University, India 
• Hristina Georgieva, Physikalisch-Technische Bundesanstalt (PTB), Germany 
• Nijil Lal Cheriya Koyyottummal, University of Napoli Federico II, Italy 
• Navin Lingaraju, University of Maryland 
• Samprity Saha, Virginia Commonwealth University 
• Yicheng Shi, University of Singapore 

Departures 

Lucas Brady, a former NRC Postdoctoral Associate at NIST with a joint postdoctoral appointment at the 
NIST Joint Center for Quantum Information and Computer Science (QuICS) at the University of Maryland, 
left NIST in February 2022 to take a position at the Quantum Artificial Intelligence Laboratory (QuAIL) at 
NASA’s Ames Research Center in Mountain View, CA. At NIST Lucas studied quantum optimization 
algorithms, which led to the award-winning discovery of optimal protocols for quantum annealing and 
quantum approximate optimization algorithms (QAOA). 

Matthew (Jake) Roberts, an NRC Postdoctoral Associate who worked with Tony Kearsley, left ACMD 
in May 2022 to take a position at the Institute for Defense Analysis in Alexandra, VA. At NIST Jake studied 
mass spectra from DART-MS, a new high resolution device capable of making simultaneous measurements 
at different energy levels. Jake’s new, and quite mathematically sophisticated, techniques for mass spec 

       
Figure 2. New NIST/NRC postdoctoral associates this year included (l to r) Deborah McGlynn, William Earwood, Camilo Montoya, and Ste-
phen Sorokanich. (Photos provided by the subjects.) 
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data analysis managed to upend the conventional way data mass spectra are compared when trying to iden-
tify dangerous compounds like Fentanyl, the illegal synthetic heroin. In addition, he also continued his PhD 
research on approximating the generalized singular value expansion. 

Danielle Brager, an NRC Postdoctoral Associate who worked with Tony Kearsley, left ACMD in August 
2022 to take a position with as a data analyst at NASDAQ (yes, the stock market company) in August 2022. 
At NIST she worked on numerical scaling techniques for the preprocessing of mass spectrometry library 
data. Such preprocessing is able to maximally separate similarity scores in mass spec library searching, 
allowing a clearer distinguishing between compounds. In addition, she also continued her PhD thesis re-
search on mathematical models of photoreceptor degeneration in retinitis pigmentosa. 

Daniel Flynn, who was on temporary assignment as an administrative assistant in ACMD in Boulder, left 
NIST in August 2022 to take a position as a program manager for the non-profit Central Visitation Program 
in Denver. Before his appointment at NIST, Dan worked for the Peace Corps in Tanzania. 

Joshua Ziegler, an NRC Postdoctoral Associate working with Justyna Zwolak, departed ACMD in Sep-
tember 2022 to join the research staff at Intel in Portland, OR. While his PhD dissertation at the University 
of Oregon was a largely experimental effort to identify and engineer optically active defects in certain 
materials which could serve as qubits for quantum computing, he also managed to develop a proficiency in 
machine learning techniques and tools. At NIST he applied this to develop techniques for the auto-tuning 
of quantum dots for computation in the presence of noise. 

Recognition  

ACMD staff members were recognized with a variety of awards this year, including the following.  

Paul Patrone received the Washington Academy of Science (WAS) Award for Excellence in Research in 
Applied Mathematics, an honor that was conferred at the annual WAS awards banquet held on May 11, 
2022. The citation reads “in recognition for contributions to uncertainty quantification of molecular simu-
lations and material science physics of polymers.” He was also named a Fellow of the WAS. Two additional 
ACMD staff members were also named Fellows of the Washington Academy of Science this year: 
• Raghu Kacker 

For outstanding contributions in enabling the field of combinatorial testing to become a mainstream 
tool in measurement science and software engineering. 

• Kamran Sayrafian 
In recognition of outstanding contributions to mathematical and computational modeling of body area 
networks. 

Scott Glancy and Emanuel Knill of ACMD, along with four colleagues from NIST’s Physical Measure-
ment Laboratory were recipients of the 2022 Department of Commerce Gold Medal. They were honored 
“for pioneering experimental techniques to generate and precisely measure the quantum entanglement of 
two macroscopic mechanical resonators.” The highest honorary award granted by the Secretary of Com-
merce, the Gold Medal is awarded for distinguished performance characterized by extraordinary, notable, 
or prestigious contributions that impact the mission of the Department. The medals were conferred at cer-
emonies held at DOC headquarters in January 2023. Notably, ACMD postdoc Ezad Shojaee and PREP 
graduate students Alex Kwiatkowski and Shawn Geller, who helped develop the theory and wrote, ana-
lyzed, and tested the data analysis code that enabled this accomplishment were not cited because they are 
ineligible for DOC awards since they are not Federal employees.  
Three ACMD staff members were recipients of the 2021 Department of Commerce Silver Medal, which 
were conferred in ceremonies held in January 2022. The second highest honorary award granted by the 
Secretary of Commerce, this recognizes exceptional performance characterized by noteworthy or superla-
tive contributions which have a direct and lasting impact within the Department. These staff members are: 
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• Thomas Gerrits of ACMD, along with five colleagues in PML and one in CTL were recognized for 
exceptional scientific achievement culminating in the first demonstration of an array of superconduct-
ing nanowire single-photon detectors (SNSPDs) with more than one thousand pixels. The NIST array 
represents a 15X improvement in size and pixel count and over one hundred million times better noise 
properties than conventional arrays. Such arrays of SNSPDs are required for the most demanding 
applications of imaging at ultralow light levels for astronomy, deep space communications, and med-
ical imaging. The group’s technology is already being adopted by industry. 

• Ryan Evans and Anthony Kearsley of ACMD and a team of seven research chemists in MML were 
recognized for advancing the state-of-the-art in methods for determining the higher order protein struc-
ture of biotherapeutics. The group led two technically challenging international comparison studies, 
establishing the reproducibility and limitations of novel precision measurement methods. Addition-
ally, they developed new data acquisition and analysis tools and new hardware that have hastened 
broad industry adoption and provide a foundation for measurements that ensure quality and accelerate 
development of life saving biotherapeutics and biosimilars.  

Geoffrey McFadden, an ACMD mathematician and NIST Fellow, who re-
tired in 2021, was inducted into the NIST Portrait Gallery of Distinguished 
Scientists, Engineers and Administrators in ceremonies held on October 28. 
He was cited for fundamental contributions to the theory of phase transitions, 
hydrodynamic and morphological stability, and thermo-solutal transport in 
materials. NIST Portrait Gallery honors NIST alumni for outstanding career 
contributions to the work of NIST. Portraits and biographies of those se-
lected are displayed in the corridor of the NIST cafeteria at Gaithersburg, 
and in the Digital Portrait Gallery at NIST Gaithersburg and NIST Boulder 
sites. At most 10 new alumni are inducted each year. 

In 2022, ACMD captured six of the 11 awards given out in the annual ITL 
Awards program. The ACMD winners were: 

• Yi-Kai Liu  
Outstanding Contribution to ITL 
For outstanding service to ITL as Co-Director of the Joint Center 
for Quantum Information and Computer Science. 

• Paul Patrone and Anthony Kearsley 
Outstanding Journal Paper 
For the paper “Classification Under Uncertainty: Data Analysis for Diagnostic Antibody Testing” 
published in Mathematical Medicine and Biology on August 13, 2021. 

• Katjana Khrac and Kamran Sayrafian 
Outstanding Conference Paper  

 
Figure 4. Geoffrey McFadden was 
named a Distinguished NIST Alum-
nus. (Photo credit: NIST) 

 

     
Figure 3. Department of Commerce Medal winners from ACMD: Left to right: Scott Glancy (Gold), Emanuel Knill (Gold), Ryan Evans (Silver), 
Anthony Kearsley (Silver), and Thomas Gerrits (Silver). (Photo credits: NIST) 



NIST Applied and Computational Mathematics Division 12 

For “A Wearable Wireless Monitoring System for the Detection of Pulmonary Edema” presented 
at the IEEE Global Communications Conference on Dec. 9, 2021. 

• Chris Schanzle 
Outstanding Technical Support 
For outstanding Technical Support in converting the High Performance Computing and Visualiza-
tion Group’s CAVE to the Rocky 8 Linux system. 

• Vivian Xiao 
Outstanding Student 
A student at Poolesville High School mentored by Tony Kearsley, Vivian has made outstanding 
contributions to NIST research on optimization in chemometrics. 

• Ronald Boisvert 
Outstanding Mentorship 
For providing consistent and outstanding mentorship and guidance throughout ITL. 

Notably, the Outstanding Student and Outstanding Mentorship awards were new awards given out for the 
first time this year. 

ACMD’s Bonita Saunders was re-elected to a second term on the Society for Industrial and Applied Math-
ematics (SIAM) Board of Trustees in the fall of 2022. The Board of Trustees is the group responsible for 

the management of SIAM. 

A contributed talk by ACMD Associate Prajakta Bedekar won 
2nd place in the competition for best talk at the Workshop in Math-
ematical and Computational Biology held online on June 9-10, 
2022. Her talk was entitled “Time-dependent prevalence estimation 
and optimal classification for antibody testing.” Prajakta, who holds 
a Ph.D. in mathematics from the University of Houston splits her 
time between NIST and Johns Hopkins University. 

Also, this year ACMD mathematician Justyna Zwolak was named 
an Affiliate Fellow of the NIST/UMD Joint Center for Quantum 
Information and Computer Science (QuICS). Scientists from NIST 
with interests appropriate to the QuICS scientific program may be 
selected as QuICS Affiliate Fellows by a three-quarters majority 
vote of all active QuICS Fellows. Such an appointment recognizes 
scientific contributions and job status substantially equivalent to 
those of a QuICS Fellow. Justyna has collaborated with QuICS 
members for some time on machine learning techniques for the tun-
ing of quantum dots for computation. 

In late 2022 ACMD mathematician Danielle Middlebrooks was se-
lected to receive an  MGB-SIAM Early Career (MSEC) Fellowship 

for the 2023-2025 term. The MGB-SIAM Early Career Fellowship reflects a joint commitment by Mathe-
matically Gifted & Black (MGB) and the Society for Industrial and Applied Mathematics to promote long-
term engagement of researchers within SIAM and continued success within the wider applied mathematics 
and computational sciences community. The fellowship will provide multiple opportunities to network with 
and contribute to the SIAM community, such as special events, professional development workshops, com-
mittee shadowing, cohort-specific activities, as well as formal and informal mentoring by and with other 
members of the SIAM community. 

 
Figure 5. Danielle Middlebrooks (left) was rec-
ognized as an MGB-SIAM Early Career Fellow 
and Justyna Zwolak (right) was named A QuICS 
Affiliate Fellow. They are shown here in a lecture 
hall at the University of Copenhagen, one of the 
birthplaces of quantum mechanics. (Photo credit: J. 
Zwolak) 

 

https://www.siam.org/students-education/programs-initiatives/mgb-siam-early-career-fellowship
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Finally, ACMD’s Jeffrey Fong celebrated his 50th anniversary as a NIST staff 
member this year. Jeffrey started his NIST career as an NRC Postdoctoral Asso-
ciate in 1966 after receiving a Ph.D. in Applied Mechanics and Mathematics 
from Stanford University. During his long career, Jeffrey’s research has focused 
on fatigue, the study of how materials and structures age so that we can accu-
rately judge their useful, and safe, lifetimes. He has developed complex 
mathematical models of the physics of fatigue processes. He has developed tech-
niques for non-destructive monitoring of structures to automatically detect 
developing flaws. He pioneered the use of computers to carry out fatigue studies. 
He was a very early user of so-called finite-element modeling, which has revo-
lutionized engineering design. In recent years he has concentrated on 
understanding the uncertainty in mathematical and computational models so that 
predictions using them can be made more reliably. He has also been a proponent 
of the use of sound statistical methods in engineering analysis and has taught 
courses around the world on best practices. While Jeffrey has recently celebrated 
his 88th birthday, he continues to enthusiastically contribute to the important work of NIST. 
 

 
Figure 6. Jeffrey Fong at his 
88th birthday celebration. (Photo 
credit: R. Boisvert)  
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Reducing Bias and Quantifying Uncertainty in Fluorescence 
Produced by PCR 
Quantitative PCR (qPCR) is routinely employed in 
healthcare diagnostics, forensics, and biotechnology re-
search. It can calculate, or quantify, the concentration 
of a specific sequence of nucleic acids present in a sam-
ple. However, quantification is limited by systematic and 
subjective bias, as well as the lack of a quantitative ex-
pression for uncertainty. We have developed an 
improved mathematical model which can reduce several 
sources of bias and quantify the uncertainty in fluores-
cence. It also provides new insight into PCR dynamics, 
sources of error, and limits of detection. 

Robert DeJaco  

Motivation. The Polymerase Chain Reaction (PCR) is a 
hallmark of molecular biology and applied genetics. It 
involves a series of heating—cooling cycles during 
which each DNA strand is replicated. When the progress 
of the reaction is monitored by a fluorescent probe for 
each cycle 1 to 45, as depicted in Figure 7, the technique 
is called quantitative PCR, or qPCR. 

To understand why qPCR is called quantitative, it 
is important to examine the procedure for calculating 
𝑁𝑁0, the initial number of DNA strands present in the 
sample, from the measurement of fluorescence. 

The quantitative aspect of qPCR arises from the 
popular equation for PCR kinetics, 

𝑁𝑁𝑖𝑖 = 𝑁𝑁0(1 + 𝑝𝑝)𝑖𝑖 ,                         (1) 

where 𝑁𝑁𝑖𝑖 is the number of DNA strands present after 𝑖𝑖 
cycles, and 𝑝𝑝 is the amplification efficiency. The ampli-
fication efficiency usually ranges from 0.85 to 0.99, as 
not all DNA strands are replicated. After performing a 
set of control experiments to determine 𝑝𝑝, 𝑁𝑁0 can be 
quantified, or calculated, from 𝑁𝑁𝑖𝑖 by rearranging Equa-
tion (1), or 𝑁𝑁0 = 𝑁𝑁𝑖𝑖/(1 + 𝑝𝑝)𝑖𝑖 . 

However, it is extremely challenging to measure 𝑁𝑁𝑖𝑖 
directly. Instead, a fluorescent probe is added to the re-
action mixture, and the fluorescence of the solution, 𝐹𝐹𝑖𝑖, 
is measured. To calculate 𝑁𝑁0 from 𝐹𝐹𝑖𝑖 at a particular cycle 
𝑖𝑖, an additional model is required to relate fluorescence 
to DNA content. While there are many approaches avail-
able, the most common entails 

𝐹𝐹𝑖𝑖 = 𝑏𝑏1 + 𝑏𝑏2𝑖𝑖 + 𝑑𝑑𝑁𝑁𝑖𝑖 ,                      (2) 
where 𝑏𝑏1, 𝑏𝑏2, and 𝑑𝑑 are constants. The term 𝑏𝑏1 + 𝑏𝑏2𝑖𝑖 is 
often referred to as the background, or baseline, fluores-
cence. This is the portion of the fluorescence that is not 
associated with amplification. The term 𝑑𝑑 corresponds 
to the incremental increase in fluorescence, or the 
amount that the fluorescence increases for each amplifi-
cation. Having determined 𝑏𝑏1, 𝑏𝑏2, 𝑑𝑑, and 𝑝𝑝, and 
measured 𝐹𝐹𝑖𝑖, quantification involves calculation of 𝑁𝑁0 
from Equation (1) and (2). 

This process is limited by systematic and subjective 
bias. Equation (2) assumes that the fluorescence in-
creases each time each strand is replicated. However, 
this is not consistent with the underlying biochemistry. 

 
Figure 7. In the Polymerase Chain Reaction, a sample is subjected to a series of heating—cooling cycles. After each strand is separated at high 
temperature, DNA replication occurs at low temperature. In real-time PCR, the fluorescence associated with a certain reporter chemistry is 
measured during each cycle. Often, the fluorescence only increases when one of the strands is replicated. 
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DNA consists of two strands, each consisting of a se-
quence of nucleotides. As each strand is complementary 
(i.e., nucleotide A pairs with nucleotide T and nucleotide 
G pairs with nucleotide C), each strand is different. For 
most fluorescence reporters [1], the fluorescence only 
increases when one of the complementary strands is rep-
licated (see Figure 8). Equation (2) also assumes that the 
fluorescence not associated with amplification is a linear 
function of cycle, or 𝑏𝑏1 + 𝑏𝑏2𝑖𝑖. It is not clear how such 
terms are related to the underlying physical and chemi-
cal phenomena occurring in solution. Furthermore, the 
terms 𝑏𝑏1, 𝑏𝑏2, and 𝑑𝑑 are determined subjectively by look-
ing at how the fluorescence changes with cycle and 
estimating where the linear and exponential regions oc-
cur. 

qPCR is also limited by a lack of accounting for un-
certainty. While Equation (1) does account for the fact 
that DNA amplification is imperfect (i.e., 𝑝𝑝 < 1), it does 
not account for the uncertainty in the total number of 
DNA strands due to imperfect amplification. It also does 
not account for uncertainty in the initial copy number of 
DNA. Since pipetting errors are always present, the ini-
tial copy number is not known exactly. A quantitative 
expression for uncertainty is necessary to determine a 
more reliable estimate of the limit of detection, or the 
lowest concentration of nucleic acids that can be deter-
mined with statistical significance. 

To reduce bias and quantify uncertainty in the fluo-
rescence produced by PCR, we developed 
improvements to Equations (1) and (2). Analysis of the 
new model provides new insight into PCR dynamics and 
uncertainty. By extracting the baseline a priori with a 
slight modification of control experiments, a more ob-
jective description of background fluorescence is 
obtained. Finally, the approach allows for a more robust 
estimate of the limit of detection. The more robust esti-
mate of the limit of detection may be particularly useful 
for application in epidemic diseases, as false positives or 
false negatives may be instead termed inconclusive. 

New Model. To distinguish between complementary 
strands of DNA, we call one strand the forward strand 
and the other the reverse strand (see Figure 8, where 
DNA synthesis (green) occurs in opposite directions).  

We model the replication of DNA with the strand-
specific, stochastic branching-process 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖−1 + Binomial(𝑌𝑌𝑖𝑖−1; 𝑝𝑝rf),             (3a) 
𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑖𝑖−1 + Binomial(𝑋𝑋𝑖𝑖−1; 𝑝𝑝fr),            (3b) 

where 𝑋𝑋𝑖𝑖 is a discrete random variable representing the 
number of forward strands present at each cycle 𝑖𝑖 = 1 to 
45, 𝑌𝑌𝑖𝑖 is a discrete random variable representing the 
number of reverse strands, 𝑝𝑝rf is the efficiency of pro-
ducing a forward strand from a reverse strand, and 𝑝𝑝fr is 

 
Figure 8.  Illustration of relationship between successful DNA replication and changes in fluorescence associated with a hydrolysis probe. (a) 
As polymerization begins, the hydrolysis probe binds. The probe is in its inactive state, where fluorescence emitted by the fluorophore (‘F’) is 
quenched by the quencher (‘Q’) in close proximity. (b) As DNA polymerization reaches the location of the probe, the probe is hydrolyzed 
(activated). (c) After successful production of a forward strand (orange) from a reverse strand (blue), the fluorophore is activated, as it is no 
longer near the quencher. 
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Figure 9.  Illustration of strand-specific model of DNA amplifica-
tion. (top) After each cycle, the outcome of synthesis of a forward 
strand (orange) from each reverse strand (blue) present in the pre-
vious cycle is modeled as a Bernoulli random variable with success 
probability 𝒑𝒑rf. (bottom) Similarly, the outcome of synthesis of a re-
verse strand (blue) from each forward strand (orange) present in 
the previous cycle is modeled as a Bernoulli random variable with 
success probability 𝒑𝒑fr. 
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the efficiency of producing a reverse strand from a for-
ward strand. The notation Binomial(𝑛𝑛; 𝑝𝑝) denotes a 
Binomial random variable with 𝑛𝑛 independent trials of 
success probability 𝑝𝑝. A schematic of one trial event for 
each strand is depicted in Figure 9. 
       Since 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖 are random variables, we do not 
know their exact value. However, we were able to com-
pute their expected values 𝐸𝐸[𝑋𝑋𝑖𝑖], 𝐸𝐸[𝑌𝑌𝑖𝑖] and variances 
Var[𝑋𝑋𝑖𝑖], Var[𝑌𝑌𝑖𝑖]. We will first discuss the expected val-
ues and the revelations they provide for PCR dynamics.  

As 𝑖𝑖 becomes large, we derived [4] that 

𝐸𝐸[𝑋𝑋𝑖𝑖] =
𝐸𝐸[𝑋𝑋0 + 𝑅𝑅𝑌𝑌0]

2
(1 + �̅�𝑝)𝑖𝑖 + 𝑂𝑂((1 − �̅�𝑝)𝑖𝑖) 

𝐸𝐸[𝑌𝑌𝑖𝑖] = 𝑅𝑅𝐸𝐸[𝑋𝑋𝑖𝑖] + 𝑂𝑂((1 − �̅�𝑝)𝑖𝑖)                           

where �̅�𝑝 = �𝑝𝑝rf𝑝𝑝fr represents the geometric mean of the 

efficiency of each complementary strand and 𝑅𝑅 = �
𝑝𝑝rf
𝑝𝑝fr

 

characterizes the deviation in complementary efficien-
cies. The term 𝑂𝑂((1 − �̅�𝑝)𝑖𝑖) goes to zero as 𝑖𝑖 becomes 
large. If we let 𝑁𝑁𝑖𝑖 = 𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑖𝑖 be a discrete random varia-
ble representing the total number of strands at cycle 𝑖𝑖, 
we can add these expressions to yield 

𝐸𝐸[𝑁𝑁𝑖𝑖] = 𝐸𝐸[𝑋𝑋0 + 𝑅𝑅𝑌𝑌0] �
1 + 𝑅𝑅

2𝑅𝑅
� (1 + �̅�𝑝)𝑖𝑖

+ 𝑂𝑂((1 − �̅�𝑝)𝑖𝑖). 

The expected values provide new intuition on the 
dynamics of PCR. By comparing the expression for 
𝐸𝐸[𝑁𝑁𝑖𝑖] above with Equation (1), it can be observed that 
the conventional amplification efficiency in PCR, 𝑝𝑝, is 
more generically interpreted as �̅�𝑝 = �𝑝𝑝rf𝑝𝑝fr, the geomet-
ric mean of the amplification efficiency of each 
complementary strand. When 𝑅𝑅 = 1 (i.e., 𝑝𝑝rf = 𝑝𝑝fr), 
𝐸𝐸[𝑁𝑁𝑖𝑖] = 𝐸𝐸[𝑁𝑁0](1 + 𝑝𝑝)𝑖𝑖 + 𝑂𝑂((1 − 𝑝𝑝)𝑖𝑖). Equation (1) is 
really the expected value of a discrete random variable. 
Finally, the expected strand counts do not necessarily 
tend toward the same values, as  

lim
𝑖𝑖→∞

𝐸𝐸[𝑋𝑋𝑖𝑖]
𝐸𝐸[𝑌𝑌𝑖𝑖] = 𝑅𝑅 = �

𝑝𝑝rf

𝑝𝑝fr
. 

We were also able to calculate the variances 
Var[𝑋𝑋𝑖𝑖] and Var[𝑌𝑌𝑖𝑖]. As 𝑖𝑖 becomes large, 

Var[𝑋𝑋𝑖𝑖] =
𝜈𝜈(1 + �̅�𝑝)2𝑖𝑖

4
+ 𝑂𝑂((1 + �̅�𝑝)𝑖𝑖), 

Var[𝑌𝑌𝑖𝑖] =
𝜈𝜈(1 + �̅�𝑝)2𝑖𝑖

4𝑅𝑅2 + 𝑂𝑂((1 + �̅�𝑝)𝑖𝑖), 

where 𝜈𝜈 is defined as 

𝜈𝜈 = Var[𝑋𝑋0 + 𝑅𝑅𝑌𝑌0] + 𝐸𝐸[𝑋𝑋0 + 𝑅𝑅𝑌𝑌0] �
1 + 𝑅𝑅

2
� �

1 − �̅�𝑝
1 + �̅�𝑝

�

+ 𝐸𝐸[𝑋𝑋0 − 𝑅𝑅𝑌𝑌0] �
1 − 𝑅𝑅

2
� �

1 + �̅�𝑝
3 + �̅�𝑝

�. 

The terms on the right-hand-side of the expression for 𝜈𝜈 
correspond (respectively) to the initial variance, the var-
iance from imperfect amplification, and the variance 
associated with the change in ratio of expected values 
from their initial values to 𝑅𝑅. While the expected values 
are proportional to (1 + �̅�𝑝)𝑖𝑖, the variances are propor-
tional to (1 + �̅�𝑝)2𝑖𝑖 . In other words, the variance grows 
at twice the rate as the expected value. However, the co-
efficient of variation, 

𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖) =
�Var[𝑋𝑋𝑖𝑖]

𝐸𝐸[𝑋𝑋𝑖𝑖]
=

√𝜈𝜈
𝐸𝐸[𝑋𝑋0 − 𝑅𝑅𝑌𝑌0] + 𝑂𝑂((1 + �̅�𝑝)−𝑖𝑖), 

tends toward a constant as 𝑖𝑖 → ∞. Given the initial dis-
tribution and values for 𝑅𝑅 and �̅�𝑝, the expression for 
𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖) is a very practical formula describing the varia-
tion in strand count. 

To connect DNA content predicted by the expected 
values and variances to the fluorescence, we use the flu-
orescence analogue of Beer’s Law. In the past, such a 
model been used to describe the fluorescence associated 
with aqueous solutions containing DNA and fluorescent 
dyes [2]. To our knowledge, however, this approach has 
not been applied to the fluorescence produced by PCR. 

In brief, we model the total fluorescence as a sum 
of the fluorescence arising from two different species: 

 
Figure 10.  Fluorescence as a function of concentration of active 
probe (top) and concentration of inactive probe (bottom) measured 
(symbols) in well E5 and modeled (lines and shadings). Different 
colors correspond to different cycles. 
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the inactive and active probe. (For an illustration of the 
active and inactive probe, see Figure 8.) The fluores-
cence arising from each species is described as the 
fluorescence per species times the concentration of each 
species. The concentrations of each species are altered 
in response to PCR. 

Model Assessment and Application. To assess the va-
lidity of the fluorescence model, we performed qPCR 
experiments with various concentrations of inactive and 
active probes in the absence of DNA. We used hydroly-
sis probes associated with the Centers for Disease 
Control and Prevention 2019-nCoV_N1 assay [3]. The 
results are shown in Figure 10. Since the experimental 
data can be described by a line at each cycle, the model 
is valid. Unlike the conventional approach for modeling 
fluorescence not associated with DNA amplification, 
Equation (2), we can assess the validity of our model and 
use it to describe biophysical phenomena more appro-
priately. 

Having extracted the parameters as depicted in Fig-
ure 10, we used the model to relate fluorescence to DNA 
content. The moments of the fluorescence at cycle 𝑖𝑖, or 
𝐹𝐹𝑖𝑖, are 

𝐸𝐸[𝐹𝐹𝑖𝑖] = 𝑏𝑏𝑖𝑖 + 𝑑𝑑𝑖𝑖[𝐸𝐸[𝑋𝑋𝑖𝑖] − 𝐸𝐸[𝑋𝑋0]],                          
Var[𝐹𝐹𝑖𝑖] = 𝑑𝑑𝑖𝑖

2�Var[𝑋𝑋𝑖𝑖] + Var[𝑋𝑋0] − 2Cov[𝑋𝑋𝑖𝑖 , 𝑋𝑋0]�, 
for 𝑖𝑖 = 1 to 45. The background term 𝑏𝑏𝑖𝑖 represents the 
total fluorescence that the solution would have at cycle 
𝑖𝑖 if all probes were present in the inactive state. The in-
cremental increase term represents the change in 
fluorescence associated with converting one inactive 
probe to an active probe at cycle 𝑖𝑖. Note that unlike 
Equation (2), we do not require 𝑏𝑏𝑖𝑖 to be a linear function 
of cycle. We also do not require 𝑑𝑑𝑖𝑖 to be constant. As the 
slopes of the lines in Figure 10 are not independent of 
cycle, the incremental increase 𝑑𝑑𝑖𝑖 is also not independ-
ent of cycle. This is another source of bias that our 
approach can eliminate. 

With 𝑏𝑏𝑖𝑖 and 𝑑𝑑𝑖𝑖 determined from the parameters as-
sociated with Figure 10, we used the model to calculate 
fluorescence curves with uncertainty (assuming each 
strand initially obeys a Poisson distribution). According 
to the values for 𝑏𝑏𝑖𝑖 and 𝑑𝑑𝑖𝑖 determined for a typical ex-
periment, 𝑏𝑏𝑖𝑖 ≈ 1 and 𝑑𝑑𝑖𝑖 ≈ 10−6. By examining the 
expression for 𝐸𝐸[𝐹𝐹𝑖𝑖], this demonstrates that 𝐸𝐸[𝑋𝑋𝑖𝑖 −
𝑋𝑋0] ≈ 106 for the fluorescence to rise above back-
ground levels. With such a large sample size, it is natural 
to invoke the central limit theorem and assume that 𝑋𝑋𝑖𝑖 
obeys a normal distribution. 

Typical fluorescence curves are depicted in Figure 
11. At low cycle numbers, the fluorescence does not in-
crease exponentially with cycle. While DNA is 
increasing exponentially, the fluorescence is not because 
the value for 𝑏𝑏𝑖𝑖 (approximately 1) is much larger than 
the changes in 𝑑𝑑𝑖𝑖𝐸𝐸[𝑋𝑋𝑖𝑖 − 𝑋𝑋0]  (recall that 𝑑𝑑𝑖𝑖 ≈ 10−6). 
After significant DNA has been amplified, the expected 

value for fluorescence (orange line) begins to increase 
exponentially with cycle. In this regime, the uncertainty 
in fluorescence (blue shaded region) increases dramati-
cally with cycle. However, the size of the uncertainty 
region relative to the expected value appears to approach 
a constant. This is because the coefficient of variation, 
or 𝐶𝐶𝐶𝐶(𝐹𝐹𝑖𝑖), approaches 𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖), a constant as 𝑖𝑖 → ∞. 

With decreasing 𝐸𝐸[𝑁𝑁0], several enlightening trends 
are evident. First, when 𝐸𝐸[𝑁𝑁0] is smaller, it takes more 
cycles for exponential growth in 𝐸𝐸[𝐹𝐹𝑖𝑖] to be observed. 
This is because more replication is needed to release 
enough fluorescence that is comparable to the back-
ground. Second, the error in fluorescence increases. 
Eventually, the error is so large that the fluorescence 
does not increase above its initial value in a statistically 
significant manner (see the bottom row of Figure 11). 
The smallest value for 𝐸𝐸[𝑁𝑁0] that admits a fluorescence 
value that is statistically larger than its background value 
is referred to as the limit of detection. According to Fig-
ure 11, when we expect the initial copy number to be 16 

 
Figure 11.  Fluorescence curves calculated from amplification 
model with 𝒑𝒑� = 𝟎𝟎. 𝟗𝟗 and 𝑹𝑹 = 𝟏𝟏 assuming 𝑿𝑿𝟎𝟎 and 𝒀𝒀𝟎𝟎 are independ-
ent and identically distributed. Each subplot is associated with a 
different expected total initial copy number, or 𝑬𝑬[𝑵𝑵𝟎𝟎]. The orange 
curve represents 𝑬𝑬[𝑭𝑭𝒊𝒊], while the light blue region depicts 3 stand-
ard deviations. 
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or more, we can detect significant amplification. When 
we expect the copy number to be 8 or less, however, the 
initial copy number is below the limit of detection.  

It turns out that our observations of the trends in un-
certainty can be formalized to develop analytical 
expressions for the limit of detection [4]. These expres-
sions may be particularly useful for application in 
epidemic diseases, as false positives or false negatives 
may be instead termed inconclusive. 

In the future, this approach could be extended to re-
duce bias and quantify uncertainty in DNA content 
present in a sample. In this case, one might instead call 
the approach UQ-PCR (Uncertainty Quantification by 
PCR). 
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Combining Machine Learning with Physics: Enhanced Dark 
Soliton Detection in Bose-Einstein Condensates 
Quantum technologies are poised to revolutionize com-
munication, time keeping, navigation, as well as 
fundamental science. However, at present such tech-
nologies often require expert knowledge and constant 
human intervention to initialize, optimize, and operate, 
limiting their wide-scale adoption. Commercialization 
and deployment of quantum technologies require yet 
undeveloped tools for autonomous control of physical 
systems that currently exist only in laboratories. Our 
efforts focus on overcoming some of these limitations 
by developing machine learning (ML) systems for au-
tonomous closed-loop initialization, optimization, and 
operation of a quantum system: laser-cooled atoms. 
Our work serves as a baseline for future investigation 
of how to apply ML tools to specific, challenging prob-
lems in laboratory apparatus and field-deployable 
sensors, where performance guarantees and uncer-
tainty quantification are essential. 

Justyna Zwolak  

Harnessing the power of quantum systems ultimately 
hinges on measurement: the desired information must 
first be transferred from a quantum system to a classical 
measurement system, where the useful quantities in that 
measurement must then be extracted. The majority of 
data in quantum-gas experiments comes from direct im-
ages. Absorption imaging—by far the most popular 
technique—provides information about the atoms’ spa-
tial distribution, number, and temperature. While the 
analysis for such data is sophisticated, features are still 
detected and located using conventional fitting tech-
niques, which are 
constrained by our lim-
ited ability to anticipate 
patterns in visual data. 

ML-based image 
classification has many 
applications in science, 
from particle physics data 
analysis, dark matter 
searching, quantum state 
preparation to material 
property prediction. In 
atomic physics, ML has 
been used to locate topo-
logical phase transitions 
in images of atomic den-
sity and to characterize 
particles in disordered 
fields. However, while 

ML techniques have enabled autonomous parameter ex-
ploration and optimization in some systems, the use of 
ML in cold-atom systems remains nascent. In our recent 
work, we introduced and demonstrated a hybrid frame-
work, shown in Figure 12, that integrates ML techniques 
with a science-driven analysis to detect, classify, and as-
sess quality of features in experimental data from many-
body atomic physics.  

Using cold-atom Bose-Einstein condensates 
(BECs), we focus on solitonic excitations, robust soli-
tary waves that retain their size, shape, and speed as they 
travel. These properties arise from an interplay between 
nonlinearity and dispersion that is present in many phys-
ical systems. Since their first observation in water 
channels, solitons have been found in rivers and seas; 
BECs; optical fibers; astronomical plasmas; and even 
human blood vesicles. Due to their inherent stability, 
solitons in optical fibers have found commercial appli-
cations in long-distance, high-speed transmission lines. 

While the noisy natural environment does not allow 
for the controlled study of fragile quantum solitons, 
BECs are an ideal medium where individual or multiple 
solitons can be created on-demand, with all their prop-
erties, such as position and velocity, tuned as necessary 
[2, 3]. Most measurements in BEC experiments produce 
raw data in the form of images that, in our context, pro-
vide information about the excitations’ positions within 
the BEC. The challenge is to identify the number, type, 
and the exact location of excitations efficiently and reli-
ably. Prior to this work, such information was obtained 
starting with traditional fits that were then manually val-
idated and corrected [2], inhibiting the automated 

 
Figure 12. Framework overview. The colored arrows link the preparation, validation, and application phases 
of the framework. The red path represents the preparation and implementation of the physics-based-
approximation module while the blue path represents the ML modules. Adapted from Ref. [1].  
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analysis of large datasets, which is crucial for solitonic 
dynamics studies. 

Dark solitons appear as local depletions in BEC-
density, thus, visual inspection of the data is often suffi-
cient to determine the number and position of solitons in 
BEC. Experiments involving solitons’ dynamics, how-
ever, hinge on large datasets and human-driven analysis 
are both tedious and error-prone. Semi-scripted proto-
cols can process the data, but the final decision about the 
number and position of the solitons within BECs still has 
to be validated manually [4]. 

In our previous work, we developed a solitonic ex- 
citation detection and positioning system that takes im-
age data as the input and outputs information about 
whether a single soliton is present, and, if it is, where it 
is located [5]. This algorithm comprises a data prepro-
cessor that converts raw data into a ConvNet-compatible 
format; a ConvNet image classifier that determines if a 
single soliton is detected; and a traditional least-squares 
fitting position regressor that locates the soliton within 
the BEC, when applicable. However, given that the fit-
ting techniques can locate solitons only if the soliton 
number is known in advance and that the ConvNet clas-
sifier requires significant amount of data per expected 
class for training, the utility of our soliton detection and 
positioning system left room for improvement.  

The revised iteration of the soliton detecting frame-
work includes the ability to detect the precise position of 
the solitons along with a model that further refined the 
classification of the images. A final step was also added 
to determine the quality of the detected solitons. The 
analysis of the images still begins with the ConvNet 
classifier developed previously, but then is followed by 
a ML object detector (OD) which automatically local-
izes the features of interest (i.e., all solitonic excitations 
within the BEC). A physics-informed excitation (PIE) 
classifier then provides a fine-grained classification of 
individual solitonic excitations into physically moti-
vated categories, such as clear longitudinal solitons, or 
solitonic vortices. Finally, a quality estimator is applied 
to the longitudinal solitons class to ascertain if the one-
dimensional profile of a given excitation has parameters 
in the range expected for a well-formed solitonic excita-
tion. This eliminates images of solitons that are faint, or 

malformed, leaving only well-formed solitons for fur-
ther analysis. We recently published an article reporting 
this work [1]. 

Examples of the categorization of the BEC clouds 
reported in [1] can be seen in Figure 13. As a practical 
test case, we concentrate on identifying dark solitons, 
which are spatially localized excitations that appear as 
vertically aligned atomic density depletions in BECs, 
see Figure 13(b,c). Deep depletions are caused by kink 
solitons (and solitonic vortices viewed from the side), as 
in Figure 13(b-i), whereas shallow and asymmetric de-
pletions can be caused by solitonic vortices, as in Figure 
13(b-iii). Our framework is the first to automatically dif-
ferentiate between these instances and locate all 
solitonic excitations in each image. Importantly, neither 
of the ML modules require data labeled with the physi-
cally motivated sub-categories, which significantly 
lessens the burden of manual labeling. In fact, the OD is 
trained using only the no excitation and lone excitation 
data. 

As part of this research effort, we established and 
curated a dataset of over 16,000 experimental images of 
BECs with and without solitonic excitations [6, 7]. The 
dataset consists of images manually labeled into the 
three pre-defined categories (i.e., no excitations, lone 
excitation, other excitations; 33 % of the data) and unla-
beled data. The lone excitation class is in addition tagged 
with the excitation position, PIE class, and quality score. 
The remaining 67 % of the data is automatically labeled 
using our SolDet package [11], an implementation of a 
physics-informed ML data analysis framework consist-
ing of a convolutional-neural-network -based classifier 
and object identifier as well a statistically motivated 
physics-informed classifier and a quality metric. This 
dataset is available at NIST [6] and at data.gov to pro-
vide an opportunity for the data science community to 
develop more sophisticated analysis tools and to further 
understand nonlinear many-body physics. 

Our current efforts focus on further improving this 
high-level framework. First, to expand the potential user 
base of the software, we are shifting the ML framework 
from TensorFlow to PyTorch. Complimentary to this, 
generalizing aspects of the PIE classifier are being 
added. The first iteration of the PIE classifier includes 
physics-informed cuts that were manually derived from 

 
Figure 13.  The pre-processed images from the Dark solitons in BECs dataset. The red arrows mark the location of the deepest depletion in the 
density fluctuations, while the orange lines mark the solitons’ locations found from our object detector. (a) An element of the no-excitation class. 
(b) Three elements of the single excitation class: (i) a single longitudinal soliton, (ii) an off-center longitudinal soliton, and (iii) a solitonic vortex. 
(c) Two representative elements of the other excitations class showing multiple solitons. Adapted from Ref. [1]. 
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BEC data coming from a NIST experiment [7]. To en-
sure the compatibility of SolDet package with data 
coming from different experimental groups, we are re-
fining these cuts using a more diverse dataset on BEC 
images. Additionally, it had been noted in [1] that the 
quality estimator can be unreliable when two or more 
solitonic excitations appear close together. To address 
this issue, we are working on an extended version of the 
quality estimator that will properly handle the multi-ex-
citation cases. With these updates, we hope that SolDet 
will become a useful tool for data analysis for other 
groups working on BEC experiments. 

The autonomous extraction of information from im-
ages is a first step toward demonstration a holistic 
approach: combining ML, physics-based simulations, 
and experiment to enable full automation of quantum 
technologies. Our next steps include autonomous extrac-
tion of the relevant magneto-optic trap (MOT) 
parameters, optimization of the pulses used to load 
MOTs, and autonomous optimization and operation of 
cold-atom experiments.  

Gases of laser-cooled atoms underpin a host of 
standards including time and vacuum [8] and can be 
used for sensitive measurement of inertial forces and 
magnetic and electric fields. In recent years, miniatur-
ized cold-atom systems to realize field-deployable 
sensors and standards that promise unmatched precision 
and accuracy have been developed [9, 10]. Yet, even 
with these technologies, constant human intervention is 
required to optimize, control, and explore the large 
space of tens to possibly a hundred control parameters, 
leading to limited commercial applications. Realizing 
fully autonomous, self-calibrating cold-atom based ex-
periments will enable a low cost, high-reliability 
interface to atomic devices. By combining theoretical, 
computational, and experimental efforts, this interdisci-
plinary research will blaze a trail for the broader use of 
ML to improve complex physics and engineering sys-
tems.  
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(2022). 

[8] S. Eckel, D. S. Barker, J. A. Fedchak, N. N. Klimov, E. 
Norrgard, J. Scherschligt, C. Makrides, and E. Tiesinga. 
Challenges to Miniaturizing Cold Atom Technology for 
Deployable Vacuum Metrology. Metrologia 55 (2018), 
S182.  

[9] W. R. McGehee, W. Zhu, D. S Barker, D. Westly, A. Yu-
laev, N. Klimov, A. Agrawal, S. Eckel, V. Aksyuk, and J. 
J. McClelland. Magneto-optical Trapping Using Planar 
Optics. New Journal of Physics 23 (2021), 013021. 

[10] D.S. Barker, E.B. Norrgard, N.N. Klimov, J.A. Fedchak, 
J. Scherschligt, and S. Eckel. Single-Beam Zeeman 
Slower and Magneto-Optical Trap Using a Nanofabri-
cated Grating. Physical Review Applied 11 (2019), 
064023. 

[11] J. P. Zwolak, S. Guo, S. M. Koh, A. R. Fritsch, and I. B. 
Spielman. soldet: Solitonic Feature Detection Package. 
GitHub, May 2022. DOI: 10.18434/mds2-2363 
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Mathematics of Metrology 
Mathematics plays an important role in measurement science. Mathematical models are needed to understand how 
to design effective measurement systems and to analyze the results they produce. Mathematical techniques are used 
to develop and analyze idealized models of physical phenomena to be measured, and mathematical algorithms are 
necessary to find optimal system parameters. Mathematical and statistical techniques are needed to transform meas-
ured data into useful information. We develop fundamental mathematical methods and tools necessary for NIST to 
remain a world-class metrology institute, and to apply these to measurement science problems

TOMCAT: X-ray Imaging of 
Nanoscale Integrated Circuits for 
Tomographic Reconstruction 
Bradley Alpert 
Nathan Nakamura (NIST PML) 
Zachary Levine (NIST PML) 
Dan Swetz, Joel Ullom, et al. (NIST PML) 
Edward Jimenez, Amber Dagel, et al. (Sandia National 

Laboratory) 
George Barbastathis et al. (MIT) 

As the leading semiconductor manufacturing techniques 
progress through 10 nm, 7 nm, and now 5 nm technol-
ogy nodes, the ability to fabricate these chips has outrun 
the ability to image them. This limitation makes a vari-
ety of diagnostic needs much more difficult to satisfy. 
The NIST Quantum Sensors Group (PML), in collabo-
ration with researchers at Sandia National Laboratory, is 
leading a project for IARPA’s RAVEN (Rapid Analysis 
of Various Emerging Nanoelectronics) program to de-
velop a small-laboratory capability to image integrated 
circuits by x-ray tomography. In distinction from other 
RAVEN projects, TOMCAT exploits a scanning elec-
tron microscope (SEM) rather than a synchrotron 
beamline and does not destroy the chip under test. This 
is enabled by the exquisite energy resolution of NIST-
developed cryogenic microcalorimeter spectrometers, 
comprised of transition-edge sensors (TES), which are 
being extended to larger arrays (now to 3000 detectors), 
as well as with better individual-detector throughput (up 
to 1000 counts/s) and energy resolution (< 10 eV 
FWHM). The detectors measure fluorescent photons 
produced when SEM electrons strike a target following 
their differential attenuation by different materials in the 
chip. 

A principal analysis challenge of the project, ena-
bling tomographic structure recovery in this limited 
exposure angle, limited-photon regime, is the develop-
ment of physics-assisted machine learning (PAML) 
customized for the details of photon fluorescence, ab-
sorption, and scattering in this instrument configuration. 
George Barbastathis, who has had considerable success 

in PAML for optics, is leading this ML work. This year 
a significant advantage in photon efficiency was demon-
strated from ML on simulated x-ray measurements of 
chip facsimiles generated at random from a simple 
model of the layered interconnect structure found in 
semiconductor circuitry. 

An integrated circuit (IC) with 160 nm features was 
imaged from x-ray measurements using customized to-
mography software that exploited (1) PENELOPE 
particle transport modeling code to determine x-ray flu-
orescence spot size from the SEM spot size, (2) 
corresponding diffuse source in the tomography for the 
x-ray forward model, (3) analytic modeling of motion 
blur, (4) region of interest modeling to account for lower 
photon flux at the edges than the center of the imaged 
region.  Comparisons with the Graphics Design System 
(GDS) specification file of the IC were made.  In addi-
tion, nano-patterned varied-material targets were 

 
Figure 14.  Photograph of a micro-snout used in the TOMCAT 
spectrometer. The TES microcalorimeter array is mounted at the 
top of the micro-snout, and a collimator (aperture) array is used to 
ensure x-rays are only absorbed in the microcalorimeter absorbers. 
A set of 4 interface chips and 4 µMUX chips are used to bias and 
read out the TES microcalorimeter array. A microwave launch 
board and DC printed circuit board (PCB) are used to route the RF 
transmission line, flux ramp, and detector bias lines through the mi-
cro-snout. 
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developed to enable higher spatial resolution for subse-
quent measurements. 

Due to the limited set of IC measurements by SEM 
source with TES detectors available to date for training 
a neural network for machine learning, additional sam-
ples according to simple IC simulation specifications 
(dubbed CircuitFaker) were fabricated by additive man-
ufacturing.  Full-angle x-ray measurements were taken 
to obtain ground truth and were sparsely selected for 
training a neural network. Comparisons of reconstruc-
tions between simulated and actual measurements, and 
among various algorithms, were evaluated with the ma-
chine learning enabling a measurement reduction factor 
of between 2.5 and 8 and a notable improvement in re-
silience to measurement noise. 

[1] J. W. Fowler, B. K. Alpert, G. C. O’Neil, D. S. Swetz, 
and J. N. Ullom. Energy Calibration of Nonlinear Micro-
calorimeters with Uncertainty Estimates from Gaussian 
Process Regression. Journal of Low Temperature Physics 
LTD19 (2022). DOI: 10.1007/s10909-022-02740-w 

[2] Z. Guo, J. Ki Song, G. Barbastathis, M. E. Glinsky, C. T. 
Vaughan, K. W. Larson, B. K. Alpert, and Z. H. Levine. 
Physics-assisted Generative Adversarial Network for X-
Ray Tomography. Optics Express 30:13 (2022), 23238-
23259. DOI: 10.1364/OE.460208 

[3] Z. Guo, J. Ki Song, G. Barbastathis, M. E. Glinsky, C. T. 
Vaughan, K. W. Larson, B. K. Alpert, and Z. H. Levine. 
Advantage of Machine Learning over Maximum Likeli-
hood in Limited-Angle Low-Photon X-Ray Tomography. 
In Machine Learning for Scientific Imaging 2022 Confer-
ence, IS&T Electronic Imaging 2022. 

[4] N. Nakamura, P. Szypryt, A. L. Dagel, B. K. Alpert, D. 
A. Bennett, W. B. Doriese, M. Durkin, J. W. Fowler, D. 
T. Fox, J. D. Gard, R. N. Goodner, J. Z. Harris, G. C. Hil-
ton, E. S. Jimenez, B. L. Kernen, K. W. Larson, Z. H. 
Levine, D. McArthur, K. M. Morgan, G. C. O’Neil, N. J. 
Ortiz, C. G. Pappas, C. D. Reintsema, D. R. Schmidt, P. 
A. Schulz, K. R. Thompson, J. N. Ullom, L. Vale, C. T. 
Vaughan, C. Walker, J. C. Weber, J. W. Wheeler, and D. 
S. Swetz. A Tabletop X-Ray Tomography Instrument for 
Nanometer-Scale Imaging: Integration of a Scanning 
Electron Microscope with a Transition-Edge Sensor 
Spectrometer.  In review. 

[5] Z. H. Levine, B. K. Alpert, A. L. Dagel, J. W. Fowler, E. 
S. Jimenez, N. Nakamura, D. S. Swetz, P. Szypryt, K. R. 
Thompson, and J. N. Ullom. A Tabletop X-Ray Tomog-
raphy Instrument for Nanometer-Scale Imaging: 
Reconstructions.  In review. 

[6] Z. Guo, Z. Liu, G. Barbastathis, Q. Zhang, M. E. Glinsky, 
B. K. Alpert, and Z. H. Levine. Noise-resilient Deep 
Tomographic Imaging. In review. 

 

 

Figure 15. IC region reconstructions of metal layers M3 (top row), 
M2 (middle row), and M1 (bottom row) using Sandia code MLEM 
(left) and summing the energy bands from 4.9 keV to 5.9 keV and 
9.2 keV to 9.5 keV with 100 iterations and 1 pixel Gaussian blur, 
using the NIST code TomoScatt (middle) and the 9.1 keV to 10.1 keV 
band for the selected slices, compared with the original GDS design 
(right). According to the GDS, the large L in the top panel is 3.46 
μm × 0.71 μm and the facing corner piece is 1.26 μm × 1.16 μm. 
Those lines have a width of 0.20 μm. The scale bar is 2 μm. The 
features that dominate the reconstructions but do not appear in the 
GDS file are CMP fill, which are not a part of the GDS design file 
as they are added by the foundry. The thin red lines running in the 
southwest-to-northeast direction across M2 reconstructions (mid-
dle row, first and second columns) are used for the separate plot 
below. 

 

 
Figure 16. Additive-manufactured simulated IC has selected 2D re-
constructions (in 128 × 128) from different algorithms from x-ray 
measurements. Each row represents a reconstruction algorithm: fil-
tered back projection, maximum likelihood estimation, maximum a 
posteriori estimation with total variation penalty, and the same 
three algorithms followed by reconstruction by a machine-learning-
trained UNet. Each column represents an intensity of the photon 
rays. Reconstruction from the lowest right closely resembles the 
ground truth of an additive-fabrication-generated sample specified 
by an integrated-circuit simulator. The dotted orange line is the 
boundary between acceptable and unacceptable performance as de-
termined by a Mallat Scattering Transform metric. 
 

https://doi.org/10.1007/s10909-022-02740-w
https://doi.org/10.1364/OE.460208
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True Becquerel: A New Paradigm 
for 21st Century Radioactivity 
Measurements  
Bradley Alpert 
Ryan Fitzgerald (NIST PML) 
Denis Bergeron (NIST PML) 
Richard Essex (NIST PML) 
Svetlana Nour (NIST PML) 
Galen O’Neil (NIST PML) 
Daniel Schmidt (NIST PML) 
Gordon Shaw (NIST PML) 
Mike Verkouteren (NIST MML) 
Kelsey Morgan, Daniel Swetz, Joel Ullom, et al. (NIST 

PML) 

Expanding applications of radioactivity in medicine, en-
ergy, and security demand quantification of complex 
mixtures at uncertainty levels that are currently 
unachievable. This project will enable measurement of 
absolute activity (Bq) of radionuclide mixtures, avoid-
ing chemical separation, by analysis of the decay heat 
signature of gravimetric samples embedded within mi-
crocalorimeter detectors. This capability consolidates 
multiple measurements into one, reducing cost and un-
certainty. Success will create a primary realization of the 
Bq for direct assay of real-world samples at NIST and 
beyond, resulting in faster clinical trials of new radio-
pharmaceuticals and a faster, expanded nuclear 
forensics “fingerprinting” method for improved decision 
making. 

The project enters its third year of NIST Innova-
tions in Measurement Science funding with 
establishment of a new transition-edge-sensor (TES) 
spectrometry laboratory in Gaithersburg and procedures 
and initial practice with dispensing, weighing, and TES-
embedding of mg-quantity radioactive nuclides.  This 
work has involved integration of detectors and low-tem-
perature electronics fabricated in Boulder with 
commercial room-temperature electronics and a He di-
lution refrigerator in a new laboratory, in pursuit of the 
goal of quantitative determination of sample constitu-
ents at the level of 0.1 % uncertainty.  

The analysis challenges include (1) characterization 
of detector dynamics, to enable determination of decay 
energies of events with poor temporal separation, avoid-
ing detector dead time, at an accuracy that reflects the 
exquisite precision of the TES detector, (2) characteri-
zation of the partial energy losses due to transport out of 
the absorber material of alpha, beta, and gamma rays, 
and (3) disambiguation of the spectrum into constitu-
ents, based on a library of radionuclide decays, with full 
quantification. Two new tools for detector dynamics 
characterization are (a) fabricated capability for elec-
tronic excitation of the detector with known energy 

depositions, and (b) algorithms for ODE parameter sen-
sitivity, of much recent attention, to determine an ODE 
system from its input/output behavior. This machine 
learning (ML) technique will be combined with more 
conventional supervised ML for library-based disam-
biguation of spectra. The uncertainty, and risk, for both 
techniques is whether the stringent accuracy require-
ments of the project can be achieved. 
[1] R. P. Fitzgerald, B. K. Alpert, D. T. Becker, D. E. Ber-

geron, R. M. Essex, K. Morgan, S. Nour, G. O’Neil, D. 
R. Schmidt, G. E. Shaw, D. Swetz, R. M. Verkouteren, 
and D. Yan. Toward a New Primary Standardization of 
Radionuclide Massic Activity Using Microcalorimetry 
and Quantitative Milligram-Scale Samples. Journal of 
Research of the National Institute of Standards and Tech-
nology 126 (2021), 126048. DOI: 10.6028/jres.126.048 

Machine Learning Models to Predict 
the Mass and Infrared Spectra of 
Chemical Compounds 
Chen Qu 
Barry I. Schneider 
Thomas Allison (NIST MML) 
Walid Keyrouz (NIST ITL) 
Anthony Kearsley 
Joel Bowman 
Tyler Martin (NIST MML) 
Bradley Sutliff (NIST MML) 

Recently, neural network (NN) based machine learning 
(ML) methodologies have become practical due 
to the availability of high-speed algorithms imple-
mented on graphics processing units, resulting in an 
explosion of applications to a wide range of problems. 

 
Figure 17. Characterization of TES detectors includes measure-
ment of current versus voltage through a transition from normal 
resistance to superconductivity.  A new procedure is being devel-
oped to enable more complete characterization of TES resistance as 
a function of current and temperature by decreasing the bias volt-
age stepwise and measuring temporal dynamics of the current 
changes, with varied separate heating of the detector.  The plot 
shows the effect of incremental voltage changes—without separate 
heating—on TES current, where the heat from the current flows to 
the heat bath at different temperatures.  Characterization computa-
tions involve also bias and shunt resistances. 

 
 

https://doi.org/10.6028/jres.126.048
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We have applied machine learning methodologies to 
solve two problems: (1) predicting the mass spectra of 
chemical compounds, and (2) predicting the infrared 
(IR) spectra of hydrocarbons (i.e., molecules only con-
taining carbon and hydrogen atoms). 

Mass spectrometry has been widely used in separat-
ing and identifying compounds from a mixture, so an 
accurate predictive model holds the promise of aug-
menting existing mass spectra libraries, thereby 
enabling them to better identify unknown compounds. 
[1, 2] Typically, machine learning-based methods can 
realize very fast predictions, however they require large 
amounts of data to ensure high levels of accuracy. 
Among currently available mass spectral libraries, the 
NIST/EPA/NIH Mass Spectral Library is one of the 
largest and most widely used collections of mass spec-
tra, containing more than 300 000 diverse compounds. 
The size of this data set presents a tantalizing target for 
the application of machine learning models. 

A notable machine learning model that predicts  
mass spectra was developed by the Google Brain team 
[3]. Their machine learning tool was trained using the 
NIST mass spectral library (2017 version) and achieved 
reasonably good results. We have developed a Graph 
Neural Network (GNN) model for the prediction of 
mass spectra, and achieved improved performance com-
pared with the Google model. Our GNN model is similar 
to the ones we developed in the previous years for Ko-
váts retention indices [4] and boiling points, [5] but is 
more challenging because the models must predict a 
vector of quantities to yield a histogram, as opposed to 
a single label or scalar. 

Our GNN model is based on the materials graph 
network (MEGNet) approach developed by Chen et al. 
[6]. It incorporates a graph network architecture that 
captures molecular structure in a very natural way. In a 
GNN, the atoms correspond to vertices in the graph, and 
chemical bonds correspond to graph edges. The inputs 
to the MEGNet model are simply the atom, bond, and 
global features of a molecule. Then these features were 
successively updated using a “message-passing” net-
work. Finally, a readout layer is used to extract the 
information from the updated graph to make the final 
prediction of the mass spectrum. The symmetrized Kull-
back-Leibler divergence is used as the loss function to 
measure the difference between the predicted and true 
spectra. The model also exploits the intrinsic symmetry 
in the mass spectrum, that is, if a fragment with mass x 
exists, a fragment with mass M-x is very likely to be pre-
sent, where M is the molecular mass, by using the 
bidirectional prediction approach proposed in the 
Google model [3]. Ultimately this work achieved im-
proved performance compared to the Google model, 
with significantly smaller error statistics. Figure 18 
shows the predictions of the GNN model for four ran-
domly chosen chemical compounds representing 
different levels of prediction accuracy. 

A similar problem is the prediction of IR spectra of 
molecules. IR spectroscopy is a common tool to identify 
polymers, and a model that can accurately and simply 
predict the IR spectrum when given the molecular struc-
ture is extremely valuable to experimentalists such as 
those in MML. 

Specifically, in the experimental IR spectra of pol-
ymers, two major bands are observed at ~2850 and 
~2920 cm-1, and for some polymers, a third band at a 
higher frequency is present.  We initiated our investiga-
tion with smaller hydrocarbons containing tens of 

 
Figure 18.  Selected predictions of the GNN model for four ran-
domly chosen chemical compounds representing different levels of 
prediction accuracy. Higher percentile rank indicates better agree-
ment between the experimental spectrum (above, blue) and the 
prediction (below, orange). 

 
Figure 19.  Comparison between the IR spectrum computed using 
PM7 (above, blue, used as true spectrum in this work) and the pre-
dicted spectrum using the machine learning model (below, orange). 
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carbon atoms because these calculations are computa-
tionally simpler and can also provide information for 
larger polymers. Based on density functional theory cal-
culations (B3LYP), the two major bands in the IR 
spectrum are due to the C-H stretches on methylene 
groups (-CH2-), while a third band at a higher frequency 
is due to C-H stretches on methyl groups (-CH3). 

For more quantitative predictions of the IR spectra, 
molecular dynamics simulations were carried out for hy-
drocarbons with 10 to 60 carbons, and 1000 conformer 
configurations were collected for each chain length from 
the simulation. Then the IR spectrum of each conformer 
was calculated with the empirical PM7 method [7] and 
were used to train a densely connected neural network 
model. The input to this model is the Coulomb matrix 
computed from the Cartesian coordinates of carbon at-
oms, and the outputs are the frequencies of all C-H 
stretches and corresponding IR intensities. The model 
achieved an accurate prediction of the IR spectra [8], as 
shown in Figure 19. This model will be extended in the 
future and used to generate synthetic spectra of poly-
mers on a large scale efficiently, which can facilitate the 
identification of polymers. 

[1] S. E. Stein, Chemical Substructure Identification by Mass 
Spectral Library Searching. Journal of the American So-
ciety for Mass Spectrometry 6 (1995), 644–655. 

[2] S. Stein, Mass Spectral Reference Libraries: An Ever-Ex-
panding Resource for Chemical Identification. Analytical 
Chemistry 84 (2012), 7274–7282. 

[3] J. N. Wei, D. Belanger, R. P. Adams, D. Sculley, Rapid 
Prediction of Electron–Ionization Mass Spectrometry Us-
ing Neural Networks. ACS Central Science 5 (2019), 
700–708. 

[4] C. Qu, B. I. Schneider, A. J. Kearsley, W. Keyrouz, and 
T. C. Allison. Predicting Kováts Retention Indices Using 
Graph Neural Networks. Journal of Chromatography A 
1646 (2021), 462100. 

[5] C. Qu, A. J. Kearsley, B. I. Schneider, W. Keyrouz, and 
T. C. Allison. Graph Convolutional Neural Network Ap-
plied to The Prediction of Normal Boiling Point. Journal 
of Molecular Graphics and Modelling 112 (2022), 
108149. 

[6] C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong. Graph 
Networks as a Universal Machine Learning Framework 
for Molecules and Crystals. Chemistry of Materials 31 
(2019), 3564–3572. 

[7] J. J. P. Stewart. Optimization of Parameters for Semiem-
pirical Methods VI: More Modifications to the NDDO 
Approximations and Re-Optimization of Parame-
ters. Journal of Molecular Modeling, 19 (2013), 1–32. 

[8] C. Qu, B. I. Schneider, A. J. Kearsley, W. Keyrouz, and 
T. C. Allison. Prediction of Mass Spectra via Molecular 
Structure Based Machine Learning. In review. 

Accelerating Scale-up of Carbon-
Capture Materials  
Robert DeJaco 
Anthony Kearsley 
Sean McGivern (NIST MML) 
Jeff Manion (NIST MML) 
Dan Siderius (NIST MML) 
Giang Nguyen (NIST MML) 
Amanda Forster (NIST MML) 
Pamela Chu (NIST MML) 

Capturing carbon dioxide from atmospheric air could re-
verse its environmental impact. However, as the 
concentration of CO2 in air is very small (around 400 
parts per million), large process scales are required, and 
efficient adsorbent materials are necessary. 

As carbon capture is a dynamic process involving 
partial differential equations, it is challenging to deter-
mine which materials are more efficient than others 
without building multiple pilot plants (an extremely 
costly endeavor). As the process involves many param-
eters and requires numerical simulations, it is also 
difficult to scale a carbon capture material from the 
bench to industrial scale. 

A critical step in the evaluation of the performance 
of carbon capture materials, as well as their scale up, is 
the break-through curve measurement (see Figure 20). 
The profile of concentrations exiting, or breaking 
through, the column as a function of time provides es-
sential information relating material properties to the 
mechanism of separation, the shape and speed at which 
solute concentrations move along the adsorption column 
in response to adsorption into the immobile solid. To 
further scale up the material, numerical simulations are 
needed to determine kinetic parameters by fitting to the 
break-through curve measurement. 

In the first portion of our research, we are using per-
turbation theory in the limit of fast adsorption compared 
to elution to develop a quantitative relationship between 
equilibrium properties and the break-through curve. We 
have found that regular and singular perturbation theory 
in fast adsorption provide a more generic and quantita-
tive description of the conditions under which several 
theories of solute movement are valid, as well as how 
they are related. At the same time, our approach has been 
able to answer several open questions on the phenomena 
occurring inside the column. Our results have been sub-
mitted to a peer reviewed journal [1]. In the future, we 
believe that this work could facilitate selection of high-
performing materials in a manner that is more consistent 
with an industrial carbon capture process. 

In the second, more recent portion of this project, 
we are developing numerical simulation, optimization, 
and uncertainty quantification methods to extract kinetic 
parameters from break-through curve measurements 
made by our colleagues in MML. Building on concepts 
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from the first portion of this work, we have implemented 
a numerical scheme that affords an estimated second-or-
der rate of convergence in space and time. Initial results 
demonstrate that the simulations can fit experimental 
measurements with great agreement (see Figure 21). In 
the future, we expect that quantifying the uncertainty in 
kinetic parameters, improving accuracy of the numerical 
scheme, and extending the approach to multicomponent 
systems will accelerate the transition of new materials 
from bench to plant. 

[1] R. F. DeJaco and A. J. Kearsley. Understanding Fast Ad-
sorption in Break-through-curve Measurements. In 
review. 
 
 

Linear and Nonlinear Exploration of 
Rotating Self-Gravitating Inviscid 
Incompressible Fluid Ellipsoids 
Howard S. Cohl 
Stephen Sorokanich 
Joel E. Tohline (Louisiana State University) 

In the classic book Ellipsoidal Figures of Equilibrium 
[1], Nobel Laureate Subramanian Chandraskhar studied 
rotating self-gravitating inviscid incompressible fluid 
ellipsoids. This classic subject has been studied by great 
mathematicians such as Maclaurin, Jacobi, Meyer, Li-
ouville, Dirichlet, Dedekind, Riemann, Poincaré, 
Cartan, Roche, Darwin (the fifth child of Charles Dar-
win), and Jeans. These fluid ellipsoids, being 
incompressible, have constant density. The steady solu-
tion in the case of non-rotation is a sphere. When one 
introduces rotation, the steady solutions are rotating ob-
late spheroids. These are referred to as Maclaurin 
spheroids. It is known that as one increases the angular 
momentum in the Maclaurin spheroids, the figure be-
comes unstable to a shape changing instability and the 
equilibrium configuration becomes a tri-axial ellipsoid. 
In the case where the angular momentum vector is par-
allel to the vorticity, these are referred to as Riemann S-
type ellipsoids [2].  

We have two concurrent research projects related to 
the evolution and instability of the ellipsoidal equilib-
rium figures. The first is an advanced numerical 
exploration and the linear stability of Riemann S-type 
ellipsoids. The stability analysis proceeds from the line-
arized Euler equations for the self-gravitating system 
and maps the stability landscape with respect to the var-
iables of the problem (major axes of the ellipsoid, 
angular velocity). We hope to resolve this stability dia-
gram with higher order harmonics using the same 
technique that was pioneered by Chandrasekhar’s stu-
dent Norman Lebovitz in [3]. The second project is an 
investigation of three-dimensional nonlinear computa-
tional fluid dynamics solutions using finite element 
methods to simulate the nonlinear evolution of these un-
stable incompressible fluid ellipsoids. This entails 
simulation of the incompressible Euler equations for ro-
tating self-gravitating masses with particular focus on 
the evolution of the free-boundary, coupling finite ele-
ment methods with level-set techniques. 

The incompressible Euler equations are a coupled 
system of nonlinear partial differential equations in two 
unknowns, 𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) and 𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡), the velocity and 
pressure fields, which describe an idealized incompress-
ible fluid with no viscous effects in a Eulerian frame of 
reference. The absence of the second-order spatial dif-
ferential operator describing the kinematic viscosity 
from the momentum equation (which is present, e.g., in 
the incompressible Navier-Stokes equations), as well as 

 
Figure 20.  Illustration of break-through curve measurement. A col-
umn (grey) is packed with solid particles (blue). Mechanical forces 
on each end are used to ensure that the solid does not move. After 
flowing a non-adsorbing solvent through the column for a time long 
enough to reach steady state, the inlet mixture is changed to the 
mixture of interest and the concentration of fluid exiting, or break-
ing through, the column is monitored with time. The plot of outlet 
concentrations versus time is called the break-through curve. 

 
Figure 21.  Dimensionless outlet concentration as a function of di-
mensionless time for experiment (blue circles) and optimal 
simulation (orange line). The inlet mixture consists of 1% CO2 in 
He at room temperature, and the adsorbent is Zeolite 13X. 
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the divergence-free incompressibility constraint on the 
velocity field, renders this system particularly difficult 
to simulate, due in part to the infinite speed of sound 
propagation, which is a characteristic property of this 
system. Numerical solution of the incompressible Euler 
system using many common methods (e.g., the Finite-
Volume method) is rendered impossible, since a vanish-
ing timestep would be required to capture such effects.5 
It is nonetheless desirable to develop a robust tool to 
simulate the nonlinear development of instabilities for 
incompressible dynamics, since the incompressible, in-
viscid systems are amenable to quantitative stability 
analysis [4-7] over more realistic fluid systems. Repro-
ducing the analytical stability results, which exist for 
this system, will be an important benchmarking tool for 
our numerical studies. 

The above constraints have led us to adopt the finite 
element method (FEM) as our primary means of simu-
lating the nonlinear evolution of an incompressible, 
inviscid fluid. A promising aspect of implementing the 
finite element method for the incompressible Euler 
equations will be the ability to couple a finite element 
solver with a level-set method for the evolving boundary 
of a self-gravitating fluid (and the potential to solve for 
the dynamics of the surface without considering the dy-
namics of the volume). Resolving the topological 
transformation of the surface of a rapidly spinning in-
compressible ellipsoid is a long-standing open problem 
(dating at least back to Darwin). A prevailing hypothesis 
predicts the eventual fission of self-gravitating fluids 
into two teardrop-shaped objects in orbit around one an-
other when the angular velocity of the parent body is 
high enough. This is believed to be the primary mecha-
nism behind the formation of binary star systems [8]. 
Finite Element Methods are particularly well-suited for 
modeling the time evolution of surfaces and have been 
used to successfully model incompressible fluid sys-
tems. 

With respect to the stability analysis of the Riemann 
ellipsoids, we are refining a numerical method first in-
troduced by Lebovitz et. al. [5-7], and later developed 
extensively by Cohl [9]. The linear stability analysis of 
any dynamical system is based on the magnitude of the 
eigenvalues of the linearized system around a known 
stable solution. Starting from a linearization of the Euler 
equations around the known S-type ellipsoids, the re-
sulting eigenvalue problem is truncated in the basis of 
ellipsoidal harmonics, allowing for the development of 
a numerical procedure for evaluating the stability of S-
type ellipsoids to small perturbations. The form of Eu-
lerian perturbation to the Newtonian gravitational 
potential, which is diagonal in the basis of ellipsoidal 
harmonics, allows for this truncation. We are particu-
larly interested in the fine structure of the boundary of 

 
5 https://tohline.education/SelfGravitatingFluids 

the region of stability as the major and semi-major axes 
of S-type solutions vary.  

The ellipsoidal harmonics, like their cousins, the 
spherical harmonics, are solutions to Laplace’s equation 
in the ellipsoidal coordinate system. The properties of 
ellipsoidal harmonic functions are critical to the study of 
problems displaying triaxial symmetry, and their effi-
cient numerical handling is an ongoing subject of 
research [10,11]. A major component of this project will 
be the supplementation of the Digital Library of Mathe-
matical Functions [12] with relevant information on the 
ellipsoidal harmonic functions collected while studying 
the gravitational equilibrium figures. This project also 
has a direct application to the study of astronomical and 
geophysical phenomena [13]. 

[1] S. Chandrasekhar. Ellipsoidal Figures of Equilibrium. 
Dover Publications, New York, 1969.  

[2] B. Riemann. Ein Beitrag zu den Untersuchungen über die 
Bewegung eines flüssigen gleichartigen Ellipsoids. Ab-
handlungen der Königlichen Gesellschaft der 
Wissenschaften zu Göttingen 9, 1860. 

[3] N. Lebovitz, and A. Lifschitz. New Global Instabilities of 
the Riemann Ellipsoids. The Astrophysical Journal 458:2 
(1996), 699-713. 

[4] S. Chandrasekhar. The Equilibrium and the Stability of 
the Riemann Ellipsoids I. Astrophysical Journal 142 
(1965), 890–961. 

[5] N. R. Lebovitz. Langrangian Perturbations of Riemann 
Ellipsoids, Geophysical & Astrophysical Fluid Dynamics 
47, no. 1-4 (1989), 225–236. 

[6] N. Lebovitz, and A. Lifschitz. The Stability Equations for 
Rotating, Inviscid Fluids: Galerkin Methods and Orthog-
onal Bases. Geophysical & Astrophysical Fluid 
Dynamics 46:4 (1989), 221–243. 

[7] N. Lebovitz, and A. Lifschitz. Short-Wavelength Insta-
bilities of Riemann Ellipsoids. Philosophical 
Transactions of the Royal Society of London Series A 
354:1709 (1996), 927–950. 

[8] J. E. Tohline. The Origin of Binary Stars. Annual Reviews 
in Astronomy and Astrophysics 40 (2002), 349–385. 

[9] H. S. Cohl. Linear Instability Analysis of the Ellipsoidal 
Figures of Equilibrium. Unpublished. 

[10] G. Dassios. Private Communication. 
[11] G. Dassios. Ellipsoidal Harmonics: Theory and Applica-

tions. In Encyclopedia of Mathematics and its 
Applications, Cambridge University Press, 2012. 

[12] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. 
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. 
V. Saunders, H. S. Cohl, and M. A. McClain, eds. NIST 
Digital Library of Mathematical Functions. 
http://dlmf.nist.gov/, Release 1.1.8 of 2022-12-15,  

[13] C. Hunter. On Secular Stability, Secular Instability, and 
Points of Bifurcation of Rotating Gaseous Masses. Astro-
physical Journal 213 (1977), 497–517. 
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A Science Gateway for Atomic, 
Molecular and Optical Science    
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Igor Bray (Curtin University, Australia)  
Armin Scrinzi (Ludwig-Maximilians U., Germany)  
Fernando Martiın (U. Autonoma de Madrid, Spain)  
Jesus Gonzalez Vasquez (U. Autonoma de Madrid)  
Jimena Gorfinkiel (Open University, UK) 
Robert Lucchese (Lawrence Berkeley National Lab) 
Sudhakar Pamidighantam (Indiana University) 
Andrew Brown(University of Belfast, UK) 
Nicholas Douguet (Kennesaw State University)                                                                                                                

An international effort has been underway since early 
2019 to develop and maintain a Science Gateway for 
Atomic Molecular and Optical Science (AMOSG) [1, 2, 
3, 4].  The gateway was renamed from Science Gateway 
for Atomic and Molecular Physics, to a Science Gate-
way for Atomic, Molecular, and Optical Science to 
reflect the broader nature of the ongoing activity. The 
purposes of the gateway are to:  

(i) collect and make available to the community a set 
of advanced computational tools that are actively 
being used to study atomic and molecular colli-
sions and the interaction of radiation with atoms 
and molecules,  

(ii) provide educational materials for beginning and 
advanced users desiring to learn the ideas and 
concepts of AMOS, both theoretical and compu-
tational, and  

(iii) make available to the broad community atomic 
and molecular data needed for many applica-
tions.  

