
1 

2 

3 

4 

5 

6 

7 

8 

9 

NIST Internal Report 
NIST IR 8460 ipd 

State Machine Replication and 
Consensus with Byzantine 

Adversaries 

Michael Davidson 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.IR.8460.ipd 

https://doi.org/10.6028/NIST.IR.8460.ipd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8460.ipd


10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

NIST Internal Report 
NIST IR 8460 ipd 

State Machine Replication and 
Consensus with Byzantine 

Adversaries 

Michael Davidson 
Computer Security Division 

Information Technology Laboratory 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.IR.8460.ipd 

April 2023 

U.S. Department of Commerce 
Gina M. Raimondo, Secretary 

National Institute of Standards and Technology 
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.IR.8460.ipd


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

           
               

                  
           

                
           

              
            
              

           

              
                

   
    

     

 
              

       
           

          

   
  

  

 

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are 
identifed in this paper in order to specify the experimental procedure adequately. Such identifcation does 
not imply recommendation or endorsement of any product or service by NIST, nor does it imply that the 
materials or equipment identifed are necessarily the best available for the purpose. 

There may be references in this publication to other publications currently under development by NIST in 
accordance with its assigned statutory responsibilities. The information in this publication, including 
concepts and methodologies, may be used by federal agencies even before the completion of such 
companion publications. Thus, until each publication is completed, current requirements, guidelines, and 
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may 
wish to closely follow the development of these new publications by NIST. 

Organizations are encouraged to review all draft publications during public comment periods and provide 
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

NIST Technical Series Policies 
Copyright, Use, and Licensing Statements 
NIST Technical Series Publication Identifer Syntax 

Publication History 
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added upon fnal publication] 

How to cite this NIST Technical Series Publication: 
Davidson M (2023) State Machine Replication and Consensus with Byzantine Adversaries. (National 
Institute of Standards and Technology, Gaithersburg, MD), NIST IR 8460 ipd. 
https://doi.org/10.6028/NIST.IR.8460.ipd 

NIST Author ORCID iDs 
Michael Davidson: 0000-0002-4862-5697 

Public Comment Period 
April 26, 2023 - September 1, 2023 

Submit Comments 
ir8460-comments@nist.gov 

All  comments  are  subject  to  release  under  the  Freedom  of  Information  Act  (FOIA). 

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
mailto:ir8460-comments@nist.gov?Subject=Comments on NIST IR 8460 initial public draft
https://doi.org/10.6028/NIST.IR.8460.ipd


NIST IR 8460 ipd 
April 2023 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

Abstract 

The objective of state machine replication (SMR) is to emulate a centralized service in a 
distributed, fault-tolerant fashion. To this end, a set of mutually distrusting processes must 
agree on the execution of client-submitted commands. Since the advent of Bitcoin, the 
idea of SMR has received signifcant attention. This document surveys both classical and 
more modern research on SMR and details many of the most signifcant permissioned and 
permissionless algorithms, their performance, and security considerations. 

Keywords 

atomic broadcast; Bitcoin; blockchain; Byzantine Fault Tolerance; consensus; cryptocur-
rency; distributed ledger technology; Ethereum; state machine replication. 

Note to Reviewers 

Figure 22a © IFCA 2014. 
Figure 28 © IFCA 2015. 
Figure 37 © IFCA 2020. 
Figure 42 © IFCA 2018. 
Figure 51 © IFCA 2021. 
Figure 56 © IFCA 2020. 

i 



72 NIST IR 8460 ipd 
73 April 2023 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

Table of Contents 

Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

0.1. Purpose and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

0.2. Notes on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

0.3. Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1. Introducing the Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.1. The Byzantine Generals Problem . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.2. Broadcast Problems and Byzantine Agreement . . . . . . . . . . . . . . . . 5 

1.3. State Machine Replication (SMR) . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.4. The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

1.5. Timing Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

1.6. Permissioned vs. Permissionless . . . . . . . . . . . . . . . . . . . . . . . . . 13 

2. System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

2.1. Data Structures for Distributed Ledgers . . . . . . . . . . . . . . . . . . . . 15 

2.2. Sybil-Resistance Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.3. Leader Election and Committee Selection . . . . . . . . . . . . . . . . . . . 16 

2.4. Fork-Choice or Chain Selection Rules . . . . . . . . . . . . . . . . . . . . . . 17 

2.5. Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.6. Incentive Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.7. Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.8. State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.8.1. UTXO vs. Account Model . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.8.2. Changing the Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

3. Scaling and "Decentralization" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

3.1. A Note on Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

3.2. Full Nodes and Light Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

3.3. Scalability Challenges and Block Sizes . . . . . . . . . . . . . . . . . . . . . 33 

4. Practical Byzantine Fault Tolerance (PBFT) . . . . . . . . . . . . . . . . . . . . . 39 

4.1. PBFT View Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

4.2. PBFT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

4.3. Zyzzyva and Speculative Execution . . . . . . . . . . . . . . . . . . . . . . . 43 

ii 



105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

4.4. A Permissioned DAG: Blockmania . . . . . . . . . . . . . . . . . . . . . . . . 45 

5. Modern High-Performance Blockchains . . . . . . . . . . . . . . . . . . . . . . . . 48 

5.1. Streamlined Blockchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

5.2. PiLi and PaLa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

5.3. HotStuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

5.3.1. Sync HotStuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

5.4. Further Optimizing Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

6. Asynchronous BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

6.1. HoneyBadgerBFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

6.1.1. Mostéfaoui et al.’s Asynchronous Binary Agreement Protocol . . . 58 

6.1.2. Reducing HoneyBadgerBFT’s latency with BEAT . . . . . . . . . . 60 

6.1.3. Improving ACS Performance with Dumbo . . . . . . . . . . . . . . . 61 

6.2. An Asynchronous Permissioned DAG: Hashgraph . . . . . . . . . . . . . . . 64 

7. Miscellaneous Permissioned BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

7.1. Fairly Ordering Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

7.2. Accountability Against Malicious Replicas . . . . . . . . . . . . . . . . . . . 68 

7.3. Specially Designated Roles for Replicas . . . . . . . . . . . . . . . . . . . . . 69 

7.4. Deterministic Longest Chain Protocols . . . . . . . . . . . . . . . . . . . . . 69 

7.5. Flexible BFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

7.6. View Change Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

8. Localizing Trust Over Incomplete Networks With Open Membership . . . . . . . 76 

8.1. Stellar 

8.1.1. 

8.1.2. 

8.1.3. 

8.2. Ripple 

8.3. Cobalt 

8.3.1. 

8.3.2. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

FBAS Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Stellar Consensus Protocol (SCP) . . . . . . . . . . . . . . . . . . . 78 

SCP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Broadcast in Incomplete Networks . . . . . . . . . . . . . . . . . . . 86 

9. Proof of Work: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

9.1. Proof of Work and Sybil Resistance . . . . . . . . . . . . . . . . . . . . . . . 88 

iii 



136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

9.1.1. Mining Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

9.1.2. Hardware: ASICs and ASIC Resistance . . . . . . . . . . . . . . . . 93 

9.1.3. Mining Centralization in Practice . . . . . . . . . . . . . . . . . . . . 97 

9.2. Difculty Adjustment Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 99 

9.3. Attacks Against Mining Pools: Pool-Hopping and Block Withholding . . . 100 

9.4. Selfsh Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

10. Nakamoto Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

10.1. Theory of Nakamoto Consensus . . . . . . . . . . . . . . . . . . . . . . . . . 108 

10.1.1. Nakamoto Consensus With Chains of Variable Difculty . . . . . . 111 

10.1.2. Additional Analyses of Nakamoto Consensus . . . . . . . . . . . . . 112 

10.2. Violating the Nakamoto Consensus Security Assumptions . . . . . . . . . . 115 

10.2.1. Network Delay and Block Propagation . . . . . . . . . . . . . . . . . 115 

10.2.2. Majority Hash Rate Attacks (51% Attacks) . . . . . . . . . . . . . . 118 

10.2.3. Hash Function Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 120 

10.3. (More) Attacks Against Nakamoto Consensus . . . . . . . . . . . . . . . . . 120 

11. More Proof-of-Work Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

11.1. Nakamoto Consensus Protocol Adjustments . . . . . . . . . . . . . . . . . . 124 

11.1.1. Weak Blocks and Pre-Consensus . . . . . . . . . . . . . . . . . . . . 124 

11.1.2. Bitcoin-NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

11.1.3. Tie-Breaking Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

11.1.4. DECOR+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

11.1.5. Publish or Perish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

11.1.6. NC-Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

11.2. Greedy Heaviest-Observed Sub-Tree (GHOST) . . . . . . . . . . . . . . . . 130 

11.3. FruitChains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

11.4. Parallel Chain Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

11.4.1. Prism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

11.5. Proof-of-Work DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

11.5.1. Inclusive Blockchains and Confux . . . . . . . . . . . . . . . . . . . 136 

11.5.2. SPECTRE and Phantom . . . . . . . . . . . . . . . . . . . . . . . . . 138 

11.5.3. Tangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

iv 



167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

11.5.4. Meshcash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 

11.6. Proof of Work for Committee Selection . . . . . . . . . . . . . . . . . . . . . 150 

11.6.1. Hybrid Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

11.6.2. Solida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 

12. Proof of Stake: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 

12.1. Early Attempts at Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . 155 

12.1.1. Nothing-at-Stake and Costless Simulation . . . . . . . . . . . . . . . 159 

12.1.2. Long-Range Attacks, Posterior Corruption, and Weak Subjectivity 161 

12.1.3. Leader Election, Anonymity, and Security Against Adaptive Adver-
saries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 

12.2. Leader Predictability and Security . . . . . . . . . . . . . . . . . . . . . . . . 168 

12.3. Wealth Concentration, Block Rewards, and Centralization . . . . . . . . . . 173 

13. Proof-of-Stake Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

13.1. Chain-Based Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

13.1.1. Chains of Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

13.1.2. Snow White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

13.1.3. Ouroboros Family: Praos and Genesis . . . . . . . . . . . . . . . . . 182 

13.1.4. DFINITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 

13.2. Ethereum 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 

13.3. DAG-based Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

13.3.1. Fantômette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

13.3.2. Avalanche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

13.3.3. Parallel Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 

13.4. BFT-Based Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 

13.4.1. Tendermint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 

13.4.2. Algorand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 

14. Hybrid and Alternative Sybil-Resistance Mechanisms . . . . . . . . . . . . . . . . 204 

14.1. Proof of Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 

14.1.1. Spacemint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 

14.1.2. Chia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 

14.2. Proof of Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 

14.3. Checkpoints and Finality Gadgets . . . . . . . . . . . . . . . . . . . . . . . . 210 

v 



199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

14.3.1. Ad Hoc Finality Layers and Reorg Protection . . . . . . . . . . . . . 210 

14.3.2. Casper the Friendly Finality Gadget (FFG) . . . . . . . . . . . . . . 212 

14.3.3. More Finality Gadgets and Checkpointing Protocols . . . . . . . . . 216 

15. Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 

15.1. Intra-Shard Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 

15.2. Identity Registration, Committee (Re)confguration, and Epoch Randomness222 

15.3. Cross-Shard Transaction Processing . . . . . . . . . . . . . . . . . . . . . . . 226 

15.4. A Diferent Approach: Monoxide . . . . . . . . . . . . . . . . . . . . . . . . . 229 

15.5. Fraud Proofs and Data Availability . . . . . . . . . . . . . . . . . . . . . . . 230 

16. Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 

16.1. Cross-Chain Communication, Fair Exchange, and Atomic Swaps . . . . . . 235 

16.2. Bootstrapping Methods: Merged Mining and Proof of Burn . . . . . . . . . 239 

16.3. Sidechains, Relays, and Asset Transfer . . . . . . . . . . . . . . . . . . . . . 241 

16.3.1. Permissionless Sidechains . . . . . . . . . . . . . . . . . . . . . . . . 243 

17. Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 

17.1. Networking for Permissionless Systems . . . . . . . . . . . . . . . . . . . . . 246 

17.1.1. Peer Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 

17.1.2. Neighbor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 

17.1.3. Communication Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 249 

18. State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 

18.1. Virtual Machine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 

18.1.1. Concurrency in Smart Contracts . . . . . . . . . . . . . . . . . . . . 253 

18.1.2. Zero-Knowledge Proofs and Verifable Computation . . . . . . . . . 255 

18.1.3. Delegating Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 

18.2. Layer 2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 

18.2.1. Payment and State Channels . . . . . . . . . . . . . . . . . . . . . . 259 

18.2.2. Plasma and Rollups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 

19. Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 

19.1. Block Rewards: Subsidies and Transaction Fees . . . . . . . . . . . . . . . . 265 

19.1.1. The Mining Gap and (the Absence of a) Block Subsidy . . . . . . . 266 

19.2. State Machines, Incentives, and Security . . . . . . . . . . . . . . . . . . . . 269 

vi 



230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

19.3. Alternative Transaction Fee Protocols . . . . . . . . . . . . . . . . . . . . . . 273 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 

List of Tables 

Table 1. Percentages of eligible tokens actively staked . . . . . . . . . . . . . . . . . 176 