The availability of collision data is critical to many areas 
of physics including astrophysics, fusion energy, the 
study of lighting and microelectronics and is an activity 
consistent with the mission of NIST. 

Codes for modeling and simulation of such phe-
nomena have been developed in specific groups by 
graduate students and postdocs but are often poorly doc-
umented, and unavailable outside the group. This  leads 
to “reinventing the wheel” in too many instances. Main-
taining these computational tools, as well as enhancing 
their capabilities, is one of the major goals of the project 
and is critical to ensure continued scientific progress in 
AMOS.  

Another important goal is to enable the code devel-
opers themselves to compare the calculations of specific 
well-defined problems using different methodolo-
gies. This enables the verification of results of different 
codes and encourages comparison with experiment, 
where available. It has already been demonstrated that a 

few of these codes are often more accurate than experi-
ment and thus provide a predictive capability when 
experimental results are unavailable.  

At the outset, the group acknowledged that in con-
trast to some other communities, the AMOS community 
has lagged behind in developing community supported 
software packages that are robust and widely used out-
side the group that was responsible for developing the 
software. Our group was convinced the time had arrived 
to change existing practices and make these tools avail-
able and easily used by future generations of AMOS 
scientists as well as the developers themselves. 

The group  wrote a proposal to the NSF Extreme 
Science and Engineering Discovery Environment 
(XSEDE)  program (now the Advance Cyberinfrastruc-
ture Coordination Ecosystem: Services and Support, or 
ACCESS) to  fund  some initial development of the 
gateway. The proposal was successful and, importantly, 
provided the developers with some hands-on assistance 
from  the Extended Collaborative Support Services arm 
of XSEDE. This was vital to the success of the effort. In 
particular, we acknowledge the important contribution 
of Sudhakar Pamidighantam and his colleagues at Indi-
ana University in  making our  efforts a success.  

 There have been  some  important  advances since 
the first instantiation of the gateway:  

a) the original web pages for the gateway have been 
completely revamped and new material has been 
added, 

b) the original six major codes chosen for initial de-
ployment have been expanded to include eleven 
codes and many have already been ported to at 
least three ACCESS supercomputers, and  

c) there is a new version of an API available to enable 
users to perform calculations with at least one of 
the codes, tRecX, and this is serving as a model for 
the other applications.   

A contract that NIST awarded to Indiana University 
in 2021 to further develop the needed GUI interfaces has 
now expired.  As a consequence, the need for longer 
term support for the project is recognized as an essential 
ingredient to its ultimate success.  To that end, the group 
spent considerable effort during the fall of 2022 in writ-
ing an NSF proposal to the Cyberinfrastructure for 
Sustained Innovation program.  Professor Kathryn Ham-
ilton, of the University of Colorado Denver, is the 
project PI.  Co-PI’s are Sudhakar Pamidighantam from 
IU, Klaus Bartschat from Drake University, and Nicho-
las Douguet from Kennesaw State. Barry Schneider, and 
Robert Lucchese from Lawrence Berkeley National La-
boratory have the role of Senior Investigators. The 
proposal was submitted to the NSF from the University 
of Colorado Denver as the lead organization.  

The current portal contains a good description of the 
codes, the people involved, links to documentation, a 
bibliography, a preliminary data repository, and some 
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nice graphical material illustrating a few of the calcula-
tions that have been done with the codes. 
[1] B. I.  Schneider, K. Bartschat, O. Zatarinny I. Bray, A. 

Scrinzi, F. Martin, M. Klinker,  J. Tennyson, J. Gorfink-
iel, and S. Pamidighanta. A Science Gateway for Atomic 
and Molecular Physics. arXiv:2001.02286   

[2] B. I.  Schneider, K. Bartschat, O. Zatsarinny, K. Hamil-
ton, I. Bray, A. Scrinzi, F. Martin, J. G. Vasquez, J. 
Tennyson, J. Gorfinkiel, R. Lucchese and S. Pamidighan-
tam. Atomic and Molecular Scattering Applications in an 
Apache Airavata Science Gateway. In PEARC ‘20: Prac-
tice and Experience in Advanced Research Computing, 
PEARC20, July 2020. DOI: 10.1145/3311790.3397342 

[3] B. I.  Schneider, et al. Atomic and Molecular Scattering 
Applications in an Apache Airavata Science Gateway. In 
PEARC '20: Practice and Experience in Advanced Re-
search Computing, 2020, 270-277. DOI: 
10.1145/3311790.3397342 

[4] B. I. Schneider. AMO for All: How Online Portals Are 
Democratizing the Field of Atomic, Molecular and Opti-
cal Physics. NIST Taking Measure Blog,  November 2, 
2022.  URL: https://www.nist.gov/blogs/taking-measure/amo-
all-how-online-portals-are-democratizing-field-atomic-molecu-
lar-and-optical 

Separable Shape Tensors  
Zachary J. Grey 
Olga Doronina (NREL) 
Andrew Glaws (NREL) 
 
Efficient representations and statistics of shapes are im-
portant facets of computational tasks in artificial 
intelligence, design, and manufacturing. The challenge 
is to define a prudent treatment of data with an intrinsic 
notion of shape. Example applications include: (i) wind 
turbine airfoils which must be designed, manufactured, 
and measured more precisely than ever for next genera-
tion offshore wind energy applications, (ii) investigation 
and statistical hypothesis testing of material microstruc-
tures in a manufacturing process, (iii) inference 
involving contours of measured quantum devices, or (iv) 
quantifying distributions of persistent structures in gen-
eral image classification. 

The notion of “shape” is typically induced by iden-
tifying shape preserving transformations and “dividing 
out” these transformations to explore what remains in a 
so-called quotient topology. These topologies can vary 
from one application to the next but are useful in study-
ing and understanding persistent characteristics and 
“modes” of shape as data. Moreover, these prudent treat-
ments of shape induce improved metric spaces offering 
better notions of “distance” between paired shapes in a 
framework which is inherently non-linear. Thus, with 
this formalism for defining notions of shape, we can of-
fer improved coordinate systems for domain definition, 
interpolation, and inferential statistics. 

In our analysis, a shape can be represented as a 
boundary defined by a curve, 𝑐𝑐: [0,1] → ℝ2. However, 
in a computational setting, we represent airfoil shapes or 
grain boundaries as a discrete ordered sequence of land-
marks (x𝑖𝑖) ∈ ℝ2 for i = 1, … , 𝑛𝑛. That is, we view a 
shape through an identification with some unknown 
curve 𝑐𝑐(𝑠𝑠) and compute with reparametrized landmarks 
𝑥𝑥𝑖𝑖 = 𝑐𝑐(𝑠𝑠𝑖𝑖) for 0 ≤ 𝑠𝑠1 < 𝑠𝑠2 < ⋯ < 𝑠𝑠𝑛𝑛 ≤ 1. Moving 
along the curve, this sequence of planar vectors along a 
shape boundary can be represented as a matrix X =
[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]⊤ ∈ R∗

n×𝟚𝟚 constituting a discrete representa-
tion of the shape. 

We introduce a scaling of landmark data to para-
metrize new shape deformations over the Grassmann 
manifold, 𝒢𝒢(n, 2). The nature of this revised representa-
tion “divides out” the effect of matrix scaling operations, 
XM, thus separating affine characteristics of shape---
when combined with translations---and offering a novel 
non-linear (non-Euclidean) domain of discrete shapes. 

Computationally, these separable shape tensors be-
come 

𝑋𝑋0(𝑡𝑡, 𝑙𝑙) = 𝑋𝑋�(𝑡𝑡)𝑀𝑀(𝑙𝑙) 
where 𝑋𝑋�(𝑡𝑡) are representative elements parametrized 
over coordinates 𝑡𝑡 of a Grassmann submanifold and 
𝑀𝑀(𝑙𝑙) are the separated elements of scale variations over 
subgroups of the general linear group, 𝐺𝐺𝐿𝐿2—giving rise 
to product submanifold definitions of discrete-shape 
spaces. This defines a pair of independent coordinate 
vectors (𝑡𝑡, 𝑙𝑙) describing any shape up to translations. 
This separability is a desirable characteristic for aero-
space/wind-turbine designers who regularly prescribe or 
fix 𝑀𝑀(𝑙𝑙) ∈ 𝐺𝐺𝐿𝐿2 but seek undulations [𝑋𝑋�](𝑡𝑡) ∈ 𝒢𝒢(n, 2) 
in the shape to explore deformations resulting from 
blade soiling or manufacturing variations. Moreover, 
this separability enables a more precise investigation for 
studying how grain shapes within a material microstruc-
ture may be deformed through a manufacturing process 
or loading condition. 

 
Figure 22.  Top: a discretized airfoil shape with arbitrary ordering 
of landmarks as blue circles depicted along a red boundary. Bot-
tom: a discretized grain boundary with arbitrary ordering of 
landmarks depicted along a red boundary. 

https://arxiv.org/abs/2001.02286
https://doi.org/10.1145/3311790.3397342
https://doi.org/10.1145/3311790.3397342
https://www.nist.gov/blogs/taking-measure/amo-all-how-online-portals-are-democratizing-field-atomic-molecular-and-optical
https://www.nist.gov/blogs/taking-measure/amo-all-how-online-portals-are-democratizing-field-atomic-molecular-and-optical
https://www.nist.gov/blogs/taking-measure/amo-all-how-online-portals-are-democratizing-field-atomic-molecular-and-optical
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In aerodynamic applications, reduced-dimension 
data-driven domains of transformed separable represen-
tations offer improved regularization of deformations 
and novel methods of interpolation for both 2D and 3D 
design. In materials science applications, distributions 
of shapes as grain boundaries measured with electron 
back-scatter diffraction (EBSD) can be transformed into 
separable representations for hypothesis testing—indi-
cating which features of shape are statistically 
significant from one measurement of a set of grains to 
the next. 

These highly scalable non-Euclidean treatments of 
discrete shapes leverage implementations over matrix 
manifolds to achieve efficiencies necessary for compu-
tations involving tens of thousands of shapes. In 
one instance, we have successfully explored and de-
ployed data-driven approaches to build wind turbine 
airfoil shape domains with more than 15000+ shapes 
represented by refinements of 1000+ landmarks per 
shape. Alternatively, given scans of material microstruc-
tures, we can compute statistical moments of thousands 
of grain boundaries in a matter of seconds on a common 
laptop. 

These innovations have enabled significantly more 
tractable inverse designs with machine learning for next 
generation wind-turbine blades---transforming the clas-
sical problem of designing with hundreds of blade 
design parameters into one involving as few as four pa-
rameters. Additionally, these representations are 
showing promise with two-sample hypothesis testing of 
segmented grain boundaries subjected to different envi-
ronmental conditions. This facilitates a novel set of tools 
for materials scientists to quantify specific structural 
differences in distributions of grain boundaries from one 
EBSD scan to another. This interpretation on separable 
shape tensors was presented at the AI for Design and 
Manufacturing Conference [1] and recently accepted for 
publication in the Oxford University Press, Journal of 
Computational Design and Engineering [2]. A public 

GitHub code repository for applications relevant to aer-
odynamic design is also available [3]. 

[1] O. A. Doronina, Z. J. Grey, and A. Glaws. Grassmannian 
Shape Representations for Aerodynamic Applications. In 
AI for Design and Manufacturing (ADAM) Workshop of 
the AAAI 2022 Conference (2022) DOI: 
10.48550/arXiv.2201.04649 

[2] Z. J. Grey, O. A. Doronina, and A. Glaws. Separable 
Shape Tensors for Aerodynamic Design. Journal of Com-
putational Design and Engineering. To appear. DOI: 
10.1093/jcde/qwac140 

[3] O. A. Doronina., A. Glaws., R. King, G. Vijayakumar, and 
Z. J. Grey. G2Aero. Computer Software. USDOE Ad-
vanced Research Projects Agency - Energy (ARPA-E).  
April 20, 2022. DOI: 10.11578/dc.20220422.1 

Computational Tools for Image and 
Shape Analysis 
 
Günay Doğan 
Javier Bernal 
James Lawrence 
Prashant Athavale (Clarkson University) 
Emmanuel Atindama (Clarkson University) 
Lianchen Lewis (University of Texas at Austin) 
Olakunle Abawonse (Northeastern University) 

The main goal of this project is to develop efficient and 
reliable computational tools to detect geometric struc-
tures, such as curves, regions, and boundaries, from 
given direct and indirect measurements, e.g., micro-
scope images or tomographic measurements, as well as 
to evaluate and compare these geometric structures or 
shapes in a quantitative manner. This is important in 
many areas of science and engineering, where the prac-
titioners obtain their data as images and would like to 
detect and analyze the objects in the data. Examples are 

 
Figure 23. Left: structured mesh of a wind turbine blade generated by an interpolation of ten defining airfoils over the space of separable shape 
tensors. Right: a distribution of thousands of grain boundaries colored according to a matrix product submanifold shape distance from a central 
shape element. Smaller grains are highlighted by a thickened boundary revealing a network of shapes with relatively small distance to a computed 
origin. This structure was found to be statistically significant with respect to other scans not exhibiting the visual quality. 

https://doi.org/10.48550/arXiv.2201.04649
https://doi.org/10.1093/jcde/qwac140
https://doi.org/10.11578/dc.20220422.1
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microscopy images for cell biology or micro-CT (com-
puted tomography) images of microstructures in 
material science, shoeprint images in crime scenes for 
footwear forensics. In fiscal year 2022, advances were 
made in the two fronts of this project: image segmenta-
tion and shape analysis. Python implementations of 
solutions for problems in these areas were implemented, 
and documentation and examples were provided. In the 
following, we provide more details on the specific work 
carried out. 

Image Segmentation.  Image segmentation is the prob-
lem of finding distinct regions and their boundaries in 
given images. It is a necessary data analysis step for 
many problems in cell biology, forensics, and material 
science, as well as other fields in science and engineer-
ing. In FY 2022, G. Doğan and his collaborators 
continued to work on multiple strategies for image seg-
mentation.  

Some of the algorithms that Doğan and his collabo-
rators developed in the recent years build on energy 
minimization principles. In this approach, an artificial 
segmentation energy is defined to quantify how well a 
given set of region or boundary representations fit the 
sought segmentation; the better the fit, the smaller the 
energy values. A given starting set of regions or bound-
aries are then evolved iteratively until the minimum of 
the energy, thus the desired segmentation, is achieved. 
In FY 2022, Doğan implemented bug fixes and improve-
ments to minimization algorithm for region boundaries. 
He also concluded his complementary work on region 
evolution with former graduate intern O. Abawonse 
(now at Northeastern University). They had imple-
mented an image segmentation algorithm that leverages 
a convexified version of a piecewise constant segmenta-
tion energy. This algorithm is useful for obtaining two-
phase segmentations, i.e., background-foreground seg-
mentation of grayscale images. Doğan and Abawonse 
finished their code and experiments and wrote a paper 

describing the algorithm and the segmentation experi-
ments [1]. 

Doğan and graduate summer intern Liangchen Liu 
from University of Texas at Austin researched the use of 
deep learning for image segmentation. Deep learning is 
an artificial intelligence approach that leverages neural 
networks with many layers to solve various image pro-
cessing problems. Doğan and Liu reviewed the existing 
literature on image segmentation with deep learning and 
tried to determine the feasibility of incorporating varia-
tional regularization in deep learning to see if more 
regular (less noisy) segmentations could be achieved. 
They implemented a convolutional neural network that 
included total variation regularization at the final layer. 
The preliminary results obtained using this neural net-
work were very encouraging. Doğan will further 
develop this algorithm in FY 2023. 

Doğan continued his collaboration with P. Athavale 
and E. Atindama of Clarkson University on prepro-
cessing and segmentation of orientation images of 
microstructures. Analysis of such images is instrumental 
to modeling and understanding physics of real material 
microstructures. Orientation images, more specifically 
electron backscatter diffraction (EBSD) images, often 
come with many misorientation pixels, which have the 
appearance of noise, and may have regions of missing 
data. To alleviate these issues, Athavale, Atindama and 
Doğan have been developing PDE-based denoising and 
inpainting algorithms to produce high quality recon-
structions of the EBSD images. They further improved 
their algorithms in FY 2022 in terms of efficiency and 
quality of reconstructions. They developed a new ver-
sion of their preprocessing algorithm, and significantly 
reduced the artifacts in the images that are hard to re-
move by the denoising algorithm. Moreover, they 
introduced a better spatial weighting function in the de-
noising PDE. The weighting function controls the 
amount of smoothing based on the pixel locations and 
stops smoothing across grain boundaries to avoid blur-
ring of sharp grain boundaries (see Figure 24). They 

 
Figure 24.  A noisy electron backscatter diffraction image (left) denoised by Gaussian filtering (middle) and weighted total variation flow 
(right). 
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completed a paper describing their algorithm [2], and 
implemented the algorithm in Python, to be made pub-
licly available upon publication of the paper. 

Shape Analysis. A natural approach to analyze and 
compare objects in image and data is through their 
shapes, an aspect that is invariant to rotation, translation, 
and scaling. Shape-based analysis can facilitate object 
recognition and can provide a more intrinsic way to per-
form statistics of geometric data. Previously, Doğan, 
Bernal, and their collaborators developed an efficient 
optimization algorithm to compute the elastic shape dis-
tances between 2d closed curves [3, 4, 5], building on 
the square-root velocity framework of Srivastava et al. 
[7, 8]. This shape distance is the fundamental building 
block for shape analysis.  

In FY 2022, J. Bernal continued his work in the con-
text of shape analysis [8, 9] for the computation of the 
elastic shape registration of two simple surfaces in 3-di-
mensional space and therefore of the elastic shape 
distance between them. Similar work had been carried 
out by Kurtek, Jermyn et al. in [11, 12]. Bernal’s work 
started with the careful development, as it is done in [11, 
12], of the mathematical framework necessary for the 
elastic shape analysis of 3-dimensional surfaces, which 
culminated with the definition and justification of the 
distance between two such surfaces. This distance, and 
therefore the registration, is the result of minimizing a 
distance function in terms of rotations of one surface and 
reparametrizations of the other one. With a simple sur-
face defined as a parametrized surface in 3-d space, that 
is, the range of a one-to-one function from an elemen-
tary region in the plane into 3-d space, Bernal and his 
collaborators defined a shape function of a parametrized 
surface in 3-dimensional space, different from the one in 
[8] but similar to the one in [12] and established some 
fundamental results about this function. A similar defi-
nition and similar results were presented in [6, 7, 8, 9, 
10] in the context of the shape function of a parametrized 
curve in d−dimensional space. Based on this definition 
of the shape function of a parametrized surface, Bernal 
et al. defined the elastic shape distance between two par-
ametrized surfaces as well. This was done by alternating 
computations of rotations of one of the surfaces through 
the minimization of some double integral in terms of ro-
tations of the surface, and computations of 
reparametrizations of the other surface through the min-
imization of the same double integral in terms of 
homeomorphisms from the elementary region that is 
part of the definition of the parametrized surfaces, onto 
itself, the homeomorphisms having Jacobians of posi-
tive determinant. That this distance is well defined was 
demonstrated using arguments similar to those used for 
justifying the definition of the distance between curves 
in d−dimensional space found in [8, 9]. Finally, they de-
veloped an algorithm that minimizes the distance 
function in terms of rotations and a special subset of the 

set of reparametrizations, the optimization over repara-
metrizations based on Dynamic Programming.  

Obviously, this approach does not necessarily pro-
duce an optimal solution for the registration and distance 
problem, but perhaps a solution closer to optimal than 
the local solution that an algorithm with a gradient ap-
proach for optimizing over the entire set of 
reparametrizations, such as those proposed in [11, 12], 
may produce. In fact, Bernal and his collaborators pro-
pose that when computing the elastic shape registration 
of two simple surfaces and the elastic shape distance be-
tween them with an algorithm based on a gradient 
approach for optimizing over the entire set of repara-
metrizations, to use as the input initial solution the 
optimal rotation and reparametrization computed with 
our proposed algorithm. This proposed algorithm has 
been implemented and is currently being evaluated. 

Using different shape representations or different 
versions of the algorithms lead to different shape dissim-
ilarity metrics, and this brings the question of which 
metric would perform best. In the previous years, Doğan 
and Fleisig (UC Berkeley) developed a Python program, 
VEMOS (Visual Explorer for Metrics Of Similarity) 
that can be used to evaluate and compare multiple com-
peting similarity/dissimilarity metrics, including shape 
dissimilarity metrics. VEMOS is useful for applications 
beyond shape distances; it can be used in a versatile 
manner to evaluate multiple alternative dissimilarity 
metrics for heterogeneous data sets, including images, 
shapes, point clouds and other data types. In FY 2022, 
Doğan continued to develop VEMOS, made bug fixes, 
and added new features. A report describing capabilities 
of VEMOS is available in the  NIST technical note [13], 
and the software is available for download at 
https://github.com/usnistgov/VEMOS. 

[1] O. Abawonse and G. Dogan. Image Segmentation using 
the Split Bregman Algorithm. In preparation. 

[2] P. Athavale, E. Atindama, G. Dogan, and P. Lef. Resto-
ration of EBSD Grain Orientation Data. In preparation. 

[3] G. Doğan, J. Bernal, and C. R. Hagwood. Fast Algorithms 
for Shape Analysis of Planar Objects. In Proceedings of 
the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR'15), Boston, MA, June 2015. 

[4] G. Doğan, J. Bernal, and C. R. Hagwood. FFT-based 
Alignment of 2d Closed Curves with Application to Elas-
tic Shape Analysis. In Proceedings of the 1st 
International Workshop on Differential Geometry in 
Computer Vision for Analysis of Shapes, Images and Tra-
jectories (DiffCV'15), Swansea, United Kingdom, 
September 2015. 

[5] J. Bernal, G. Doğan, and C. R. Hagwood. Fast Dynamic 
Programming for Elastic Registration of Curves. In Pro-
ceedings of the 2nd International Workshop on 
Differential Geometry in Computer Vision and Machine 
Learning (DiffCVML'16), Las Vegas, NV, July 1, 2016. 

[6] J. Bernal, J. Lawrence, G. Doğan, and C. R. Hagwood. 
On Computing Elastic Shape Distances Between Curves 
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in d-dimensional Space. NIST Technical Note 2164, June 
2021, 39 pages. DOI:10.6028/NIST.TN.2164 

[7] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn. Shape 
Analysis of Elastic Curves in Euclidean Space. IEEE 
Transactions on Pattern Analysis and Machine Intelli-
gence 33:7 (2011), 1415-1428. 

[8] A. Srivastava and E. P. Klassen. Functional and Shape 
Data Analysis. Springer, New York, 2016. 

[9] J. Bernal. Shape Analysis, Lebesgue Integration and Ab-
solute Continuity Connections. NISTIR 8217, 2018. 

[10] S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jermyn. 
A Novel Representation for Riemannian Analysis of 
Elastic Curves in Rn. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition 
(CVPR’07), Minneapolis, MN, June 2007. 

[11] S. Kurtek, E. Klassen, Z. Ding, and A. Srivastava, A 
Novel Riemannian Framework for Shape Analysis of 3D 
Objects. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’10), San 
Francisco, CA, June 2010. 

[12] I. H. Jermyn, S. Kurtek, E. Klassen, and A. Srivastava. 
Elastic Shape Matching of Parameterized Surfaces Using 
Square Root Normal Fields. In Proceedings of the 12th 
European Conference on Computer Vision (ECCV’12), 
Volume 5, Springer, Berlin, 2012, 804-817. 

[13] E. Fleisig and G. Doğan. VEMOS: GUI for Evaluation of 
Similarity Metrics of Complex Data Sets. NIST Tech-
nical Note 2160, June 2021, 34 pages. DOI: 
10.6028/NIST.TN.2160 

Numerical Solutions of the Time 
Dependent Schrödinger Equation 
Barry I. Schneider  
William Earwood 
Heman Gharibnejad (Computational Physics Inc.) 
Luca Argenti (University of Central Florida)  
Carlos Marante (University of Central Florida)  
Siddhartha Chattopadhyay (U. of Central Florida)  
Juan Martin Randazzo  (Consejo Nacional de Investi-

gaciones Científicas y Técnicas, Argentina)  
Jeppe Olsen (Aarhus University, Denmark)                                                                                                                                 
Ryan Schneider (University of California at San Diego) 

We have been collaborating with various scientists for a 
number of years developing numerically robust meth-
ods for solving the time-dependent Schrödinger 
equation (TDSE). Luca Argenti, an Associate Profes-
sor from the University of Central Florida, and his 
research group,  Professor Jeppe Olsen from Aarhus 
University in Denmark, Juan Martin Randazzo from 
CONICET in Argentina,  former postdoc Heman Gha-
ribnejad, now working at Computational Physics Inc, 
and a new NRC postdoctoral associate, William Ear-
wood, are part of the project.  There are three related 
research threads underway.  

1. Developing a hybrid basis set approach using B-
spline/finite element discrete variable (FEDVR) 
and Gaussian type orbitals to treat the interaction of 
attosecond (10-18 sec) radiation with molecular tar-
gets. 

2. Computing the required hybrid basis function ma-
trix elements via a novel 3D numerical grid based 
on overlapping atomic grids. 

3. Examining the performance of various numerical 
time propagation techniques for the TDSE and ap-
plying them to attosecond science. 
The hybrid basis function approach that is being de-

veloped is quite general, but the applications to date 
have concentrated on describing the single ioniza-
tion  of  electrons  exposed  to  intense,  ultra-fast, laser 
radiation in many-body atomic and molecular systems. 
These attosecond (10-18 sec) pulses provide a new win-
dow to study the electronic motion in atoms 
and molecules on their natural timescale. To put this in 
context, the motion of electrons responsible for chemi-
cal binding and electron transfer processes in nature 
have a characteristic timescale of about 100 attosec-
onds. (It takes an electron 152 attoseconds to go around 
the  hydrogen  atom.) Many of these processes can only 
be described using time-dependent quantum mechanics. 
Where appropriate, this needs to be coupled to Max-
well’s equations to describe macroscopic 
phenomena.  Our overall goal is to image quantum phe-
nomena with sub-femtosecond temporal and sub-
Angstrom  spatial  resolution and to provide coherent 
control of electron dynamics.  Eventually, one can con-
template producing “molecular movies” of this motion 
in much the same way as it is done in molecular dynam-
ics simulations of heavy particle processes.  

The basic methodology as applied to atoms and 
simple diatomic molecules has been described in [1-11]. 
Reference [4] provides a detailed review of the 
work. The essential aspects have been 
• development of the finite element discrete variable 

method (FEDVR) and B-spline techniques to spa-
tially discretize the coordinates of the electrons,  

• construction of a numerical grid capable of effi-
ciently computing the required one and two 
electron matrix elements,  

• generalizing the hybrid integral library to compute 
integrals for double and higher ionization, and 

• development of a new Volterra integral method 
(ITVOLT) to replace the short iterative Lanczos 
method.  ITVOLT will be capable of propagating 
the time dependent wavefunction over much larger 
time steps than current approaches. 

Previous efforts have efficiently parallelized the 
FEDVR method using MPI, shown that it scales linearly 
with the size of the FEDVR basis and applied it to se-
lected problems [1-13]. Large scale calculations have 

https://doi.org/10.6028/NIST.TN.2164
https://doi.org/10.6028/NIST.TN.2160
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been performed on a number of atoms and molecules us-
ing resources provided by the NSF Extreme Science and 
Engineering Discovery Environment (XSEDE).  

In more recent research we have begun to employ a 
mixed basis of Gaussian functions at short range and 
FEDVR/B-spline functions at long range to extend our 
methods to complex polyatomic molecules. This ap-
proach has several important advantages over using 
a single basis over all of space.  First, the use of nuclear-
centered Gaussians preserves the local atomic symmetry 
around each nucleus and avoids the poor and often non-
convergent behavior of using a single-center basis at all 
distances. Second, once the electron is far enough away 
from the nuclear cusps, a single center expansion con-
verges quickly and, importantly, can represent the 
electrons out to very large distances using an approach 
that is very amenable to domain decomposition. The 
major issue is to compute the one and two electron inte-
grals between the two types of basis functions. The 
formalism we have been developing requires as input, 
transition density matrices extracted from a high-
level quantum chemistry code, in order to compute the 
additional one and two-electron integrals. Jeppe Olsen 
from Aarhus University, an extremely talented quantum 
chemist, has been collaborating with us on the pro-
ject. The NIST-UCF-Aarhus-CONICET group meets on 
a weekly basis to discuss the issues and plans.  During 
the past year, the density matrices have been integrated 
into a new code called ASTRA and the code has been 
applied very successfully to a number of atoms and mol-
ecules.  A long paper describing the results is near 
completion and will be submitted for publication early 
in 2023.  It should be noted that this is a very complex, 
many-body problem, and even with the most talented of 
researchers, it is a long-term effort.  The group believes 
the end product will revolutionize our ability to under-
stand attosecond science in polyatomic molecules. 

The calculation of the one and two-electron matrix 
elements over the hybrid basis, must be performed  nu-
merically.  Given the polycentric nature of the electron 
distribution and the need to compute these integrals to 
significantly larger distances than in quantum chemistry 
calculations, it was necessary to develop an efficient 3D 
integration scheme.  One cannot use methods that fix the 
coordinate system at a single point in space, as they are 
at best very slowly convergent and often do not con-
verge at all.  To overcome that, a popular approach 
developed by Axel Becke, based on the partition of 
unity, defines atomic grids, centered on the atoms where 
the grid points are appropriately weighted to satisfy the 
partition of unity.  The original method of Becke re-
quired substantial modification for our purposes.  We 
require a central grid that can describe the much larger 
integration region without too much contamination from 
the points on the nuclear centers at long range. To ac-
complish that, we define a new partition of unity that 
constrains the atomic grid points to small atomic 

spheres.  A central grid is then added to take care of the 
interstitial and longer range parts of configuration space 
where the atomic grid points are forced to vanish.  The 
new partition of unity does remarkably well in perform-
ing very accurate integration for integrands having 
nuclear cusps as well as oscillating at larger distances.  
The work has been completed and a paper [14] describ-
ing the approach has been published in Computational 
Physics Communications. 

Lastly, we have been engaged in efforts to general-
ize the short iterative Lanczos (SIL) method used to 
integrate the TDSE efficiently and accurately for much 
longer times [15].  A Volterra integral equation formal-
ism [16], with the acronym ITVOLT has been developed 
which exploits the fact that part of the Hamiltonian is a 
linear operator and can be treated using an exponential 
propagator, which is exactly what the SIL provides.  The 
remainder term, involving a time integral over the resid-
ual interaction and the unknown wavefunction, is 
computed by numerical integration over the large time 
step using the SIL on each of the terms in the integrand.  
To do the integral requires that we have a previous ap-
proximation to the wavefunction.  Thus, the entire 
scheme is iterative starting with the wavefunction from 
the previous time step.  We have been collaborating on 
this project with a mathematics graduate student, Ryan 
Schneider, at UCSD.  Ryan was initially supported by 
the Mathematical Sciences Graduate Internship (MSGI) 
program of the NSF and worked remotely with us for 
almost three months in 2019.  He received a NIST Grad-
uate Student Measurement Science and Engineering 
Internship (GMSE) in 2021 and has continued to work 
with us on the problem, spending the summer of 2022 in 
residence at NIST.  The work Ryan has been doing is 
described in detail in a separate contribution. 

For completeness, we also reference a review paper 
[17] by Schneider and Gharibnejad that was published 
in Nature Review Physics which received the ITL best 
journal paper award in 2020. 
[1] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schnei-

der, L. A. Collins, and  J. Burgdörfer. Nonsequential 
Two-Photon Double Ionization of Helium. Physical Re-
view A 77 (2008), 043420.  

[2] X. Guan, K. Bartschat, and B. I. Schneider. Dynamics of 
Two-photon Ionization of Helium in Short Intense XUV 
Laser Pulses. Physical Review A 77 (2008), 043421.  

[3] X. Guan, K. Bartschat, and B. I. Schneider. Two-photon 
Double Ionization of H2 in Intense Femtosecond Laser 
Pulses. Physical Review A 82 (2010), 041407.  

[4] B. I. Schneider, J. Feist, S. Nagele, R. Pazourek, S. Hu, 
L. Collins, and J. Burgdörfer. Recent Advances in Com-
putational Methods for the Solution of the Time-
Dependent Schrödinger Equation for the Interaction of 
Short, Intense Radiation with One and Two Electron Sys-
tems, in  Dynamic Imaging. In Quantum Dynamic 
Imaging, (A. Bandrauk and M. Ivanov eds.), CRM Series 
in Mathematical Physics, Springer, New York, 2011. 
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[5] X. Guan, E. Secor, K. Bartschat, and B. I. Schneider. 
Double-slit Interference Effect in Electron Emission from 
H2+ Exposed to X-Ray Radiation. Physical Review A 85 
(2012), 043419. 

[6] X. Guan, K. Bartschat, B. I. Schneider, L. Koesterke, 
Resonance Effects in Two-Photon Double Ionization of 
H2  by Femtosecond XUV Laser Pulses. Physical Review 
A 88 (2013), 043402. 

[7] J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. 
Burgdörfer, X. Guan, K. Bartschat, and B. I. Schneider. 
Time Delays for Attosecond Streaking in Photoionization 
of Neon. Physical Review A 89 (2014), 033417. 

[8] X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke. 
Alignment and Pulse-duration Effects in Two-photon 
Double Ionization of H2 by Femtosecond XUV Laser 
Pulses. Physical Review A 90 (2014), 043416.  

[9] B. I. Schneider, L. A. Collins, X. Guan, K. Bartschat, and 
D. Feder. Time-Dependent Computational Methods for 
Matter Under Extreme Conditions. Advances in Chemical 
Physics 157 (2015), Proceedings of the 240 Conference: 
Science’s Great Challenges, (A. Dinner, ed.), John Wiley.  

[10] B. I. Schneider, X. Guan, and K. Bartschat. Time Propa-
gation of Partial Differential Equations Using the Short 
Iterative Lanczos Method and Finite-Element Discrete 
Variable Representation. Advances in Quantum Chemis-
try 72 (2016), 95-127. 

[11] B. I. Schneider. How Novel Algorithms and Access to 
High Performance Computing Platforms are Enabling 
Scientific Progress in Atomic and Molecular Phys-
ics. Journal of Physics: Conference Series 759 (2016), 
012002. 

[12]  B. I. Schneider. 45 Years of Computational Atomic and 
Molecular Physics:  What Have We (I) Learned.  Journal 
of Physics: Conference Series 875 (2017). 

[13] B. I. Schneider, L. A. Collins, K. Bartschat, X. Guan, and 
S. X. Hu. A Few Selected Contributions to Electron and 
Photon Collisions with H2  and H2+. Journal of Physics 50 
(2017), 214004. 

[14] H. Gharibnejad, N. Douguet, B. I. Schneider, J. Olsen, 
and L. Argenti, A Multi-Center Quadrature Scheme for 
the Molecular Continuum, Computer Physics Communi-
cations, 263, 107889 (2021) 

[15] H. Gharibnejad, B. I. Schneider, M. Leadingham, and H. 
J. Schmale.  A Comparison of Numerical Approaches to 
the Solution of the Time-Dependent Schrödinger Equa-
tion in One Dimension. Computer Physics 
Communications (2019), 106808, to appear. 

[16] R. Schneider,  Heman Gharibnejad and  Barry I. Schnei-
der, ITVOLT: An Iterative Solver for Volterra Integral 
Equations with Application to the Time-Dependent 
Schrödinger Equation.  In review. 

[17] B. I. Schneider and H. Gharibnejad. Numerical Methods 
Every Atomic and Molecular Theorist Should Know. Na-
ture Reviews Physics, December 2019. 

ITVOLT: An Iterative Solver for the 
Time-Dependent Schrödinger 
Equation 
Barry I. Schneider 
Heman Gharibnejad (Computational Physics Inc.) 
Ryan Schneider (UC San Diego) 

In atomic units, the time-dependent Schrödinger equa-
tion (TDSE) takes the form  

� 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡

−  𝐻𝐻(𝒓𝒓, 𝑡𝑡) � 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0 

for a Hamiltonian 𝐻𝐻(𝒓𝒓, 𝑡𝑡) and a corresponding wave-
function 𝜓𝜓(𝒓𝒓, 𝑡𝑡), where r denotes all of the spatial 
variables of the system under consideration.  Solutions 
to the TDSE are important for a variety of research ef-
forts in physics and quantum chemistry [1-3]. Numerical 
methods for this problem attempt to balance the need for 
highly accurate solutions with the computational chal-
lenges associated with problems in quantum mechanics. 

As an extension of recent work of Gharibnejad et al. 
[4], we explored propagation techniques for this setting. 
Motivated by work of Ndong et al. [5], we devised an 
approach that propagates a solution to the TDSE by 
solving an equivalent Volterra integral equation.  

Our method, referred to as Iterative Volterra Propa-
gator or ITVOLT, solves the TDSE on successive 
intervals [𝜏𝜏𝑗𝑗 , 𝜏𝜏𝑗𝑗+1] by first converting it to the Volterra 
integral equation 

 𝜓𝜓(𝒓𝒓, 𝑡𝑡)
=  𝑒𝑒−𝑖𝑖𝐻𝐻𝑗𝑗(𝒓𝒓)�𝑡𝑡−𝜏𝜏𝑗𝑗�𝜓𝜓�𝒓𝒓, 𝜏𝜏𝑗𝑗�

− 𝑖𝑖 � 𝑒𝑒−𝑖𝑖𝐻𝐻𝑗𝑗(𝒓𝒓)�𝑡𝑡−𝑡𝑡′�𝐶𝐶𝑗𝑗(𝒓𝒓, 𝑡𝑡′)𝜓𝜓(𝒓𝒓, 𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝑡𝑡

𝜏𝜏𝑗𝑗

 

               𝜏𝜏𝑗𝑗 ≤ 𝑡𝑡 ≤ 𝜏𝜏𝑗𝑗+1 

Here, 𝐻𝐻𝑗𝑗(𝒓𝒓) is the value of 𝐻𝐻 at the midpoint time 
𝜏𝜏𝑗𝑗+𝜏𝜏𝑗𝑗+1

2
 

and 𝐶𝐶𝑗𝑗(𝒓𝒓, 𝑡𝑡) is the time dependent part of 𝐻𝐻 minus its 
value at the same point.  

Choosing a set of quadrature points �𝑡𝑡𝑝𝑝�
𝑝𝑝=1
𝑛𝑛

 in 
[𝜏𝜏𝑗𝑗 , 𝜏𝜏𝑗𝑗+1] and computing a corresponding set of weights 
�𝑤𝑤𝑝𝑝,𝑙𝑙� via Lagrange interpolation, we can replace the 
Volterra integral equation with a linear system, where at 
each quadrature point 𝑡𝑡𝑝𝑝 

𝜓𝜓�𝒓𝒓, 𝑡𝑡𝑝𝑝�
≈  𝑒𝑒−𝑖𝑖𝐻𝐻𝑗𝑗(𝒓𝒓)�𝑡𝑡𝑝𝑝−𝜏𝜏𝑗𝑗�𝜓𝜓�𝒓𝒓, 𝜏𝜏𝑗𝑗�

− 𝑖𝑖 � 𝑤𝑤𝑝𝑝,𝑙𝑙𝑒𝑒−𝑖𝑖𝐻𝐻𝑗𝑗(𝒓𝒓)(𝑡𝑡𝑝𝑝−𝑡𝑡𝑙𝑙)𝐶𝐶𝑗𝑗(𝒓𝒓, 𝑡𝑡𝑙𝑙)𝜓𝜓(𝒓𝒓, 𝑡𝑡𝑙𝑙).
𝑛𝑛

𝑙𝑙=1

 

ITVOLT proceeds by solving this linear system itera-
tively. The numerical details of this approach are 
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flexible, allowing for a variety of choices of quadrature 
points and iteration techniques. Through all of this, the 
use of easily accessible Lagrange interpolations pro-
motes efficiency. 

Over the summer of 2022, we implemented 
ITVOLT on several test problems, culminating in the 
TDSE for a driven harmonic oscillator. As shown in Ta-
ble 1, we found that ITVOLT is capable of 
outperforming existing techniques, such as 4th order 
Runge-Kutta, in both accuracy and efficiency. 

These results, as well as a detailed discussion of the 
methodology, have been submitted for publication [6]. 
In future work, we plan to test ITVOLT on even more 
computationally demanding problems, in particular the 
3D hydrogen atom.  

[1] I. Gainullin. High-performance GPU Parallel Solver for 
3D Modeling of Electron Transfer During Ion-Surface In-
teraction. Computer Physics Communications 210 
(2017), 72-78. 

[2] E. Paquet and H. L. Viktor. Computational Methods for 
Ab Initio Molecular Dynamics. Advances in Chemistry 
(2018), 9839641. 

[3] M. Abu-samha, L. B. Madsen. Multielectron Effect in the 
Strong-Field Ionization of Aligned Nonpolar Molecules. 
Physics Review A 38 (2022), 013117. 

[4] H. Gharibnejad, B. I. Schneider, M. Leadingham, H. J. 
Schmale. A Comparison of Numerical Approaches to the 
Solution of the Time-Dependent Schrödinger Equation in 
One Dimension. Computer Physics Communications 252 
(2020), 106808. 

[5] M. Ndong, H. Tal-Ezer, R. Kosloff, and C. P. Koch. A 
Chebyshev Propagator with Iterative Time Ordering for 
Explicitly Time-Dependent Hamiltonians. The Journal of 
Chemical Physics 132 (2010), 064105. 

[6] R. Schneider, H. Gharibnejad, B. I. Schneider. ITVOLT: 
An Iterative Solver for Volterra Integral Equation with 
Application to the Time-Dependent Schrödinger Equa-
tion. Preprint: arXiv:2210.15677. 

Computing Ill-Posed Time-Reversed 
Dissipative Evolution Equations, 
Using Stabilized Explicit Schemes 
Run Backward in Time 

Alfred S. Carasso 

Ill-posed deconvolution problems and related time-re-
versed dissipative evolution equations, pervade 
measurement science, and are important  in several other 
technological applications. In numerous scientific meas-
urements, the instrument point spread function is a bell-
shaped distribution that may be well-approximated by a 
Gaussian, or by a heavy-tailed infinitely divisible prob-
ability density, often with parameters that are only 
tentatively known. This is the case in important NIST 
work on engineered nanostructures, involving scanning 
electron microscopes (SEM), Helium ion microscopes 
(HIM), and transmission electron microscopes (TEM). 
The latter are also frequently used in nanoscale biomed-
ical and plant biology imaging. 

Reformulating the integral equation deconvolution 
problem into an equivalent time-reversed generalized 
diffusion equation, provides significant advantages. 
Marching backward in time stepwise, from a positive 
time 𝑇𝑇 to time 𝑡𝑡 = 0, allows the deconvolution to unfold 
in slow motion, provides the ability to monitor that pro-
cess, and the possibility of terminating it prior to time 
𝑡𝑡 = 0, to prevent serious noise contamination and/or de-
velopment of ringing artifacts. 

Such an approach, involving time-reversed frac-
tional diffusion equations, was previously successfully 
applied in deblurring of MRI and PET brain scans, na-
noscale electron micrographs, and galactic scale Hubble 
Space Telescope imagery [1-3].  However, most re-
cently, as shown in Figure 25 through Figure 27, 
logarithmic rather than fractional diffusion has been 
found to produce superior results in blind deconvolution 
of electron micrographs. Further exploration of logarith-
mic diffusion deconvolution of TEM biomedical 
micrographs is contemplated. 

In other contexts, much success has been achieved 
in environmental forensics, by solving advection diffu-
sion equations backward in time to locate sources of  
groundwater contamination [4]. In numerical weather 

Table 1. Driven Harmonic Oscillator: Method Comparison. Best-case solution errors for ITVOLT and RK4 when applied to the TDSE for the 
driven harmonic oscillator. Ground state probability error measures the accuracy of the computed ground state while norm error measures how 
close the norm of the computed wavefunction is to one. 

ITVOLT Runge-Kutta (RK4) 
Ground State  

Probability Error Norm Error Run Time Ground State  
Probability Error Norm Error Run Time 

1.07 x 10-14 1.05 x 10-14 23.89 s 3.73 x 10-11 1.27 x 10-12 199.24 s 
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prediction and other geophysical computations, data as-
similation involving time-reversed dissipative equations 
plays a major role in initializing prediction models [5-
8]. 

While iterative methods are often used to solve  ill-
posed evolution equations, such methods are time-con-
suming and often develop stagnation points. Recently, a 
powerful non-iterative direct approach has been devel-
oped  for time-reversed multidimensional nonlinear 
dissipative equations, based on stabilizing explicit back-
ward marching finite difference schemes. An 
appropriate easily synthesized compensating smoothing 
operator is applied at every time step to quench the in-
stability. The stabilized scheme now becomes 
unconditionally stable, but slightly inconsistent, and 
eventually leads to a distortion away from the true solu-
tion. This is the stabilization penalty. However, in many 
problems of interest, the cumulative error is sufficiently 
small to allow for useful results. In a series of papers [9-
16], such stabilized schemes have been successfully ap-
plied to interesting classes of time-reversed nonlinear 
initial value problems for parabolic equations, viscous 

wave equations, coupled sound and heat 
flow, thermoelastic vibrations, 2D vis-
cous Burgers equations, and 2D 
incompressible  Navier-Stokes equa-
tions. Such computations had not 
previously been considered possible. 

Data Assimilation In 2d Dissipative 
Equations. Stabilized backward march-
ing explicit schemes offer significant 
computational advantages in the grow-
ing field of geophysical data 
assimilation.  Current research aims to 
demonstrate this point by focusing on 
computational examples involving 8 
bit, 256 × 256 pixel gray-scale images, 
defined by highly non smooth intensity 
data.  Such data are difficult to synthe-
size mathematically and  pose 
significant challenges in ill-posed re-
construction. Here, images provide an 
invaluable exploratory tool in time-re-
versed dissipative equations. 

The 2D viscous Burgers equation is 
a coupled system of two nonlinear equa-
tions in two unknowns, 
𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), 𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑡𝑡). In [13], the ill-
posed problem of backward recovery 
from inexact data at an appropriately 
chosen 𝑇𝑇 >  0, is studied. Rigorous un-
certainty estimates in [17, 18] require a 
sufficiently small 𝑇𝑇 >  0, as well as 
sufficiently small solution derivatives 
on 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, for useful recovery. 

A fundamentally different time-re-
versed problem is discussed in [16]. In a bounded 
domain Ω ⊂ 𝑅𝑅2, with homogeneous boundary condi-
tions on 𝜕𝜕Ω, and no forcing term, the following data 
assimilation/inverse design problem associated with that 
system is considered: 

Find initial values [𝑢𝑢(. ,0), 𝑣𝑣(. ,0)] that can 
evolve into a close approximation to a desired 
target result [𝑢𝑢∗(. , 𝑇𝑇), 𝑣𝑣∗(. , 𝑇𝑇)] at some suitable 
𝑇𝑇 >  0. 

In contrast to [13], non-smooth target data are consid-
ered that may not correspond to actual solutions at time 
𝑇𝑇, and it may not be possible to find such initial values. 
Such 2D viscous Burgers problems have not previously 
been studied. For the 1D Burgers equation, data assimi-
lation is discussed in [5-8], using various iterative 
methods.  

Marching backward in time with a stabilized ex-
plicit finite-difference scheme, a large class of examples 
is presented in [16] where, with realistic values of 𝑇𝑇 >
 0, and Reynolds numbers as high as 18000, useful ini-
tial values can be found that evolve into good 

 
Figure 25. Blind deconvolution in scanning electron micrograph (SEM) of nanoscale mag-
netic tape sample. Using time-reversed logarithmic diffusion equations produces significant 
sharpening, as shown in right hand image. (Original image courtesy of NIST Microsystems and Nanotech-
nology Division) 

 
Figure 26. Blind deconvolution in Helium ion micrograph (HIM) of nanoscale tin balls. 
Using time-reversed logarithmic diffusion equations produces significant sharpening, as 
shown in right hand image. (Original image courtesy of NIST Microsystems and Nanotechnology Division) 
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approximations to the desired target data, with modestly 
small 𝐿𝐿1 relative errors. Importantly, there are also un-
successful examples. Using similar techniques, a class 
of nonlinear advection diffusion equations is studied in 
[19]. Here, as shown in Figure 28, modest accuracy is  
typically the case. There are again unsuccessful exam-
ples, and better results are possible with smaller 
nonlinearities. 

Future plans include the study of data assimilation 
in hyperbolic/parabolic systems, such as thermoelastic 
vibrations and coupled sound and heat flow. These chal-
lenging problems involve three independent sets of 
initial values, which interact  as the evolution pro-
gresses.  
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Figure 27. Blind deconvolution in transmission electron micrograph (TEM) in plant biology 
study. Using time-reversed logarithmic diffusion equations produces significant sharpening, 
as shown in right hand image of cotton phloem tissue. (Original image courtesy of J. Torsch, Cheadle 
Center for Biodiversity and Ecological Restoration, University of California at Santa Barbara.) 
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Figure 28. Barred galaxy NGC1300 data assimilation example in nonlinear advection diffusion equation. Data in rightmost column approxi-
mates desired target data in leftmost column with L1 relative error of 16 %. (Image courtesy of Hubble Telescope Barred Galaxy Collection) 
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Mathematics of Biotechnology 

As proof-of-concept academic work in engineering biology meets the market realities of bringing lab science to product 
initiation, there are questions in how to compare biological products, measure whether desired outcomes are realized, 
and optimize biological systems for desired behaviors. NIST is working to deliver tools and standards to measure such 
biological technologies, outputs, and processes from healthcare to manufacturing and beyond. We support this effort 
with the development and deployment of innovative mathematical modeling and data analysis techniques and tools. 

Data Analysis for Quantitative 
Polymerase Chain Reaction 
Measurements 
Paul Patrone 
Anthony Kearsley 
Peter Vallone (NIST MML) 
Erica Romsos (NIST MML) 
Patrick Hutchins (USGS) 
Adam Sepulveda (USGS) 

Quantitative polymerase chain-reaction (qPCR) meas-
urements are a mainstay tool for detection of genetic 
material, with broad applications to diagnostics, envi-
ronmental testing, and forensics. Indeed, the COVID-19 
pandemic has highlighted the critical role of qPCR in 
identifying active SARS-CoV-2 infections. Despite its 
importance, however, there are many open questions re-
garding uncertainty quantification (UQ) and methods 
for robust analysis of raw data. 

In FY 2020, several of us developed new methods 
for background subtraction and analysis of qPCR data 
[1]. The main idea behind our approach was to leverage 
a previously unknown property that all qPCR amplifica-
tion curves, including their plateau phases, are identical 
up to horizontal shifts and multiplicative factors. We 
showed that it was possible to identify positive samples 
by transforming a test curve onto a positive control via 
a constrained optimization formulation; see Figure 29. 
This led to a manuscript and patent application for the 
resulting methods. 

In FY 2021 and FY 2022, we engaged in collabora-
tive research and technology transfer with external 
stakeholders. In particular, the US Geological Survey 
(USGS) uses qPCR measurements to locate invasive 
species in freshwater systems by testing for environmen-
tal DNA (eDNA). However, given the likelihood of 
“genetic contamination” in such open systems, UQ of 
the resulting analysis is critical for justifying remedia-
tion decisions. This is especially important given that the 
resulting actions are expensive and have the potential for 
ecological disruption. To address such questions, we 
have worked with USGS to identify best practices for 

data analysis, including determining if certain data anal-
ysis routines are statistically consistent with the amount 
of DNA expected in samples that were tested as part of 
an interlaboratory study. 

In addition to this, work continues in commercial-
izing our qPCR data analysis methods via a CRADA 
with a private diagnostics lab. On-going research aims 
to better understand and quantify sources of background 
in raw data.  
[1] P. N. Patrone, E. L. Romsos, M. H. Cleveland, P. M. Val-

lone, and A. J. Kearsley. Affine Analysis for Quantitative 
PCR Measurements. Analytical and Bioanalytical Chem-
istry 412 (2020), 7977–7988. 

 
Figure 29. qPCR amplification curves of the N1 fragment of a 
SARS-CoV-2 RNA construct. Top: qPCR curves after background 
subtraction. Bottom: curves after data collapse. The inset shows the 
error on an absolute scale relative to the master curve. The data 
collapse is accurate to better than 1 % of the maximum scale of the 
data. 
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Advanced Data Analysis for 
Diagnostics, Biometrology, and 
COVID-19 
Paul Patrone 
Anthony Kearsley 
Prajakta Bedekar 
Rayanne Luke 
Christopher Heaney (Johns Hopkins University) 
Nora Pisanic (Johns Hopkins University) 
Yukari Manabe (Johns Hopkins University) 
David Thomas (Johns Hopkins University) 

The on-going COVID-19 health crisis has highlighted 
the critical need for advanced metrology tools that can 
be used in both clinical and research settings. For exam-
ple, accurate diagnostic testing is needed to characterize 
epidemiological patterns, manage healthcare infrastruc-
ture, and identify optimal policy decisions. Motivated by 
such issues, several staff members in ACMD have been 
collaborating with a range of internal and external stake-
holders on projects related to antibody measurements.  

Beginning in FY 2021, several of us derived a series 
of new results showing that diagnostic classification as-
sociated with antibody assays can be recast as an 
optimization problem. From a data analysis standpoint, 
the underlying measurements return a value 𝑟𝑟 associated 
with an antibody level, which is used to classify a sam-
ple as positive or negative, say for having been infected 
with SARS-CoV-2. A canonical method assigns 𝑟𝑟 to the 
positive or negative classes depending on whether the 
data falls into one of two domains 𝐷𝐷𝑝𝑝 or 𝐷𝐷𝑛𝑛 that partition 
the measurement space. However, we recently demon-
strated that the optimal (i.e., minimum error) domains 
are given by 

𝐷𝐷𝑝𝑝
∗ = {𝑟𝑟: 𝑞𝑞𝑞𝑞(𝑟𝑟) > (1 − 𝑞𝑞)𝑁𝑁(𝑟𝑟)} 

𝐷𝐷𝑛𝑛
∗ = {𝑟𝑟: 𝑞𝑞𝑞𝑞(𝑟𝑟) < (1 − 𝑞𝑞)𝑁𝑁(𝑟𝑟)} 

where 𝑞𝑞(𝑟𝑟) and 𝑁𝑁(𝑟𝑟) are models quantifying the condi-
tional probability that a positive or negative sample 
yields a value 𝑟𝑟, and 𝑞𝑞 is the disease prevalence [1]. We 
also proved that unbiased estimates of prevalence can be 
constructed from a counting exercise that is independent 
of sample classification but still dependent on these 
probability models [1]. Thus, we reduced all diagnostics 
to a problem of correctly modeling probability distribu-
tions. 

Following up on this, in FY 2022 we began a series 
of collaborations with the School of Public Health at 
Johns Hopkins University to improve data analysis as-
sociated with saliva-based SARS-CoV-2 antibody tests. 
A fundamental problem with such assays is the variable 
nature of the measurement conditions, given that daily 
activities such as drinking water may dilute samples. As 
a result, it is sometimes necessary to hold out samples if 
they are too diluted and/or do not appear to contain a 

meaningful signal. However, doing so also wastes time 
and resources if a large amount of the data must be dis-
carded.  

To address this problem, we formulated a con-
strained optimization problem that minimizes the size of 
the holdout domain while maintaining a given classifi-
cation accuracy for the remaining samples [2]. 
Interestingly, the solution to this problem is given in 
terms of the bathtub principle. In the context of diagnos-
tic testing, this principle states that we hold out points 
from the measurement space with the lowest local clas-
sification accuracy up to a threshold that depends on the 
target classification accuracy. Figure 30 shows the re-
sults of this analysis applied to a SARS-CoV-2 assay 
developed at Johns Hopkins University. 

We have also pursued further extensions of classi-
fication theory for diagnostics.  More recently, we have 
(i) showed that bathtub principles can be used to mini-
mize uncertainty in prevalence estimates [3], and (ii) 
generalized our methods to account for time-varying an-
tibody levels [4], multiple classes [5], and higher 
dimensional measurements [6].  Work is on-going to 
transfer this technology to stakeholders.   
[1] P. N. Patrone, and A. J. Kearsley. Classification under un-

certainty: data analysis for diagnostic antibody testing. 
Mathematical Medicine and Biology: A Journal of the 
IMA 38:3 (2021), 396–416. DOI: 10.1093/imammb/dqab007 

[2] P. N. Patrone, P. Bedekar, N. Pisanic, Y. C. Manabe, D. 
L. Thomas, C. D. Heaney, and A. J. Kearsley.  Optimal 
Decision Theory for Diagnostic Testing: Minimizing In-
determinate Classes with Applications to Saliva-based 
SARS-CoV-2 Antibody Assays.  Mathematical Biosci-
ences 351 (2022), 108858.  DOI: 10.1016/j.mbs.2022.108858 

 
Figure 30. Illustration of the classification method developed in [2]. 
Red x and blue o correspond to samples that are known to be posi-
tive and negative for SARS-CoV-2. The measurements are 
associated with two different methods of quantifying antibodies; see 
[2] for details. The yellow-green domain is the positive classifica-
tion domain, whereas dark blue is the negative classification 
domain.  The light blue domain is the holdout domain. The original 
assay defined the upper two quadrants of the plot as the positive 
domain, the lower right as the negative domain, and the lower left 
as the holdout domain. The optimal method maintains testing accu-
racy while reducing the fraction of holdouts by more than 10 %. 
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[3] P. N. Patrone, A. J. Kearsley.  Minimizing Uncertainty in 
Prevalence Estimates. In review. 

[4] P. Bedekar, A. J. Kearsley, P. N. Patrone, Prevalence es-
timation and optimal classification methods to account 
for time dependence in antibody levels.  Journal of The-
oretical Biology, to appear. 

[5] R. A. Luke, A. J. Kearsley, and P. N. Patrone.  Optimal 
classification and Generalized Prevalence Estimates for 
Diagnostic Settings with More than Two Classes. In re-
view. 

[6] R. A. Luke, A. J. Kearsley, N. Pisanic, Y. C. Manabe, D. 
L. Thomas, C. D. Heaney, and P. N. Patrone.  Modeling 
in Higher Dimensions to Improve Diagnostic Testing Ac-
curacy: Theory and Examples for Multiplex Saliva-Based 
SARS-Cov-2 Antibody Assays. In review. 

Metrology for Cytometry 
Paul Patrone  
Anthony Kearsley 
Danielle Middlebrooks 
Rayanne Luke 
Prajakta Bedekar 
Gregory Cooksey (NIST PML) 
Matthew DiSalvo (NIST PML) 
Jalal Sadeghi (NIST PML) 

For more than 30 years, flow cytometry, a technique 
used to measure characteristics of cells, has been a main-
stay for cancer detection, drug development, and 
biomedical research. It has remained a primarily quali-
tative metrology platform, however, because 
measurement uncertainties associated with this tech-
nique are so large. While exact economic figures are 
difficult to estimate, this has clearly had a significant im-
pact on the roughly $200 billion of waste in the 
healthcare industry and contributed to the broader repro-
ducibility crisis in biomedical research [1]. The 
challenge of making cytometry an accurate and precise 
metrological tool arises from the competing requirement 
that it have high throughput. Typical biological samples 
can have up to hundreds of millions of cells, which must 
be analyzed over a few hours. 

To achieve this throughput, cytometers direct cells 
through a microfluidic channel at high-speed, past an 
optical interrogation region that collects fluorescence 
light from antibodies attached to surface proteins. The 
total fluorescence collected from each cell should then, 
in principle, be proportional to the total number of mark-
ers on its surface. But in practice, this idealized picture 
is complicated by the cumulative effects of the physical 
phenomena involved: fluid-dynamic forces cause cells 
to move across streamlines and/or have unpredictable 
trajectories; optical geometric collection efficiencies de-
pend on position in the interrogation region; and signal 

acquisition and processing tools introduce non-linear ef-
fects and measurement uncertainties through discrete 
sampling. These challenges, in addition to the complex-
ity of exactly replicating the necessary measurement 
infrastructure at the micron scale, have made it virtually 
impossible to reproduce measurements on a single cell, 
a necessary first step towards fully assessing and con-
trolling uncertainties in cytometry. 

ACMD, PML, and MML staff were awarded a 
NIST Innovations in Measurement Science (IMS) award 
to develop a microfluidic-based cytometer, whose de-
sign explicitly allows control and study of repeat 
measurements of cells. Following on work from FY 
2020 and FY 2021, we are continuing a series of re-
search projects on uncertainty quantification (UQ) for 
cytometry. The first of these aims to quantify the per-
event uncertainty associated with each method. Recently 
we derived a key result indicating that all cytometry 
events (e.g., for a fixed cell-marker type) are identical 
up to a set of straightforward linear transformations that 

 
Figure 31.  Top: 1300 cytometry signals corresponding to particles 
having different velocities and sizes.  Bottom:  Our theory predicts 
that the 1300 curves in the top figure can be collapsed onto one 
another using straightforward linear transformations that depend 
on the particles’ velocities and sizes.  The agreement with this the-
ory is on the order of 2% relative to the maximum scale of the 
measurements.  The residuals in the inset can be interpreted as the 
per-event reproducibility of the measurement process. 
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depend on physical parameters such as the cell size, 
speed, and number of biomarkers; see Figure 31. Using 
optimization, we can determine these unknown parame-
ters by mapping different signals onto one another. 
Critically, this also yields multiple, model-based but dis-
tinct realizations of what a measurement would look like 
could it be reproduced on the same measurand. Using 
this, we have been able to estimate for the first time the 
per-event uncertainty; see Figure 31. This analysis also 
enables new types of data analysis associated with dou-
blet identification, doublet deconvolution, and more 
generally, cell counting. This work is summarized in a 
collection of manuscripts [2, 3, 4], with several more in 
preparation. 

The second UQ project aims to identify the proba-
bilities of measurement outcomes for populations that 
may have some overlapping signals. The key assump-
tion of this analysis is that the probability densities 
(PDFs) of measurement values for different populations 
have partially disjoint supports. Given a “mixed” PDF 
associated with an unknown combination two or more 
populations, one can only subtract off the PDF of one 
population from this mixture until the latter becomes 
negative. This implies an optimization problem wherein 
one seeks to maximize the amount of subtracted popula-
tion subject to a positive-definite constraint. Work is on-
going to apply this algorithm to real cell systems and ad-
dress issues associated with signal noise. 
[1] W. H. Shrank, T. L. Rogstad, and N. Parekh. Waste in the 

US Health Care System: Estimated Costs and Potential 
for Savings. JAMA 322:15 (2019), 1501-1509. 

[2] P. N. Patrone, M. DiSalvo, A. J. Kearsley, G. B. McFad-
den, and G. A. Cooksey. Reproducibility in Cytometry: 
Signals Analysis and its Connection to Uncertainty Quan-
tification.  In review. 

[3] M. DiSalvo, P. N. Patrone, A. J. Kearsley, and G. 
Cooksey. Serial Flow Cytometry in an Inertial Focusing 
Optofluidic Microchip for Direct Assessment of Meas-
urement Variations. Lab on a Chip 22:17 (2022), 3217-
3228. DOI: https://doi.org/10.1039/D1LC01169C 

[4] J. Sadeghi, P. N. Patrone, A. J. Kearsley, and G. Cooksey. 
Optofluidic Flow Meter for Sub-nanoliter per Minute 
Flow Measurements. Journal of Biomedical Optics 27:1 
(2022), 017001. DOI: 10.1117/1.JBO.27.1.017001 

Standardization of SARS-CoV-2 
Serology Measurements 
Paul Patrone 
Anthony Kearsley 
Lili Wang (NIST MML) 
Sheng Lin-Gibson (NIST MML) 

A key problem associated with antibody measurements 
for SARS-CoV-2 is the lack of an absolute scale. Typi-
cal standards rely on pooled blood samples. Being 
human derived, however, they have unknown antibody 
titers, so that subsequent measurements can only be de-
fined on a relative scale. This makes it challenging to 
understand the degree of protection associated with a 
given antibody measurement and reduces usefulness of 
harmonization studies. 

To address these problems, NIST has engaged with 
external stakeholders, including Roche, Abbott, and Re-
generon, to develop SARS-CoV-2 monoclonal 
antibodies (mAbs) as reference materials. Being manu-
factured proteins, mAbs have well-defined 
concentrations that are known in absolute terms. How-
ever, conformational differences between mAbs and 
relative to the SARS-CoV-2 antigens suggests that these 
references may yield significant measurement variation 
when tested against the variety of commercial assays. 
Thus, it is necessary to quantify the mAb induced uncer-
tainties to assess their usefulness as reference materials. 

To address this problem, we have undertaken an in-
terlab study that combines elements of uncertainty 
quantification (UQ) with thermodynamics-based model-
ing to separate distinct sources of measurement 
variation.  Several surprising results have emerged.   
• To the best of our knowledge, we have formulated 

the first mathematical definition of assay harmoni-
zation that explicitly incorporates UQ.  In 
particular, we have shown that a both rigorous and 
useful approach identifies harmonization as the 
task of finding a mapping operator that takes only 
measurement values from different assays as in-
puts and outputs a common consensus value with 
confidence bounds.  In this way, harmonization 
renders measurements from different assays ap-
proximately interchangeable by quantifying the 
extent they can be brought into agreement. 

• Using Gibbs free-energy-based arguments, we 
have shown that the choice of reference material 
does not affect confidence bounds associated with 
consensus values.  We have validated using data 
from the interlab study. 

• As a consequence, we have demonstrated, both 
theoretically and experimentally, that mAbs are 
equally useful reference materials from a perfor-
mance standpoint.  This conclusion stands in stark 

https://doi.org/10.1039/D1LC01169C
https://doi.org/10.1117/1.JBO.27.1.017001
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contrast to a long-held belief by the serology com-
munity that only human-derived, pooled standards 
can be used as reference materials. 

This work has also yielded several other smaller results, 
all of which are included in a manuscript in preparation.  
In particular, we have developed a new method for nor-
malizing antibody measurements to a standard and 
developed more rigorous notions of correlates of protec-
tion, which are currently lacking in the SARS-CoV-2 
serology community. 

Mathematical Models for 
Cryobiology  
Daniel Anderson  
Anthony Kearsley  
James Benson (University of Saskatchewan, Canada)  
Jessica Masterson (George Mason University) 

Cryobiology, the study of biological specimens at cryo-
genic temperatures, plays an enormous role in a wide 
range of fields. In the field of medicine, cryobiology is 
the basis for cryopreservation in assisted reproduction, 
organ transplantation, biobanking and personalized 
medicine. Cryo-banking is used in the agriculture indus-
try as well as for initiatives aimed at preserving rare and 
endangered plant and animal species and in the develop-
ment of more productive agricultural yields. 
Applications in forensics arise in the processing and 
preservation of frozen biological samples that are often 
important and fragile evidence in criminal investiga-
tions. The breadth and depth of these applications reflect 
the complexity of the biological, chemical, and physical 
aspects required to describe and model these problems. 
Mathematical and computational models can be used to 
probe these complex systems and in conjunction with 
sophisticated control and optimization schemes, can es-
tablish more effective protocols for cryopreservation.  

Cryopreservation of a human cell is a form of bio-
mimicry that attempts to do in the laboratory, or in silica, 
what some frog and amphibian species can do naturally. 
A cryoprotectant, effectively an antifreeze, aims to play 
the role that substances like glucose play in the winter 
preservation of frozen frogs. These cryoprotectants, 
which are added to the extra-cellular environment, help 
to remove water from a cell before cooling, thus reduc-
ing the likelihood of intracellular ice formation. This, 
however, comes at a price due to the cell’s limited ability 
to withstand the elevated levels of chemicals, including 
the naturally occurring salts in the cell, possibly damag-
ing the cell, or causing death by chemical toxicity. Thus, 
the maintenance of a viable cell during cryopreservation 
is complicated by two primary factors. Cooling the cell 
too quickly increases the undercooling and the likeli-
hood of intracellular ice formation and cell damage or 

death while cooling the cell too slowly can overexpose 
the cell to high solution concentrations and lead to 
chemical toxicity. This amounts to a high-stakes goldi-
locks problem from the cell’s perspective.  

Mathematical modeling in cryobiology thus re-
quires a detailed understanding of thermal and chemical 
transport in bulk phases as well as across a semiperme-
able cell membrane. Additionally, phase transformation 
of these multicomponent solutions – phenomena that 
link cryobiology to a wide range of other fields from ge-
ophysics to industrial materials processing [6] – must 
also be included. Cryopreserving a cell requires a deli-
cate balance between two competing damage 
mechanisms, and thus a delicate optimization problem. 
We are exploring foundational aspects of biochemical 
and physical modeling in cryobiology, computational 
methods for the solution of these models, and applica-
tions of these ideas to cryopreservation of cells.  

The focus of [1] was to establish the foundations of 
the chemical thermodynamics necessary to describe 
transport processes during cryopreservation. This work 
formulated chemical potentials and related thermody-
namics quantities for non-dilute and non-ideal 
multicomponent solutions of experimental and theoreti-
cal interest to cryobiologists. Next, the multiphase, 
multi-species transport equations were developed along 
with a consistent characterization of cell membrane dy-
namics and solid-liquid phase transitions [2]. A critical 
aspect of our work was to obtain, from first principles, 
mathematical models that address both spatial and tem-
poral dynamics of chemical species and heat transport. 
Various aspects of the freezing of a spherical biological 
cell were addressed in [3] and [4]. Based on a numerical 
algorithm outlined in [4], we explored in [3] the evolu-
tion of the thermal fields in the solid, liquid, and 
intracellular regions along with the concentration of cry-
oprotectant and the intra- and extracellular salts. These 
studies incorporated the effects of confinement and par-
tial solute rejection, which had not previously been 
examined in cryobiology. These observations led to the 

 
Figure 32. Computed damage function proxies as a function of 
cooling rate. 
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development of objective functions in [4], which pro-
vide a measure of both intracellular undercooling and 
chemical toxicity. These control functions appear more 
suited to deriving cooling protocols than previously em-
ployed toxicity functions [5].  

The mathematical models and computational algo-
rithms established in this foundational series of papers 
[1-4] form the foundation for our current work towards 
optimal control of these systems. Our current work un-
derway with J. Masterson involves the identification of 
proxies for cell/tissue damage that can be used in opti-
mal control settings (see Figure 32). The mathematical 
framework is PDE-constrained optimization in which 
the bio/chemical/physical model constrains variables 
such as solid and liquid thermal fields, that help define 
objective functions such as those measuring tissue un-
dercooling and chemical toxicity. Work is underway to 
formulate appropriate optimal control equations based 
on adjoint formulations of the governing equations.  Our 
first objective is to address optimal protocols in the 
freezing/cooling stage. A second goal is to extend this 
framework to explore strategies that can optimize proto-
cols for cryo-recovery where warming and/or melting 
occur. The central role played by phase transformation 
and transport in multicomponent systems links these 
cryobiological processes and their mathematical de-
scriptions to related ones that occur under vastly 
different conditions in geophysics and industrial materi-
als processing [6]. 
[1] D. M. Anderson, J. D. Benson, and A. J. Kearsley. Foun-

dations of Modeling in Cryobiology I: Concentration, 
Gibbs Energy, and Chemical Potential Relationships. 
Cryobiology 69 (2014), 349-360. DOI: 10.1016/j.cryo-
biol.2014.09.004  

[2] D. M. Anderson, J. D. Benson, and A. J. Kearsley. Foun-
dations of Modeling in Cryobiology II: Heat and Mass 
Transport in Bulk and at Cell Membrane and Ice-liquid 
Interfaces. Cryobiology 91 (2019), 3-17. DOI: 
10.1016/j.cryobiol.2019.09.014  

[3] D. M. Anderson, J. D. Benson, and A. J. Kearsley. Foun-
dations of Modeling in Cryobiology III: Heat and Mass 
Transport in a Ternary System. Cryobiology 92 (2020), 
34-46. DOI: 10.1016/j.cryobiol.2019.09.013  

[4] D. M. Anderson, J. D. Benson, and A. J. Kearsley. Nu-
merical Solution of Inward Solidification of a Dilute 
Ternary Solution Towards a Semi-permeable Spherical 
Cell. Mathematical Biosciences 316 (2019), 108240. 
DOI: 10.1016/j.mbs.2019.108240  

[5] J. D. Benson, A. J. Kearsley, and A. Z. Higgins. Mathe-
matical Optimization of Procedures for Cryoprotectant 
Equilibration using a Toxicity Cost Function. Cryobiol-
ogy 64 (2012), 144-151. DOI: 
10.1016/j.cryobiol.2012.01.001  

[6] D. M. Anderson, P. Guba, and A. J. Wells. Mushy Layer 
Convection. Physics Today 75 (2022) 34-39.  DOI: 
10.1063/PT.3.4940 

Modeling for Biological Field Effect 
Transistor Experiments 
Ryan M. Evans 
Seulki Cho (NIST PML) 
Arvind Balijepalli (NIST PML) 
Anthony Kearsley                                                                                                                                           

Biological field effect transistors (Bio-FETs) are modern 
bioelectronics instruments offering novel biomarker 
measurements. In contrast with traditional measurement 
techniques that require specialized facilities and expen-
sive equipment, Bio-FETs offer rapid, accurate and low-
cost measurements. Since these instruments are hand-
held and portable, they promise to yield wider accessi-
bility to critical medical diagnostic tests. During a 
typical experiment, a chemical reactant bath is injected 
into a solution-well that contains a buffer fluid. These 
chemical reactants diffuse through the solution-well and 
bind with chemical reactants confined to a thin layer 
known as the biochemical gate on the sensor surface. 
This produces a time-series signal that can be used to 
analyze the chemical reaction of interest. See Figure 33 
for an experimental Bio-FET signal. 

Since estimating parameters associated with these 
experiments like kinetic coefficients can help us identify 
biomarkers, accurate mathematical models for these ex-
periments are desired. Previous mathematical models 
have either not accounted for the time dependent nature 
of Bio-FET experiments [1–3] or have not included 
physically relevant transport processes [4–5]. A model 
recently published by Evans, Kearsley, and Balijepalli is 
the first dynamic model for Bio-FET experiments that 
accounts for physically relevant transport effects, and it 
has been shown that this model compares favorably with 
experimental data [6]. 

The nonlinear integrodifferential equation (IDE) 
presented in [6] takes the form: 

 
Figure 33. Experimental Bio-FET signal. The horizontal axis rep-
resents time in seconds, and the vertical axis represents voltage that 
is measured as a result of surface binding. 
 
 
 

https://doi.org/10.1016/j.cryobiol.2019.09.014
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∂𝐵𝐵
∂𝑡𝑡

= (1 − 𝐵𝐵)𝐶𝐶(𝑥𝑥, 0, 𝑡𝑡) − 𝐾𝐾𝐵𝐵, 

where 

 
𝜃𝜃3(⋅,⋅) is a third-order theta function [7, Eq. 20.2.3], 
𝐶𝐶i(𝑥𝑥, 0, 𝑡𝑡) satisfies the Neumann Problem on a rectangle 
with homogeneous boundary conditions and is a com-
pactly supported Gaussian 𝑓𝑓(𝑥𝑥, 𝑦𝑦) at the initial time 𝑡𝑡 =
0, and 𝐵𝐵(𝑥𝑥, 𝑡𝑡) = 0.  In [6] Evans and coworkers devel-
oped a method of lines (MOL) approximation to this 
equation that achieves an order of three-halves in time 
and second in space, the former of which comes from 
the singularity.  After regularizing the singularity by us-
ing the definition of θ3(⋅,⋅) and adding and subtracting  

∂𝐵𝐵
∂τ

(ν, 𝑡𝑡) 

from the first integrand, an expansion of the form  

𝐵𝐵(𝑥𝑥, 𝑡𝑡) ≈ � ϕ𝑖𝑖(𝑥𝑥)ℎ𝑖𝑖(𝑡𝑡) 
𝑁𝑁

𝑖𝑖=1

 

was developed and substituted into the equation.  In the 
above expansion the ϕ𝑖𝑖(𝑥𝑥) are locally defined quadrat-
ics and the ℎ𝑖𝑖(𝑡𝑡) are time-dependent functions that are 
determined by evaluating each side of the resulting 
equation at the center of each of the 𝑁𝑁 hat functions, 
yielding a set of 𝑁𝑁 ordinary differential equations.  
These equations are solved by with a semi-implicit dis-
cretization and the approximation  

ℎ𝑖𝑖
′(𝑡𝑡𝑚𝑚) ≈

Δℎ(𝑚𝑚)
𝑖𝑖

Δ𝑡𝑡
, 

which yields a linear system that we can use to solve for 
Δℎ𝑖𝑖

(𝑚𝑚) and used to update ℎ𝑖𝑖 via the formula 

ℎ𝑖𝑖
(𝑚𝑚+1) = ℎ𝑖𝑖

(𝑚𝑚) + Δℎ𝑖𝑖
(𝑚𝑚) 

for each 𝑖𝑖. We are currently developing a new numerical 
approximation to this system based on radial basis func-
tions (RBF), which are known to have excellent 
interpolation properties.  In particular, our RBF approx-
imation centers around the expansion: 

 

 

𝐵𝐵(𝑥𝑥, 𝑡𝑡) ≈ � � 𝑤𝑤𝑖𝑖𝑗𝑗Φ𝑖𝑖𝑗𝑗(𝑥𝑥, 𝑡𝑡;  𝑧𝑧)
𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝑗𝑗=1

. 

The weights 𝑤𝑤𝑖𝑖𝑗𝑗 are constant; there are many choices for 
the RBFs Φ𝑖𝑖𝑗𝑗(𝑥𝑥, 𝑡𝑡), we chose Gaussians 

Φ𝑖𝑖𝑗𝑗 = e-𝑧𝑧�(𝑥𝑥-𝑥𝑥i)2+�𝑡𝑡-𝑡𝑡j�
2

�. 

The parameter 𝑧𝑧 controls the Gaussians width.  Substi-
tuting this RBF expansion into our IDE and evaluating 
at each of the nodes �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗� gives a nonlinear system for 
the weights 𝑤𝑤𝑖𝑖𝑗𝑗 .  A key advantage of this method is that, 
since the Gaussian is a known separable function of 𝑥𝑥 
and 𝑡𝑡, the singularity can be regularized with a substitu-
tion.  It is expected that a numerical solution of the 
nonlinear algebraic can be rapidly achieved with Ander-
son acceleration [8]. It is expected that our RBF 
approximation will be even faster and more accurate 
than the MOL approximation, giving even more rapid 
and precise simulations of Bio-FETs. 

[1] S. Baumgartner, M. Vasicek, A. Bulyha, N. Tassotti, and 
C. Heitzinger. Analysis of Field-Effect Biosensors Using 
Self-Consistent 3D Drift-Diffusion and Monte-Carlo 
Simulations. Procedia Engineering 25 (2011), 407-410. 

[2] C. Heitzinger, N. J. Mauser, and C. Ringhofer. Multiscale 
Modeling of Planar and Nanowire Field-Effect Biosen-
sors. SIAM Journal on Applied Mathematics 70:5 (2010), 
1634-1654. 

[3] D. Landheer, G. Aers, W. R. McKinnon, M. J. Deen, and 
J. C. Ranuarez. Model for the Field Effect from Layers of 
Biological Macromolecules on the Gates of Metal-Oxide-
Semiconductor Transistors. Journal of Applied Physics 
98:4 (2005), 044701. 

[4] X. Duan, Y. Li, N. K. Rajan, D. A. Routenberg, Y. Modis, 
and M. A. Reed. Quantification of The Affinities and Ki-
netics of Protein Interactions Using Silicon Nanowire 
Biosensors. Nature Nanotechnology 7:6 (2012), 401-407. 
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Steinhauer, A. Kck, P. E. Barbano, and C. Heitzinger. Ki-
netic Parameter Estimation and Fluctuation Analysis of 
CO at SNO2 Single Nanowires. Nanotechnology 24:31 
(2013), 315501. 
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Binding, Brightness, or Noise? 
Extracting Temperature-dependent 
Properties of SYTO-13 Dye Bound to 
DNA 
Robert DeJaco 
Anthony Kearsley 
Jacob Majikes (NIST PML) 
J. Alexander Liddle (NIST PML) 

In many areas of biotechnology, such as food safety, 
health diagnostics, and forensics, practitioners are given 
a sample and need to determine the concentration or 
strandedness of a given sequence of DNA. Since sample 
volumes are often small and high throughput is needed, 
fluorescence monitoring is used. Specifically, a probe is 
added to the solution that possesses different fluores-
cence properties associated with different 
concentrations and types of DNA. From measurements 

of the fluorescence, underlying properties of DNA are 
inferred. 

Unfortunately, the inference process is limited by 
subjective and systematic bias. This is especially true for 
fluorescent dyes that bind to DNA. Here, the conven-
tional approach is empirical with no clear connection to 
or discrimination between dye binding, dye brightness, 
and experimental noise. Accounting for binding and 
brightness is further hindered by a lack of property data 
available above room temperature. 

To address these challenges, we developed a new 
mathematical model that discriminates between binding 
strength and adsorbed molar fluorescence. We also 
found that, by focusing on the low dye coverage regime, 
where the fraction of DNA bases occupied by dye is 
small and the fluorescence is linear in dye concentration, 
bias due to quenching and deviations from Beer’s Law 
could be eliminated. In close collaboration with PML, 
we devised a series of experiments that would allow us 
to extract the binding strength and fluorescence per mole 
of dye at a variety of different temperatures using nu-
merical optimization. To ascertain the extent of noise, 
we repeated the same measurement two or three times. 

The experimental data, as depicted in Figure 34, ex-
hibited significant noise both within the same 96-well 
plate and between different plates. From visualizing the 
data, the sources and extent of noise is not readily appar-
ent. Calculating the linear trends by minimizing the error 
in fluorescence suggests that the instrument signifi-
cantly overpredicts the signal on one day and 
significantly underpredicts on the next. This is obvi-
ously not realistic for an instrument that is routinely 
calibrated; instead, additional sources of error should be 

 
Figure 34. Dimensionless fluorescence as a function of dimensionless dye concentration at a variety of temperatures (colors, see legend). Each 
subplot corresponds to measurements from the same 96-well plate. Each row corresponds to a series of replicate measurements. 
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present. We assume that the error arising either from flu-
orescence or dye concentration yields residuals that 
possess small errors in fluorescence and errors in dye 
concentration that are consistent with the pipetting pro-
cedure. By quantifying the noise in this manner, the 
different trends in Figure 34 are attributed to result from 
different working concentrations that were used on the 
different days of experimentation. This knowledge of 
uncertainty could be used to improve reproducibility in 
the future by focusing on the procedural details of gen-
erating working concentrations and dilutions. 

Having quantified the noise, we used the numerical 
optimization and experimental workflow to extract the 
binding constant and adsorbed molar fluorescence at a 
wide variety of temperatures. For comparison, we ap-
plied the computational procedure to single-stranded 
DNA (SS) and double-stranded DNA (DS) inde-
pendently. The properties computed are depicted in 
Figure 35. As expected, the dye binds more strongly to 
DS than SS. In comparison to other dyes (not shown) the 
binding strength of SYTO-13 is small. This explains its 
relatively weak inhibition of PCR and influence on melt-
ing temperature. However, each dye bound to DS does 
not always fluoresce more than each dye bound to SS 
(Figure 35, right). At high temperature, there is no sta-
tistically significant difference between the fluorescence 
of dye bound to SS and DS. By discriminating between 
𝐾𝐾𝑗𝑗 and 𝑓𝑓𝑗𝑗 at each temperature 𝑇𝑇𝑗𝑗, we can explain why the 
fluorescence of dye in a solution containing DS is larger 
than that containing SS. In the future, this approach of 
discriminating between binding, brightness, and noise 
could be extended to improve quantification of DNA 
concentration by real-time PCR and quantification of 
DNA melting fraction by sequential temperature cy-
cling. Our results [1] are currently undergoing peer 
review. 

[1] R. F. DeJaco, J. M. Majikes, J. A. Liddle, and A. J. Kears-
ley. Temperature-dependent Thermodynamic and 
Photophysical Properties of SYTO-13 Dye Bound to 
DNA. In review. 

Artificial Intelligence for Low-Field 
Magnetic Resonance Imaging 
Andrew Dienstfrey 
Zydrunas Gimbutas 
Adele Peskin (NIST ITL) 
Joe Chalfoun (NIST ITL) 
Kathryn Keenan (NIST PML) 
Kalina Jordanova (NIST PML) 
Stephen Ogier (NIST PML) 

Emerging low-field (64 mT) magnetic resonance imag-
ing (MRI) systems offer the promise of low-cost, point-
of-care imaging that could be conducted in, for example, 
developing countries, rural locations, and eventually 
even in an ambulance. However, present low-field MRI 
results in images with low spatial resolution and high 
noise. These poor qualities complicate quantitative anal-
yses that are critical for advanced diagnostics. Recent 
research suggests that machine learning (ML) methods 
can potentially restore image quality and furthermore 
may enable quantitative mapping of tissue parameters 
[1]. Such claims must be validated via rigorous compar-
isons to existing measurement standards for high-field 
(1.5 or 3.0 T) MRI. In FY 2022, we continued our inves-
tigation of ML-based analysis in low-field MRI 
measurement contexts. 

Diffusion MRI. For background, scope, and motiva-
tions for the NIST Use-Inspired AI Program on Low-
Field MRI see [2]. In FY2022 we continued our investi-
gation of low-field MRI measurement of the apparent 
diffusion coefficient of water (ADC) measured in units 
μm2/s. This parameter is a measure of water mobility 
which, in turn, can serve as a biomarker for several med-
ical conditions including stroke, traumatic brain injury, 
and Alzheimer’s disease. From a physics perspective, 
water mobility is insensitive to static magnetic field 
strengths. Thus, previous quantitative measurements of 

 
Figure 35.  Left: Dimensionless binding constant 𝑲𝑲𝒋𝒋 as a function of temperature 𝑻𝑻𝒋𝒋. Right: Dimensionless fluorescence per dye adsorbed to 
DNA 𝑲𝑲𝒋𝒋 as a function of temperature. Properties for single-stranded DNA (SS) are depicted in yellow, while those for double-stranded DNA 
(DS) are depicted in purple. 
 



Summary of Activities for Fiscal Year 2022                                                                                                               55 
   
 

 

ADC conducted at high-fields should be directly appli-
cable to low-field contexts. 

The system of equations governing spin-dynamics 
in the presence of diffusion are known as the Bloch-Tor-
rey equations and are given by 
 
𝑑𝑑M
𝑑𝑑𝑡𝑡

= γM × B −
𝑀𝑀𝑥𝑥x� + 𝑀𝑀𝑦𝑦y�

𝑇𝑇2
−

(𝑀𝑀𝑧𝑧 − 𝑀𝑀0)z�
𝑇𝑇1

+ 𝐷𝐷∇2M 

B = (𝐵𝐵0 + G∙r)z� + B𝑟𝑟𝑟𝑟 . 
Here M, is proton spin magnetization resulting from an 
ensemble of water molecules, 𝐷𝐷 is the diffusion coeffi-
cient of this ensemble, and B is the applied magnetic 
field, which consists of a static field, a gradient compo-
nent, and a radiofrequency (RF) field. 

The principle underlying diffusion weighting can be 
described briefly. Assume no RF field and that one may 
ignore the decay terms associated with the time con-
stants 𝑇𝑇1 and 𝑇𝑇2.6 The Bloch-Torrey equations suggest a 
system in which the precessional frequency of the mag-
netization is the sum of a static and a positionally-
dependent gradient field. Consider a pulse sequence in 
which one applies a gradient field over a short period of 
time, waits for some time interval, and then applies the 
same gradient pulse with the polarization reversed. Re-
call that the gradient field points in the z-direction and 
the magnitude depends linearly on position. Thus, the 
first pulse applied over a short time interval results in an 
accumulation of precessional phase, the total amount of 
which depends on position. Assuming that all spin-pack-
ets are stationary, then from the reversibility of the 
precessional dynamics, it follows the reverse gradient 
pulse completely unwinds this phase. Thus, the signal at 
the end of this sequence is the same as it was in the be-
ginning. However, if the water molecules move in the 
time between pulses, then the rephasing is incomplete. 
In this case, the vector sum of spin-packet magnetic mo-
ments partially cancels, resulting in an attenuated signal. 

Steksjal was the first to propose and then analyze 
the solution to the Bloch-Torrey equations under the 
above excitation [3]. The gradient field strength, the du-
ration of the gradient pulse, and the time between the 
gradient pulses all combine into a pulse-specific factor 
commonly denoted by b measured in s/mm2. Assuming 
a homogeneous, isotropic material, Steksjal showed that 
the magnitude of the detected signal follows an expo-
nential law 

𝑆𝑆(𝑏𝑏) = 𝑆𝑆0𝑒𝑒−𝑏𝑏∙𝐷𝐷. 

In biomedical contexts, the homogenous and isotropic 
assumptions may not hold. Variations on this measure-
ment process have been devised which result in an 

 
6 The RF field is controlled by the user. Thus, the first assumption is 
no restriction. The second assumption amounts to executing the gra-
dient pulses and interpulse delay on a sufficiently short time scale 
such that these decays are not significant. 

estimation of a full diffusion tensor providing infor-
mation on anisotropy. However, even in these cases it 
can prove clinically useful to refer to a single diffusivity 
(which may be considered as the trace of the diffusion 
tensor) as the apparent diffusion coefficient (ADC). Re-
placing D by ADC, the signal model is otherwise the 
same. 

The standard workflow for estimating ADC con-
sists of fixing set of b-values and obtaining the 
corresponding diffusion-weighted images. For each 
pixel, this results in a collection of data points 
{(𝑏𝑏1, 𝑦𝑦1), (𝑏𝑏2, 𝑦𝑦2), … , (𝑏𝑏𝑁𝑁 , 𝑦𝑦𝑁𝑁)} where 𝑦𝑦𝑖𝑖  are the image 
intensities at that location. A non-linear least-squares fit 
to the exponential signal model determines the ADC for 
that pixel. 

An example of this workflow is shown in Figure 36. 
On the left we show diffusion-weighted images of the 
NIST Diffusion Phantom scanned at four b-values: b=0, 
500, 900, and 2000 s/mm2. The NIST Diffusion Phan-
tom is a standard reference object developed with 
consortium partners from the Radiological Society of 
North America and the National Cancer Institute. The 
phantom is used to assess the quality of ADC measure-
ments obtained by MRI scanners. Thirteen vials, which 
we refer to as regions of interest (ROI), contain one of 
six polymer solutions (5 duplicates and 1 triplicate) with 
well-characterized diffusivities ranging from 128 to 
1127 μm2/s at 0º C [4]. For illustration purposes, we 
show the boundary of Tube 5 as determined by an ML 
segmentation model developed by us previously [2]. 
The intensities at a single pixel are shown in the plot on 
the right, along with the non-linear regression which re-
turns an estimated ADC of 832.0 μm2/s. This 
exponential fit is performed pixel-by-pixel resulting in 
an ADC map. Note that as the polymer solutions are ho-
mogeneous and isotropic, the ADC is a true measure of 
diffusivity, D. 

Machine Learning Analysis. In FY 2022, we pursued 
an alternative workflow based on machine learning. 
From a dataset acquired under a previous ADC study, 
we selected 432 scan instances of the Diffusion Phan-
tom. Notably, these diffusion weighted images were 
acquired by one type of MRI system and the phantom 
was maintained at 0º C as per standard protocols [4]. 
This training set was augmented using a combination of 
techniques. In addition to the geometric transformations 
commonly used in ML-based image analysis (i.e., trans-
lations, rotations, reflections, and Gaussian blur) we also 
developed a non-linear, image warping algorithm and 
incorporated it into the augmentation strategy. 

We experimented with training several ML models 
using this dataset and augmentation strategy. We trained 
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two neural network architectures: a U-Net and an FC-
Densenet. The U-net is shown in Figure 37. The dataset 
labels are rich in that they include both quantitative data 
in the form of ADC values and qualitative, geometric 
information arising from the segmentation of the 13 
ROI’s. For training we experimented with combinations 
of different loss functions designed to enforce ADC ac-
curacy, ADC stability within an ROI, and segmentation 
accuracy. All models trained successfully. 

Our testing protocol was extensive. As a minimal 
consideration, we used 20 unseen scan instances of the 
same type as appeared in training set. To assess the gen-
eralization capabilities of the trained networks, we 
included additional scans acquired on a different MRI 
system, as well as scans of the diffusion phantom taken 
at room temperature. MRI scanners have many proprie-
tary characteristics that can result in images that are 
subtlety different but nevertheless confound ML analy-
sis. Thus, training on one scanner and testing on another 
is a strong test for generalization. Furthermore, as diffu-
sivity is temperature dependent, room-temperature 
scans contain ADC values that were not seen as part of 
the training protocol. Finally, as the NIST Diffusion 
phantom is a calibration object, it is structured by design 
consisting of 6 polymer solutions loaded into 13 vials in 
a fixed orientation. Thus, there is a natural concern that 
the network may be memorizing the phantom and its 
ADC inference consists essentially of modulating this 
fixed underlying structure either up or down based on 
some primitive assessment of signal value. To test for 
this, we implemented an algorithm to synthetically swap 
ROI locations. 

The result is a tremendous amount of test set data; 
performing and reporting a detailed assessment is a 
problem in its own right. One possibility is to frame the 

analysis as a measurement compa-
rability problem comparing ADC 
measurement by ML to the non-lin-
ear regression approach. This type 
of analysis is common in clinical 
settings investigating the possibility 
of using two measurement tech-
niques interchangeably [5]. An 
example of this is shown in Figure 
38. Here we show all ADC meas-
urements within the ROI in Figure 
37 (N=247). Histograms of the 
ADC measurements obtained by 
both non-linear regression and one 
of our ML models are shown on the 
left. Both distributions may be as-
sumed to be Gaussian. The 95 % 
coverage interval for the means of 
the distributions are (832.7±1.7) 
μm2/s for non-linear regression, and 
(875.9±2.2) μm2/s for the ML 
model. Both estimates are statisti-

cally different from the reference value of (843±6) μm2/s 
[3]. However, this level of discrepancy is clinically ac-
ceptable. Concerning the comparability of the 
measurement techniques, the dispersion of ADC values 
over the ROI are approximately the same. On the right 
we plot the difference versus the mean (i.e., a Bland-Alt-
man plot) to assess measurement comparability. Within 
this ROI there is no discernible trend in difference ver-
sus the mean. The bias is shown as a solid line at 43.2 
μm2/s, the limits of variation are computed as twice the 
standard deviation of the difference and are shown as 
dashed lines in the figure. 

Discussion. Machine learning is typically used for qual-
itative problems. For example, a classifier can be 
understood as a measurement problem on a nominal 
scale. Quantitative ML is less studied, and the problem 
is substantially different. For example, data acquisition 
is more structured, and the goal, at least in the present 
case, is to infer quantities of an underlying law. Further-
more, for the ML inference to serve as a measurement it 
must be accompanied by an assessment of uncertainty 
[6]. Preliminary analysis of our results suggests a num-
ber of surprising conclusions in these regards. For one, 
there is the question of training data diversity. Careful 
quantitative experiments require significant commit-
ment to organize, and it is not always the case that one 
will have a training set that covers all possibilities de-
sired for inference. Our training data consisted of one 
scanner type and 6 ADC values. The generalization of 
our models to unseen ADC values and to different scan-
ners is encouraging. Another surprising result concerns 
using synthetic data (i.e., generated by the model) as a 
“physics-informed” augmentation strategy to train mod-
els with generalizability to b-values. Generally 
speaking, synthetic dataset generation should be used 

 
Figure 36. Example of the standard ADC measurement process. The four images on the left show 
the NIST Diffusion Phantom scanned on an MRI using a diffusion weighted sequence correspond-
ing to b=0, 500, 900, and 2000 s/mm2. The red contour shows the boundary of one of the phantom 
vials. This segmentation was performed by an ML model trained previously. The boundary was 
eroded into the interior of the vial to eliminate signal aberrations due to edge effects. Also shown 
is a pixel (red asterisk) within this region of interest. The signal intensities are plotted on the right 
along with the non-linear, exponential regression curve. The estimated ADC is 832.0 μm2/s. 
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very cautiously as it relates to notions of “inverse 
crimes” and the overly optimistic results associated with 
this [7]. While this experiment is too elaborate to de-
scribe in this document, here too we observed a more 
robust result than expected. 

A preliminary takeaway from this work is that ma-
chine learning of an underlying mathematical structure 
may have significant differences from traditional con-
texts. In the upcoming year we will complete our 
assessment of ML-based diffusion measurement, and we 
will investigate how such findings might inform these 
more general considerations.  

[1] M. Figini, H. Lin, G. Ogbole, et. al. Image Quality Trans-
fer Enhances the Contrast and Resolution of Low-Field 
MRI in African Paediatric Epilepsy Patients. arXiv 
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[2] A. Dienstfrey, Z. Gimbutas, A. Peskin, et. al. Artificial 
Intelligence for Low-Field Magnetic Resonance Imaging. 
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ed.), 62-65, 2022. DOI: 10.6028/NIST.IR.8423 

[3] E. O. Stekjsal and J. E. Tanner. Spin Diffusion Measure-
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Field Gradient. The Journal of Chemical Physics 42 
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[4] S. E. Russek. NIST/NIBIB Medical Imaging Phantom 
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in Obstetrics and Gynecology (2003), 85-93. DOI: 
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[7] E. Shimron, J. I. Tamir, K. Wang, and M. Lustig. Subtle 
Data Crimes: Naively Training Machine Learning 
Algorithms Could Lead to Overly-Optimistic Results. 
arXiv (2021). URL: https://arxiv.org/abs/2109.08237 

Modeling Photoreceptor Dynamics 
Danielle C. Brager 
Anthony J. Kearsley 
Daniel Anderson  

Photoreceptors are light-sensing cells in the retina that 
play an essential role in the vision process. Light enters 
the eye through the cornea and passes through the pupil 
before reaching the lens where the light is focused onto 
the retina. Photoreceptors convert light into electrical 
signals that are sent to the brain via the optic nerve so 
that we can see. There are two types of photoreceptors 
in the human retina - rods and cones. Rods are concen-
trated in the outer areas of the retina and are responsible 
for vision at low light levels while cones are concen-
trated in the macula, an area in the center of the retina, 
and are responsible for color vision as well as visual acu-
ity. Photoreceptors have an inner segment (IS) and an 
outer segment (OS). The IS is the photoreceptor’s meta-
bolic center and is filled with mitochondria. The OS is 
filled with stacks of membranes that contain the visual 
pigment molecules. The photoreceptors undergo contin-
uous renewal and periodic shedding of their OS discs to 
prevent the toxic effects of accumulated photo-oxidative 
products. Following a circadian rhythm that is governed 
by light and temperature modulation, discs formed at the 
OS base are discarded at the tip and phagocytized by the 
neighboring retinal pigment epithelium (RPE). 

Retinal degenerations include a group of disorders 
that lead to photoreceptor loss. This photoreceptor cell 
loss is common to degenerative eye disorders such as 
retinitis pigmentosa, age-related macular degeneration, 
and cone-rod dystrophy. Research in this field is focused 
on developing strategies to delay or prevent the onset of 
photoreceptor degeneration [2, 3]. However, there is 
currently no cure for diseases linked to photoreceptor 
degeneration.   

Mathematical modeling plays a crucial and benefi-
cial role in this research effort [1]. There exist 

 
Figure 37. Schematic of U-Net architecture. (A) The network shown 
here includes four input images for purposes for inverting for ADC 
map. The same architecture was used with a single input image for 
purposes of segmentation training and inference. (B) Traditional 
ADC analysis fits an exponential model on a pixel-by-pixel basis. 

 
Figure 38. Comparability of ML measurement of ADC to standard 
analysis. The left plot shows the distributions of ADC measurements 
within the ROI identified in Figure 18. The dispersions are the same 
order of magnitude whereas the ML value shows a bias of 43.2 
μm2/s. On the right is a Bland-Altman plot for this same data. There 
is no discernible trend in difference vs mean. The mean difference 
is plotted as a solid horizontal line, and the expected limits of vari-
ation as the two dashed lines. 
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mathematical and computational models of various re-
gions of the retina in retinal development, health, and 
disease. One of these is the Camacho and Wirkus ordi-
nary differential equation-based model [4], which has 
been compared with retinal OS regrowth data by Guerin 
et al. [5, 6].  However, to our knowledge, there is no 
mathematical model of the physiology of photoreceptors 
in a healthy eye, that incorporates the interplay between 
the spatial density distribution, OS length, and nutrient 
source. We have recently developed a novel mathemat-
ical model of these processes to be used as a framework 
for future mathematical modeling in this field.    Predic-
tions from our model compare well with the Guerin et 
al. regrowth data and now additionally accounts for the 
spatial dependence of the retinal detachment data 
(Figure 40).  Our model also compares well with spatial 
measurements of photoreceptor OS length from Wilk et 
al. [7] (Figure 41).  While our efforts have focused on 
healthy eye conditions, the model we have developed 
establishes the framework in which future studies of ret-
inal pathologies may be undertaken. 
[1] D. C. Brager. Modeling and Analyzing the Progression of 

Retinitis Pigmentosa. Doctoral dissertation, Arizona 
State University, 2020. 

[2] E. T. Camacho, L. A. Melara, M. C. Villalobos, and S. 
Wirkus. Optimal Control in the Treatment of Retinitis 
Pigmentosa. Bulletin of Mathematical Biology 76:2 
(2014), 292-313. 

[3] E. T. Camacho, S. Lenhart, L. A. Melara, M. C. Villa-
lobos, and S. Wirkus. (2020). Optimal Control with 
MANF Treatment of Photoreceptor Degeneration. Math-
ematical Medicine and Biology: A Journal of the IMA 
37:1 (2020), 1-21. 

[4] E. T. Camacho and S. Wirkus.  Tracing the Progression 
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Journal of Theoretical Biology 317 (2013), 105-118. 
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(1989), 1708-1725. 
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and Analysis of Membrane Assembly Rates in Regener-
ating Primate Photoreceptor Outer Segments.  
Investigations in Ophthalmology and Visual Science 34 
(1993), 175-183. 

[7] M. A. Wilk, B. M. Wilk, C. S. Lango, R. F. Cooper, and 
J. Carroll.  Evaluating Outer Segment Length as a Surro-
gate Measure of Peak Foveal Cone Density.  Visual 
Research 130 (2017) 57-66. 

  

 
Figure 39. Components of the eye. Image source : National Eye Ins-
titute (nih.gov). 

 
Figure 40. Averaged Rod OS and Cone OS lengths in the macular 
region during regrowth along with data from Guerin et al. (upper 
plots).  Rod OS and Cone OS length dynamics as a function of po-
sition on the retina for macular region OS regrowth. 

 
Figure 41.  Rod OS and Cone OS length predictions in comparison 
with Wilk et al. data of photoreceptor lengths. 
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Materials Modeling 

Mathematical modeling, computational simulation, and data analytics are key enablers of emerging manufacturing 
technologies. The Materials Genome Initiative (MGI), an interagency program with the goal of significantly reducing 
the time from discovery to commercial deployment of new materials using modeling, simulation, and informatics, is a 
case in point.  To support the NIST role in the MGI, we develop and assesses modeling and simulation techniques and 
tools, with emphasis on uncertainty quantification, and collaborate with other NIST Laboratories in their efforts to 
develop the measurement science infrastructure needed by the materials science and engineering community.

OOF: Finite Element Analysis of 
Material Microstructures 
Stephen A. Langer  
Günay Doğan  
Andrew C.E. Reid (NIST MML)  
Prashant Athavale (Clarkson University) 
Shahriyar Keshavarz (Theiss Research) 

http://www.ctcms.nist.gov/oof/ 

The OOF Project, a collaboration between ACMD and 
MML, is developing software tools for analyzing real 
material microstructure. The microstructure of a mate-
rial is the (usually) complex ensemble of polycrystalline 
grains, second phases, cracks, pores, and other features 
occurring on length scales large compared to atomic 
sizes. The goal of OOF is to use data from a micrograph 
of a real or simulated material to compute its macro-
scopic behavior via finite element analysis. 

The OOF user loads images into the program, as-
signs material properties to the features of the image, 
generates a finite element mesh that matches the geom-
etry of the features, chooses which physical properties 
to solve for, and performs virtual experiments to deter-
mine the effect of the microstructural geometry on the 
material. OOF is intended to be a general tool, applica-
ble to a wide variety of microstructures in a wide variety 
of physical situations. OOF2 and OOF3D are used by 
educators and researchers in industry, academia, and 
government labs worldwide. 

There are two versions of OOF, OOF2 and OOF3D, 
each freely available on the OOF website. OOF2 starts 
with two dimensional images of microstructures and 
solves associated two-dimensional differential equa-
tions, assuming that the material being simulated is 
either a thin, freely suspended film or a slice from a 
larger volume that is unvarying in the third dimension 
(generalizations of plane stress and plane strain, respec-
tively). OOF3D starts with three dimensional images 
and solves equations in three dimensions. Development 
this year continued on multiple fronts. 

During this past year, A. Reid and S. Keshavarz 
made progress on the effort to implement crystal plas-
ticity in the OOF software. The plastic computational 

scheme had been working for some time but was not yet 
integrated with the OOF mechanism for generating out-
puts. This work has now been completed, and an 
example stress-strain curve has been generated for a 
simple power-law plastic constitutive rule entirely 
within OOF3D. 

There remain some issues with the set-up. It seems 
to be anomalously sensitive to some constitutive param-
eters and is currently a relatively low-performance 
solution. The next task is to identify opportunities for 
optimization which retain the existing basic functional-
ity and the modular, extensible architecture. 

Reid and Keshavarz are also continuing to work 
with collaborators in the Center for Hierarchical Materi-
als Design to implement a machine-learning-based rapid 
evaluation scheme for plastic constitutive rules. Current 
efforts are focused on implementing an early solution 
into a basic FEM code framework. 

G. Doğan has been developing algorithms to help 
automate segmentation and meshing of microstructure 
images. Segmentation identifies distinct regions in a mi-
crostructure, and a mesh properly aligned with the 
segmented regions and their boundaries leads to accu-
rate finite element simulations of the microstructure 
physics. In FY 2021, Doğan implemented texture seg-
mentation algorithms using texture features and 
machine learning. Textures in images are repeated pat-
terns of pixel values, which can be used to distinguish 
different regions in images. Doğan’s implementation re-
lied on predefined texture features to classify pixel 
locations into different classes using classification algo-
rithms, such as support vector machines (SVM) and 
random forests. 

Doğan worked with P. Athavale and his students, 
Peter Lef, Emmanuel Atindama from Clarkson Univer-
sity to implement algorithms for restoration of electron 
backscattering diffraction (EBSD) images. EBSD is an 
important imaging modality to analyze and understand 
microstructure images by measuring the crystal orienta-
tions at individual locations and generating a map of the 
orientations. However, EBSD maps are often noisy and 
incomplete; orientation measurements are missing in 
some locations, and some measurements contain errors. 
Doğan and his collaborators implemented a reconstruc-
tion algorithm using a weighted total variation equation, 

http://www.ctcms.nist.gov/oof/
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a nonlinear partial differential equation that applies reg-
ularizing diffusion selectively to pixels. Their 
implementation included critical preprocessing compo-
nents, specific to EBSD images. In this way, they were 
able to obtain state-of-the-art restorations of EBSD im-
ages. More details about Doğan’s work on image 
segmentation and restoration can be found in this re-
port’s section on Computational Tools for Image and 
Shape Analysis. 

OOF2 and OOF3D still rely on some old third-party 
software that will soon become obsolete. S. Langer has 
continued to work on the switch to the new versions of 
the aging software. In particular, the GUI toolkit gtk+2 
needs to be upgraded to Gtk3, Python 2.7 to Python 3.x, 
and a substitute for the graphics library libgnomecanvas 
needed to be written because no Gtk3-compatible third-
party software was available. 

Much of the year was spent on updating the OOF2 
GUI test suite to work with Gtk3. As expected, this un-
covered numerous bugs and inefficiencies in both OOF2 
and in the testing machinery. This also took an unex-
pected amount of time. Because the GUI test files 
needed to be rebuilt for Gtk3, this was a good time to 
make user-interface improvements that also broke the 
GUI test files.  For example, users had been confused by 
the old way of determining when newly created objects 
(images, meshes, etc.) were automatically displayed in 
the graphics window. Now the user can choose one of 
three options, and hopefully find one that feels intuitive. 

The replacement for libgnomecanvas, called 
OOFCanvas, is complete. The basic functionality was in 
place at the beginning of FY 2021, but the code was too 
tightly tied to OOF2 to be useful elsewhere. Now it is 
compiled into a stand-alone library, which will be dis-
tributed separately from OOF2. Its API has been 
simplified and bugs have been fixed. 

Langer and Reid have continued to work with A. 
Creuziger of MML who is using OOF2 to study the ef-
fects of texture (crystal orientation distribution) on the 
properties of rolled steel. In particular, the size of 
Creuziger’s computations were revealing memory-use 
inefficiencies in OOF2, which now have been fixed. 

OOF2 and OOF3D continue to be used heavily out-
side of NIST. OOF2 was downloaded about 700 times 
this past year, and OOF3D was downloaded about 200 
times. OOF2 can be run on the NSF nanoHUB facility, 
where it was used 7499 times in FY 2021.  

 
7 https://math.nist.gov/oommf/software-20.html 

Micromagnetic Modeling 
Michael Donahue 
Donald Porter 
Robert McMichael (NIST PML) 
Solomon Woods (NIST PML) 
Cindi Dennis (NIST MML) 

http://math.nist.gov/oommf/ 

Advances in magnetic devices such as field sensors, spin 
torque oscillators, magnetic nonvolatile memory 
(MRAM), and thermal sensors are dependent on an un-
derstanding of magnetization processes in magnetic 
materials at the nanometer level. Micromagnetics, a 
mathematical model used to simulate magnetic behav-
ior, is needed to interpret measurements at this 
scale.  ACMD is working with industrial and academic 
partners, as well as with colleagues in the NIST MML 
and PML, to improve the state-of-the-art in micromag-
netic modeling. 

We have developed a public domain computer code 
for performing computational micromagnetics, the Ob-
ject-Oriented Micromagnetic Modeling Framework 
(OOMMF).  OOMMF serves as an open, well-docu-
mented environment in which algorithms can be 
evaluated on benchmark problems. OOMMF has a mod-
ular structure that allows independent developers to 
contribute extensions that add to its basic functionality. 
OOMMF also provides a fully functional micromag-
netic modeling system, handling three-dimensional 
problems, with extensible input and output mecha-
nisms.  Between October 1, 2021 and December 31, 
2022, the software has been downloaded more than 5600 
times by more than 3400 distinct client machines. In ad-
dition, 241 known peer-reviewed journal articles were 
published acknowledging the use of OOMMF. Total 
OOMMF citations are now more than 3500.  OOMMF 
has become an invaluable tool in the magnetics research 
community. 

Developments in the last year include: 
• Released version 2.0b0 of OOMMF with improved 

dark mode, streaming SIMD extension (SSE) una-
ligned memory access, and a programming 
manual.7 

• Added support for multiple coincident 
meshes.  This enables modeling of antiferromag-
netic and ferrimagnetic materials. 

• Revised representation of time-varying saturation 
magnetization to enable mean-field model ap-
proaches to simulation of thermal effects. 

• Updated OOMMF image formats and custom chan-
nels in anticipation of migration to Tcl 9 libraries. 

 

https://math.nist.gov/oommf/software-20.html
http://math.nist.gov/oommf/
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OOMMF is part of a larger activity, the Micromag-
netic Modeling Activity Group (muMAG), formed to 
address fundamental issues in micromagnetic modeling 
through two activities: the development of public do-
main reference software; and the definition and 
dissemination of standard problems for testing modeling 
software. ACMD staff members are involved in devel-
opment of the standard problem suite as well.  This year, 
muMAG published three contributed solutions to the 
standard problem suite8 computed by the new Mag-
Tense framework9, demonstrating the continued 
importance of these benchmarks for micromagnetic 
modeling software development. 

In addition to the continuing development of 
OOMMF, the project also does collaborative research 
using OOMMF.  M. Donahue is a team member on the 
NIST Innovations in Measurement Science nanother-
mometry project Thermal MagIC10.  Thermal MagIC 
work includes examination of uncertainty quantification 
with Mark-Alexander Henn of University of Maryland 
and antiferromagnetic modeling with Mingyu Hu (and 
advisor Mark Hoefer) of University of Colorado.  Hu 
completed her PhD in May 2022.  M. Donahue has also 
provided technical guidance on micromagnetic model-
ing for the DARPA M3IC (Magnetic, Miniaturized, and 
Monolithically Integrated Components) project11, com-
pleting this work in March 2022.  The DARPA M3IC 
project aims to integrate magnetic components into the 
semiconductor materials fabrication process to improve 
electromagnetic systems for communications, radar, and 
related applications.  During the reporting period the 
ACMD micromagnetic modeling project produced three 
conference presentations. [1, 2, 3] 

[1] T. Q. Bui, A.J. Biacchi, K. N. Quelhas, M. Henn, E. L. 
Correa, W. Tew, A. R. Hight Walker, C. Dennis, M. J. 
Donahue, and S. Woods. “Magnetization Dynamics of 
Magnetic Nanoparticles for Thermal and Magnetic Parti-
cle Imaging.” MMM-Intermag 2022, New Orleans LA, 
January 2022. 

[2] M. Hu, M. A. Hoefer, and M.J. Donahue. “Energetics of 
Spin-flop and Spin-flip Transitions in Homogeneous An-
tiferromagnets.” MMM 2022, Minneapolis MN, 
November 2022. 

[3] T. Q. Bui, A. J. Biacchi, K. N. Quelhas, F. M. Abel, M. 
Henn, E. De Lima Correa, W. L. Tew, A. R. Hight 
Walker, C. Dennis, M. J. Donahue, P. N. Haney, and S. I. 
Woods. “Coupled Néel-Brown Magnetization Dynamics 
of Magnetic Nanoparticles for Thermal and Magnetic 
Particle Imaging,” MMM 2022, Minneapolis MN, No-
vember 2022. 

 
8 https://www.ctcms.nist.gov/~rdm/mumag.org.html 
9 https://www.magtense.org/ 
10 https://www.nist.gov/programs-projects/thermal-magic-si-tracea-
ble-method-3d-thermal-magnetic-imaging-and-control 

Mathematics of Uncertainty in 
Engineering Reliability 
Jeffrey T. Fong 
N. Alan Heckert (NIST ITL) 
Pedro V. Marcal (MPACT Corp.) 
Marvin Cohn (Intertek) 

To ensure the safe operation of an engineering structure 
or system, be it a chemical processing plant, a nuclear 
power plant, a jet airliner, or a steel bridge, engineers 
need to first design, manufacture, assemble and install, 
test in laboratories and in the field, operate with contin-
uous monitoring and scheduled maintenance for all 
necessary components and connections that are required 
to make a system work as a whole without failure. Engi-
neers need to estimate the reliability of all such 
components and connections and construct a fault tree 
to evaluate the system reliability of the whole structure 
or system.  

Two basic categories of problems of uncertainty 
come up that require independent modeling approach: 
(I) Uncertainty in loads, and (II) Uncertainty in material 
properties.  In this project, we first address  Category (I) 
by decomposing complex history of loads into a series 
of elemental fatigue (cyclic load at a fixed amplitude and 
frequency) and creep (constant load for a fixed time).  
We then address Category (II) by conducting fatigue life 
cycle tests and creep  rupture time tests, with uncracked 
and cracked specimens for all elemental fatigue and 
creep cycles identified in the decomposed loas series.  

We use a linear least squares fit model for each ele-
mental fatigue or creep test to estimate the Category (II) 
uncertainty at the laboratory specimen-size scale, and 
the statistical theory of tolerance intervals, a modeling 
assumption, and a nonlinear least squares fit to obtain a 
formula for the minimum life (minL) of the full-size 
structure or component as a function of failure probabil-
ity upper bound (Fpub).  An inversion of the formula 
yields a Fpub vs. minL curve for each elemental fatigue 
or creep load.  Using a second modeling assumption that 
Fpub is a measure of fatigue or creep damage and is an 
intrinsic property of the material with minL as its age 
marker, we can construct the Fpub vs. mimL curve for 
the complex load history by piecing together the series 
of elemental fatigue and creep loads using their individ-
ual Fpub vs. minL curves.  This solves the Category (I) 
uncertainty problem, and we have a general model for 
structural engineering reliability. 

 
11 https://www.darpa.mil/program/magnetic-miniaturized-and-mono-
lithically-integrated-components 

https://www.ctcms.nist.gov/%7Erdm/mumag.org.html
https://www.magtense.org/
https://www.nist.gov/programs-projects/thermal-magic-si-traceable-method-3d-thermal-magnetic-imaging-and-control
https://www.nist.gov/programs-projects/thermal-magic-si-traceable-method-3d-thermal-magnetic-imaging-and-control
https://www.darpa.mil/program/magnetic-miniaturized-and-monolithically-integrated-components
https://www.darpa.mil/program/magnetic-miniaturized-and-monolithically-integrated-components
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A Mathematical Model of Structural Reliability with 
an Application to Creep of SS 316L(N) in Thermal 
Cycling between 650 C and 565 C at 73 MPa. The 
American Society of Mechanical Engineers (ASME) 
Boiler and Pressure Vessel Code (BPVC) Committee 
has recently developed a new Section XI (Nuclear Com-
ponents Inspection) Division 2 Code [1] named 
“Reliability and Integrity Management (RIM).”  RIM 
incorporates a new concept known as "System-Based 
Code (SBC)" originally due to Asada and his colleagues 
[2, 3], where an integrated approach from design to ser-
vice inspection is introduced using three new types of 
statistical quantities: (1) “system reliability index,” or 
“system co-reliability target” for any system consisting 
of structures and components, (2) “structural co-reliabil-
ity,” for any structure, and (3) “component co-
reliability” for any component, where co-reliability is 
defined as “1 – reliability” and is equal to failure proba-
bility.  In a recent paper published in the International 
Journal of Pressure Vessels and Piping (Vol. 173 (2019), 
pp. 79-93). Fong, Heckert, Filliben, and Freiman devel-
oped a new theory of fatigue and creep rupture life 
modeling for metal alloys at room and elevated temper-
atures such that the co-reliability of a smooth component 
can be estimated from fatigue and creep rupture test data 
with simple loading histories.  In this paper, we extend 
the theory to include a methodology to estimate the fail-
ure probability (or, co-reliability) of a stainless steel 
316L(N) component undergoing a complex loading his-
tory such as a thermal fatigue cycle.  To illustrate an 
application of this new modeling approach, we present 
a numerical example using (a) the experimental test data 
of 7 specimens of S.S. 316L(N) in creep at 565 C as pub-
lished by Kilian Wasmer in his Ph.D. thesis (Ref. [11]), 

(b) the experimental test data of 10 specimens of S.S. 
316L(N) in creep at 650 C also by Wasmer [11], and (c) 
a thermal fatigue loading history of 1 hour of creep at 
650 C at an operating creep stress of 73 MPa, and 300 
hours of creep at 565 C at the same creep stress to sim-
ulate a hypothetical powerplant thermal fatigue 
operation.  The resulting creep reliability curves for all 
three creep histories are shown in Figure 42.  This result 
is significant because it provides a tool for engineers to 
design and operate plants with components of that ma-
terial in compliance with the ASME  BPVC  Sec. XI  
Div. 2 “Reliability and Integrity Management (RIM)” 
Code. 
[1] ASME, 2019, ASME Boiler and Pressure Vessel Code, 

Section XI, Division 2 - Requirements for Reliability and 
Integrity Management (RIM) Program for Nuclear Power 
Plants, Nov. 11, 2018 Draft for Public Comment. New 
York, NY: ASME, 2019.  

[2] Y. Asada, M. Tashimo, and M. Ueta. System Based Code 
-Basic Structure. In Proceedings of the 10th International 
Conference on Nuclear Engineering (ICONE-10), 
Arlington, VA, April 14-18, 2002, ICONE10-22731.  

[3] K. Kurisaka, R. Nakai, T. Asayama, and S. Takaya. S., 
2011, “Development of System Based Code (1) 
Reliability Target Derivation of Structures and 
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[6] J. T. Fong, Heckert, N. A., Filliben, J. J., and Freiman, S. 
W., 2019, "A Multi-Scale Failure-Probability-based 
Fatigue or Creep Rupture Life Model for Metal Alloys," 
Int. J. of PVP, Vol. 173, pp. 79-93 (2019), 
https://doi.org/10.1016/j.ijpvp.2019.04.003  

[7] J. T. Fong, N. A. Heckert, J. J. Filliben, and S. W. 
Freiman. A Co-Reliability-Target-based Fatigue Failure 
Probability Model for Implementing the new ASME 
Boiler & Pressure Vessel Section XI Division 2 
Reliability and Integrity Management Code: A Technical 
Brief. In Proceedings of the ASME 2019 Pressure Vessel 
and Piping Division Conference, July 14-19, 2019, San 
Antonio, TX, PVP2019-93508.  

[8] J. T. Fong, P. V. Marcal, R. Rainsberger, N. A. Heckert, J. 
J. Filliben, S. R. Doctor, and N. A. Finney. A MultiScale 
Failure-Probability-and-NDE-Based Fatigue Life Model 
for Estimating Component Co-Reliability of Uncracked 
and Cracked Pipes. In Proceedings of the ASME 2021 
Pressure Vessel and Piping Division Conference, July 12-
16, 2021, Online, PVP2021-62169.  

[9] N. E. Dowling. Mechanical Behavior of Materials. 2nd 
edition, Prentice-Hall, 1999.  

[10] U.S. Department of Defense. MIL-HDBK-17-1F (VOL. 1 
OF 5) Department of Defense Handbook: Composite Ma-
terials Handbook – Polymer Matrix Composites 

 
Figure 42.  Three plots of the Creep FPUB (or Creep Damage) 
curves for stainless steel 316L(N) at applied creep stress of 73 MPa 
are shown: (1) Top (red) curve for a simple creep history at 650 C.  
(2) Middle (zigzag) curve for a 4-cycle thermal creep cycling his-
tory of one hour in 650 C and 300 hours in 565 C.  (3) Bottom 
(black) curve for a simple creep history at 565 C. 
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High Performance Computing and Visualization 
Computational capability continues to advance rapidly, enabling modeling and simulation to be done with greatly 
increased fidelity. Doing so often requires computing resources well beyond what is available on the desktop. Developing 
software that makes effective use of such high-performance computing platforms remains very challenging, requiring 
expertise that application scientists rarely have. We maintain such expertise for application to NIST problems. Such 
computations, as well as modern experiments, typically produce large volumes of data, which cannot be readily com-
prehended. We are developing the infrastructure necessary for advanced interactive, quantitative visualization and 
analysis of scientific data, including the use of 3D immersive environments, and applying the resulting tools to NIST 
problems

High Precision Calculations of 
Fundamental Properties of Few- 
Electron Atomic Systems    
James Sims   
Maria Ruiz (University of Erlangen, Germany)  
Bholanath Padhy (Khallikote College, India)  

NIST has long been involved in supplying critically 
evaluated data on atomic and molecular properties such 
as the atomic properties of the elements contained in the 
Periodic Table and vibrational and electronic energy 
level data for neutral and ionic molecules contained in 
the NIST Chemistry WebBook. Fundamental to this 
work is the ability to predict, theoretically, a property 
more precisely than even the best experiments. It is our 
goal to be able to accomplish this for few-electron 
atomic systems.    

While impressive advances have been made over 
the years in the study of atomic structure in both exper-
iment and theory, the scarcity of information on atomic 
energy levels is acute, especially for highly ionized at-
oms. The availability of high precision results tails off 
as the state of ionization increases, not to mention higher 
angular momentum states. In addition, atomic anions 
have more diffuse electronic distributions, representing 
more challenging computational targets than the corre-
sponding ground states.   

In the past two decades, there has been breathtaking 
improvements in computer hardware and innovations in 
mathematical formulations and algorithms, leading to 
“virtual experiments” becoming a more and more cost 
effective and reliable way to investigate chemical and 
physical phenomena. Our contribution in this arena has 
been undertaking the theoretical development of our hy-
brid Hylleraas-CI (Hy-CI) wave function method to 
bring sub-chemical precision to atomic systems with 
more than two electrons.   

Hy-CI has from its inception been an attempt to ex-
tend the success of the Hylleraas (Hy) method to 
systems with more than three electrons, and hence is an 
attempt to solve not just the three-body problem but the 
more general N-body problem [1]. Fundamental to the 

method is the restriction of one rij per configuration state 
function (CSF). (For atomic systems with greater than 
four electrons, all relatively precise calculations nowa-
days adopt the Hy-CI methodology of one rij term per 
CSF). In the case of three electron lithium systems, we 
have computed four excited states of the lithium atom to 
two orders of magnitude greater than has ever been done 
before [2]. At the four-electron level, to get truly precise 
chemical properties like familiar chemical electron af-
finities and ionization energies, it is important to get 
close to the nanohartree level we achieved for the three-
electron atom, a significantly more difficult problem for 
four electrons than for three. By investigating more flex-
ible atomic orbital basis sets and better configuration 
state function filtering techniques to control expansion 
lengths, we have been able to successfully tackle the 
four-electron case.   

Progress to date has included computing the non-
relativistic ground state energy of not only beryllium, 
but also many members of its isoelectronic sequence to 
eight significant digit precision. With the results from 
our calculations and a least-squares fit of the calculated 
energies, we have been able to compute the entire beryl-
lium ground state isoelectronic sequence for Z = 4 
through Z = 113 [3].  Li− (with Z=3), nominally the first 
member of this series, has a decidedly different elec-
tronic structure and was not included in those 
calculations and subsequent discussions, but that omis-
sion has been corrected and we have subsequently 
carried out a large, comparable calculation for the Li- 
ground state [4].   

The first member of the Be isoelectronic ground 
state sequence, the negative Li- ion, is also a four- elec-
tron system in which correlation plays a very important 
part in the binding. However due to the reduced nuclear 
charge, it is a more diffuse system in which one of its 
outer two L shell electrons moves at a greater distance 
from the nucleus than the other; hence its nodal structure 
is different from that of a coupled L shell with an iden-
tical pair of electrons. The ground state of the singlet S 
state of Li- is the same type of problem as the first ex-
cited state of Be; it is like Be(2s3s), not Be(2s2s). 
Completing this calculation has provided the necessary 
insight to enable the calculation of the Be first excited 
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state of singlet S symmetry, Be(2s3s), to an order of 
magnitude better than previous calculations. Armed 
with this result, we have been able to continue this level 
of precision to the Be(2s4s) excited state and have cal-
culated the higher, more diffuse Be(2s5s) through 
Be(2s7s) states as well, and in the process have demon-
strated that Hy-CI can calculate the higher, more diffuse 
Rydberg states with more complicated nodal structures 
to the same level of precision as the less excited states 
[5].  

While our work has demonstrated the efficacy of 
Hy-CI as a solution to the N-body problem for four or 
more electrons, this work has also shown the presence 
of a “double cusp” r12r34 term type slow convergence 
problem at the nanohartree precision level which is ulti-
mately built into Hy-CI for four or more electrons. We 
have investigated a generalization of the Hy-CI method 
to an exponentially correlated Hy-CI (E-Hy-CI) method 
in which the single rij of an Hy-CI wave function is gen-
eralized to a form which pairs an exponential rij factor 
with linear rij, producing a correlation factor which has 
the right behavior in the vicinity of the rij cusp, and also 
as rij goes to infinity. While this was proposed in 2012 
and there have been several papers on E-Hy-CI inte-
grals, there were no computational tests until our 
calculations. Not only has the E-Hy part (the part that 
differs from conventional Hy-CI) been tested, but E-Hy-
CI calculations have been done for spherically symmet-
rical and non-symmetrical orbitals as well. 

The purpose of this research has been to determine 
how effective exponential correlation factors can be. By 
comparing convergence of the E-Hy-CI wave function 
expansion to that of the Hy-CI wave function without 
exponential factors, both convergence acceleration and 
an improvement in the precision for the same basis are 
demonstrated. This makes the application of the E-Hy-
CI method to systems with N > 4, for which this formal-
ism with at most a single exponentially correlated and 
linear rij factor leads to solvable integrals, very promis-
ing. The ground 1 singlet S state non-relativistic energy 
of He is computed to be -2.9037 2437 7034 1195 9831 
1084 hartrees (Ha) for the best expansion.  

We followed the success on the ground state of the 
He atom with calculations on the ground 1 singlet S and 
the 2 singlet S through 6 singlet S excited S states of the 
Li+ ion with the same technique, with results comparable 
to the He atom. This demonstrates the utility of the Hy-
CI approach for not only ground but also excited states 
of S symmetry as well [7]. For a review of high precision 
studies of both Hy-CI and E-Hy-CI studies of atomic 
and molecular properties, see [8]. 

Work is presently in progress to compare the con-
vergence of the E-Hy-CI wave function expansion to 
that of the Hy-CI wave function without exponential 
factors for states of non-S symmetry, specifically the 
1s2p 2 singlet P state of the He atom and members of its 
isoelectronic sequence. Almost all of the computed P 

state wave functions are orders of magnitude better than 
previous calculations and are being used with the previ-
ously obtained S state wave functions (and some new 
ones for Be II, C IV and O VI) to calculate oscillator 
strengths, including rigorous quantum mechanical upper 
and lower bounds, for the lowest singlet S to lowest sin-
glet P transition. Results to date are fairly tight rigorous 
bounds to these computed oscillator strengths, which 
should give confidence in the validity of the computed 
non-relativistic results. A paper is being prepared on this 
work [9]. 
[1] J. S. Sims and S. A. Hagstrom. Combined Configuration 

Interaction – Hylleraas Type Wave Function Study of the 
Ground State of the Beryllium Atom. Physical Review A 
4:3 (1971), 908. DOI: 10.1103/PhysRevA.4.908 

[2] J. S. Sims and S. A. Hagstrom. Hy-CI Study of the 22S 
Ground State of Neutral Lithium and the First Five Ex-
cited 2S States. Physical Review A 80 (2009), 052507. 
DOI: 10.1103/PhysRevA.80.052507 

[3] J. S. Sims and S. A. Hagstrom. Hylleraas-Configuration 
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(2014), 224312. DOI: 10.1063/1.4881639 
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Simulation of Dense Suspensions: 
Cementitious Materials 
William George 
Nicos Martys (NIST EL) 
William Sherman 
Simon Su 
Steven Satterfield 
Judith Terrill 

A suspension is a collection of solid inclusions embed-
ded in a fluid matrix. Suspensions play an important role 
in a wide variety of applications including paints, ce-
ment-based materials, slurries, and drilling fluids. 
Understanding the flow properties of a suspension is 
necessary in many such applications. However, measur-
ing and predicting flow properties of suspensions 
remains challenging. 

Suspensions can be quite complex, as the inclusions 
may have a wide range of shapes and a broad size distri-
bution. Further complicating matters is that different 
matrix fluids may have quite disparate flow behavior. 
While the simplest type of matrix fluid is Newtonian, 
where the local stress is proportional to the shear rate, 
the matrix fluid can also be non-Newtonian, exhibiting 
quite complex behavior including shear thinning (vis-
cosity decreases with shear rate), shear thickening 
(viscosity increases with shear rate), viscoelasticity (ex-
hibiting both viscous and elastic properties), or even 
have a time dependent viscosity (thixotropic). We have 
two on-going studies on the rheology of cementitious 
materials, which are dense suspensions in non-Newto-
nian matrix fluids. 

The dense suspension simulation code, QDPD, that 
we have developed is generic in that it can be applied 
not only to cement, mortar, and concrete, but also to any 
dense suspension of interest including pharmaceuticals 
such as suspensions of monoclonal antibodies or indus-
trial suspensions such as paints and drilling fluids. 
Although some modification to the code may be needed 
in each case, QDPD is fully parameterized to handle a 
wide range of dense suspensions from rocks suspended 
in a mortar to proteins suspended in a fluid. 

SRMs for Mortar and Concrete. Rotational rheome-
ters, devices that measure fluid properties such as 
viscosity, are routinely used for homogeneous materials 
such as oils, but their use on dense suspensions, such as 
concrete, is relatively new. Since measurements with 
rheometers involve flow in a complex geometry, it is im-
portant that they are calibrated with a well characterized 
standard reference material (SRM). We are developing 
such SRMs in collaboration with NIST EL. 

NIST produced an SRM for cement paste (SRM 
2492) as the first step in the development of a reference 
material for concrete rheometers. The second step, the 
development of an SRM for mortar (SRM 2493), was 

completed in 2017 and is currently available. The mate-
rial properties of the mortar SRM, such as viscosity, 
could not be measured in fundamental units with cer-
tainty. Thus, simulation was used to determine the 
viscosity of the mortar. To obtain the necessary fidelity 
in the simulations, computations at a high-performance 
computing facility were necessary. Results of these sim-
ulations were compared with physical experiments as 
validation. 

In 2019 we released SRM 2497, a standard refer-
ence concrete for rheological measurements [1]. The 
concrete SRM is comprised of the previously released 
mortar SRM with the addition of suspended 10 mm di-
ameter hard glass spheres. The certified values for SRM 
2497 were determined using the simulation results pre-
viously computed for the mortar SRM. As an indication 
of the impact of this work, the use of the cement paste 
and mortar SRMs are referenced in the new ASTM 
standard test method for measuring the rheological prop-
erties of cementitious materials [2]. A more detailed 
description of the development and validation of these 
SRMs has recently been published [3]. 

We are currently running a suite of simulations of 
the concrete SRM using the cement paste as the matrix 
fluid in which both 1 mm and 10 mm diameter hard 
spheres are suspended. The results of these simulations 
should match the results from simulations comprising 
the mortar SRM as the matrix fluid was with suspended 
10 mm hard spheres. Depending on the outcome of these 
simulations, the concrete SRM certification may need to 
be updated. These simulations have not yet reached an 
equilibrium state and so we continue running them. 

Flow of Dense Suspensions in Pipes. Understanding 
the flow of suspensions in pipes is important for a wide 
variety of applications. For example, in the construction 
industry, concrete is often placed by pumping it through 
extensive pipe systems. However, research on predict-
ing the pumpability of concrete has been limited due to 

 
Figure 43. Side-by-side comparison of identical systems, in the 
NIST immersive visualization system, with only   a single property 
of the matrix fluid changed, one Newtonian and the other non-New-
tonian (shear thinning). 
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the heavy equipment and large amounts of material 
needed. Suspension flow in pipes is also important in the 
developing field of 3D additive manufacturing. 

Predicting the flow of this complex fluid, which is 
composed of a non-Newtonian matrix fluid with sus-
pended solid inclusions flowing under pressure, is 
challenging. Flow in these systems is also complicated 
by variety of phenomena such as slip at the wall and 
shear induced migration, which has only been studied 
for the simpler case of a suspensions with a Newtonian 
matrix fluid. A detailed discussion of this topic is avail-
able in a NIST Technical Note [4]. It is also the case, 
especially in the case of 3D additive manufacturing, that 

the placement of these materials is time sensitive, espe-
cially from the time the material is initially mixed to the 
time it is pumped and placed [5]. 

We have been conducting detailed simulations of 
the flow of suspensions through pipes to enable the de-
velopment of predictive flow models and to advance 
measurement science in this field. Through quantitative 
analysis and visualization of results, we have gained in-
sight into shear-induced migration and slip behavior in 
these systems. For example, Figure 43 shows a side-by-
side comparison of identical systems with only a single 
property of the matrix fluid changed, one Newtonian and 
the other non-Newtonian (shear thinning). Over the last 
year we have been conducting a suite of simulations of 
shear thinning and shear thickening suspensions flowing 
in pipes, varying the properties of the matrix fluid and 
the driving force. 

Studying the flow velocity fields as a function of 
driving force we have discovered a useful scaling rela-
tionship. Given that the matrix fluids have a viscosity, 
𝜇𝜇, that relates to the strain rate �̇�𝛾 such that 

𝜇𝜇 ~ �̇�𝛾𝑛𝑛, 

we have determined that the system velocity in the pipe, 
𝑣𝑣, is related to the driving force, 𝑔𝑔, as 

𝑣𝑣 ~ 𝑔𝑔
1

1+𝑛𝑛 

So, for example, with a shear thinning matrix fluid with 
𝑛𝑛 =  −0.5, we have 

𝑣𝑣 ~ 𝑔𝑔
1

1−0.5 = 𝑔𝑔2 

and with a matrix fluid which is shear thickening, with 
𝑛𝑛 =  0.5, we have 

𝑣𝑣 ~ 𝑔𝑔
1

1+0.5 = 𝑔𝑔
2
3 

Notice that this scaling relation depends on the power-
law behavior of the non-Newtonian matrix fluid. As a 
consequence, given a few measurements of the flow ve-
locity versus the driving force of the suspension, one can 
determine the power law behavior of the suspension, and 
indeed we can then also determine the power law behav-
ior of the matrix fluid. 

All of our pipe-flow simulations, except for the 
shear-thickening mortars, have reached steady state. The 
shear thickening mortars in pipes has proven to be very 
slow to approach steady state and so we continue to run 
those simulations. Our current results, which show 
agreement with the model predictions to within 15 per-
cent, were published in 2020 in the Journal of Rheology 
[6]. 

In support of NIST researchers investigating 3D ad-
ditive manufacturing using cementitious materials, we 
have begun developing a simulation of the flow through 
a pipe and then through a reactive mixer device. This 
device is being designed to mix additives to a cement 

 
Figure 44. NIST EL’s proposed active mixer for additive manufac-
turing with cementitious material. The rotor is shown in gray and 
the housing, which is clipped in half to show the rotor inside, is 
shown in blue. The additives to be mixed are injected through the 
openings in the shafts on the right side (input side) of the rotor. 

 
Figure 45.  A snapshot of an early simulation of a high-performance 
concrete. The sand is modeled as spheres of varying size. In this 
image, the spheres are colored based on their radius and the sus-
pended semi-stiff fibers are shown in green. 
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paste or mortar at the point of placement, that is, imme-
diately before the material is placed. See Figure 44. The 
additives to be mixed are injected through the openings 
in the shafts on the right side (input side) of the rotor. 
These injected additives will be designed to accelerate 
the rate of curing of the mortar in order to improve the 
additive manufacturing process.  

In addition to the simulation of an “active mixer” 
we have developed simulation code to study the rheol-
ogy of high-performance cement-based materials that 
consist of cement paste, sand particles of varying size, 
and suspended semi-stiff fibers. Figure 45 shows such a 
system. We will use this capability to study the rheology 
of these systems with varying fiber material properties, 
such as elastic and flexible versus stiff, as well as vary-
ing sand volume fraction and size distribution.  The 
suitability of these formulations for additive manufac-
turing is of interest to industry. 

[1] Nicos S. Martys, William L. George, Ryan P. Murphy, 
Katheen Weigandt.  Certification of SRM 2497: Standard 
Reference Concrete for Rheological Measurements. 
NIST Special Publication 260-194, April 2019, 116 
pages.  DOI: 10.6028/NIST.SP.260-194 

[2] ASTM International C1874-19. New Test Method for 
Standard Test Method for Measuring the Rheological 
Properties of Cementitious Materials using a Coaxial Ro-
tational Rheometer. ASTM International, West 
Conshohocken, PA, 2019.  

[3] N.S. Martys, W.L. George, S.G. Satterfield, B. Toman, 
M.A. Peltz, S.Z. Jones, and C.F. Ferraris. Standard Ref-
erence Materials for Rheological Measurements of 
Cement-Based Materials. ACI Materials Journal 118:6 
(November 2021). DOI: 10.14359/51733132 

[4] M. Choi, C. F. Ferraris, N. S. Martys, V. K. Bui, H. R. 
Trey Hamilton, and D. Lootens. Research Needs to Ad-
vance Concrete Pumping Technology. NIST Technical 
Note 1866, 2015. DOI: 10.6028/NIST.TN.1866 

[5] S. Z. Jones, D. P. Bentz, N. S. Martys, W. L. George, and 
Thomas. Rheological Control of 3D Printed Cement 
Paste. In Digital Concrete 2018: First International Con-
ference on Concrete and Digital Fabrication, Zurich 
Switzerland, September 9-12, 2018. DOI: 10.1007/978-3-
319-99519-9_7 

[6] N. S. Martys, W. L. George, R. P. Murphy, and K. Wei-
gandt.  Pipe Flow of Sphere Suspensions Having a 
Power-Law-Dependent Fluid Matrix.  Journal of Rheol-
ogy 64:2 (March/April 2020). DOI: 10.1122/1.5131021 

Visualization of Greenhouse Gas 
Emissions 
William Sherman 
Simon Su 
Judith Terrill 
James Whetstone (NIST SPO) 
Israel Lopez Coto (NIST SPO) 
Anna Karion (NIST SPO) 
Kimberly Mueller (NIST SPO) 

The NIST Greenhouse Gas (GHG) Measurements Pro-
gram develops advanced tools and standards for 
accurately measuring GHG emissions so industries and 
governments will have the information they need to 
manage emissions effectively. ACMD’s High Perfor-
mance Computing and Visualization Group (HPCVG) is 
collaborating with James Whetstone, Leader of NIST’s 
Greenhouse Gas Measurements Program and his team 
of climate and weather simulation researchers to pro-
duce interactive visualizations of their data. 

One of our goals in the High-Performance Compu-
ting and Visualization Group is to reduce the turnaround 
time of immersive visualization development. Leverag-
ing our work in transitioning to open source 
visualization software (ParaView), we are able to load 

 
Figure 46. NIST atmospheric sciences researcher Israel Lopez 
Coto interacts with data from his greenhouse gas simulation in the 
NIST CAVE. (Photo courtesy of Simon Su, NIST.) 

 
Figure 47. Desktop view of ParaView displaying to an HMD VR 
system, with inset of researcher using the HMD. (Photo courtesy of Simon 
Su, NIST.) 
 

 

https://doi.org/10.6028/NIST.SP.260-194
https://doi.org/10.14359/51733132
https://doi.org/10.6028/NIST.TN.1866
https://doi.org/10.1007/978-3-319-99519-9_7
https://doi.org/10.1007/978-3-319-99519-9_7
https://doi.org/10.1122/1.5131021


Summary of Activities for Fiscal Year 2022                                                                                                               69 
   
 

 

the data generated by the GHG Measurements Program 
in both CAVE and Head Mounted Display (HMD) im-
mersive visualization environments without the need to 
develop custom immersive visualization application. 

Using this workflow, we are able to manipulate var-
ious ParaView visualization features in response to input 
from the NIST scientist, who helped direct us toward 
what aspects of the data are important to see. The Para-
View interface allows for rapid adjustments of the 
visualization parameters, which are immediately re-
flected in the immersive environment. We worked, in-
person, and on-the-fly, with members of the GHG meas-
urements team to produce an interactive visualization. 

As detailed below (Transition to Open Source Soft-
ware), the HPCVG continues to work with Kitware Inc. 
to enhance ParaView’s immersive capabilities to make 
transitioning between desktop and immersion (CAVE or 
HMD) as seamless as possible.  HPCVG also partici-
pated in a Kitware workshop providing information on 
the creation of new ParaView features by way of their 
plugin system, which will be used to enhance the capa-
bility of reading additional formats directly into 
ParaView such as those used by the GHG effort. 

Immersive Visualization for the 
Design of Wearable Wireless 
Monitoring System 
Simon Su 
William Sherman 
Judith Terrill 
Kamran Sayrafian 
Katjana Ladic (University of Zagreb, Croatia) 

The NIST ITL Building the Future Program project, A 
Wireless Wearable Technology to Detect Accumulation 
of Fluid in the Lungs, strives to detect fluid buildup in 
the human lungs by developing a methodology to com-
putationally emulate human lungs. A sequence of virtual 
experiments has been developed to evaluate the perfor-
mance of different wearable system designs.  

Immersive visualization plays a crucial role in the 
visual analytics of the computationally generated data of 
the simulation experiments. Leveraging our work in 
transitioning to open source visualization software 
(ParaView), we are able to load ParaView desktop visu-
alizations provided by the simulation team to 
immediately visualize the data in both CAVE and Head 
Mounted Display (HMD) immersive visualization envi-
ronments.  As described below, our effort to enhance 
ParaView with immersive capabilities enables us to 
move from desktop visualization directly to immersive 
displays without requiring custom development of an 
immersive visualization application. 

As shown in Figure 48, immersive visualization 
showing the streamlines of RF energy data around vir-
tual human clearly demonstrated the result of the 
computational model. Using this workflow, we are also 
able to concentrate our efforts on optimizing the data to 
improve user’s immersive visualization experience. 
ParaView’s ability to immediately provide feedbacks 
while the scientist views the data in the CAVE or HMD 
significantly reduces the time needed to develop useful 
visual analytics. 

Transition to Open Source 
Visualization Software 
William George  
Terence Griffin  
Sandy Ressler  
Steven Satterfield  
William Sherman  
Simon Su  
Judith Terrill  
Cory Quammen (Kitware)  
Scott Wittenburg (Kitware)  

As part of our research on Virtual Measurements and 
Analysis, the ACMD High Performance Computing and 
Visualization Group (HPCVG) operates a fully immer-
sive visualization environment (IVE) and has developed 
high end visualization (HEV) software to run it. We 
started developing this software for our IVE more than 
two decades ago. During this time, we have upgraded 
and rewritten this software as our understanding of sci-
entific visualization in an IVE developed and as outside 
innovations in hardware appeared. However, there were 
many limitations to our software. For example, it could 
only run on one specially configured operating system, 
and it had not kept up with recent advances in hardware 

 
Figure 48. Immersive visualization showing the streamlines of RF 
energy data around a virtual human. (Photo courtesy of Simon, Su, NIST.) 
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visualization capabilities. Internally this software uses a 
scene-graph-based framework. Our IVE is on a critical 
path for the success of collaborations with several NIST 
research groups and is used at every stage of these col-
laborations. These projects are diverse and span 
applications from nanotechnology to medical to materi-
als, and often contribute to standard reference data and 
materials. For example, the IVE was essential in the suc-
cess of NIST’s development of standard reference 
materials (SRMs) for the measurement of the flow of ce-
ment paste, mortar, and concrete.  

To take advantage of recent advances in visualiza-
tion hardware, we are moving our IVE to ParaView, a 
fully open source software environment. The ParaView 
software system is complex. Internally it uses a pipeline 
and proxy-based framework. The software consists of a 
Qt interface, which uses over 2000 VTK C++ classes to 
produce visualizations. It runs in an IVE as well as on 
Windows, Mac OS X, Linux, SGI, IBM Blue Gene, 
Cray and various Unix workstations, clusters, and super-
computers. It supports rendering shaders. It has a new 
real-time path-tracing back end using NVIDIA RTX 
technology. ParaView extends the environments that the 
HPCVG HEV can work in, as well as provides access to 
real time ray tracing and global illumination made pos-
sible with the new GPUs. Access to high-end GPU 
rendering will continue to grow as ParaView adopts the 
ANARI rendering standard from the Khronos Group. 

This year we completed adding support for 
OpenXR in ParaView and it is now in the released ver-
sion. We fixed a longstanding problem with stereo and 
improved volume rendering. These fixes are also now in 
the released version. ParaView now functions as well in 
the CAVE as our HEV software did and we now rou-
tinely use it for our applications. We have also nearly 
completed adding the ability to classify geometric ob-
jects into functional groups that can be associated with 
a particular coordinate system. We also have a prototype 
of a Python scripting interaction feature for the CAVE 
that immensely broadens the user’s capabilities in the 
CAVE; this feature will be enhanced and documented in 
the next year. We also gave multiple talks to highlight 
the advancements we have made in ParaView [1-6].  

In the coming, year we will complete the coordinate 
system work as well as the Python scripting feature and 
merge it into the released version of ParaView. We will 
verify that glTF functions as expected in ParaView.  We 
will define other new capabilities to add to ParaView 
and work on adding those capabilities, such as more 
fully integrated live collaboration between users at dif-
ferent sites. 
[1] W. Sherman. “Immersive Visualization with the Para-

View Open Source Tool.” FOSS-XR 2022, Minneapolis, 
MN, October 6, 2022. 

[2] S. Su. “High Performance Computing and Visualization 
Group at NIST.” IEEE ISMAR 2022 Pitch Your Lab, Sin-
gapore, Oct 20, 2022.  

[3] W. Sherman. “Open-source and Standards-based Immer-
sive Visualization.” SIGGRAPH ’22, Online, July 28, 
2022. 

[4] S. Su. Obstacles to adoption of XR, particularly in the 
federal / DOD space, APL XR Symposium July 27-28, 
(July 28, 2022). 

[5] W. Sherman and S. Su. “Immersive Visualization with 
ParaView & VTK.” Sandia XR 2022 Conference, July 
14, 2022. 

[6] S. Su, W. Sherman, I. Lopez Coto, K. Sayrafian, and J. 
Terrill. “Immersive ParaView: An Immersive Scientific 
Workflow for the Advancement of Measurement Sci-
ence.” IEEE ISMAR 2022 Workshop on Visual Analytics 
in Immersive Environments (VAinIE), Singapore, Octo-
ber 21, 2022. 

Transportable VR System  
William Sherman 
Simon Su 
Judith Terrill 

A new project this year is our effort to develop a trans-
portable VR system that approximates CAVE-style VR 
for use at conferences and similar venues. This project 
has grown out of the HPCVG effort to enable research-
ers and developers to have local (i.e., in their office) 
access to immersive interfaces using consumer tracking 
technology, which we have previously discussed as part 
of our effort to transition to open source software suites 
as our immersive visualization solution. 