List of Figures 

Fig. 1. Blockchain vs. DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Fig. 2. Forking and the Longest Chain Rule . . . . . . . . . . . . . . . . . . . . . . . 18 
Fig. 3. UTXO transaction graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Fig. 4. Hard forks and soft forks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Fig. 5. Simplifed Payment Verifcation (SPV) . . . . . . . . . . . . . . . . . . . . . 31 
Fig. 6. PBFT normal case operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Fig. 7. Zyzzyva’s speculative execution . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Fig. 8. Blockmania state machine examples . . . . . . . . . . . . . . . . . . . . . . . 47 
Fig. 9. Streamlet fnalization rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Fig. 10. Pipelining in Chained HotStuf . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
Fig. 11. Chained HotStuf justifcation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Fig. 12. HoneyBadgerBFT’s ACS structure . . . . . . . . . . . . . . . . . . . . . . . . 57 
Fig. 13. ACS structure of Dumbo protocols . . . . . . . . . . . . . . . . . . . . . . . 62 
Fig. 14. Hashgraph strongly seeing example . . . . . . . . . . . . . . . . . . . . . . . 65 
Fig. 15. Committee reconfguration attack . . . . . . . . . . . . . . . . . . . . . . . . 76 
Fig. 16. Federated voting stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
Fig. 17. Cascade efect in federated voting . . . . . . . . . . . . . . . . . . . . . . . . 79 
Fig. 18. FBAS Quorum intersection insufcient for safety . . . . . . . . . . . . . . . 80 
Fig. 19. Ripple "support" example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
Fig. 20. Bitcoin mining and AsicBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 90 
Fig. 21. Hardware hashrate asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
Fig. 22. Selfsh mining strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
Fig. 23. Compact Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 
Fig. 24. Double-spend probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
Fig. 25. Finney attack example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
Fig. 26. Vector76 attack example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
Fig. 27. NC-Max block propagation mechanism . . . . . . . . . . . . . . . . . . . . . 129 
Fig. 28. GHOST fork choice rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Fig. 29. FruitChains architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
Fig. 30. Prism structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
Fig. 31. Confux example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 
Fig. 32. SPECTRE voting example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 
Fig. 33. Phantom example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
Fig. 34. Parasite chain attack against the Tangle . . . . . . . . . . . . . . . . . . . . 146 
Fig. 35. Large weight attack against the Tangle . . . . . . . . . . . . . . . . . . . . . 146 

vii 



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Fig. 36. Meshcash example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
Fig. 37. Stake shift for select cryptocurrencies . . . . . . . . . . . . . . . . . . . . . . 162 
Fig. 38. Predictable bribe attacks against proof of stake . . . . . . . . . . . . . . . . 171 
Fig. 39. Undetectable Nothing-at-Stake Attack . . . . . . . . . . . . . . . . . . . . . 171 
Fig. 40. Latest Message Driven (LMD) GHOST . . . . . . . . . . . . . . . . . . . . . 188 
Fig. 41. Ethereum 2.0 Randao architecture . . . . . . . . . . . . . . . . . . . . . . . . 190 
Fig. 42. Spacemint grinding defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Fig. 43. Chia design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
Fig. 44. Chia grinding attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
Fig. 45. Casper FFG attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
Fig. 46. Sharding architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 
Fig. 47. Wormhole shard allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
Fig. 48. Cross-shard transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
Fig. 49. Invalid shard state transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 
Fig. 50. Data availability attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
Fig. 51. Cross-chain communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
Fig. 52. Atomic swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 
Fig. 53. Merged mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
Fig. 54. Sidechain pegging methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 
Fig. 55. Execute-Order-Validate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 
Fig. 56. Lightning Network channel closing . . . . . . . . . . . . . . . . . . . . . . . . 261 
Fig. 57. Lightning Network payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 
Fig. 58. Mining gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 
Fig. 59. Undercutting attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 
Fig. 60. Front-running and Miner Extractable Value . . . . . . . . . . . . . . . . . . 270 

viii 



NIST IR 8460 ipd 
April 2023 

295 

296 

297 

298 

Acknowledgments 

The author thanks Tyler Diamond, Frederic de Vaulx, and Andrew Regenscheid for their helpful 
comments. 

ix 



NIST IR 8460 ipd 
April 2023 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

334 

335 

336 

Executive Summary 

Since the deployment of Bitcoin on January 3rd, 2009, and its description by the pseudony-
mous Satoshi Nakamoto in 2008 [1], research and development of new, practical state ma-
chine replication (SMR) systems have surged. It has been stated that Bitcoin provided a 
solution to the "Byzantine Generals Problem." While not strictly true, it is a useful starting 
point for this document’s analysis of consensus algorithms, state machine replication, and 
distributed ledger technology (DLT). 

More generally, the goal of these types of problems is to allow a set of mutually distrusting 
processes (e.g., computer processes) to agree on the outcome of some deliberation despite 
the possibility that some of them are faulty or even malicious. In essence, the goal is to 
provide some service to clients that emulates a centralized service while operating as a dis-
tributed server. There are a variety of ways to formulate this problem (several are described 
in Section 1), but they all require some notion of agreement between the distributed pro-
cesses. Research in this area began in the early 1980s when the Byzantine Agreement [2] 
and Byzantine Generals [3] problems were formulated. The frst algorithms to solve these 
problems were extremely ineffcient, and real-world usage did not become plausible until 
the celebrated Practical Byzantine Fault Tolerance (PBFT) algorithm was invented in 1999 
[4]. 

Until the advent of Bitcoin, it was believed that all distributed agreement algorithms re-
quired a fxed set of identifable participants known in advance. Bitcoin was the frst pro-
tocol to demonstrate that consensus can be maintained across distributed processes in an 
open network with free entry and no fxed identifers. Today, the terms permissioned and 
permissionless are used to describe the difference between the two models. 

Bitcoin also popularized the idea of a blockchain as the data structure over which the dis-
tributed processes maintain agreement. Since then, the concept has been generalized to 
distributed ledgers more broadly. A blockchain is an ordered list of client-submitted com-
mands, or transactions, that modify the system state. Because all participants execute the 
same agreed-upon commands in the same order, participants are able to maintain a common 
view of the execution of a protocol-defned state machine. In addition to cryptocurrencies, 
state machine replication and the smart contracts they enable have been suggested for use 
in trade settlement, fnance, identity management, supply chains, healthcare, Internet of 
Things (IoT), and other industries. 

0.1. Purpose and Scope 

This document is intended to serve as an advanced treatment of consensus algorithms, state 
machine replication, and distributed ledger technology. It may also function as a reference 
for consensus algorithms as it contains fairly detailed descriptions of a variety of algorithms 
that may be useful in different scenarios. The reader is expected to already have a high-
level understanding of distributed ledger technology, such as that provided by NIST IR 

1 



340

345

350

355

360

365

370

337 

338 

339 

341 

342 

343 

344 

346 

347 

348 

349 

351 

352 

353 

354 

356 

357 

358 

359 

361 

362 

363 

364 

366 

367 

368 

369 

371 

372 

373 

374 

NIST IR 8460 ipd 
April 2023 

8202, Blockchain Technology Overview [5]. 

This document frst discusses the properties required of distributed consensus systems and 
the many kinds of subprotocols used to implement them in a variety of system models. 
Many algorithms, both permissioned and permissionless, are then described in detail. The 
discussion on permissioned consensus starts with the classic PBFT algorithm but focuses 
heavily on techniques that have been developed more recently and improve performance or 
enable security in more challenging environments. Permissionless algorithms are divided 
into categories based on the Sybil-resistance mechanism employed – that is, proof of work 
(PoW), proof of stake (PoS), and alternative mechanisms. There is extensive discussion on 
the unique security issues that arise in each case, the architectural reasons they exist, and 
techniques that can be used to mitigate them. Finally, a variety of more advanced topics are 
discussed, including scalability methods such as sharding and "layer 2" technologies, inter-
operability, state machine design, networking, and how incentives impact system security. 

0.2. Notes on Terminology 

The distributed systems literature is rife with synonyms and inconsistent or imprecise use 
of terms. When the word "consensus" appears in this document, it is meant as a general-
ization that captures all of the agreement problems described, including various broadcast 
problems, Byzantine Agreement, and state machine replication. The term "broadcast" – 
when not being used to describe broadcast problems specifcally – is meant to convey the 
idea of simultaneously transmitting a message to multiple peers. In addition, the ill-defned 
term "decentralized," which is used frequently in the literature, is discussed in more detail 
in section 3.1. 

Several groups of synonymous words appear in this document. Most of the time, termi-
nology from the original source paper was used. For example, the terms "node," "replica," 
"process," "validator," and "miner" are used as synonyms but often in slightly different 
contexts, such as an entity that participates in consensus. Many protocols have leaders, 
which may be called the "primary" or "block producer." When a node is not the leader, it 
may be a "secondary" or "backup." A "malicious" node may be considered "Byzantine," 
"faulty," "corrupt," or "dishonest," whereas honest nodes are sometimes called "correct." 
When nodes eventually agree on a value, it is sometimes said that they "decide," "output," 
or "accept" the value. 

The term "blockchain" is defned in NIST IR 8202, Blockchain Technology Overview: 

Blockchains are distributed digital ledgers of cryptographically signed trans-
actions that are grouped into blocks. Each block is cryptographically linked to 
the previous one (making it tamper evident) after validation and undergoing a 
consensus decision. As new blocks are added, older blocks become more dif-
fcult to modify (creating tamper resistance). New blocks are replicated across 
copies of the ledger within the network, and any conficts are resolved auto-

2 



NIST IR 8460 ipd 
April 2023 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

409 

410 

matically using established rules. [5] 

While this is a good description of some specifc blockchains, the term is used here to 
only mean "a chain of blocks," capturing the fact that blocks are cryptographically linked 
together in a list. This makes blockchains a particular data structure within a broader set of 
distributed ledgers. 

0.3. Document Structure 

The rest of this document is organized as follows: 

• Sections 1-3 are introductory material. Section 1 introduces the formal problems 
that are solved by the protocols described throughout the document and some of the 
model assumptions under which the problems can be solved. Section 2 describes the 
various sub-protocols and components that are often used in designing distributed 
ledger systems for SMR. Section 3 discusses the trade-offs between maintaining 
"decentralization" and the scalability of DLT systems. 

• Sections 4-8 describe protocols for permissioned consensus. Section 4 describes 
Practical Byzantine Fault Tolerance (PBFT), the frst system design scalable enough 
to be used in practice. Section 5 describes more modern, high-performance consen-
sus algorithms. Section 6 discusses algorithms that are designed for asynchronous 
networks where messages may be arbitrarily delayed. Section 7 surveys a variety 
of extra properties that one might desire from a permissioned consensus algorithm. 
Section 8 describes protocols where participants may select their own quorums of 
trusted replicas and need not be aware of the existence of every replica in the net-
work. 

• Sections 9-11 discuss protocols that use proof of work (PoW) as a Sybil-resistance 
mechanism. Section 9 discusses aspects common to most PoW protocols. Section 
10 describes Nakamoto Consensus – the protocol used by Bitcoin – in detail. Section 
11 describes a wide variety of PoW consensus designs. 

• Sections 12-13 discuss protocols that use proof of stake (PoS) as a Sybil-resistance 
mechanism. Section 12 provides a historical overview of PoS and the security issues 
that need to be considered as part of PoS algorithm design. Section 13 describes a 
variety of specifc PoS protocols. 

• Section 14 discusses protocols that use alternative Sybil-resistance algorithms, such 
as proof of space, as well as hybrid mechanisms. 

• Sections 15-19 cover a variety of more advanced topics related to the design of DLT 
for SMR. Section 15 discusses the technical details of one of the more promising 
scalability methods: sharding. Section 16 discusses interoperability between sys-
tems. Section 17 covers topics related to the network layer of these protocols, such 

3 



NIST IR 8460 ipd 
April 2023 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

as how a node discovers new peers and communication strategies. Section 18 dis-
cusses state machine design considerations and some "layer 2" scaling protocols that 
can be built on an underlying replicated state machine. Section 19 considers a variety 
of incentive-related security issues that can arise in these systems. 

1. Introducing the Problems 

1.1. The Byzantine Generals Problem 

The Byzantine Generals Problem (BGP) is equivalent to the Byzantine Broadcast (BB) 
problem, which is the more commonly used term in the distributed systems literature. This 
problem was introduced in [3] as interactive consistency. 

Consider a city besieged by several divisions of the Byzantine army. Each division is led 
by its own general, and the generals communicate with each other via messenger. The 
generals must agree upon a common strategy: either attack or retreat. Unfortunately for the 
Byzantine army, some of the generals may be disloyal and actively working to sabotage the 
agreement. A solution to the BGP, then, is an algorithm that ensures that: 

• Every loyal general decides upon the same strategy. 

• If the number of traitors is small, the traitors cannot cause the loyal generals to decide 
on a "bad" plan – that is, a plan they would not have otherwise agreed to in the frst 
place. 

Stated differently, let there be n total generals (or computer processes), up to f of which 
may be disloyal (or malicious/faulty). One general in particular, the commanding general, 
sends an order to n − 1 lieutenant generals, such that the following interactive consistency 
conditions are maintained: 

• IC1: All loyal lieutenants obey the same order. 

• IC2: If the commanding general is loyal, then all loyal lieutenants obey the com-
mander’s order. 

The same paper proved that the BGP is solvable only if more than 2
3 of the generals are 

loyal when using only "oral" messages (unsigned messages) and solvable for any number 
of generals/traitors with "unforgeable written messages" (signed messages) when there is 
a known fxed upper bound on how long it takes to send a message from one general to 
another (synchrony). That is, in a synchronous network without using digital signatures, 
if f generals are traitors, then no algorithm will work without n > 3 f total generals. In a 
synchronous network with signed messages, the problem is solvable with n > f generals. 

4 



NIST IR 8460 ipd 
April 2023 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

1.2. Broadcast Problems and Byzantine Agreement 

A variety of broadcast problems exist, including the BGP. In each case, there is a des-
ignated sender with an input value that they would like to distribute to the remainder of 
the processes. An algorithm that solves a broadcast problem will have certain properties, 
such as the "interactive consistency" requirements described in Section 1.1. In particular, 
there are requirements around consistency (also known as agreement), validity, integrity, 
and termination. The consistency, validity, and integrity properties are the same for most 
broadcast problems, but the termination property differs. The following are the properties 
of a Byzantine Broadcast (BB) algorithm, which is equivalent to BGP and has the strictest 
termination requirement: 

′• Consistency/Agreement: If two honest replicas decide v and v ′, then v .= v 

• Validity: If the sender is honest and begins with input value v, then all honest nodes 
decide v. 

• Integrity: Every honest process delivers at most one value, and if it delivers v, then 
some process must have broadcast v. 

• Termination: Every honest process eventually decides some value. 

Notice that property IC1 from the previous section is equivalent to consistency, while IC2 
is equivalent to the validity property. By relaxing the termination requirement, different 
broadcast problems can be described as follows: 

• Reliable broadcast (RB or RBC) requires that either all honest processes eventually 
decide, or no honest process decides. That is, RBC may not terminate if the sender is 
faulty, but if any honest party obtains an output, all other honest parties must as well. 

• Byzantine consistent broadcast (BCB) allows some honest parties to decide without 
requiring all honest parties to do so. 

• Terminating reliable broadcast (TRB) requires correct processes to agree on the re-
ceipt of a message or agree that the sender is faulty (so termination must occur, but 
correct processes need not get a value out of it). 

Reliable broadcast is commonly used as an underlying communication primitive for more 
complex distributed protocols, such as multi-party computation (MPC) or consensus. Mes-
sages "delivered" by the broadcast algorithm are then used as input messages in an MPC or 
consensus protocol execution. Note that reliable broadcast does not guarantee agreement 
over the order of messages, only that the messages are delivered at all. 

While broadcast algorithms are only mentioned a few times in this document, they have 
many similarities to the algorithms discussed throughout while being fairly easy to under-
stand. Bracha’s broadcast is among the most celebrated of reliable broadcast algorithms 

5 



NIST IR 8460 ipd 
April 2023 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

514 

and was originally proposed in the late 1980s as a technique to convert crash fault toler-
ant consensus protocols into ones capable of resisting malicious adversaries, often called 
Byzantine adversaries [6]. 

1. The designated sender with starting value v sends a message, (INIT,v), to all pro-
cesses (here, n = 3 f + 1). Then each process executes the following three steps. 

2. Wait until the receipt of either one (INIT,v) message, 2 f + 1 (ECHO,v) messages, 
or f + 1 (READY,v) messages for some v. Then send (ECHO,v) to all processes. 

3. Wait until the receipt of 2 f + 1 (ECHO,v) messages or f + 1 (READY,v) messages 
for some v, including messages received in the previous step. Then send (READY,v) 
to all processes. 

4. Wait until the receipt of 2 f + 1 (READY,v) messages for some v, including ones 
received in the prior steps. Then deliver v. 

Bracha’s broadcast algorithm is a solution to the reliable broadcast problem so long as n ≥ 
3 f + 1 and protocol messages eventually reach their destination. Consider the following 
arguments: 

1. Let p and q be two correct processes, and assume that process p is the frst to send a 
(READY,v) message, while process q is the frst to send a (READY,v ′ ) message. 
Assume (by contradiction) that v ≠ v ′ . Since process p is the frst to have sent 
(READY,v), it must have seen at least 2 f + 1 (ECHO,v) messages. Similarly, pro-
cess q must have seen at least 2 f + 1 (ECHO,v ′ ) messages. In total, 4 f + 2 ECHO 
messages were sent. Because n ≥ 3 f + 1, at least f + 1 replicas must have sent both 
(ECHO,v) and (ECHO,v ′ ) messages. However, this implies that an honest replica 
sent both an (ECHO,v) and an (ECHO,v ′ ) message. Because honest replicas do 
not equivocate (they only send one message of each type), this is a contradiction. 
Therefore, v = v ′ . 

2. Now assume that process p delivers a value v, and process q delivers a value v ′ . This 
means that process p saw at least 2 f + 1 (READY,v) messages, of which at least 
f + 1 are from honest replicas. Analogously, process q must have seen at least f + 1 
(READY,v ′ ) messages from honest replicas. By argument 1, this implies that v = v ′ . 

3. If an honest process p delivers the value v, then every other honest process will 
eventually deliver v. Because p accepts v, it must be the case that p has seen 2 f + 1 
(READY,v) messages, and at least f + 1 of those were from honest processes. This 
implies that every other process will see at least f +1 (READY,v) messages and then 
send their own (READY,v) message (because honest processes cannot equivocate). 
Therefore, at least n− f ≥ 2 f +1 processes send a (READY,v) message, so all honest 
processes will eventually see 2 f + 1 (READY,v) messages and deliver v. 

4. If the designated sender p is honest and broadcasts v, all honest processes eventually 

6 



NIST IR 8460 ipd 
April 2023 

515 

516 

517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

532 

533 

534 

535 

536 

537 

538 

539 

540 

541 

542 

543 

544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

decide v. Every honest process will receive the sender’s (INIT,v) message and then 
send an (ECHO,v) message. Then every honest process q will receive n− f ≥ 2 f +1 
(ECHO,v) messages from other honest processes (and at most f other messages 
from faulty processes). Process q will then send a (READY,v) message. In the fnal 
step of the protocol, all honest processes will receive n − f ≥ 2 f + 1 (READY,v) 
messages (and at most f ready messages from faulty processes). Therefore, honest 
process q will deliver v. 

Putting this all together, argument 4 shows that if the designated sender p is honest and 
broadcasts v, all honest replicas will deliver v. On the other hand, if the designated sender 
p is faulty and some honest process q delivers v, then all honest processes deliver v by 
argument 3. Otherwise (p is faulty and q does not accept v), no honest process will accept 
any value. This proves that Bracha’s algorithm achieves reliable broadcast. 

Byzantine agreement (BA), introduced in [2], is a closely related problem to broadcast 
but with one crucial difference: instead of having a dedicated sender who disseminates a 
value to the rest of the network, every process starts with an initial value. This redefned 
problem has many synonyms in the literature, including consensus, total order broadcast, 
and atomic broadcast. Often, the term "consensus" is used specifcally for one instance 
of BA (single-shot BA), while "atomic broadcast" is used in repeated or sequential BA, 
where the agreed upon values are also in an agreed upon order. This document uses the 
terms interchangeably but primarily focuses on repeated BA, which is needed for state 
machine replication. When BA is used to agree on a single bit, it is called binary Byzantine 
agreement, whereas it is called multi-value Byzantine agreement (MVBA) when there are 
more than two possible choices. 

The consistency, integrity, and termination properties are the same in BA and BGP, but the 
validity property necessarily changes to refect the lack of a designated sender. Specifcally, 
the validity property of BA is that if all correct processes propose the same value v, then 
any correct process must decide v. There can also be weak validity (in contrast to the 
"strong" validity just mentioned): for each correct process, its output must be the input of 
some correct process. In either case, validity may also require the decided value to satisfy 
an external predicate, like a valid digital signature or other (state machine) rules. In this 
document, most protocols aim for strong validity. 

1.3. State Machine Replication (SMR) 

State machine replication is built off of atomic broadcast, which guarantees that each 
agreed-upon value is also in an agreed-upon order. These values are typically called trans-
actions or commands. Processes send these transactions to each other, which are then 
placed in a total ordering via atomic broadcast and then executed by the processes in that 
order. Transactions operate on some global state and transform the state via a determinis-
tic program. SMR guarantees lock-step execution of identical commands and agreement 
over state by all honest processes. The SMR approach was frst described in [7] but was 

7 



555

560

565

570

575

580

585

590

554 

556 

557 

558 

559 

561 

562 

563 

564 

566 

567 

568 

569 

571 

572 

573 

574 

576 

577 

578 

579 

581 

582 

583 

584 

586 

587 

588 

589 

591 

592 

NIST IR 8460 ipd 
April 2023 

popularized in [8]. 

Distributed ledger technology (DLT) and blockchains are specifc examples of state ma-
chine replication. Given a blockchain protocol, one can derive the SMR by having replicas 
execute the blockchain protocol, having honest nodes broadcast all transactions they see to 
each other, and – for Bitcoin and many related protocols – removing some number of trail-
ing blocks (sets of transactions). Such a distributed ledger provides the following properties 
[9]: 

• Persistence: Once a transaction is at least k blocks deep into the ledger of an honest 
node (where k is a security parameter), it will be included in the same permanent 
position in the ledger of every honest node with overwhelming probability. 

• Liveness: All transactions from honest clients will eventually be at a depth of more 
than k blocks in an honest node’s blockchain. 

A distributed ledger can be shown to satisfy persistence and liveness if it satisfes the com-
mon prefx, chain quality, and chain growth properties, which are discussed in more detail 
in Section 10.1. Informally, the common prefx property says that the blockchains of two 
honest nodes differ only in their last k blocks from the chain tip. Chain quality is the prop-
erty that "enough" of the blocks that wind up in the blockchain were proposed by honest 
nodes. Finally, chain growth means that the blockchains accepted by honest nodes contin-
uously grow at a certain pace. 

It may be tempting to think that state machine replication can be realized by simply exe-
cuting a BA protocol repeatedly in serial, but this is false due to an issue with how BA’s 
validity property is defned [10, 11]. In BA, validity ensures that if all honest replicas had 
a particular input value, then that is the value of the output as well. This does not suffce 
for SMR, where each replica maintains a local buffer for transactions they have received 
but have not agreed upon yet (often called the mempool), and it cannot be guaranteed that 
honest parties will initiate BA with the same transaction set. As a result, achieving validity 
would likely come at the expense of liveness, as it would be challenging for honest replicas 
to agree on anything other than empty blocks. This is not a problem for distributed ledgers, 
which can base their validity on enforcing the predicate that whatever state machine rules 
exist must be followed for a block to be considered valid. 

One of the primary use cases for SMR is payments, or secure asset transfer. For this 
specifc use case, enforcing a total order on transactions is not strictly necessary; some 
form of reliable broadcast is suffcient [12]. As long as user accounts are associated with 
distinct owners, then the owner of an account determines the order of transfers out of their 
account with no need to agree on the ordering with other users. Others only need to verify 
that the owner’s decisions maintain any needed causal relations among accounts (e.g., that 
the order does not create a scenario where an account transfers out more units of an asset 
than it possesses at the time). These causal relations establish a partial ordering rather 
than a total ordering. Several payment systems based on this idea have been proposed, and 

8 



NIST IR 8460 ipd 
April 2023 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

620 

621 

622 

623 

624 

625 

626 

627 

628 

629 

630 

631 

they are usually highly performant by eliminating the requirement of agreeing on a fully 
linearized ordering of transactions [13–19]. 

Relying on a partial ordering has trade-offs. Most notably, without enforcing a total order-
ing on transactions, the majority of complex smart contracts (e.g., on-chain cryptocurrency 
exchanges) are no longer possible. If transactions are partially ordered, they may attempt 
to access and modify the same system state concurrently, which would lead to inconsisten-
cies. Another consequence of replacing BA with reliable broadcast is that the termination 
property of reliable broadcast is not guaranteed if the designated sender is faulty. In this 
case, it means that if the spender in a transaction submits two conficting payments to the 
network, it is possible that neither transaction is ever executed. This is not a problem if 
one assumes that a client who attempts to double-spend in this way is malicious. However, 
in practice, this behavior may be non-malicious, in which case an innocent user may have 
their funds frozen permanently as honest nodes fail to agree on a transaction to include in 
the ledger. For example, when the Bitcoin network is congested, some clients will use a 
technique called replace-by-fee (RBF) to reissue a transaction with a higher fee attached 
with the intention of "jumping the line" and having miners include the transaction in the 
blockchain more quickly. A payment system with partial ordering is unable to handle this 
scenario. 

1.4. The Adversary 

When discussing the security of various consensus protocols, it is important to consider the 
powers that an adversary has available to disrupt the protocol. It is generally assumed that 
the adversary in a distributed system controls f parties and has the ability to coordinate 
them. For instance, in a protocol that has n = 10 parties and can tolerate up to f = 3 faulty 
ones, a single adversary controls all faulty parties (or faulty parties are in collusion). This 
assumption is favorable to the attacker and conservative for the protocol because – in the 
real world – the faulty parties could be controlled by multiple adversaries. That would 
correspond to a situation where, say, each of the three faulty parties were hacked by a 
different adversary. If the protocol is secure against the combined adversary, it would also 
be secure against a less coordinated set of adversaries. 

The adversary can be either static or adaptive. In the static model, the adversary corrupts its 
f parties at the beginning of the protocol execution, and those specifc parties remain cor-
rupt for the duration of the execution. Alternatively, an adaptive adversary can observe the 
protocol execution and corrupt parties "on the fy." That is, one can think of the adversary 
as having a "corruption budget" of f , which can be used throughout the protocol execution 
and chosen to the adversary’s advantage based on the messages seen. Attaining provable 
security against an adaptive adversary is signifcantly more challenging than against a static 
adversary. 

Various models exist regarding what specifc powers the adversary has over the corrupted 
replicas. The two most common types of faults that a protocol may be designed to tolerate 

9 



NIST IR 8460 ipd 
April 2023 

632 

633 

634 

635 

636 

637 

638 

639 

640 

641 

642 

643 

644 

645 

646 

647 

648 

649 

650 

651 

652 

653 

654 

655 

656 

657 

658 

659 

660 

661 

662 

663 

664 

665 

666 

667 

668 

669 

670 

are crash faults and Byzantine faults. In a crash fault, the faulty party simply stops par-
ticipating in the protocol. This corresponds to victims of denial-of-service attacks as well 
as more benign crashes. It is assumed that these parties never recover. In this document, 
the focus is on Byzantine faults and Byzantine fault-tolerant (BFT) protocols as opposed to 
crash fault-tolerant (CFT) ones. A Byzantine fault is any arbitrary fault, including deliber-
ately malicious ones, such as sending equivocating messages to try to disrupt the protocol. 
Other possibilities exist that are outside of the scope of this document, such as omission 
faults (not sending messages when supposed to), and crash failures with recovery. Faults of 
each type can also be caused by software bugs rather than any particular malicious action. 

Protocol designers often focus on two types of participants: 1) the honest ones, who faith-
fully execute the protocol as specifed no matter what, and 2) the Byzantine ones, who 
are controlled by the adversary and deliberately attempt to arbitrarily subvert the protocol 
(whether this is benefcial to the adversary or not). However, there may be cases in which 
honest behavior is irrational and not in the best interest of the participants. The assumption 
that a particular fraction of the participants behave honestly may be unlikely to hold in 
practice. Traditional security models typically ignore this. 

In contrast, the BAR model [20] considers three types of players: 1) Byzantine players; 2) 
altruistic players, who always behave honestly even if it is irrational for them to do so; and 
3) rational players, who will act selfshly and deviate from the protocol in order to increase 
their utility but will not arbitrarily deviate. This is a more challenging model for a protocol 
to be secure against because it must also be in the best interest of players to behave honestly 
based on some utility function. This involves the use of game-theoretic techniques that are 
beyond the scope of this document. It is also possible to design protocols without any 
altruistic players [21]. 

1.5. Timing Assumptions 

Among the most important factors in evaluating a consensus protocol are the assumptions it 
makes on the timing of message delivery. Naturally, more conservative timing assumptions 
make the protocol more robust but impose stricter requirements on its design and may 
negatively impact performance. In each case, it is assumed that if an honest party sends a 
message to another honest party, it is eventually received, even though it may take a while or 
arrive out of order (perhaps an adversarially chosen order). Here, time is usually measured 
in terms of rounds of protocol execution. The three most common network timing models 
are synchronous, asynchronous, and partially synchronous. 

• Synchronous: There is a fxed known upper bound, ∆, on the time it takes for mes-
sages to be sent from one processor to another. If an honest replica sends a message 
to another honest replica in round r, then the recipient will have seen the message by, 
at latest, the beginning of round r +∆. In synchronous networks, there can be a rush-
ing adversary who acts last in each round of the protocol and can see all messages 
sent by honest parties before deciding what to do with their control over corrupted 

10 



NIST IR 8460 ipd 
April 2023 

671 

672 

673 

674 

675 

676 

677 

678 

679 

680 

681 

682 

683 

684 

685 

686 

687 

688 

689 

690 

691 

692 

693 

694 

695 

696 

697 

698 

699 

700 

701 

702 

703 

704 

705 

706 

707 

708 

participants. Under synchrony, agreement is possible when the majority of partici-
pants are honest (n ≥ 2 f + 1), while broadcast simply requires that f < n, assuming 
a PKI and digital signatures. 