Now, as more conferences are again meeting in per-
son, we decided that we could best demonstrate our 
immersive visualization efforts by bringing a medium-
sized CAVE-style display to particular venues.  This 
year we setup and demonstrated our hardware and soft-
ware at the FOSS-XR 22 conference in Minneapolis 
MN, and at the Supercomputing 22 conference in Dallas 
TX.  The large-screen method of virtual reality is better 
suited to group demonstrations than the more isolated 
HMD experiences. 

Because our software has been written to be suffi-
ciently flexible to handle screens of different sizes and 
arrangements and building upon our previous efforts to 
integrate consumer position tracking technology into 
our environment, nothing more than collecting the soft-
ware together and making a proper configuration were 
required on the software side of the technology. 

On the hardware side, the effort was primarily to 
identify and test which specific products would address 
the need to provide a somewhat large projection surface 
with minimal supporting framework, along with provid-
ing stereoscopic display. The primary key to the solution 
is an ultra-short-throw projector from BenQ that can rest 
on the floor and provide 2.286 m wide projection with 
stereoscopic display.  We used a projection screen from 



Summary of Activities for Fiscal Year 2022                                                                                                               71 
   
 

 

Screenworks that folds up into a transportable case.  The 
fully constructed system can be seen in Figure 49. 

The system can be brought to major conferences, 
and setup in approximately two hours, but there is some 
effort required, and an expert must be on-hand to deploy 
the system.  Transporting the system requires three or 
four boxes to be shipped to the conference location, con-
taining the screen, the projector, a computer, an ancillary 
support hardware such as the tracking system and stere-
oscopic glasses. 

Software should be pre-installed on the computer, 
with a 10 minute calibration step performed once the 
screen, projector, and position tracking are in place. 
Thus far we have demonstrated our work with the Para-
View visualization tool we are improving in 
collaboration with Kitware.  Other test and demonstra-
tion software are also often included. 

Standards in Visualization 
William Sherman 
Sandy Ressler 
Simon Su 
Judith Terrill 

The HPCVG group continues to work with the Khronos 
Group12 as participating members of several standards 
working groups, including OpenXR13, ANARI14, 3D 

 
12 https://www.khronos.org/ 
13 https://www.khronos.org/openxr 
14 https://www.khronos.org/anari   

Commerce15, and glTF16.  

OpenXR.  The Khronos OpenXR working group con-
tinues to advance this burgeoning standard for software 
interfaces to immersive technologies.  This year there is 
a new chair (Alfredo Muniz), and with the increased ac-
tivity there is a newly created vice-chair position now 
held by Ron Bessems.  With the reopening of in-person 
events, Khronos hosted an in-person meeting in Phoenix 
AZ this year, in which NIST participated.  The broader 
immersive technology (XR) community continues to 
grow, with more software tools adopting the standard for 
their product deployments. 

This year the HPCVG group made progress on get-
ting OpenXR working on Linux systems using the open 
source “Monado” tool.  We also continue to push Kit-
ware to advance the OpenXR integration into the VTK 
and ParaView visualization efforts as described in the 
“Transition to Open Source Visualization” section.  The 
HPCVG group is also looking to expand the OpenXR 
ecosystem by exploring software that can provide an 
OpenXR runtime capable of rendering to CAVE-style 
virtual reality systems. 

ANARI. The ANARI (Analytic Rendering Interface for 
Data Visualization) continues to move toward a 1.0 
specification release.  The provisional release continues 
to be tested allowing final refinements to be integrated 
into the full 1.0 release.  This year the ANARI working 
group has begun the process of developing a conform-
ance test suite to ensure new renderers conform to the 
standard.  ANARI provides a standard rendering API for 
rendering of scientific (and other) data.  In particular, 
ANARI provides a consistent interface for volumes, 
point clouds and polygonal mesh data that can be ren-
dered using different methodologies, and tuned to the 
available graphics rendering hardware.  The low-level 
rendering can be CPU-based or make use of GPU fea-
tures such as the RTX ray-tracing cores. 

This past year the HPCVG group has continued to 
work on the software end of ANARI, including creating 
new simple applications that both serve as rendering 
tests, but also can be the basis of a tutorial to help new 
users adopt ANARI as a standard.  Further, the HPCVG 
group has begun working on a simple back end that can 
be used as a guide for new renderer software authors to 
work within the ANARI ecosystem.  In the coming year, 
the VTK visualization toolkit will be releasing an 
ANARI rendering option, which can be followed by a 
ParaView interface.  

3DCommerce, glTF and Metaverse.  The 3DCom-
merse and glTF Khronos working groups focus on 
creating modern file and transmission formats for 3D 
object models that can easily flow between software 

15 https://www.khronos.org/3dcommerce 
16 https://www.khronos.org/gltf 

 
Figure 49. The Transportable-VR system on display at the Super-
computing 22 conference in Dallas. (Photo courtesy of Lochi Orr, NIST.) 
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tools and rendering technologies from immersive dis-
plays to web browsers.  Shared virtual worlds, especially 
those with immersive interfaces are increasingly being 
referred to as the “Metaverse” (a term coined by the 
1992 Neil Stephenson novel “Snow Crash”).  Khronos 
and other organizations have sought to create a non-ven-
dor controlled standard around which future Metaverse 
technologies can provide a level commerce playing field 
while also allowing technological advancement.  The 
HPCVG relationship to these efforts is further described 
in the next section of this report. 

WebXR Graphics   
Sandy Ressler   
Russel Sitka (US Holocaust Memorial Museum)   
Jane Klinger (US Holocaust Memorial Museum)   
Robert Ehrenreich (US Holocaust Memorial Museum)   

WebXR is the Web and eXtended Reality. A widely en-
compassing term WebXR covers VR (virtual reality), 
AR (augmented reality), and  MR (mixed reality), all 
distributed via the Web. It is a coalescence of technolo-
gies which have much in common with each other.  First, 
a device such as a headset, or soon a pair of glasses dis-
play images close to your eyeballs, in stereo. Second, 
your head is tracked so that as you move the images be-
ing displayed are modified, in real-time, to give the 
illusion that you are in the space of whatever you are 
being shown. You are “immersed” into a scene of data 
or a simulated object. In the case of VR, you are cut off 
from the real world and are purely in a virtual world. In 
the case of AR, you remain in the real world because you 
still see the real world, with the graphics as an overlay. 
A current common method of using AR is via a mobile 
phone which uses its camera to capture the real world 
environment and overlays graphics on it. A compelling 
example is holding your phone up to the world after just 

emerging from a subway. A set of large arrows appears 
telling you which direction to go [1]. 

We remain convinced that “The Web” is the most 
powerful information dissemination technology of the 
last couple of decades. Now let’s examine standards and 
museums two domains in which we are active. Stand-
ards enable us to perform the integration and museums 
happen to be an “application” in great need of this inte-
gration and both benefit the public good, part of NIST’s 
mission. 

3D Object Input and Capture.  Viewing a 3D object 
on a web site first requires the object itself. Historically 
we have obtained our objects either from CAD systems 
or by visualizing data. Missing from that set of objects 
are representations of “real” objects, artifacts that exist 
in real life. As the cost of hardware for capturing the 
shape and texture of real objects has plummeted, 3D ob-
ject capture is becoming democratized. Last year we 
published a blog article for the Khronos Group on just 
this topic. See: Will LiDAR Scanning break the 3D Asset 
Creation Bottleneck? [2]. 

Almost all museums that have objects cannot dis-
play the vast majority of those object due to space 
limitations. 3D object capture is a promising approach 
to making those objects available via the web when 
physical exhibition is not possible. We are currently 
helping staff of the United States Holocaust Memorial 
Museum (USHMM) explore the use of 3D objects on 
their web sites. Figure 51 illustrates an actual artifact be-
ing used to conduct an internal museum study with the 
education group. 3D object scanning remains a difficult 
and time-consuming task. Standards and best practices 
will eventually help  lead towards more public access to 
priceless artifacts. 

3D Standards Participation. We are involved with 
several efforts run by three different groups. First the 3D 
Formats Group, part  of the Khronos Group responsible 
for the continued evolution of glTF a 3D graphics format 
becoming the “jpeg of 3D”. Other members of our group 
participate in the OpenXR Group of Khronos. Second, 
the Immersive Web Group of the World Wide Web con-
sortium (W3C) working on formal W3C specifications.  
Finally, we have taken the lead trying to have NIST join 
a new standards group called the Metaverse Standards 
Forum [3]. This is a new group with over 2000 industry 
members which is likely to have a great deal of influence 
in how standards for the Metaverse evolve. NIST is ex-
pected to become a member of this group soon. 

 The 3D Formats Group is actively involved in a va-
riety of extensions to glTF. Primarily concerned with 
achieving high quality and high performance, taking ad-
vantage of GPU hardware is a signature overarching 
goal of the group. glTF is becoming more and more pop-
ular as a representation of 3D objects. Our participation 
ensures that it is aligned to our, and the public’s needs, 

 
Figure 50. Image generated with ANARI in the NIST CAVE. (Photo 
courtesy of Simon Su, NIST.) 
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and keeps us on the leading edge of 3D format develop-
ments. The Khronos Group is an industry-led 
consortium, and the participants are a highly skilled col-
lection of technologists focused on real world practical 
problems. In particular, we assisted in helping the 
Khronos Group move glTF into ISO and it now is ap-
proved ISO standard [4].  

[1] S. Ressler, “Google’s ‘Live View’ the First Useful Aug-
mented Reality Application,” November 5, 2019, 
Medium. URL: https://medium.com/@sressler/googles-live-
view-the-first-useful-augmented-reality-application-
91525209743f 

[2] S. Ressler.  “Will LiDAR Scanning break the 3D Asset 
Creation Bottleneck? September 15, 2021. URL:  
https://www.khronos.org/blog/will-lidar-break-the-3d-asset-
creation-bottleneck  

[3] Metaverse Standards Forum. URL: https://metaverse-stand-
ards.org/  

[4] ISO/IEC 12113:2022 Information technology – Runtime 
3D asset delivery format – Khronos glTFTM 2.0. URL: 
https://www.iso.org/cms/%20render/live/en/sites/isoorg/con-
tents/data/standard/08/39/83990.html 

Uncertainty in Machine Learning for 
Quantum Physical Systems 
Joshua Ziegler 
Justyna P. Zwolak 
Zachary J. Grey 
Craig Greenberg (NIST ITL) 

Machine learning (ML) models have shown widespread 
success in achieving human-level performance in a va-
riety of tasks that are traditionally difficult for 
computers. Yet, these models often fail in quite unex-
pected ways [1]. To date, much effort has been devoted 
to developing metrics necessary to assess the expected 
performance and uncertainty of ML models to mitigate 
such failures. However, the problem of uncertainty 
quantification (UQ) in ML remains unsolved [1]. De-
spite the lack of a rigorous approach to UQ, ML has seen 
broad applications in physics, from simulations [2], to 
complex data analysis [3], to experimental control [4, 5]. 
While some of these implementations include attempts 
at uncertainty estimation [2,3], these demonstrations are 
very limited and tuned to the problem at hand. Thus, de-
spite the need for informative metrics to enable trust in 
automation, applications of ML in experiments still lack 
sufficient uncertainty measures [1]. 

There are many sources of broadly defined dataset 
shift [1] in physics experiments that negatively affect 
automation algorithms. Changes in noise levels, disturb-
ance of an experimental setup, or the order in which 
control parameters are adjusted may cause different 
kinds of data transformations. The necessity to use quan-
titative (partial) labels further complicates this problem: 
in some applications, a [50 %, 50 %] classification of an 
image should represent a transition between two system 
states, but it might indicate model confusion in state as-
sessment. To automate experiments effectively, metrics 
must be developed that encompass uncertainty due to 
these varied nonlinear data transformations and state 
transitions. Moreover, many experimental applications 
necessitate a robust ML model that can be used to auto-
mate the control of devices with varying designs and 
potential defects. 

In this project, we first reviewed relevant literature 
for popular and current methods of estimating uncer-
tainty in convolutional neural networks (CNN). In doing 
so, we leveraged our mixed expertise (i.e., in physics, 
mathematics, and computer science) to develop a greater 
shared understanding of the methods than would be pos-
sible without this collaboration. To test these methods 
and identify potential limitations, we implemented two 
of the most promising approaches (deep ensembles and 
deep kernel learning)—negotiating various tradeoffs in 
ease-of-use, effectiveness, and computational burden. 
We then tested these methods on a dataset of Bose-Ein-
stein condensate images for detection of solitons in the 

 
Figure 51.  Actual scanned artifact being used to conduct internal 
museum test with an education group. (Image courtesy of the US Holocaust 
Memorial Museum.) 
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presence of various types of synthetic but physically 
motivated noise. Through a variety of uncertainty met-
rics computed with deep ensemble predictions, we 
observed an anticipated and intuitive response in the 
model’s entropy subject to synthetic physics-informed 
noise—increased entropy subject to increased levels of 
observed types of noise, see Figure 52. The deep kernel 
learning methods, while requiring less computational re-
sources, did not demonstrate an intuitive response to 
synthetic noise conditioned on our data and implemen-
tation.  

To interpret the apparent effectiveness of the deep 
ensemble approach, we applied computational geometry 
to augment inferences about the model evolution over 
ensemble averaging by visualizing empirical distribu-
tions of a reduced set of significant model features. For 
the three classes posed in this computational experi-
ment, we projected analogues of “logits” onto the 
orthogonal complement of the logistic (last) layer null 
space, Ker([1,1,1]). Consequently, we visualized the fi-
nal empirical distributions of features pulled back onto 
this space—which are also paired with corresponding 
images—to demonstrate and diagnose improved robust-
ness through a decrease in the scattering of labelled 
features. This approach is comparable to visualizations 
of the output probabilities over a simplex but now pulled 
back to a vector space to visualize uncertainties more 
clearly. 

The improved distribution of features from the en-
semble of 10 trained models was compared to individual 
models and demonstrated a desirable concentration of 
features, i.e., variation of features within distinct low en-
tropy regions is reduced using an ensemble of 10 models 
as opposed to a single model. These visualizations sup-
plemented increased explainability and trustworthiness 
for a method, which achieved high levels of accuracy in 
the classification task coupled with an intuitive behavior 
subject to increasing levels of synthetic noise applied to 
the data. Figure 53 depicts this explanation via visuali-
zation for the concentrated features of the ensemble 
model. 

The better of the uncertainty methods we have im-
plemented will be directly useful for our experimental 
collaborators that are currently using CNNs without un-
certainty estimation for experimental data analysis. 

Insights that are gained from a computational geometry 
perspective of deep ensemble methods are useful for un-
derstanding their effectiveness and may be useful for the 
general machine learning community. 
[1] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. 

Nowozin, J. V. Dillon, B. Lakshminarayanan, and J. 
Snoek. Can You Trust Your Model’s Uncertainty? Eval-
uating Predictive Uncertainty Under Dataset Shift. 
Advances in Neural Information Processing Systems 
(NeurIPS) 32 (2019). 

[2] G. J. Anderson, J. A. Gaffney, B. K. Spears, P.-T. 
Bremer, R. Anirudh, and J. J. Thiagarajan. Meaningful 
Uncertainties from Deep Neural Network Surrogates of 
Large-Scale Numerical Simulations. arXiv:2010.13749, 
2020. 

[3] K. T. Butler, M. D. Le, J. Thiyagalingam, and T. G. Per-
ring. Interpretable, Calibrated Neural Networks for 
Analysis and Understanding of Inelastic Neutron Scatter-
ing Data. Journal of Physics: Condensed Matter 33 
(2021), 194006. 

[4] J. P. Zwolak, T. McJunkin, S.S. Kalantre, J.P. Dodson, 
E.R. MacQuarrie, D.E. Savage, M.G. Lagally, S.N. Cop-
persmith, M.A. Eriksson, and J.M. Taylor. Autotuning of 
Double-Dot Devices in Situ with Machine Learning. 
Physical Review Applied 13 (2020), 034075. 

[5] S. S. Kalantre, J. P. Zwolak, S. Ragole, X. Wu, N. M. 
Zimmerman, M. D. Stewart, and J. M. Taylor. Machine 
Learning Techniques for State Recognition and Auto-
Tuning in Quantum Dots. npj Quantum Information 5:1 
(2019). 

 

 
Figure 52.  Deep ensembles evaluated on solitonic excitations data 
with rotation, blur, or white noise added. Ensembles often capture 
decreased Brier score via predictive entropy. 

 
Figure 53.  Entropy decision space orthogonal to the null space of 
the final classification layer. The scatter of points is colored by la-
belled class while the filled contours, representing entropy, 
visualizes three distinct regions defining the three classes separated 
by level-sets of entropy defining decision manifolds (solid black 
lines). Uncertain points are those which encroach or fall within the 
lighter blue/white regions partitioned by the decision manifolds.  
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Towards Robust Autotuning of 
Noisy Quantum Dot Devices 
Justyna P. Zwolak 
Joshua Ziegler 
Jacob M. Taylor (NIST PML) 
Thomas McJunkin (NIST PML) 
Florian Luthi (Intel Corporation) 
Mick Ramsey (Intel Corporation) 
Sandesh Kalantre (Stanford University) 
E. S. Joseph (University of Wisconsin-Madison) 
Mark A. Eriksson (University of Wisconsin-Madison) 

Gate-defined quantum dots (QDs), in which electrons in 
a semiconductor are trapped in electric potential wells, 
have appealing attributes as a quantum computing plat-
form, such as small device footprint and the possibility 
of operation at temperatures of a few Kelvin. However, 
near-term devices possess a range of possible imperfec-
tions that need to be accounted for during the tuning and 
operation of QD devices. These minor inconsistencies 
inherent to the fabrication process make a deterministic 
tuning of QD devices impossible. Currently, initializa-
tion is performed mostly manually through heuristic 
calibration, although some recent progress has been 
made towards automating elements of this process [1]. 

The best strategies for automating initialization rely 
on supervised machine learning (ML) methods to auton-
omously identify the state of the device as parameters 
are tuned and use an algorithmic optimizer to find the 
desired state. However, training such ML models re-
quires large amounts of data with labeled device states. 
There are two paradigms for preparing datasets for train-
ing, each having its own advantages and limitations. The 
first is to use unrealistically noiseless simulated data, 
which not only necessitates specialized pre-processing 
of the experimental data, but also makes the trained 
models less robust when implemented in the experiment 
[2]. The other paradigm relies on manual labeling of ex-
perimental data. This is laborious, less reliable, and not 
scalable, especially as gate defined QD devices change 

or grow in qubit numbers and complexity. Thus, ap-
proaches demonstrated to date force a choice between 
scalability and robustness. Furthermore, the ML meth-
ods typically do not include an assessment of the quality 
of the input data, leading to unknown reliability of ML 
predictions and potential unexpected failures. 

An idealized noiseless charge stability diagram 
shows lines when an electron is added to the device’s 
trapping potential landscape overlayed on a uniform 
background, as shown in Figure 54A. To overcome 
these issues, we have expanded the capabilities of our 
QD simulator [3] to include various types of realistic, 
physical noise. Depending on the type of added noise, 
the appearance of simulated data changes as shown in 
Figure 54B-F. Using a set of 542 manually labeled ex-
perimental scans for testing, we found an accuracy 
improvement of about 46 %, from 48.7(5.5) % when 
trained on noiseless simulated data to 95.0(9) % when 
trained on simulated data with all relevant noises added. 
We also tested how each added noise individually con-
tributes to this performance, as shown in plots B-F in 
Figure 55(a). Plot G in Figure 55(a) shows the perfor-
mance for the optimized noise combination. To get best 
performance sensor jumps, pink (1/f) noise, and white 
noise were varied together to yield a varied signal-to-
noise ratio in our dataset. 

We then generated a similar dataset with a broad 
variation of noise and used the performance of the noise-
trained ML state classifiers on it to develop a data qual-
ity control (DQC) module. The utility of the DQC 
module was confirmed by showing a correlation be-
tween the accuracy of the state classifiers and the 
assessed quality. Specifically, for experimental data as-
sessed as “high quality” the state classifier has 
96.4(9) % accuracy, for data assessed as “moderate 
quality” it has 91.9(2.1) % accuracy, and for “low qual-
ity” data the state classifier has 69.3(5.6) % accuracy, 
see Figure 55(b). This validates the ML DQC module as 
a tool to filter data that might lead to poor performance 

 
Figure 54.  Various types of noise added to a simulated charge stability diagram for a QD device in a “double QD” state, with electrons trapped 
in two potential wells. The bright lines in the bottom row indicate a change of electron occupation in the device. All noise magnitudes are the 
same as for the best accuracy quoted except for Coulomb peak and dot jumps which have increased effect for visibility. 
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of an ML state classifier and, consequently, the auto-
tuner failure. An article reporting this work has recently 
been published in Physical Review Applied [4]. 

Another difficult to assess tuning failure mode is re-
lated to formation of the so-called spurious QDs that 
may form in small potential wells due to interface de-
fects, surface roughness, or strain within the device. 
Spurious QD are highly undesirable since they may in-
terfere with the QDs intended for use as qubits and 

cannot themselves be used as qubits. To avoid device 
tuning failure, spurious QDs must be identified when 
present and avoided. Visually, spurious QDs are recog-
nized in large 2D scans as charge transitions with slopes 
diverging from a monotonic trend. As we show in Ref. 
[5], spurious dots can be identified automatically as tran-
sition lines with anomalous capacitive couplings relative 
to the transitions around them.  

Figure 56(a) shows two charge stability diagrams: 
one capturing properly formed QD (left panel) and one 
capturing spurious QD (right panel). The small 2D re-
gions in the plunger-plunger space, highlighted in these 
scans with the black boxes, are typical for topology set-
ting algorithms. In both cases, they are classified by a 
state classifier model as double QD state. However, 
when looked at within a slightly larger voltage range, it 
is clear that in the latter case, the small scan captures an 
anti-crossing with a spurious QD, which for practical 
tuning purposes is a failure. 

Our algorithm combines a pixel classifier, used to 
extract the high-level features from experimental data, 
as shown in Figure 56(b), with traditional fitting used to 
extract the slopes of the consecutive charge transitions 
which are manifestations of the capacitive coupling be-
tween the QDs, see Figure 56(c). For properly formed 
QD, as shown in the left panel in Figure 56(a), the mag-
nitude of the capacitive coupling is expected to increase 
monotonically while the spacing between consecutive 
transition lines decreases as a charge is added, as shown 
in the left panel in Figure 56(c). The different shades of 
green are used to depict separate groups of transitions, 
i.e., transitions captured between the blue RT lines. On 
the contrary, a spurious QD, as shown in the right panel 
in Figure 56(a), can manifest itself by a non-monotonic 
behavior of the capacitive coupling between transitions. 
This is depicted graphically by either the most left or the 
center point (or group of points) not following the ex-
pected decreasing trend in the right panel in Figure 
56(c). In practical applications, the automated detection 
of spurious QD fits nicely within the auto-tuning para-
digm. 

With these tools, we expand the applicability of 
ML-based autotuning strategies to non-ideal devices by 
making the ML models more robust against potential 
failure modes. This is especially important when consid-
ering future, large-scale QD devices. More broadly, we 
show that making simulated data more physical can 
greatly improve the efficacy of ML models when de-
ployed in a real lab environment, which may be a useful 
insight for other experiments combining ML and phys-
ics.  
[1] J. P. Zwolak and J. M. Taylor. Colloquium: Advances in 

Automation of Quantum Dot Devices Control. 
arXiv:2112.09362 (2021). 

[2] J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. P. Dodson, 
E. R. MacQuarrie, D. E. Savage, M. G. Lagally, S. N. 

 
Figure 55.  (a) Box plots depicting the accuracies of state classifier 
models trained on the data as indicated in Figure 55. Aproc models 
were trained on the same noiseless data as A but preprocessed using 
thresholding [1]. Gopt models were trained on the same data as G, 
but with a model architecture optimized on the G data [4]. Each box 
plot depicts the performance of 20 randomly initialized models 
trained under identical conditions on the relevant dataset. (b) Box 
plots of model accuracy for each assigned quality class for the ex-
perimental data. Inset: box plots of the mean absolute error (MAE) 
for each quality class. 

 
Figure 56. Spurious dot detections. (a) Two charge stability dia-
grams: one capturing properly formed QD (left) and one capturing 
spurious QD (right). The black boxes highlight small 2D scans typ-
ical of the auto-tuning approaches [1]. (b) Pixel classification 
results for charge stability diagrams shown in (a). (c)  Plots of fit-
ting results used to determine whether a spurious QD is present. 
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Towards Robust Bootstrapping of 
Quantum Dot Devices 
Danielle J. Middlebrooks  
Justyna P. Zwolak 
Lara Lausen (University of Copenhagen) 
Torbjørn Raasø Rasmussen (U. of Copenhagen) 
Anasua Chatterjee (University of Copenhagen) 

Quantum computing is a type of computation whose op-
erations can harness the phenomena of quantum 
mechanics performed on quantum computers. Most 
models of quantum computation are based on the quan-
tum bit, or qubit, which is analogous to the bit in 
classical computation. One way to build a qubit is by 
fabricating quantum dots (QDs), or very, very small 
cages for electrons, formed within a silicon crystal. The 
tuning and management of QD qubits is a large and com-
plex task. To properly form dots the gate voltages 
applied to metallic gates used to form and control the 
QDs must be tuned to just the right values. This tuning 
is typically done by human operators and require hours 
of work. The more QDs (and gates) one involves, the 
harder it is to tune them all simultaneously to get qubits 
that work together properly. 

The tuning process is an essential, yet repetitive, 
step for initialization of QD-based qubits [1]. This pro-
cess of tuning an unknown QD device can be divided 
into a sequence of distinct phases: bootstrapping, coarse 
tuning, charge state tuning, and fine tuning. Depending 

on the set up, an additional establishing controllability 
phase may be carried out after the charge state tuning 
phase to enable targeted gate control. 

The tools used for automated tuning schemes vary 
from simple fittings to heuristically defined algorithms 
to traditional computer vision techniques. A host of ma-
chine-learning-based techniques have also been utilized. 
Most of the tuning efforts focused on the more advanced 
phases of tuning, assuming that the device is already pre-
tuned, with a properly calibrated charge sensor and that 
the safety regimes for all gates are already known. How-
ever, the initial bootstrapping phase of tuning is still 
nearly always done heuristically, requiring a highly 
trained researcher to be responsible for the subsequent 
decisions on how to adjust the relevant parameters. 

We are currently developing an automated routine 
to bridge the gap between the initial device cool-down 
and a voltage configuration in which other, previously 
developed automation schemes can take over for a mul-
tiple QD device. One important step of the initial 
bootstrapping phase is to check which gates are func-
tioning properly and which gates are not. To test this, 
decreasing voltage is applied to each gate and current is 
measured through the device. By examining the plots of 
the voltage against the measured current, human experts 
determine whether the gate is working. We expect the 
plots to have a sigmoidal shape showing quantum point 
contact behavior. Figure 57 demonstrates this process of 
sweeping the gates to use for classification. Instead of 
relying on human expertise to make these decisions, we 
automate this process by applying a fitting procedure 
and extracting relevant features for classification and 
relevant voltages for subsequent tuning. 

The result of this autotuning procedure provides a 
sufficient starting point for the wide-ranging set of tasks 
for control of QD qubits. With this approach, we can ex-
pand the applicability of automated tuning schemes to 
non-ideal devices by requiring little predetermined as-
sumptions on the device. This is especially important 
when considering future, large-scale QD devices. 
[1] J. P. Zwolak and J. M. Taylor. Colloquium: Advances in 

Automation of Quantum Dot Devices Control. 
arXiv:2112.09362 (2021). 

 

 
Figure 57.  Gates are stepped from high to low voltage until the signal falls below noise level. The fitting procedure extracts relevant features 
for classification. Gates BNC9 and BNC15 do not have currents above noise level and are identified as broken. We can extract relevant features 
from the remaining working gates and use for QD tuning. 
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Tuning Arrays with Rays: Physics-
Informed Tuning of Quantum Dot 
Charge States 
Justyna P. Zwolak 
Joshua Ziegler 
Florian Luthi (Intel Corporation) 
Mick Ramsey (Intel Corporation) 

Gate-defined quantum dots (QDs), formed by trapping 
electrons using finely calibrated electric gates, are a 
promising quantum computing platform. Unfortunately, 
working with single electrons means that the operating 
regime strongly depends on nanoscale details (e.g., ma-
terial impurities and fabrication defects) that are difficult 
to control across devices. For QD devices to scale effec-
tively, this operating regime must be identified using 
automated methods. There have been several recent 
demonstrations of automation of QD tuning, yet these 
approaches have only taken limited advantage of the de-
signed effect of the electric gates on the device state [1].  

Recently, we have developed an intuitive, reliable, 
and data-efficient modular autotuning procedure for au-
tomated global state and charge tuning in a framework 
deemed physics-informed tuning (PIT) [2], depicted in 
Figure 58. In QD devices with the overlapping gates ar-
chitecture–the type of device we have mostly been 
focusing on–there are two types of electric gates used to 
control the flow of electrons. The plunger gates serve to 
create potential wells that can hold electrons. The barrier 
gates prevent the flow of electrons between trapping po-
tentials or into the leads. Together, these gates serve to 
create an electrical potential landscape in which elec-
trons can be trapped and manipulated. Typically, in 
heuristic tuning procedures, coarse voltage values for 

barriers and plungers that cutoff electron flow are iden-
tified during the so-called “cold-start” stage [1]. These 
voltages are then used as a starting point for scanning 
pairs of plungers over a large range of voltages to iden-
tify the target regime, that is voltage ranges where single 
electrons are trapped in each potential well. 

In our previous work, we have tackled tuning of 
pairs of gates using algorithms that seek to maximize a 
fitness function designed to quantify the difference be-
tween the target and the captured state of the device. 
However, none of the optimization algorithms we con-
sidered took into account information about the pre-
existing relationship between the states [3, 4] which led 
to repeated failures for tuning initialized far from the tar-
get area in voltage space. The several algorithms for 
navigating to specific charge states that have been 
demonstrated recently also show unsatisfactory perfor-
mance [5-7]. 

To improve the effectiveness and efficiency of au-
tomatically setting the device topology as well as tuning 
to a desired charge configuration, PIT leverages the in-
tended effect of each gate on the overall QD device state. 
In principle, changing voltages on a particular plunger 
gate should lead to a change of the electron occupation 
only in the corresponding potential well. We show that 
such targeted control (made possible by the virtue of vir-
tual gates) combined with the knowledge of the 
expected device topology (i.e., relative position of states 
in the plunger-plunger space) and a machine learning 
(ML) model trained to identify the captured state of the 
QD device, enable meaningful, efficient, and direct nav-
igation to a target region in voltage space over a large 
range of voltages.  

The first module of PIT, shown in Figure 58(a), is 
an action-based tuning algorithm that combines a ML 
classifier with physics knowledge to navigate to a target 

 
Figure 58.  The flow of the physics-informed tuning (PIT) algorithm visualized using a simulated double-QD device. (a) The action-based coarse 
tuning module combines ML state predictions with the overall QD state topology to navigate the plunger-plunger gate space. The orientation 
and size of the arrows overlaying the scan correspond to the suggested gate voltage adjustment direction and magnitude, respectively. The 
expected outcome for the coarse-tuning module is a gate voltage configuration defining a double-QD state. (b)-(d) The ray-based charge tuning 
module. The charge tuning process involves three steps: (b) unloading the double QD of all electrons using the physical gates space with the 
termination point marked with an x; (c) tuning to a region near the first charge transitions for both QDs (marked with a dot) and determining 
virtual gates; (d) loading the desired number of electrons on each QD using the virtual gate space. Panels (b)-(d) show charge tuning paths for 
two sample points, with the magnitude of the arrows representing the size of the consecutive steps and the color lightness indicating the progress 
of the unloading process. Reproduced from Ref. [2]. 
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global state. When tuning to double-QD (DD) state, the 
module seems to be quite robust against noise, with an 
overall performance of 94.6(2.9) % when using ray-
based measurements and 98.9(2.1) % when tuning with 
small two-dimensional (2D) scans. When tested off-line 
using experimentally acquired large 2D scans, the suc-
cess rate for the action-based coarse tuning to the DD 
state using small 2D scans is slightly higher for exp-1 
dataset, at 97.1(3.5) %, than for exp-2 dataset, at 
92.5(6.5) % (exp-1 consists of seven scans from the 
QFlow 2.0 dataset [8] and exp-2 includes 16 scans ac-
quired using two double-QD configurations on two 
different three-QD Six/SiGe1-x devices fabricated on an 
industrial 300 mm process line).  

Since local device measurements only contain in-
formation about changes in the electron occupation of 
each potential well, navigation to a specific charge oc-
cupation requires a more nuanced approach. We tackle 
this problem by following the typical procedure of first 
emptying a QD device of electrons and then loading a 
desired number back into each potential well. To 
achieve this most reliably, prior to the reloading stage, 
we calibrate the capacitive coupling of each gate to the 
potential wells using virtualization method that com-
bines ML with traditional fitting to derive the 
orthogonalization matrix [9]. The charge tuning module 
uses a series of one-dimensional (1D) measurements and 
a conventional peak finding algorithms to detect transi-
tions in the 1D scans as electrons are loaded off and back 
on each potential well. It proceeds in three steps to tune 
to a target charge state by first emptying the QDs of 
charge, followed by calibrating capacitive couplings and 
then navigating to the target charge state, see Figure 
58(b-d). Tests of this emptying-reloading algorithm on 
simulated data show a high success rate for navigating 
from any point within the double QD region (the out-
come of the action-based tuning step) to the single-
electron regime in moderately noisy simulated scans 
95.5(5.4) %, and is only slightly worse for off-line ex-
perimental tests, with an average of 89.7(17.4) % 
(median 97.5 %), see Figure 59. 

In all tests, PIT terminates at most two transitions 
away from the target state. The main factor affecting the 
charge tuning success rates is either missing a transition 
or identifying noise as transitions when loading charges. 
One way to overcome this limitation is to develop a 
DQC module for the ray-based measurements analogous 
to the one used for the 2D scans during coarse tuning. 
Another way to boost the performance is to implement 
a “repeated measurement with voting” strategy. 

PIT combines modern computer vision, machine 
learning, and data processing techniques with human 
heuristics to provide an intuitive, efficient, and reliable 
tool for QD device calibration. Moreover, the signifi-
cantly reduced one-dimensional data acquisition 
requirements combined with simplified data analysis 
techniques make PIT well suited for implementation 

with dedicated hardware closely integrated with the QD 
chip. It is thus a major step toward fully automated and 
scalable tuning of QD devices, a prerequisite to use QD-
based quantum computers. 
[1] J. P. Zwolak and J. M. Taylor. Colloquium: Advances in 
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arXiv:2112.09362 (2021). 
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Figure 59.  A box plot showing the off-line performance of the indi-
vidual components of PIT with three target charge-state 
configurations. The central lines indicate medians for each test and 
the central box represents 50 % of the data. The whiskers extend to 
either the extreme values or 1.5x the interquartile range, whichever 
is closer to the median. The individual points on top of each box plot 
show the success rates for each device. Reproduced from Ref. [2]. 

https://doi.org/10.18434/T4/1423788
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and J. P. Zwolak. Automated Extraction of Capacitive 
Coupling for Quantum Dot Systems. arXiv:2301.08654 
(2023). 

Principled State Identification for 
Quantum Dot Data 
Justyna P. Zwolak  
Brian J. Weber (ShanghaiTech University) 

Confining electrons in arrays of semiconductor 
nanostructures, called quantum dots (QDs), is a promis-
ing approach to quantum computing. Due to the ease of 
control of the relevant parameters, fast measurement of 
the spin and charge states, relatively long decoherence 
times, and their potential for scalability, QDs are gaining 
popularity as building blocks for solid-state quantum de-
vices. However, the relevant parameter space scales 
exponentially with QD number (dimensionality), mak-
ing heuristic control unfeasible. In semiconductor 
quantum computing, devices now have tens of individ-
ual electrostatic and dynamical gate voltages that must 
be carefully set to isolate the system to the single elec-
tron regime and to realize good qubit performance.  

There has been recent work using machine learning 
(ML) techniques as part of the automating process. 
However, training ML models requires large amounts of 
labeled data indicating the true state of the device for a 
given voltage range. So far, ML efforts for QD rely on 
datasets that either come from simulations (and thus 
may lack some important features representing real-
world noise and imperfections) or are labeled manually 
(and thus are subject to qualitative or erroneous classifi-
cation). Automatic labeling will streamline creation of 
large, accurate datasets for purposes of ML training. 
Moreover, the ML approach currently lacks explainable 
and interpretable features for reliable diagnostics. Thus, 
it is desirable to have a simplified and theoretically mo-
tivated automated protocol for labelling experimental 
data. 

The configuration space of a QD array supports ir-
regular polytope tiling of the space, with each polytope 
indicating a distinct quantum state (e.g., a left or right 
single dot for a double QD device). The polytope shapes 
provide information about electron behavior within the 
discrete states they represent. Polytopes with similar 
characteristics will cluster together, allowing the subdi-
vision of configuration space into distinct domains 
where the system exhibits a consistent behavior. 

Our work is aimed at creating automatic procedures 
for identifying this domain decomposition and, if possi-
ble, automatic characterization of individual polytopes 
within each domain. The project currently focuses on the 

case of double QD devices, where the polygonal tessel-
lation is readily understandable. In the past, we have 
successfully implemented the ray-based domain classi-
fication (RBC) schema, the theory behind which was 
developed in an earlier series of papers from our group 
[1-2]. 

Building on this previous success, we are now de-
veloping an RBC-based domain decomposition methods 
for experimentally acquired large two-dimensional 
charge stability diagrams of double QD devices (see the 
left panel in Figure 60 for an example of such measure-
ment). In this approach, we create a selection of 
“observation points” (OPs) using a simple centralization 
technique. From each OP we create a “fingerprint,” 
which is a list of distances along a set of evenly spaced 
rays from the OP to the nearest transition boundary 
along that ray. From each fingerprint we create a poly-
gon model, an idealized representation of the charge 
region the OP lies within. 

From theory, we know these polygons should clus-
ter together by type into well-defined domains—
hexagons should represent double-QD states, for exam-
ple (colored white in the right panel in Figure 60). 
However, due to inherent noisiness in the measure-
ments, many of these idealized models can be wrong. 
This means we cannot create a domain decomposition 
by individually classifying each polygon. 

To overcome this, we created a statistical inferenc-
ing technique to identify groupings of polygons. The 
idea is that “incorrect” polygons will be wrong in more-
or-less random ways, whereas “correct” polygons will 
be correct systematically. Our statistical method recog-
nizes groupings of systematically similar polygons and 
ignores those that don’t fit into statistically observed lo-
cal patterns. These statistically determined groupings 
allow us to create the desired domain divisions. The ex-
act locations where one domain transitions to another 
are also statistically determined. This is the reason for 
the “fuzziness” along domain boundaries in the right 
panel in Figure 60. Each point receives a probability of 
being in each of the five domains, represented there as a 
combination of five colors. 

  
Figure 60.  RBC domain decomposition for a real device. Original 
charge stability diagram (left) has noise and spurious sensor arti-
facts. The RBC-based domain decomposition (right) is created by 
modeling polygonal regions and assigning to each point a proba-
bility of belonging to each of the domains. 
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The fingerprinting method, developed in dimension 
two, is well suited to higher dimensional generaliza-
tions, where no serious theoretical barrier exists to using 
our methods of model-building followed by statistical 
grouping. Technical hurdles exist in the form of under-
standing details of high-dimensional geometry, such as 
ray placement and polytope recognition. Our group has 
already done work on this by creating ray-placement es-
timates and rough polytope classifications [3]. 

Determining the robustness of our methods across 
various noise regimes and device architectures is an on-
going effort. The main hurdle is availability of datasets. 
Our team has benefited from sophisticated tools for the 
simulation of many device architectures and noise re-
gimes [4]. Our data-labeling methods have been tested 
successfully against these simulations. 

However, no substitute exists for real-world data. 
Although our methods work against those real-world da-
tasets that are available to us [5], we have relatively few 
such datasets. A major project goal is to collect datasets 
from many research teams around to world to establish 
a repository of datasets along with standardized labeling 
created using our methods hosted at data.nist.gov. Such 
a standardized repository of labelled data is consistent 
with the mission of NIST and would be of high value to 
the scientific community. 

Another focus of future work is generalizing our 
methods to higher dimensions, with an aim of creating 
autotuning strategies for more than two QD at a time. 
Although theoretically straightforward, new challenges 
are expected related to high run-time expense and spar-
sity of available data. Theoretical understanding of 
higher-dimensional geometry will be a crucial compo-
nent of this work. 
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[Note: For a more detailed accounting of this project, 
see the feature article on page 22.]  

Machine-learning (ML)-based image classification 
has many applications in science, from particle physics 
data analysis, dark matter searching, quantum state prep-
aration to material property prediction. In atomic 
physics, ML has been used to locate topological phase 
transitions in images of atomic density and to character-
ize particles in disordered fields. In our work, we 
introduce and demonstrate a hybrid framework, shown 
in Figure 62, that integrates ML techniques with a sci-
ence-driven analysis to detect, classify, and assess 
quality of features in experimental data from many-body 
atomic physics. 

Using cold-atom Bose-Einstein condensates 
(BECs), we focus on solitonic excitations, robust soli-
tary waves that retain their size, shape, and speed as they 
travel. These properties arise from an interplay between 
nonlinearity and dispersion that is present in many phys-
ical systems. Since their first observation in water 
channels, solitons have been found in rivers and seas; 
BECs; optical fibers; astronomical plasmas; and even 
human blood vesicles. Due to their inherent stability, 
solitons in optical fibers have found commercial appli-
cations in long-distance, high-speed transmission lines. 

While the natural environment does not allow for 
the controlled study of quantum solitons, BECs are an 
ideal medium where individual or multiple solitons can 
be created on-demand, with all their properties, such as 
position and velocity, tuned as necessary [1, 2]. Most 
measurements in BEC experiments produce raw data in 
the form of images that, in our context, provide infor-
mation about the excitations’ positions within the BEC. 
The challenge is to identify the number, type, and loca-
tion of excitations efficiently and reliably. Prior to this 
work, such information was obtained manually [1], in-
hibiting the automated analysis of large datasets, which 
is crucial for solitonic dynamics studies. 

We previously developed a solitonic excitation de-
tection and positioning system that takes as input image 
data and outputs information whether a single soliton is 
present, and, if so, its location [3]. This algorithm com-
prises a data preprocessor that converts raw data into a 

http://data.nist.gov/
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ConvNet-compatible format; a ConvNet image classi-
fier that determines if a single soliton is detected; and a 
traditional least-squares fitting position regressor that 
locates the soliton within the BEC, when applicable. 
However, given that the fitting techniques can locate 
solitons only if the soliton number is known in advance 
and the ConvNet classifier require significant amount of 
data per expected class for training, the utility of our sol-
iton detection and positioning system left room for 
improvement.  

The next iteration of the soliton detecting frame-
work included the ability to detect the precise position 
of the solitons along with a model that further refined 
the classification of the images. A final step was also 
added to determine the quality of the detected solitons. 
The analysis of the images still begins with the ConvNet 
classifier developed previously, but then is followed by 
a ML object detector (OD) which automatically local-
izes the features of interest (i.e., all solitonic excitations 
within the BEC). A physics-informed excitation (PIE) 
classifier then provides a fine-grained classification of 
individual solitonic excitations into physically moti-
vated categories, such as clear longitudinal solitons, or 
solitonic vortices. Finally, a quality estimator is applied 
to the longitudinal solitons class to ascertain if the one-
dimensional profile of a given excitation has parameters 
in the rang expected for a well-formed solitonic excita-
tion. This eliminates images of solitons that are faint, or 
malformed, leaving only well-formed solitons for fur-
ther analysis. An article reporting this work has recently 
been published [4]. 

Examples of the categorization of the 
BEC clouds can be seen in Figure 61. As 
a practical test case, we concentrate on 
identifying dark solitons, which are spa-
tially localized excitations that appear as 
vertically aligned atomic density deple-
tions in BECs, see Figure 61(b,c). Deep 
depletions are caused by kink solitons 
(and solitonic vortices viewed from the 
side), as in Figure 61(b-i), whereas shal-
low and asymmetric depletions can be 
caused by solitonic vortices, as in Figure 
61(b-iii). Our framework is the first to au-
tomatically differentiate between these 
instances and locate all solitonic excita-

tions in each image. Importantly, neither of the ML 
modules require data labeled with the physically moti-
vated sub-categories, which significantly lessens the 
burden of manual labeling. In fact, the OD is trained us-
ing only the no excitation and lone excitation data. 

As part of this research effort, we established and 
curated a dataset of over 16 000 experimental images of 
BECs with and without solitonic excitations [5, 6]. The 
dataset consists of images manually labeled into the 
three pre-defined categories (i.e., no excitations, lone 
excitation, other excitations; 33 % of the data) and unla-
beled data. The lone excitation class is in addition tagged 
with the excitation position, PIE class, and quality score. 
The remaining 67 % of the data is automatically labeled 
using the SolDet package. This dataset is available via 
the Midas system at the National Institute of Standards 
and Technology and at data.gov [5] to provide an oppor-
tunity for the data science community to develop more 
sophisticated analysis tools and to further understand 
nonlinear many-body physics. 

Our current efforts focus on further improving this 
high-level framework. First, to expand the potential user 
base of the software, we are shifting the ML framework 
from TensorFlow to PyTorch. Complimentary to this, 
generalizing aspects of the PIE classifier are being 
added. The first iteration of the PIE classifier includes 
physics-informed cuts that were manually derived from 
the BEC data coming from an experiment located at 
NIST. To ensure the compatibility of SolDet package 
with data coming from different experimental groups, 
we are refining these cuts using a more diverse dataset 

 
Figure 61. The pre-processed images from the Dark solitons in BECs dataset. The red arrows mark the location of the deepest depletion in 
the density fluctuations, while the orange lines mark the solitons’ locations found from our OD. (a) An element of the no-excitation class. (b) 
Three elements of the single excitation class: (i) a single longitudinal soliton, (ii) an off-center longitudinal soliton, and (iii) a solitonic vortex. 
(c) Two representative elements of the other excitations class. Adapted from Ref. [4]. 

 
Figure 62.  Overview of the framework. The colored arrows link the preparation, valida-
tion, and application phases of the framework. The red path represents the preparation 
and implementation of the physics-based-approximation module while the blue path rep-
resents the ML modules. Adapted from Ref. [4].  
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on BEC images. Additionally, it had been noted in Ref. 
[4] that the quality estimator can be unreliable when two 
or more solitonic excitations appear close together. To 
address this issue, we are working on an extended ver-
sion of the quality estimator that will properly handle the 
multi-excitation cases. With these updates, we hope that 
SolDet will become a useful tool for data analysis for 
other groups working on BEC experiments. 
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Quantum Information 
An emerging discipline at the intersection of physics and computer science, quantum information science is likely to 
revolutionize 21st century science and technology in the same way that lasers, electronics, and computers did in the 
20th century. By encoding information into quantum states of matter, one can, in theory, enable phenomenal increases 
in information storage and processing capability. At the same time, such computers would threaten the public-key 
infrastructure that secures all of electronic commerce. Although many of the necessary physical manipulations of 
quantum states have been demonstrated experimentally, scaling these up to enable fully capable quantum computers 
remains a grand challenge. We engage in (a) theoretical studies to understand the power of quantum computing, (b) 
collaborative efforts with the multi-laboratory experimental quantum science program at NIST to characterize and 
benchmark specific physical realizations of quantum information processing, and (c) demonstration and assessment of 
technologies for quantum communication

Quantum Information Science 
Scott Glancy 
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Ezad Shojaee (IonQ) 
Arik Agavayan (University of Colorado) 
Mohammad Alhejji (University of Colorado)  
Shawn Geller (University of Colorado)  
Alex Kwiatkowski (University of Colorado)  
Curtis Rau (University of Colorado)  
Akira Kyle (University of Colorado) 
Lynden K. Shalm (University of Colorado) 
Yanbao Zhang  (Oak Ridge National Lab) 
James R. van Meter (HRL Laboratories, Palo Alto)  
Lucas Kocia (Sandia National Laboratory) 

Quantum information processing relies on quantum bits 
(qubits), quantum gates and quantum networking to gain 
an advantage for solving certain problems in computa-
tion and communication. The ever increasing number of 
qubits available for testing and the improving quality of 
the quantum gates has led to a lively exploration of 
quantum physical phenomena and moderate size quan-
tum algorithms on qubits in laboratories, or quantum 
registers made available by companies involved in quan-
tum computing research. Clear-cut quantum advantages 
require fault-tolerant qubits and gates, which have not 
yet been achieved. Demonstrations of quantum network-
ing are lagging behind and cannot yet be connected to 
operational quantum registers for computation.  Quan-
tum technology is also useful for quantum enhanced 
measurements, which have promising applications. 

ACMD research in quantum information science 
covers a broad range of topics. Projects summarized in 
this section include studies on (a) quantum transduction 
between microwave qubits and optical qubits for quan-
tum networking, (b) quantum-enhanced detection of 

signals, (c) measuring quadratures of wide-band quan-
tum modes of light, (d) investigations of squeezing 
caused by changes to the gravitational metric, and (e) 
statistical methods for confidence intervals of parame-
ters inferred from time-varying experimental data. 

Quantum Transduction. To communicate quantum in-
formation, it is necessary to transduce quantum 
information between stationary quantum registers and 
“flying qubits”, usually carried by light.  ACMD re-
searchers are participating in projects to transduce 
quantum information between superconducting qubits at 
microwave frequencies to photons in telecommunica-
tion bands. The projects use either micromechanical or 
ion or quantum dot intermediaries. Previous investiga-
tions delimited the tolerable loss and added noise for 
transduction with Gaussian processing, which helped to 
determine the best configurations for micromechanical 
transduction [1]. Current research is focused on trans-
duction with quantum dots. The available coupling 
between quantum dots and cavities and the rapid emis-
sion process of the quantum dots complicates 
transduction. However, preliminary investigations show 
that with a carefully chosen pump pulse sequence, it 
should be possible to achieve respectable transduction 
rates. 

Quantum Detection of Signals. ACMD collaborators 
are operating cold cavities coupled to superconducting 
detectors that may be able to detect the signal of an axion 
field if it exists. Axion fields are promising dark-matter 
candidates. If it exists, the axion field acts as a random 
displacement force on a mode of the detection cavity. As 
a general rule, dark matter detection experiments aim to 
exclude regions of parameters space. For axions, this 
means that the first goal is to reject the presence of the 
putative signal in specific frequency bands.  The goal is 
to have high-confidence rejection as quickly as possible.  
ACMD researchers have begun to investigate the funda-
mental bounds that determine how quickly it is possible 
to reject the presence of a noise signal, and how these 
bounds are affected by practical consideration of their 
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collaborators' apparatus, such as cavity line widths, 
losses, and added noise. 

Quadratures of Wideband Modes. Conventional het-
erodyne or homodyne quadrature measurements are 
limited to a relatively narrow band around a given fre-
quency. Some applications require measurements of 
octave-spanning modes. A motivating application is 
characterization of Unruh modes to verify vacuum en-
tanglement of the electromagnetic field. One option for 
detecting photons over such a wide band is to use calo-
rimeters, which measure the total energy deposited 
rather than the number of photons. ACMD researchers 
have determined that homodyne measurement strategies 
can be generalized to take advantage of calorimeters and 
other types of detectors whose signal is a weighted sum 
of photon counts in many modes. The local oscillator for 
such a measurement must be chosen correctly so that the 
output signal of the scheme approaches the desired 
quadrature measurement in the limit of high amplitude 
of the local oscillator. ACMD researchers are determin-
ing bounds on how well the output signal approximates 
a quadrature measurement, as a function of the local os-
cillator amplitude and a bound on expected number of 
photons in the relevant modes. 

Gravitational Squeezing. Free quantum fields propa-
gating on a curved gravitational background tend to 
become squeezed. In particular the free vacuum of the 
fields is not preserved, and energy density can grow. A 
fundamental if speculative question is how one might 
control the gravitational background to systematically 
squeeze the fields. Such squeezing could be a resource 
for quantum information purposes and would be a test 
of relativistic quantum theory. ACMD researchers are 
investigating the growth in energy density when a flat 
gravitational background is temporarily perturbed by 
modifying the metric. Such growth could be exponential 
in the perturbation, and a goal is to determine limits on 
this exponential growth and what features of the pertur-
bation determine the growth or lack thereof. 

Confidence Intervals. ACMD researchers have devel-
oped rigorous statistical methods to verify features of 
entanglement and to determine the amount of quantum 
randomness available in a device-independent way 
[2,3]. These applications required methods that do not 
require that the samples are independent and identical, 
and that work at all significance levels.  ACMD re-
searchers are currently extending these methods to the 
general problem of determining the running mean of 
random vectors that are either bounded or have a 
bounded moment.  The methods depend on construc-
tions of “test factors” or “test estimators,” and ACMD 
researchers have shown that for this problem optimal 
test factors are linear, which greatly simplifies the prob-
lem of optimizing the method.  They are developing 
applications of the methods to quantum characterization 

problems such as fidelity measurements and entangle-
ment verification for qubits or modes. 
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Many emerging technologies will exploit quantum me-
chanical effects to enhance metrology, computation, and 
communication. Developing these technologies requires 
improved methods to characterize the performance of 
quantum devices. This characterization requires solving 
statistical problems such as estimating an underlying 
quantum state, measurement, or process by using a col-
lection of measurements made on the quantum system. 
Alternatively, one may also want to estimate figures-of-
merit such as fidelity, error rates, and entanglement 
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measures from that data. Accurate quantum characteri-
zation allows experimentalists and engineers to answer 
questions like “What is happening in my quantum ex-
periment?” or “How well will my system perform some 
quantum information protocol?” and to characterize un-
certainty in that answer.  

NIST’s Ion Storage Group is a world leader in high-
fidelity qubits. To keep pace with their recent advances 
in qubit preparation, logical operation, and measurement 
fidelities, ACMD researchers are developing more ad-
vanced statistical techniques to characterize trapped-ion 
quantum computers. An ion qubit is measured by count-
ing the number of photons the ion releases when 
illuminated by a fluorescent laser. A random number of 
photons will be produced, but the probability distribu-
tion depends on the ion’s state. Distinguishing the |0⟩ 
and |1⟩ states requires differentiating between the two, 
slightly overlapping, probability distributions. Also, the 
ion might change its state during the measurement. 
ACMD researchers have developed a hidden Markov 
model of the fluorescent measurement process, a strat-
egy for manipulating the ion during the measurement 
based on the incoming photon detections, and a Bayes-
ian system for inferring the hidden Markov model’s 
parameters and the ion’s state at the start of the meas-
urement process. These tools enable higher fidelity qubit 
measurement and a better understanding of measure-
ment error [1]. ACMD researchers also contributed to an 
experiment demonstrating another technique to improve 
ion qubit measurements. In this experiment, a single be-
ryllium qubit is measured repeatedly by using quantum 
logic gates to transfer its state to a magnesium ion, 
which can be measured without disturbing the state of 
the beryllium qubit (see Figure 63). ACMD researchers 
developed a probabilistic model of the repeated meas-
urements and determined that the measurement errors 
were in the 68 % confidence intervals [0.6, 2.3]×10−4 and 
[0, 1.9]×10−5 for the two qubit states [2]. 

Randomized benchmarking is a very popular 
method to measure the error rates of quantum logic 
gates. Sequences of random logic gates are applied, and 
one observes how the probability of obtaining the cor-
rect output qubit state decreases with increasing 

sequence length. ACMD researchers have studied how 
to choose the sequence lengths so that one can obtain the 
most precise estimate of the individual gate error rate in 
a limited wall clock time [3]. They have also studied 
how randomizing every sequence produces more accu-
rate error rate estimates than repeating the same random 
sequence. The Ion Storage Group is using these optimi-
zation and analysis techniques to estimate the error rates 
in their ion trap that applies all logic gates with micro-
wave-frequency fields rather than lasers. 

Another aspect of quantum device characterization 
is the measurement of spatial correlations between 
qubits. These can play an important role in so-called 
NISQ (noisy intermediate-scale quantum) devices, and 
in schemes for quantum error correction. To this end, 
ACMD researchers are continuing to investigate sparse 
models of correlated dephasing on many qubits. These 
models can describe physical hardware that contains 
random defects that cause correlated errors. These mod-
els can be learned efficiently using compressed sensing 
and generalized Ramsey spectroscopy. During the past 
year, ACMD researchers have proved stronger bounds 
on the accuracy and sample complexity of these meth-
ods [4]. 

Solid-state qubits often suffer from noise that con-
tains non-Markovian effects, which can be characterized 
using noise spectroscopy. ACMD researchers are devel-
oping random pulse sequences for performing 
specialized measurements of the noise power spectrum, 
including parametric fitting, compressed sensing, and 
real-time monitoring of the total noise strength. ACMD 
researchers are currently investigating the use of these 
techniques to learn spectral properties of the nuclear 
spin bath of a quantum dot system [5]. 

To characterize nonlinear interactions between pho-
tons, such as those being developed for photon logic 
gates, ACMD researchers have developed a generaliza-
tion of traditional homodyne detection. Traditional 
homodyne detection requires a strong reference beam 
and can only estimate the state in the mode matching the 
reference beam, but our generalization can use a weak 
reference beam (as required for some integrated circuit 
designs) and can learn about correlations between the 

 
Figure 63. Quantum circuit for repeated ion measurements. The circuit measures a qubit encoded in the |2,2〉 and |1,1〉 levels of a Beryllium 
(Be) ion. First the Be’s |2,2〉  is coupled to the motion of the 2-ion crystal. Then the motion state is transferred to the Magnesium (Mg) ion and 
the Mg state is measured. The motion and Mg states are reset. The process is then repeated with the Be’s |1,1〉 state. A final resetting step is 
performed to remove Be population from other levels.  The entire process is repeated N times to increase confidence in the final estimate of the 
original Be state.   
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signal mode and photons in nearby modes [6]. ACMD 
and PML researchers are designing an experiment to 
demonstrate this technique. 

ACMD researchers have applied shadow tomogra-
phy [7] to obtain new rigorous guarantees on well-
established tomographic protocols for continuous-varia-
ble (CV) systems, such as optical fields or trapped ion 
motion. Shadow tomography is a novel randomized 
tomographic framework that is based on approximating 
a quantum state by succinct “snapshots” or “shadows” 
that can be easily extracted and stored on a classical 
computer. The framework comes with rigorously proven 
guarantees on the minimum number of such shadows re-
quired to achieve high accuracy with high probability. 
While this framework was originally designed for intrin-
sically multi-qubit systems, we show that certain 
experimentally relevant CV protocols, such as homo-
dyne and photon-number-resolving tomography, can 
also be viewed through the lens of this framework. This 
yields useful guarantees that dictate how many measure-
ment rounds of a protocol are required to reach a desired 
accuracy of state estimation. The required number of 
rounds for a multimode CV system scales polynomially 
with both the number of CV modes and the maximum 
occupation (e.g., photon) number of each mode. ACMD 
researchers have benchmarked their bounds against nu-
merical simulation and experimental data from a 
previous NIST optical homodyne experiment [8]. De-
tails can be found in the preprint [9].  

A basic resource state for continuous-variable quan-
tum information processing is a low-temperature 
squeezed state. Such states are often prepared in optical 
modes or in the motion of trapped ions. ACMD re-
searchers have developed a method to estimate the 
amount of squeezing, temperature, and other parameters 
of a multi-mode squeezed state from measurements of 
the number of photons or phonons in the state [10,11]. 
They are using this method to study the squeezing and 
amplification of ion motion, which was previously char-
acterized assuming that its temperature was 0. 

Researchers at JILA have an optical lattice atom 
trap, which consists of a lattice of cells, each of which 
may contain some number of Strontium atoms. Single 
atoms can be loaded into any subset of the cells and al-
lowed to hop from cell to cell as time evolves. If all 
atoms are indistinguishable, they behave as non-inter-
acting bosons. Such “boson samplers” have 
computational powers beyond those of classical com-
puters. ACMD researchers are developing tools to 
measure the atoms’ distinguishability and to character-
ize the dynamics of the atoms in the lattice. 
[1] S. Geller, S. Glancy, and E. Knill. Improving Quantum 

State Detection with Adaptive Sequential Observations. 
Quantum Science and Technology 7 (2022), 034004. DOI: 
/10.1088/2058-9565/ac6972  

[2] S. D. Erickson, J. J. Wu, P.-Y. Hou, D. C. Cole, S. Geller, 
A. Kwiatkowski, S. Glancy, E. Knill, D. H. Slichter, A. 

C. Wilson, and D. Leibfried. High-Fidelity Indirect 
Readout of Trapped-Ion Hyperfine Qubits. Physical Re-
view Letters 128 (2022), 160503. DOI: 
/10.1103/PhysRevLett.128.160503  

[3] A. Kiwatkowski, S. Glancy, and E. Knill. Analysis and 
Experiment Design for Fully Randomized Benchmark-
ing. In preparation. 

[4] A. Seif, M. Hafezi, and Y.-K. Liu. Compressed Sensing 
Measurement of Long-Range Correlated Noise. In prep-
aration. US Patent Application 17/743850, May 13, 2022. 
Preprint: arXiv:2105.12589 

[5] K. Huang, A. Seif, D. Farfurnik, M. Hafezi and Y.-K. Liu. 
Random Pulse Sequences for Qubit Noise Spectroscopy. 
Preprint: arXiv:2303.00909 

[6] A. Avagyan, E. Knill, S. Glancy, and H. Vasconcelos. 
State Tomography with Photon Counting after a Beam 
Splitter. In preparation.  

[7] H.-Y. Huang, R. Kueng, and J. Preskill. Predicting Many 
Properties of a Quantum System from Very Few Meas-
urements. Nature Physics 16 (2020), 1050. DOI: 
10.1038/s41567-020-0932-7 

[8] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. 
Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, 
and E. Knill. Generation of Optical Coherent-state Super-
positions by Number-resolved Photon Subtraction from 
the Squeezed Vacuum. Physical Review A 82 (2010), 
031802. DOI: 10.1103/PhysRevA.82.031802 

[9] S. Gandhari, V. V. Albert, T. Gerrits, J. M. Taylor, and 
M. J. Gullans. Continuous-Variable Shadow Tomogra-
phy. Preprint, arXiv:2211.05149 

[10] I. Bezerra, H. Vasconcelos, and S. Glancy. Quadrature 
Squeezing and Temperature Estimation from the Fock 
Distribution. Quantum Information Processing 21 
(2022), 365. DOI: 10.1007/s11128-022-03677-5  

[11] A. Avagyan, E. Knill, and S. Glancy. Multi-Mode Gauss-
ian State Analysis with Photon Counting. Preprint: 
arXiv:2209.14453 

Quantum Algorithms and the Power 
of Forgetting 
Matthew Coudron 
Andrew M. Childs (University of Maryland) 
Amin Shiraz Gilani (University of Maryland) 

In 2003, Childs et al. [1] proved that there exists a poly-
nomial time quantum algorithm, in particular a quantum 
walk algorithm, which solves a computational problem 
known as the Welded Tree Oracle Problem exponen-
tially faster than is possible classically. It was later 
shown, in [2], that the Welded Tree Oracle Problem was 
fundamentally different than any previously defined or-
acle problem, in that it requires polynomially large 
quantum depth to solve.  In fact, this property even sep-
arates the Welded Tree Oracle Problem from the 
quantum factoring algorithm, which can be parallelized 

https://doi.org/10.1088/2058-9565/ac6972
https://doi.org/10.1103/PhysRevLett.128.160503
https://arxiv.org/abs/2105.12589
https://arxiv.org/abs/2303.00909
http://doi.org/10.1038/s41567-020-0932-7
http://doi.org/10.1103/PhysRevA.82.031802
https://arxiv.org/abs/2211.05149
https://doi.org/10.1007/s11128-022-03677-5
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to require just logarithmic quantum depth. This makes 
the Welded Tree Problem an intriguing object of study 
when searching for novel quantum properties of algo-
rithms. Our ongoing project, [3], has achieved progress 
toward resolving a remarkable open question, originally 
alluded to [1].  To state the open question, we first need 
to give a more detailed description of the Welded Tree 
Oracle Problem.   

The Welded Tree Oracle Problem is a computa-
tional problem concerning a graph consisting of two 
binary trees of height n, joined together at their leaves 
by a random cycle.  Figure 64 provides an example of 
such a graph, for n=4.  

Each vertex of the graph is assigned a unique, ran-
dom bit-string label of length 2n.  The root vertex of the 
left binary tree is called the ENTRANCE, and the root 
vertex of the right binary tree is called the EXIT. The 
input to the Welded Tree Oracle Problem is not a com-
plete description of the graph, but rather an “Oracle” 
black-box function, which, when queried at label of any 
vertex in the graph, outputs the bit-string labels of its 
nearest neighbors. In other words, if we think of the 
Welded Tree graph as a maze, in which each vertex is a 
room and each edge is a hallway, then the oracle simply 
tells us which rooms neighbor the room that we are cur-
rently in, without revealing any global structure of the 
graph. The computational goal in the Welded Tree Ora-
cle Problem is, given the oracle function for the graph, 
and the label of the ENTRANCE vertex, to find the label 
of the EXIT vertex using as few queries to the oracle as 
possible. The original result of [1] is that a quantum 
computer, which can query the oracle in superposition, 
can solve this problem in polynomially many queries 
(and with a polynomial time quantum algorithm), 
whereas an algorithm than only makes classical queries 
provably requires exponentially many queries to find the 
EXIT. 

Note that the classical hardness result makes some 
intuitive sense because the Welded Tree Graph has 2𝑛𝑛+2 
vertices total, a number which is exponential in the 
height, n, of the binary trees, and in the number of bits 

of the bit string labels. Furthermore, the cycle in the mid-
dle is random, so one would expect that a classical 
algorithm might “get lost” in this maze while searching 
for the EXIT.  

A famous open question, first discussed in [1], is 
whether or not there exists a polynomial time quantum 
algorithm which can find a path of vertices from 
ENTRANCE to EXIT in the Welded Tree Oracle Prob-
lem. Standard classical intuition would suggest that, 
since there is an efficient algorithm which can find the 
EXIT starting from the ENTRANCE, there must also be 
an algorithm which can find a path from ENTRANCE 
to EXIT. However, the algorithm which efficiently finds 
the EXIT starting from the ENTRANCE is a quantum 
algorithm and not clearly subject to classical intuition.  
In fact, surprisingly, and for the first time, we have par-
tial evidence that, in the quantum world, this path-
finding problem may actually be computationally hard.  
In particular, we are able to show that perhaps the most 
natural class of quantum algorithms for ENTRANCE-
EXIT path finding, which we call “rooted algorithms,” 
provably cannot find a path from ENTRANCE to EXIT 
in fewer than exponentially many quantum queries.  In-
formally, “rooted algorithms” are those quantum 
algorithms for pathfinding which maintain, at every 
point in the superposition and every step of the algo-
rithm, a memory of at least one path from their current 
position in the Welded Tree graph, back to the 
ENTRANCE vertex.  Not only is this class the most nat-
ural first attempt at a quantum path-finding algorithm, 
but it is hard to imagine what possible benefit an algo-
rithm could gain from not being rooted, and “forgetting” 
its way back to the ENTRANCE. It would seem odd to 
take a such a non-rooted approach given that the entire 
goal of the algorithm is to output a path from 
ENTRANCE to EXIT in the end. Our no-go result for 
rooted algorithms shows that, bizarrely, while a quan-
tum algorithm can find its way from ENTRANCE to 
EXIT in the Welded Tree Oracle Problem, in order to do 
so it must necessarily “forget where it started.”   

At the technical level our result is interesting in that 
it employs a novel technique we call a “transcript simu-
lation” in order to prove that rooted algorithms cannot 
have constructive or destructive interference that exceed 
classical algorithms by more than a polynomial amount.  
This can then be combined with a new style of classical 
hardness result, which we also devised, in order to show 
that rooted quantum algorithms are no more capable of 
finding the EXIT that classical algorithms. The intuition 
behind this approach is that the need of rooted algo-
rithms to constantly maintain knowledge of a path from 
their current position in the graph back to the 
ENTRANCE actually destroys the constructive and de-
structive interference that made the original EXIT-
finding algorithm of [1] work. The interference is de-
stroyed because storing a path back to the ENTRANCE 

 
Figure 64.  A welded tree graph for n=4. 
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forces a separation between different branches of the su-
perposition. Our paper, [3], was published in the 
proceedings of the 2023 Innovations in Theoretical 
Computer Science (ITCS) conference and has been ac-
cepted for presentation at the 2023 Theory of Quantum 
Computing, Communications, and Cryptography (TQC) 
conference. We believe that, with more work, we will 
eventually be able to prove that there is no polynomial 
time quantum algorithm of any sort (not just “rooted” 
algorithms) which can find a path from ENTRANCE to 
EXIT in the Welded Tree Graph with better than expo-
nentially small probability. Such a result would be a 
resolution of a long-standing open problem in the field. 

[1] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, 
and D. A. Spielman. Exponential Algorithmic Speedup 
by a Quantum Walk. In Proceedings of the 35th Annual 
ACM Symposium on Theory of Computing, June 9-11, 
2003, San Diego, CA, 59–68. DOI: 10.1145/780542.780552 

[2] M. Coudron and S. Menda. Computations with Greater 
Quantum Depth are Strictly More Powerful (Relative to 
an Oracle). In Proceedings of the 52nd Annual ACM 
SIGACT Symposium on Theory of Computing, 2022. DOI: 
10.1145/3357713.3384269 

[3] A. M. Childs, M. Coudron, and A. S. Gilani. Quantum 
Algorithms and the Power of Forgetting. In 14th Innova-
tions in Theoretical Computer Science Conference (ITCS 
2023) (Y. Tauman Kalai, ed.), Leibniz International Pro-
ceedings in Informatics (LIPIcs) 251, Schloss Dagstuhl--
Leibniz-Zentrumfür Informatik, 2023, 37:1-37:22. DOI: 
10.4230/LIPIcs.ITCS.2023.37  

Quantum Depth in the Random 
Oracle Model 
Matthew Coudron 
Atul Singh Arora (Caltech) 
Andrea Coladangelo  (U. of California, Berkeley) 
Alexandru Gheorghiu (ETH Zurich) 
Uttam Singh (Polish Academy of Sciences) 
Hendrik Waldner (Max Planck Institute) 

The circuit depth required to perform a quantum or clas-
sical computation, which is defined as the minimal 
number of layers of basic computational gates required 
to perform the whole computation, has direct relevance 
to our ability to perform the computation on near term 
quantum hardware or on a parallel computing architec-
ture, as well as many other applications. Within 
quantum computing, purely classical operations are con-
sidered relatively “cheap” to implement, whereas 
coherent quantum gate operations are relatively “expen-
sive.” Consequently, the model which most aptly 
captures the power of low-depth quantum circuits in the 
context of near term quantum computing is that of hy-
brid quantum circuits formed by the composition of low-
depth quantum circuits, interleaved with much higher-

depth classical circuits.  This notion of interleaving low-
depth quantum circuits with high depth classical circuits 
has no analogous counterpart in the study of circuit 
depth in classical computer science.  It turns out that this 
novel composition has a number of nuances and subtle-
ties that defy previously known mathematical 
techniques for studying circuit depth, and yet, are rele-
vant to the most famous quantum computations known 
to date.   

The intriguing and subtle nature of these hybrid 
quantum circuits is best highlighted by two well-known 
open problems posed in 2005.  In the first, [1], Richard 
Jozsa conjectured that all polynomial size quantum com-
putations, regardless of depth, can be efficiently 
simulated by hybrid quantum-classical circuits which 
only employ logarithmic depth quantum circuits, as in 
Figure 66.  In the second, [2], Scott Aaronson’s 9th 
semi-grand challenge in quantum computation asks for 
a proof of a statement that is technically incomparable 
to [1], but morally opposite:  That there exists a compu-
tational problem that can be efficiently solved by 
polynomial size quantum computations but cannot be ef-
ficiently solved by hybrid quantum-classical circuits 
shown in Figure 65.  Despite their intriguing nature, and 
their fundamental importance to our understanding of 
quantum computation, these two problems remained 
open for 17 years.  Our work [5] gives the first solution 
the open problems due to Jozsa and Aaronson [1, 2], re-
solving Aaronson’s conjecture in the affirmative, and 
Jozsa’s conjecture in the negative.  Our main result is to 
construct a computational problem, instantiated using a 
cryptographic hash function, for which there is a poly-
nomial time quantum algorithm, but for which there 
provably does not exist an algorithm of the form shown 
in Figure 65 or Figure 66 that can solve the problem with 
better than exponentially small probability.   

More specifically, our main contribution is to ex-
hibit the first cryptographically instantiable 

 
Figure 65. Q boxes are quantum circuits of depth log(n).  C boxes 
are classical circuits of depth polynomial in n. 

 
Figure 66. Q boxes are quantum circuits of depth 1.  C boxes are 
classical circuits of depth polynomial in n.  π boxes are measure-
ments in the standard basis. 
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computational problem which provably separates poly-
nomial depth quantum computations from the 
computations of the forms shown in either Figure 65 or 
Figure 66. Regular oracle separations between these 
types of computations were established in 2020 [3, 4], 
but it is not clear that those oracle separations are cryp-
tographically instantiable. Our strategy was to prove a 
new oracle separation based on a special type of oracle 
called a Random Oracle.  The significance of a Random 
Oracle separation, in this context, is that there exists a 
non-oracular instantiation of the same problem in which 
the random oracle is replaced by a cryptographic hash 
function, which is indistinguishable from a random ora-
cle under a widely known cryptographic assumption.  
This satisfies Aaronson’s stipulation that the computa-
tional problem must be concretely instantiable (it must 
be possible to write the problem statement down on pa-
per), rather than a “black box” oracle separation, in order 
to resolve his 9th semi-grand challenge in quantum com-
puting [2]. 

The computational problem that we construct is 
produced by recursively composing a new type of 
“proof of quantumness,” such as the version pioneered 
by Yamakawa and Zhandry [6].  Concretely, our prob-
lem asks: Given a particular type of error correcting 
code C on {0,1}𝑛𝑛⋅𝑚𝑚  specified by its generator matrix, 
and a hash function H mapping {0,1}𝑛𝑛 → {0,1} which is 
specified as the composition of d separately provided 
hash functions, FIND a bit string in  𝑥𝑥 ∈ {0,1}𝑛𝑛⋅𝑚𝑚  which 
lies in the error correcting code C, and has the property 
that all m length n substrings of x are mapped to 0 by the 
hash function H. The polynomial time quantum algo-
rithm to solve this search problem utilizes the quantum 
Fourier transform. At the level of techniques, the key 
contribution that we make is to prove that, because the 
hash function H is defined as a composition of d sepa-
rately provided hash functions, no quantum algorithm of 
depth less than d should make essentially “any progress” 
towards finding the answer. Since efficient classical 
query algorithms also cannot make progress toward 
solving the problem, setting d to be greater than the 
depth of the quantum circuits in Figure 65 (for example), 
will then resolve Aaronson’s 9th semi-grand challenge in 
quantum computing [2].  Proving all of this, despite the 
nuances of the hybrid quantum-classical model, is quite 
involved.  It required importing exponential hiding tech-
niques, and other techniques used [3, 4], as well as 
developing a new technique which we call “shadow or-
acles.” We also explore a variety of other ways to 
compose quantum and classical circuits beyond Figure 
65 and Figure 66 and show that our techniques yield re-
sults about those new classes as well. 