• Asynchronous: There is no fxed bound on the time it takes for messages to be 
sent from one honest processor to another. There may or may not be guaranteed 
delivery eventually, but if not, consensus is impossible due to the important "FLP 
impossibility" result [22]. If messages are guaranteed to be delivered eventually, then 
secure protocols can be designed. The optimal resilience for asynchronous consensus 
protocols is n ≥ 3 f + 1, and safety and liveness are both maintained so long as this 
holds. Progress occurs as messages arrive rather than based on fxed rounds. 

The celebrated FLP impossibility result shows that no asynchronous and determin-
istic protocol can achieve consensus with even one faulty processor, and this fault 
need not be Byzantine. A simple crash can prevent consensus due to the inability to 
ensure that the protocol will terminate. This result can be circumvented in two ways: 
by using randomization as part of the algorithm [23, 24] or by providing probabilistic 
termination (with probability 1) [25]. Probability 1 does not imply that all executions 
terminate, but that the set of non-terminating executions is extremely improbable in 
the limit. The difference between probabilistic termination and using randomiza-
tion is that the protocol itself does not incorporate randomness in probabilistically 
terminating protocols. 

Asynchronous protocols may be even easier to implement than synchronous or par-
tially synchronous protocols because they do not require dealing with explicit time-
outs. The implementation can be entirely message-driven. 

• Partially synchronous: This model was introduced in [26], which presented two 
conceptions of the idea: 

1. There is a fxed but unknown upper bound, ∆, on the time it takes for mes-
sages to be sent from one process to another. This is sometimes called semi-
synchronous or the bounded delay model. 

2. There is a fxed, known upper bound, ∆, for message transmission, but this 
bound is only guaranteed to hold after some unknown time called the Global 
Stabilization Time (GST). That is, there is a period of asynchrony (where mes-
sages may be lost) followed by a period of synchrony. 

Since messages can be lost prior to GST, they must be re-sent every round to ensure 
that they are eventually received. This implies that there may be unbounded commu-
nication costs prior to GST [27]. In the bounded delay variant, messages cannot be 
lost, so only a single message transmission is needed. 

This model decouples the safety/consistency and liveness properties of the system. If 
the underlying network is in fact asynchronous, then a partially synchronous protocol 

11 



710

715

720

725

730

735

740

745

709 

711 

712 

713 

714 

716 

717 

718 

719 

721 

722 

723 

724 

726 

727 

728 

729 

731 

732 

733 

734 

736 

737 

738 

739 

741 

742 

743 

744 

746 

747 

748 

NIST IR 8460 ipd 
April 2023 

will continue to maintain safety but lose liveness and stall. The optimal resilience for 
partially synchronous protocols is n ≥ 3 f + 1, and safety is maintained so long as 
this holds. 

Synchronous consensus algorithms are desirable for their superior security bounds com-
pared to asynchronous and partially synchronous protocols (n ≥ 2 f + 1 for synchronous 
but n ≥ 3 f + 1 otherwise). However, synchronous consensus protocols are inconvenient 
for at least two other reasons. First, latency is dependent on the estimated network delay 
bound ∆, which creates a trade-off between security and latency (responsive protocols can 
solve this; see Section 5.2). Second, synchronous protocols are unable to tolerate network 
partitions, which is problematic for long-running protocols over the internet. 

The sleepy model is meant to capture the benefcial security bounds of synchronous proto-
cols while making the system more partition-tolerant [28]. In other models, honest nodes 
are assumed to be online throughout the entirety of the execution. Once a node goes offine, 
it is considered faulty forever, even after coming back online. In contrast, the sleepy model 
allows nodes to be "alert" (online) or "asleep" (offine), where asleep nodes can wake up 
and become honest again. Synchronous protocols have diffculties because if an honest 
player is offine for a suffciently long time (> ∆), they will reject honest messages when 
they come back online. Asynchronous protocols require a threshold of honest validators to 
respond to a proposal, but there may not be that many honest parties online at the time. The 
sleepy model is similar to synchrony in that alert nodes have a network with a known delay 
parameter and similar to asynchrony in that nodes are allowed to go offine indefnitely and 
receive all pending messages upon coming back online. The sleepy model allows consen-
sus as long as a majority of the alert nodes are honest. That is, it has the same security 
bound as synchronous systems when everyone is online and scales down as replicas go of-
fine. Even if only a tiny fraction of the system’s nodes are alert, the protocol will continue 
to make progress; that is, the sleepy model aims to maintain liveness despite an arbitrary 
number of nodes going offine. 

A related model, weak synchrony, has also been proposed as a way of dealing with nodes 
temporarily going offine [29]. In contrast to the sleepy model, weakly synchronous proto-
cols favor consistency rather than liveness. When the network is partitioned, the minority 
partition stops making progress but avoids the risk of deciding on values or blocks that are 
inconsistent with the majority partition. The weak synchrony assumption is that the ma-
jority of nodes are both honest and online in each round, but the set of honest and online 
nodes need not be the same in each round. This is a generalization of the synchronous 
model, where the honest and online set must contain every honest node in every round. 
Most synchronous consensus protocols can adopt slight adjustments in order to be secure 
under weak synchrony [30]. 

Not every problem is solvable in any given model. For example, Byzantine broadcast only 
works under synchrony, not partial synchrony or asynchrony, even if at most one replica is 
faulty. The termination property cannot be satisfed because replicas do not know whether 

12 



NIST IR 8460 ipd 
April 2023 

749 

750 

751 

752 

753 

754 

755 

756 

757 

758 

759 

760 

761 

762 

763 

764 

765 

766 

767 

768 

769 

770 

771 

772 

773 

774 

775 

776 

777 

778 

779 

780 

781 

782 

783 

784 

the sender sent them a message at all, and thus do not know whether to keep waiting for 
it or use a default value. The sender can be faulty and simply not send a message. To get 
around this, one must weaken the termination property, as is done for reliable broadcast. 

1.6. Permissioned vs. Permissionless 

After the advent of Bitcoin, it became important to draw a distinction between the classical 
consensus protocols designed since the 1980s (permissioned) and the new style of protocol 
(permissionless). 

In the permissioned model of consensus, there are n replicas, up to f of which may be un-
der the control of the adversary. Both n and the identity of the replicas are known to every 
participant. Communication between participants typically takes place over authenticated 
channels, in which case the existence of a public key infrastructure (PKI) is generally as-
sumed. At a minimum, every replica needs to agree with every other replica about the 
set of public keys used in the system. The permissioned model corresponds to classical 
consensus algorithms, which are discussed in Sections 4 through 7. 

Permissionless systems differ from classical ones in four key ways, according to Pass and 
Shi [31]: 

1. There is no access control mechanism that determines which nodes can join the sys-
tem, and nodes can freely join or leave the system at any time. 

2. Nodes are not aware of the other protocol participants a priori. In particular, commu-
nication is not over authenticated channels, so message senders are not authenticated. 

3. The protocol itself may be unaware of how many nodes are participating in its exe-
cution. 

4. The number of nodes involved in the system can grow or shrink over time. 

Pass and Shi go on to prove that several of the limitations of permissionless consensus 
are required in order to work in such a challenging environment [31]. First, a Sybil-
resistance mechanism is needed in order to maintain consensus when communication is 
not authenticated (Sybil-resistance mechanisms are introduced in Section 2.2; the proof-
of-work mechanism is assumed in [31]). This is because an adversary needs to have their 
messages rate-limited, regardless of whether nodes can join freely, everyone knows how 
many nodes there are, and without message delays. Second, in order to allow nodes to 
freely join the system after it has been set up, proofs of work must be performed continu-
ously throughout the lifetime of the system. If proofs of work ever cease, then new nodes 
can be tricked into preferring a simulated execution. Not all Sybil-resistance mechanisms 
can fully accomplish this free entry property (in particular, proof-of-stake systems require 
workarounds for this, as described in Section 12.1.2). To maintain this free entry condi-
tion, there must be an honest majority in control of the Sybil-resistance resource. This is 

13 



NIST IR 8460 ipd 
April 2023 

785 

786 

787 

788 

789 

790 

791 

792 

793 

794 

795 

796 

797 

798 

799 

800 

801 

802 

803 

804 

805 

806 

807 

808 

809 

810 

811 

812 

813 

814 

815 

a standard consistency argument, which is discussed more in Section 10.1. Finally, to tol-
erate uncertainty in the number of participants, there must be a known upper bound in the 
network delay. That is, a synchrony assumption is needed. This is true because the network 
can be partitioned in half, and if the adversary can cause an arbitrarily large message delay, 
there is always some delay that will cause a consistency violation. Honest nodes are unable 
to tell whether the other side of the partition exists at all or if there is just a message delay. 
This is discussed more thoroughly in Sections 10.1 and 10.2.1. 

The permissionless model also has setup assumptions. In particular, permissionless net-
works require a trusted setup to create the genesis block – a data structure that encodes the 
initial state of the system. This is to prevent precomputation attacks, where the entity that 
creates the system creates a hidden blockchain in advance which can be used to gain an 
advantage in consensus. Famously, Satoshi Nakamoto included a newspaper headline in 
the Bitcoin genesis block in order to prove that this attack had not taken place. 

2. System Components 

Distributed ledger systems are usually composed of a variety of different subprotocols or 
components. Not every system will use each of the components described here. Further, a 
single subprotocol may be responsible for multiple aspects of the system simultaneously. 
Some of these subprotocols include: 

• Data structures over which consensus is maintained 

• Sybil-resistance mechanisms 

• Leader election and/or committee selection 

• Fork-choice or chain-selection rules 

• Networking components 

• Incentive mechanisms 

• Cryptographic primitives 

• The state machine itself 

This section will introduce these ideas, but most will be explained in much more detail later 
in the document. Note that many systems in the literature describe only one or two of the 
components listed above but can often be adapted to alternative situations. For example, 
some fork-choice rules will be analyzed for a single Sybil-resistance mechanism but could 
be paired with a different mechanism in practice. 

14 



NIST IR 8460 ipd 
April 2023 

816 

817 

818 

819 

820 

821 

822 

823 

824 

825 

826 

827 

828 

829 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

841 

842 

843 

844 

845 

846 

847 

848 

849 

850 

851 

852 

853 

2.1. Data Structures for Distributed Ledgers 

There are a variety of ways to organize the linearized/ordered transaction log in SMR. The 
simplest possibility is an ever-expanding list of transactions. It is typically more effcient 
to batch transactions into "blocks" (a group of transactions) rather than to handle them 
individually, which increases throughput at the expense of latency. These blocks can be 
"chained" together via collision-resistant cryptographic hash functions in order to form a 
blockchain. In other words, a blockchain is a chain of blocks that each reference a hash 
of the earlier blocks. In this way, each block is like a vote or commitment to the entire 
chain before it. In computer science terms, this is a singly linked list. Generally, there is 
a block header that includes metadata like the hash reference to the previous block and a 
commitment to the content of the block itself. 

Some systems may incorporate multiple blockchains that operate in parallel and may pro-
vide different functionalities. Some systems employ a sharded architecture, where multiple 
blockchains exist in parallel but are coordinated via another blockchain. See Section 15 
for more information on sharding. Other systems use directed acyclic graphs, or DAGs 
[32]. Technically, a blockchain is a simple DAG. However, the term is typically used in 
this space to describe systems where each block may point to multiple earlier blocks in-
stead of just one. In a number of systems, there is a primary pointer to a previous block 
plus several so-called uncle blocks, which are produced around the same time but not in 
the "main" blockchain. Sometimes, the DAG is formed over individual transactions rather 
than blocks, which may result in only a partial ordering of transactions instead of a total 
ordering. There may also be a subprotocol for extracting a total order of transactions from 
the DAG. 

The motivation for using a DAG or parallel blockchains is generally to improve latency and 
throughput (under optimistic assumptions) compared to the original blockchain structure. 
This is because proof-of-work blockchains require block distribution times to be a small 
fraction of the maximum network delay (see Section 10.2.1). Proof-of-work protocols that 
use DAGs are discussed in Section 11.5, and proof-of-stake DAGs are discussed in Section 
13.3. 

Note that throughout this document, the terms "blockchain" and "chain" are sometimes 
used generically to refer to any ledger. An example of a blockchain and a DAG are shown 
in Figure 1. 

2.2. Sybil-Resistance Mechanism 

A Sybil attack is a scenario in which a single real-world entity controls multiple in-protocol 
participants while making it look as though they are controlled by several different entities. 
Designers of permissioned networks need not be concerned with handling Sybil attacks 
because all replicas are already aware of each others’ identities. However, in permissionless 
networks, a single malicious entity can represent itself as multiple distinct identities within 

15 



NIST IR 8460 ipd 
April 2023 

Fig. 1. Blockchain vs. DAG. Time moves from the left to the right. (a) A DAG where each 
block references two previous blocks except for the genesis block and the ones immediately 
after. In some systems, one of the pointers is the primary reference, while the other pointer is 
to an uncle block. (b) A simple blockchain. 

854 

855 

856 

857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

870 

871 

872 

873 

874 

a system. Therefore, permissionless systems require some method of addressing Sybil 
attacks. 

Sybil attacks were introduced in [33]. Without a trusted central identifcation authority, 
Sybil attacks are always possible absent unrealistic or challenging assumptions, like re-
source parity among entities. However, permissionless distributed ledger systems can use 
some type of scarce resource to mitigate Sybil attacks. The two most commonly proposed 
Sybil-resistance mechanisms are proof of work and proof of stake. The scarce resource 
used under proof of work is computational effort, while the resource in proof of stake is 
virtual currency units that are native to the system. Proof of work and proof of stake have 
very different properties, which are discussed in detail in Sections 9 and 12. These differ-
ences can have material impacts on the security of a system, so designers cannot simply 
treat them as substitutes. There are other less common mechanisms as well, including proof 
of space (see Section 14.1) and those that utilize trusted execution environments (TEEs) 
[34, 35]. 

2.3. Leader Election and Committee Selection 

Most consensus protocols require periodically electing a leader or a committee to perform 
particular tasks, such as proposing blocks of transactions to the rest of the network or voting 
on whether to accept a block that has been proposed. Other algorithms are leaderless, 
though this is less common. 

In permissioned networks, the leader election subprotocol can be as simple as rotating 
through each validator in round-robin fashion. A typical method would be to label each of 

16 



875

880

885

890

895

900

905

910

876 

877 

878 

879 

881 

882 

883 

884 

886 

887 

888 

889 

891 

892 

893 

894 

896 

897 

898 

899 

901 

902 

903 

904 

906 

907 

908 

909 

911 

912 

913 

NIST IR 8460 ipd 
April 2023 

the n validators with a number in {0, ...,n− 1}, and for each round r, the leader is validator 
r mod n. Alternatively, the leader could be chosen pseudorandomly based on a keyed hash 
function that hashes to the domain {0, ...,n − 1}. In some cases, the elected leader may 
remain the leader for many rounds, which can improve the network’s throughput but at the 
cost of poor load balancing and fairness. 