[1] R. Jozsa. An Introduction to Measurement Based Quan-
tum Computation. In Quantum Information Processing 
(D. G. Angelakis, et al., eds.), IOS Press, 2006, 137-158. 

[2] S. Aaronson. Ten Semi-Grand Challenges for Quantum 
Computing Theory. 2005. URL: https://www.scot-
taaronson.com/writings/qchallenge.html 

[3] M. Coudron and S. Menda. Computations with Greater 
Quantum Depth Are Strictly More Powerful (Relative to 
an Oracle). In Proceedings of the 52nd Annual ACM 
SIGACT Symposium on Theory of Computing, 2020, 
889–901. DOI: 10.1145/3357713. 3384269 

[4] N.-H. Chia, K.-M. Chung and C.-Y. Lai. On the Need for 
Large Quantum Depth. In Proceedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing, 
2020. 902–915. DOI: 10.1145/3357713.3384291 

[5] A. S. Arora, et al. Quantum Depth in the Random Oracle 
Model. In Proceedings of the 55th Annual ACM SIGACT 
Symposium on Theory of Computing, 2023, to appear.   

[6] T. Yamakawa and M. Zhandry. Verifiable Quantum Ad-
vantage without Structure. Preprint arXiv:2204.02063 
URL: http://arxiv.org/abs/2204.02063 

Local Hamiltonians with No Low-
Energy Stabilizer States 
Matthew Coudron 
Nolan J. Coble (University of Maryland) 
Jon Nelson (University of Maryland) 
Seyed Sajjad Nezhadi (University of Maryland) 

The recently-defined No Low-energy Sampleable States 
(NLSS) conjecture of Gharibian and Le Gall [1] posits 
the existence of a family of local Hamiltonians where all 
quantum states of low-enough constant energy do not 
have succinct representations allowing perfect sampling 
access. States that can be prepared using only Clifford 
gates (i.e., stabilizer states) are an example of sam-
pleable states, so the NLSS conjecture implies the 
existence of local Hamiltonians whose low-energy 
space contains no stabilizer states. In our work, [3], we 
take a step towards the NLSS conjecture by constructing 
families of Hamiltonians that exhibit this requisite “no 
low-energy stabilizer states” property.   

Our construction works via a simple alteration to lo-
cal Hamiltonians corresponding to CSS codes. Our 
method can also be applied to the recent No Low-energy 
Trivial States (NLTS) Hamiltonians of Anshu, Breuck-
mann, and Nirkhe [2], resulting in a family of local 
Hamiltonians whose low-energy space contains neither 
stabilizer states nor trivial states. We hope that our tech-
niques will eventually be helpful for constructing 
Hamiltonians which simultaneously satisfy NLSS and 
NLTS. 

To understand the motivation behind our work it is 
important to take a step back and note that each of the 
conjectures in this particular branch of Hamiltonian 
complexity, including the NLTS conjecture, the NLSS 
conjecture, and many others, are all attempts to gain in-
sight into a very widely known open problem in the field 
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called the Quantum Probabilistically Checkable Proof 
(PCP) conjecture.  Classical Probabilistically Checkable 
Proofs (PCPs) are considered to be one of the crowning 
achievements of modern theoretical computer science 
and have numerous emerging applications, from cryp-
tography (SNARKS) to hardness of approximation 
results.  The Quantum PCP conjecture, if resolved, could 
have analogous applications to quantum computing, and 
would also have implications for the possibility of ex-
perimentally producing entangled quantum states that 
remain coherent at high temperatures, among other 
things. The Quantum PCP conjecture itself is a complex-
ity theoretic claim about a computational problem 
involved in simulating quantum mechanical systems 
which are governed by a Hamiltonian.  Briefly put, the 
Quantum PCP conjecture postulates that it is QMA-hard 
(a computational hardness notion involving complexity 
classes) to approximate the ground state energy of a lo-
cal Hamiltonian to within a constant. This simple 
statement, if proven, could have all the widespread im-
plications discussed above, and the proof techniques 
would likely be valuable in and of themselves. However, 
a pre-requisite to proving that any problem is QMA-hard 
is to first prove that it cannot be solved in the smaller 
complexity class Non-Deterministic Polynomial Time 
(NP). This pre-requisite is the motivator for the NLTS 
conjecture, the NLSS conjecture, and for our own work.  
If the NLTS conjecture had been false, the ground state 
energy problem for local Hamiltonians would have been 
contained in NP. If the NLSS conjecture is false then the 
problem would be contained in a complexity class called 
MA, which is much smaller than QMA.   

Our result is a necessary pre-requisite of the NLSS 
conjectures, addressing the following important issue: 
The NLTS conjecture, while now proven, has only been 
proven with Hamiltonians whose ground state energy 
problem is clearly contained in MA because the ground 
states are stabilizer states and therefore efficiently sam-
pleable (the exact reasoning behind all of these 

connections is non-trivial and is laid out in [1], where 
the NLSS conjecture was first stated). 
     At the level of techniques, we contribute a conceptu-
ally simple new procedure in which we begin with a 
regular local Hamiltonian and modify it by conjugating 
it (multiplying on either side) by low depth quantum cir-
cuit as shown in Figure 67. Part (a) of Figure 67 
illustrates a generic low-depth quantum circuit C, com-
prised of a constant number of layers of quantum gates.  
Part (b) of Figure 67 illustrates what happens when a lo-
cal Hamiltonian term 𝐻𝐻𝑖𝑖   is conjugated by the low-depth 
quantum circuit C.  A local Hamiltonian which is conju-
gated by a constant depth quantum circuit remains a 
local Hamiltonian since its Hamiltonian properties are 
preserved by the unitarity of the quantum circuit, and its 
locality is only increased by the spread of the “light 
cones” within the circuit C which originate from one 
particular Hamiltonian term (these are the gates colored 
orange in part (b) of Figure 67).  Since C is constant 
depth, the increase in the locality of the Hamiltonian is 
merely constant.  In [3] we are able to show, through a 
series of combinatorial arguments that, if we take the lo-
cal Hamiltonian from known constructions of quantum 
Low Density Parity Check (LDPC) error correcting 
codes and conjugate those Hamiltonians by a π/8 rota-
tion on every qubit (which is a low depth circuit), then 
no stabilizer state can have low energy relative to the 
resulting Hamiltonian.  Since the resulting Hamiltonian 
must still be local, by the above argument and Figure 67, 
the desired result follows.  We are hopeful that these 
techniques will prove useful in further extending known 
NLTS results to more general settings. 
[1] S. Gharibian and F. Le Gall. Dequantizing the Quantum 

Singular Value Transformation: Hardness and Applica-
tions to Quantum Chemistry and the Quantum PCP 
Conjecture. In Proceedings of the 54th Annual ACM 
SIGACT Symposium on Theory of Computing, June 2022, 
19–32. DOI: 10.1145/3519935.351999 

[2] A. Anshu, N. Breuckmann, and C. Nirkhe. NLTS Hamil-
tonians from Good Quantum Codes. June 2022, preprint 
arXiv:2206.13228. URL: http://arxiv.org/abs/2206.13228 

[3] N. J. Coble, M. Coudron, J. Nelson, and S. Sajjad 
Nezhadi. Local Hamiltonians with No Low-energy Stabi-
lizer States. In: Proceedings of the TQC 2023, to appear. 

Error-Correction Zoo 
Victor V. Albert 
Philippe Faist (Freie Universität Berlin) 

Classical and quantum error correction lies at the inter-
section of computer science, engineering, physics, and 
mathematics. Classical coding theory has been around 
for over 70 years, yielding an enormous literature col-
lection. Quantum error correction is more recent but 
arguably more diverse, encompassing subfields from 

 
Figure 67. Conjugation method for modifying local Hamiltonians.  
See text for discussion. 
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solid-state physics to complexity theory. Collecting and 
accurately synthesizing such a hyper-field is as formida-
ble as it is useful. 

We have created and actively maintain the Error 
Correction Zoo [1] to categorize and organize known 
classical and quantum error-correction schemes. The 
work involved is taxonomic, i.e., collecting and pro-
cessing literature as well as developing a classification 
scheme for the thousands of available classical and 
quantum error-correcting codes. 

Code entries form the primary content of the zoo. 
An entry can be a specific instance of a well-known code 
or a large family of codes, depending on community in-
terest. The idea is to have a dedicated up-to-date 
webpage for each family, collecting original work, re-
lated protocols, and real-world implementations. Codes 
are organized into kingdoms by alphabet (or Hilbert 
space structure in the quantum case), with “parent” and 
“cousin” fields listing notable relations and connections. 
At the time of writing, there are 436 entries. 

[5] V. V. Albert and P. Faist. The Error-Correction 
Zoo. URL: https://errorcorrectionzoo.org 

Modern Quantum Tools for Bosonic 
Systems 
Victor V. Albert 
Joseph T. Iosue (University of Maryland College Park) 
Kunal Sharma (IBM) 
Michael J. Gullans (NIST PML)  
Eric Culf (University of Ottawa) 
Thomas Vidick (Weizmann Institute of Science) 
Yijia Xu (University of Maryland College Park) 
Yixu Wang (University of Maryland College Park) 
En-Juo Kuo (University of Maryland College Park) 

Utilization of the features of quantum mechanics prom-
ises to eventually increase our understanding of 
chemical processes, communicate securely, and accu-
rately measure signals. However, most quantum 
protocols are focused on the abstract qubit (i.e., discrete-
variable or DV) systems, and many of them cannot be 
readily available to continuous-variable (CV) systems 
— optical fibers, free-space communication, microwave 
and optical cavities, motional degrees of freedom of at-
oms and ions, and mechanical resonators—without 
substantial reformulation. 

For example, quantum tomography is a field con-
cerned with characterizing quantum systems, an 
important task whose completion is necessary for real-
izing most of the aforementioned long-term goals. 
However, tomography of quantum many-body systems 
is plagued with the “exponential wall”—the fact that 
complete characterization of a state or operation on a 

many-qubit quantum system requires either a computa-
tion time or a memory size that scales exponentially with 
the number of qubits. An active area of research is thus 
devoted to developing efficient protocols for such tasks. 
A recent breakthrough result called shadow tomography 
has substantially simplified the task of approximating 
quantum systems [1]. However, it is unclear how to de-
velop similar important tools in CV systems because 
qubit shadows revolved around the notion of state de-
signs, which have not, up to now, existed in the CV 
world.  

For another example, fiber-based and free-space 
communication are described by CV systems, so devel-
opment of secure CV protocols is critical to realizing 
quantum communication in the real world. However, 
there is a tradeoff between provable security and ease of 
use, as some of the simplest CV protocols are not device 
independent, i.e., such protocols cannot be securely im-
plemented without additional knowledge that the 
devices involved are also secure. 

Members of Victor’s group at QuICS, along with 
collaborators around the world, are spearheading a new 
research direction to extend state-of-the-art qubit-based 
tomographic, error-correction, and cryptographic quan-
tum protocols to CV systems in the following ways. 
• Theory of appropriately defined CV state designs, 

and their applications to design-based CV shadow 
tomography [2]. These results are the first to extend 
the notion of a design (a.k.a. quadrature or summa-
tion rule) to infinite-dimensional spaces and are 
expected to have other applications to state distinc-
tion, randomized benchmarking, entanglement 
detection, fidelity estimation, cryptography, sens-
ing, fundamental physics, and error correction. 

• One-sided device-independent cryptographic pro-
tocol utilizing squeezed states whose proof of 
security is based on a CV extension of DV monog-
amy-of-entanglement games [3]. This work 
establishes this well-known protocol as the first 
one-sided device-independent CV protocol, to the 
authors’ knowledge. 

• Unified decoding framework for concatenated DV 
and CV error-correcting codes [4]. 

• Review of bosonic coding [5] for computer scien-
tists and others outside of physics. 

[1] H.-Y. Huang, R. Kueng, and J. Preskill. Predicting Many 
Properties of a Quantum System from Very Few Meas-
urements. Nature Physics 16 (2020), 1050. DOI: 
10.1038/s41567-020-0932-7 

[2] J. T. Iosue, K. Sharma, M. J. Gullans, and V. V. Albert. 
Continuous-variable Quantum State Designs: Theory and 
Applications. Preprint arxiv;2211.05127, 2022. 

[3] E. Culf, T. Vidick, and V. V. Albert. Group Coset Mo-
nogamy Games and an Application to Device-
Independent Continuous-variable QKD. Preprint 
arXiv:2212.03935, 2022. 

https://errorcorrectionzoo.org/
http://doi.org/10.1038/s41567-020-0932-7
https://arxiv.org/abs/2211.05127
https://arxiv.org/abs/2212.03935
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[4] Y. Xu, Y. Wang, E.-J. Kuo, and V. V. Albert. Qubit-Os-
cillator Concatenated Codes: Decoding Formalism and 
Code Comparison. Preprint arXiv:2209.04573, 2022. 

[5] V. V. Albert. Bosonic Coding: Introduction and Use 
Cases. Preprint arXiv:2211.05714, 2022. 

Provable Accurate Machine 
Learning Algorithms for the 
Quantum Many-body Problem 
Victor V. Albert  
Hsin-Yuan Huang (Caltech)  
Richard Kueng (Johannes Kepler University Linz)  
Giacomo Torlai (Amazon AWS)  
John Preskill (Caltech) 

Solving quantum many-body problems, such as finding 
ground states of quantum systems, has far-reaching con-
sequences for physics, materials science, and chemistry. 
Classical machine learning (ML) has emerged as a pow-
erful approach to solving such problems. However, the 
advantages of ML over more traditional methods have 
not been firmly established, reflecting the relative pau-
city of rigorous theory in ML. 

On the other hand, engineered quantum devices are 
believed to efficiently simulate quantum systems of in-
terest, thereby helping solve many-body problems. 
Today’s noisy intermediate-scale devices do not have 
the capabilities to simulate a system in perfect error-cor-
rected fashion, but nevertheless should encode useful 
bits of data about properties of interesting many-body 
systems. However, since many-body states require ex-
ponential (in the number of qubits) memory to be stored 
exactly, it is unclear how to distill and utilize useful bits 
from noisy experimental data even at intermediate scale.  

Our work [1] combines the best of both the ML and 
quantum worlds, distilling quantum experimental data 
and utilizing it with provably efficient ML algorithms. 
We prove that classical ML algorithms can efficiently 
reveal properties of quantum many-body states associ-
ated with physical systems. In order to circumvent the 
exponential memory requirement, we devise a way to 
feed memory-efficient classical snapshots [2] of many-
body states — obtained either from experiment or from 
another classical device — into ML algorithms. We in-
troduce and numerically test ML algorithms for 
classifying and extrapolating properties of many-body 
systems and derive information-theoretic bounds on 
their efficiency.  

Viewed from a broader perspective, by illustrating 
how experimental data can be exploited to make accu-
rate predictions about features of quantum systems that 
have never been studied directly, our work exemplifies 
a potentially powerful methodology for advancing the 

physical sciences. With further theoretical develop-
ments, perhaps we can learn how to use experimental 
data that is already routinely available to accelerate the 
discovery of new chemical compounds and materials 
with remarkable properties that could benefit humanity. 
This work was accepted as a plenary talk at QIP 2022, 
the most prestigious conference in quantum information 
science.  

[1] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. 
Preskill. Provably Efficient Machine Learning for Quan-
tum Many-Body Problems. Science 377 (2022), 
eabk3333. DOI: 10.1126/science.abk3333 

[2] H.-Y. Huang, R. Kueng, and J. Preskill. Predicting Many 
Properties of a Quantum System from Very Few Meas-
urements. Nature Physics 16 (2020), 1050. DOI: 
10.1038/s41567-020-0932-7 

Provably Accurate Quantum 
Simulation of Gauge Theories and 
Bosonic Systems 
Victor V. Albert 
Yu Tong (Google & UC Berkeley) 
Jarrod R. McClean (Google) 
John Preskill (Caltech) 
Yuan Su (Google) 

Many quantum many-body systems of interest consist of 
lattices of particles that can occupy states of arbitrarily 
high energy. Their infinite-dimensional local Hilbert 
spaces must be truncated in order to perform simulations 
of real-time dynamics on classical or even quantum 
computers. To analyze errors resulting from such trun-
cation, we develop [1,] methods for bounding the rate of 
growth of local quantum numbers such as the occupa-
tion number of a mode at a lattice site, or the electric 
field at a lattice link. We show that, if these models are 
truncated by imposing an upper limit Λ on each local 
quantum number (analogue of energy), a truncation er-
ror no worse than 𝜖𝜖 can be achieved by choosing Λ to 
increase polylogarithmically with 𝜖𝜖−1, an exponential 
improvement over previous rigorous bounds.  

Although formally the local Hilbert spaces are infi-
nite-dimensional in the models we considered, our 
results show that, at least for some purposes, these mod-
els can be accurately approximated by models with 
finite-dimensional local Hilbert spaces of relatively 
modest size. Many fundamental results have been de-
rived for quantum spin systems with finite-dimensional 
spins on each lattice site, and perhaps the tools we have 
developed can be exploited to extend some of these re-
sults to systems with infinite-dimensional local degrees 
of freedom. This work was accepted as a talk at QIP 
2022, the most prestigious conference in quantum infor-
mation science. 

https://arxiv.org/abs/2209.04573
https://arxiv.org/abs/2211.05714
https://doi.org/10.1126/science.abk3333
http://doi.org/10.1038/s41567-020-0932-7
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[1] Y. Tong, V. V. Albert, J. R. McClean, J. Preskill, and Y. 
Su. Provably Accurate Simulation of Gauge Theories and 
Bosonic Systems. Quantum 6 (2022), 816. DOI: 
10.22331/q-2022-09-22-816 

Standards for Characterizing 
Quantum Phases 

Victor V. Albert  

Today’s quantum devices are capable of producing ex-
otic quantum many-body states, but their verification is 
problematic due to several challenges:  

1. the exponential memory requirement for perfect 
storage of a quantum state, 

2. a paucity of local observables (“order parame-
ters”) whose expectation values characterize the 
zoo of quantum phases of matter, and 

3. a lack of rigorous guarantees on the ability and ef-
ficiency of using existing order parameters to 
characterize said phases.  

I have begun a multi-prong effort to resolve these 
three challenges. The first challenge can be tackled us-
ing efficient classical snapshots of a quantum state 
called classical shadows [1]. Armed with such classical 
descriptions, the goal now is to develop methods to ex-
tract from such descriptions the coarse-grained phase 
properties of their parent quantum states. We have made 
some progress along this direction with the help of ma-
chine learning algorithms [2], but an intuitive 
understanding of such processes is yet to be fleshed out.  

My collaborators and I have made progress on the 
second issue, concocting an invariant that helps charac-
terize properties of a subset of “topological” many-body 
states with robust edge excitations [3, 4]. The electronic 
quantum system exhibiting the quantum Hall effect is an 
example of such a phase, and its “topologically pro-
tected” edge currents have been used to determine 
values of fundamental physical constants. Robust edge 
excitations are characterized by a topological invariant 
called the chiral central charge, and, until our work, it 
was not known how to extract this quantity from a single 
copy of a physical many-body wavefunction. This work 
was accepted as a single-track talk at QIP 2022, the most 
prestigious conference in quantum information science.  

I have also begun a journal club discussion at the 
University of Maryland College Park on the difficult 
third issue, bringing together experts from quantum 
computer science and topological quantum phases of 
matter.  

[1] H.-Y. Huang, R. Kueng, and J. Preskill. Predicting Many 
Properties of a Quantum System from Very Few Meas-
urements. Nature Physics 16 (2020), 1050. DOI: 
10.1038/s41567-020-0932-7 

[2] H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. 
Preskill. Provably Efficient Machine Learning for Quan-
tum Many-Body Problems. Science 377 (2022), 
eabk3333. DOI: 10.1126/science.abk3333 

[3] I.  H. Kim, B. Shi, K. Kato, and V. V. Albert. Chiral Cen-
tral Charge from a Single Bulk Wave Function. Physical 
Review Letters 128 (2022), 176402. DOI: 
10.1103/PhysRevLett.128.176402 

[4] I. H. Kim, B. Shi, K. Kato, and V. V. Albert. Modular 
Commutator in Gapped Quantum Many-Body Systems. 
Physical Review B 106 (2022), 075147. DOI: 
10.1103/PhysRevB.106.075147 

Tests of Quantumness and Quantum 
Computational Advantage 
Yi-Kai Liu 
Lucas T. Brady (NASA Ames Research Center) 
Jacob Bringewatt (University of Maryland) 
Rushil Dandamudi (University of Maryland) 
Luis Pedro Garcia-Pintos (University of Maryland) 
Dominik Hangleiter (University of Maryland) 
Atul Mantri (University of Maryland) 
Joel Rajakumar (University of Maryland) 
James Watson (University of Maryland) 

We, as humans, are macroscopic entities that can only 
process classical information. For us, the development 
of quantum computers raises a fundamental question: 
how can we test a quantum device, using only its classi-
cal inputs and outputs? In particular, how can we test 
whether a quantum device is really behaving “quan-
tumly,” in the sense that its behavior could not have been 
reproduced by a device obeying classical physics? How 
can we test whether a device is correctly performing a 
quantum computation that cannot be simulated effi-
ciently on a classical computer? 

We are investigating several theoretical approaches 
to answering these questions. One approach uses quan-
tum speed limits, which upper-bound the speed at which 
a quantum system can evolve, in terms of mathematical 
properties of the Hamiltonian and the quantum state of 
the system [1]. These speed limits can potentially be 
used to rule out the possibility of a quantum computa-
tional advantage when running quantum adiabatic 
optimization algorithms. Here the speed limits provide a 
converse to the adiabatic theorem: they say that the al-
gorithm must fail if one runs it too fast. In addition, these 
speed limits can potentially be used for benchmarking 
analog quantum simulators, and for detecting the pres-
ence of noise and decoherence in these devices. This is 
because loss of coherence makes it harder for a system 
to perform a fast unitary time-evolution.  

Another approach uses classical algorithms for sim-
ulating noisy, low-depth quantum circuits. Such 
simulations can be used to rule out the possibility of 

https://doi.org/10.22331/q-2022-09-22-816
http://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1126/science.abk3333
https://doi.org/10.1103/PhysRevLett.128.176402
https://doi.org/10.1103/PhysRevB.106.075147
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achieving a quantum computational advantage on some 
present-day and near-future quantum devices. To this 
end, we are investigating classical algorithms based on 
resource theories of coherence, and Monte Carlo sam-
pling from quasiprobability distributions, in order to 
simulate low-depth quantum circuits with strong 
dephasing noise [2]. 

Yet another approach uses interactive protocols and 
techniques from computationally secure cryptography, 
such as trapdoor claw-free functions. We are developing 
improved protocols of this type, using cryptosystems 
based on the hardness of solving systems of multivariate 
quadratic equations over finite fields. 

Finally, we are developing a new approach to test-
ing quantum simulators, using “trapdoor Hamiltonians.” 
Our goal is to construct Hamiltonians that can be simu-
lated efficiently on a quantum computer, but seem hard 
to simulate on a classical computer, unless one knows a 
certain piece of information, called the “trapdoor.” (This 
is loosely analogous to trapdoor one-way functions in 
cryptography.) 
[1]  L. P. García-Pintos, L. T. Brady, J. Bringewatt and Y.-

K. Liu. Lower Bounds on Quantum Annealing Times. 
Physical Review Letters, to appear. Preprint, 
arXiv:2210.15687. URL: https://arxiv.org/abs/2210.15687 

[2] J. Rajakumar, J. Watson and Y.-K. Liu. In preparation. 

Post-Quantum Cryptography 
Yi-Kai Liu 
Gorjan Alagic (NIST ITL) 
Lily Chen (NIST ITL) 
David Cooper (NIST ITL) 
Quynh Dang (NIST ITL) 
Thinh Dang (NIST ITL) 
John Kelsey (NIST ITL) 
Jacob Lichtinger (NIST ITL) 
Carl Miller (NIST ITL) 
Dustin Moody (NIST ITL) 
Rene Peralta (NIST ITL) 
Ray Perlner (NIST ITL) 
Angela Robinson (NIST ITL) 
Daniel Smith-Tone (NIST ITL) 

Since 2016, NIST has been leading an open, competi-
tion-like process to develop standards for post-quantum 
cryptography (PQC). The goal is to standardize new 
schemes for public-key encryption, key establishment, 
and digital signatures, in order to replace existing 
schemes that would be vulnerable to cryptanalysis using 

 
17 https://csrc.nist.gov/Projects/pqc-dig-sig/standardization  
 
18 https://csrc.nist.gov/events/2022/fourth-pqc-standardization-con-
ference 

quantum computers, such as RSA, Diffie-Hellman, and 
elliptic curve cryptosystems. While large quantum com-
puters have not yet been built, NIST believes it is 
prudent to begin preparing for that possibility. These 
new post-quantum cryptosystems will be crucial for se-
cure web browsing, digital certificates, and secure 
software updates, and many other applications. 

During this process, NIST and the cryptography 
community have evaluated many proposed post-quan-
tum cryptosystems, based on high-dimensional lattices, 
error-correcting codes, systems of multivariate polyno-
mial equations, elliptic curve isogenies, hash functions, 
and other mathematical objects. This evaluation covered 
many topics, including fundamental research on crypta-
nalysis, estimates of the security strength of the 
schemes, measurements of their practical performance 
in real world use-cases, and potential obstacles to adop-
tion of these schemes, such as concerns about 
intellectual property.  

In July 2022, NIST reached a milestone in this pro-
cess: after three rounds of evaluation, NIST selected a 
public-key encryption and key establishment algorithm 
(CRYSTALS-Kyber), and three digital signature 
schemes (CRYSTALS-Dilithium, Falcon and 
SPHINCS+), for standardization [1]. These schemes 
rely heavily on lattice-based cryptography (except for 
SPHINCS+, which is a stateless hash-based signature 
scheme). They are expected to be satisfactory in a wide 
range of use cases. NIST expects to publish and solicit 
public comments on the draft standards in 2023.  

NIST is also continuing its evaluation process and 
may select additional cryptosystems for standardization 
in the future, in order to mitigate the risk of unexpected 
advances in cryptanalysis, and to support use-cases that 
require cryptosystems with special properties. For this 
purpose, NIST has selected four key establishment algo-
rithms (BIKE, Classic McEliece, HQC and SIKE) for a 
fourth round of evaluation [1]. NIST has also issued a 
new call for proposals, for additional signature 
schemes17.  

To engage with the post-quantum cryptography 
community and other stakeholders, NIST held its Fourth 
PQC Standardization Conference, on Nov. 29-Dec. 1, 
2022, online18. NIST is also working with industry on 
PQC migration issues, through the National Cybersecu-
rity Center of Excellence (NCCoE)19. 

[1] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. M. 
Kelsey, J. Lichtinger, Y.-K. Liu, C. A. Miller, D. Moody, 
R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone. 
Status Report on the Third Round of the NIST Post-Quan-
tum Cryptography Standardization Process. NISTIR 
8413-upd1, September 2022, 102 pages. DOI: 
10.6028/NIST.IR.8413-upd1 

19 https://www.nccoe.nist.gov/crypto-agility-considerations-migrat-
ing-post-quantum-cryptographic-algorithms 
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https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/events/2022/fourth-pqc-standardization-conference
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NIST Quantum Network Testbed 
Efforts 
Oliver Slattery 
Thomas Gerrits 
Lijun Ma 
Anouar Rahmouni 
Yicheng Shi 
Nijil Lal 
Paulina Kuo 
Xiao Tang 
Alan Mink 
Ya-Shian Li-Baboud (NIST ITL) 
Alan Migdall (NIST PML) 
Sergey Polyakov (NIST PML) 
Josh Bienfang (NIST PML) 
Ivan Burenkov (NIST PML) 
Neil Zimmerman (NIST PML) 
Dhananjay (DJ) Anand (NIST CTL) 
Abdella Battou (NIST CTL) 
Amar Abane (NIST CTL) 
Abderrahim Amlou (NIST CTL) 
Lydia Ait Oucheggou (NIST CTL) 
Mheni Merzouki (NIST CTL) 
Jabir MV (NIST CTL), 
Laura Sinclair (NIST, CTL) 

The NIST Gaithersburg Quantum Network (NG-QNet), 
shown in Figure 68, is a suite of testbeds being built on 

or connected to the NIST Gaithersburg campus to im-
plement and characterize various aspects of quantum 
networks (QN) while keeping NIST’s core metrology 
mission as fundamental to our approach. The testbeds 
are being developed collaboratively by NIST’s ITL, 
CTL and PML laboratories and incorporates regional 
federal government and industry partners.  

The NG-QNet includes the Platform for Quantum 
Network Innovation (PQNI), the Quantum Component 
Characterization Testbed, the Quantum Network Grand 
Challenge (QNGC), the Quantum Network Time Syn-
chronization Testbed and the DC regional QN testbed 
(DC-QNet). The testbeds of the NG-QNet are currently 
being used to implement a comprehensive research, de-
velopment and experimental program which includes: 
develop and test QN capabilities (such as entangled pho-
ton sources, interfaces, detectors); implement various 
foundational QN processes such as polarization and 
phase stabilization, node-synchronization and link char-
acterization (including for noise, losses, vulnerabilities 
(such as eavesdroppers) and robustness); develop and 
test QN control architectures; study classical/quantum 
co-existence; and (as appropriate in the future) incorpo-
rate complex quantum systems such as quantum 
memories and repeaters. Ultimately, the effort will pur-
sue QN experiments such as entanglement distribution, 
entanglement swapping and teleportation and will target 
applications such as distributed quantum computing, 
quantum communications and quantum sensing. The 

 
Figure 68. NG-QNet overview and connection to the DC-QNet. 
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NG-QNet will also include a dedicated facility to serve 
as the NIST node of the DC-QNet.  

The DC-QNet, shown in Figure 69, is a consortium 
of six DC-area federal agencies coming together to 
build a real-life regional QN testbed to advance cooper-
ation among federal agencies in QN research and 
development. It will be a non-proprietary environment 
for test and evaluation of QN concepts, components, 
protocols, and architectures developed both within and 
beyond the member agencies. It will enable cross-cut-
ting agency synergy in sensor development, secure 
communications, distributed computing, and other use 
case applications. The DC-QNet was codified by an in-
teragency MOU on May 18th, 2022. The six agencies 
are: Naval Research Laboratory (NRL), Army Research 
Laboratory (ARL), National Institute of Standards and 
Technology (NIST), Laboratory for Telecommunication 
Sciences (LTS), US Naval Observatory (USNO) and 
National Aeronautics and Space Administration 
(NASA). The NASA hosted website for the DC-QNet 
can be viewed at https://esc.gsfc.nasa.gov/partner-
ships/DC-QNet.  

 
20 https://www.nist.gov/news-events/news/2022/06/dc-area-us-gov-
ernment-agencies-announce-washington-metropolitan-quantum 

Quantum Network and Component 
Metrology  
Thomas Gerrits 
Oliver Slattery  
Anouar Rahmouni  
Yicheng Shi 
Paulina Kuo  
Lijun Ma  
Xiao Tang  
Nijil Lal  
Ya-Shian Li-Baboud (NIST ITL) 
Dhananjay Anand (NIST CTL)  
Abdella Battou (NIST CTL)  
Amar Abane (NIST CTL) 
Abderrahim Amlou (NIST CTL) 
Lydia Ait Oucheggou (NIST CTL) 
Mheni Merzouki (NIST CTL) 
Jabir Marakkarakath Vadakkepurayil (NIST CTL) 
Alan Migdall (NIST PML)  
Sergey Polyakov (NIST PML)  
Josh Bienfang (NIST PML) 
Ivan Burenkov (NIST PML) 

Summary. The Quantum Network and Component Me-
trology Project focusses on the characterization of 
quantum network links, components, and protocols. 
Measurement protocols and tools are developed in our 
lab and deployed in the DC-QNet20 and our NIST 
Gaithersburg quantum network testbed (NG-QNet). We 
collaborate with researchers across different OUs (PML, 
ITL and CTL) as well as with researchers from other 
government agencies. Our project also considers meas-
urement challenges for single-photon devices and 
components, and therefore works closely with compa-
nies within the QED-C21 on component characterization 
and solving measurement challenges [1]. Last year’s 
highlights are summarized below: A demonstration to 
synchronize quantum network nodes to below 200 ps 
over 128 km distance, distribute entanglement over 
more than 130 km distance, and measure wavelength-
dependent loss in optical fibers with some surprising re-
sults.  

 
21 Quantum Economic Development Consortium (QED-C): 
https://quantumconsortium.org/ 

 
Figure 69.  DC-QNet map and DC-QNet member logos. 
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Quantum Network Node Synchronization. High pre-
cision synchronization is essential for any quantum 
network architecture and quantum network metrology. 
Since optical fibers transport ‘flying’ qubits at almost 
the speed of light, precise (picosecond) time stamping 
through the whole network is a requirement. Compared 
to classical networks, these synchronization require-
ments are orders of magnitudes more stringent. Here, we 
used a two-level White Rabbit Switch (WRS) architec-
ture with one grandmaster (GM) and two boundary 
clocks (BCs) and show sub-200 ps synchronization be-
tween the grandmaster and the final BC, which are 
separated by 128 km through a link between NIST and 
the Laboratory for Telecommunication Sciences in Col-
lege Park, MD. Figure 70(a) shows our experimental 
setup. A 64 km link is established between the 
grandmaster WRS and the first boundary clock WRS. 
The first boundary clock WRS redistributes its high-ac-
curacy precision time protocol (HA-PTP) to a second 
boundary clock, which is at the same location as the 
grandmaster (at NIST). This architecture allows the time 
delay between the 10 MHz grandmaster clock and sec-
ond boundary clock to be measured using a low-jitter 
time tagger. Figure 70(b) shows the leader-follower path 
delay between the first and second boundary clock (blue 
line) and the ambient outside temperature (orange line). 
The leader-follower path delay appears to correlate with 
the ambient outside temperature and its value changes 
by about 50 ns peak-to-peak, while the ambient outside 
temperature varies by about 15° C. Figure 70(c) shows 
the total grandmaster to second boundary clock delay vs. 
time, i.e. representing the synchronization error over the 
architecture’s total link length of 128 km. The peak-to-
peak variation is less than 200 ps. 

These results show promise for metropolitan-scale 
quantum network node synchronization. Quantum com-
munication protocols requiring single-photon 
interference with nanosecond photon coherence times 
should be achievable. In the upcoming year we will in-
vestigate several methods to further improve the 
synchronization error. 

Entanglement Distribution. Entanglement distribution 
will be a key service in future quantum networks. Dur-
ing entanglement distribution, quantum information is 
carried by photons traveling over optical fibers from a 
central source to client nodes separated by long dis-
tances. The quality of the entanglement distributed to the 
nodes is limited by loss, noise, polarization mode dis-
persion, and cumulative transmission time fluctuations, 
all of which must be mitigated to offset their detrimental 
effects.  

 
Figure 70. (a) NIST-LTS link. A 1 km link within NIST connects the 
lab to the NIST quantum network hub. A 59 km link connects the 
NIST campus to the University of Maryland campus, where a further 
4 km connection is made to LTS. (b) Leader-follower path delay 
(blue line) vs. time (date in 2022) between the first boundary clock 
at LTS and the second boundary clock at NIST. The outside ambient 
temperature (red line) is also shown. The grey shaded areas repre-
sent some degree of cloud cover, mist, or fog in the region of 
deployed fiber. White areas represent clear skies. (c) Total grand 
master to second boundary clock delay vs. time.  

 
Figure 71. Experimental results for coexistence. (a.1) [(b.1)] Po-
larization entanglement fringes as measured without [with] the 
additional HA-PTP signal in the quantum fiber (2 s integration 
time). (a.2) [(b.2)] Tomography of polarization entangled state 
without [with] the additional HA-PTP signal in the quantum fiber.  

 
Figure 72. Experimental results for long-distance entanglement 
distribution. Polarization entanglement fringes for a 136 km node 
separation using our mobile polarization entangled photon source 
and receivers.   
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We were able to demonstrate the co-existence of the 
node synchronization protocol with the quantum signal 
on a single link, which can improve transmission delay 
measurements and reduce deployment costs. Further-
more, we demonstrated the distribution of polarization 
entanglement over 136 km distance. Combined with our 
quantum network node synchronization effort outlined 
above, we are planning to distribute polarization entan-
gled photons throughout the DC-QNet metropolitan 
network this upcoming year.  

Figure 71(a.1) shows polarization entanglement 
visibility fringes between two laboratories at NIST (sep-
arated by approximately 250 m) without coexistence of 
the classical synchronization HA-PTP protocol. Figure 
71(b.1) shows the entanglement fringes with a coexist-
ing synchronization signal in the same fiber as the 
quantum signal. Figure 71a.2 (2b.2) shows the tomo-
graphic reconstruction of the density matrix and a state 
purity of 0.91 (0.80) with (without) the coexisting HA-
PTP signal in the quantum fiber. These results show that 
coexistence of a classical HA-PTP for picosecond level 
synchronization of distant nodes and quantum signals 
for entanglement distribution in the same optical fiber is 
possible. The entanglement visibility reduction with 
classical time synchronization co-existence is due to a 
combination of additional channel loss and extra noise.  

Figure 72 shows polarization entanglement distri-
bution through 136 km of optical fiber. The quantum 
light was sent through fiber spools located in the same 
laboratory as the photon source. The fringe visibility 
was high (97.3 %) and only slightly reduced from the 
99.0 % fringe visibility for short (10 m fiber) distance. 

The above results show promise for entanglement 
distribution within the DC-QNet metropolitan distances 
at rates that are sufficient to investigate various entan-
glement routing protocols, the effect of noise, 
polarization stability and loss in the deployed fiber links 
between two distant sites. 

Single-Photon OTDR. A future quantum network will 
require efficient characterization of the losses to validate 

the fiber-link’s performance. Conventional optical time-
domain reflectometry (OTDR) is one of the most used 
techniques for characterization of fiber-link loss. Pho-
ton-counting OTDR (ν-OTDR) using a single-photon 
detector has been demonstrated at the telecommunica-
tion wavelengths at 1310 and 1550 nm. We developed a 
new approach allowing us to cover a wavelength range 
from 1000 nm to 1850 nm based on our pulsed super-
continuum laser. 

Figure 73 shows a surprising ν-OTDR results. We 
measured a combination of two fiber spools (25.4 and 
12.6 km in length) connected by a standard fiber con-
nector. The blue line in Figure 73 shows the fiber loss as 
a function of wavelength in dB/km. We observe typical 
fiber loss values, e.g., 0.4 dB/km@1310 nm and 0.2 
dB/km@1550 nm. The red line shows the connector 
loss, which increases significantly as a function of wave-
length and can be as high as 3 dB at a wavelength around 
1650 nm. In the coming year, we will perform a more 
detailed study on fiber connections vs. wavelength. This 
study should inform the design and connector choices 
for future quantum networks. 
[1] QED-C Single Photon Report: https://quantumconsor-

tium.org/single-photon-report 

Integrated Quantum Photonics 
Based on Thin-film Lithium Niobate 
Pavan Sesha Challa Kumar 
Paulina Kuo 

Performing quantum information processing using inte-
grated optics is an attractive alternative to processing 
using free-space or bulk optics because integrated optics 
offers compact size and monolithic construction for high 
repeatability and phase stability. One integrated-optics 
platform that is attracting increasing attention is thin-
film lithium niobate (TFLN) or lithium niobate on insu-
lator (LNOI). Lithium niobate (LiNbO3) is an interesting 
material because it offers multiple functions including 
waveguiding, electro-optic modulation and frequency 
conversion (the latter for entangled-photon-pair genera-
tion). Waveguides made from TFLN offer tight 
confinement for stronger frequency conversion and 
modulation that uses lower control voltages. Single-pho-
ton sources, photon routing and modulation can be 
performed on the TFLN same chip, and in some cases, 
cryogenic single-photon detectors can also be integrated 
together on the single TFLN chip [1]. 

We are working to develop the capability to fabri-
cate TFLN waveguides and devices using the NIST 
nanofabrication facility. Using commercially available 
TFLN substrates, we are developing patterning and 
etching recipes using e-beam lithography and induc-
tively coupled plasma (ICP) reactive ion etching (RIE). 

 
Figure 73. ν-OTDR results. Red line: connector loss, blue line: fi-
ber loss. Results for coexistence.  
 

https://quantumconsortium.org/single-photon-report
https://quantumconsortium.org/single-photon-report
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Our initial studies confirm the literature findings [2] that 
post-etch cleaning is very important for achieving low-
loss waveguides. We have been investigating waveguide 
and coupler designs using numerical modeling. We are 
also developing optical waveguide characterization fa-
cilities. In addition, we have performed numerical 
studies of sensitivity of TFLN waveguide frequency 
converters to fabrication imperfections [3]. Our goal is 
to develop a TFLN integrated-optics chip that can per-
form quantum measurements such as entanglement 
visibility or Bell-state measurements. 

[1] E. Lomonte, M. A. Wolff, F. Beutel, et al. Single-photon 
Detection and Cryogenic Reconfigurability in Lithium 
Niobate Nanophotonic Circuits. Nature Communications 
12 (2021), 6847. 

[2] G. Ulliac, V. Calero, A. Ndao, F.I. Baida, and M.-P. Ber-
nal. Argon Plasma Inductively Coupled Plasma Reactive 
Ion Etching Study for Smooth Sidewall Thin Film Lith-
ium Niobate Waveguide Application. Optical Materials 
53 (2016), 1. 

[3] P. S. Kuo. Noncritical Phasematching Behavior in Thin-
Film Lithium Niobate Frequency Converters. Optics Let-
ters 47:1 (2022), 54. 

Entangled Photon Pairs Based on 
Backward-Wave Spontaneous 
Parametric Downconversion 
Paulina Kuo 

Entangled photon pairs are a fundamental building block 
for quantum networking and quantum information. They 
are used for distributing entanglement and heralded sin-
gle-photon generation. Spontaneous parametric 
downconversion (SPDC) is a common method to pro-
duce entangled photon pairs, which can be performed 
using free-space or integrated-optics architectures.  We 

investigated a new way to generate entangled photon 
pairs using backward-wave (BW) SPDC. 

In conventional SPDC, the pump and downcon-
verted photons (the signal and idler) all propagate in the 
same direction. In BW SPDC, one of the downconverted 
photons (the idler) propagates in the direction opposite 
to the pump and signal (see Figure 74). This process re-
quires very small (less than 1 µm) poling period, which 
have been achieved in periodically poled KTiOPO4 
(PPKTP) [1].  

In our experiment [2], we used a PPKTP crystal 
with 500 nm poling period to obtain SPDC using 800 
nm pump, 1400 nm signal and 1870 nm idler. We de-
tected these photons using superconducting nanowire 
single-photon detectors (SNSPDs) and measured their 
spectra using a grating monochromator. Measured spec-
tra for BW SPDC are shown in Figure 75. We observed 
the downconverted signal and idler wavelengths using 
two different pump wavelengths (800 nm and 805 nm) 
and found that the idler has very narrow bandwidth and 
is nearly insensitive to changes in the pump wavelength, 
an effect that has been previously observed for BW op-
tical parametric oscillation [3]. Such spectral 
characteristics of the idler wave imply that spectral mod-
ulation of the pump beam is transferred to spectral 
modulation of the signal, which can be used for spectral 
shaping of the signal photons and enable spectrally 
shaped, heralded single photons. 

We believe that BW SPDC can be used as new 
source of entangled photon pairs with interesting prop-
erties including, (1) having the downconverted photons 

 
Figure 75.  Normalized BW SPDC spectra for 800-nm and 805-nm pumping. The idler wavelength is nearly insensitive to changing of the 
pump wavelength. 

 
Figure 74. Illustration of backward-wave SPDC, where the idler 
propagates in the direction opposite to the pump and signal. 
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emerge in two different direc-
tions, (2) offering a nearly 
separable joint spectral inten-
sity [4] and (3) enabling 
spectrally shaped, heralded 
single-photon generation. Fur-
ther work is in progress to 
study these properties. 

[1] C. Canalias, V. Pasis-
kevicius, R. Clemens, and F. 
Laurell. Submicron Periodi-
cally Poled Flux-grown 
KTiOPO4. Applied Physics 
Letters 82:24 (2003), 4233. 

[2] P. S. Kuo. Observation of 
Backward-Wave Spontaneous Parametric Downconver-
sion in Sub-µm PPKTP. In Technical Digest Series of 
Optica, Frontiers in Optics + Laser Science 2022, Roch-
ester, New York, October 17-20, 2022 

[3] A.-L. Viotti, F. Laurell, A. Zukauskas, C. Canalias, and 
V. Pasiskevicius. Coherent Phase Transfer and Pulse 
Compression at 1.4 μm in a Backward-wave OPO. Optics 
Letters 44:12 (2019), 3066. 

[4] A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn. 
Pure Single Photon Generation by Type-I PDC with 
Backward-wave Amplification. Optics Express 17:5 
(2009), 3441-3446. 

Silicon-Carbide-based Integrated 
Quantum Device Efforts 
Lijun Ma 
Anouar Rahmouni  
Oliver Slattery 
Thomas Gerrits 
Xiao Tang 
Yinxiao Xiang 
Qing Li (Carnegie Mellon University) 
Lutong Cai (Carnegie Mellon University) 
Michael Spencer (Morgan State University)  

Silicon carbide (SiC) has emerged as a promising mate-
rial for integrated quantum devices since it is CMOS 
compatible with favorable mechanical, electrical, ther-
mal, and photonic properties. To take full advantage of 
the unique material properties offered by SiC, we have 
worked with colleagues in Carnegie Mellon University 
on the development and characterization of prototypes 
of an entangled photon source based on a SiC micro-
ring.  

The device is based on a 4H-silicon-carbide-on-in-
sulator platform. A silicon dioxide (SiO2) layer provides 
isolation from the silicon substrate, and a compact 36-
µm-radius SiC micro-ring resonator is employed for the 
photon pair generation.  The optimized nanofabrication 

has resulted in optical quality factor (Q factor) above 1 
million for 36-µm-radius SiC micro-ring resonators.  

We have experimentally demonstrated photon pair 
generation from spontaneous four wave mixing 
(SFWM) in the telecom wavelength band (1550 nm) on 
our SiC device (Figure 76). We measured signal/idler 
photon flux to be on the order of million photons/s with 
a pump power of 10 mW. In addition, a temporal coin-
cidence rate >12,000 counts/min was measured (Figure 
77). To the best of our knowledge, this is the first report 
of a single photon coincidence measurement from 
SFWM in any SiC platform. Temporal coincidence is a 
key signature of the detected photons belonging to a 
generated ‘pair’. This has demonstrated the feasibility of 
an integrated device of entangled photon-pair generation 
based on a SiC micro-ring.   

During the research, we also studied the limiting 
factors – such as Raman noise and insertion loss – in the 
device that lower the coincidence (wanted) to accidental 
noise (unwanted) ratio.  We will further improve device 
through further noise filtering and better temperature 
control.  If successful, it will be possible to realize chip-
scale devices that can be integrated with existing CMOS 
foundry processes.  Furthermore, we anticipate that fur-
ther engineering development could lead to practical and 
scalable entangled photon source devices of interest to 
the emerging quantum industry. With further develop-
ment and improvement, it is possible for these SiC-

 
Figure 76. SiC device and experimental setup. 

 
Figure 77. Coincidence measurement of generated photon pairs 
from the SiC device 
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based entangled photon sources to be deployed into our 
quantum network testbed effort at NIST, which would 
provide important proof-of-concept to industry. 

Joint Center for Quantum 
Information and Computer Science 
Victor Albert 
Matthew Coudron 
Yi-Kai Liu 
Justyna Zwolak 
Carl Miller (NIST ITL) 
Gorjan Alagic (NIST ITL) 
Andrew Childs (University of Maryland) 

http://quics.umd.edu/ 

Established in October 2014, the Joint Center for Quan-
tum Information and Computer Science (QuICS) is a 
cooperative venture of NIST and the University of Mar-
yland (UMD) to promote basic research in 
understanding how quantum systems can be effectively 
used to store, transport and process information. QuICS 
brings together researchers from the University of Mar-
yland Institute for Advanced Computer Studies 
(UMIACS) and the UMD Department of Physics and 
Computer Science with NIST’s Information Technol-
ogy and Physical Measurement Laboratories, together 
with postdocs, students, and a host of visiting scientists. 

QuICS has quickly established itself as a premier 
center for research in quantum information science. 
Twelve Fellows, four Adjunct Fellows, one Affiliate 
Fellow, 20 postdocs, and 68 graduate students are cur-
rently associated with the center. Yi-Kai Liu of ACMD 
is Co-Director of the Center along with Andrew Childs 
of the UMD Computer Science Department.  

This year a new QuICS Fellow was recruited. Dr. 
Murphy Yuezhen Niu will join in August 2023 as an As-
sistant Professor of Computer Science and QuICS 
Fellow. Niu is currently a senior research scientist in the 
Google Quantum AI team, where her work focuses on 
intelligent quantum control optimization and metrology, 
quantum machine learning, quantum algorithm design 
and near-term quantum error correction.  

The Center continues to be very productive. In CY 
2022 some 112 research papers were produced by those 
associated with the center. One patent was issued, and 
nine new patent applications were filed. Some 40 semi-
nars by both internal and external speakers were held. 

As in past years, QuICS research was featured 
prominently at QIP 2022, the is the leading annual con-
ference on the theory of quantum information 
processing, which was held in Pasadena, CA in March 
2022. Twelve talks on papers coauthored by current 

QuICS members were presented at the conference, in-
cluding two of the three plenary talks and two additional 
short plenary talks. In addition, four QuICS members 
served on the program committee for the conference. 

March 2022 also saw the publication of a popular 
science book by QuICS Fellow (and NIST staff mem-
ber) Nicole Yunger Halpern entitled Quantum 
Steampunk: The Physics of Yesterday’s Tomorrow [1]. 
This book brings Nicole’s research at the intersection of 
quantum information and quantum thermodynamics to a 
wider audience. 

Finally, QuICS Fellow (and ACMD staff members) 
Victor Albert gave a series of three tutorial talks on 
quantum error correction and bosonic coding, on August 
1, 2, and 4, 2022. These talks attracted a large audience, 
including many online viewers from NIST and else-
where. 

[1] Nicole Yunger Halpern. Quantum Steampunk: The 
Physics of Yesterday’s Tomorrow. Johns Hopkins 
University Press, 2022. 
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Foundations of Measurement Science for Information Systems 
 

ITL assumes primary responsibility within NIST for the development of measurement science infrastructure and related 
standards for IT and its applications. ACMD develops the mathematical foundations for such work. This can be very 
challenging. For example, many large-scale information-centric systems can be characterized as an interconnection of 
many independently operating components (e.g., software systems, communication networks, the power grid, trans-
portation systems, financial systems). A looming new example of importance to NIST is the Internet of Things. Exactly 
how the structure of such large-scale interconnected systems and the local dynamics of its components leads to system-
level behavior is only weakly understood. This inability to predict the systemic risk inherent in system design leaves us 
open to unrealized potential to improve systems or to avoid potentially devastating failures. Characterizing complex 
systems and their security and reliability properties remains a challenging measurement science problem.

Algorithms for Identifying 
Important Network Nodes for 
Communication and Spread  
Fern Y. Hunt  
Roldan Pozo  

The identification of nodes in a network that enable the 
fastest spread of information is an important, if not fun-
damental, problem in network control and design. It is 
applicable to the optimal placement of sensors, the de-
sign of secure networks, and the problem of control 
when network resources are limited. Our approach to 
this problem has its origins in models of opinion dynam-
ics and the spread of innovation in social networks. The 
mode of communication between nodes is described by 
simple models of random or deterministic propagation 
of information from a node to its neighbors. During the 
past few years, we have made progress in understanding 
the structural requirements for sets of nodes for effective 
spread in networks and have developed scalable algo-
rithms for constructing these sets in real world networks.  

We consider a discrete time model of information 
spread (represented by a variable assigned to each node) 
in a network with a set of nodes V and a subset A⊆V of 
k nodes representing leaders or stubborn agents that are 
initially assigned a single value. Propagation occurs by 
iterated averaging or diffusion defined by a stochastic 
matrix P. All node values will eventually converge to the 
single value at a speed determined by the sub-stochastic 
matrix P|A', the matrix P restricted to the complement of 
A. An effective spreader in this situation is then a set of 
nodes for which convergence to this single value is fast-
est, i.e., the set A for which the Perron-Frobenius 
eigenvalue of P|A' is largest. Using a classical result of 
Markov chain theory, the problem can be recast in terms 
of finding the set A of cardinality k that minimizes the 
mean first hitting time, i.e., the expected time a random 
walker reaches the target set A for the first time.  

We first proposed a polynomial time algorithm for 
finding an approximation to the optimal set [1]. It is an 

extension of the classic greedy algorithm, and it begins 
with a class of optimal and near optimal starter sets of 
smaller cardinalities rather than the conventional choice 
of a best singleton set. An optimal spreader in our setting 
is defined in terms of a set function F where for a subset 
A ⊂V, F (A) is the sum of mean first arrival times to A 
by random walkers that start at nodes outside of A. Di-
rect comparison of the algorithm results with the actual 
optimal solution and lower bounds on the performance 
ratio can be obtained because F is a supermodular set 
function [2]. However, for large complex networks com-
monly encountered in applications, another approach is 
needed.  

We then developed a set of fast heuristics that work 
well on graphs with large hubs, a common feature of 
complex networks. When the desired set cardinality is k, 
subsets of hub vertices are rapidly screened to produce 
candidate sets. Each set consists of k nodes whose first 
(or higher order) neighborhoods have minimal overlap. 
After further screening, the offered approximation is se-
lected by ranking the results of a Monte Carlo 
calculation of the optimal set F for each candidate. This 
process allows us to find near optimal and optimal 
spreaders in networks with millions of nodes and dozens 
of millions of edges in less than a few seconds on a typ-
ical laptop. After conducting tests on real world graphs 
from diverse application areas including molecular biol-
ogy, traffic control, and social networks, we hypothesize 
that the method is most effective in terms of speed and 
quality of offered solutions when it is used on graphs 
with a large ratio of maximal degree to average degree.  

Understanding that the resulting offered set was an 
approximate solution of a discrete stochastic optimiza-
tion problem, we established sufficient conditions that 
imply that it is also an approximate solution of the orig-
inal problem. The first step was to establish the accuracy 
of the Monte Carlo calculation of F. The fact that the 
first hitting time to a set A has a distribution with expo-
nential tails means that a sample average of simulated 
hitting times produces a consistent estimate of F in the 
limit of large sample size i.e., number of simulations.  

Establishing the degree of optimality of any offered 
solution is very difficult since supermodularity cannot 
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be used and the size of the graphs are so large. However, 
the methods we use make it possible to rapidly sample 
the distribution of possible F values. We suppose the 
screening and ranking procedures produce candidate 
sets with F values that rank in the highest percentile of a 
distribution of such values over all subsets of fixed car-
dinality. Independent repetition of the heuristic 
calculation enables us to produce an estimate of a fixed 
percentile value along with a confidence interval for that 
estimate. The latter follows from an application of Che-
byshev’s inequality. Note that the resulting interval 
contains both the offered solution value and the optimal 
value of the original problem. Even in the case of a large 
number of repetitions, this approach is promising be-
cause it takes very little time to perform a single 
execution. The results of our work are reported in [3].  

We have also studied related models of information 
spread, such as the broadcast model (k-median problem) 
which seeks the minimal sum of distances, and epidemi-
ological models (Susceptible-Infected-Recovered) that 
better represent the spread of infectious diseases on net-
work topologies. We have studied and compared the 
efficacy of several heuristic algorithms used in the liter-
ature and have developed a different approach 
(minimizing overlapping neighborhoods) which aims to 
produce quality solutions at a fraction of the computa-
tional cost, making it appropriate for use on large 
networks. For example, we are able to process graphs of 
several million vertices with competitive solutions that 
run one to two orders of magnitude faster than previous 
methods. This year we have conducted extensive analy-
sis of over 25 000 experiments of network/algorithm/k-
value combinations and have created parallel OpenMP  
C++ applications for the evaluation of these models. 
This effort has yielded important insights on establish-
ing best practices for approximating methods on real 
networks and providing efficient solution techniques to 
this challenging problem. 
[1] F. Hunt. Using First Hitting Times to Maximize the Rate 

of Convergence to Consensus. Preprint: 
arXiv:1812.08881, 2018.  

[2] F. Hunt. An Algorithm for Identifying Optimal Spreaders 
in a Random Walk Model of Network Communication. 
Journal of Research of the NIST 121 (2016), 121008. 
DOI:  10.6028/jres.121.008 

[3] F. Hunt and R. Pozo, Fast Methods for Identifying Effec-
tive Spreaders in Real Network. Journal of Research of 
the NIST 125 (2020), 125036. DOI: 10.6028/jres.125.036 

Towards Risk Evaluation and 
Mitigation in Networked Systems  
Vladimir Marbukh  

The first focus area of this project is evaluation and mit-
igation of systemic risk due to undesirable contagion in 
large-scale networked infrastructures. While explosive 
growth of such infrastructures is driven by economic 
and convenience benefits of interconnectivity, the same 
interconnectivity creates systemic risk of undesirable 
contagion due to cascading overload, computer virus 
propagation, etc. The goal of system designer/operator 
is balancing economic benefits and systemic risks asso-
ciated with increase in the system interconnectivity. The 
approach proposed in [1-3] to achieving this goal is 
based on the following key observations (see Figure 78): 
(a) contagion, being a collective phenomenon, is, in ef-
fect, a phase transition, (b) since typically economic and 
competitive incentives drive system design and opera-
tion towards the boundary of this region, the continuous 
or discontinuous nature of the contagion emergence is 
of critical importance due to a possibility of occasional 
breach of this boundary caused by unavoidable exoge-
nous uncertainties, and (c) discontinuous phase 
transitions are typically associated with existence of 
metastable, i.e., persistent, regimes with unacceptably 
high aggregate loss.  

Our approach, which lies within the framework of 
Landau theory of phase transitions, accounts for system 
proximity to the boundary of the contagion-free region, 
nature of contagion emergence on this boundary, and 
time horizon of interest. We are motivated by known 
facts that Landau theory provides qualitatively, and 
sometimes even quantitatively accurate yet tractable de-
scription of system behavior in a proximity to the point 
of phase transitions. Currently we are attempting to 
quantify effect of the system time horizon of interest on 
the systemic risks. Qualitatively, this effect depends on 
the relation of the system time horizon and “life expec-
tancy” of the system metastable equilibria. 

The second focus area is evaluation/mitigation of 
adversarial risk in networks. Emerging communication 
infrastructures, including Fog/Edge computing, are ex-
pected to carry users/applications with wide range of 
Quality of Service (QoS) requirements. For mission-
critical applications, in addition to the expected perfor-
mance, these requirements also include limitations on 
risk of the performance deterioration below certain 
level. Since risk mitigation is possible at the cost of ei-
ther reduced expected performance or expenditure of 
additional resources, e.g., transmission power in wire-
less networks, efficient risk mitigation should consider 
these inherent tradeoffs. In [4, 5] we suggest that diverse 
user risk tolerance levels can be incorporated into con-
ventional network optimization frameworks by 
replacing user rate/throughput with the Entropic Rate at 

https://arxiv.org/abs/1812.08881
http://dx.doi.org/10.6028/jres.121.008
http://dx.doi.org/10.6028/jres.125.036
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Risk (ERaR). We consider risk due to scenario-based 
uncertainty, where different scenarios include a “nor-
mal” scenario without jamming as well as feasible 
jamming scenarios. We demonstrate that ERaR user 
maximization results in user multi-connectivity to sev-
eral Base Stations (BSs) when benefits of connectivity 
diversification outweigh the “inefficiencies” due to con-
nectivity to “distant” BSs. We propose an approximate 
solution to ERaR maximization for risk averse users, 
which is based on linear interpolation between the cor-
responding solutions for risk neutral and extremely risk-
averse users. Future research may include considering 
more realistic and thus more sophisticated game-theo-
retic models of adversarial uncertainty and developing 
decentralized solutions for large-scale networks. 

The third focus area is risk attribution to individual 
network components/vulnerabilities, which is the first 
step in efficient risk mitigation. The challenges are due 
to highly non-linear contribution of individual vulnera-
bilities and astronomically large number of mitigation 
scenarios in real systems. Motivated by (a) uniqueness 
of Shapley-value based attribution having some desira-
ble properties and (b) successful application of Shapley 
value-based attribution in various settings, including fi-
nancial risk attribution, [6] proposes Shapley value-
based security risk attribution to individual components/ 
vulnerabilities. The Shapley value is a solution concept 
in cooperative game theory, which allocates a total sur-
plus generated by the coalition of all players to 
individual players. We view potential vulnerabilities as 
players in a cooperative game with characteristic func-
tion, i.e., risk due to a coalition of vulnerabilities, equal 
to the network security risk where the rest of vulnerabil-
ities is eliminated. Future research should address 
practicality of the proposed risk attribution. Of particu-
lar interest is a possibility of overcoming computational 
challenges for large-scale networks with recently devel-
oped approximations of Shapley value. 
[1] V. Marbukh. Towards Landau Theory of Systemic Risk 

in Large-Scale Networked Systems: Work in Progress. In 
Book of Abstracts of International School and Confer-
ence on Network Science - 7th International Winter 
Conference (NetSci’22), Online, February 8-11, 2022 

[2] V. Marbukh. Systemic Risk of Undesirable Contagion 
within System Time Horizon: Work in Progress. In Pro-
ceedings of European Conference on Safety and 

Reliability (ESREL’22), Dublin, Ireland, August 28 -Sep-
tember 1, 2022 

[3] V. Marbukh. Towards Reliability/Security Risk Metrics 
for Large-Scale Networked Infrastructures: Work in Pro-
gress. In Proceedings of the Probabilistic Safety 
Assessment & Management Conference (PSAM’22), 
Honolulu, Hawaii, June 26 - July 1, 2022. 

[4] V. Marbukh. Towards Robust Fog/Edge Computing In-
frastructure with Risk Adjusted Multi-Connectivity. In 
Proceeding of the 9th International Conference on Fu-
ture Internet of Things and Cloud (FiCloud’22), Rome, 
Italy and Online, August 22-24, 2022. 

[5] V. Marbukh. Towards Risk Adjusted Wireless Access 
under Jamming: Reliability through Multi-Connectivity. 
In Proceedings of the IEEE Consumer Communications 
& Networking Conference (CCNC’22), Online, January 
8-11, 2022. 

[6] V. Marbukh. Towards Shapley Value based Security Risk 
Attribution in Sensor Networks. In Proceedings of the 
IEEE/ACM Information Processing in Sensor Networks 
(IPSN’22), Online, May 4-6, 2022. 

Measurements of Cyber Risks in 
Complex Systems and Optimal 
Cybersecurity Investments 
Richard J. La 
Van Sy Mai (NIST CTL) 
Abdella Battou (NIST CTL) 

Modern engineered systems, such as information and 
communication systems and power systems, are made 
up of many cooperating subsystems. In order to provide 
their services, the subsystems must work together and 
support each other. However, due to this interdepend-
ence among subsystems, it is possible for a local failure 
or infection of a subsystem by malware to spread to 
other subsystems, potentially compromising the integ-
rity of the overall system. For instance, an outage in one 
part of a power grid can trigger cascading failures and 
cause a large-scale blackout (e.g., Northeast blackout of 
2003) [5].  

Clearly, the structure of underlying interdepend-
ence among subsystems, which is modeled using a 
directed interdependence network, has significant im-
pact on the propagation dynamics of failures or malware 
infections. This suggests that any sound investments in 
cybersecurity of complex systems or the control of epi-
demics should consider the interdependence in the 
systems and be based on a good understanding of the 
importance and vulnerability of each subsystem to the 
overall system.  

With this in mind, we have studied the problem of 
measuring the cyber risks to subsystems, identifying 
more vulnerable subsystems, and finding optimal cyber-
security investments for hardening vulnerable 

   
Figure 78. Portion of system affected by contagion vs. load. 
Left: Continuous/gradual. Right: Discontinuous/abrupt. 
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subsystems in large systems, which will minimize the 
long-run average costs of a system operator. Our model 
accounts for both cybersecurity investments and recov-
ery/repair costs ensuing infections or failures, which we 
call failure/infection costs.  

In the past, we examined a scenario where mali-
cious actors launch external attacks on a subset of 
subsystems under the assumption that the interdepend-
ence network is strongly connected [1, 2]. We 
formulated the problem of determining the optimal cy-
bersecurity investments that minimize the average costs 
as an optimization problem. We proposed computation-
ally efficient algorithms for finding good solutions with 
optimality bounds and sufficient conditions that guaran-
tee the optimality of obtained solutions using a convex 
relaxation.  

Recently, we extended our study to scenarios where 
the underlying interdependence network is only weakly 
connected [3], but not strongly connected. Relaxing the 
assumption of strong connectivity of interdependence 
network leads to several technical difficulties because 
some key results established for strongly connected net-
works do not hold any more. For example, the 
uniqueness of an equilibrium of a differential system 
that models the dynamics of failure/infection propaga-
tion and subsystem states is no longer guaranteed.  

By studying perturbed systems and establishing the 
continuity of stable equilibria of the differential system, 
we were able to establish the uniqueness of a stable equi-
librium of the differential system, which determines the 
vulnerability of each subsystem and its contribution to 
overall system costs at steady state for fixed cybersecu-
rity investments. Equipped with this finding, we 
designed computationally efficient algorithms for com-
puting effective cybersecurity investments. Numerical 
studies demonstrate that the computational requirements 
for the proposed methods are moderate even for large 
systems [3]. Furthermore, in almost all studied cases, the 
optimality gap is shown to be small. Finally, when the 

failure/infection costs are large, which are more im-
portant scenarios, our solution is provably optimal.  

We also studied scenarios in which a system opera-
tor needs to decide the investments both in resilience of 
subsystems and in their recovery [4]. The problem of 
simultaneously determining these investments leads to a 
more challenging optimization problem. However, un-
der a technical condition, which loosely speaking means 
that improving the resilience and recovery rates of com-
plex systems is costly, we proposed two algorithms: the 
first algorithm is based on a reduced gradient method 
(RGM) and finds a locally optimal solution while avoid-
ing the computation of inverse matrices. The second 
method is based on a convex relaxation (CR) of the orig-
inal problem and produces a feasible point from an 
optimal point of CR. Moreover, we proved that the op-
timality gap vanishes under a sufficient condition on 
failure/infection costs.  

Figure 79 plots the optimality gap for two scenarios 
we considered. The parameter ν determines the failure 
costs, which increase linearly with ν. The top two plots 
show an upper bound on the optimality gap of solutions 
obtained by our proposed algorithms, and the bottom 
two plots illustrate the runtime as a function of the size 
of the system (N), which is the number of subsystems. 
The plots suggest that, although the optimality gap is 
non-negligible when the failure/infection costs are small 
(top left plot), it vanishes for large failure/infection costs 
(top right plot) as predicted by our finding. 

[1] V.-S. Mai, R.J. La, and A. Battou. Optimal Cybersecurity 
Investments for SIS Model. In IEEE Global Communica-
tions Conference 2020, December 2020. 

[2] V.-S. Mai, R.J. La, and A. Battou. Optimal Cybersecurity 
Investments in Large Networks Using SIS Model: Algo-
rithm Design. IEEE/ACM Transactions on Networking 
29:6 (2021), 2453-2466. 

[3] V.-S. Mai, R.J. La, and A. Battou. Optimal Cybersecurity 
Investments Using SIS Model: Weakly Connected Net-
works. In IEEE Global Communications Conference 
2022, December 2022. 

[4] V.-S. Mai, R.J. La, and A. Battou. Investments in Robust-
ness of Complex Systems: Algorithm Design. In Complex 
Networks and Their Applications XI. COMPLEX 
NETWORKS 2022. Studies in Computational Intelligence 
1078, Springer 2023.  

[5] U.S-Canada Power System Outage Task Force. Final Re-
port on the August 14, 2003 Blackout in the United States 
and Canada: Causes and Recommendations. April 2004. 
URL: https://www.energy.gov/oe/articles/blackout-2003-final-
report-august-14-2003-blackout-united-states-and-canada-
causes-and 

 
Figure 79. Comparison of two proposed algorithms – reduced gra-
dient method  and convex relaxation-based method (solved using 
MOSEK) – for two different failure/infection cost parameters.  
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Distributed Learning with 
Heterogeneous Datasets and 
Acceleration via Coordinating 
Server Learning 
Richard J. La 
Van Sy Mai (NIST CTL) 
Tao Zhang (NIST CTL) 
 
With rapid advances in sensing technologies, in many 
applications, a large amount of data is generated at many 
spatially distributed devices. For instance, autonomous 
vehicles equipped with multiple types of sensors, such 
as cameras and lidar, are expected to locally generate 
several terabytes of data per day. Clearly, given the vol-
ume of data, it is impractical, if not impossible, to 
transfer all data to a server where centralized learning 
can be performed. In order to deal with this issue, vari-
ous forms of distributed learning have been proposed.  

Among such distributed learning approaches, feder-
ated learning (FL) has recently received much attention, 
in particular when privacy of data is of importance [1]. 
In FL, a coordinating server (CS) maintains a global ma-
chine learning (ML) model that is communicated to (a 
subset of) clients at each round, which perform local 
learning using their own local datasets. Once they finish 
updating their local ML models, the updated models are 
forwarded to the CS, which then aggregates the for-
warded models to update the global ML model. Since 
local datasets are only used to update the local ML mod-
els at the clients, no data is shared among the clients or 
with the CS, thereby addressing the issue of data pri-
vacy. 

It has been demonstrated that FL can perform an 
ML task efficiently when the clients’ datasets are homo-
geneous with similar distributions. However, when 
clients’ datasets are heterogeneous and their distribu-
tions vary considerably, its performance can suffer 
significantly, leading to slow convergence or oscilla-
tions in the trained ML model. In order to address this 
issue, researchers proposed several different techniques. 
One such technique requires sharing a small set of sam-
ples among all clients. 

Although data privacy is important in many appli-
cations, in some other applications it may be possible to 
collect a small dataset that can be used by the CS. For 
example, when training self-driving vehicles, automo-
bile manufacturers may deploy a small fleet of their own 
vehicles that will be used to collect a small set of data 
and train and improve ML models. We consider such 
cases, where the CS can obtain a small local dataset and 
use it to perform local learning to improve the overall 
learning process.  We proved that incremental learning 
by the CS based on even a very small dataset can help 
alleviate the client data distribution drifts and accelerate 
the learning when the current global ML is far from a 

(local) optimum. Moreover, the improvement is shown 
to depend on the server dataset distribution and its vari-
ance, which decreases with the dataset size. 

Figure 80 plots the test accuracy of a global ML 
model (convolutional neural network) as a function of 
training rounds, which is obtained using the EMNIST 
dataset with 45 labels. The parameter C indicates the 
number of clients with access to samples from a single 
label. A smaller value of C implies more heterogeneous 
datasets at the clients. There are 45 clients. Each client 
hosts a local dataset consisting of 2400 samples, and the 
CS has a local dataset with 225 samples. The CS selects 
4 clients (out of 45 clients) for updating the ML model 
during each round.  

As expected, when all clients have access to sam-
ples from all 45 labels (right plot), the performance of 
all algorithms is similar because clients’ local datasets 
are homogeneous in this case. On the other hand, when 
the client datasets are highly heterogeneous (left plot), 
FL suffers significantly, while data sharing among cli-
ents (DS) improves the accuracy significantly over FL. 
However, our proposed algorithm (FSL) provides a con-
siderable improvement over both DS and FL despite a 
very small dataset used by the server with only 225 sam-
ples. In addition, the performance of the proposed 
algorithm does not change much with a varying param-
eter value (γ) of our proposed algorithm, suggesting its 
robustness to suboptimal choices of the parameter value. 
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and 

B.A. y Arcas. Communication-efficient Learning of Deep 
Networks from Decentralized Data. In the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, 
April 2017. 

[2] V.S. Mai, R.J. La, and T. Zhang. Federated Learning with 
Server Learning: Enhancing Performance for Non-IID 
Data. Preprint arXiv:2210.02614, 2022. 

  
Figure 80. Plot of test accuracy for EMNIST dataset with varying 
learning rates. The parameter C is the number of clients with access 
to samples from a single label. (FL = Federated Learning, DS = FL 
with data sharing among clients, FSL = FL with server learning) 
 



108  NIST Applied and Computational Mathematics Division 

 
 

 
 

 
 

 
 

 
 

Combinatorial Testing for Software 
Based Systems  
Raghu N. Kacker 
James F. Lawrence (ACMD) 
D. Richard Kuhn 
M. S. Raunak (NIST ITL) 
Yu Lei (University of Texas at Arlington) 
Dimitris E. Simos (SBA-Research, Austria) 
Eric Wong (University of Texas at Dallas) 
Itzel Dominguez-Mendoza (CENAM, Mexico) 

https://csrc.nist.gov/projects/automated-combinatorial-
testing-for-software 

In 1997, the Mars Pathfinder began experiencing system 
resets at seemingly unpredictable times soon after it 
landed and began collecting data. Fortunately, engineers 
were able to deduce and correct the problem, which oc-
curred only when (1) a particular type of data was being 
collected, and (2) intermediate priority tasks exceeded a 
certain load, resulting in a blocking condition that even-
tually triggered a reset. Situations of this type are known 
as interaction faults. Many real-time failures of soft-
ware-based systems have been traced to such faults. 
These are often insidious in that they may remain hidden 
until the unfortunate combination is encountered during 
system operation.  

Combinatorial testing (CT) is a versatile methodol-
ogy for detecting interaction faults. CT began as 
pairwise (2-way) testing in which all pairs of the test val-
ues for all pairs of test factors are checked. Thus, 
pairwise testing can detect faults involving single factors 
or interactions between two factors. CT is based on an 
empirical observation, referred to as the interaction rule, 
that while the behavior of a software system may be af-
fected by many factors, only a few are involved in any 
given failure. NIST investigations of failures in actual 
systems have shown that while most faults involved a 
single factor or interaction between two factors, some 
faults involved three or more factors [1]. (A fault involv-
ing more than six factors has not yet been reported.) 
Thus, pairwise testing is useful, but it may not be ade-
quate for detecting interaction faults involving more 
than two test factors. 