Leader election in permissionless networks is typically more complicated due to the lack 
of stable, known identities. In proof-of-work systems like Bitcoin (and its consensus algo-
rithm, dubbed Nakamoto Consensus), the elected leader in a given round is the frst node 
to solve a moderately hard puzzle. Proof of stake often uses advanced cryptographic prim-
itives like verifable random functions to aid in leader election, as described in Section 
2.7. The process relies on uniformly random sampling from the participants in the network 
based on their share of the resource used for Sybil resistance. That is, a proof-of-work 
miner with 20% of the total computational power deployed on the network should have a 
20% chance of being elected for each block. Leader election is typically tied to the mint-
ing mechanism for cryptocurrencies: the elected leader collects the newly created rewards 
(however, they can be decoupled [36]). As a result, leader election tends to have important 
implications for the incentive compatibility of a system. 

If the leader is Byzantine, the outcome depends heavily on the specifc protocol in use. In 
permissioned systems, as well as a few permissionless ones, a view change subprotocol 
is needed to securely move to the next leader (a view is a phase of the protocol where 
a particular replica acts as the leader; see Section 7.6). This is critical for maintaining 
liveness because a faulty leader can stall progress by not proposing a block when it is their 
turn. Progress in SMR is guaranteed once all correct processes synchronize to the same 
round and the leader of that round is correct. In most permissionless systems, a malicious 
leader can also weaken liveness by not including transactions in blocks and can sometimes 
use their status as leader to try to launch other attacks. 

2.4. Fork-Choice or Chain Selection Rules 

If a node is confronted with multiple valid ledgers, it has several methods for deciding 
which one to adopt, such as following the blockchain that has the most total proof of work 
(Nakamoto Consensus, see Section 10), selecting the heaviest subtree (GHOST, see Section 
11.2), or accepting the result of a Byzantine agreement algorithm run by a duly elected 
committee of validators. 

Nakamoto Consensus uses a simple fork-choice rule called the longest chain rule. When 
presented with two valid blockchains, a node in a system that uses Nakamoto Consensus 
will prefer the chain that has the largest cumulative amount of proof of work supporting 
it. For instance, if presented with the two chains from the bottom panel of Figure 2, a 
node will adopt the chain that ends with Block 5, assuming that each block has the same 
amount of work. Any alternative blocks that are discarded are called stale blocks or orphan 
blocks. If the node had adopted the other chain beforehand, the switch is called a blockchain 

17 



NIST IR 8460 ipd 
April 2023 

914 

915 

916 

917 

918 

919 

920 

921 

922 

923 

924 

925 

926 

927 

928 

929 

930 

931 

reorganization, or reorg for short. In the top panel of Figure 2, the disconnected Block 2 
and Block 4 are stale, and the shorter chain in the bottom panel that ends with Block 4 
is stale. Note that transaction recipients can choose to wait for as many blocks as they 
want (called confrmations) before accepting a payment and providing goods or services, 
and waiting longer can offer more confdence that a block containing the payment will not 
become stale. 

Fig. 2. Forking and the Longest Chain Rule. 

2.5. Networking 

In permissioned networks, validators will typically have pairwise point-to-point channels 
with all other validators, though not all systems are fully connected in this way. For ex-
ample, in some systems (e.g., PBFT), every honest replica sends messages to every other 
replica for each round of the protocol. In other systems, replicas send messages to a leader, 
who then aggregates them and disseminates them to the rest of the replicas. Some systems 
even use a more complicated tree-like network topology for communication [37]. 

In permissionless settings, parties usually "diffuse" messages via gossip. Messages re-
ceived by a party are then forwarded on to their peers with no specifc source or destination 
for the message and without using authenticated channels. There is, thus, an implicit echo-
ing assumption that messages are forwarded when heard. For permissionless networks, a 
more thorough treatment of possible networking components is provided in Section 17.1. 

18 



935

940

945

950

955

960

965

932 

933 

934 

936 

937 

938 

939 

941 

942 

943 

944 

946 

947 

948 

949 

951 

952 

953 

954 

956 

957 

958 

959 

961 

962 

963 

964 

966 

967 

968 

NIST IR 8460 ipd 
April 2023 

2.6. Incentive Mechanism 

Historically, incentives were rarely considered in deployments of SMR. The replicas were 
typically run by a single organization that merely wanted additional fault tolerance. More 
recently, however, these systems have been deployed by a consortium of organizations or 
over open networks. In these cases, it is important that validators are incentivized to behave 
honestly rather than to try to disrupt the network. 

In permissioned networks, honest behavior may be enforceable by appealing to legal sys-
tems. Permissionless systems do not have this luxury, so incentives must be considered an 
explicit part of the design. These incentives frequently involve some token native to the 
network (e.g., bitcoin in the Bitcoin network or ether in the Ethereum network). Typically, 
appending a new block to the blockchain gives the leader a reward that includes newly 
created cryptocurrency (the block subsidy) and transaction fees. In Bitcoin and many other 
systems, this block reward comes in a special transaction called the coinbase transaction, 
which is located frst in a block and is the only transaction that can create new tokens rather 
than just transfer existing tokens. Due to the inconsistencies that can arise due to forking, 
the coinbase transaction has a maturity window in which funds cannot be spent from it (in 
Bitcoin, the maturity window is 100 blocks, or slightly under 17 hours). 

Incentives are discussed in more detail in Section 19. 

2.7. Cryptographic Primitives 

This document assumes that the reader is familiar with basic cryptographic primitives like 
digital signatures and collision-resistant hash functions, which are used in all of the pro-
tocols described here. Beyond this, more advanced cryptography is applied judiciously 
in systems that implement state machine replication. This can be in either the atomic 
broadcast/consensus protocol or the state machine itself. Cryptographic techniques used in 
blockchain systems are surveyed in [38]. 

Hash functions are used in blockchain systems in a number of areas, such as for proof 
of work, generating addresses from public keys (concise representations of a public key 
or payment destination), and as building blocks for more advanced primitives, such as 
Merkle trees. Digital signatures are used to authorize transactions, implement authenticated 
channels, and vote in a variety of permissioned and proof-of-stake systems. 

Threshold cryptography is frequently employed to improve fault tolerance or performance. 
Threshold signatures are the most common and are used both as a form of multi-factor au-
thentication for signing transactions and to reduce the communication complexity of con-
sensus by aggregating the individual signatures of several validators. Some protocols use 
threshold decryption to hide the contents of transactions from validators and prevent cen-
sorship or favoritism before transactions are ordered, only allowing them to be decrypted 
after being committed to the transaction log. 

19 



970

975

980

985

990

995

1000

1005

969 

971 

972 

973 

974 

976 

977 

978 

979 

981 

982 

983 

984 

986 

987 

988 

989 

991 

992 

993 

994 

996 

997 

998 

999 

1001 

1002 

1003 

1004 

1006 

1007 

1008 

NIST IR 8460 ipd 
April 2023 

Cryptographic accumulators appear in nearly every blockchain system. Accumulators are 
compact ways of representing sets, which – at a minimum – allow concise proofs of mem-
bership or inclusion in the set. Block headers typically include an accumulator that commits 
to the set of transactions included in the block itself. The most common example of this is 
a Merkle tree, where each leaf of the tree is a transaction included in the block, and the root 
of the tree is included in the block header. Among other things, this allows light clients 
(see Section 3.2), which do not fully verify the ledger, to verify that transactions they care 
about have been added to the blockchain. In some systems, accumulators are also used 
to represent the global state of the system’s state machine. That is, the block header may 
include an accumulator that includes all accounts and their balances. 

Cryptographic commitment protocols are another common occurrence, though they are 
more commonly used in the state machine rather than in consensus. Commitments are 
a digital version of a sealed envelope – the party that commits to a value cannot alter the 
contents after the fact (it is already in the envelope), and no other party can discern the 
value until the committing party reveals it (no one can read the contents of the envelope 
until it has been opened). Cryptographic commitments are sometimes used to provide con-
fdentiality for the amount sent in a transaction. This is often done by using commitments 
as a component of a range proof, which shows that a value is in a particular range and 
which can prove that a transaction did not create assets "out of thin air" to spend. 

Zero-knowledge proofs – and particularly, zkSNARKs – are used in multiple ways in blockchain 
systems [39]. A zero-knowledge proof is a protocol that enables a prover to convince a ver-
ifer that a particular statement is true without the verifer learning anything other than the 
truth of the statement. zkSNARKs allow a prover to convince a verifer that the results 
of a computation on secret inputs are correct without the verifer needing to execute the 
computation or learn anything about it. This can be used to add privacy for payments but is 
also used in several advanced state machine designs, as discussed in Section 18.1.2. While 
zkSNARKs are powerful, they tend to require a trusted setup to generate parameters for 
the system, and an entity that knows the random values used for the setup has the power to 
create fraudulent proofs. 

For the purposes of this document, the most important cryptographic primitives are those 
that aid in distributed randomness generation, which is most importantly used for leader 
election where an agreed-upon source of randomness must be shared among replicas. These 
schemes include common coin protocols, verifable random functions (VRFs), and verif-
able delay functions (VDFs). 

A common coin is a randomness source that is observable by all participating processes 
but unpredictable for an adversary. The common coin abstraction can be realized using 
threshold signature schemes or verifable secret sharing. Secret sharing allows a party to 
distribute a secret value to other parties such that a threshold of them are required in order to 
reconstruct the secret, while verifable secret sharing uses commitments to ensure that the 
party who distributed the values has done so correctly. Sometimes, a weak common coin is 

20 



1010

1015

1020

1025

1030

1035

1040

1045

1009 

1011 

1012 

1013 

1014 

1016 

1017 

1018 

1019 

1021 

1022 

1023 

1024 

1026 

1027 

1028 

1029 

1031 

1032 

1033 

1034 

1036 

1037 

1038 

1039 

1041 

1042 

1043 

1044 

1046 

NIST IR 8460 ipd 
April 2023 

suffcient, where weak means that there is a constant probability that the functionality will 
return different values to different processes. 

Verifable random functions (VRF), introduced in [40], are pseudorandom functions that 
provide publicly verifable proofs of correctness. They can be thought of as a public key 
version of a keyed hash function. For a fxed key pair and input value, a VRF will produce 
a unique pseudorandom and verifable output, even if the key pair was chosen adversarially. 
The VRF proof is usually the signature over some input data, and the pseudorandom output 
is a hash of the signature. A verifer will ensure that the signature is valid and a preimage 
of the output. For this to work, the signature must be unique, which means that only a 
single valid signature exists for a given message and key. Due to this requirement and the 
ease of constructing threshold implementations, BLS signatures are most frequently used 
for this purpose [41]. VRFs are used most frequently for leader election in proof-of-stake 
systems, such as Ouroboros Praos, Algorand, and Fantômette (see Sections 13.1.3, 13.4.2, 
and 13.3.1, respectively). 

Finally, verifable delay functions (VDFs) are relatively new primitives, which are functions 
that require a signifcant amount of sequential computation but where the correctness of the 
result is easy to verify. VDFs can be thought of as a time delay that is imposed upon the 
generation of output for a pseudorandom number generator. The delay prevents malicious 
actors from infuencing the output of the generator because all of the inputs to the generator 
are fnalized before the delay ends. VDFs are used for randomness in leader election, may 
be helpful against certain attacks on proof-of-stake and proof-of-space systems, and can be 
used to limit the frequency with which an adversary can send messages or vote in consensus 
[42]. VDFs improve upon VRFs in that a single honest participant is required instead of a 
non-colluding honest majority (requiring a single honest participant is sometimes called the 
anytrust model). The idea of VDFs was frst formalized in [43], but improved versions were 
found soon after [44, 45]. Due to being relatively new, there are still some uncertainties 
regarding their security, including the possibility of specialized hardware and tuning the 
time parameter properly. 

The VDF from [44] works by choosing a time parameter T , a fnite abelian group G of 
unknown order, and a hash function H with a domain that consists of the elements of G. 

2T 
For an input x, let g = H(x). The VDF is evaluated by computing y = g . Repeated 
squaring does not reveal any information about the output until the fnal squaring, and the 
computation must be done in serial (because the order of G is unknown). Unfortunately, 
generating a group of unknown order requires a trusted setup. 

2.8. State Machine 

The state machine is the set of rules that replicas enforce while transitioning the state of 
the system via client-submitted transactions. Though introduced here, Section 18 provides 
a more detailed discussion of the design space for state machines. 

21 



NIST IR 8460 ipd 
April 2023 

1047 

1048 

1049 

1050 

1051 

1052 

1053 

1054 

1055 

1056 

1057 

1058 

1059 

1060 

1061 

1062 

1063 

1064 

1065 

1066 

1067 

1068 

1069 

1070 

1071 

1072 

1073 

1074 

1075 

1076 

1077 

1078 

1079 

1080 

1081 

1082 

1083 

1084 

1085 

A wide variety of rules are possible, but they typically include ensuring that transactions 
have valid signatures of the clients who are authorized to act on the portion of the state 
involved, as well as preventing "double-spending." In the context of a cryptocurrency, this 
means that the owner of the coins signed the transaction and that there is not a conficting 
transaction that spends the same coins included in the ledger. Other rules may include a 
maximum allowed block size, restrictions on the timestamps in block headers, that blocks 
and transactions are syntactically well-formed, and that all transactions in a block are com-
mitted to in the block header. 

In addition to these basic rules, the state machine may include a means of executing various 
types of computations, which are encoded as smart contracts. The state machine often 
provides a programming language and execution environment where developers can write 
programs (smart contracts) that are executed by all of the network’s replicas, who then 
agree on the result and modify the system’s state accordingly. In some systems, such as 
Ethereum, the execution environment is essentially Turing-complete, so it can execute any 
arbitrary deterministic program subject to the system’s block gas limit. Each operation 
in the state machine has an associated gas cost, where gas is a unit of measurement that 
corresponds to the amount of effort or resources consumed to execute the operation. The 
gas limit is analogous to a maximum block size, but instead of limiting the total size of 
transactions, it bounds the total computational effort. 

2.8.1. UTXO vs. Account Model 

There are two common models of how the state machine’s state is represented: the UTXO 
model and the account model. A UTXO, short for unspent transaction output, is an im-
mutable object associated with a particular spending condition. By fulflling this spending 
condition, a client becomes authorized to destroy the UTXO and create new ones from it 
(so long as other state machine rules are followed, like not creating more new coins than 
were spent). In the UTXO model, each transaction takes some UTXOs as inputs, destroys 
them completely, and creates new UTXOs as output with different spending conditions that 
refect the new owner. This often includes "change" outputs that return funds to the sender. 