More than a decade ago, NIST took the initiative to 
extend pairwise (2-way) CT to higher strength t-way CT 
for t > 2. NIST has helped make CT practical by devel-
oping research tools and techniques for generating 
combinatorial test suites. CT has now gained significant 
interest from the international software testing commu-
nity. Many successful results from the use of CT in 
aerospace, automotive, and financial service industries, 
as well as defense, security, and electronic medical sys-
tems have since been reported 

A suite of test cases for combinatorial t-way testing 
includes (covers) at least once all possible t-tuples of the 

test values for every set (combination) of t factors out of 
the complete set of all k factors that are tested (k > t). 
Use of mathematical objects called covering arrays 
makes it possible to check all t-tuples of the test values 
with a small number of test cases. Table 2 shows a cov-
ering array of 13 rows and 10 columns each having two 
possible value 0 and 1. Columns correspond to the fac-
tors and the rows correspond to the test cases. The 
number of possible sets (combinations) of 3 out of 10 
test factors is (10 × 9 × 8)/(3 × 2 × 1) =120. When each 
factor has two possible values, each set of 3 factors can 
have 23 = 8 possible triples of test values ((0, 0, 0), (0, 0, 
1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 
1)). So, the total number of possible triples of values for 
all 10 factors is 120 × 8 = 960. A test suite based on 
Table 1 includes (“covers”) at least once all 960 distinct 
triples of the test values of ten factors.  

In practice, one wants a minimal covering array, 
that is an array which covers all possible t-tuples of the 
test values for every set of t out of all k factors with the 
least number of rows (test cases). In practice, many fac-
tors have dependencies and constraints, and hence not 
all combinations of the test values may be logically or 
physically valid. A combinatorial test suite must avoid 
such forbidden combinations. Generating minimal cov-
ering arrays that avoid forbidden combinations is a 
difficult computational problem [2]. A great deal of re-
search has been done to develop mathematical and 
computational methods to generate minimal covering 
arrays of this type. NIST and its collaborators have de-
veloped several such algorithms. 

NIST-Developed Tools. NIST has developed several 
research tools to make CT practical. ACTS (for Auto-
mated Combinatorial Testing for Software), which was 
developed in cooperation with the University of Texas 
at Arlington, includes several algorithms to generate 
high strength test suites for CT. The ACTS algorithms 
are optimized to efficiently avoid forbidden combina-
tions of test settings. More than 4545 users have 
downloaded executable versions of the ACTS algo-
rithms from the NIST webpage for CT. (It is difficult to 
ascertain the number of users because some users have 
redistributed to others, and some are students who may 
have used it only once for a single project.) 

A second research tool, CCM (for Combinatorial 
Coverage Measurement), developed jointly by NIST 
and a guest researcher from CENAM, the national me-
trology institute of Mexico, describes the 
incompleteness of a test suite that may not have been 
developed from a CT viewpoint. Basic combinatorial 
coverage measurements describe the incompleteness of 
a test suite relative to a test suite based on a covering 
array that includes all possible t-tuples of values for 
every t-factor combination for various values of t. The 
combinatorial deficiency of a test suite can be remedied 
by additional tests. Thus, CCM can help guide the ex-
pansion of a test suite to satisfy stated combinatorial 

https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
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requirements [3]. The latest version of CCM supports 
constraints which exclude forbidden combinations of 
values. A parallel processing version is also available. 

Impact of NIST Research. NIST efforts have sparked 
a surge of research and application of combinatorial test-
ing technology. A 2010 NIST Special Publication on CT 
was downloaded more than 30 000 times by the end 
2014 [4]. In 2013, we published a book with Chapman 
and Hall/CRC Press on this topic [5]. One of the first 
large-scale users that we worked with is a group at the 
U.S. Air Force Base in Eglin, Florida. The behavior of 
one of their systems depended on the sequential order of 
certain events. This led to the problem of testing se-
quences of events, which required development of new 
mathematical objects called sequence covering arrays 
[6, 7, 8]. Lockheed-Martin, a large U.S. defense contrac-
tor, reported (based on eight projects) that use of CT 
reduced cost of testing by about 20 % with 20 % to 50 
% improvement in test coverage [9]. CT methods are 
now being used in diverse areas such as financial ser-
vices, automotive, automation, avionics, video coding 
standards, and for security testing. The NIST webpage 
for CT cites over forty application papers. For testing a 
software-based system, no single approach is enough. 
Plural approaches are generally needed at various stages 
of software development and installation. CT comple-
ments other approaches for testing, verification, and 
validation of software-based systems. CT is now in-
cluded in software engineering courses taught in many 

 
22 http://www.research.ibm.com/haifa/Workshops/ct2012/ 
23 https://icst2022.vrain.upv.es/home/iwct-2022 

universities. NIST efforts on technology transfer of CT 
tools and techniques received the 2009 Excellence in 
Technology Transfer Award from the Federal Labora-
tory Consortium-Mid Atlantic Region. 

CT has also gained significant interest from the re-
search community. In 2012, NIST took lead in 
organizing a workshop on CT22 in conjunction with the 
2012 IEEE International Conference on Software Test-
ing, Verification, and Validation (ICST), a premier 
conference in this field. Since then, an International 
Workshop on Combinatorial Testing (IWCT) has be-
come an annual event for sharing advancements in CT 
tools and techniques, as well as results from practical in-
dustrial use of CT. The eleventh such IWCT23 was held 
(virtually because of the worldwide COVID-19 pan-
demic) on April 4, 2021, in conjunction with ICST 
202224. Four of us (Kacker, Kuhn, Lei, and Simos) were 
among the co-organizers. The IWCT 2022 received 14 
submissions, out of which 10 were research papers and 
four were on tools relating to combinatorial testing. The 
Program Committee accepted 8 of the 10 research pa-
pers. All four tools-papers were accepted. 

Recent Accomplishments. 

Combinatorial testing-based approaches to fault locali-
zation for explainable artificial intelligence [10]: We 
briefly reviewed the properties of explainable artificial 
intelligence (AI) proposed by various researchers. We 
took a structural approach to the problem of explainable 
AI, examining the feasibility of these aspects, and ex-
tending them where appropriate. Afterwards, we 
reviewed combinatorial methods for explainable AI 
which are based on combinatorial testing-based ap-
proaches to fault localization. Finally, we view the 
combinatorial methods for explainable AI through the 
lens provided by the properties of explainable AI. We 
pose resulting research questions that need to be an-
swered and point towards possible solutions, which 
involve a hypothesis about a potential parallel between 
software testing, human cognition, and brain capacity. 

A two-step TLS-based browser fingerprinting approach 
using combinatorial sequences [11]: The term browser 
fingerprinting describes the process and the correspond-
ing methods for collecting data about a user’s browser 
and system, often with the goal of uniquely identifying 
a browser. The term Transport Layer Security (TLS) de-
scribes a set of protocols that are designed to secure the 
communication between two applications. We proposed 
a two-step TLS-based fingerprinting approach using 
combinatorial sequences and properties of TLS hand-
shake messages. Our approach combines fingerprinting 
based on attributes of the initial ClientHello message 
with the observed behavior of TLS clients when pre-
sented with permuted handshake messages to enhance 

24 https://icst2022.vrain.upv.es/ 

Table 2. A covering array of 13 rows includes all eight triplets (000, 
001, 010, 011, 100, 101, 110, and 111) of the possible values (0 and 
1) for every one of the 120 possible sets of 3 out of 10 test factors 
represented by the columns (for example, see colored entries) 

  Columns 
Rows 1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 0 1 0 0 0 0 1 
4 1 0 1 1 0 1 0 1 0 0 
5 1 0 0 0 1 1 1 0 0 0 
6 0 1 1 0 0 1 0 0 1 0 
7 0 0 1 0 1 0 1 1 1 0 
8 1 1 0 1 0 0 1 0 1 0 
9 0 0 0 1 1 1 0 0 1 1 

10 0 0 1 1 0 0 1 0 0 1 
11 0 1 0 1 1 0 0 1 0 0 
12 1 0 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 1 1 1 0 1 

 

http://www.research.ibm.com/haifa/Workshops/ct2012/
https://icst2022.vrain.upv.es/home/iwct-2022
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the granularity of the derived fingerprints without in-
creasing the required number of exchanged messages. 
We conducted a detailed evaluation against 21 browsers 
and TLS clients on two operating systems. The pre-
sented two-step approach decreases the size of the 
anonymity sets and increases the entropy of the splitting, 
allowing for a more precise identification of the TLS cli-
ent either of the underlying approaches in isolation. 

Combinatorial test generation for multiple input models 
with shared parameters [12]: We addressed the problem 
of test generation for multiple input models with shared 
parameters. An approach to generate multiple test sets, 
one for each input model, that together satisfy t-way 
coverage for all these input models while minimizing 
the redundancy between these test sets is proposed. An 
experimental evaluation on five applications shows that 
redundancy can be significantly reduced.  

Combinatorial methods for testing IoT smart home sys-
tems [13]: We proposed and evaluated an approach for 
applying combinatorial testing to Internet of Things 
(IoT) home automation hub systems. We developed a 
corresponding test execution framework, which also 
contains the implementation of the design of two pro-
posed test oracles for this work. We evaluated our 
approach on a real-world instance of an IoT home auto-
mation hub system running the (open source) software 
HA on the hub. The experiments included t-way test sets 
with interaction strength ranging from one to four and 
variable-strength covering arrays corresponding to 
groups of similar primitives present in the IoT home au-
tomation hub system. We also executed two random test 
sets for every combinatorial test set as a means for a 
comparison. Obtained testing results show that most test 
sets were able to find (i.e., trigger) all unique structural 
errors and that increasing the interaction strength of ex-
ecuted t-way test sets yielded an increase of both the 
total number of triggered errors as well as in the number 
of unique errors revealed by the combinatorial test sets. 
Timing and resource constraints prohibited a detailed 
combinatorial fault analysis. A comparison with the ran-
dom test sets shows that they performed equally well. 

A combinatorial testing-based path selection framework 
for effective IoT testing [14]: Testing IoT systems is 
challenging. This is not only because of the various as-
pects of IoT systems, such as software, hardware, and 
network that need to be tested, but also because of the 
unexpected issues caused by many heterogeneous de-
vices brought together by IoT systems. When an IoT 
system has hundreds, or even thousands, of heterogene-
ous devices, which devices should be tested to detect 
more faults? How can we systematically test an IoT sys-
tem and its numerous devices in a cost-effective way? 
Are there any coverage criteria for testers to evaluate the 
thoroughness of the testing against IoT systems? We de-
veloped and investigated the performance of a 
combinatorial testing path selection framework for IoT 

systems. The framework called CT-IoT systematically 
identifies and recommends testing paths in IoT systems 
for effective testing. We also propose four coverage cri-
teria that can help testers evaluate the testing 
thoroughness for IoT systems. We conducted an empir-
ical study of CT-IoT on two real-world IoT systems and 
evaluated the effectiveness of CT-IoT in terms of cover-
age achievements. The results show the superiority of 
CT-IoT over a random approach. 

Measurement of the adequacy of a test suite with respect 
to the modeled test space [15]: The adequacy of a test 
suite is typically assessed with respect to, for example, 
requirements coverage or code coverage. This paper 
presents a metric for the adequacy of a test suite with 
respect to the modeled test space. A test suite that does 
not include at least all possible pairs (or triples) of test 
values is likely inadequate because system failures may 
involve more than a single parameter. 

The path to consensus on artificial intelligence (AI) as-
surance [16]: To ensure the wide-scale adoption of 
intelligent algorithms, artificial intelligence (AI) engi-
neers must offer assurances that an algorithm will 
function as intended. Providing such guarantees in-
volves quantifying capabilities and the associated risks 
across multiple dimensions, including data quality, al-
gorithm performance, statistical considerations, 
trustworthiness, and security as well as explainability. 1. 
Assurance should not be an afterthought; rather, it 
should be embedded into the lifecycle of development 
and learning in all AI systems. Recent developments 
such as surrogate models constitute a positive develop-
ment toward achieving incremental assurance. 2. 
Current AI models are almost exclusively statistical, that 
is, they don’t have the ability to grasp or represent con-
text. We deem this contextual aspect critical to the future 
of AI and its assurance. 3. Consider counterfactual sce-
narios for AI algorithms: at the end of the day, if AI 
algorithms cannot explain cause and effect, they may be 
rendered obsolete by the next big technology. 4. It has 
been suggested that a system validating a learning algo-
rithm will be as complex as the learning system. Thus, 
the research and development of AI-assurance ap-
proaches needs to receive attention comparable to AI 
applications research. 

Evaluation of t-way testing of DNNs in autonomous 
driving systems [17]: A Deep Neural Network (DNN) 
model is used to perform intelligent, safety-critical tasks 
in Autonomous Driving Systems (ADS). Previously, we 
proposed a combinatorial testing approach to test DNN 
models used to predict a car’s steering angle. We gener-
ate test images by applying a set of combinations on 
basic image transformations. DeepTest, is a state-of-the-
art tool that aims at generating test inputs that maximize 
neuron coverage. We compared the performance of syn-
thetic images generated using our combinatorial 
approach to DeepTest. We measured and compared the 
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neuron coverage achieved using the two approaches. 
Two pre-trained DNN models from the Udacity (an 
open-source self-driving car project) driving challenge 
are used as the subject DNNs. In most cases, the results 
suggest that the synthetic images generated using the 
combinatorial approach cover more neurons than the 
DeepTest approach. 

Developing multithreaded techniques and improved 
constraint handling for the tool CAgen [18]: CAgen is a 
fast combinatorial test generation tool. It supports an ex-
tensive list of features such as constraint handling, 
higher-index arrays, and import and export of mod-
els/test sets in various formats. It is based on the Fast 
IPO (FIPO) algorithm, which can be considered an im-
proved version of the widely used In-Parameter-Order 
(IPO) strategy on which the popular ACTS tool is based. 
To further speed up CAgen, this work first discusses 
how multithreading can be effectively used to optimally 
utilize available resources, particularly for large in-
stances. We evaluated three different multithreaded 
variations of the horizontal extension and used the in-
sights obtained to design the mFIPOG algorithm. In 
addition, we adopted methods that have previously been 
utilized to speed up constraint handling of CSP solvers 
in IPO algorithms into a forbidden tuple approach. To 
evaluate the performance of the improved tool, we offer 
results on various benchmarks. 

Combinatorial approach to fairness testing of machine 
learning models [19]: Machine Learning (ML) models 
can have behaviors which result in unfair or discrimina-
tory outcomes. The bias in the ML model could emanate 
from various factors such as the training dataset, the 
choice of the ML algorithm, or the hyperparameters 
used to train the ML model. In addition to evaluating the 
model’s correctness, it is essential to test ML models for 
fair and unbiased behavior. In this paper, we present a 
combinatorial testing-based approach to perform fair-
ness testing of ML models. Our approach is model 
agnostic and evaluates fairness violations of a pre-
trained ML model in a two-step process. First, we create 
an input parameter model from the training data set and 
then use the model to generate a t-way test set. In the 
second step, for each test, we modify the value of one or 
more protected attributes to see if we could find fairness 
violations. We performed an experimental evaluation of 
the proposed approach using ML models trained with 
tabular datasets. The results suggest that the proposed 
approach can successfully identify fairness violations in 
pre-trained ML models.  

Combination frequency differencing for identifying de-
sign weaknesses in physical unclonable functions [20]: 
Combinatorial coverage measures have been defined 
and applied to a wide range of problems. These methods 
have been developed using measures that depend on the 
inclusion or absence of t-tuples of values in inputs and 
test cases. We have extended these coverage measures 

to include the frequency of occurrence of combinations, 
in an approach that we refer to as combination frequency 
differencing (CFD). This method is particularly suited 
to artificial intelligence and machine learning (AI/ML) 
applications, where training data sets used in learning 
systems are dependent on the prevalence of various at-
tributes of elements of class and non-class sets. We 
illustrate this method by applying it to analyzing the sus-
ceptibility of physical unclonable functions (PUFs) to 
machine learning attacks. Preliminary results suggest 
that the method may be useful for identifying bit combi-
nations that have a disproportionately strong influence 
on PUF response bit values. 

We are continuing research involving use of com-
binatorial methods for explainable artificial intelligence, 
machine learning models, model debugging, security of 
smart contracts, cybersecurity, and risk factors identifi-
cation. The research includes development of supporting 
tools.  
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Impact of Using Soft Exposure 
Thresholds in Automatic Contact 
Tracing  
Kamran Sayrafian 
Brian Cloteaux 
Vladimir Marbukh 

The automatic exposure notification apps primarily op-
erate based on the hard distance/time thresholds outlined 
by the health organizations (e.g., 2 m/15 min by the 
CDC or 1 m/ 15 min by the WHO) to determine expo-
sures as a result of close contacts. However, the 
possibility of virus transmission through inhalation for 
distances over two meters might necessitate considera-
tion of a soft distance/time threshold to accommodate all 
transmission scenarios. In addition, higher transmissi-
bility of the virus variants (such as Omicron) might also 
require consideration of longer (or shorter) dis-
tances/time threshold for exposure determination. 
Ultimate exposure determination depends on the amount 
of virus inhaled by the exposed individual; however, 
there are no simple methodology to ascertain that 
amount in practice.  

Accurate mathematical representation of the spatial 
distribution of the virus density over distance depends 
on many factors and scenarios. In this project, using a 
simplifying approximation of the instantaneous rate of 
the viral exposure versus distance, we extend the defini-
tion of “contact” by proposing a soft distance/time 
threshold shown in Figure 81. This soft threshold natu-
rally allows the possibility of getting exposed at any 
distance (within certain limits) around an infected per-
son. By including the CDC exposure guidelines (i.e., 2 
m/15 min), the boundary function for exposure zone can 
be expressed by the following equation: 

𝑇𝑇(𝐷𝐷) = � 15(𝐷𝐷 2⁄ )𝛼𝛼 𝑖𝑖𝑓𝑓 𝐷𝐷 ≥ 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛
15(𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 2⁄ )𝛼𝛼 𝑖𝑖𝑓𝑓 𝐷𝐷 < 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛

 

where 𝛼𝛼 is a parameter that specifies the rate at which 
viral particles decay with distance. In the simplest sce-
nario, assuming a spherical spatial distribution of viral 
particles in the space surrounding the source, 𝛼𝛼 may be 
approximated by 2. However, many environmental 
characteristics such as obstacles along the exhalation 
path, indoor vs. outdoor, air flow quality, or even tem-
perature may impact the actual value of 𝛼𝛼. For example, 
at indoor environments with low air circulation, the 
value of 𝛼𝛼 may be much lower than outdoor environ-
ments. In addition, 𝛼𝛼 could also be a function of distance 
itself as droplets may dissipate differently with increas-
ing distance compared to aerosols. The impact of 𝛼𝛼 on 
the soft threshold (i.e., boundary of the exposure zone) 
is also shown in Figure 81. As observed, the size of the 
exposure zone depends on the values of 𝛼𝛼.  
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Another parameter to consider when using soft 
thresholds is 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 . It indicates the minimum distance 
below which the required exposure time for occurrence 
of a ‘contact” does not decrease. A value of 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 < 2 
meters would represent scenarios where less than 15 
minutes are sufficient for positive exposure determina-
tion. It should be noted that when 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 2 m, 
increasing value of 𝛼𝛼 would cause the soft threshold ex-
posure zone to asymptotically converge to the exposure 
zone defined by the hard thresholds (i.e., CDC guide-
lines). 

In this project, we analyze the performance of auto-
matic exposure notification with BLE-based proximity 
detection by comparing the exposure results when soft 
or hard thresholds are used. This study is done through 
an enhanced agent-based simulation platform which was 
originally presented in [1, 2]. Figure 82 shows the num-
ber of exposed agents versus time for the soft exposure 
threshold with parameter  𝛼𝛼 = 2, 2.5, 3, 3.5, 4 as well as 
the hard thresholds of 2 m/15 min (per CDC guidelines). 

Here, it is also assumed that 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = 1 𝑚𝑚 and the aver-
age conversation length between agents is set to 3 min. 
As observed, the number of exposed agents is noticeably 
more at any given time during the simulation when a soft 
threshold is used. In addition, this number grows faster 
for higher values of α. Although this may be counterin-
tuitive, but the trend versus α depends on many factors 
such as 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 , agents mobility pattern, average conver-
sation length, and population density. For 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 < 2 , as 
shown in Figure 82, the change in the size of the expo-
sure zone below the 15 min threshold as α changes will 
impact all agents that fall within the range [𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,  2 m].  
When α increases, the size of that zone will increase as 
well. This will result in higher number of exposed 
agents, especially when the mobility pattern of the 
agents leads to more occurrence of agents within that ex-
posure zone.  

By tuning the parameters of the proposed soft 
thresholds, a more accurate determination of possible 
exposures at any distance would be possible. This flexi-
bility would allow optimization of the soft threshold 
parameters based on factors such as the surrounding en-
vironment (e.g., indoor vs. outdoor), an individual’s 
health, the severity of the outbreak in the community, 
etc. Further details and results can be found in [3]. 
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Maximizing Harvested Energy in 
Coulomb Force Parametric 
Generators 

Kamran Sayrafian 
Masoud Roudneshin (Concordia University, Canada) 
Amir G. Aghdam (Concordia University, Canada) 

Energy harvesting (EH) refers to the process of captur-
ing ambient energy from the surrounding environment 
and converting it into electric energy. A variety of 
sources such as light, wind, sea waves, heat, and vibra-
tions may be utilized for this conversion. Micro energy-

 
Figure 81.  Exposure zone based on soft thresholds. 

 
Figure 82.  Impact of 𝜶𝜶 on the number of exposed agents when 
𝒅𝒅𝒎𝒎𝒊𝒊𝒎𝒎 = 𝟏𝟏 𝒎𝒎 
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harvesters (MEH), also called micro-generators, typi-
cally refer to the class of miniaturized energy harvesting 
devices that can augment or replace batteries in small 
low-power electronics. An important application area 
for micro energy-harvesters includes wearable or im-
plantable medical sensors or actuators [1]. Since 
frequent recharge or battery replacement may not be 
practical (or even feasible for medical implants), inte-
grating micro energy-harvesters with such 
sensors/actuators could provide a viable solution to ex-
tend their operational lifetime. 

Several fabrication techniques and architectures for 
kinetic MEH have been presented and discussed in the 
literature [2]. Among the architectures, the Coulomb 
force parametric generators (CFPG) can harvest the 
most amount of energy from nonstationary vibration as 
shown in [3]. Therefore, this architecture is favorable for 
harvesting kinetic energy from the human body as a non-
vibrating source of movements. CFPG uses an electro-
static force as part of its architecture to generate energy. 
This electrostatic force is typically kept constant. How-
ever, by adaptively changing its value for various human 
body motions, it is expected to increase the amount of 
harvested energy for wearable and implant sensors. The 
adjustment of this electrostatic force within the micro-
generator hardware can be done by tuning the electric 
field between the CFPG’s capacitive electrodes. 

In this project, we investigate various techniques to 
adaptively optimize the electrostatic force in a CFPG 
and evaluate the resulting gain in the output power. The 
proposed techniques include deep learning (DL), least 
square methods and an approximate analytical approach. 
The performance of these techniques is evaluated for 
sample measured acceleration data representing various 
human activities. To the best of our knowledge, output 

power maximization of CFPG through adaptive electro-
static force has not been comprehensively studied 
before.  

Assuming that the electrostatic force can be ad-
justed at regular time intervals, the objective is to 
estimate its optimal value at each interval to maximize 
the average harvested power. The optimal electrostatic 
force would be a function of the length of this time in-
terval and the input acceleration waveform during the 
interval. In practice, the estimated optimal electrostatic 
force can be obtained based on the input acceleration 
samples during the immediate past time interval. This is 
possible due to the inherent temporal correlation in the 
human body motion. 

One methodology to estimate the optimal value of 
the electrostatic force is using Deep Learning (DL). DL 
is a type of machine learning based on artificial neural 
networks (ANN) in which multiple layers of processing 
are used to establish a relationship between sensory 
stimuli and the output. In other words, DL can be used 
to uncover the underlying mapping function from the in-
put data to a desired output. A four-layer neural network 
is proposed to represent the mapping from the input ac-
celeration waveform to the desired electrostatic force. 
Each node in this architecture, except the nodes on the 
first hidden layer, applies a nonlinear activation function 
to the weighted sum of its inputs, and then passes the 
output to the next layer. Tangent hyperbolic has been 
chosen as the activation function of our proposed DL ap-
proach. The inputs to the ANN are samples of the 
acceleration waveform in time. The ANN output is the 
estimated electrostatic force that will be used for the 
next time interval. Using an adaptation interval of 2 sec 
and a sampling rate of 10 Hz, Figure 83 demonstrates 
the amount of the harvested energy with the proposed 
deep learning method compared to the optimal and a 
constant electrostatic force=3 mN. As observed, this 
method performs significantly better than the constant 
electrostatic force and achieving 85% of the maximum 
power harvested under the optimal scheme. Further de-
tails and results can be found in [4]. 

Although the proposed ANN results in a significant 
increase in the harvested power, it also involves a high 
computational complexity for implementation. This 
complexity could reduce the overall gain in the output 
power of the micro-generator. Note that estimating the 
required computational power for each adaptation 
method is essential to determine the net gain in the har-
vested energy. Approximation of the input acceleration 
waveform with few frequency components and imple-
mentation of the deep learning approach in the 
frequency domain is a possible future research direction. 
In addition, studying the impact of the length of the ad-
aptation interval and discretization of the holding force 
on the harvested power is another topic of interest for 
further research. 

 
Figure 83.  Harvested energy for the proposed deep learning 
method compared to the optimal and a sample constant holding 
force. 
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Mathematical Knowledge Management 
 

We work with researchers in academia and industry to develop technologies, tools, and standards for representation, 
exchange, and use of mathematical data. Of particular concern are semantic-based representations which can provide 
the basis for interoperability of mathematical information processing systems. We apply these representations to the 
development and dissemination of reference data for applied mathematics. The centerpiece of this effort is the Digital 
Library of Mathematical Functions, a freely available interactive and richly linked online resource, providing essential 
information on the properties of the special functions of applied mathematics, the foundation of mathematical modeling 
in all of science and engineering.

Digital Library of Mathematical 
Functions  
Barry I. Schneider  
Bruce R. Miller  
Bonita V. Saunders  
Howard S. Cohl  
Marjorie A. McClain  
Daniel W. Lozier   
Ronald F. Boisvert  
Charles W. Clark (NIST PML)  
Adri B. Olde Daalhuis (University of Edinburgh)  
Gergő Nemes (Alfréd Rényi Inst. of Mathematics,  

Hungary and Tokyo Metropolitan U., Japan)  
Wolter Groenvelt (Delft University of Technology)  
Tom Koornwinder (University of Amsterdam)  
Yuan Xu (University of Oregon)  
Bill Reinhardt (University of Washington)  

http://dlmf.nist.gov/  

Progress in science has often been catalyzed by ad-
vances in mathematics. More recently, developments in 
the physical sciences, such as investigations into string 
theory, have influenced pure mathematics. This relation-
ship has been extremely beneficial to both fields. 
Mathematical developments have found numerous ap-
plications in practical problem-solving in all fields of 
science and engineering, while cutting-edge science has 
been a major driver of mathematical research. Often, the 
mathematical objects at the intersection of mathematics 
and physical science are mathematical functions. Effec-
tive use of these tools requires ready access to their 
many properties, a need that was capably satisfied for 
more than 50 years by the Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical 
Tables, which was published by the National Bureau of 
Standards (NBS) in 1964 [1]. 

The 21st century successor to the NBS Handbook, 
the freely accessible online Digital Library of Mathe-
matical Functions (DLMF) together with the 
accompanying book, the NIST Handbook of Mathemat-
ical Functions [2], published by Cambridge University 
Press in 2010, are collectively referred to as the DLMF. 

The DLMF continues to serve as the gold standard ref-
erence for the properties of the special functions of 
applied mathematics.  

The DLMF has considerably extended the scope of 
the original handbook as well as improving accessibility 
to the worldwide community of scientists and mathema-
ticians. To cite a few examples, the new handbook 
contains more than twice as many formulas as the old 
one, coverage of more functions, in more detail, and an 
up-to-date list of references. The website covers every-
thing in the handbook and much more: additional 
formulas and graphics, math-aware search, interactive 
zooming and rotation of 3D graphs, internal links to 
symbol definitions and cross-references, and external 
links to online references and sources of software.  

While the original Handbook still receives an enor-
mous number of citations, citations to the DLMF are 
steadily growing in relation to the original handbook. 
Google Scholar now reports more than 8 230 citations to 

 
Figure 84. A visual history of the DLMF from its roots in the 1964 
NBS Handbook to the graphical contents of the present DLMF. 
 

http://dlmf.nist.gov/
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the DLMF, a roughly 14 % increase from 2021. During 
calendar 2022, the DLMF website served about 3.1M 
pages to some 248 000 unique users. 

Today’s DLMF is the product of many years of ef-
fort by more than 50 contributors. Its initial release in 
2010, however, was not the end of the project. Correc-
tions to errors, clarifications, bibliographic updates, and 
addition of new material all need to be made on a con-
tinuing basis. And new chapters covering emerging 
subject areas need to be added to assure the continued 
vitality of the DLMF deep into the 21st century. Since 
December of 2021, there were five DLMF releases, 
1.1.4 (2022-01-15), 1.1.5 (2022-03-15), 1.1.6 (2022-06-
30), 1.1.7 (2022-10-15), and 1.1.8 (2022-12-15), which 
kept us on our quarterly release schedule. In Release 
1.1.0 (2020-12-15) we introduced the capability to cre-
ate new chapters, sections, subsections, and equations 
using a decimal numbering scheme using “_” to delimit 
intermediate numbers for sections, equations, etc. Over 
the past year, fourteen new equations and one new sub-
section were introduced into the DLMF.  

The updating of various DLMF chapters and the de-
velopment of new ones continues. These include a new 
chapter on Several Variable Orthogonal Polynomials 
(SVOP) and substantial updates to the chapters on Or-
thogonal Polynomials (OP), Algebraic and Analytic 
Methods (AL), Painlevé Transcendents (PT), and Zeta 
and Related Functions (ZE). Four authors and one vali-
dator have been carrying out this work. Drafts are now 
available for two of these chapters and are being inter-
nally reviewed. External validation of the chapters is 
following in much the same manner as the original 
DLMF. The ZE chapter revision with full validation was 
completed in release 1.1.4. The OP and AL external val-
idation was completed by Wolter Groenvelt in May 
2022, and it is expected that the full revision of the OP 
and AL chapters, will be released in 2023. 

One of the design goals for the DLMF was that each 
formula would be connected to a proof in the literature.  
This data, visible as annotations on the website, provides 
either a proof for the formula, a reference to the proof 
for the formula or, for definitions, a reference which 
gives that definition. Unfortunately, this information 
had not previously been provided in all cases. Our work 
to systematically verify the completeness and traceabil-
ity to published proofs for DLMF formulae at the 
equation level is well underway. This audit has been 
completed for Chapter 9 (Airy and Related Functions) 
and Chapter 25 (Zeta and Related Functions, with vali-
dation provided by Gergő Nemes) and is 
actively continuing for Chapters 1-5 and 22-30. Further-
more, inherited metadata at the subsection and section 
levels has been fully deployed.  

The DLMF is now fully utilizing GitHub’s capabil-
ities for ongoing maintenance, as well as tracking 
changes and enhancements. Changes to the DLMF are 
now implemented via GitHub issues and targeted pull 

requests of GitHub branches, each of which are re-
viewed by other project members before merging with 
the master branch in full adoption. All changes are re-
viewed and discussed by the DLMF team at weekly 
DLMF meetings of the editorial staff prior to their ap-
pearance, which occurs in quarterly DLMF revisions. 

There have been notable additional advances during 
the current reporting period:  
• Our mathematics markup now conforms with the 

MathML Core specification and should be accepta-
ble in most browsers (current Firefox, Safari, and 
the upcoming Chrome release). 

• A significant number of mathematical formulas, er-
rata and new mathematical information have been 
provided, many of which originated from the 
DLMF readership, validation staff, and contribu-
tors. Furthermore, mathematical constraints and 
symbols associated with equations and in the text, 
have been improved, clarified, corrected, or disam-
biguated. 

• Proof sketches in Chapters 9, 25, and elsewhere are 
now carefully differentiated at the equation level, 
providing useful metadata for the origination of for-
mulas.   

• We have included enhanced coverage of the Lam-
bert W-function, which includes a precise 
description of the multi-valued description with in-
dices for the separate branches. This includes the 
introduction of the Wright-w function and the tree 
T-function. 

• Improved notations and updated citations have been 
introduced.  

[1] M. Abramowitz and I. Stegun, eds. Handbook of Mathe-
matical Functions with Formulas, Graphs and 
Mathematical Tables. Applied Mathematics Series 55, 
National Bureau of Standards, Washington, DC 1964.  

[2] F. Olver, D. Lozier, R. Boisvert and C. Clark, eds. NIST 
Handbook of Mathematical Functions. Cambridge Uni-
versity Press, 2010.  
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NIST Digital Repository of 
Mathematical Formulae 
Howard S. Cohl 
Bonita V. Saunders 
Abdou Youssef 
Moritz Schubotz 
Andre Greiner-Petter (University of Wuppertal) 
Miguel Lopez (University of Maryland) 
Philipp Scharpf (University of Konstanz) 

The NIST Digital Repository of Mathematical Formulae 
(DRMF) is an online compendium of formulae for or-
thogonal polynomials and special functions (OPSF) 
designed to a) facilitate interaction among a community 
of mathematicians and scientists interested in OPSF; b) 
be expandable, allowing the input of new formulae from 
the literature; c) provide information for related linked 
open data projects; d) represent the context-free full se-
mantic information concerning individual formulas; e) 
have a user friendly, consistent, and hyperlinkable view-
point and authoring perspective; f) contain easily 
searchable mathematics; and g) take advantage of mod-
ern MathML tools for easy-to-read, professionally 
rendered content-driven mathematics. 

Our DRMF implementation, previously built using 
MediaWiki (the wiki software used by Wikipedia), is 
currently in migration to a different software platform, 
namely the platform used by the NIST Digital Library 
of Mathematical Functions (DLMF). See Figure 85 for 
the current draft of the DRMF home page, and Figure 86 
for a sample DRMF formula page. The DRMF has been 
summarized in a series of papers [1-3].  A key asset in 
the development of DRMF context free semantic con-
tent is the utilization of a set of LaTeX macros and 
macro call functionality created by Bruce Miller 
(ACMD) to achieve the encapsulation of semantic infor-
mation within the NIST Digital Library of Mathematical 

Functions (DLMF) [4]. These macros give us the capa-
bility to tie LaTeX commands in a mostly unambiguous 
way to mathematical functions defined in an OPSF con-
text.  There are currently 540 DLMF LaTeX macros, as 
well as an additional 156 macros, which have been cre-
ated specifically for the DRMF. Most, if not all, DLMF 
macros have at least one DLMF web page associated 
with them. One goal is to have definition pages for all 
additional DRMF macros. The use of DLMF and DRMF 
macros guarantees mathematical and structural con-
sistency throughout the DRMF. We refer to LaTeX 
source with incorporated DLMF and DRMF macros as 
semantic LaTeX. 

DRMF formula seeding is currently focused on 1) 
Koekoek, Lesky, and Swarttouw (KLS) chapters 1 (Def-
initions and Miscellaneous Formulas), 9 
(Hypergeometric Orthogonal Polynomials), and 14 
(Basic Hypergeometric Orthogonal Polynomials [5]; 2) 
Koornwinder KLS addendum LaTeX data [5]; 3) Wolf-
ram Computational Knowledge of Continued Fractions 
Project (eCF) [3]; 4) Continued Fractions for Special 
Function (CFSF) Maple dataset hosted by the University 
of Antwerp [3,7]; 5) Bateman Manuscript Project 
(BMP) books [8]; and 6) Magnus, Oberhettinger, and 
Soni (MOS) books [3,9]. For these seed projects, we are 
developing Python and Java software to incorporate 
DLMF and DRMF macros into the corresponding La-
TeX source.  Our coding efforts have also focused on 
extracting formula data from LaTeX source, as well as 
generating DRMF semantic LaTeX. We have developed 
Java software for the seeding of the eCF and CFSF pro-
jects, which involve conversion from Mathematica and 
Maple format to DLMF and DRMF macro incorporated 
semantic LaTeX [3].  

In August 2014, the DRMF Project obtained per-
mission and license to use BMP material as seed content 
for the DRMF from Adam Cochran, Associate General 
Counsel of Caltech.  Caltech has loaned us copies of the 
BMP. In February 2018, we received permission and li-
cense to use the KLS and MOS material as seed content 

for the DRMF from Springer Na-
ture.  We plan on implementing the 
BMP and MOS datasets using 
mathematical optical character 
recognition software to obtain La-
TeX source using software 
developed with MathType.  

Current and future DRMF Me-
diaWiki development projects 
include the production of formula 
output representations (such as se-
mantic LaTeX, MathML, 
Mathematica, Maple, and Sage); in-
corporation of sophisticated DLMF 
and DRMF macro related formula 
search; and the development of ca-
pabilities for user community 

 
Figure 85.  Draft of the DRMF home page displaying the current table of contents.  
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formula input. In this vein, A. Youssef has writ-
ten a grammar-based mathematical language 
processor (MLP) that uses JavaCC to parse 
mathematical LaTeX expressions [10].  Based 
on the MLP, A. Greiner-Petter has developed a 
Java tool referred to as LaCASt to convert math-
ematical LaTeX expressions, which contain 
DLMF and DRMF macros, to a given computer 
algebra system source format. This Java tool 
provides further information of the conversion 
about possible ambiguities and differences in 
definitions, domains and branch cuts between 
the semantic LaTeX source and the CAS source. 
Furthermore, it is designed to be easily extend-
able to other computer algebra systems and 
currently supports Maple and Mathematica in-
put sources. NIST ACMD SURF student 
Miguel Lopez worked on the project “Conver-
sion of Mathematica source to LaTeX.”  In [11] 
which focuses on LaCASt, we present a first 
comprehensive approach to verify a digital 
mathematical and two computer algebra sys-
tems with one another by converting 
mathematical expressions from one system to 
the other. This is accomplished by our develop-
ment of LaCASt, which translates formulae 
from the NIST Digital Library of Mathematical 
Functions to the computer algebra systems Ma-
ple and Mathematica. This tool will be actively 
used in DRMF. In [12], we explore the future of 
digital mathematics libraries where semantic content is 
significantly enhanced. In [13], we conceive to general-
ize citation-based information retrieval methods as 
applied to mathematical concepts through machine 
learning-based approaches to the formula concept re-
trieval and formula concept discovery tasks. 

The KLS datasets have been uploaded to our DLMF 
platform as well as the CFSF and eCF datasets. By 
working with Andrea Fisher-Scherer, Rights Adminis-
trator, Artists Rights Society, New York, NY, we have 
received permission from Foundation Vasarely to use an 
image Victor Vasarely's painting as the DRMF logo; see 
Figure 3. 
[1] H. S. Cohl, M. A. McClain, B. V. Saunders, M. Schubotz, 

and J. C. Williams. Digital Repository of Mathematical 
Formulae. Lecture Notes in Artificial Intelligence 8543 
(2014), Proceedings of the Conferences on Intelligent 
Computer Mathematics 2014, Coimbra, Portugal, July 7-
11, 2014, (S. M. Watt, J. H. Davenport, A. P. Sexton, P. 
Sojka, and J. Urban, eds.), Springer, 419-422. 

[2] H. S. Cohl, M. Schubotz, M. A. McClain, B. V. Saunders, 
Cherry Y. Zou, Azeem S. Mohammed, and Alex A. Da-
noff.  Growing the Digital Repository of Mathematical 
Formulae with Generic LaTeX Sources. Lecture Notes in 
Artificial Intelligence 9150 (2015), Proceedings of the 
Conference on Intelligent Computer Mathematics 2015, 
Washington DC, USA, July 13-17, 2015, (M. Kerber, J.  

Carette, C. Kaliszyk, F. Rabe, and V. Sorge, eds.), 
Springer, 280-287. 

[3] H. S. Cohl, M. Schubotz, A. Youssef, A. Greiner-Petter, 
J. Gerhard, B. V. Saunders, M. A. McClain, J. Bang, and 
K. Chen. Semantic Preserving Bijective Mappings of 
Mathematical Formulae between Word Processors and 
Computer Algebra Systems. Lecture Notes in Computer 
Science 10383 (2017), Proceedings of the Conference on 
Intelligent Computer Mathematics 2017, Edinburgh, 
Scotland, U.K., July 17-21, 2017, (H. Geuvers, M. Eng-
land, O. Hasan, F. Rabe, O. Teschke, eds.), Springer, 115-
131. 

[4] B. Miller. “Drafting DLMF Content Dictionaries.” Open-
Math Workshop, 9th Conference on Intelligent Computer 
Mathematics (CICM), Bialystok, Poland, 2016. 

[5] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hyperge-
ometric Orthogonal Polynomials and their q-Analogues.  
Springer Monographs in Mathematics, Springer-Verlag, 
Berlin, 2010. 

[6] T. H. Koornwinder. Additions to the Formula Lists in Hy-
pergeometric Orthogonal Polynomials and their q-
analogues by Koekoek, Lesky and Swarttouw. 
arXiv:1401.0815, June 2015. 

[7] A. Cuyt, V. Petersen, H. Waadeland, W. B. Jones, F. 
Backeljauw, C. Bonan-Hamada, and S. Becuwe. Hand-
book of Continued Fractions for Special Functions. 
Springer, New York, 2008. 

 
Figure 86.  Sample DRMF page, taken from the KLS Chapter 1 dataset.  
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[8] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G.  Tri-
comi. Higher Transcendental Functions. Vols. I, II, III, 
Robert E. Krieger Publishing Co., Melbourne, FL, 1981. 

[9] H. S. Cohl, A. Greiner-Petter, and M. Schubotz.  Auto-
mated Symbolic and Numerical Testing of DLMF 
Formulae using Computer Algebra Systems. Lecture 
Notes in Computer Science 11006 (2018), Proceedings of 
the Conference on Intelligent Computer Mathematics 
2018, Hagenberg, Austria, August 13-17, 2018, (F. Rabe, 
W. Farmer, G.O. Passmore, A. Youssef, eds.), Springer, 
39-52. 

[10] A. Youssef. Part-of-Math Tagging and Applications. Lec-
ture Notes in Computer Science 10383 (2017), 
Proceedings of the Conference on Intelligent Computer 
Mathematics 2017, Edinburgh, Scotland, U.K., July 17-
21, 2017, (H. Geuvers, M. England, O. Hasan, F. Rabe, 
O. Teschke, eds.), Springer, 356-374. 

[11] A. Greiner-Petter, H. S. Cohl, A. Youssef, M. Schubotz, 
A. Trost, R. Dey, A. Aizawa and B. Gip. Comparative 
Verification of the Digital Library of Mathematical Func-
tions and Computer Algebra Systems. Lecture Notes in 
Computer Science 13243 (2022), Tools and Algorithms 
for the Construction and Analysis of Systems (TACAS 
2022), Held as Part of the European Joint Conferences on 
Theory and Practice of Software (ETAPS 2022), 
Springer, (D. Fisman and G. Rosu, eds.), Munich, Ger-
many, April 2-7, 2022, Springer, 87–105. 

[12] H. S. Cohl, M. Schubotz. The Digital Shadow of Mathe-
matics and its Ramifications. Jahrbuch uber die 
Fortschritte der Mathematik, to appear. 

[13] P. Scharpf, M. Schubotz, H. Cohl, C. Breitinger, and B. 
Gipp. Discovery and Recognition of Formula Concepts 
using Machine Learning. Scientometrics, to appear. 

Scientific Document Corpora for 
Natural and Mathematical Language 
Research 
Bruce Miller 
Deyan Ginev (Chakra Consulting) 
Tom Wiesing (University of Erlangen, Germany) 

Machine learning is currently a very active research 
area, both in its theoretical underpinnings and technol-
ogy, as well as its application to find, understand and 
reuse information. We would like to see the application 
of these methods to scientific documents, unique in their 
style of natural language used, as well as the extensive 
use of mathematical notation. For this to happen, large 
collections of scientific documents are needed, first for 
training and then for mining. To that end, we have been 
applying our LaTeXML tool to the massive corpus at 
arXiv.org25. To demonstrate the utility of this dataset, 

 
25  https://arXiv.org/ 
26  https://dlmf.nist.gov/LaTeXML/ 

we have carried out initial experiments on statement 
classification using that data set. 

As an example of data mining in scientific docu-
ments, consider automated classification of paragraphs 
according to their textual content as not only abstracts, 
introductions, and conclusions, but as theorems, proofs, 
definitions, and such. Although the markup normally 
used in LaTeX documents seldom emphasizes seman-
tics, there are nevertheless a number of macros and 
environments which reflect the author’s intent.  We were 
able to extract some 10M such annotated paragraphs in 
50 categories from our conversion of arXiv [1]. Using 
80% of the documents as a training set, we discovered 
that many categories were too similar. For example, the-
orems, lemmas, and propositions strongly share 
language patterns. Combining these “confusion nests” 
yielded 13 clear cut categories into which the paragraphs 
could be reliably categorized with a 0.91 F1 score. Con-
sequently, the system learns to classify paragraphs that 
have not been manually annotated. 

LaTeXML26 was originally developed to convert 
the LaTeX sources of the Digital Library of Mathemati-
cal Functions (DLMF)27 into web format, namely 
HTML and MathML. Most of the arXiv.org corpus is 
also in LaTeX format, albeit with significantly less dis-
ciplined markup and using a wide variety of uncommon 
and complex support packages. We have continued to 
develop LaTeXML, improving robustness and fidelity 
of TeX simulation.  The coverage of LaTeX packages 
has been increased, while minimizing the loss of latent 
semantics implied by the markup.   This year was a very 
busy one on arXiv, with the number of documents in-
creasing to 1.97M from 1.8M last year. We have just 
completed reprocessing the entire current corpus into 
HTML+MathML with over 75% success rate (docu-
ments producing, at worst, warnings). 

Additionally, we have been tracking the evolution 
of web browsers and relevant standards, such as 
MathML Core which is now natively supported by all 
major web browsers.  This effort has attracted the atten-
tion of the arXiv team itself to use our system to make 
their corpus available in HTML format to improve ac-
cessibility as well as availability on both desktop and 
mobile devices.  
[1] D. Ginev and B. R. Miller. Scientific Statement Classifi-

cation over arXiv.org. arXiv:1908.10993 

27  https://dlmf.nist.gov/ 

https://arxiv.org/
https://dlmf.nist.gov/LaTeXML/
https://arxiv.org/abs/1908.10993
https://dlmf.nist.gov/
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Visualization of Complex Functions 
Data 
Bonita Saunders   
Bruce Miller  
Sandy Ressler 
Brian Antonishek (NIST EL)   
Qiming Wang (NIST retired)  

Although the DLMF28 provides definitions, recurrence 
relations, differential equations,  asymptotic expansions,  
and other information crucial for understanding com-
plex mathematical functions arising in application areas 
of the mathematical and physical sciences, interactive 
visualizations can provide additional clarity as indicated 
in Figure 87.  

Since this work is motivated by the DLMF, ensur-
ing the quality and accessibility of its visualizations is 
our first priority. When updates of JavaScript and 
X3DOM29 graphics libraries associated with the gener-
ation of our visualizations introduced anomalies in our 
color maps, we realized a better understanding of the 
role of the libraries during the generation process was 
needed. The first question was whether the new maps 
were actually more accurate representations, but prelim-
inary examinations of the data files, plots of similar data 
on other websites, and plots in Jahnke, Emde, and Losch 
[4] indicated this was not the case.  By backing out of 
several updates we determined the earliest versions of 
X3DOM producing the altered color maps. Ideally, we 
want to use the latest update available, but a careful ex-
amination of  the X3DOM changelog, available through 
GitHub, might yield a possible “culprit” for the errant 
maps.  Once we know more, we will try contacting 
X3DOM  developers for possible assistance and clarifi-
cation of the changes made to the library.   

Another priority is addressing changes suggested by 
DLMF users, other members of the DLMF editorial 
staff, and chapter authors. For example, based on feed-
back received, modified and new figures related to the 
Lambert W-Function were added to Chapter 4 on Ele-
mentary Functions. In particular, notations for the 
principal and lower branch solutions were changed to 
coincide with conventions more commonly found in the 
literature. Another figure was added to show the func-
tion’s mapping on five branches, or Riemann sheets.   
Hopefully, this work will eventually lead to the design 
of  interactive 3D visualizations of Riemann surfaces. 
Additional figures are also under development for the 
chapter on Orthogonal Polynomials, which is undergo-
ing extensive modifications in content. 

We continue to look for opportunities to generalize 
our work to benefit the larger research community. Our 

 
28 https://dlmf.nist.gov/ 
 

current work on adaptive meshes to improve our under-
lying computational grids supports our design process, 
but it may also interest other researchers in the fields of 
mesh generation, optimization, approximation theory, or 
any area related to the design of curves and surfaces for 
mathematical or physical applications.  We should also 
note that some of  our recent presentations have also 
shown that aspects of our work can be appreciated by 
more general and less specialized audiences [1, 2, 3].  
Such talks may not yield immediate collaborators but 
can still enhance the division’s visibility  and plant seeds 
for new connections.  

As time permits, we also continue to explore oppor-
tunities to increase user visibility. Some DLMF chapters 
display chapter related thumbnail images on the title 
page. Creating a gallery of images for all chapters would 

29 https://www.x3dom.org/ 
 

 
Figure 87. DLMF visualizations provide several options for explor-
ing mathematical function surfaces.  In the top figure, the modulus 
of the principal value of the exponential integral E1 (x+iy) is shown 
with a phase color map, cutting plane and pop-up control window 
indicating convergence to ∞ at the origin.  Other options allow us-
ers to change the color map, examine different viewpoints and scale 
the figure in various coordinate directions. In the bottom figure, the 
function’s height is scaled down to create a density plot that reveals 
the cut along the negative real axis. DLMF Figure 6.3.3: 
https://dlmf.nist.gov/6.3.F3 

 
 

https://dlmf.nist.gov/
https://www.x3dom.org/
https://dlmf.nist.gov/6.3.F3
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add visual interest to the DLMF. Each image would link 
to a short descriptive sidebar that could include links to 
the chapter’s application section or related function vis-
ualizations. New and updated DLMF chapters currently 
under development can provide a test bed for this work.   
[1] B. Saunders, “The Handbook of Mathematical Functions 

and the DLMF.”  75th Anniversary of NIST Mathematics 
and Statistics, NIST, June 28, 2022.  

[2] B. Saunders, “Visualizing Complex Functions.” George 
Mason University Mathematics Students Visit, NIST, 
August 3, 2022.  

[3] B. Saunders, “Research in Computational and Applied 
Mathematics at the National Institute of Standards and 
Technology: NIST’s DLMF and More.” Applied Mathe-
matics and Scientific Computing Seminar, Temple 
University, Philadelphia, PA, November 30, 2022.  

[4] E. Jahnke, F. Emde, and F. Losch. Tables of Higher Func-
tions. 6th Edition, B. G. Teubner Verlagsgesellschaft 
mbH, Stuttgart, 1960 (Bilingual).  

DLMF Standard Reference Tables 
on Demand 
Bonita Saunders  
Bruce Miller  
Marjorie McClain (Retired)  
Annie Cuyt (University of Antwerp)  
Stefan Becuwe (University of Antwerp)  
Franky Backeljauw (University of Antwerp)  
Sean Brooks (Coppin State University)  
Ron Buckmire (Occidental College)  
Rachel Vincent-Finley (Southern U. and A&M College)  
Christopher Schanzle  

http://dlmftables.uantwerpen.be/  

Although reliable computing machines, computer alge-
bra systems, and multiple precision computational 
packages have diminished the need for tables of refer-
ence values for computing function values by 
interpolation, mathematical and physical scientists, nu-
merical analysts, and software developers still need a 
way to test software for computing mathematical func-
tions. DLMF Standard Reference Tables on Demand 
(DLMF Tables) is a collaborative project between 
ACMD and the University of Antwerp Computational 
Mathematics Research Group (CMA) [1-5] to address 
this problem. The goal is to develop an online system 
where users can generate tables of special function val-
ues at user-specified precision with an error certification 

 
30 https://www.msri.org/web/msri/scientific/adjoint   
31 S. Brooks, R. Buckmire, and R. Vincent-Finley were supported in 
this work by National Science Foundation, Grant Nos. DMS-1915954 
and DMS-2016406; National Security Agency, Grant No. H98230-20-

to test their own algorithms or confirm the accuracy of 
results from a commercial or publicly available package.   

The DLMF Tables team has developed a beta site at 
the University of Antwerp, based on CMA’s MpIeee, a 
multiple precision IEEE 754/854 compliant C++ float-
ing point arithmetic library. Ultimately, the goal is a 
permanent NIST location accessible from the NIST Dig-
ital Library of Mathematical Functions (DLMF).  In 
2020 three researchers were added to the DLMF Tables 
team through the inaugural ADJOINT Workshop30 

sponsored by the Mathematical Sciences Research Insti-
tute (MSRI) in Berkeley, California [6]. The group 
members, from various universities, were supported by 
MSRI through NSF, NSA, and Sloan grants31 for more 
than a year. Post-workshop contact has continued with 
online meetings to discuss and verify applicable results 
from the literature, including Higham [7] and CMA [1-
5]. The ADJOINT group’s work led to three invited 
talks at the 2021 Joint Mathematics Meetings [8] and 
two more talks at ADJOINT and AWM minisymposia 
at the 2022 Joint Mathematics Meetings [9, 10]. Also, 
an update of the group’s work was presented at a MSRI 
reunion during the summer of 2022 [11]. A paper co-
authored by the ADJOIINT group with members of the 
ACMD and U. Antwerp teams is under review [12].  

1-0015; and Sloan Foundation, Grant No. G-2020-12602 as partici-
pants in ADJOINT 2020 hosted by the Mathematical Sciences 
Research Institute in Berkeley, California.  
 

 
Figure 88. DLMF Tables generates tables of special function values 
at user specified precision. Users input real values and parameters 
where the function is to be evaluated.  The user may request output 
in interval mode, where the output is shown as a table of intervals 
that bound the true results or may request output in one of several 
rounding modes. Users may also choose to compare their own table 
of values to the reference values generated by the system. 
 

http://dlmftables.uantwerpen.be/
https://www.msri.org/web/msri/scientific/adjoint
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ACMD has primarily been responsible for the front-
end interface for DLMF Tables, while CMA designed 
and maintains the back-end computational engine built 
around the error analysis and MpIeee library. The work 
with the ADJOINT group marks a significant step to-
ward merging these capabilities so that CMA’s function 
computation codes can be maintained and eventually, 
further developed here at NIST. 

[1] F. Backeljauw, S. Becuwe, A. Cuyt, J. Van Deun, and D. 
Lozier. Validated Evaluation of Special Mathematical 
Functions. Science of Computer Programming 10 (2013), 
1016.  

[2] M. Colman, A. Cuyt, and J. Van Deun, Validated Com-
putation of Certain Hypergeometric Functions. ACM 
Transactions on Mathematical Software 38:2 (January 
2012), 11.  

[3] F. Backeljauw. A Library for Radix-independent Multi-
precision IEEE-compliant Floating-point Arithmetic. 
Technical Report 2009-01, Department of Mathematics 
and Computer Science, Universiteit Antwerpen, 2009.  

[4] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and 
W. B. Jones. Handbook of Continued Fractions for Spe-
cial Functions. Springer, New York, 2008.   

[5] A. Cuyt, B. Verdonk, and H. Waadeland. Efficient and 
Reliable Multiprecision Implementation of Elementary 
and Special Functions. SIAM Journal of Scientific Com-
puting 28 (2006), 1437-1462.   

[6] B. Saunders, S. Brooks, R. Buckmire, and R. Vincent-
Finley. “Validated Numerical Computation of Mathemat-
ical Functions.” African Diaspora Joint Mathematics 
Workshop (ADJOINT) 2020, Online, June 26, 2020.   

[7] N. Higham. Accuracy and Stability of Numerical Algo-
rithms. Second edition. Society for Industrial and Applied 
Mathematics, Philadelphia, 2002.   

[8] B. Saunders, S. Brooks, R. Buckmire, and R. Vincent-
Finley. “Validated Computation of Special Functions I: 
Overview, II: Error Analysis, III: DLMF Tables.” 
ADJOINT Research Showcase, 2021 Joint Mathematics 
Meetings, Online, January 9, 2021.  

[9] B. Saunders, S. Brooks, R. Buckmire, R. Vincent-Finley, 
“Rounding Error Analysis for Validated Computation of 
Special Functions.”  Special Session on the MSRI Afri-
can Diaspora Joint Mathematics (ADJOINT) Workshop, 
I,  Joint Mathematics Meetings, I, Online, April 6, 2022. 

[10] B. Saunders, S. Brooks, R. Buckmire, R. Vincent-Finley, 
F. Backeljauw, S. Becuwe, B. Miller, M. McClain, A. 
Cuyt, “Validated Computation of Special Mathematical 
Functions.”  AWM Special Session on Celebrating the 
Mathematical Contributions of the AWM, I, Joint Math-
ematics Meetings, Online, April 7, 2022. 

[11] R. Buckmire, B. Saunders, R. Vincent-Finley, S. Brooks, 
“Saunders ADJOINT Team Update on Validated Numer-
ical Computations Research.”  ADJOINT Reunion 
Workshop, Online, July 1, 2022.  

[12] B. Saunders, S. Brooks, R. Vincent-Finley, R. Buckmire,  
F. Backeljauw, S.  Becuwe, B. Miller, M. McClain, A. 
Cuyt. Validated Computation of Special Mathematical 
Functions.  In review. 

Fundamental Solutions and 
Formulas for Special Functions and 
Orthogonal Polynomials 
Howard S. Cohl 
Camilo Montoya 
Lisa Ritter 
Roberto S. Costas-Santos (U. Loyola Andalucia) 
Hans Volkmer (University of Wisconsin-Milwaukee) 
Gestur Olafsson (Louisiana State University) 
Mourad E. H. Ismail (University of Central Florida) 
Tom H. Koornwinder (Korteweg-de Vries Institute for 

Mathematics) 
James Lawrence (George Mason University) 
Jessica E. Hirtenstein (University of California Davis) 
Philbert R. Hwang (University of Maryland) 
Tanay Wakhare (MIT) 
Linus Ge (University of Rochester) 

The concept of a function expresses the idea that one 
quantity (the input) completely determines another 
quantity (the output). Our research concerns special 
functions and orthogonal polynomials. A special func-
tion is a function that has appeared in the mathematical 
sciences so often that it has been given a name. Green's 
functions (named after the British mathematician 
George Green, who first developed the concept in the 
1830s) describe the influence of linear natural phenom-
ena such as electromagnetism, gravity, heat, and waves. 
For example, in electrostatics, a Green’s function de-
scribes the influence of a point charge, called the source, 
over all of space. The inputs for fundamental solutions 
(Green's functions) are all of space (apart from a singular 
region), and the output is the "force" exerted from the 
point throughout space. Green's functions are funda-
mental to the study of inhomogeneous partial 
differential equations and are powerful in that they pro-
vide a mechanism for obtaining their solutions. 

We investigate fundamental solutions of linear par-
tial differential equations on highly symmetric 
Riemannian manifolds (harmonic, rank-one symmetric 
spaces) such as real, complex, quarternionic, and octo-
nionic, hyperbolic, and projective spaces. Our recent 
focus has been on applications of fundamental solutions 
for linear elliptic partial differential operators on spaces 
of constant curvature. With Olafsson and Camilo Mon-
toya, we investigate fundamental solutions of the 
Laplace-Beltrami operator on rank one symmetric 
spaces of compact and noncompact type [1, 2]. Cohl, 
Ritter, previous SURF student Jessica Hirtenstein, and 
Jim Lawrence derived Gegenbauer expansions and ad-
dition theorems for binomial and logarithmic 
fundamental solutions of the polyharmonic operator in 
even-dimensional Euclidean space in Vilenkin poly-
spherical coordinates for powers of the Laplacian 
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greater than or equal to the dimension divided by two 
[3].  

With Hans Volkmer, we continue our investigation 
of a fundamental solution expansions for Laplace’s 
equation in the 17 conformally inequivalent coordinate 
systems which separate Laplace’s equation. Recently, 
we have been investigating the rotationally invariant cy-
clidic coordinate systems of this type, namely flat-ring 
cyclide, bi-cyclide and disk cyclide coordinates. We 
have completed the investigation for flat-ring [4, 5] and 
bi-cyclide [6] coordinates. 

In the following works, we expand on the properties 
of terminating and nonterminating generalized and basic 
hypergeometric functions to study themselves and their 
respective generalized and basic hypergeometric orthog-
onal polynomials (hereafter orthogonal polynomials) in 
the Askey and q-Askey schemes. By utilizing connec-
tion relations, we have computed generalizations of 
generalized and basic hypergeometric orthogonal poly-
nomial generating functions as well as corresponding 
definite integrals using orthogonality. With Costas-San-
tos, Hwang and Wakhare, our series-rearrangement 
technique is extended to generalizations of other gener-
ating functions for basic hypergeometric orthogonal 
polynomials in [7]. Here, we derive generalizations of 
generating functions for Askey–Wilson, q-ultraspheri-
cal/Rogers, q-Laguerre, and little q-Laguerre/Wall 
polynomials [7]. We are also interested in the fundamen-
tal transformation, representation (symmetry) properties 
of the special functions and orthogonal polynomials 
which one often encounters in applied mathematics and 
mathematical physics. With Costas-Santos and Ge, we 
developed a series of papers which describe transfor-
mation and representation theory of symmetric basic 
hypergeometric orthogonal polynomials, namely the 
Askey–Wilson polynomials (4 symmetric free parame-
ters (sfp)) and its symmetric subfamilies, the continuous 
dual q-Hahn polynomials (3 sfp), the Al-Salam–Chihara 
polynomials (2 sfp), the continuous big q-Hermite poly-
nomials and the continuous q-Hermite polynomials, and 
their q-inverse analogues [8]. With Costas-Santos, we 
examine the symmetric transformation and representa-
tion properties of the Askey–Wilson polynomials with a 
focus on the terminating very-well poised 8W7 represen-
tations. We examine the representation relation to the 
order of the well-known symmetry group of the termi-
nating 4f3 Askey–Wilson representations given by the 
symmetric group S6 with respect to their and transfor-
mation inversion symmetries [9]. We have also 
investigated the use of integral representations for non-
terminating basic hypergeometric functions and 
orthogonal polynomials [10, 11]. 

With Costas-Santos we studied the relation between 
the Ferrers function of the first kind and Gegenbauer 
polynomials to derive a collection of new formulas [12]. 
With Ismail and Ritter, we derive 5-term contiguous re-
lations for the linearization coefficients of generalized 

and basic hypergeometric orthogonal polynomials such 
as Laguerre, Gegenbauer, Hermite, Jacobi, continuous 
q-ultraspherical/Rogers, and continuous q-Jacobi poly-
nomials [13].  We are also continuing this project with 
Jacobi functions of the first and second kind and their 
trigonometric limiting functions on the cut (-1,1) [14] 

Well-known special functions researcher Richard 
A. Askey passed away on October 9, 2019. Cohl, Ismail, 
and Wu have edited a memorial article for Dick Askey 
which was published in The Notices of the American 
Mathematical Society [15]. With 63 colleagues, Cohl 
and Ismail prepared a Liber Amicorum for Dick Askey 
which was presented to him and his family at an event 
held on September 4, 2019, at his hometown in Madi-
son, Wisconsin. Cohl and Ismail have submitted an 
extended version of the Liber Amicorum composed of 
the remembrances of 83 of his colleagues which will be 
published online with Celebratio Mathematica [16].  

Cohl remains editor or co-editor for a special issue 
on symmetry in special functions and orthogonal poly-
nomials in the journal Symmetry; special volume 
dedicated to the legacy of Dick Askey for The Ramanu-
jan Journal, OP-SF NET, SIAM Activity Group on 
Orthogonal Polynomials and Special Functions; and The 
Ramanujan Journal. 
[1] H. S. Cohl, C. Montoya, and G. Olafsson. Fundamental 

Solutions for the Laplace-Beltrami Operator and its Ei-
genfunction Expansions in Complex Hyperbolic 
Geometry. In preparation. 

[2] H. S. Cohl, C. Montoya, and G. Olafsson. Fundamental 
Solutions for the Laplace-Beltrami Operator and its Ei-
genfunction Expansions in Complex Projective 
Geometry. In preparation. 

[3] H. S. Cohl, J. E. Hirtenstein, J. Lawrence, and L. Ritter. 
Gegenbauer Expansions and Addition Theorems for a Bi-
nomial and Logarithmic Fundamental Solution of the 
Even-Dimensional Euclidean Polyharmonic Equation. 
Journal of Mathematical Analysis and Applications 517:2 
(2023), 126576. 

[4] L. Bi, H. S. Cohl, and H. Volkmer. Expansion for a Fun-
damental Solution of Laplace’s Equation in Flat-ring 
Cyclide Coordinates. Symmetry, Integrability and Geom-
etry: Methods and Applications 18 (2022), 41. 

[5] L. Bi, H. S. Cohl, and H. Volkmer. Peanut Harmonic Ex-
pansion for a Fundamental Solution of Laplace’s 
Equation in Flat-ring Coordinates. Analysis Mathematica 
48:3 (2022), 961-989. 

[6] B. Alexander, H. S. Cohl, and H. Volkmer. Internal and 
External Harmonics in Bi-Cyclide Coordinates. In re-
view. 

[7] H. S. Cohl, R. S. Costas-Santos, P. R. Hwang, and T. V. 
Wakhare. Generalizations of Generating Functions for 
Basic Hypergeometric Orthogonal Polynomials. Open 
Journal of Mathematical Sciences 6:1 (2022), 248. 

[8] H. S. Cohl, R. S. Costas-Santos, and L. Ge. Basic Hyper-
geometric Transformations from Symmetric and q-
inverse Sub-families of the Askey-Wilson Polynomials in 
the q-Askey-scheme. In preparation. 
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[9] H. S. Cohl and R. S. Costas-Santos. Symmetry of termi-
nating basic hypergeometric representations of the 
Askey–Wilson polynomials. Journal of Mathematical 
Analysis and Applications 517:1 (2023), 126583. 

[10] H. S. Cohl and R. S. Costas-Santos. Utility of Integral 
Representations for Basic Hypergeometric Functions and 
Orthogonal Polynomials. The Ramanujan Journal, Spe-
cial Volume Dedicated to Dick Askey, to appear. 

[11] H. S. Cohl and R. S. Costas-Santos. Nonterminating 
Transformations and Summations Associated with Some 
q-Mellin-Barnes Integrals. In review. 

[12] H. S. Cohl and R. S. Costas-Santos. On the Relation Be-
tween Gegenbauer Polynomials and the Ferrers Function 

of the First Kind. Analysis Mathematica 48:3 (2022), 
695-716. 

[13] H. S. Cohl and L. Ritter. Two-dimensional Contiguous 
Relations for Linearization Coefficients ff Orthogonal 
Polynomials in the Askey-scheme. In review. 

[14] H. S. Cohl and R. S. Costas-Santos. Multi-Integral Rep-
resentations for Jacobi Functions. In preparation. 

[15] M. E. H. Ismail, H. S. Cohl and H.-H. Wu, Editors. The 
Legacy of Dick Askey (1933-2019). Notices of the Amer-
ican Mathematical Society 69:1 (2022), 59-75. 

[16] H. S. Cohl and M. E. H. Ismail, eds. Liber Amicorum, a 
Friendship Book for Dick Askey. In review.  
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Outreach and Diversity 
 

ACMD staff engage in a variety of efforts that serve to educate the general public about the work of the division and 
to encourage students to consider careers in science and engineering. We are also involved in internal efforts to improve 
diversity and inclusivity, which are important for both recrutiment and retention of a high-performing workforce. Some 
of these efforts are described here. 

Student Internships in ACMD 
Ronald Boisvert 

ACMD is committed to helping to prepare the next gen-
eration of scientific researchers by providing internships 
of various types to students at each of the graduate, un-
dergraduate, and high school levels. The NIST programs 
used to enable such internships include the following:  

• Foreign Guest Researcher Program. Provides sti-
pends to support visits of guest researchers from 
foreign institutions for periods of a few weeks to sev-
eral years. 

• Pathways Program. Provides temporary Federal ap-
pointments to students, typically 1 to 2 years. Allows 
easy conversion to full-time permanent status. (Re-
stricted to US Citizens.)  

• Professional Research Experience Program 
(PREP)32. A cooperative agreement with nine uni-
versities 33 that provides a mechanism for NIST to 
support internships for students from those institu-
tions on the Gaithersburg campus throughout the 
year. A similar agreement with four universities34 
exists for the NIST Boulder Labs. 

• Student Volunteer Program. A mechanism that pro-
vides unpaid internships for students. 

• Summer High School Internship (SHIP) Program35. 
SHIP uses the Student Volunteer Program to organ-
ize a competitive summer volunteer program for 
high school students.  

• Summer Undergraduate Research Fellowship 
(SURF) Program36. A competitive program provid-
ing undergraduates a 10-week research experience at 
NIST. 

Funding for all of these programs comes from the Divi-
sion hosting the student. The Pathways Program, the 
PREP Program, and the Foreign Guest Researcher Pro-
gram can also be used to support postdoctoral 
researchers.  

 
32 https://www.nist.gov/iaao/academic-affairs-office/nist-profes-
sional-research-experience-program-prep 
33 Brown University, Georgetown University, Montgomery College, 
Towson University, the University of the District of Columbia, the 
University of Maryland College Park, and a consortium of Johns Hop-
kins University, Morgan State University, and the State University of 
New York at Binghamton. 

In total, during the last 15 months, ACMD sup-
ported the work of 23 student interns, including 14 
graduate students, six undergraduates, and three high 
school students. See Table 3 for a complete listing.  

ACMD staff members are also active in the educa-
tion of graduate students, serving both as Ph.D. advisers 
and as members of thesis committees. See page 156. 

A Modular Analysis of NIST 
Institutional Networks 
Robert P. Dalka (University of Maryland) 
Justyna P. Zwolak 

Organizational network analysis (ONA) is a class of 
methodologies that aim to explore the social ties within 
and between formal organizations to better understand 
phenomena such as knowledge and resource transfer, 
social influences within teams, or the effect of team 
building on the dynamics of an organization’s social net-
work. ONA oftentimes requires personally identifiable 
information, which in certain organizations can be diffi-
cult or impossible to collect. To overcome this 
limitation, we proposed an alternative method for eval-
uating interconnectedness within or between 
organizations. The proposed institutional network anal-
ysis uses a projection of anonymous ego-centric data 
onto organizational units as a proxy to capture the or-
ganizational network structure, rather than individual 
employees [1]. 

The networks used in this study are built based on 
the NIST Interactions Survey data [2]. This dataset cap-
tures two distinct types of social interactions among 
NIST employees: their work-related collaborations and 
advice seeking. The two resulting networks are expected 
to exhibit somewhat different structures: whereas col-
laborating on a project necessitates interaction with 
other employees to fulfill the organization’s mission, not 
everyone seeks advice internally or in a systematic way. 

34 Brown University, the Colorado School of Mines, the University of 
Colorado Boulder, and the University of Colorado Denver 
35 https://www.nist.gov/careers/student-opportunities/summer-high-
school-intern-program 
36 https://www.nist.gov/surf 

https://www.nist.gov/iaao/academic-affairs-office/nist-professional-research-experience-program-prep
https://www.nist.gov/iaao/academic-affairs-office/nist-professional-research-experience-program-prep
https://www.nist.gov/careers/student-opportunities/summer-high-school-intern-program
https://www.nist.gov/careers/student-opportunities/summer-high-school-intern-program
https://www.nist.gov/surf
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We build and analyze both networks to demonstrate and 
validate our approach. 

Previously, we have employed a modular analysis 
to determine whether the projected unit-based networks 
accurately reflect the network structure of the organiza-
tional units that comprise NIST. We find that the 
structure restored in the projected network closely re-
sembles the NIST organizational structure for the 
collaboration network. The advice network has more 
variability in the communities identified as well as more 
intermixing between units. We also find that the com-
munity assignment for the advice network is less stable 
and more susceptible to sampling bias, as opposed to the 
collaboration network.  

The first report based on the NIST Interactions Sur-
vey focuses on comparison of work and advice ego-
networks between different categories of demographics 
(e.g., gender, age group, duty station). Unsurprisingly, 
the study found the organizational unit (OU) affiliation 
to be the most important factor in shaping the work col-
laboration networks. Interestingly, in the advice 
networks, OU affiliation, gender, and age all played a 
role. While gender-based differences in ego networks 
were not observed in the work collaboration networks, 
some distinctions were found in the advice networks. In 
terms of age-dependencies, it was found that respond-
ents in the 18−39 age range preferred older advice 

networks. The study in this report did not find any sig-
nificant differences between minority and non-minority 
employees for either work collaboration or advice ego-
networks. 

Our current work focuses on the full inter-OU social 
networks established based on responses to the two 
NIST Interaction Survey questions. We study how 
strong the self-reported connections between OUs are 
and how they differ between types of networks and re-
spondent demographics. In doing so, we can investigate 
how the relationships, both work collaboration and ad-
vice, map onto the structure of OU-level NIST network 
[3]. 
[1] R. P. Dalka and J. P. Zwolak. Restoring the Structure: A 

Modular Analysis of Ego-Driven Organizational Net-
works. arXiv preprint, 2201.01290 (2022). 

[2] L. Espinal, C. Young, and J. P. Zwolak. Mapping Em-
ployee Networks through the NIST Interactions Survey. 
NISTIR 8375, June 2021. DOI: 10.6028/NIST.IR.8375 

[3] R. P. Dalka and J. P. Zwolak. Organizational Network 
Analysis of NIST Inclusivity Network Data. In prepara-
tion. 

Network Analysis to Investigate 
Physics Programmatic Survey 
Results 
Robert P. Dalka (University of Maryland) 
Justyna P. Zwolak 
Diana Sachmpazidi (University of Maryland) 
Charles Henderson (Western Michigan University 

In physics education research (PER), the various aspects 
of student experiences are often assessed via Likert-style 
surveys. In our previous work, we proposed the network 
analysis for Likert-style surveys (NALS) approach to 
modeling and evaluating Likert-style survey results [1]. 
NALS was validated using the results from the Aspects 
of Student Experience Survey (ASES). ASES is an in-
strument designed to assess physics graduate student 
experiences of departmental support structures [2]. Our 
current work is building on this past project. 

NALS involves a series of steps necessary to gener-
ate a network from survey responses. These steps 
involve: (a) creating a bipartite network of respondents 
and response selections; (b) projecting the network onto 
response selections using the edge weights to indicate 
number of respondents selecting both responses; (c) 
building an item relation matrix for each possible item 
pair; (d) calculating a similarity value between items and 
record the ratio of mutual agree to mutual disagree se-
lections as temperature; and (e) determining the 
backbone of the resulting network through identifying 
the most significant edges. 