In contrast, accounts are mutable objects associated with a balance that can increase or 
decrease as funds are moved in and out of the account. The UTXO model creates a directed 
graph of transaction outputs that move between owners (shown in Figure 3), whereas the 
account model is like a database of the current system state. One can think of UTXOs 
as individual dollar bills with arbitrary denominations, and accounts are more like regular 
bank accounts with an identifer and a balance. In either case, the UTXO or account may 
have programmable spending conditions. 

Each model has particular advantages and disadvantages. In the UTXO model, transactions 
may be more private due to the ease of creating new addresses for each output, whereas all 
of the transactions to and from a particular account in the account model are automatically 
linked. Due to the immutability of UTXOs, disk access to check system state is more par-

22 



NIST IR 8460 ipd 
April 2023 

Fig. 3. UTXO transaction graph. Outputs of some transactions become inputs to later ones. 
Each transaction depicted includes a 10k satoshi fee, where satoshis are the smallest atomic 
unit of currency in the Bitcoin network. 

1086 

1087 

1088 

1089 

1090 

1091 

1092 

1093 

1094 

1095 

1096 

1097 

1098 

1099 

1100 

1101 

1102 

1103 

1104 

1105 

allelizable than in the account model, where the accounts can be modifed. On the other 
hand, the account model has the performance advantage of typically smaller transactions. 
In the account model, every transaction has a single "input" and "output." With UTXOs, 
some transactions may become extremely large if there are many recipients or if they re-
quire simultaneously spending many UTXOs that have a small value. The account model 
is also simpler for light clients; in the UTXO model, a light client must keep track of each 
UTXO owned by the client and update this for every transaction. One of the biggest disad-
vantages faced by the account model is that transactions require nonces in order to prevent 
replay attacks. The nonces must be sequential, which can impact transaction processing 
if an account issues many transactions in short periods of time (they must be processed 
sequentially, regardless of network lag and the attached fees). 

Perhaps the most straightforward advantage of the account model is that accounts are able 
to maintain a persistent state, which can make complex smart contract programming much 
simpler than in the UTXO model, where UTXOs do not maintain state. The statelessness 
of UTXOs makes it challenging to program smart contracts with multiple phases. In the 
account model, a smart contract exists at a static address, which can store state and be 
referenced without updating. 

2.8.2. Changing the Rules 

All validators must agree on the state machine rules. However, the rules themselves may 
change over time. Broadly speaking, there are two types of rule changes, or forks: hard 

23 



NIST IR 8460 ipd 
April 2023 

(a) Hard Fork 

(b) Soft Fork 

Fig. 4. Hard forks and soft forks. 

1106 

1107 

1108 

1109 

1110 

1111 

1112 

1113 

1114 

1115 

1116 

1117 

1118 

1119 

1120 

1121 

1122 

1123 

1124 

1125 

forks, which make blocks or transactions valid when they were previously considered in-
valid, and soft forks, which make blocks or transactions invalid when they were previously 
considered valid. Hard forks are not backward compatible, whereas soft forks are. The 
different fork types also have different security ramifcations, different practical consid-
erations regarding the mechanics of implementing the fork, and – according to some – 
different ethical considerations. Hard forks are depicted in Figure 4a, and soft forks are 
shown in Figure 4b. 

Hard forks can be thought of as the creation of an entirely new system, where a successful 
hard fork results in a smooth transition from the old system to the new system. Technically, 
a hard fork always results in two separate systems, but a smooth hard fork with (near) 
universal consent from the community may result in the original chain being abandoned. 
Nodes that fail to update their software may be more easily attacked around the time of the 
hard fork, so hard forks require near-unanimous consent and for users to all update their 
software within a specifc period of time. For example, a node that has not upgraded can be 
presented with a chain of blocks under the old rules by an attacker. Since those blocks will 
not be reorged, the attacker can trick the recipient into accepting coins that the remainder 
of the network will not accept. In Figure 4a, a node that follows the old rules and accepts 
transactions with only two confrmations can be easily defrauded. 

In contrast, soft forks tend to be more secure than hard forks because they do not require 
every user to update their software near-simultaneously, although those actively participat-

24 



NIST IR 8460 ipd 
April 2023 

1126 

1127 

1128 

1129 

1130 

1131 

1132 

1133 

1134 

1135 

1136 

1137 

1138 

1139 

1140 

1141 

1142 

1143 

1144 

1145 

1146 

1147 

1148 

1149 

1150 

1151 

1152 

1153 

1154 

1155 

1156 

1157 

1158 

1159 

1160 

1161 

1162 

1163 

1164 

1165 

1166 

ing in consensus, such as miners and staking validators, should update prior to the soft fork 
activating. For a soft fork to happen smoothly, the majority of the mining power (or stake) 
should recognize and enforce the soft fork; a supermajority would be ideal. If some miners 
are running software that enforces the old rules, users could receive "fake" confrmations 
in blocks that are valid under the old rules but invalid under the new rules and, thus, soon 
to be reorged. This is the scenario created by the shaded block in Figure 4b; if a user’s 
node follows the old rules and accepts transactions with a single confrmation, they can be 
defrauded. As a result, non-upgraded nodes lose some security during a soft fork. 

Both hard forks and soft forks can potentially result in permanent chain splits, but it is 
far less likely to occur with soft forks and can be avoided completely through the choice 
of activation mechanism. Permanent chain splits create considerable complications for 
users. First, the values that accrue from network effects are reduced by splitting the relevant 
communities in two. Second, unless the fork changes the rules for how transactions are 
constructed, some transactions that are valid on one chain will also be valid on the other 
in case of a split, which creates the opportunity for replay attacks. An attacker can take a 
transaction from chain A, broadcast it again to the network maintaining chain B, and have 
it confrmed. If a chain split occurs and a cryptocurrency exchange only supports chain 
A, then an attacker who initiates a withdrawal from the exchange on chain A can copy 
the transaction, broadcast it over the network managing chain B, and receive an equivalent 
amount of currency B that the exchange never intended to give up. 

Chain splits cause problems for blockchain service providers, such as wallets and ex-
changes. Exchanges must decide whether to support one or both sides of the split, and 
users of the exchange may not have the latitude to choose which chain to follow. As a 
result, a user who wanted to stay on the old chain but used an exchange that only follows 
the new chain could potentially lose their funds. Chain splits also pose a problem for light 
clients. Because light clients do not validate the state transitions of the network, they are 
unaware of what rules are being followed. That means that they will simply follow the ma-
jority, which can be dangerous. For example, if a majority of the Bitcoin hash rate decided 
to increase infation, full nodes would recognize the block as invalid, but light clients would 
simply follow the majority of the hash rate. In addition to the explicit danger of attacks dur-
ing this period, if a signifcant portion of the community were to engage in commerce on 
the attacking/infation chain, then a social consensus may form around the chain despite its 
invalidity. Contentious hard forks that are likely to result in a split are especially dangerous 
to light clients, which make up the bulk of typical users. More information on light client 
security compared to fully verifying nodes can be found in Section 3.2. 

There are several methods for performing forks that primarily depend on whether they are 
user-activated or miner-activated. In a user-activated soft fork (UASF), the software im-
plementation begins enforcing the new, more restrictive rules at an agreed-upon time, or 
"fag day." In a miner-activated soft fork (MASF), the new rules are enforced only after an 
extended period of miner signaling. Miners can set a particular bit in their block headers 
if they support the rule change, and after a threshold percentage of blocks (usually 75% 

25 



NIST IR 8460 ipd 
April 2023 

1167 

1168 

1169 

1170 

1171 

1172 

1173 

1174 

1175 

1176 

1177 

1178 

1179 

1180 

1181 

1182 

1183 

1184 

1185 

1186 

1187 

1188 

1189 

1190 

1191 

1192 

1193 

1194 

1195 

1196 

1197 

1198 

1199 

1200 

1201 

1202 

1203 

1204 

1205 

1206 

1207 

to 95%) within a given time period signal support, the new rules can be enforced (usually 
after a short delay to give time for more nodes to update their software once the change is 
"locked in"). Only a UASF can cause a chain split, but MASFs can be chaotic and result 
in many short forks if the threshold is set too low. One issue with miner activation is that 
miner signaling is in no way a guarantee that those miners will actually enforce the new 
rules. For example, the Bitcoin community debated on whether to increase the maximum 
block size, and supporters of an increase released a (hard fork) client called Bitcoin XT 
that enforced a block size increase, while the dominant client – Bitcoin Core – did not. An 
anonymous developer then released the NoXT client, which mimicked Bitcoin XT’s be-
havior and signaling but actually followed rules compatible with the Bitcoin Core software 
[46]. If some miners were running this client, the fork would be activated prematurely to 
the detriment of those who wanted to enforce the new rules. 

User activation has its own problems. The idea of a UASF is that if the majority of eco-
nomically signifcant users of the system adopt it, then the miners will be forced by their 
own self-interest to adopt it as well. As a result, the UASF may be able to get around the 
resistance of miners if they are acting in opposition to the broader community of users. 
Again, the primary issue is that it is likely to result in a chain split without the support of a 
majority of the miners. In fact, without majority mining support, a UASF looks a lot like a 
hard fork with all of the risks that hard forks entail, all of the limitations of soft forks, and 
the possible need for a hard fork to protect against the miners that do not accept the fork 
rules [47]. 

For any fork to be successful, nodes need to coordinate with each other regarding both the 
time to lock in as well as – after a delay – the time to activate the rule change. In Bitcoin and 
similar systems, there are several notions of time that can be used for this coordination: the 
block timestamp, the median time past (MTP), and the block height. The block timestamp 
is unsuitable for use because it does not increase monotonically, which is a requirement 
for coordination. The MTP is defned as the median timestamp of the block and its 10 
predecessors. Bitcoin has rules about the timestamps that force MTP to monotonically 
increase though it is not monotonic in the face of reorgs. In all but the most exceptional of 
circumstances, block height will be monotonic even across reorgs. The advantage of using 
MTP to coordinate is that the timing can be selected in order to minimize the chance that 
the fork occurs at particular times. This may be useful in order to time the fork to happen 
while, say, engineers at important companies may be at work instead of asleep. On the 
other hand, MTP can be manipulated by miners in a number of ways through their control 
of the block timestamps, and a majority of miners can use this mechanism to completely 
skip over relevant activation periods [48]. Block heights are safe from this risk but are less 
likely to match a desired time for the humans running the nodes or the developers writing 
the code that schedules activation. 

Many in the blockchain community believe that there are ethical considerations with re-
gard to the style of fork employed. This goes beyond the nature of the specifc rule changes 
themselves (e.g., a rule that allows a privileged party to steal from others) but rather to the 

26 



1210

1215

1220

1225

1230

1235

1240

1245

1208 

1209 

1211 

1212 

1213 

1214 

1216 

1217 

1218 

1219 

1221 

1222 

1223 

1224 

1226 

1227 

1228 

1229 

1231 

1232 

1233 

1234 

1236 

1237 

1238 

1239 

1241 

1242 

1243 

1244 

1246 

1247 

1248 

NIST IR 8460 ipd 
April 2023 

meta-problem of the methodology of forking. Intuitively, in a distributed network com-
posed of many heterogeneous individuals with potentially competing interests, any poten-
tial change in the rules (other than, say, a fx for a catastrophic software bug) is likely to 
be opposed by at least one person. As a result, if the change occurs, there may be a per-
ception that this person or people were coerced into accepting the change. A representative 
of this view is Ethereum creator Vitalik Buterin, who believes that both types of forks are 
coercive, but that soft forks are more coercive than hard forks: 

There is an essential difference between hard forks and soft forks: hard forks 
are opt-in, whereas soft forks allow users no "opting" at all. In order for a user 
to join a hard forked chain, they must personally install the software package 
that implements the fork rules, and the set of users that disagrees with a rule 
change even more strongly than they value network effects can theoretically 
simply stay on the old chain...In the case of soft forks, however, if the fork 
succeeds the unforked chain does not exist. Hence, soft forks clearly institu-
tionally favor coercion over secession, whereas hard forks have the opposite 
bias...If I had to guess why, despite these arguments, soft forks are often billed 
as "less coercive" than hard forks, I would say that it is because it feels like 
a hard fork "forces" the user into installing a software update, whereas with 
a soft fork users do not "have" to do anything at all. However, this intuition 
is misguided: what matters is not whether or not individual users have to per-
form the simple bureaucratic step of clicking a "download" button, but rather 
whether or not the user is coerced into accepting a change in protocol rules 
that they would rather not accept. And by this metric, as mentioned above, 
both kinds of forks are ultimately coercive, and it is hard forks that come out 
as being somewhat better at preserving user freedom. [49] 

As alluded to by Vitalik, others take the position that hard forks are more coercive or 
at least more problematic from the standpoint of the developers who must write code that 
implements the hard fork. While most users agree that hard forks may be necessary in some 
cases, some believe that controversial hard forks should be avoided. For example, Bitcoin 
Core developer Pieter Wuille, in the context of a debate about changing the maximum block 
size in Bitcoin, expressed a distaste for hard forks that lack near-universal agreement in the 
Bitcoin community: 

[The responsibilities of the Bitcoin Core developers] include[] participating in 
discussions about consensus changes, but not the responsibility to decide on 
them – only to implement them when agreed upon. It would be irresponsible 
and dangerous to the network and thus the users of the software to risk forks, 
or to take a leading role in pushing dramatic changes. Bitcoin Core developers 
obviously have the ability to make any changes to the codebase or its releases, 
but it is still up to the community to choose to run that code...Bitcoin Core is 
not running the Bitcoin economy, and its developers have no authority to set 
its rules...Worse, intervening in consensus changes would make the ecosystem 

27 



1250

1255

1260

1265

1270

1275

1280

1285

1249 

1251 

1252 

1253 

1254 

1256 

1257 

1258 

1259 

1261 

1262 

1263 

1264 

1266 

1267 

1268 

1269 

1271 

1272 

1273 

1274 

1276 

1277 

1278 

1279 

1281 

1282 

1283 

1284 

NIST IR 8460 ipd 
April 2023 

more dependent on the group taking that decision, not less. So to point out 
what I consider obvious: if Bitcoin requires central control over its rules by a 
group of developers, it is completely uninteresting to me. Consensus changes 
should be done using consensus, and the default in case of controversy is no 
change. [50] 

Essentially, this view suggests that it is not the role of developers to decide what Bitcoin is 
or should be and that developers have a responsibility to not "force" controversial changes 
to the system. To do so would elevate the developers to a more powerful position than they 
ought to have and would go against the decentralized ethos of the community. 

Over the lifetime of a long-lived system, it is likely that a hard fork will be necessary, and 
soft forks are simply not preventable when supported by a majority of miners so perhaps 
the ethics are less relevant than practical concerns. In either case, no users are forced into 
running particular code on their machine. Ultimately, users decide the rules because users 
decide which software to run. The "coercion" in either case is in the eyes of the beholder – 
no one is forced to use any particular rules, but they may be "forced" to use particular rules 
if they want to remain compatible with their counterparties. 