 
Figure 89. The communities identified within gendered networks. 
The gendered networks for both collaboration and advice; women 
collaboration (top left), men collaboration (top right), women ad-
vice (bottom left), and men advice (bottom right). The nodes are 
sized by the number of responses from each OU. Each OU (node) is 
labeled and colored by the organizational division to which it be-
longs, with OUs belonging to Laboratory Programs shown as blue 
nodes, Management Resources as red nodes, Innovation and Indus-
try Services as green nodes, and OUs serving administrative 
functions shown as yellow nodes. The shaded regions indicate the 
identified communities. 

 
 

http://doi.org/10.6028/NIST.IR.8375
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In our recently published work [1], we showed that 
we can not only reliably identify clusters through mod-
ular analysis of the resulting network but also that there 
are important in meaningful differences between the 
NALS clusters and clusters found through a traditional 
survey validity method such as the principal component 
analysis (PCA). In using NALS, we also can identify ad-
ditional information that is not a result of running PCA. 
Our analysis found four modular communities within 
the ASES network: (1) Social and Scholarly Explora-
tion, (2) Mentoring and Research Experience, (3) 
Professional and Academic Development, and (4) Fi-
nancial Support. While Mentoring and Research 
Experience and Financial Support had been previously 
identified through PCA, Social and Scholarly Explora-
tion and Professional and Academic Development were 
unique to the NALS approach. Due to our hierarchical 
community detection techniques, we also were able to 
investigate the structure of each community. We found 
that both Social and Scholarly Exploration and Mentor-
ing and Research Experience had sub-communities 
within them that reveal smaller thematic groupings of 
items. For example, there are two sub-communities 
within the Social and Scholarly Exploration cluster: one 
pertains to interactions with a research group (e.g., jour-
nal discussions, presentations, meeting consistency) 
while the other captures interactions with the mentor 
(e.g., meeting with a mentor, regular feedback, appren-
ticeship).  

Our current work is focused on applying the NALS 
approach to the ASES response data to identify differ-
ences between respondents based on various 
demographic information. Each different demographic 
split will result in distinct set of networks built only from 
the relevant responses. We intend to compare these net-
works in a variety of ways. First, we are looking at the 
different networks through general network characteris-
tics, such as density, degree centralization, closeness 
centralization, average path length, diameter, and transi-
tivity. Differences in these measures seen when 
comparing the demographic networks will imply that  
there are differences in how survey items are related to-
gether for those different demographic groups. 

Next, we will compare the networks through net-
work-level comparisons, such as node degree cosine 
centrality and edge existence Jaccard similarity. The 
network-level analysis focus on comparing specific 

nodes and edges between networks, which will help to 
identify where the differences may exist within the de-
mographic networks. Finally, we will study the 
community partition of each network through cluster 
comparison metrics, such as purity and F-measure. This 
comparison focuses on the thematic communities that 
are arise from each demographic network. Differences 
identified through this analysis will be related to the 
overall experiences of support structures as reported by 
different demographic groups. This work will expand 
and further validate the utility of the NALS approach, 
demonstrating its usefulness for survey analysis [3]. 
[1] R.P. Dalka, D. Sachmpazidi, C. Henderson, and J.P. 

Zwolak. Network Analysis Approach to Likert-style Sur-
veys. Physical Review Physics Education Research 18, 
(2022), 020113.  

[2] D. Sachmpazidi and C. Henderson. Departmental Sup-
port Structures for Physics Graduate Students: 
Development and Psychometric Evaluation of a Self-Re-
port Instrument. Physical Review Physics Education 
Research 17 (2021), 010123. 

[3] R. P. Dalka, D. Sachmpazidi, C. Henderson, and J. P. 
Zwolak. Demographic Comparisons of ASES through 
NALS. In preparation. 

 
 
 

  

 
Figure 90.  The modular communities identified in the network of 
ASES items. The nodes are labeled by the unique question ID and 
are colored by the earlier identified principal component. Each 
shaded region corresponds to a community identified in the net-
work. Red (blue) links between nodes indicate similar responses 
based upon “agree” (“disagree”) response selections. Adapted 
from [1]. 
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Table 3.  Student interns in ACMD. 

Name From Program Mentor Topic 
Agrawal, Sristy U. Colorado Boulder G FGR S. Glancy Resource based quantum information theory 
Alhejji, Moham-
mad 

U. Colorado Boulder G PREP E. Knill Quantum randomness protocols 

Avagyan, Arik U. Colorado Boulder G PREP E. Knill Quantum information processing 
Campbell, Mitchell Virginia Tech U SURF S. Ressler Experiments with Virtual Objects 
Centner, Raymond U. South Florida G NSF H. Cohl Special values and Poisson kernel for Askey-

Wilson polynomials 
Eveleth, Jason Brown U. U SURF A. Kearsley Optimal Voronoi tessellation 
Geller, Shawn U. Colorado Boulder G PREP E. Knill Characterization of quantum state prepara-

tion and measurement errors 
Hu, Mingyu U. Colorado Boulder G PREP M. Donahue Modeling of antiferromagnets 
Krepets, Mikhail 
 

Montgomery College U SURF M. Mascagni Database for random number generation 
computational results 

Kwiatkowski,  
Alexander  

U. Colorado Boulder G PREP E. Knill Quantum networking 

Ladic, Katjana U. Zagreb, Croatia G FGR K. Sayrafian Ultra Wideband Channel Characterization for 
Ingestible Microbots 

Liu, Liangchen U. Texas Austin G NSF G. Dogan Explorations for Better Deep Learning 
Lopez, Miguel U. Maryland U SURF H. Cohl Conversion of Mathematica Source to LaTeX 
Ornstein, Joel  U. Colorado Boulder G DGR S. Glancy Quantum information journal club 
Rezaiyan-Nojani, 
Armin 

T. S. Wootton HS H SHIP K. Sayrafian Visualization of human body models 

Roy, Saunak T. S. Wootton HS H SHIP H. Cohl 3D N-ary tree art on smooth manifolds 
Schneider, Ryan U. C. San Diego G DGR B. Schneider Collocation methods to solve the electronic 

Schrödinger equation 
Seshadri, Akshay U. Colorado Boulder G PREP E. Knill Quantum measurement statistics 
Su, Ruisi Carnegie Mellon U. U FGR A. Kearsley Detecting network anomalies 
van de Poll, May 
An 

U. Colorado Boulder G PREP E. Knill Analysis of quantum optical measurements 

Varshney, Ayush Caltech G SURF T. Gerrits Software interfacing between quantum 
measurement hardware and quantum net-
work management plane 

Xiao, Lilian Poolesville HS H SHIP J. Terrill Shader glyphs and simulation 
Xiao, Vivian U. Pennsylvania U DGR A. Kearsley Optimization in chemometrics 

Legend   G    Graduate Student            PREP Professional Research Experience Program 
   U    Undergraduate              FGR Foreign Guest Researcher 
                           H    High School                         DGR            Domestic Guest Researcher    
                                                                                NSF            NSF Mathematical Sciences Graduate Internship Program 
                                                                               SHIP            Summer High School Internship Program 
                                                                               SURF           Summer Undergraduate Research Fellowship 
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Publications  

Note: Names of (co-)authors with a Division affiliation 
during this reporting period are underlined. 

Appeared 

Refereed Journals 
1. H. Ahmadi, A.Nag, Z. Khar, K. Sayrafian, and S. 

Rahardja. Networked Twins and Twins of Net-
works: An Overview on the Relationship Between 
Digital Twins and 6G, IEEE Communications 
Standards 5:4 (December 2021), 154-160, Dec. 
2021. DOI: 10.1109/MCOMSTD.0001.2000041 

2. I. Bezerra, H. Vasconcelos, and S. Glancy. Quadra-
ture Squeezing and Temperature Estimation from 
the Fock Distribution. Quantum Information Pro-
cessing 21 (2022) 365. DOI:10.1007/s11128-022-03677-5 

3. I. Bray, X. Weber, D. Fursa, A. Kadryrov, B. 
Schneider, S. Pamidighantam, M. Cytowski, and A. 
Kheifets. Taking the Convergent Close-coupling 
Method Beyond Helium: The Utility of the Hartree-
Fock Theory. ATOMS 10:1 (2022) 22. DOI: 
10.3390/atoms10010022  

4. A. Carasso. Data Assimilation in 2D Viscous Burg-
ers Equation using a Stabilized Explicit Finite 
Difference Scheme Run Backward in Time. Inverse 
Problems in Science and Engineering 29:13 (2022) 
3475-3489. DOI: 10.1080/17415977.2021.2009476 

5. Z. Chen, J. Wen, A. Kearsley, and A. Pertz-
born. Evaluating the Performance of an Inexact 
Newton Method with a Preconditioner for Dynamic 
Building System Simulation. Journal of Building 
Performance Simulation 15:1 (2022) 112-127. DOI: 
10.1080/19401493.2021.2007285 

6. K. Coakley, J. Splett, and T. Gerrits. Mixture Model 
Analysis of Transition Edge Sensor Pulse Height 
Spectra. Journal of the Optical Society of America 
B 39 (2022) 137-144. DOI: 10.1364/JOSAB.440232  

7. H. Cohl and R. Costas-Santos. On the Relation Be-
tween Gegenbauer Polynomials and the Ferrers 
Function of the First Kind. Analysis Mathematica 
48 (2022) 695-716. DOI: 10.1007/s10476-022-0123-0 

8. L. Bi, H. Cohl, and H. Volkmer. Expansion for a 
Fundamental Solution of Laplace’s Equation in 
Flat-Ring Cyclide Coordinates. Symmetry, Integra-
bility and Geometry: Methods and Applications 18 
(2022) 41. DOI: 10.3842/SIGMA.2022.041 

9. L. Bi, H. Cohl, and H. Volkmer. Peanut Harmonic 
Expansion for a Fundamental Solution of Laplace’s 

Equation in Flat-ring Coordinates. Analysis Mathe-
matica 48 (2022) 961-989. DOI: 10.1007/s10476-022-
0175-1 

10. H. Cohl, R. Costas-Santos, P. Hwang, and T. 
Wakhare. Generalizations of Generating Functions 
for Basic Hypergeometric Orthogonal Polynomials. 
Open Journal of Mathematical Sciences 6 (2022) 
248-261. DOI: 10.48550/arXiv.1411.1371   

11. M. Coudron, J. Stark, and T. Vidick. Trading Lo-
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2022 IEEE Consumer Communications and net-
working Conference (CCNC ‘22), Online, January 
8-11, 2022. DOI: 10.1109/CCNC49033.2022.9700514 

16. V. Mai, R. La, and A. Battou. Optimal Cybersecu-
rity Investments Using SIS Model: Weakly 
Connected Networks. In Proceedings of the 2022 
IEEE Global Communications Conference 
(Globecom’20), Hybrid, Rio de Janeiro, Brazil, De-
cember 4-8, 2022.  
DOI: 10.1109/GLOBECOM48099.2022.10001358 

17. V. Mai and R. La. Investments in Robustness of 
Complex Systems: Algorithm Design. In Complex 
Networks & Their Applications XI. COMPLEX 
NETWORKS 2022, Palermo, Italy, November 8-10, 
2022, 407-418. DOI: 10.1007/978-3-031-21131-7_32 

18. V. Marbukh. Towards Risk Adjusted Wireless Ac-
cess under Jamming: Reliability through Multi-
Connectivity.” In Proceedings of the IEEE Con-
sumer Communications & Networking Conference 
(CCNC’22), Online, January 8-11, 2022. DOI: 
10.1109/CCNC49033.2022.9700558 

19. V. Marbukh. Towards Robust Fog/Edge Compu-
ting Infrastructure with Risk Adjusted Multi-
Connectivity. In Proceeding of the 9th Interna-
tional Conference on Future Internet of Things and 
Cloud (FiCloud’22), Hybrid, Rome, Italy, August 
22-24, 2022. DOI: 10.1109/FiCloud57274.2022.00029 

20. V. Marbukh. Towards Shapley Value based Secu-
rity Risk Attribution in Sensor Networks. In 
Proceedings of the IEEE/ACM Information Pro-
cessing in Sensor Networks (IPSN’22), Online, 
May 4-6, 2022. DOI:10.1109/IPSN54338.2022.00060 

21. V. Marbukh. Towards Reliability/Security Risk 
Metrics for Large-Scale Networked Infrastructures: 
Work in Progress. In Probabilistic Safety Assess-
ment & Management Conference (PSAM’22), 
Honolulu, Hawaii, June 26 - July 1, 2022, MA26-
PSAM16. URL: https://www.iap-
sam.org/PSAM16/papers/ALL-PSAM16-PAPERS.zip 

22. V. Marbukh. Systemic Risk of Undesirable Conta-
gion within System Time Horizon: Work in 
Progress. In Proceedings of European Conference 
on Safety and Reliability (ESREL’22), Dublin, Ire-
land, August 28 -September 1, 2022. URL: 
https://rpsonline.com.sg/rps2prod/esrel22-epro/esrel2022-ex-
tended-abstracts-book.pdf 

23. A. Patel, J. Chandrasekaran, Y. Lei, R. Kacker, and 
D. R. Kuhn. A Combinatorial Approach to Fairness 
Testing of Machine Learning Models. In 2022 IEEE 
International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW) 
Valencia, Spain, April 4-13, 2022, 94-101. DOI: 
10.1109/ICSTW55395.2022.00030 

24. A. Rahmouni, T. Gerrits, A. Migdall, O. Slattery, P. 
Shaw, and J. Rice. “A Self-validated Detector for 
Characterization of Quantum Network Compo-
nents.” In proceedings of the 2022 Conference on 
Lasers and Electro-Optics (CLEO), May 2022. 
DOI:9890243 

25. A. Rahmouni, T. Gerrits, and O. Slattery. Progress 
on a Portable Entangled Photon Source and Re-
ceiver for Quantum Networking Metrology. In 
Proceedings of the 2022 Quantum 2.0 Conference 
and Exhibition, June 13-16, 2022, QTh3C.3. DOI: 
10.1364/QUANTUM.2022.QTh3C.3 

26. A. Rahmouni, L. Ma, X. Tang, T. Gerrits, L. Cai, 
Q. Li, and O. Slattery. Towards Entangled Photon 
Pair Generation from a SiC-based Microring Reso-
nator. In Proceedings of the 2022 Conference of the 
Society of Photo-Optical Instrumentation Engi-
neers (SPIE): Optics and Photonics, San Diego, 
CA, October 2022. DOI: 10.1117/12.2632597 

27. A. Rahmouni, S. Saha, O. Slattery, and T. Gerrits. 
Hyperspectral Photon-counting Optical Time Do-
main Reflectometry. In Proceedings of the 2022 
Conference of the Society of Photo-Optical Instru-
mentation Engineers (SPIE): Optics and Photonics, 
San Diego, CA, October 2022. DOI: 
10.1117/12.2633451 

28. A. Rahmouni, T. Gerrits, P. Kuo, R. Dileep, M. 
Lijun, T. Xiao, and O. Slattery. Portable Polariza-
tion-entangled Photon Source & Receiver Toolset 
for Quantum Network Metrology. In Proceedings 
of Quantum Communications and Quantum Imag-
ing XX 12238 (2022) 122380I. DOI: 
10.1117/12.2632997  

29. M. Roudneshin, K. Sayrafian, and A. G. Aghdam. 
Maximizing Harvested Energy in Coulomb Force 
Parametric Generators. In IEEE American Control 
Conference (IEEE ACC), Atlanta, GA, USA, June 
8-10, 2022. DOI: 10.23919/ACC53348.2022.9867451 

30. M. Roudneshin, K. Sayrafian, and A. G. Aghdam. 
An Asymmetric Adaptive Approach to Enhance 
Output Power in Kinetic-Based Microgenerators. In 
IEEE Sensors 2022 Conference, Dallas, TX, Octo-
ber 30 - November 2, 2022. 
DOI: 10.1109/SENSORS52175.2022.9967112 

31. M. Särestöniemi, C. Pomalaza-Raez, K. Sayrafian, 
T. Myllylä, and J. Iinatti. A Preliminary Study of 
RF Propagation for High Data Rate Brain Teleme-
try. In Proceedings of the 16th EAI International 
Conference on Body Area Networks (BodyNets 
2021), Online, October 25-26, 2021. DOI: 
10.1007/978-3-030-95593-9_11 

32. K. Sayrafian, B. Cloteaux, V. Marbukh and C. Em-
iyah. Evaluation of the Bluetooth-based Proximity 
Estimation for Automatic Exposure Determination. 
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In 2022 IEEE 19th Annual Consumer Communica-
tions & Networking Conference (CCNC), 2022, 
683-686. DOI: 10.1109/CCNC49033.2022.9700648 

33. K. Sayrafian, B. Cloteaux, and V. Marbukh. On the 
Performance of Automatic Exposure Determination 
Using Bluetooth-based Proximity Estimation. In 
ICC 2022 - IEEE International Conference on 
Communications, 2022, 3052-3057. DOI: 
10.1109/ICC45855.2022.9838839    

34. K. Sayrafian, B. Cloteaux, and V. Marbukh. Impact 
of Using Soft Thresholds in Automatic Contact 
Tracing. In 2022 IEEE International Conference on 
E-health Networking, Application & Services 
(HEALTHCOM), 2022.  
DOI :10.1109/HealthCom54947.2022.9982790 

35. O. Slattery, L. Ma, X. Tang, T. Gerrits, A. 
Rahmouni, and S. Bhushan. The Quantum Commu-
nications and Networking Project at the Information 
Technology Laboratory of NIST. In Proceedings of 
the 2021 IEEE Conference on Communications and 
Network Security: Workshop on Quantum Commu-
nication and Quantum Cryptography, Online, 
October 2021. DOI: 10.1109/CNS53000.2021.9705051 

36. R. Srinivas, S. Burd, H. Knaack, R. Sutherland, 
A. Kwiatkowski, S. Glancy, E. Knill, D. Wineland, 
D. Leibfried, A. Wilson, D. Allcock, and D. 
Slichter. High-fidelity RF/Microwave-based Uni-
versal Control of Trapped Ion Qubits. In 
IEEE/MTT-S International Microwave Symposium  
2022, Denver, CO, June 19-24, 2022, 80-83. DOI: 
10.1109/IMS37962.2022.9865483  

37. S. Su, W. Sherman, S. Satterfield, T. Griffin, S. 
Ressler, W. George, S. Feng, and J. Terrill. Visual-
ization Ecology Applications for Measurement 
Science: A Visualization Gap Approach. In VisGap 
- The Gap between Visualization Research and Vis-
ualization Software, Rome, Italy, June 13, 2022, 
DOI: 10.2312/visgap.20221057 

38. S. Su, W. Sherman, I. Lopez Coto, K. Sayrafian, 
and J. Terrill. Immersive ParaView: An Immersive 
Scientific Workflow for the Advancement of Meas-
urement Science. In Proceedings of 2022 IEEE 
International Symposium on Mixed and Augmented 
Reality Adjunct (ISMAR-Adjunct), Singapore, Oc-
tober 17-21, 2022. DOI: 10.1109/ISMAR-
Adjunct57072.2022.00034 

39. M. Wagner, M. Leithner, D. Simos, D. R. Kuhn, 
and R. Kacker. Developing Multithreaded Tech-
niques and Improved Constraint Handling for the 
Tool CAgen. In 2022 IEEE International Confer-
ence on Software Testing, Verification and 
Validation Workshops (ICSTW) Valencia, Spain, 
4-13 April 2022, 87-93. DOI: 
10.1109/ICSTW55395.2022.00029 

Technical Reports 
1. G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, 

J. Kelsey, J. Lichtinger, Y.-K. Liu, C. Miller, D. 
Moody, R. Peralta, R. Perlner, A. Robinson, and D. 
Smith-Tone. Status Report on the Third Round of 
the NIST Post-Quantum Cryptography Standardi-
zation Process. NISTIR 8413-upd1, September 
2022, 102 pages. DOI: 10.6028/NIST.IR.8413 

2. A. Arora, A. Coladangelo, M. Coudron, A. Gheor-
ghiu, U. Singh, and H. Waldner. Quantum Depth in 
the Random Oracle Model. URL: 
10.48550/arXiv.2210.06454 

3. J. Berg, T. Gerrits, W. Grice, P. Kumar, A. Migdall, 
A. Miller, and M. Stephens. Single-Photon Meas-
urement Infrastructure for Quantum Applications 
(SPMIQA): Needs and Priorities. Quantum Eco-
nomic Development Consortium Report, July 11, 
2022. URL: https://quantumconsortium.org/mp-files/qed-c-
single-photon-report.pdf/ 

4. R. F. Boisvert, ed. Applied and Computational 
Mathematics Division: A Summary of Activities in 
Fiscal Year 2021. NISTIR 8423, April 2022, 183 
pages.  DOI: https://doi.org/10.6028/NIST.IR.8423 

5. A. Carasso. Data Assimilation in 2D Nonlinear Ad-
vection Diffusion Equations, Using an Explicit 
Stabilized Leapfrog Scheme Run Backward in 
Time. NIST Technical Note, TN 2227, July 12, 
2022.  DOI: 10.6028/NIST.TN.2227 

Other Publications 
1. H. Cohl, M. Ismail, and H.-H. Wu (eds.) The Leg-

acy of Dick Askey (1933-2019). Notices of the 
American Mathematica Society 69 (2022) 59-75. 
DOI: 10.1090/noti2405 

2. R. Kenett and R. Kacker. John Mandel (a brief bi-
ography). Wiley StatsRef: Statistics Reference 
Online (2022). DOI: 10.1002/9781118445112.stat08385 

3. B. Saunders and W. Hawkins. Reflections on Dr. 
Genevieve M. Knight: 1939-2021. MAA Focus: 
Mathematical Association of America 41:6 (2022) 
14-20. URL: http://digitaleditions.walsworthprint-
group.com/publication/?i=732159 

4. O. Slattery and Y. Kim. Breakthrough in Teleporta-
tion Furthers Quantum Network Development. 
Nature 605 (2022) 663-668. DOI :d41586-022-01364-0 

Blog Posts 
1. J. Fong.  My Journey from Designing Dams to 

Helping Structures Live Their Longest Lives.  Tak-
ing Measure Blog, NIST, August 5, 2022. URL: 
https://www.nist.gov/blogs/taking-measure/my-journey-design-
ing-dams-helping-structures-live-their-longest-lives  
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2. A. J. Kearsley. Optimization and Data Analysis for 
Improved COVID-19 Detection and Measure-
ment. SIAM News, February 18, 2022. URL: 
https://sinews.siam.org/Details-Page/optimization-and-data-
analysis-for-improved-covid-19-detection-and-measurement-2  

3. B. I. Schneider.  AMO for All: How Online Portals 
Are Democratizing the Field of Atomic, Molecular 
and Optical Physics. Taking Measure Blog, NIST, 
November 2, 2022. URL: https://www.nist.gov/blogs/tak-
ing-measure/amo-all-how-online-portals-are-democratizing-
field-atomic-molecular-and-optical  

Accepted 
1. V. Albert. Bosonic Coding: Introduction and Use 

Cases. In Proceedings of the International School 
of Physics “E. Fermi.” 

2. P. Bedekar, A. Kearsley, and P. Patrone. Prevalence 
Estimation and Optimal Classification Methods to 
Account for Time Dependence in Antibody Levels. 
Journal of Theoretical Biology.  

3. A. Childs, M. Coudron, and A. Gilani. Quantum Al-
gorithms and the Power of Forgetting. 14th 
Innovations in Theoretical Computer Science 
(ITCS). 

4. H. Cohl and R. Costas-Santos. Utility of Integral 
Representations for Basic Hypergeometric Func-
tions and Orthogonal Polynomials. The Ramanujan 
Journal. 

5. H. Cohl and M. Schubotz. The Digital Shadow of 
Mathematics and its Ramifications. Jahrbuch über 
die Fortschritte der Mathematik.  

6. H. Cohl and M. Ismail. Liber Amicorum, a Friend-
ship Book for Dick Askey. Celebratio 
Mathematica.  

7. R. DeJaco, J. Majikes, J. Liddle, and A. Kears-
ley.  Binding, Brightness, or Noise? Extracting 
Temperature-dependent Properties of Dye Bound to 
DNA. Biophysical Journal.   

8. S. Freiman and J. Fong.  A New Statistical Method-
ology for Assessing Mechanical Survivability of 
Brittle Materials. Journal of Strength, Fracture, 
and Complexity.  

9. A. Fritsch, S. Guo, S. Koh, I. Spielman, and J. 
Zwolak. Dark Solitons in Bose-Einstein Conden-
sates: A Dataset for Many-body Physics Research. 
Machine Learning: Science and Technology.  

10. Z. Grey, O. Doronina, and A. Glaws. Separable 
Shape Tensors for Aerodynamic Design. Journal of 
Computational Design and Engineering.  

11. N. Lal, I. Burenkov, P. Kuo, Y. Li-Baboud, O. Slat-
tery, T. Gerrits, and S. Polyakov. Towards a 

Scalable Network Source of Single Photons. Pho-
tonics West, 2023.  

12. C. Lenart, K. Kosko, S. Su, Y. Yang, A. Corsello, 
and Q. Guan. Gaze Analysis System for Immersive 
360° Video for Preservice Teacher Education. IEEE 
Virtual Reality 2023. 

13. P. Scharpf, M. Schubotz, H. Cohl, C. Breitinger, 
and B. Gipp. Discovery and Recognition of For-
mula Concepts using Machine Learning, 
Scientometrics.  

14. H. Zhao, G. W. Bryant, W. Griffin, J. E. Terrill, and 
J. Chen. Evaluating Glyph Design for Showing 
Large-Magnitude-Range Quantum Spins. IEEE 
Transactions on Visualization and Computer 
Graphics. 

15. J. Zwolak and J. Taylor. Colloquium: Advances in 
Automation of Quantum Dot Devices Control. Re-
views of Modern Physics.  

In Review 
1. V. Albert, D. Aasen, W. Xu, W. Ji, J. Alicea, and J. 

Preskill. Spin Chains, Defects, and Quantum Wires 
for the Quantum-Double Edge.  

2. B. Alexander, H. Cohl, and H. Volkmer. Internal 
and External Harmonics in Bi-cyclide Coordinates.  

3. A. Avagyan, E. Knill, and S. Glancy. Multi-Mode 
Gaussian State Analysis with Total Photon Count-
ing. 

4. I. Burenkov, A. Semionova, Hala, T. Gerrits, A. 
Rahmouni, D. Anand, Y. Li-Baboud, O. Slattery, A. 
Battou, and S. Polyakov. Fundamental Coexistence 
Limit of Quantum States with White Rabbit Syn-
chronization in Optical Quantum Networks.  

5. I. Burenkov, A. Semionova, Hala, T. Gerrits, A. 
Rahmouni, D. Anand, Y. Li-Baboud, O. Slattery, A. 
Battou, and S. Polyakov.  Synchronization and Co-
existence in Quantum Networks. 

6. B. Cloteaux. A Note on the Minimal Hamming Dis-
tance to a Graphic Sequence.  

7. B. Cloteaux. How Much Regularity Forces a Se-
quence to be Graphic?  

8. B. Cloteaux. Graphic Approximation of Integer Se-
quences. 

9. H. Cohl and R. Costas-Santos. Nonterminating 
Transformations and Summations Associated with 
some q-Mellin-Barnes Integrals.  

10. H. Cohl and L. Ritter. Two-dimensional Contigu-
ous Relations for Linearization Coefficients of 
Orthogonal Polynomials in the Askey-scheme.  
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11. E. Culf, T. Vidick, and V. Albert. Group Coset Mo-
nogamy Games and an Application to Device-
Independent Continuous-variable QKD.  

12. R. Dalka and J. Zwolak. Restoring the Structure: A 
Modular Analysis of Ego-driven Organizational 
Networks. 

13. R. DeJaco, M. Roberts, E. Romsos, P. Vallone, and 
A. Kearsley. Reducing Bias and Quantifying Un-
certainty in Fluorescence Produced by PCR.   

14. P. Faist, M. Woods, V. Albert, J. Renes, J. Eisert, 
and J. Preskill. Time-energy Uncertainty Relation 
for Noisy Quantum Metrology.  

15. S. Gandhari, V. Albert, T. Gerrits, J. Taylor, and M. 
J. Gullans. Continuous-Variable Shadow Tomogra-
phy.  

16. M. Henn, T. Bui, and S. Woods. Investigating the 
Harmonic Dependence of MPI Resolution  

17. M. Henn, K. Quelhas, and S. Woods. Investigating 
the Influence of Sampling Frequency on X-Space 
MPI Image Reconstructions.  

18. J. Iosue, K. Sharma, M. Gullans, and V. Albert. 
Continuous-variable Quantum State Designs: The-
ory and Applications.  

19. A. Kwiatkowski, E. Shojaee, S. Agrawal, A. Kyle, 
C. Rau, S. Glancy, and E. Knill. Constraints on 
Gaussian Error Channels and Measurements for 
Quantum Communication. 

20. A. Kyle, C. Rau, W. Warfield, A. Kwiatkowski, J. 
Teufel, K. Lehnert, and T. Dennis. Optically Dis-
tributing Remote Two-node Microwave 
Entanglement using Doubly Parametric Quantum 
Transducers.  

21. Z. H. Levine, B. K. Alpert, A, L. Dagel, J. W. 
Fowler, E. S. Jimenez, N. J. Nakamura, D. S. Swetz, 
P. Szypryt, K. R. Thompson, and J. N. Ullom. A 
Tabletop X-Ray Tomography Instrument for Na-
nometer-Scale Imaging: Reconstructions. 

22. R. Luke, A. Kearsley, N. Pisanic, Y. Manabe, D. 
Thomas, C. Heaney, and P. Patrone.  Modeling in 
Higher Dimensions to Improve Diagnostic Testing 
Accuracy: Theory and Examples for Multiplex Sa-
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23. R. Luke, A. Kearsley, and P. Patrone.  Optimal 
Classification and Generalized Prevalence Esti-
mates for Diagnostic Settings with More than Two 
Classes.  
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Kearsley. Optimal Bandwidth Selection in Stochas-
tic Regression of Bio-FET Measurements.  

25. H. Mahboubi, K. Sayrafian, and A. G. Aghdam. A 
Low Complexity Power Maximization Strategy for 
Coulomb Force Parametric Generators. 

26. V. Mai, R. La, T. Zhang, and A. Battou. Distributed 
Optimization with Global Constraints Using Noisy 
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27. V. Mai, R. La, T. Zhang, Y. Huang, and A. Battou. 
Federated Learning with Server Learning for Non-
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Architecture.   
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Harris, G. C. Hilton, E. S. Jimenez, B. L. Kernen, 
K. W. Larson, Z. H. Levine, D. McArthur, K. M. 
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letop X-Ray Tomography Instrument for 
Nanometer-Scale Imaging: Integration of a Scan-
ning Electron Microscope with a Transition-Edge 
Sensor Spectrometer. 
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32. P. Patrone and A. Kearsley.  Minimizing Uncer-
tainty in Prevalence Estimates.  

33. P. Patrone, M. DiSalvo, A. Kearsley, G. McFadden, 
and G. Cooksey.  Reproducibility in Cytometry: 
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34. C. Qu, B. Schneider, A. Kearsley, W. Keyrouz, and 
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35. K. Quelhas, M. Henn, R. Farias, W. Tew, and S. 
Woods. Parallel MPI Image Reconstructions in 
GPU  

36. A. Rahmouni, P. Kuo, Y. Shi, M. Jabir, N. Lal, I. 
Burenkov, Y. Li-Baboud, M. Merzouki, A. Battou, 
S. Polyakov, O. Slattery, and T. Gerrits. Experi-
mental Demonstration of Local Area Entanglement 
Distribution between Two Distant Nodes, Coexist-
ing with Classical Synchronization.  
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37. M. Särestöniemi, K. Sayrafian, T. Myllylä, J. 
Iinatti. A Preliminary Study of On/Off-Body Prop-
agation Channels for Brain Telemetry Using 
a Flexible Wearable Antenna. 

38. B. Saunders, S. Brooks, R. Buckmire, R. Vincent-
Finley, F. Backeljauw, S. Becuwe, B. Miller, M. 
McClain, and A. Cuyt.  Validated Computation of 
Special Mathematical Functions.  

39. Y. Shi, T. Gerrits, and O. Slattery. Towards Contin-
uous Fiber Birefringence Compensation with 
Single-Photon-Level Light.  

40. M. Vazquez, T. Berry, T. Sauer, and G. Doğan. 
Texture Segmentation from a Manifold Learning 
Perspective.  

41. O. Yousuf, I. Hossen, M. Daniels, M. Leuker-Bo-
den, A. Dienstfrey, and G. Adam. Device Modeling 
Bias in ReRAM-based Neural Network Simula-
tions. 

42. Y. Xu, Y. Wang, E.-J. Kuo, and V. Albert. Qubit-
Oscillator Concatenated Codes: Decoding Formal-
ism and Code Comparison.  

Inventions 

Invention Disclosures and Patents in Review 
1. A. Balijepalli, J. Majikes, A. Kanwal, P. Vallone, 

K. Kiesler, E. Romsos, and A. Kearsley. US Depart-
ment of Commerce, assignee. Agile nucleic acid 
sensor and measuring a biomarker. United States 
Patent Application US 17/845,682. October 13, 
2022.  

2. G. Cooksey, A. Kearsley, and P. Patrone. Multi-
plexed Amplitude Modulation Photometer and 
Performing Multiplexed Amplitude Modulation 
Photometry.  Provisional Patent Application 
20210055201.  

3. G. Cooksey, A. Kearsley, and P. Patrone. Serial 
Flow Cytometer.  Provisional Patent Application 
20210302300.  

4. A. Kearsley, P. Patrone, E. Romsos, and P. Vallone. 
System and Method for Data Analysis in Quantita-
tive PCR Measurements.  Provisional Patent 
Application 20210395807.  

5. K. Sayrafian. Lung Fluid Monitor and Determining 
Fluid Level in a Lung. Patent Application Serial 
Number PCT/US22/48217, Oct. 28, 2022 

6. S. Seif Tabrizi, M. Hafezi, and Y.-K. Liu. Systems 
and Methods for Compressed Sensing Measure-
ment of Long-Range Correlated Noise. Provisional 
Patent Application, NIST Docket 21-020 US1, May 
13, 2022.  

Presentations 
Note: Names of (co-)presenters with an ACMD affilia-
tion during this reporting period are underlined. 

Invited Talks 
1. V. Albert. “Spin Chains, Defects, and Quantum 

Wires for the Quantum-Double Edge.” Condensed 
Matter Theory Center Seminar, University of Mar-
yland, College Park, MD, November 1, 2022.  

2. V. Albert. “Modern Quantum Tools for Bosonic 
Systems.” 24th Annual Southwest Quantum Infor-
mation and Technology (SQuInT) Workshop, 
Berkeley, CA, October 20, 2022.  

3. V. Albert. “Overview of Quantum Error Correc-
tion.” Noisy Intermediate-Scale Quantum Systems: 
Advances and Applications, Kavli Institute of The-
oretical Physics, Santa Barbara, CA, September 13, 
2022.  

4. V. Albert. “Spin Chains, Defects, and Quantum 
Wires for the Quantum-Double Edge.” Quantum 
Information Group Meeting, University of Sydney, 
Australia, July 27, 2022.  

5. V. Albert. “Molecular Rotational State Spaces for 
Quantum Information Processing.” 30th Annual In-
ternational Laser Physics Workshop (LPHYS’22), 
Online, July 22, 2022.  

6. V. Albert. “Spin Chains, Defects, and Quantum 
Wires for the Quantum-Double Edge.” Quantum 
Science and Condensed Matter (QST/CM) Semi-
nar, Swiss Federal Institute of Technology 
Lausanne (EPFL), Switzerland, June 16, 2022.  

7. V. Albert. “Molecular Rotational State Spaces for 
Quantum Information Processing.” Telluride Re-
search Science Center Workshop: From 
Fundamentals of Molecular Spin Qubit Design to 
Molecule-Enabled Quantum Information, Tellu-
ride, CO, June 7, 2022.  

8. V. Albert. “Molecular Rotational State Spaces for 
Quantum Information Processing.” 53rd Annual 
Meeting of the American Physical Society Division 
of Atomic, Molecular and Optical Physics 
(DAMOP), Orlando, FL, June 1, 2022.  

9. V. Albert. “Spin Chains, Defects, and Quantum 
Wires for the Quantum-Double Edge.” CMT Semi-
nar (virtual), Racah Institute of Physics, the Hebrew 
University of Jerusalem, Israel, January 6, 2022.  

10. V. Albert. “Lindbladians with Multiple Steady 
States.” University of Ulm, Germany, Online, De-
cember 16, 2021.  
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11. P. Bedekar, A. Kearsley, and P. Patrone. “Optimal 
Time-dependent Classification for Diagnostic Test-
ing.” Applied and Computational Mathematics 
Seminar, George Mason University, Fairfax, VA, 
November 18, 2022.  

12. P. Bedekar, A. Kearsley, and P. Patrone. “Optimal 
Time-dependent Classification for Diagnostic Test-
ing.” 2nd European Conference on Mathematical 
and Theoretical Biology, Heidelberg, Germany, 
September 19, 2022.  

13. R. Boisvert and W. Guthrie. “A Cavalcade of Dis-
tinguished Mathematicians and Statisticians at 
NIST.” 75th Anniversary of Mathematics and Sta-
tistics at NIST, Online, June 28, 2022. 

14. R. Boisvert. “Quantum Information Science in the 
NIST Information Technology Laboratory.” Inter-
national Federation for Information Processing 
Working Group 2.5 Annual Meeting, Online, Au-
gust 24, 2022. 

15. D. Brager.  ”Mathematically Investigating Retinitis 
Pigmentosa.” Laboratory for Systems Medicine, 
University of Florida, December 16, 2021.   

16. R. Buckmire, B. Saunders, R. Vincent-Finley, and 
S. Brooks. “Saunders ADJOINT Team Update on 
Validated Numerical Computations Re-
search.”  MSRI African Diaspora Joint 
Mathematics (ADJOINT) Reunion Workshop, 
Online, July 1, 2022.  

17. H. Cohl. “Jacobi Functions of the First and Second 
Kind (part I).” LSU Harmonic Analysis Seminar, 
Department of Mathematics, Louisiana State Uni-
versity, Baton Rouge, LA, Online, September 28, 
2022.  

18. H. Cohl. “Jacobi Functions of the First and Second 
Kind (part II).” LSU Harmonic Analysis Seminar, 
Department of Mathematics, Louisiana State Uni-
versity, Baton Rouge, LA. Online. October 19, 
2022.  

19. H. Cohl. “Symmetric and Nonsymmetric Represen-
tations for Poisson Kernels of Askey-Wilson 
Polynomials.” Functional Equations and Applica-
tions (RIPOEFA) Seminar, Ibero-American 
Network of Researchers in Orthogonal Polynomi-
als, Online, October 28, 2022.  

20. M. Coudron. “Quasi-polynomial Time Approxima-
tion of Output Probabilities of Constant-depth, 
Geometrically-local Quantum Circuits.” Simons In-
stitute Seminar, University of California at 
Berkeley, April 20, 2022.  

21. M. Coudron. “Approximating Output Probabilities 
of Shallow, Geometrically-local Quantum Cir-
cuits.” QuICS Stakeholder Day, University of 
Maryland, College Park, MD, March 3, 2021.  

22. M. Coudron. “Simulating Shallow Quantum Cir-
cuits.” Algorithms, and AI for Real Problems 
Research Experience for Undergraduates (REU), 
University of Maryland, College Park, MD, June 
2021.  

23. R. DeJaco, M. Roberts, E. Romsos, P. Vallone, and 
A. Kearsley. “Reducing Bias and Quantifying Un-
certainty in Fluorescence Produced by PCR.” Post-
Doctoral Applied Mathematics and Statistics Semi-
nar, Johns Hopkins University, Baltimore, MD 
October 13, 2022. 

24. R. DeJaco, J. Majikes, P. Patrone, A. Liddle, and A. 
Kearsley. “Thermodynamic and Fluorescent Prop-
erties of Intercalating Dyes from Temperature-
Programmed PCR Measurements with Modeling 
and Optimization.” 2022 American Institute of 
Chemical Engineers (AIChE) Annual Meeting, 
Phoenix, AZ, November 15, 2022.   

25. R. DeJaco, M. Roberts, E. Romsos, P. Vallone, and 
A. Kearsley. “Reducing Bias and Quantifying Un-
certainty in Fluorescence Produced by PCR.” 
Applied Mathematics Seminar, George Mason Uni-
versity, Fairfax, VA, October 21, 2022.  

26. R. DeJaco and A. Kearsley. “Formation of Travel-
ing Waves in Single-Solute Chromatography.” 
Partial Differential Equations (PDE) Seminar Se-
ries, Ohio State University, Columbus, OH, 
November 8, 2022.  

27. G. Doğan. “Topology Optimization for Image 
Analysis.” SIAM Conference on Imaging Science, 
Online, March 21, 2022.  

28. G. Doğan. “Efficient Algorithms to Compute Elas-
tic Shape Distances between Closed Curves.”  The 
Annual Meeting of International Association of Ap-
plied Mathematics and Mechanics, Aachen, 
Germany, August 15, 2022.  

29. R. Evans. “A Mathematical Model for Biological 
Field Effect Transistors.”  Minisymposium on 
Modeling and Estimation in Mathematical Biology, 
Society of Mathematical Biology Annual Meeting, 
Heidelberg, Germany, September 19, 2022.  

30. R. Evans, S. Cho, A. Balijepalli, and A. Kearsley. 
“A Mathematical Model for Simulating Bio-
FET.”  Society of Industrial and Applied 
Mathematics (SIAM) Annual Meeting, Pittsburgh, 
PA, July 11, 2022.  

31. R. Evans, S. Cho, A. Balijepalli, and A. Kears-
ley.  “Mathematical Modeling for Biological Field 
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Effect Transistors.”   Applied Mathematics 
and Mathematical Medicine and Biology 
Seminar, Department of Mathematical Sci-
ences, University of Delaware, Newark, 
DE, May 12, 2022.  

32. R. Evans, A. Balijepalli, and A. Kearsley. 
“A Mathematical Model for Biological 
Field Effect Transistors.” Minisymposium 
on Mathematical Modeling in Biology and 
Medicine, Part III, American Mathematical 
Society Spring Eastern Sectional Meeting, 
Online, March 19, 2022.  

33. J. Fong. “A Progress Report on Research to 
Upgrade Table T-1472.1 of ASME BPVC 
Section V (NDE) Article 14 (System Quali-
fication).” Working Group on Monitoring 
and Non-Destructive Evaluation (MANDE) 
Subcommittee Meeting, ASME Boiler and 
Pressure Vessel Code (BPVC) Section XI 
(Inspection) Subgroup on Reliability and In-
tegrity Management, October 31, 2021.  

34. J. Fong.  “A Dynamic Risk-informed Ap-
proach to a Feasibility Study of a Pan-Arctic 
Emergency Response System with a Do-
Nothing Option.”  International Conference 
Arctic Frontiers 2022, Tromso, Norway, 
Online, May 08, 2022.  

35. J. Fong.  “Analytical, Software-Aided, and 
Solution-Verified Computational Mechan-
ics.” 75th Anniversary of Mathematics and Statistics 
at NIST, Online, June 29, 2022.  

36. J. Fong.  “ASME Boiler and Pressure Vessel Code 
(BPVC) Section V (NDE), Article 14 on Examina-
tion System Qualification (2015 
Edition):  Proposed Revision to Align with Re-
quirements of the New BPVC Section XI 
(Inspection) Division 2 on Reliability Manage-
ment.”  Committee Meeting of the ASME BPVC-
XI SG-RIM Working Group on Monitoring and 
NDE (MANDE), ASME Code Week, Pittsburgh, 
PA, November 06, 2022.  

37. J. Fong.  “ASME Boiler and Pressure Vessel Code 
(BPVC) Section V (NDE), Article 14 on Examina-
tion System Qualification (2015 
Edition):  Proposed Revision to Align with Re-
quirements of the New BPVC Section XI 
(Inspection) Division 2 on Reliability Manage-
ment.”  Committee Meeting of the ASME BPVC-V 
SG on General Requirements, ASME Code Week, 
Pittsburgh, PA, November 9, 2022.  

38. T. Gerrits and A. Miller. “Single-Photon Measure-
ment Infrastructure for Quantum Applications 

(SPMIQA): Needs and Priorities.” QED-C Plenary 
Meeting, Online, March 2022.  

39. T. Gerrits. “Optical Quantum Network Metrology.” 
11th Advanced Lasers and Photon Sources Confer-
ence, Yokohama, Japan, Online, April 18, 2022.  

40. T. Gerrits, D. Anand, A. Battou, J. Bienfang, I.  Bu-
renkov, Hala, Y. Li-Baboud, S. Polyakov, A. 
Rahmouni, L. Sinclair, and O. Slattery. “Future 
Time Synchronization Needs for Quantum Net-
works.” Workshop on Synchronization and Timing 
Systems, Denver, CO, May 10, 2022.  

41. T. Gerrits. “Optical Quantum Network Metrology.” 
Quantum Engineering Workshop, Caltech, Online, 
May 2022.  

42. T. Gerrits. “Photon-number Resolving Transition 
Edge Sensors for QIP.” Applications of Supercon-
ducting Electronics and Detectors Workshop, 
Jefferson Lab, Newport News, Online, December 
2022.  

43. S. Langer and A. Reid. “Microstructure Modeling 
with OOF2 and OOF3D.” nanoHub, Online, July 
27, 2022. URL: https://nanohub.org/resources/36380 

 
Figure 91. Anthony Kearsley of ACMD organized a Minisymposium entitled 
Modelling and Estimation in Mathematical Biology at the European Conference 
on Mathematical and Theoretical Biology held in Heidelberg Germany on Sep-
tember 22, 2022. Speakers were (from l. to r.) Luis Melara of Shippensburg State 
University, Ryan Evans of ACMD, and ACMD postdocs Rayanne Luke and Pra-
jakta Bedekar. (Photo courtesy of A. Kearsley.) 
 

https://nanohub.org/resources/36380
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44. Y.-K. Liu. “Compressed Sensing Measurement of 
Long-Range Correlated Noise.” Johns Hopkins 
University Applied Physics Laboratory, Laurel, 
MD, September 19, 2022.  

45. Y.-K. Liu. “Quantum Computing, Cybersecurity, 
and the Next Big Thing.” 75th Anniversary of 
Mathematics and Statistics at NIST, Online, June 
30, 2022. 

46. Y.-K. Liu. “Don’t Look Now: Quantum Computing 
and Cybersecurity.” Keynote, NSF 2022 Secure and 
Trustworthy Cyberspace (SaTC) Principal Investi-
gators’ Meeting, Arlington, VA, June 1, 2022.  

47. Y.-K. Liu. “Compressed Sensing Measurement of 
Long-Range Correlated Noise.” Statistics, Optimi-
zation and Machine Learning Seminar, University 
of Colorado at Boulder, Online, March 29, 2022.  

48. Y.-K. Liu. “Pseudorandom States Based on Com-
putational Hardness.” Edinburgh Workshop on 
Quantum t-Designs and Applications in Quantum 
Computing, Online, March 25, 2022.  

49. R. Luke, A. Kearsley, N. Pisanic, Y. Manabe, D. 
Thomas, C. Heaney, and P. Patrone. “Improving 
Diagnostic Testing Accuracy by Moving to Higher 
Dimensional Probability Models with Applications 
to Saliva-Based SARS-CoV-2 Assays.” Mathemat-
ics Department Seminar, Shippensburg University, 
Shippensburg, PA, October 6, 2022. 

50. R. Luke, A. Kearsley, N. Pisanic, Y. Manabe, D. 
Thomas, C. Heaney, and P. Patrone. “Improving 
Diagnostic Testing Accuracy by Moving to Higher 
Dimensional Probability Models with Applications 
to Saliva-Based SARS-CoV-2 Assays.” Mathemat-
ical Modeling Seminar, Rochester Institute of 
Technology, Rochester, NY, October 4, 2022. 

51. R. Luke, A. Kearsley, and P. Patrone. “Multiclass 
Classification and Prevalence Estimation with Ap-
plications to SARS-CoV-2 Antibody Assays.” 
Society for Mathematical Biology Annual Meeting, 
Modelling and Estimation in Mathematical Biology 
Minisymposium, University of Heidelberg, Heidel-
berg, Germany, September 19, 2022. 

52. R. Luke, A. Kearsley, and P. Patrone. “Multiclass 
Classification and Prevalence Estimation with Ap-
plications to SARS-CoV-2 Antibody Assays.” 
Applied and Computational Mathematics Seminar, 
George Mason University, Fairfax, VA, September 
2022. 

53. R. Luke, A. Kearsley, N. Pisanic, Y. Manabe, D. 
Thomas, C. Heaney, and P. Patrone. “Improving 
Diagnostic Testing Accuracy by Moving to Higher 
Dimensional Probability Models with Applications 
to Saliva-Based SARS-CoV-2 Assays.” American 

Mathematical Society Eastern Sectional Meeting, 
Mathematical Modeling in Biology and Medicine 
Special Session, Online, March 19-20, 2022. 

54. R. Luke, A. Kearsley, N. Pisanic, Y. Manabe, D. 
Thomas, C. Heaney, and P. Patrone. “Improving 
Diagnostic Testing Accuracy by Moving to Higher 
Dimensional Probability Models with Applications 
to Saliva-Based SARS-CoV-2 Assays.” Depart-
ment of Mathematical Sciences Winter Research 
Symposium, University of Delaware, Newark, DE, 
February 25, 2022. 

55. L. Ma and L. Ding. “Hybrid Quantum Edge Com-
puting Network.” Society of Photo-Optical 
Instrumentation Engineers (SPIE) Optical Engi-
neering + Applications, 2022, San Diego, CA, 
October 4, 2022.  

56. J. Masterson, D. Anderson, and A. Kears-
ley. ”Mathematical Modeling in 
Cryobiology.” SIAM Annual Meeting, Pittsburgh, 
PA, July 11, 2022.   

57. D. Middlebrooks, P. Patrone, A. Kearsley, G. 
Cooksey, and G. McFadden. “Separating Flow Cy-
tometry Populations Based on Probabilistic 
Analysis.” Haynes-Granville-Brown Session of 
Presentations by Recent Doctoral Recipients, Joint 
Mathematics Meetings, Online, April 6-9, 2022  

58. D. Middlebrooks, P. Patrone, A. Kearsley, G. 
Cooksey, and G. McFadden. “Separating Flow Cy-
tometry Populations Based on Probabilistic 
Analysis.” Applied and Computational Math Semi-
nar, George Mason University, Fairfax, VA, 
November 11, 2022  

59. D. Middlebrooks and J. Zwolak. “Cold-Start Tun-
ing.” Niels Bohr Institute Seminar, University of 
Copenhagen, Copenhagen, Denmark, December 8, 
2022.  

60. A. Moorthy, A. Kearsley, and W. Wallace. “Identi-
fying Novel Fentanyl Analogs from Mass Spectral 
Measurements.”  American Institute of Chemical 
Engineers (AIChE) Annual Meeting, Phoenix, AZ, 
November 15, 2022.   

61. J. Nolan.  “Sample Path Estimates of Non-Newto-
nian Capacity.” Electrostatic Society of America 
Meeting, Charlotte, NC, Online, June 15, 2022.  

62. J. Nolan.  “Calculating Alpha-capacity via Stable 
Random Walks.” Institute of Mathematical Statis-
tics Annual Meeting, London, UK, June 30, 2022.  

63. J. Nolan.  “Simulating Entering and Exiting Balls 
by an Isotropic Stable Process.”  International Con-
ference on Statistical Distributions and 
Applications, Marshall University, Huntington, 
WV, October 15, 2022.  
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64. P. Patrone. “Reproducibility in Cytometry: Signals 
Analysis, Uncertainty Quantification, and Implica-
tions for Doublet Deconvolution.” Thermofisher 
Scientific, Online, September 9, 2022.    

65. P. Patrone, A. Kearsley, P. Bedekar, and R. Luke. 
“Minimizing Uncertainty in Serology: Time-De-
pendent Antibody Kinetics and Vaccine-Induced 
Seroconversion.”  Seronet Monthly Meeting, 
Online, September 22, 2022.  

66. A. Rahmouni, L. Ma, X. Tang, T. Gerrits, L. Cai, 
Q. Li, and O. Slattery. “Towards Entangled Photon 
Pair Generation from SiC-based Microring Resona-
tor.” Society of Photo-Optical Instrumentation 
Engineers (SPIE) Optical Engineering + Applica-
tions, 2022, San Diego, CA, October 4, 2022.  

67. M. Roberts, A. Moorthy, E. Sisco, and A. Kears-
ley. ”Probability Distribution-Based DART-MS 
Compound Discrimination.” SIAM Annual Meet-
ing, Pittsburgh, PA, July 11, 2022.   

68. B. Saunders, S. Brooks, R. Buckmire, and R. Vin-
cent-Finley. “Rounding Error Analysis for 
Validated Computation of Special Func-
tions.”  Special Session on the MSRI African 
Diaspora Joint Mathematics (ADJOINT) Work-
shop, Joint Mathematics Meetings, Online, April 6, 
2022.   

69. B. Saunders, S. Brooks, R. Buckmire, R. Vincent-
Finley, F. Backeljauw, S. Becuwe, B. Miller, M. 
McClain, and A. Cuyt. “Validated Computation of 
Special Mathematical Functions.” Association for 
Women in Mathematics (AWM) Special Session on 
Celebrating the Mathematical Contributions of the 
AWM, Joint Mathematics Meetings, Online, April 
7, 2022.  

70. B. Saunders. “The Handbook of Mathematical 
Functions and the DLMF.”  75th Anniversary of 
Mathematics and Statistics at NIST, Online, June 
28, 2022.  

71. B. Saunders. “Research in Computational and Ap-
plied Mathematics at the National Institute of 
Standards and Technology: NIST’s DLMF and 
More.” Applied Mathematics and Scientific Com-
puting Seminar, Temple University, Philadelphia, 
PA, November 30, 2022.  

72. W. Sherman. “Scientific Visualization in VR.” Vir-
tual Reality and 3D-User Interaction class (CSCI-
5619), University of Minnesota, Minneapolis MN, 
October 5, 2022.  

73. O. Slattery. “An Introduction to Quantum Commu-
nication and Quantum Cryptography.” Advanced 
Technology Academic Research Center Seminar 
Series, Online, December 22, 2021.   

74. O. Slattery, L. Ma, A. Rahmouni, X. Tang, T. Ger-
rits, Q. Li and M. Spencer. “Quantum 
Communication and Networking Project – Silicon 
Carbide in Quantum Communication.” 7th Interna-
tional Conference on Electronic Materials and 
Nanotechnology for the Green Environment, Jeju, 
Korea, November 6, 2022.   

75. J. Ziegler and J. Zwolak. “A Data-efficient Quan-
tum Dot Charge Tuning Framework.” HRL 
Laboratories, Malibu, CA, August 1, 2022.  

76. J. Ziegler, F. Luthi, M. Ramsey, F. Borjans, G. 
Zheng, and J. Zwolak. “A Data-efficient Quantum 
Dot Charge Tuning Framework.” Intel, Hillsboro, 
OR, Online, July 25, 2022.  

77. J. Ziegler, F. Luthi, M. Ramsey, T. Watson, and J. 
Zwolak. “Autonomous Identification of Quantum 
Dot Device Failure Modes.” Optical, Molecular, 
and Quantum Institute Seminar, University of Ore-
gon, Eugene, OR, February 9, 2022.  

78. J. Ziegler, F. Luthi, M. Ramsey, T. Watson, and J. 
Zwolak. “Autonomous Identification of Quantum 
Dot Device Failure Modes.” Intel, Hillsboro, OR, 
February 8, 2022.  

79. J. Zwolak. ”Auto-tuning Quantum Dot Arrays with 
Rays.” Qdev Seminar, Niels Bohr Institute, Univer-
sity of Copenhagen, Denmark, July 26, 2022.  

80. J. Zwolak. “Tuning Quantum Dot Arrays with 
Rays.” R. G. Herb Condensed Matter Seminar, Uni-
versity of Wisconsin-Madison, Madison, WI, 
March 31, 2022.  

81. J. Zwolak. “Tuning Quantum Dot Arrays with 
Rays.” American Physical Society March Meeting 
2022, Chicago, IL, March 17, 2022.  

82. J. Zwolak. “Tuning Quantum Dot Arrays with 
Rays.” Physics Department Colloquium, Kansas 
State University, Manhattan, KS, February 28, 
2022.  

Conference Presentations 
1. J. Amstutz, J. Stone, J. Guenther, and W. Sher-

man. “A Tour of the ANARI API.” ANARI 
Webinar, Khronos Group, Online, March 2, 
2022.  

2. A. Avagyan. “Multi-mode Gaussian State Analy-
sis with Total Photon Counting.” Mathematical 
Results in Quantum Theory (QMATH 15), Uni-
versity of California at Davis, September 13, 
2022.  

3. P. Bedekar, A. Kearsley, and P. Patrone. “Optimal 
Time-dependent Classification for Diagnostic 
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Testing.” Society for Industrial and Applied 
Mathematics Annual Meeting, Pittsburgh, PA, 
July 11, 2022. 

4. P. Bedekar, A. Kearsley, and P. Patrone. “Optimal 
Time-dependent Classification for Diagnostic 
Testing.” Biology and Medicine through Mathe-
matics Conference, Virginia Commonwealth 
University, Richmond, VA, May 18, 2022.  

5. P. Bedekar, A. Kearsley, and P. Patrone. “Optimal 
Time-dependent Classification and Prevalence 
Estimation for Antibody Testing.” 2nd Workshop 
in Mathematical and Computational Biology, 
Online, June 9, 2022.  

6. J. Bienfang, T. Gerrits, P. Kuo, O. Slattery, S. Pol-
yakov, and A. Migdall. “A Dictionary of Single-
Photon Terms to Support the Emerging Quantum 
Industry.” Single Photon Workshop, Seoul, Ko-
rea, November 1, 2022.  

7. S. Bhushan, L. Ma, X. Tang, and O. Slattery. 
“Electromagnetically Induced Transparency 
Based Quantum Memory in Vapor Cell.” IEEE 
International Workshop on Quantum Communi-
cation and Quantum Cryptography, IEEE 
Conference on Communications and Network Se-
curity (CNS), Online, October 4, 2021. 

8. B. Cloteaux. “Graphic Approximation of Integer 
Sequences.” Southeastern International Confer-
ence on Combinatorics, Graph Theory & 
Computing, Boca Raton, FL, March 7, 2022.  

9. B. Cloteaux. “On the Performance of Automatic 
Exposure Determination Using Bluetooth-based 
Proximity Estimation.” IEEE International Con-
ference on Communications (ICC), Seoul, South 
Korea May 16, 2022.  

10. N. Coble and M. Coudron. “Quasi-polynomial 
Time Approximation of Output Probabilities of 
Constant-depth, Geometrically-local Quantum 
Circuits.” IEEE 62nd Annual Symposium on 
Foundations of Computer Science (FOCS), Den-
ver, CO, February 7, 2022.   

11. H. Cohl. “Special Values for Continuous q-Jacobi 
Polynomials and Applications.” Manawatu-Wel-
lington Applied Maths Conference, Wellington, 
New Zealand, Online, December 1, 2021.  

12. H. Cohl. “Special Values for Continuous q-Jacobi 
Polynomials and Applications.” Canadian Math-
ematical Society 2021 Winter Meeting, Ottawa, 
Canada, Online, December 4, 2021.  

13. H. Cohl. “The Anti-symmetry Relation for Con-
tinuous q-Jacobi Polynomials.” 2022 Baylor 

Analysis Fest: From Operator Theory to Orthog-
onal Polynomials, Combinatorics, and Number 
Theory, Waco, TX, Online, May 24, 2022.  

14. H. Cohl. “The Anti-symmetry Relation for Con-
tinuous q-Jacobi Polynomials.” 16th International 
Symposium on Orthogonal Polynomials, Special 
Functions and Applications, Montreal, Quebec, 
Canada, Online, June 13, 2022.   

15. H. Cohl. “Representations and Special Values for 
Nonsymmetric and Symmetric Poisson Kernels 
of the Askey-Wilson Polynomials.” American 
Mathematical Society Fall Western Sectional 
Meeting, University of Utah, Salt Lake City, UT, 
October 22, 2022. 

16. R. DeJaco and A. Kearsley. “Understanding the 
Break-through Curve Measurement When Ad-
sorption is Fast.” American Institute of Chemical 
Engineers Annual Meeting, Phoenix, AZ, No-
vember 15, 2022.  

17. M. Donahue. “Energetics of Spin-flop and Spin-
flip Transitions in Homogeneous Antiferromag-
nets.” Magnetism and Magnetic Materials 
Conference (MMM 2022), Minneapolis, MN, 
Online, October 31, 2022.  

18. R. Evans, A. Balijepalli, and A. Kearsley. “A 
Mathematical Model for Biological Field Effect 
Transistors.” American Mathematical Society 
Fall Eastern Sectional Meeting 2022, Amherst, 
MA, October 1, 2022.  

19. J. Fong.  “Fatigue-life Prediction and Design for 
Uncracked and Cracked Components: Determin-
istic, A- and B-basis Probabilistic, and Reliability 
Target Approaches.” ASME Pressure Vessels & 
Piping Division Conference, Las Vegas, NV, July 
21, 2022.  

20. J. Fong.  “A Doubly-Asymptotic FEM Algorithm 
for Estimating the Ultimate of a Sequence of In-
creasingly-Dense-Meshed Finite Element 
Solutions.”  15th World Congress on Computa-
tional Mechanics (WCCM2022) Yokohama, 
Japan, Online, July 23, 2022.  

21. S. Geller. “Improving Quantum State Detection 
with Adaptive Sequential Observations.” South-
west Quantum Information and Technology 
Network Workshop, Berkeley, CA, October 20, 
2022.  

22. T. Gerrits, I. Burenkov, Y. Li-Baboud, A. 
Rahmouni, D. Anand, O. Slattery, A. Battou, and 
S. Polyakov. “White Rabbit-Assisted Quantum 
Network Node Synchronization with Quantum 
Channel Coexistence.” Conference on Lasers and 
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Electro-Optics (CLEO), San Jose, CA, May 16, 
2022.   

23. S. Guo, S. Koh, A. Fritsch, I. Spielman, and J. 
Zwolak. “Quantifying Reliability of Machine 
Learning Predictions via Physics-Informed Met-
rics.” SIAM Conference on Uncertainty 
Quantification (UQ22), Atlanta, GA, April 12, 
2022. 

24. M. Henn. “Uncertainty Estimation for 2D Mag-
netic Particle Imaging.” International Workshop 
on Magnetic Particle Imaging, Würzburg, Ger-
many, Online, March 21, 2022  

25. S. Koh, S. Guo, A. Fritsch, I. Spielman, and J. 
Zwolak. “Dark Soliton Tracking and Sorting Sys-
tem: Combining Machine Learning with 
Physics.” American Physical Society March 
Meeting, Chicago, IL, March 14, 2022.  

26. P. Kuo. “Towards Noncritical Phasematching in 
Thin-Film Lithium Niobate Waveguides.” SPIE 
Photonics West, San Francisco, CA, Online, Feb-
ruary 21, 2022. 

27. A. Kwiatkowski. “Constraints on Gaussian Error 
Channels and Measurements for Quantum Com-
munication.”  IEEE International Workshop on 
Quantum Communication and Quantum Cryptog-
raphy, IEEE Conference on Communications and 
Network Security (CNS 2021), Online, October 
6, 2021.  

28. A. Kwiatkowski and L. Stephenson. “Resource-
efficient Fully Randomized Benchmarking.” 53rd 
Annual Meeting of the APS Division of Atomic, 
Molecular and Optical Physics, Orlando, Florida, 
June 1, 2022.  

29. R. La. “Story of Two Populations in Epidemics: 
Is Every Infection Counted?” International Con-
ference on Complex Networks and Their 
Applications, Madrid, Spain, Online, November 
30, 2021.  

30. R. La. “Investments in Robustness of Complex 
Systems: Algorithm Design.” 11th International 
Conference on Complex Networks and Their Ap-
plication, Palermo, Italy, November 8, 2022.  

31. R. Luke, A. Kearsley, and P. Patrone. “Multiclass 
Classification and Prevalence Estimation with 
Applications to SARS-CoV-2 Antibody Assays.” 
Southeastern-Atlantic Regional Conference on 
Differential Equations, North Carolina State Uni-
versity, Raleigh, NC, November 12-13, 2022. 

32. R. Luke, A. Kearsley, and P. Patrone. “Multiclass 
Classification and Prevalence Estimation with 

Applications to SARS-CoV-2 Antibody Assays.” 
Biology and Medicine through Mathematics, Vir-
ginia Commonwealth University, Richmond, VA, 
May 18, 2022. 

33. C. Marante, J. Randazzo, H. Gharibnejad, B. 
Schneider, J. Olsen, and L. Argenti. “Correlation 
Effects in Molecular Ionization with ASTRA, a 
Transition-Density-Matrix Approach to Close 
Coupling.” APS Division of Atomic, Molecular 
and Optical Physics Annual Meeting, Orlando, 
FL, May 30, 2022. 

34. V. Marbukh. “Towards Robust Fog/Edge Com-
puting Infrastructure with Risk Adjusted Multi-
Connectivity.” 9th International Conference on 
Future Internet of Things and Cloud 
(FiCloud’22), Online, August 22, 2022.   

35. V. Marbukh. “Towards Landau Theory of Sys-
temic Risk in Large-Scale Networked Systems: 
Work in Progress.” International School and Con-
ference on Network Science, 7th International 
Winter Conference (NetSci’22), Online, February 
8, 2022.   

36. V. Marbukh. “Towards Shapley Value Based Se-
curity Risk Attribution in Sensor Networks.” The 
IEEE/ACM Information Processing in Sensor 
Networks (IPSN’22), Online, May 4, 2022.   

37. V. Marbukh. “Towards Reliability/Security Risk 
Metrics for Large-Scale Networked Infrastruc-
tures: Work in Progress.” Probabilistic Safety 
Assessment and Management Conference 
(PSAM’22), Honolulu, HI, June 26, 2022.   

38. V. Marbukh. “Systemic Risk of Undesirable Con-
tagion within System Time Horizon: Work in 
Progress.” European Conference on Safety and 
Reliability (ESREL’22), Online, August 28, 
2022.  

39. P. Patrone. “Reproducibility in Cytometry: Sig-
nals Analysis, Uncertainty Quantification, and 
Implications for Doublet Deconvolution.”  Cyto 
2022, Philadelphia PA, June 3-7, 2022. 

40. P. Patrone.  “Rewriting the Rules for Diagnostics: 
Implications of Probability and Measure Theory 
for SARS-CoV-2 Testing.” Biology and Medi-
cine through Mathematics (BAMM), Richmond 
VA, May 17, 2022.  

41. D. Porter. “IMMUTABLE Values & Data Struc-
tures.” SQLite & Tcl Conference (S&T) 2021, 
Houston, TX, Online, November 17, 2021.  

42. A. Rahmouni, T. Gerrits, A. Migdall, O. Slattery, 
P. Shaw, and J. Rice. “A Self-Validated Detector 
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for Characterization of Quantum Network Com-
ponent.” IEEE International Workshop on 
Quantum Communication and Quantum Cryptog-
raphy, IEEE Communications and Network 
Security, Online, October 4, 2021.  

43. A. Rahmouni, T. Gerrits, A. Migdall, O. Slattery, 
P. Shaw, and J. Rice. “A Self-Validated Detector 
for Characterization of Quantum Network Com-
ponents.” Conference on Lasers and Electro-
Optics (CLEO), San Jose, CA, May 16, 2022.   

44. A. Rahmouni, T. Gerrits, and O. Slattery. “Pro-
gress Towards a Portable Polarization-entangled 
Photon Source and Receiver Toolset for Quantum 
Network Metrology.” Quantum 2.0 Conference 
and Exhibition, Denver, CO, June 18, 2022. 

45. A. Rahmouni, L. Ma, L. Cai, X. Tang, T. Gerrits, 
Q. Li, and O. Slattery. “Towards Entangled Pho-
ton Pair Generation from SiC-based Microring 
Resonator.” Conference of the Society of Photo-
Optical Instrumentation Engineers (SPIE): Optics 
and Photonics, San Diego, CA, August 21, 2022. 

46. A. Rahmouni, S. Saha, O. Slattery, and T. Gerrits. 
“Hyperspectral Photon-Counting Optical Time 
Domain Reflectometry.” Conference of the Soci-
ety of Photo-Optical Instrumentation Engineers 
(SPIE): Optics and Photonics, San Diego, CA, 
August 21, 2022. 

47. A. Rahmouni, L. Ma, L. Cai, X. Tang, T. Gerrits, 
Q. Li, and O. Slattery. “Microring-based Photon 
Pair Sources in the 4H-SiC-on-Insulator Plat-
form.” Single Photon Workshop, Seoul, Korea, 
November 1, 2022.  

48. K. Sayrafian. “Evaluation of the Bluetooth-based 
Proximity Estimation for Automatic Exposure 
Determination.” IEEE Consumer Communica-
tions & Networking Conference, Online, January 
8-11, 2022. 

49. K. Sayrafian. “Statistical Pathloss Model for 
UWB Wireless Capsule Endoscopy.” 
IEEE802.15.6ma Standard Task Group Meeting, 
Montreal, Canada, July 10-15, 2022. 

50. K. Sayrafian. “On the Performance of Automatic 
Exposure Determination Using Bluetooth-based 
Proximity Estimation.” European Cooperation in 
Science and Technology (COST) Intelligence-
Enabling Radio Communications for Seamless 
Inclusive Interactions (INTERACT, CA20120) 
Technical Meeting, Valencia, Spain, September 
20-22, 2022. 

51. O. Slattery, L. Ma, X. Tang, T. Gerrits, A. 
Rahmouni, N. Lal, S. Saha, Y. Shi, and A. Varsh-
ney. “Overview of the NIST Quantum Network 
Testbed Activities.” Quantum Economic and De-
velopment Consortium (QED-C) Plenary, 
Denver, CO, June 22, 2022.   

52. B. Schneider, K. Bartschat, K. Hamilton, L. Carr, 
I. Bray, A. Scrinzi, F. Martin, J. Vasquez, A. 
Brown, J. Gorfinkiel, S. Pamidighantam, R. Luc-
chese, N. Douguet, and C. Fischer. “A Science 
Gateway for Atomic, Molecular and Optical Sci-
ence (AMOS): Democratizing AMOS Research 
and Education.” APS Division of Atomic, Molec-
ular and Optical Physics Annual Meeting, 
Orlando, FL, May 30, 2022  

53. W. Sherman. “Immersive Visualization with the 
ParaView Open Source Tool.” Free and Open 
Source Extended Reality (FOSS-XR) Conference 
2022, Minneapolis, MN, October 6, 2022.  

54. W. Sherman. “Open-source and Standards-based 
Immersive Visualization.” SIGGRAPH ‘22, 
Online, July 28, 2022.  

55. W. Sherman. “ANARI: A Shortcut to Real-time 
Raytracing in VR Using an Open API for Ad-
vanced Rendering.” 4th Annual XR Conference, 
Sandia Laboratories, Albuquerque, NM, July 14, 
2022.  

56. W. Sherman and S. Su. “Immersive Visualization 
with ParaView & VTK.” 4th Annual XR Confer-
ence, Sandia Laboratories, Albuquerque, NM, 
July 14, 2022 

57. A. Seshadri. “On the Separation of Correlation-
Assisted Sum Capacities of Multiple Access 
Channels.” IEEE International Symposium on In-
formation Theory, Espoo, Finland, June 30, 
2022.  

58. A. Sheshadri. “Versatile Fidelity Estimation with 
Confidence.” Southwest Quantum Information 
and Technology Workshop, Berkeley, CA, Octo-
ber 20, 2022.   

59. S. Su, W. Sherman, I. Lopez Coto, K. Sayrafian, 
and J. Terrill. “Immersive ParaView: An Immer-
sive Scientific Workflow for the Advancement of 
Measurement Science.” Workshop on Visual An-
alytics in Immersive Environments (VAinIE), 
IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR), Singapore, Octo-
ber 21, 2022.  

60. S. Su. “High Performance Computing and Visu-
alization Group at NIST.” Pitch Your Lab, IEEE 
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International Symposium on Mixed and Aug-
mented Reality (ISMAR) Singapore, Oct 20, 
2022.   

61. S. Su. “Obstacles to Adoption of XR, Particularly 
in the Federal / DOD Space.” Applied Physics La-
boratory Extended Reality (XR) Symposium, July 
28, 2022.  

62. S. Su, W. Sherman, S. Satterfield, T. Griffin, S. 
Ressler, W. George, S. Feng, and J. Terrill. “Vis-
ualization Ecology Applications for Measurement 
Science: A Visualization Gap Approach.” VisGap 
- The Gap between Visualization Research and 
Visualization Software, Rome, Italy, June 13, 
2022.  

63. J. Ziegler, T. McJunkin, E. Joseph, S. Kalantre, B. 
Harpt, D. Savage, M. Lagally, M. Eriksson, J.  
Taylor, and J. Zwolak. “Building a Noise-Toler-
ant Framework for Quantum Dot Auto Tuning 
Framework.” SIAM Conference on Uncertainty 
Quantification (UQ22), Atlanta, Georgia, April 
12, 2022.  

64. J. Ziegler, F. Luthi, M. Ramsey, T. Watson, and J. 
Zwolak. “Autonomous Identification of Quantum 
Dot Device Failure Modes.” American Physical 
Society March Meeting, Chicago, IL, March 14, 
2022).  

Poster Presentations 
1. A. Abane, D. Anand, A. Amlou, L. Ait Ouche-

ggou, Y. Li-Baboud, A. Battou, J. Bienfang, I. 
Burenkov, Hala, P. Kuo, A. Migdall, S. Polyakov, 
A. Rahmouni, D. Reddy, P. Shaw, O. Slattery, 
and T. Gerrits. “Optical Quantum Network Me-
trology.” 3rd Workshop on Quantum Repeaters 
and Networks, Chicago, August 19, 2022.  

2. A. Abane, D. Anand, A. Amlou, L. Ait Ouche-
ggou, Y. Li-Baboud, A. Battou, J. Bienfang, I. 
Burenkov, Hala, P. Kuo, A. Migdall, S. Polyakov, 
A. Rahmouni, D. Reddy, P. Shaw, O. Slattery, 
and T. Gerrits. “Optical Quantum Network Me-
trology.” Single Photon Workshop, Seoul, South 
Korea, October 31, 2022.   

3. M. Alhejji. “On Simulating Quantum Erasure.” 
Southwest Quantum Information and Technology 
Workshop, Berkeley, CA, October 20, 2022.  

4. L. Argenti, C. Marante, J. Randazzo, H. Gharib-
nejad, B. Schneider, and J. Olsen.  “ASTRA, a 
Transition-Density-Matrix Method for Attosec-
ond Molecular Dynamics.” APS Division of 
Atomic, Molecular and Optical Physics 
(DAMOP) Annual Meeting, Orlando, FL, May 
30, 2022  

5. D. Brager, E. Erisman, A. Moorthy, and A. Kears-
ley. “Numerical Library Scaling for Improved 
Hitlists.” American Society of Mass Spectrome-
try (ASMS) Annual Meeting, Minneapolis, MN, 
June 6, 2022.   

6. D. Brager, A. Kearsley, and D. Anderson.  ”A 
Spatially Dependent Model for Photoreceptors in 
a Healthy Eye.” Biology and Medicine Through 
Mathematics Conference, Virginia Common-
wealth University, Richmond Virginia, May 18, 
2022.  

7. R. Dalka, D. Sachmpazidi, C. Henderson, and J. 
Zwolak. “Network Analysis of Likert-style Sur-
veys.” American Association of Physics Teachers 
Summer Meeting, Grand Rapids, MI, July 12, 
2022.  

8. R. DeJaco, J. Majikes, J. Liddle, and A. Kearsley. 
“Extracting Thermodynamic and Fluorescent 
Properties of Intercalating Dyes from Tempera-
ture-Programmed PCR Measurements with 
Modeling, Optimization, and Uncertainty Quanti-
fication.” SIAM Conference on the Mathematics 
of Data Science, San Diego, CA, September 28, 
2022.  

9. R. DeJaco, M. Roberts, E. Romsos, P. Vallone, 
and A. Kearsley. “Reducing Bias and Quantifying 
Uncertainty in Fluorescence Produced by PCR.” 
SIAM Washington-Baltimore Section Fall Meet-
ing, Arlington, VA, November 4, 2022.  

10. R. DeJaco, J.Majikes, J. Liddle, and A. Kearsley. 
“Extracting Thermodynamic and Fluorescent 
Properties of Intercalating Dyes from Tempera-
ture-Programmed PCR Measurements with 
Modeling and Optimization.” American Institute 
of Chemical Engineering (AIChE) Annual Meet-
ing, Phoenix, AZ, November 15, 2022.  

11. G. Doğan. “Python Package for Shape Analysis 
and Image Segmentation.” 75th Anniversary of 
Mathematics and Statistics at NIST, Online, June 
29, 2022.  

12. G. Doğan. “Scikit-Shape: Python Toolbox for 
Shape Analysis and Segmentation.” SIAM Con-
ference on the Mathematics of Data Science, San 
Diego, CA, September 26, 2022.  

13. G. Doğan. “VEMOS: Visual Explorer for Metrics 
of Similarity.” SIAM Conference on Mathematics 
of Data Science, San Diego, CA, September 26, 
2022.  

14. S. Dontha, S. Tan, S. Smith, S. Choi, and M. Cou-
dron. “Approximating Output Probabilities of 
Shallow Quantum Circuits which are Geometri-
cally-local in any Fixed Dimension.” Quantum 
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Information Processing (QIP) Conference, Pasa-
dena, CA, March 7, 2022. 

15. N. Douguet, N. Saito, S. Han, Y. Wu, A. Chew, 
N. Ishii, T. Kanai, B. Schneider, J. Olsen, L. Ar-
genti, Z. Chang, and J. Itatani. “Attosecond 
Electronic Dynamics of Core-Excited States of 
N2O in the Soft X-ray Region.”  APS Division of 
Atomic, Molecular and Optical Physics 
(DAMOP) Annual Meeting, Orlando, FL, May 
30, 2022  

16. S. Glancy. “Multi-mode Gaussian State Analysis 
with Total Photon Counting.” Southwest Quan-
tum Information and Technology Workshop, 
Berkeley, CA, October 20, 2022.  

17. S. Koh, S. Guo, A. Fritsch, I. Spielman, and J.  
Zwolak. “Integrating Machine Learning and 
Physics-based Heuristics for Solitonic Excitation 
Classification in Bose-Einstein Condensates.” 
Conference for Undergraduate Women in Phys-
ics, Online, January 24, 2022.  

18. P. Kuo. “Towards Noncritical Phasematching in 
Thin-film Lithium Niobate Frequency Convert-
ers.” Frontiers in Optics, Online, November 1, 
2021.  

19. A. Kwiatkowski. “Choosing Sequence Lengths 
for Single-shot-randomized Clifford Benchmark-
ing.” Southwest Quantum Information and 
Technology Workshop, Berkeley, CA, October 
20, 2022.  

20. R. Luke, A. Kearsley, and P. Patrone. “Multiclass 
Classification and Prevalence Estimation with 
Applications to SARS-CoV-2 Antibody Assays.” 
Society for Industrial and Applied Mathematics 

Washington, D.C./Baltimore Sec-
tional Meeting, Arlington, VA, 
November 4, 2022. 

21. R. Luke, A. Kearsley, and 
P. Patrone. “Multiclass Classifica-
tion and Prevalence Estimation 
with Applications to SARS-CoV-2 
Antibody Assays.” 75th Anniver-
sary of Mathematics and Statistics 
at NIST, Online, June 29, 2022. 

22. R. Luke, A. Kearsley, and 
P. Patrone. “Multiclass Classifica-
tion and Prevalence Estimation 
with Applications to SARS-CoV-2 
Antibody Assays.” Association for 
Women in Mathematics Research 
Symposium, Institute for Mathe-
matics and its Applications, 
Minnesota, MN, June 16-19, 2022. 

23. R. Luke, A. Kearsley, N. 
Pisanic, Y. Manabe, D. Thomas, C. Heaney, and 
P. Patrone. “Improving Diagnostic Testing Accu-
racy by Moving to Higher Dimensional 
Probability Models with Applications to Saliva-
Based SARS-CoV-2 Assays.” Johns Hopkins 
Postdoctoral Conference, Online, April 28, 2022. 

24. L. Ma. “Quantum Communications and Networks 
for Edge Computing.” Sixth ACM/IEEE Sympo-
sium on Edge Computing, San Jose, CA, 
December 14, 2021.  

25. V. Marbukh. “Towards Risk Adjusted Wireless 
Access Under Jamming: Reliability Through 
Multi-Connectivity.” IEEE Consumer Communi-
cations & Networking Conference (CCNC’22), 
Online, January 8, 2022.   

26. D. Middlebrooks, P. Patrone, A. Kearsley, G. 
Cooksey, and G. McFadden. “Separating Flow 
Cytometry Populations Based on Probabilistic 
Analysis.” International Society for Advance-
ment of Cytometry CYTO 2022, Philadelphia, 
PA, June 3, 2022  

27. D. Middlebrooks, P. Patrone, A. Kearsley, G. 
Cooksey, and G. McFadden. “Data Analysis of 
Flow Cytometry Data: A Probabilistic Ap-
proach.” SIAM Conference on Mathematics of 
Data Science, San Diego, CA, September 26, 
2022  

28. C. Ochoa, J. Zwolak, J. Freericks, and L. 
Doughty. “Investigating Students’ Fluency with 
Quantum Ideas in the Context of Interaction-free 
Experiments.” Physics Education Research Con-
ference, Grand Rapids, MI, July 14, 2022.  

   
Figure 92. ACMD postdocs presented their work in a wide variety of venues this year. Left: 
Danielle Brager at the American Society for Mass Spectroscopy held in Minneapolis in June 
2022. Right: Robert DeJaco at the SIAM Conference on the Mathematics of Data Science held 
in San Diego in September 2022. (Photos courtesy of A. Kearsley.) 
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29. P. Patrone and A. Kearsley.  “Estimating Preva-
lence Without Classification.”  Seronet 
Investigators Meeting, Online, March 23, 2022.  

30. P. Patrone, P. Bedekar, N. Pisanic, D. Thomas, Y. 
C. Manabe, A. Kearsley, and C. Heaney. “Diag-
nostics Under Uncertainty: Minimizing 
Indeterminate Classes and Implications for Popu-
lations with Decreased Antibody 
Response.”  Seronet Investigator’s Meeting, 
Online, March 23, 2022. 

31. A. Rahmouni, T. Gerrits, P. Kuo, R. Dileep, L. 
Ma, X. Tang, and O. Slattery. “Portable Polariza-
tion-entangled Photon Source and Receiver 
Toolset for Quantum Network Metrology.” SPIE 
Optics and Photonics, San Diego, CA, August 21, 
2022.  

32. A. Rahmouni, T. Gerrits, A. Migdall, O. Slattery, 
P. Shaw, and J. Rice. “A Low-cost Optical Trap 
Detector for Characterization of Quantum Net-
work Components.” Single Photon Workshop 
2022, Seoul, South Korea, October 31, 2022.   

33. M. Roberts, A. Moorthy, E. Sisco, and A. Kears-
ley.  ”Probability Distribution-based Peak 
Matching with DART-MS Spectra for Compound 
Discrimination.” American Society of Mass 
Spectrometry (ASMS) Annual Meeting, Minne-
apolis, MN, June 6, 2022.   

34. B. Schneider, R. Schneider, and H. Gharibnejad. 
“A Coupled Volterra Integral Equation Approach 
to Solving the Time-Dependent Schrödinger 
Equation.”  APS Division of Atomic, Molecular 
and Optical Physics Annual Meeting, Orlando, 
FL, 2022  

35. O. Slattery, L. Ma, T. Gerrits, A. Ranmouni, S. 
Bhushan, and X. Tang. “The Quantum Commu-
nications and Networking Project at the 
Information Technology Laboratory at NIST.” In-
ternational Workshop on Quantum 
Communication and Quantum Cryptography, 
IEEE Conference on Communications and Net-
work Security, Online, October 4, 2021.  

36. J. Ziegler and J. Zwolak. “Tuning Arrays with 
Rays: Data-efficient Quantum Dot Auto-tuning.” 
75th Anniversary of Mathematics and Statistics at 
NIST, Online, June 30, 2022.  

37. J. Zwolak, S. Guo, S. Koh, A. Fritsch, and I. 
Spielman. “Integrating Machine Learning and 
Physics-based Heuristics for Solitonic Excitation 
Classification in Bose-Einstein Condensates.” 
75th Anniversary of Mathematics and Statistics at 
NIST, Online, June 30, 2022.  

NIST News Releases 
The following news items released by the NIST Public 
Affairs Office describe work in which ACMD staff 
members have participated. 

1. DC-Area U.S. Government Agencies Announce the 
Washington Metropolitan Quantum Network Re-
search Consortium, June 27, 2022. 

2. NIST Announces First Four Quantum-Resistant 
Cryptographic Algorithms, July 5, 2022. 

3. New Device Design Brings Unparalleled Confi-
dence to Cell Measurements, July 20, 2022. 

Web Services 
ACMD provides a variety of information and services 
on its website. Below is a list of major services provided 
that are currently under active maintenance. 

1. Digital Library of Mathematical Functions: a re-
pository of information on the special functions of 
applied mathematics.  

2. Digital Repository of Mathematical Formulae: a re-
pository of information on special function and 
orthogonal polynomial formulae. 

3. DLMF Standard Reference Tables on Demand: an 
online software testing service providing tables of 
values for special functions, with guaranteed accu-
racy to high precision.  

4. Error-correction Zoo: a repository of information 
about classical and quantum error-correcting codes.  

5. muMAG: a collection of micromagnetic reference 
problems and submitted solutions.  

Software Released 
ACMD distributes a large number of software packages 
that have been developed in the course of its work. 
Listed below are particular packages which have seen 
new releases during the reporting period. 

1. ACTS: Test suite generation (t-way with con-
straints). Version 3.02. R. Kacker and D. R. Kuhn. 
URL: https://csrc.nist.gov/Projects/automated-combinatorial-
testing-for-software/downloadable-tools  

2. CAVE Interaction Plugin and Extended Reality In-
terface in ParaView. Version 5.11.0. W. Sherman, 
S. Su, S. Wittenburg, S. Satterfield, T. Griffin, and 
J. E. Terrill. URL: https://gitlab.kitware.com/paraview/para-
view  

https://www.nist.gov/news-events/news/2022/06/dc-area-us-government-agencies-announce-washington-metropolitan-quantum
https://www.nist.gov/news-events/news/2022/06/dc-area-us-government-agencies-announce-washington-metropolitan-quantum
https://www.nist.gov/news-events/news/2022/06/dc-area-us-government-agencies-announce-washington-metropolitan-quantum
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/new-device-design-brings-unparalleled-confidence-cell-measurements
https://www.nist.gov/news-events/news/2022/07/new-device-design-brings-unparalleled-confidence-cell-measurements
http://dlmf.nist.gov/
https://drmf-beta.wmflabs.org/wiki/Project:About
http://dlmftables.uantwerpen.be/
https://errorcorrectionzoo.org/
http://www.ctcms.nist.gov/%7Erdm/mumag.org.html
https://gitlab.kitware.com/paraview/paraview
https://gitlab.kitware.com/paraview/paraview
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3. CCM: Combinatorial coverage measurement (Java 
version with support of constraints). R. Kacker and 
D. R Kuhn. URL: https://csrc.nist.gov/Projects/automated-
combinatorial-testing-for-software/downloadable-tools  

4. FMM3D: A set of libraries to compute N-body in-
teractions governed by the Laplace and Helmholtz 
equations, to a specified precision, in three dimen-
sions, on a multi-core shared-memory machine. 
Version 1.0.1 (6/29/22).  Z. Gimbutas, L. 
Greengard, L. Lu, M. Rachh, V. Rokhlin. URL: 
https://github.com/flatironinstitute/FMM3D/  

5. FreeVR: Open-source Virtual Reality Integration 
Library. Version 0.7d (07/01/22). W. Sher-
man. URL: http://freevr.org  

6. Itcl: C++ inspired object oriented commands for 
Tcl. Versions 4.2.2 (11/5/2021), 4.2.3 (11/22/2022). 
D. G. Porter. URL: https://sourceforge.net/pro-
jects/tcl/files/Tcl/ 

7. LaTeXML: A LaTeX to XML, HTML, MathML+ 
Converter.  Release 0.8.7 (12/16/2022). B. R. Mil-
ler. URLs:  https://dlmf.nist.gov/LaTeXML/, 
https://github.com/brucemiller/LaTeXML/  

8. MWrap: A MEX interface generation system in the 
spirit of SWIG or matwrap. Version 1.1.1 (8/28/22). 
D. Bindel, Z. Gimbutas, A. Barnett, L. Lu, M. 
Rachh. URL: https://github.com/zgimbutas/mwrap/  

9. OOF2: Object-Oriented Finite element software for 
modeling materials microstructure. Versions 2.2.2 
(2/3/22), 2.2.3 (9/14/22). S. Langer. URL: 
https://www.ctcms.nist.gov/oof/oof2/ 

10. OOFCanvas: A gtk compatible graphics canvas for 
OOF2. Versions 1.0.2 (2/3/22), 1.0.3 (9/14/22). S. 
Langer. URL: https://www.ctcms.nist.gov/oof/oof2/ 

11. OOMMF: The Object Oriented MicroMagnetic 
Framework. Version 2.0b0 (9/30/22), M. J. Do-
nahue and D. G. Porter. URL: 
https://math.nist.gov/oommf/software-20.html  

12. perm_hmm: State inference using Partially Observ-
able Markov Decision Processes. Version 1.0 
(10/2/22). S. Geller, S. Glancy, and E. Knill. URL: 
https://github.com/usnistgov/perm_hmm  

13. Scikit-shape: Python Package for Shape and Image 
Analysis. Version 0.3 (9/21/22), G. Doğan. URL: 
http://scikit-shape.org  

14. Software for Solving Large-Scale Generalized Ei-
genvalue Problems on Distributed Computers. 
Version 1 (11/16/21). J. Sims. DOI: 10.18434/mds2-
2293 

15. Soldet: An object-oriented package for solitonic 
feature detection in absorption images of Bose-Ein-
stein condensate. Version 1 (5/27/2022). J. Zwolak. 
DOI: 10.18434/mds2-2641 

16. Tcl/Tk: Extensible scripting language and GUI 
toolkit. Versions 8.6.12 (11/5/2021), 8.6.13 
(11/22/2022). D. G. Porter. URL: https://source-
forge.net/projects/tcl/files/Tcl/ 

17. TDBC: Database connection commands for Tcl. 
Versions 1.1.3 (11/5/2021), 1.1.5 (11/22/2022). D. 
G. Porter. URL: https://sourceforge.net/projects/tcl/files/Tcl/ 

18. Thread: Thread management commands for Tcl. 
Versions 2.8.7 (11/5/2021), 2.8.8 (11/22/2022). D. 
G. Porter. URL: https://sourceforge.net/projects/tcl/files/Tcl/ 

Data Released 
1. Dark Solitons in BECs Dataset. Version 2 

(8/24/22). J. Zwolak. DOI: 10.18434/mds2-2363 

2. Optical Spectra Data for Backward-Wave Sponta-
neous-Parametric Downconversion. Version 1 
(12/2/22). P. Kuo. DOI: 10.18434/mds2-2776 

3. QFlow 2.0: Quantum dot data for machine learning. 
Version 1 (5/10/22). J. Zwolak. DOI: 
10.18434/T4/1423788 

Conferences, Minisymposia, 
Lecture Series, Courses 

ACMD Seminar Series 
Stephen Langer served as Chair of the ACMD Seminar 
Series. There were 19 talks presented during this period; 
talks are listed chronologically.  

1. Maryam Yashtini (Georgetown University). Count-
ing Objects by Diffused Index: Geometry-free and 
Training-free Approach. December 13, 2022. 

2. Lap-Fai (Craig) Yu (George Mason University). 
Creating the Extended Reality of the Future with 
Artificial Intelligence and Computational Design. 
November 30, 2022. 

3. Ioannis Sakiotis (Old Dominion University). 
PAGANI and m-Cubes: Parallel Adaptive GPU Al-
gorithms for Numerical Integration. November 15, 
2022. 

4. Eleni Adam (Old Dominion University). 
NPGREAT: Assembling the Human Telomeres and 
Subtelomeres with the Use of Ultralong Nanopore 
and Linked-Read Datasets. November 1, 2022. 

5. Tim Kelley (North Carolina State University). An-
derson Acceleration: Convergence Theory and 
Numerical Experience. October 18, 2022. 

https://github.com/flatironinstitute/FMM3D/%C2%A0
http://freevr.org/
https://sourceforge.net/projects/tcl/files/Tcl/
https://sourceforge.net/projects/tcl/files/Tcl/
https://dlmf.nist.gov/LaTeXML/
https://github.com/brucemiller/LaTeXML/
https://github.com/zgimbutas/mwrap/%C2%A0
https://www.ctcms.nist.gov/oof/oof2/
https://www.ctcms.nist.gov/oof/oof2/
https://math.nist.gov/oommf/software-20.html%C2%A0
https://github.com/usnistgov/perm_hmm%C2%A0
http://scikit-shape.org/
https://doi.org/10.18434/mds2-2293
https://doi.org/10.18434/mds2-2293
https://doi.org/10.18434/mds2-2641
https://sourceforge.net/projects/tcl/files/Tcl/
https://sourceforge.net/projects/tcl/files/Tcl/
https://sourceforge.net/projects/tcl/files/Tcl/
https://sourceforge.net/projects/tcl/files/Tcl/
https://doi.org/10.18434/mds2-2363
https://doi.org/10.18434/mds2-2776
https://doi.org/10.18434/T4/1423788
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6. Gabriel D. Chaves-O’Flynn (Polish Academy of 
Sciences). Thermally Activated Transitions Be-
tween Micromagnetic States. October 14, 2022. 

7. Melinda Kleczynski (University of Delaware). Us-
ing Topological Data Analysis to Reveal the 
Structure of Ecological Systems. October 4, 2022. 

8. John Holmes (Ohio State University). Analysis of 
the Modified Burgers Equation on the Half Line. 
September 20, 2022. 

9. Kaitlyn Hood (Purdue University). Modeling Pair-
wise Particle Interactions in an Inertial Microfluidic 
Channel. August 9, 2022. 

10. Mallory Gaspard (Cornell University). Optimal 
Driving Under Traffic Signal Uncertainty. June 7, 
2022. 

11. Ryan Schneider (University of California San Di-
ego). A Volterra Integral Equation Approach to the 
Time Dependent Schrödinger Equation. May 24, 
2022. 

12. Barbara Lee Keyfitz (Ohio State University). Con-
servation Laws, Lagrangian Dynamics, 
Diffeomorphisms and Weak Solutions. May 10, 
2022. 

13. Illya Hicks (Rice University). Discrete Optimiza-
tion Techniques for Network and Data Analysis. 
April 26, 2022. 

14. Helen Moore (University of Florida). Standards for 
Model Evaluation Applied to Systems Pharmacol-
ogy Models: Focus on Sensitivity Analysis. March 
29, 2022. 

15. Matthew Roberts (NIST ACMD). Probability Dis-
tributions in Peak Matching for DART-MS. 
March 8, 2022. 

16. Andrew Glaws (National Renewable Energy La-
boratory). Invertible Neural Networks for Wind 
Turbine Airfoil and Blade Design. November 30, 
2021. 

17. Paul Patrone (NIST ACMD). Optimal Decision 
Theory for SARS-CoV-2 Antibody Testing. No-
vember 16, 2021. 

18. Harbir Antil. (George Mason University). Optimi-
zation Based Deep Neural Networks with 
Applications. November 9, 2021. 

19. Pulkit Grover. (Carnegie-Mellon University). In-
formation-theoretic Techniques for Examining and 
Affecting Biological and Artificial Computing Sys-
tems for Human-Centered Goals. October 5, 2021. 

Courses and Shortcourses 
1. V. Albert and M. Gullans. “Advanced Topics in 

Theory of Computing: Quantum Error Correction 
and Fault-Tolerance.” University of Maryland, Col-
lege Park, MD, Fall 2021. 

2. V. Albert and A. Barg. “Advanced Topics in The-
ory of Computing: Classical and Quantum Codes.” 
University of Maryland, College Park, MD, Spring 
2022.  

3. V. Albert. “Bosonic Coding: Introduction and Use 
Cases.” Course 209 - Quantum Fluids of Light and 
Matter, International School of Physics “Enrico 
Fermi,” Italian Physical Society, Varenna, Italy, 
July 2-7, 2022.  

4. V. Albert. “Primer on Quantum Error Correction.” 
Quantum Computing Hard- and Software (QCHS) 
Summer School, Swiss Federal Institute of Tech-
nology Lausanne (EPFL), Lausanne, Switzerland, 
June 14, 2022.  

Conference Organization 

Leadership 
1. R. Boisvert. Co-organizer, 75th Anniversary of 

Mathematics and Statistics at NIST, Online, June 
28-30, 2022. 

2. T. Burns. Co-organizer, 75th Anniversary of Math-
ematics and Statistics at NIST, Online, June 28-30, 
2022. 

3. M. Donahue. Co-Organizer and Chair, New Ap-
proaches in Computational Magnetism, Magnetism 
and Magnetic Materials Conference (MMM 2022), 
Hybrid (Minneapolis, MN), October 31 – Novem-
ber 4, 2022.  

4. P. Kuo. Subcommittee Chair. 2022 Conference on 
Lasers and Electro-optics FS 3: Quantum Photon-
ics, San Jose CA, May 15-20, 2022.   

5. P. Kuo. Subcommittee Chair. 2023 Conference on 
Lasers and Electro-optics FS 3: Quantum Photon-
ics, San Jose CA, May 7-12, 2023. 

6. L. Ma, Lead Organizer, IEEE International Work-
shop on Quantum Communication and Quantum 
Cryptography, IEEE Conference on Communica-
tions and Network Security 2021, Online, October 
6, 2021.  

7. O. Slattery, Co-Organizer, QCRYPT 2023, College 
Park, MD. August 2023.   
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Committee Membership 
1. V. Albert. Member, Program Committee, Quantum 

Information Processing Conference, Ghent, Bel-
gium, February 4-10, 2023. 

2. H. Cohl. Member, Organizing Committee, 16th In-
ternational Symposium on Orthogonal 
Polynomials, Special Functions and Applications, 
Montreal, Quebec, Canada, June 13-17, 2022.  

3. S. Glancy. Member, Program Committee, South-
west Quantum Information Technology Workshop, 
Berkeley, CA, October 20-22, 2022. 

4. R. Kacker. Member, Program Committee, Interna-
tional Workshop on Combinatorial Testing 
(IWCT), 2022 IEEE International Conference on 
Software Testing, Verification and Validation 
(ICST). Valencia, Spain, April 4-13, 2022.  

5. P. Kuo. Member, Program Committee. 2022 SPIE 
Photonics West: Quantum Computing, Communi-
cation, and Simulation II, San Francisco, CA 
February 21-27, 2022.  

6. R. La. Member, Technical Program Committee, 
IEEE International Conference on Computer Com-
munications (INFOCOM 22), Online, May 2-5, 
2022.  

7. R. La. Member, Technical Program Committee, 
IEEE International Conference on Computer Com-
munications (INFOCOM 22), Hybrid, Stevens 
Institute of Technology, Hoboken, NJ, May 17-20, 
2023.  

8. R. La. Member, Technical Program Committee, In-
ternational Conference on Complex Networks and 
Their Applications (Complex Networks 22), Pa-
lermo, Italy, November 8-10, 2022.   

9. N. Lal. Member, Organizing Committee, 
QCRYPT 2023, College Park, MD. August 2023.   

10. L. Ma. Member, Organizing Committee, QCRYPT 
2023, College Park, MD. August 2023.   

11. W. Sherman. Ex-officio Member, Executive Com-
mittee, Community Alliance for Advanced 
Visualization (CAAV).   

12. W. Sherman. Member, Program Committee, IEEE 
Conference on Virtual Reality and 3D User Inter-
faces (IEEE VR), Hybrid, Shanghai, China, March 
25-29, 2023. 

13. W. Sherman. Co-Organizer, Birds of a Feather: Im-
mersive Visualization, SIGGRAPH ‘22, July 28, 
2022.  

14. S. Su. Member. Program Committee, ACM Sympo-
sium on Virtual Reality Software and Technology 

(VRST), Hybrid, Tsukuba, Japan, November 29 – 
December 1, 2022. 

15. S. Su. Member. Program Committee, IEEE Confer-
ence on Virtual Reality and 3D User Interfaces 
(IEEE VR), Hybrid, Shanghai, China, March 25-29, 
2023.  

16. S. Su. Member. Program Board, 15th International 
Conference on Virtual, Augmented and Mixed Re-
ality, HCI International, Copenhagen, Denmark, 
July 23-28, 2023.   

Session Organization 
1. H. Cohl. Co-Organizer, Minisymposium: All 

Things Hypergeometric (Classical, Basic, and El-
liptic) and q-series, 16th International Symposium 
on Orthogonal Polynomials, Special Functions and 
Applications, Montreal, Quebec, Canada, June 13-
17, 2022.  

2. H. Cohl. Co-Organizer, Special Session: Hyperge-
ometric Functions and q-series, 2022 AMS Fall 
Western Sectional Meeting, Salt Lake City, Utah, 
October 22-23, 2022.  

3. H. Cohl. Co-Organizer, Special Session: Hyperge-
ometric Functions, q-series and Generalizations, 
Spring AMS Eastern Virtual Sectional Meeting, 
April 1-2, 2023.  

4. G. Doğan. Co-Organizer, Minisymposia 85, 95, 
106: Advances in Shape Analysis. SIAM Confer-
ence on Imaging Science, Online, March 21-25, 
2022.  

5. A. Kearsley. Organizer, Minisymposium: Mathe-
matical Modelling and Simulation of Biological 
Field Effect Transistors.  SIAM Annual Meeting, 
Pittsburgh, PA, July 14, 2022.  

6. A. Kearsley. Organizer, Minisymposium: Model-
ling and Estimation in Mathematical Biology. 
European Conference on Mathematical and Theo-
retical Biology, Heidelberg Germany, September 
22, 2022.   

7. J. Zwolak. Co-Organizer, Minisymposium: Uncer-
tainty and Reliability of Machine Learning 
Methods. SIAM Conference on Uncertainty Quan-
tification, Atlanta, GA, April 12-15, 2022.  

Other Professional Activities 

Internal 
1. R. Boisvert. Coordinator, ITL Quantum Infor-

mation Program. 
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2. R. Boisvert. Member, NIST Research Computing 
Advisory Committee 

3. T. Burns. Co-Director, ITL Summer Undergraduate 
Research Fellowship (SURF) Program.  

4. B. Cloteaux. Member, NIST Editorial Review 
Board. 

5. M. Coudron. Co-Organizer, QuICS Weekly Re-
search Seminar.  

6. T. Gerrits. Organizer, Quantum Optics Meeting 
Series. 

7. Z. Gimbutas. Member, ITL Awards Committee. 

8. S. Glancy. Member, Boulder Summer Undergradu-
ate Research Fellowship (SURF) Committee.  

9. S. Glancy. Member, ITL Diversity Committee.  

10. A. Kearsley. ITL Representative, NIST Engineer-
ing Biology Working Group   

11. P. Kuo. Member, NIST Diversity, Equity, Inclusion 
and Accessibility (DEIA) Implementation Team  

12. P. Kuo. Member, ITL Space Task Force.  

13. P. Kuo. Member, NIST Quantum Networking 
Grand Challenge Small Team (advisory board).  

14. L. Ma. Organizer, Quantum Repeater Journal Club.  

15. D. G. Porter. Editorial Board. Journal of Research 
of NIST.  

16. D. G. Porter. Member, ITL Awards Committee  

17. O. Slattery. Laser Safety Representative, ITL 
Safety Committee.   

18. O. Slattery. Member, ITL Space Task Force.   

19. O. Slattery. ITL Representative, NIST Laser Safety 
Committee.  

20. J. Zwolak. Member-At-Large, NIST AI Commu-
nity of Interest Steering Committee.  

External 

Editorial 
1. R. Boisvert. Associate Editor, ACM Transactions 

on Mathematical Software.  

2. H. Cohl. Member, Editorial Board, The Ramanujan 
Journal.  

3. H. Cohl. Co-Editor, OP-SF NET Newsletter, SIAM 
Activity Group on Orthogonal Polynomials and 
Special Functions.  

4. H. Cohl. Co-Editor, Richard A. Askey Memorial 
Volume, The Ramanujan Journal.   

5. H. Cohl. Co-Editor, Liber Amicorum, a Friendship 
Book for Dick Askey.   

6. T. Gerrits. Associate Editor, Optics Express.  

7. Z. Gimbutas. Member, Editorial Board, Advances 
in Computational Mathematics.  

8. S. Glancy. Associate Editor, Quantum Information 
Processing.  

9. R. La. Associate Editor, IEEE/ACM Transactions 
on Networking.  

10. B. Saunders. Associate Editor, MAA Mathematics 
Magazine. 

11. B. Saunders. Webmaster/SIAM Engage Moderator, 
SIAM Activity Group on Orthogonal Polynomials 
and Special Functions (SIAG/OPSF).  

12. K. Sayrafian. Associate Editor, International Jour-
nal of Wireless Information Networks. 

13. B. Schneider. Associate Editor in Chief, Computing 
in Science and Engineering. 

14. B. Schneider. Specialist Editor, Computer Physics 
Communications. 

Boards and Committees 
1. R. Boisvert. Member, International Federation of 

Information Processing Working Group 2.5 (Nu-
merical Software).  

2. R. Boisvert. Member, Reproducibility Badging and 
Definitions Working Group, National Information 
Standards Organization (NISO). 

3. B. Cloteaux. Member, Advisory Board, Department 
of Computer Science, New Mexico State Univer-
sity.  

4. A. Dienstfrey. Vice-Chair, International Federation 
of Information Processing Working Group 2.5 (Nu-
merical Software).  

5. J. Fong. Member, American Society of Mechanical 
Engineers (ASME) Boiler and Pressure Vessel 
Code Committee.  

6. S. Glancy. Member, IEEE Working Group on Met-
rics and Benchmarks for Quantum Computing 
Devices and Systems.  

7. S. Glancy. Member, Standards Technical Advisory 
Committee, Quantum Economic Development 
Consortium. 

8. P. Kuo. DC-QNet Interfaces specifications working 
group  

9. Y.-K. Liu. Research Challenge Lead, NSF Quan-
tum Leap Challenge Institute for Robust Quantum 
Simulation, University of Maryland, College Park.  
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10. B. Miller. Member, Ph.D. Thesis Committee, 
Deyan Ginev, Computer Science, University of Er-
langen, Germany. 

11. D. Porter. Member, Tcl Core Team. 

12. S. Ressler. Member, Immersive Web Working 
Group, World Wide Web Consortium (W3C). 

13. S. Ressler. NIST Representative, Advisory Com-
mittee, World Wide Web Consortium (W3C). 

14. S. Ressler. NIST Representative, Khronos Group. 

15. S. Ressler. Member, 3D Formats Working Group, 
Khronos Group. 

16. B. Saunders. Member, Board of Trustees, Society 
for Industrial and Applied Mathematics (SIAM).  

17. B. Saunders. Member, SIAM Systems Oversight 
Committee.  

18. B. Saunders. Member, SIAM Human Resources 
Committee.  

19. B. Saunders. MD-DC-VA Section Representative, 
Mathematical Association of America (MAA) Con-
gress.  

20. B. Saunders. Member, Nominating Committee, 
SIAM Activity Group on Geometric Design.  

21. B. Saunders. Chair,  AWM-MAA Falconer Lecture 
Nominating Committee  

22. B. Saunders. Member, Awards Review Panel, 
Washington Academy of Sciences.  

23. B. Saunders. Member, Advisory Board, DoD Cen-
ter of Excellence on Advanced Electro-Photonics 
with Two-Dimensional Materials, Morgan State 
University, Baltimore, MD. 

24. K. Sayrafian. Co-Chair, Vertical Track 1: Health 
and Well-Being), COST CA20120: Intelligence-
Enabling Radio Communications for Seamless In-
clusive Interactions. 

25. W. Sherman. Member,  OpenXR Working Group, 
Khronos Group.  

26. W. Sherman. Member,  ANARI Working Group, 
Khronos Group.  

27. S. Su. Member, 3D Formats Working Group, 
Khronos Group. 

28. S. Su. Member,  OpenXR Working Group, Khronos 
Group.  

29. S. Su. Member,  ANARI Working Group, Khronos 
Group.  

Adjunct Academic Appointments 
1. V. Albert. Adjunct Assistant Professor, Depart-

ment of Physics, University of Maryland, 
College Park, MD.  

2. V. Albert. Member, Applied Mathematics & Sta-
tistics, and Scientific Computation (AMSC) 
Program, University of Maryland, College Park, 
MD.  

3. M. Coudron. Adjunct Assistant Professor, De-
partment of Computer Science, University of 
Maryland, College Park, MD. 

4. S. Glancy. Lecturer, Department of Physics, Col-
orado University, Boulder, CO.   

5. A. Kearsley. Lecturer, Department of Applied 
Mathematics and Statistics, Johns Hopkins Uni-
versity, Baltimore MD. 

6. E. Knill. Lecturer, Department of Physics, Colo-
rado University, Boulder, CO.  

7. E. Knill. Fellow, Center for Theory of Quantum 
Matter, Department of Physics, Colorado Uni-
versity, Boulder, CO.  

8. P. Kuo. Adjunct Associate Professor, Department 
of Physics, University of Maryland, College Park, 
MD. 

9. Y. Liu. Co-Director, Joint Center for Quantum In-
formation and Computer Science (QuICS), and 
Adjunct Associate Professor, Department of 
Computer Science, University of Maryland, Col-
lege Park, MD.  

10. K. Sayrafian. Affiliate Associate Professor, Elec-
trical and Computer Engineering Department, 
Concordia University, Montreal Canada. 

11. W. Sherman. W. Sherman, Adjunct Lecturer, 
Luddy School of Informatics and Computing, In-
diana University, Bloomington. 

12. S. Su. Adjunct I, Department of Media Arts & 
Technologies, Montgomery College, Rockville, 
MD. 

13. J. Zwolak. Adjunct Assistant Professor, Depart-
ment of Physics, University of Maryland, 
College Park, MD.  

Thesis Direction 
1. V. Albert. Member, Member, Ph.D. Thesis Com-

mittee, University of Maryland: Z.-P. Cian.  

2. V. Albert. Member, Member, Ph.D. Thesis Com-
mittee, University of Maryland: Y. Wang.  

3. V. Albert. Ph.D. Thesis Advisor, University of Mar-
yland: S. Jain. 



Summary of Activities for Fiscal Year 2022                                                                                                               157 
   
 

 

4. V. Albert. Ph.D. Thesis Advisor, University of Mar-
yland: E. Kubischta.  

5. V. Albert. Ph.D. Thesis Co-Advisor, University of 
Maryland: J. Kunjummen.  

6. V. Albert. Ph.D. Thesis Co-Advisor, University of 
Maryland: J. Iosue.  

7. M. Donahue. Member, Ph.D. Thesis Committee, 
University of Colorado, Boulder: Mingyu Hu.  

8. Z. Gimbutas. Member, Ph.D. Thesis Committee, 
Department of Mathematics, Southern Methodist 
University:  A. Slobodkins.  

9. S. Su. Member, M.S. Thesis Committee, Multime-
dia University: J. Wee.  

10. Y.-K. Liu. Member, Ph.D. Thesis Committee, Uni-
versity of Maryland, College Park: Z.-P. Cian. 

11. Y.-K. Liu. Co-Advisor, University of Maryland, 
College Park: K. Huang 

12. K. Sayrafian. Co-Advisor, University of Zagreb, 
Zagreb, Croatia: K. Krhac. 

13. J. Zwolak. Ph.D. Thesis Co-Advisor, University of 
Maryland: S. Guo.  

Community Outreach 
1. V. Albert. Undergraduate Advisor, University of 

Maryland.  

2. R. Boisvert. Panelist, Keene State College (NH) 
Mathematics Career Night, March 25, 2022. 

3. M. Coudron. Project Leader, Summer 2021 Combi-
natorics, Algorithms, and AI for Real Problems 
Research Experience for Undergraduates (REU), 
University of Maryland.    

4. G. Doğan. Organizer. Odyssey of the Mind Pro-
gram, Cabin John Middle School, Potomac, MD, 
October 2021 – March 2022.  

5. A. Kearsley, Panelist, Industry Leadership and Net-
work Workshop,  Institute for Innovation and 
Entrepreneurship at the University of California 
at Davis, Tapia Celebration of Diversity in Compu-
ting, Washington DC, September 7th, 2022.  

6. D. Middlebrooks. Panelist, The Math Alliance: Fif-
teen Years of Building a New American 
Community in the Mathematical and Statistical Sci-
ences, Joint Mathematics Meeting, Seattle, WA, 
Online, April 8, 2022.  

7. D. Middlebrooks. Panelist, Professional Develop-
ment Session, The University of Texas Rio Grande 
Valley Research Experience for Undergraduates 
(REU) Program on Applied Mathematics and Com-
putational and Data Science, UT Rio Grande 
Valley, Edinburg, TX, Online, July 8, 2022.  

8. D. Middlebrooks. Panelist, Professional Develop-
ment Session, Girls Talk Math Summer Camp, 
University of Maryland, College Park, MD, July 15, 
2022  

9. D. Middlebrooks. “Research in a Physical Science 
Laboratory: Opportunities and Ongoing Work of a 
Spelman Graduate.” Math Senior Seminar, Spel-
man College, Atlanta, GA, October 24, 2022.  

10. B. Saunders. SIAM Visiting Lecturer.  

11. B. Saunders. Interviewed for Documentary: The 
Journey of Some African American Mathemati-
cians. MSRI (Mathematical Sciences Research 
Institute) and National Association of Mathemati-
cians (NAM). See http://www.zalafilms.com/jbm/ 

12. S. Su. Interaction with Magnet Program. Pool-
esville High School, September 8, 2022. 

13. J. Zwolak. Preparing students for competition in for 
Math Olympiads for Elementary & Middle Schools. 
Mary of Nazareth Catholic School, since October 
2022.  

 
Figure 93. ACMD staff undertake a variety of outreach efforts each year. Here Danielle Middlebrooks of ACMD (on screen at left) serves on a 
career panel for a series of professional development workshops run by the University of Texas Rio Grande Valley Pathways to Math program, 
which is a Research Experience for Undergraduates (REU) program. funded by the Sloan foundation. (Photo courtesy of Josef Sifuentes of UTRGV.) 
 

http://www.zalafilms.com/jbm/
https://moems.org/
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14. J. Zwolak. “Mathematical and Computational Sci-
ence Research at NIST.” Drexel University, 
Philadelphia, PA, November 7, 2022. 

Awards and Recognition 
External 
1. P. Bedekar, A. J. Kearsley, and P. N. Patrone. 2nd 

Place Best Contributed Talk Award (“Optimal 
time-dependent classification and prevalence esti-
mation for antibody testing”), 2nd Workshop in 
Mathematical and Computational Biology, Online, 
June 9-10, 2022.  

2. R. Kacker. Fellow, Washington Academy of Sci-
ences. 

3. P. Patrone. Excellence in Research in Applied 
Mathematics, Washington Academy of Science. 

4. P. Patrone, Fellow, Washington Academy of Sci-
ence. 

5. K. Sayrafian. Fellow, Washington Academy of Sci-
ences. 

Internal 
1. R. Boisvert. 2022 ITL Outstanding Mentor. 

2. R. Evans and A. Kearsley. 2021 DOC Silver Medal 
(Group Award) . 

3. T. Gerrits. 2021 DOC Silver Medal (Group Award).  

4. S. Glancy and E. Knill. 2022 DOC Gold Medal 
(Group Award). 

5. Katjana Khrac and Kamran Sayrafian. 2022 ITL 
Outstanding Conference Paper.  

6. Y.-K. Liu. 2022 ITL Outstanding Contribution 
Award, 2022.   

7. R. Luke. Most Outstanding Poster Award (Engi-
neering, Manufacturing, Mathematical & Computer 
Sciences category), NIST Early Career Poster 
Presentation, March 30, 2022. 

8. G. McFadden. 2022 NIST Portrait Gallery of 
Distinguished Scientists, Engineers, and Ad-
ministrators. 

9. P. Patrone and A. Kearsley. 2022 ITL Outstanding 
Journal Paper. 

10. Chris Schanzle. 2022 ITL Outstanding Technical 
Support. 

11. Vivian Xiao. 2022 ITL Outstanding Student. 

Funding Received 
During FY 2022 ACMD’s yearly allocation of base 
funding from the NIST Information Technology Labor-
atory was supplemented with funding from a variety of 
internal and external competitions. Such funding repre-
sented 23% of the Division’s FY 2022 budget. 

Note: For multi-year awards and joint awards, only pro-
jects with new funding received by ACMD during FY 
2022 are  listed. Names of ACMD participants are un-
derlined. 

External 
1. M. Donahue. NIST Support for DARPA Magnetic 

Miniaturized and Monolithically Integrated Com-
ponent (M3IC) Program, DARPA. (Joint with 
PML)  

2. B. Schneider.  XSEDE Computing Allocation for 
AMP Gateway: A Gateway for Atomic and Molec-
ular Physics. 

Internal 
1. V. Albert. Facilitating Quantum Technology 

Through Machine Learning. 2022 ITL Building the 
Future Program. 

2. M. Coudron. Verification of Protein Structure Pre-
diction Algorithms. 2022 ITL Building the Future 
Program.  

3. C. Dennis, T. Moffat, A. Biacchi, A. Hight Walker, 
S. Woods, W. Tew, and M. Donahue. Thermal 
MagIC: An SI-Traceable Method for 3D Thermal 
Magnetic Imaging and Control. NIST Innovations 
in Measurement Science.  

4. A. Dienstfrey. Advanced Hardware for AI Ad-
vantage. ITL AI Initiative. (Joint with PML) 

5. G. Doğan. Better Deep Learning by Incorporating 
Expectations. 2022 ITL Building the Future Pro-
gram.  

6. R. Evans, C. Schanzle, S. Cho, A. Balijepalli, and 
A. Kearsley.  Modeling for Medical Diagnostic 
Technology. 2022 ITL Building the Future Pro-
gram.  

7. R. Fitzgerald, D. Bergeron, S. Nour, D. Schmidt, D. 
Swetz, G. Shaw, B. Alpert, and M. Verkouteren. 
True Becquerel: A New Paradigm for 21st Century 
Radioactivity Measurements. NIST Innovations in 
Measurement Science. 

8. S. Glancy and E. Knill. Establishing the Science 
and Technology of Networks for Superconducting 
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Quantum Computers. NIST Innovations in Meas-
urement Science. (Joint with PML) 

9. K. Lehnert, K. Silverman, D. Moody, J. Teufel, R. 
Mirin, S.-W. Nam, E. Knill, P. Hale, and T. Dennis. 
Establishing the Science of Networks for Supercon-
ducting Quantum Computers. NIST Innovations in 
Measurement Science Program.  

10. D. Leibfried, A. Wilson, E. Knill, and S. Glancy. A 
Practical Quantum Repeater Unit. NIST Quantum 
Networking Grand Challenge.  

11. L. Ma and O. Slattery. Integrated Entangled Photon 
Source Based on Silicon Carbide Devices.  2022 
ITL Building the Future Program. 

12. P. Patrone, A. Kearsley, R. DeJaco, E. Romsos, and 
P. Vallone. Advanced Analysis and Uncertainty 
Quantification for Diagnostic Testing. 2022 ITL 
Building the Future Program. 

13. P. Patrone, A. Kearsley, G. McFadden, G. Cooksey, 
S. Sarkar, and L. Wang.  NIST-in-a-drop: Revolu-
tionizing Measurements of Single-cell Kinetics. 
NIST Innovations in Measurement Science.  

14. M. Roberts, A. Kearsley, A. Moorthy, E. Sisco, and 
C. Schanzle. Compound Identification Algorithms 
for the DART-MS Library. 2022 ITL Building the 
Future Program. 

15. K. Sayrafian. A Wireless Wearable Technology to 
Determine Accumulation of Fluid in the Lungs – 
Part II. 2022 ITL Building the Future Program.  

16. O. Slattery, A. Battou, and N. Zimmerman. Quan-
tum Network Testbeds on NIST Campus and on 
DC-QNet. NIST Quantum Networking Grand Chal-
lenge.  

17. O. Slattery. Novel Bell State Analyzer for WDM-
compatible Entanglement Swapping and Teleporta-
tion. Quantum Network Initiative.   

18. J. Ziegler, J Zwolak, Z. Grey, and C. Greenberg. 
Assessing Uncertainty in Machine Learning for 
Quantum Physical Systems. 2022 ITL Building the 
Future Program.  

Grants Funded 
ACMD awards a small amount of funding through the 
NIST Grants Program for projects that make direct con-
tributions to its research programs. During FY 2022 the 
following cooperative agreements were active.  

1. George Washington University: Algorithmic Devel-
opment for AI Coprocessors. PI: Gina Adam. • 
Supports NIST Neuromorphic Computing program. 

2. Prometheus Computing LLC: Security, Resiliency 
and Dynamics of Interdependent Self-Organizing 

Networks. PI: Assane Gueye. • Supports ACMD 
Foundations of Measurement Science for Infor-
mation Systems program. 

3. Purdue University: Effective Range of Fluid-Medi-
ated Particle-Particle Interactions in an 
Optofluidic Flow Meter. PI: Kaitlyn Hood. • Sup-
ports NIST-in-a-Drop Innovations in Measurement 
Science program. 

4. Theiss Research: Exploiting Alternate Computing 
Technologies. PI: Alan Mink. • Supports ITL Quan-
tum Information Science and NIST Neuromorphic 
Computing programs. 

5. University of Edinburgh: Rigorous and Presentable 
Asymptotics for Special Functions and Orthogonal 
Polynomials. PI: Adri Olde-Daalhuis. • Supports 
NIST Digital Library of Mathematical Functions 
project. 

6. University of Maryland: Joint Center for Quantum 
Information and Computer Science (QuICS). PI: 
Andrew Childs• Supports ITL Quantum Infor-
mation Science program. 

7. University of Minnesota: NIST-IMA Postdoctoral 
Fellowship in Analysis of Machine Learning. PI: 
Daniel Spirn. • Supports ITL Artificial Intelligence 
program. 

8. University of Texas at Arlington: SENTINEL: Se-
curity Interaction Testing for IoT Systems and 
Blockchains. PI: Yu Lei. • Supports ITL Combina-
torial Testing project. 

External Contacts 
ACMD staff members interact with a wide variety of or-
ganizations in the course of their work. Examples of 
these follow.  

Industrial Labs 
Amazon AWS 
Boeing Company 
Chakra Consulting 
ColibrITD (France) 
Computational Physics, Inc. 
Corning 
Deltares (Netherlands) 
Fraunhoffer IGD (Germany) 
GE Global Research Center 
Google 
Honeywell 
HRL Laboratories 
IBM  
Intel 
Intertek 
Kitware 
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Microsoft Research 
MPACT Corp. 
NTT Corporation (Japan) 
Photon Spot Inc. 
Prorenata Labs 
PsiQuantum 
Quantum Opus 
Qunnect 
Roche, Regeneron, Abbott Labs 
Rolls-Royce Corporation 
Sivinathan Labs 
SRI 
Xanadu Quantum Technologies, Inc. 

Government/Non-profit Organizations 
American Society of Mechanical Engineers 
Argonne National Laboratory 
Army Research Laboratory 
arXiv.org 
Association for Computing Machinery 
Centers for Disease Control 
CENAM (Mexico) 
Flatiron Institute 
Food and Drug Administration 
IEEE Computer Society 
Johns Hopkins University Applied Physics Laboratory 
Khronos Group 
Korean Institute of Science and Technology (S. Korea) 
Laboratory for Telecommunication Sciences 
Lawrence Berkeley National Laboratory 
Mathematical Sciences Research Institute 
NASA Goddard Space Flight Center 
NASA Ames Research Center 
National Institute of Biomedical Imaging and Bioengi-

neering 
National Institutes of Health 
National Physical Laboratory (UK) 
National Reconnaissance Office 
National Research Council (Canada) 
National Security Agency 
National Renewable Energy Laboratory (NREL) 
Naval Research Laboratory 
Oak Ridge National Laboratory 
QIMR Berghofer Medical Research Inst (Australia) 
OpenMath Society 
Pacific Northwest National Laboratory 
Physikalisch-Technische Bundesanstalt (Germany) 
Quantum Economic Development Consortium 
Sandia National Laboratories 
SBA Research (Austria) 
Stanford Research International (SRI) 
Theiss Research 
US Department of Energy 
US Geological Survey 
US Holocaust Memorial Museum 
US Naval Observatory 

US Office of Naval Research (USNO) 
Washington Metro Quantum Network Research Con-

sortium 
World Wide Web Consortium 

Universities 
Aarhus University (Denmark) 
Alfréd Rényi Institute of Mathematics (Hungary) 
American University 
Amherst College 
Beijing Institute of Technology (China) 
Brown University 
California Institute of Technology 
Carnegie Mellon University 
China University of Petroleum (China) 
Clarkson University 
Clemson University 
Colorado School of Mines 
Columbia University 
Concordia University (Canada) 
Consejo Nacional de Investigaciones Científicas y Téc-

nicas (Argentina) 
Coppin State University 
Cornell University 
Courant Institute of Mathematical Sciences 
Curtin University (Australia) 
Dalian University of Science and Tech (China) 
Delft University of Technology (The Netherlands) 
Drake University 
Drexel University 
East China U. of Science and Tech (China) 
Federal University of Ceará (Brazil) 
Florida State University 
Freie Universität Berlin (Germany) 
George Mason University 
George Washington University 
Harvard University 
Humboldt University (Germany) 
Imperial College London (UK) 
Indiana University 
Indian Institute of Technology (India) 
Jacobs University Bremen (Germany) 
Johannes Kepler University Linz (Austria) 
Johns Hopkins University 
Kennesaw State University 
Khallikoke College  (India)  
Korteweg-de Vries Institute for Mathematics (The 

Netherlands) 
Louisiana State University  
Ludwig-Maximilians University (Germany) 
Massachusetts Institute of Technology (MIT) 
Morgan State University 
Multimedia University (Malaysia) 
National University of Singapore (Singapore) 
Norfolk State University 
Northeastern University 
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Occidental College 
Ohio State University 
Old Dominion University 
Open University (UK) 
Purdue University 
Rice University  
Royal Institute of Technology (Sweden) 
ShanghaiTech University (China) 
Shandong University (China) 
Southern Methodist University 
Southern University and A&M College 
Stanford University 
Technical University of Denmark (Denmark) 
Temple University 
Texas A&M University 
Texas Tech University 
Tokyo University of Science (Japan) 
Tsinghua University (China) 
Tufts University 
Universidad Autonoma de Madrid (Spain) 
Universidad Loyola Andalucia (Spain) 
University of Amsterdam (The Netherlands) 
University of Antwerp (Belgium) 
University of Belfast (UK) 
University of British Colombia (Canada) 
University of California, Berkeley 
University of California, Davis 
University of California, Los Angeles 
University of California, San Diego 
University of Central Florida 
University of Chicago 
University of Colorado, Colorado Springs 
University of Colorado, Boulder 
University of Copenhagen 
University of Delaware 
University of Edinburgh (UK) 
University of Erlangen (Germany) 
University of Konstanz (Germany) 
University of Illinois, Urbana-Champaign 
University of Limerick (Ireland) 
University of Manchester (UK) 
University of Maryland, Baltimore County 
University of Maryland, College Park 
University of Massachusetts 
University of New Mexico 
University of Oregon 
University of Ottawa (Canada) 
University of Rochester 
University of San Paolo (Brazil) 
University of Saskatchewan (Canada) 
University of Sheffield (UK) 
University of Southern California 
University of South Carolina 
University of Strathclyde (UK) 
University of Sydney (Australia) 
University of Texas at Arlington 
University of Texas at Austin 

University of Texas at Dallas 
University of Texas at Rio Grande Valley 
University of Washington 
University of Wisconsin, Madison 
University of Wisconsin, Milwaukee 
University of Wuppertal (Germany) 
Virginia Commonwealth University 
Virginia Polytechnic Institute 
Weizmann Institute of Science (Israel) 
Western Michigan University 
Yale University  
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Staff 
ACMD consists of full-time permanent Federal staff located at NIST laboratories in Gaithersburg, MD and 
Boulder, CO. This full-time staff is supplemented with a variety of special appointments. The following list 
reflects all non-student appointments held during any portion of the reporting period (October 2021 – De-
cember 2022). Students and interns are listed in Table 3 page 129.  

* Denotes staff at NIST Boulder. 
† Denotes part-time Federal staff. 

Division Staff 
Ronald Boisvert, Chief, Ph.D. (Computer Science), Purdue University, 1979 
Catherine Graham, Administrative Assistant 
*Elsie (Meliza) Lane, Administrative Assistant 
Lochi Orr, Administrative Assistant, A.A. (Criminal Justice), Grantham University, 2009 
†Alfred Carasso, Ph.D. (Mathematics), University of Wisconsin, 1968 
Roldan Pozo, Ph.D. (Computer Science), University of Colorado at Boulder, 1991 
Kamran Sayrafian, Ph.D. (Electrical and Computer Engineering), University of Maryland, 1999 
Christopher Schanzle, B.S. (Computer Science), University of Maryland Baltimore County, 1989 

Mathematical Analysis and Modeling Group 
Timothy Burns, Leader, Ph.D. (Mathematics), University of New Mexico, 1977 
*Daniel Flynn, Administrative Assistant, B.S. (Political Science), Iowa State University, 2016 
*Bradley Alpert, Ph.D. (Computer Science), Yale University, 1990 
*Andrew Dienstfrey, Ph.D. (Mathematics), New York University, 1998  
Ryan Evans, Ph.D. (Applied Mathematics), University of Delaware, 2016 
†Jeffrey Fong, Ph. D. (Applied Mechanics and Mathematics), Stanford University, 1966 
*Zydrunas Gimbutas, Ph.D. (Applied Mathematics), Yale University, 1999 
*Zachary Grey, Ph.D. (Computational and Applied Mathematics), Colorado School of Mines, 2019 
Raghu Kacker, Ph.D. (Statistics), Iowa State University, 1979 
Anthony Kearsley, Ph.D. (Computational and Applied Mathematics), Rice University, 1996 
Danielle Middlebrooks, Ph.D. (Applied Mathematics, Statistics and Scientific Computing), University 

of Maryland, 2020 
Paul Patrone, Ph.D. (Physics), University of Maryland, 2013 

NRC Postdoctoral Associates 
Danielle Brager, Ph.D. (Mathematical Biology), Arizona State University, 2020 
Robert DeJaco, Ph.D. (Chemical Engineering), University of Minnesota, 2020 
Deborah McGlynn, Ph.D. (Civil and Environmental Engineering), Virginia Tech, 2022 
Matthew Roberts, Ph.D. (Mathematical Sciences), Michigan Technological University, 2019 

Faculty Appointee (Name, Degree / Home Institution) 
Daniel Anderson, Ph.D. / George Mason University 
Michael Mascagni, Ph.D. / Florida State University 
John Nolan, Ph.D. / American University 
Florian Potra, Ph.D. / University of Maryland Baltimore County 

Guest Researchers (Name, Degree / Home Institution) 
Prajakta Bedekar, Ph.D. / Johns Hopkins University 
Natesh Ganesh, Ph.D. / University of Colorado 
Kaitlyn Hood, Ph.D. / Purdue University 
Fern Hunt, Ph.D. / NIST Scientist Emeritus 
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Yu (Jeff) Lei, Ph.D. / University of Texas at Arlington 
Rayanne Luke, Ph.D. / Johns Hopkins University 
Geoffrey McFadden, Ph.D / NIST Scientist Emeritus 
Dimitrios Simos, Ph.D. / SBA Research, Austria 

Mathematical Software Group 
Bonita Saunders, Leader, Ph.D. (Mathematics), Old Dominion University, 1985   
Javier Bernal, Ph.D. (Mathematics), Catholic University, 1980 
Howard Cohl, Ph.D. (Mathematics), University of Auckland, 2010 
Günay Doğan, Ph.D. (Applied Mathematics and Scientific Computing), University of Maryland, 2006 
Michael Donahue, Ph.D. (Mathematics), Ohio State University, 1991 
Stephen Langer, Ph.D. (Physics), Cornell University, 1989  
Bruce Miller, Ph.D. (Physics), University of Texas at Austin, 1983  
Donald Porter, D.Sc. (Electrical Engineering), Washington University, 1996  
Barry Schneider, Ph.D. (Physics), University of Chicago, 1969 

NRC Postdoctoral Associates 
William Earwood, Ph.D. (Chemistry), University of Mississippi, 2022 
Camilo Montoya, Ph.D. (Mathematics), Florida International University, 2022 
Lisa Ritter, Ph.D. (Mathematics), University of Hawai’i at Mānoa, 2021 
Stephen Sorokanich, Ph.D. (Mathematics), University of Maryland, College Park, 2022 

Faculty Appointees (Name, Degree / Home Institution) 
Abdou Youssef, Ph.D. / George Washington University 

Guest Researchers (Name, Degree / Home Institution) 
Joel Bowman, Ph.D. / Emory University 
Nicolas Douguet, Ph.D. / Kennesaw State University 
Heman Gharibnejad, Ph.D. / Computational Physics Inc. 
Mark Alexander Henn, Ph.D. / University of Maryland 
Justin Kauffman, Ph.D. / Virginia Polytechnic Institute and State University 
Daniel Lozier, Ph.D. / NIST, Retired 
Adri Olde Daalhuis, Ph.D. / University of Edinburgh 
Jeppe Olsen, Ph.D. / Aarhus University, Denmark 
Chen Qu, Ph.D. / GBS Dakota IT, LLC 
Moritz Schubotz, Ph.D. / University of Karlsruhe, Germany 

Computing and Communications Theory Group 
Ronald Boisvert, Acting Leader, Ph.D. (Computer Science), Purdue University, 1979  
Victor Albert, Ph.D. (Physics), Yale University, 2017 
Lucas Brady, Ph.D. (Physics), University of California at Santa Barbara, 2018 
Brian Cloteaux, Ph.D. (Computer Science), New Mexico State University, 2007 
Matthew Coudron, Ph.D. (Computer Science), Massachusetts Institute of Technology, 2017 
Thomas Gerrits, Ph.D. (Physics), Radboud University Nijmegen, 2004 
*Scott Glancy, Ph.D. (Physics), University of Notre Dame, 2003 

     *Emanuel Knill, NIST Fellow, Ph.D. (Mathematics), University of Colorado at Boulder, 1991 
Paulina Kuo, Ph.D. (Physics), Stanford University, 2008 

     Yi-Kai Liu, Ph.D. (Computer Science), University of California, San Diego, 2007 
     Lijun Ma, Ph.D. (Precision Instruments and Machinery), Tsinghua University, 2001 

Vladimir Marbukh, Ph.D. (Mathematics) Leningrad Polytechnic University, 1986 
Oliver Slattery, Project Leader, Ph.D. (Physics), University of Limerick, 2015 
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Faculty Appointees (Name, Degree / Home Institution) 
James Lawrence, Ph.D. / George Mason University 
Richard La, Ph.D. / University of Maryland 
Debasis Mitra, Ph.D. / Columbia University 

Guest Researchers (Name, Degree / Home Institution) 
      Isabel Beichl, Ph.D. / NIST, Retired  

Sumit Bhushan, Ph.D. / Indian Institute of Technology 
Sesha Challa / Pusan National University (India) 
Nijil Lal Cheriya Koyyottummal, Ph.D. / University of Napoli Federico II 
Hristina Georgieva, Ph.D. / Physikalisch-Technische Bundesanstalt (PTB) 
Assane Gueye, Ph.D. / Prometheus Computing 
Navin Lingaraju, Ph.D. / University of Maryland, College Park 
*Karl Mayer, Ph.D. / Honeywell 
Alan Mink, Ph.D. / Theiss Research 
Anouar Rahmouni, Ph.D. / Moroccan Foundation for Advanced Sci., Innovation and Research 
Samprity Saha, Ph.D. / Virginia Commonwealth University 
Yicheng Shi, Ph.D. / National University of Singapore 
*Ezad Shojaee, Ph.D. / University of Colorado 
Francis Sullivan, Ph.D. / IDA Center for Computing Sciences 
Xiao Tang, Ph.D. / NIST Retired 
*James Van Meter, Ph.D. / HRL Laboratories 
Yinxiao Xiang, Ph.D. / Izum, Inc. 

High Performance Computing and Visualization Group 
Judith Terrill, Leader, Ph.D. (Information Technology), George Mason University, 1998  
William George, Ph.D. (Computer/Computational Science), Clemson University, 1995 
Terence Griffin, B.S. (Mathematics), St. Mary’s College of Maryland, 1987 
Sandy Ressler, M.F.A. (Visual Arts), Rutgers University, 1980 
William Sherman, M.S. (Computer Science), University of Illinois, 1989 
Simon Su, Ph.D. (Computer Science), University of Houston, 2001 
Justyna Zwolak, Ph.D. (Physics), Nicolaus Copernicus University, Poland, 2011 

NRC Postdoctoral Associates 
Joshua Ziegler, Ph.D. (Physics), University of Oregon, 2020 

Guest Researchers (Name, Degree / Home Institution) 
John Hagedorn, M.S. / Chakra Consulting 
Steven Satterfield, M.S. / NIST Retired 
James Sims, Ph.D. / NIST (retired) 
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Glossary of Acronyms 
 
1D  one-dimensional 
2D  two-dimensional 
3D  three-dimensional 
ACCESS NSF Advanced Cyberinfrastructure Coordination Ecosystem 
ACI  American Concrete Institute 
ACM  Association for Computing Machinery 
ACMD  NIST/ITL Applied and Computational Mathematics Division 
ACTS  Advanced Combinatorial Testing System (software) 
ADC  apparent diffusion coefficient 
ADJOINT African Diaspora Joint Mathematics Workshop  
ADS  autonomous driving system 
AI  artificial intelligence 
AL  Analytic Methods (DLMF chapter) 
AMOS  atomic molecular and optical science  
AMOSG Atomic Molecular and Optical Science Gateway 
AMS  American Mathematical Society 
ANARI   Analytic Rendering Interface for Data Visualization 
ANN  artificial neural network 
API  application programming interface 
APS  American Physical Society 
AR  augmented reality 
arXiv  preprint archive at https://arxiv.org/ 
ARL  Army Research Laboratory 
ASES  Aspects of Student Experience Survey 
ASME  American Society of Mechanical Engineers 
ASTM  American Society for Testing and Materials 
AWM  Association for Women and Computing 
arXiv  preprint archive housed at Cornell University (http://arxiv.org/) 
Be  beryllium 
BEC  Bose-Einstein Condensate 
Bio-FET  biological field effect transistor 
BMP  Bateman Manuscript Project 
BPVC  Boiler and Pressure Vessel Code 
Bq  becquerel: absolute activity of radionuclide mixtures 
BS  base station 
BVOC  biogenic volatile organic compounds 
BW  backward wave 
CA  California 
CAD  computer aided design 
Caltech  California Institute of Technology 
CAS  computer algebra system 
CAVE  CAVE Automatic Virtual Environment 
CCM  Combinatorial Coverage Measurement (software) 
CDC  Centers for Disease Control and Prevention 
CENAM Center for Metrology of Mexico 
CI  configuration interaction 
CICM  Conference on Intelligent Computer Mathematics 
CFD  combination frequency differencing 
CFPG  Coulomb force parametric generator 
CFSF  Continued Fractions for Special Functions 
CLEO  Conference on Lasers and Electro-Optics     
CMA  Computational Mathematics Research Group at the University of Antwerp 
CMOS  complementary metal-oxide semiconductor 

https://arxiv.org/
http://arxiv.org/
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CNN  convolutional neural network 
CO  Colorado 
CONICET National Scientific and Technical Research Council of Argentina 
COVID  coronavirus disease 
CPU  central processing unit 
CR  convex relaxation 
CRADA  cooperative R&D agreement 
CS  coordinating server 
CSF  configuration state function 
CT  computed tomography 
CT  combinatorial testing 
CTL  NIST Communications Technology Laboratory 
CV  continuous (quantum) variables 
CY  calendar year 
DARPA  Defense Advanced Research Projects Agency 
DART-MS  Direct Analysis in Real Time Mass Spectrometry 
DC-QNet DC area Quantum Network testbed 
DD  double (quantum) dot 
DGR  NIST Domestic Guest Researcher 
DL  deep learning 
DLMF  Digital Library of Mathematical Functions 
DNA  deoxyribonucleic acid 
DNN  deep neural network 
DOC  Department of Commerce 
DOI  digital object identifier 
DQC  data quality control 
DRMF  Digital Repository of Mathematical Formulae 
DS  double stranded 
DV  discrete (quantum) variable 
EBSD  electron backscatter diffraction 
eCF  Wolfram Computational Knowledge of Continued Fractions Project 
eDNA  environmental DNA 
EH  energy harvesting 
E-Health electronic health care 
E-Hy-CI  exponentially correlated Hy-CI 
EL  NIST Engineering Laboratory 
EPA  Environmental Protection Agency 
ERaR  entropic rate at risk 
ESBD  electron back-scatter diffraction 
FEDVR  finite element discrete variable 
FEM  finite element method 
FFT  fast Fourier transform 
FGR  NIST Foreign Guest Researcher Program 
FIPO  fast IPO 
FL  federated learning 
FY  fiscal year 
GDS  Graphic Design System (file format for electronic design automation) 
GHG  greenhouse gas 
glTF   standard file format for three-dimensional scenes and models 
GMSE  NIST Graduate Measurement Science and Engineering internship program 
GNN  graph neural network 
GPU  graphical processing unit 
GUI  graphical user interface 
HA-PTP  classical time synchronization protocol 
HEC  High End Computing 
HEV  high end visualization 
HIM  helium ion microscope 
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HMD  head-mounted display 
HPC  high performance computing 
HPCVG  ACMD High Performance Computing and Visualization Group 
HTML  hypertext markup language 
Hy  Hylleraas 
Hy-CI  Hylleraas-Configuration Interaction technique 
IARPA  Intelligence Advanced Research Projects Agency 
IC  integrated circuit 
ICP  inductively coupled plasma 
ICST  International Conference of Software Testing 
IDE  integrodifferential equation 
IEEE  Institute of Electronics and Electrical Engineers 
IFIP  International Federation for Information Processing 
IMS  NIST Innovations in Measurement Science program 
IoT  Internet of things 
IPO  in parameter order 
IR  infrared 
IU  Indiana University 
IT  information technology 
ITL  NIST Information Technology Laboratory 
ITVOLT iterative Volterra integral equation solver 
IU  Indiana University 
IVE  immersive visualization environment 
IWCT  International Workshop on Combinatorial Testing 
KLS  Koekoek, Lesky and Swarttouw 
LaCASt  Java tool to convert math expressions from LaTeX to computer algebra systems 
LaTeX  a math-oriented text processing system 
LaTeXML a LaTeX to Math ML converter 
LBNL  Lawrence Berkeley National Laboratory 
LIDAR  light detection and ranging 
LTS  Laboratory for Telecommunication Sciences 
M3IC  DARPA Magnetic, Miniaturized, and Monolithically Integrated Components program 
MAA  Mathematical Association of America 
MathML Mathematical Markup Language (W3C standard) 
MD  Maryland 
MEH  micro energy harvester 
MGB  Mathematically Gifted and Black 
MGI  Materials Genome Initiative 
MIT  Massachusetts Institute of Technology 
ML  machine learning 
MLP  mathematical language processing 
MML  NIST Material Measurement Laboratory 
MOL  method of lines 
MOS  Magnus, Oberhettinger, and Soni 
MOT  magneto-optical trap 
MR  mixed reality 
MRAM  magneto-resistive random-access memory 
MRI  magnetic resonance imaging 
MS  mass spectrometry 
MSGI  NSF Mathematical Sciences Graduate Internship program 
MSRI  Mathematical Sciences Research Institute (Berkeley) 
muMAG Micromagnetic Activity Group 
NALS  network analysis for Likert-style surveys 
nanoHUB Web portal for nanotechnology research at https://nanohub.org/ 
NASA  National Aeronautics and Space Administration 
NBS  National Bureau of Standards (former name of NIST) 
NCCOE  NIST National Cybersecurity Center of Excellence 

https://nanohub.org/
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NG-QNET NIST Gaithersburg Quantum Network 
NIBIB  National Institute of Biomedical Imaging and Biotechnology 
NIH  National Institutes of Health 
NISQ  noisy intermediate-scale quantum 
NIST  National Institute of Standards and Technology 
NISTIR  NIST Internal Report 
NITRD   Networking and Information Technology Research and Development 
nm  nanometer 
NN  neural network 
NRC  National Research Council 
NREL  National Renewable Energy Laboratory 
NRL  Naval Research Laboratory 
NSF  National Science Foundation 
OD  object detector 
ODE  ordinary differential equation 
ONA  organizational network analysis 
OOF  Object-Oriented Finite Elements (software) 
OOF3D  3D version of OOF 
OOMMF Object-Oriented Micromagnetic Modeling Framework (software) 
OP  orthogonal polynomials 
OpenXR  Open Extended Reality  
OPSF  orthogonal polynomials and special functions 
OS  photoreceptor outer segments 
OTDR   optical time-domain reflectometry 
OU  organizational unit 
PAML  physics-assisted machine learning 
PCA  principal component analysis 
PCB  printed circuit board 
PCR  polymerase chain reaction 
PDE  partial differential equation 
PDF  probability density function 
PER  physics education research 
PET  positron emission tomography 
PI  principal investigator 
PIE  physics-informed excitation 
PIT  physics-informed tuning 
PLOS  Public Library of Science 
PML  NIST Physical Measurement Laboratory 
PQNI  Platform for Quantum Networking Innovation 
PPKTP  periodically poled KTiOPO4 
PQC  post-quantum cryptography 
PREP  NIST Professional Research Education Program 
PT  Painlevé transcendents (DLMF chapter) 
PTB  Physikalisch-Technische Bundesanstalt (German metrology institute) 
PUF  physically unclonable function 
QAOA  quantum approximate optimization algorithm 
QEC-C  Quantum Economic Development Consortium 
QD  quantum dot 
QDPD  Quaternion-based Dissipative Particle Dynamics simulation code 
QIP  quantum information processing (conference) 
QN  quantum network 
ONA  organizational network analysis 
QNGC  Quantum Networking Grand Challenge 
QoS  quality of service 
qPCR  quantitative polymerase chain reaction 
QuAIL  NASA Ames Quantum Artificial Intelligence Laboratory 
QuICS  UMD-NIST Joint Center for Quantum Information and Computer Science 



172  NIST Applied and Computational Mathematics Division 

 
 

 
 

 
 

 
 

 
 

R&D  research and development 
RAVEN  IARPA Rapid Analysis of Various Emerging Nanoelectronics program 
RBC  ray-based classification 
RBF  radial basis function 
REU  Research Experience for Undergraduates 
RF  radio frequency 
RGM  reduced gradient method 
RIE  reactive ion etching 
RIM  reliability and integrity management 
ROI  region of interest 
RPE  retinal pigment epithelium 
RSA  Rivest-Shamir-Adelman public key cryptographic algorithm 
SARS  severe acute respiratory syndrome 
SARS-CoV-2 the virus that causes the respiratory disease COVID-19 
SEM  scanning electron microscope 
SFWM  spontaneous four wave mixing 
SHIP  Summer High School Internship Program 
SIAM  Society for Industrial and Applied Mathematics 
SiC  silicon carbide 
SIGGRAPH ACM Special Interest Group on Graphics 
SNSPD  superconducting nanowire single-photon detectors 
SPD  single-photon detectors 
SPDC  spontaneous parametric down conversion 
SPO  NIST Special Programs Office 
SPIE  International Society for Optical Engineering 
SRM  standard reference material 
SS  single stranded 
SURF  NIST Student Undergraduate Research Fellowship program 
SVM  support vector machine 
SVOP  several variable orthogonal polynomials (DLMF chapter) 
SVP  NIST Student Volunteer Program 
TDSE  time domain Schrodinger equation 
TEM  transmission electron microscope 
TES  transition edge sensor 
TFLN  thin-film lithium niobate 
TLS  transport layer security 
UC  University of California  
UCSD  University of California at San Diego 
UMD  University of Maryland 
UMIACS University of Maryland Institute for Advanced Computer Studies 
UQ  uncertainty quantification 
URL  universal resource locator 
USGS  US Geological Survey 
USHMM  United States Holocaust Memorial Museum 
USNO  US Naval Observatory 
VA  Virginia 
VEMOS  Visual Explorer for Metric of Similarity (software) 
ν-OTDR  photon-counting OTDR 
VR  virtual reality 
VTK  visualization software library 
W3C  World Wide Web Consortium 
WAS  Washington Academy of Sciences 
WHO  World Health Organization 
WRS  White Rabbit Switch (time synchronization protocol) 
XR  extended reality 
XSEDE  NSF eXtreme Science and Engineering Discovery Environment 
ZE  Zeta and related functions (DLMF chapter) 
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