3. Scaling and "Decentralization" 

3.1. A Note on Decentralization 

The term decentralization is used frequently when discussing modern replicated state ma-
chines. However, there is no single, accepted defnition of what decentralization means. As 
a result, its use often confounds more than clarifes. It is worth investigating a few of the 
many proposed defnitions of decentralization in order to grasp the diversity of views. 

Balaji Srinivasan and Leland Lee propose a metric they call the (minimum) Nakamoto Co-
effcient to measure the decentralization of a system [51]. The idea behind this metric is to 
frst create a list of the essential subsystems of the decentralized system under analysis, de-
termine the number of entities that an adversary would need to compromise in order to take 
effective control over each subsystem, and take the minimum as a measure of the system’s 
decentralization. The system is more decentralized when more entities must be corrupted 
to control an essential subsystem. 

There are many plausible subsystems, though it is unclear which ought to be considered 
"essential." Subsystems may include the distribution of mining rewards, the number of ex-
changes, the volume traded on exchanges, the number of software clients, the number of 
developers per client, the number of full nodes being run (and their distribution by legal 
jurisdiction), the distribution of asset ownership, the fraction of users that hold their own 
private keys instead of delegating to a custodian, the fraction of users who validate the 
ledger with their own node instead of trusting another entity, the number of businesses run-
ning economically signifcant nodes (i.e., who validate many incoming transactions), the 

28 



NIST IR 8460 ipd 
April 2023 

1286 

1287 

1288 

1289 

1290 

1291 

1292 

1293 

1294 

1295 

1296 

1297 

1298 

1299 

1300 

1301 

1302 

1303 

1304 

1305 

1306 

1307 

1308 

1309 

1310 

1311 

1312 

1313 

1314 

1315 

1316 

1317 

1318 

1319 

1320 

1321 

1322 

1323 

1324 

1325 

number and distribution of hardware manufacturers in proof-of-work systems, the number 
of mining pools, and so on. 

In addition to the challenge of determining which of these subsystems are essential, it can 
be diffcult to determine what the proper threshold of corrupted entities would need to be for 
some subsystems. For instance, it is unclear what percentage of exchange volume would 
suffce to consider that subsystem captured or centralized. In addition, reasonable people 
may disagree on the benefts of having multiple clients instead of a single client with more 
developer attention. In other cases, the subsystems may take on a different signifcance 
depending on the network in question. For example, the concentration of coin ownership is 
more important in a proof-of-stake network than in a proof-of-work network. If the wealth 
within a system is highly concentrated, then a government or other powerful adversary may 
only need to target a few large holders in order to acquire a large enough fraction of the 
asset and cause a market crash. 

Paul Sztork proposed an alternative measure of decentralization: the cost of node-option 
(CONOP) [52]. He points out that "[t]he process of ’money’ is ’knowing you’ve been 
paid’" and that a process is more decentralized when it happens more locally. As a result, 
he says that "’decentralized money’ is the local cost of knowing you’ve been paid: the 
cost of running a full node." This can be generalized to arbitrary computation possible in 
state machine replication: decentralized computation can be measured by the cost required 
to validate the correctness of computations. Actually running a fully validating node is 
not strictly necessary for everyone. Instead, the relevant consideration is the cost required 
to start and operate a node should they desire to do so. Ultimately, CONOP is intuitive 
because if it is extremely easy to set up and run a full node, the network remains diffcult to 
shut down or prevent access to, even if there are not many nodes running at any given time. 
On the other hand, if only a handful of entities have the resources to run a fully validating 
node, the system can easily be shut down or succumb to undue infuence. In this case, most 
individuals would be required to trust a third party and would not be able to locally verify 
for themselves whether the payment or computation happened correctly. 

A fnal decentralization metric proposed in [53] is (m,ε,δ )-decentralization. This is de-
fned as a state of the system such that at least m participants run nodes that participate in 
consensus, and "the ratio between the total resource power of nodes run by the richest and 
δ -th percentile participants is less than or equal to 1 + ε" [53]. Since this metric is only 
concerned with the centralization of the Sybil-resistance aspect of the protocol, it is more 
constrained in scope than the Nakamoto Coeffcient or CONOP. The intuition for this met-
ric is that it is preferable to have a large number of participants involved in consensus, and 
the participants ought to have a roughly even distribution of power. The paper derives four 
necessary conditions for a system to have "full decentralization" according to the authors’ 
conception of the term: 

1. Any nodes with resource power must earn rewards (and there must be at least m of 
them). 

29 



NIST IR 8460 ipd 
April 2023 

1326 

1327 

1328 

1329 

1330 

1331 

1332 

1333 

1334 

1335 

1336 

1337 

1338 

1339 

1340 

1341 

1342 

1343 

1344 

1345 

1346 

1347 

1348 

1349 

1350 

1351 

1352 

1353 

1354 

1355 

1356 

1357 

1358 

1359 

1360 

1361 

1362 

1363 

2. Participants should fnd it more proftable to run their own nodes than to delegate 
their resources to another participant. 

3. It should not be more proftable for an entity to run several nodes than to run a single 
one. 

4. "[T]he ratio between the resource power of the richest and δ -th percentile nodes 
converges in probability to a value of less than 1 + ε” [53]. That is, the advantage of 
the most well-resourced node is bounded. 

Crucially, the third condition is not possible without a trusted third party, leading to the pa-
per’s conclusion that "full decentralization" is impossible in permissionless systems. With-
out some form of trusted identifcation authority, it is unclear how to design a system where 
it costs more for one entity to run multiple nodes than it costs for multiple individuals to 
each run their own node. 

Each of these conceptions of decentralization highlights a different but important aspect of 
system security and architecture. The Nakamoto Coeffcient highlights the fault tolerance 
of the system in an intuitive way: a system is more decentralized when it can tolerate a 
greater number of faulty or malicious entities. Practical challenges to using this as a metric 
include a lack of clarity regarding which subsystems should be included and the resultant 
diffculty of comparing different systems when their component subsystems differ in im-
portance. In contrast, CONOP has nothing to do with fault tolerance. Instead, CONOP 
highlights the barriers to entry for users to be able to take advantage of the security proper-
ties of the distributed system. In this conception, a more decentralized system is one where 
a greater number of users have the ability to fully validate the replicated state machine – 
that is, to be an equal peer in a peer-to-peer network rather than dependent on an external 
trusted party. Finally, (m,ε,δ )-decentralization highlights the impact that wealth or re-
source inequalities outside of the system have on the relative power of participants within 
the system. In an open, permissionless system, these inequalities are likely to be refected 
in the distribution of the Sybil-resistance resource. In this case, a system is more decentral-
ized when the resource disparities between more powerful nodes and less powerful ones 
are smaller. 

In this document (NIST IR 8460), the term "decentralization" is used sometimes but spar-
ingly. It does not refer to any specifc meaning above but should be clear based on the 
context in which it is written. 

3.2. Full Nodes and Light Clients 

There are multiple distinct operating modes that a user might choose when interacting with 
a replicated state machine. These modes can be broken into two categories: full nodes, 
which process and validate the complete historical ledger of transactions, and light clients, 
which may validate a portion of the ledger or a subset of the rules but require placing some 
amount of trust in other entities. 

30 



NIST IR 8460 ipd 
April 2023 

Fig. 5. Simplifed Payment Verifcation (SPV). A light client with a chain of block headers can 
verify the inclusion of Transaction 3 in Block 1 when provided with Hash2, Hash01, and 
Hash4567. 

1364 

1365 

1366 

1367 

1368 

1369 

1370 

1371 

1372 

1373 

1374 

1375 

1376 

1377 

1378 

1379 

1380 

1381 

1382 

1383 

1384 

1385 

1386 

1387 

1388 

There are different types of light clients, but the original one proposed in the Bitcoin white 
paper uses Simplifed Payment Verifcation (SPV) [1]. SPV clients connect to full nodes 
but do not download the entire blockchain. Instead, they only maintain the chain of block 
headers for the best chain they are aware of (in Bitcoin and similar systems, this is the chain 
with the most cumulative proof of work). Because the block header contains a Merkle root 
that commits to every transaction contained in the corresponding block, it is possible to 
create proofs of transaction inclusion that scale logarithmically with the number of trans-
actions in the block. This is shown in Figure 5. While this process does not demonstrate 
that the transaction is valid, it proves that the transaction is included in the canonical chain 
if connected to at least one honest full node. This implies that the transaction can be trusted 
to be executed and not reverted if the adversary is beneath the security threshold of the 
system and the block has enough confrmations. Alternatively, it shows how much work 
would be required to revert the transaction and perform a double-spend. 

The full nodes that serve the SPV client need to know which transactions the client cares 
about in order to provide a Merkle inclusion proof for it. To this end, the SPV client 
constructs a Bloom flter – a compact, probabilistic data structure that allows one to test 
whether an item is a member of a set – that includes the receiving addresses that the user 
wants monitored. The Bloom flter includes false positives, such that some of the addresses 
are not ones that the client cares about. In theory, this should substantially improve pri-
vacy for SPV users compared to simply providing a list of addresses. In practice, however, 
Bloom flters provide almost no additional privacy for light clients, and users should un-
derstand that they are – in essence – telling a service provider about all of their transactions 
(and possibly associating them with an IP address) [54]. Perhaps for this reason, many 
light clients actually do simply provide a list of addresses to a wallet service provider and 
completely sacrifce transaction privacy. 

31 



1390

1395

1400

1405

1410

1415

1420

1425

1389 

1391 

1392 

1393 

1394 

1396 

1397 

1398 

1399 

1401 

1402 

1403 

1404 

1406 

1407 

1408 

1409 

1411 

1412 

1413 

1414 

1416 

1417 

1418 

1419 

1421 

1422 

1423 

1424 

1426 

1427 

1428 

1429 

NIST IR 8460 ipd 
April 2023 

An alternative model of light client improves privacy at the cost of signifcantly increased 
bandwidth (though still substantially less than a full node). Compact block flters are com-
pressed representations of the contents of blocks using Golomb-Rice coding and allow a 
light client to check whether the block contains transactions that are relevant to the client 
[55, 56]. If so, the light client downloads the full block in order to extract the relevant trans-
action. In addition to downloading a subset of complete blocks, the flters impose greater 
resource requirements than SPV but scale better for the full nodes that serve data. For each 
block, a full node only needs to create the flter once and can send the same flter to any 
light client who asks. In contrast, each SPV user provides its own Bloom flter, and the full 
node needs to perform considerable disk I/O to check for transactions for each of them. 

Regardless of the method used, light clients have degraded security properties compared to 
full nodes, which is the price paid for convenience and low resource usage. First, as men-
tioned previously, light clients reduce user privacy compared to full nodes. Even compact 
block flters reveal the subset of blocks in which the user is the recipient of a transaction. 
Second, nothing prevents the full node server from lying by omission and failing to tell the 
light client that they have received a transaction. While this can be mitigated by connecting 
to multiple full nodes, many wallets connect to only a single server, and there is a risk that 
the full nodes are coordinating a Sybil attack and are not independent. Light clients need 
to trust that there are available sockets to connect to these honest full nodes, which full 
nodes lack an incentive to provide and which has not always been the case in practice [57]. 
Compact block flters also mitigate the problem of lying by omission by allowing the light 
client to check the validity of the flter itself to see if the full node is lying. Third, light 
clients are more susceptible to certain attacks, like the vector76 attack described in Section 
10.3. 

More importantly, light clients have no way of knowing whether the chain that they are 
following is valid in the frst place. Light clients do not maintain the full system state that 
would be required to validate transactions. As a result, light clients can be deceived by 
adversaries in ways that full nodes cannot. The only thing that light clients have assurance 
on – –assuming that they are connected to at least one honest full node is that they are aware 
of the chain that satisfes the network’s chain selection rule, ignoring the requirement that 
the chain be valid. As a result, light clients can be deceived into trusting an invalid state 
if the security threshold of the system is violated temporarily, if the adversary does not 
exceed the threshold but gets lucky, or if the adversary can partition the victim from the 
rest of the network. As a result, a miner can double spend a limitless amount of funds 
against a light client, whereas they can only double spend what they already own against 
a full node. Similarly, light clients do not recognize hard forks if the fork does not change 
the semantics of the block header and may, therefore, be "forced" to accept a rule change 
that the user of the light client would not otherwise approve of. 

A possible solution to this issue is fraud proofs, which are "alerts" that a full node can 
provide to a light client to convince the light client that a block is invalid. There are many 
subtle challenges to implementing fraud proofs, which are elaborated on in Section 15.5. 

32 



1430

1435

1440

1445

1450

1455

1460

1465

1431 

1432 

1433 

1434 

1436 

1437 

1438 

1439 

1441 

1442 

1443 

1444 

1446 

1447 

1448 

1449 

1451 

1452 

1453 

1454 

1456 

1457 

1458 

1459 

1461 

1462 

1463 

1464 

1466 

1467 

NIST IR 8460 ipd 
April 2023 

However, even with a working fraud proof implementation, an adversary may still be able 
to partition the light client, flter out fraud proof messages, and launch the same attacks, 
which would not work against a full node. 

In short, while running a full node may be dramatically more resource-intensive than a light 
client, there are clear benefts. This includes substantially better privacy and requiring far 
less trust in third parties to be honest about the state of the ledger. 

3.3. Scalability Challenges and Block Sizes 

One of the most frequently discussed issues in the blockchain community is the scalability 
of the underlying technology. In particular, debates about the appropriate means to scale 
the Bitcoin network led to the high-profle August 2017 hard fork that created a new asset 
– Bitcoin Cash – with a larger maximum block size than Bitcoin proper. New replicated 
state machine projects routinely advertise themselves as being highly scalable. Usually, the 
claim is that a project can handle more transactions per second (TPS) than its competitors. 

Scalability in the context of replicated state machines can mean several different things. 
As mentioned above, it is often used in reference to increasing the system’s maximum 
transaction throughput, which is usually measured in TPS. Another scalability metric is 
the latency of transaction commitment, where a more scalable system has lower latency. 
Finally, it can also be used in reference to the total number of validators able to participate 
in consensus, such that a more scalable system is one that can function with a greater 
number of participating validators. 

Some of the confusion regarding scalability is a result of these different meanings of the 
term. This problem is greatest when comparing a permissioned system to a permission-
less one based on TPS but can confuse a comparison between two permissionless systems 
as well. Despite being common, these comparisons are unscientifc. In a permissioned 
network, one can fx the number of validators – n – of which f are byzantine, defne a stan-
dard transaction, measure TPS in a controlled environment, and make comparisons to other 
permissioned systems while holding the number of validators constant (as well as other en-
vironmental factors). In a permissionless network, n naturally fuctuates. Furthermore, it 
is often the case that systems that scale to a larger number of validators are not capable of 
tolerating as high a level of throughput. That is, there is a trade-off between maximizing n 
and TPS, and increasing n is just as legitimate of a scaling goal as increasing TPS. There-
fore, TPS does not provide a scientifc way of comparing permissionless networks where n 
is not constant. 

There is no single, correct answer to how many consensus-participating nodes a system 
should have, and the trade-offs between types of scalability imply that this is highly sub-
jective. The answer depends on the goals of the system designer, the system’s architecture, 
and the preferences of the system’s users. In a permissioned system, the existence of more 
replicas implies that more organizations can participate in the consortium, so the relevant 

33 



1470

1475

1480

1485

1490

1495

1500

1505

1468 

1469 

1471 

1472 

1473 

1474 

1476 

1477 

1478 

1479 

1481 

1482 

1483 

1484 

1486 

1487 

1488 

1489 

1491 

1492 

1493 

1494 

1496 

1497 

1498 

1499 

1501 

1502 

1503 

1504 

1506 

1507 

1508 

NIST IR 8460 ipd 
April 2023 

number likely relates to the structure of the industry in question. Because the replicas are 
run by organizations that may be able to afford expensive hardware and bandwidth, permis-
sioned systems can focus more on maintaining high TPS while assuming that substantial 
resources are provisioned at each node. 

Permissionless systems are more complicated, in part because it is common to have fully 
validating nodes that do not directly participate in consensus (i.e., by mining or staking). In 
a certain sense, the only node that one needs to care about is their own as long as the security 
threshold of the system is not violated. However, the network itself likely requires hundreds 
of nodes to provide suffcient diversity in terms of legal jurisdiction and geographic region 
to make it challenging for a moderately powerful adversary to disrupt the network. At the 
same time, many thousands of nodes are likely needed in order to serve the population of 
light clients and make the network useful to a large number of people. In permissionless 
networks, the intention is to allow anyone to participate anonymously. As such, it must 
target users with more average-to-worst-case hardware and bandwidth. 

Running a full node requires a number of computing resources, some of which present con-
siderable scaling challenges. Consider the job of a full node in a typical blockchain system, 
such as Bitcoin. To join the network, a new node must download the entire blockchain his-
tory all the way back to the genesis block. Then the entire chain must be fully validated 
(although there are some possible shortcuts that can reduce security in order to improve 
initial synchronization time) to build and evolve the system state as it goes. This usually 
involves checking that at least one digital signature per transaction, as well as checking 
that it is consistent with the system state, which is held either in memory or on disk. Upon 
synchronizing with the network, the node must constantly verify transactions and blocks as 
they are gossiped over the network while relaying this data over several network connec-
tions as quickly as possible. 

The historical blockchain can be stored on a hard disk drive (HDD) because what occurred 
in the past does not need to be accessed frequently. However, enough nodes need to main-
tain this data in order to serve it to new nodes who join the network and want to perform 
full validation. The history does not require quick access, but the state of the system does 
(in Bitcoin, this is the UTXO set). In order to validate transactions and blocks as quickly as 
possible, the state should be stored entirely in system memory. When this is not possible, 
some of the state must reside in more persistent storage. However, frequently accessing 
this state can result in a signifcant disk I/O burden. For example, Ethereum’s system state 
is tens of gigabytes, making it all but impossible to run a node without a solid state drive 
(SSD), which provides quick random access to the system state. A node using an HDD 
is unlikely to ever remain in sync with the rest of the network. Unfortunately, RAM is 
expensive, and the state size can – in the worst case – expand as quickly as the maximum 
block size. To verify transactions, a node will heavily utilize a CPU. Even the simplest 
transactions almost always require verifying a digital signature, which is a fairly expensive 
operation. Worse, specially constructed transactions can be extremely time-consuming to 
validate (see Section 19.2 for a more detailed description of this issue), and in permission-

34 



1510

1515

1520

1525

1530

1535

1540

1545

1509 

1511 

1512 

1513 

1514 

1516 

1517 

1518 

1519 

1521 

1522 

1523 

1524 

1526 

1527 

1528 

1529 

1531 

1532 

1533 

1534 

1536 

1537 

1538 

1539 

1541 

1542 

1543 

1544 

1546 

1547 

1548 

NIST IR 8460 ipd 
April 2023 

less systems, it is necessary to consider worst-case algorithmic complexity to avoid attacks. 
Finally, this all takes place over a network, and suffcient networking resources must be de-
ployed in order to remain in consensus. Bandwidth is important for all nodes (upstream 
bandwidth in particular), and latency is critically important for miners. The node must be 
connected to several other full nodes to exchange data and may also need connection slots 
and other resources to serve light clients. 

Perhaps the greatest scaling challenge is with the initial blockchain download and syn-
chronization (IBD), which inherently becomes a bigger and bigger problem over time. In 
Bitcoin, IBD could well be impractical today were it not for a custom cryptographic library 
– libsecp256k1 – that verifes signatures dramatically faster than OpenSSL, which was used 
before [58]. After exhausting the low-hanging fruits of performance improvements, IBD 
performance will likely take longer and longer. This can create a potential DevOps prob-
lem, as it is typical to resynchronize a node any time validation code changes. If it takes 
a month to synchronize, development will be signifcantly hampered. Far worse, if IBD 
becomes impossible or suffciently challenging, the free entry condition of permissionless 
networks may be violated. 

Performance is especially important for miners and, more broadly, those who participate in 
any synchronous consensus protocol. The latency of block propagation is a major contrib-
utor to the centralization of power among consensus-participating nodes and is discussed 
in detail in Section 10.2.1. In short, larger miners are more likely to win in block "races" 
when two miners mine blocks at around the same time. With higher latency – such as 
that caused by larger blocks – more forks will occur, providing the larger miner with dis-
proportionate rewards over time. Some argue that this is acceptable or even desirable and 
represents a healthy competition that results in miners upgrading their hardware and pro-
visioning greater bandwidth access, which can lead to an increase in TPS. Bitcoin Core 
contributor Peter Todd responded to this by pointing out that requiring miners to dedicate 
more resources to survive actually reduces decentralization and makes those TPS worth 
less: 

What’s tricky is designing a Bitcoin protocol that creates the appropriate in-
centives for mining to remain decentralized, so we get good value for the large 
amount of money being sent to miners. I’ve often likened this task to building 
a robot to go to the grocery store to buy milk for you. If that robot doesn’t have 
a nose, before long store owners are going to realise it can’t tell the difference 
between unspoilt and spoilt milk, and you’re going to get ripped off paying 
for a bunch of spoiled milk. Designing a Bitcoin protocol where we expect 
"competition" to result in smaller miners in more geographically decentralized 
places to get outcompeted by larger miners who are more geographically cen-
tralized gets us bad value for our money. Sure it’s "self-correcting", but not in 
a way that we want. [59] 

Block propagation latency is not the only incentives-related factor that can lead to cen-

35 



1550

1555

1560

1565

1570

1575

1580

1585

1549 

1551 

1552 

1553 

1554 

1556 

1557 

1558 

1559 

1561 

1562 

1563 

1564 

1566 

1567 

1568 

1569 

1571 

1572 

1573 

1574 

1576 

1577 

1578 

1579 

1581 

1582 

1583 

1584 

1586 

1587 

1588 

1589 

NIST IR 8460 ipd 
April 2023 

tralization in the absence of a suffciently small maximum block size. For instance, in a 
system with no single hard limit on the maximum block size (where miners communicate 
their own desired limits instead), consensus becomes unstable and can lead to lengthy forks 
that beneft miners of larger blocks at the expense of those who can only process smaller 
blocks [60]. More to the point, miners who are able to handle larger blocks can form a "car-
tel" of sorts that increases the block size and makes smaller miners unproftable [60]. A 
similar cartel-forming result is likely to hold if the maximum block size is suffciently high, 
even if there is agreement on it. The break-even cost for a miner to include a transaction 
in a block decreases as the mining pool size increases because orphan risk decreases. As a 
result, larger pools will be able to process more transactions and collect more transaction 
fees from users, forcing smaller miners out of business as the mining diffculty adjusts. 

Another major problem with increasing the on-chain throughput of a permissionless system 
is that miners become more and more incentivized to completely skip validation as the 
burden of validation increases. Miners would prefer to just assume that a block they receive 
is valid and start mining on top of it, which will provide a proftability advantage by starting 
work on the next block more quickly. This is especially signifcant if transaction fees are not 
a major portion of the miner reward, which is more likely to be the case with larger block 
sizes (an increased supply of block space leads to a decrease in the price of transaction 
inclusion). Unfortunately, this can result in (portions of) the network accepting invalid 
blocks, which happened on the Bitcoin network on July 4th, 2015 [61]. Six blocks were 
built on top of an invalid block because enough mining pools failed to validate blocks 
they received at the time. While full nodes merely experienced a slowdown in the growth 
of the honest chain, light clients could have been subject to attacks during that period, 
depending on which nodes they were connected to. If mining nodes had not been the only 
ones misconfgured or if non-mining full nodes were not the dominant type of node on the 
network, the situation could have been catastrophic, as light clients would have followed 
the invalid chain by default. 

A potential solution to this problem is the idea of fraud proofs, which was introduced in 
the previous section (and detailed in Section 15.5). If there were a way for full nodes to 
send an alert to light clients that proved that a block was invalid, light clients could be 
prevented from following an invalid chain. Unfortunately, even if fraud proofs could be 
easily deployed, they would not be a panacea. In order to construct a fraud proof, a full 
node needs access to the data that proves fraud. However, a malicious miner can construct 
an invalid block with an otherwise valid block header and simply refuse to publish the 
fraudulent part of the block. Until the fraudulent data is made available, light clients will 
follow the invalid chain if they are aware of it. In addition, light clients need to actually 
receive and validate the fraud proof, but this may be prevented by a Sybil attack. If the 
network is suffciently centralized or light clients do not connect to many different full 
nodes, an explicit Sybil attack may not even be necessary. 

While fraud proofs would no doubt be benefcial, it is concerning to consider what might 
happen socially if fraud is not immediately detected, especially in a high-TPS system. If 

36 



1590

1595

1600

1605

1610

1615

1620

1625

1630

1591 

1592 

1593 

1594 

1596 

1597 

1598 

1599 

1601 

1602 

1603 

1604 

1606 

1607 

1608 

1609 

1611 

1612 

1613 

1614 

1616 

1617 

1618 

1619 

1621 

1622 

1623 

1624 

1626 

1627 

1628 

1629 

NIST IR 8460 ipd 
April 2023 

there are not "enough" full nodes (where "enough" is ill-defned), it becomes far more 
challenging to coordinate a response to fraud. Important ecosystem participants may be 
able to force undesirable rule changes onto the network and suppress fraud proofs for long 
enough that substantial commerce may occur on the fraudulent chain. If, say, a day passed 
before the fraud was noticed, the community would need to roll back a day’s worth of 
honest commerce to correct the fraud, which might be suffciently damaging on its own 
that users simply decide to follow the invalid chain anyway. To roll back the chain and 
continue using the old rules, the community would need to quickly bootstrap a new set of 
nodes capable of handling the high throughput of the chain. If this task is too challenging, 
then the fraud is likely to persist. 

A possible conclusion that one can draw from this is that the benefts of permissionless 
systems may fail to hold at suffciently high TPS. When resource requirements become 
prohibitive for typical end users, the population of full nodes will decrease and may come 
to be dominated by a handful of large businesses. These few nodes may end up running 
on centralized cloud services and create a strong risk of correlated failures that hamper the 
availability of the system. Market concentration also makes the system more susceptible to 
censorship or coercive rule changes imposed by external actors, such as governments. As 
a result, a high-throughput permissionless chain may end up losing the free entry condition 
described in Section 1.6. With few synchronized nodes, there would be little incentive for 
them to share the blockchain with new nodes hoping to join the network. In fact, there 
would be strong reasons for them to avoid doing so: not only would this impose a signif-
cant bandwidth cost, but preventing new nodes from synchronizing is an effective way to 
prevent business competitors from arising. Further, new nodes themselves would have a 
very challenging time getting synchronized even if current nodes did serve the blockchain. 
They would need to pay for their own data center provisioning for heavy bandwidth and 
computation. It is no stretch of the imagination to think that, at this point, identifcation 
requirements could be imposed on validators, and the system could devolve into a de facto 
permissioned network. 

Despite all of these risks and problems, the scalability potential for permissionless ledgers 
is not all bad. Even if block sizes must be constrained, the maximum block size need not 
remain fxed forever (though a hard fork is required in order to increase it). As the under-
lying computing resources needed to run a node improve and become cheaper over time, 
greater throughput becomes possible at the same cost for full validation. In addition, the 
more (publicly reachable) full nodes there are, the cheaper it becomes to run one. This 
is because much of the work that a full node performs involves serving others (including 
IBD), relaying blocks and transactions, and serving light clients. More nodes help spread 
the burden of these resource-hogging functions. Better networking subprotocols can be 
deployed in order to reduce the latency of block propagation and its centralizing effects. 
Some of these protocols are already in use and described in Section 10.2.1. For some ap-
plications, scalability can be improved by eschewing a total ordering for transactions, such 
as with some DAG-based protocols or the reliable broadcast payment schemes mentioned 

37 



NIST IR 8460 ipd 
April 2023 

1631 

1632 

1633 

1634 

1635 

1636 

1637 

1638 

1639 

1640 

1641 

1642 

1643 

1644 

1645 

1646 

1647 

1648 

1649 

1650 

1651 

1652 

1653 

1654 

1655 

1656 

1657 

1658 

1659 

1660 

1661 

1662 

1663 

1664 

1665 

1666 

1667 

1668 

1669 

1670 

1671 

near the end of Section 1.3. Payment channels and state channels can be used to reduce the 
amount of data stored on-chain and the bandwidth used to distribute such data, as described 
in Section 18.2.1. These technologies allow transactions and smart contracts to be executed 
by only the participants involved instead of the entire network. There are a number of ways 
to further scale computation, such as adding concurrency to the state machine (see Section 
18.1.1). Techniques such as optimistic rollups allow most nodes to skip the execution of 
transactions and rely on rationality assumptions, while zk-rollups allow nodes to skip exe-
cution and instead check an easy-to-verify proof of correct execution (see Section 18.2.2). 
Sharding may be used to distribute the load of computation, bandwidth, and storage among 
smaller sets of validating nodes, as described in Section 15. Clever use of cryptographic 
accumulators can reduce the system state to a few kilobytes or less at the cost of increased 
bandwidth consumption, which may be able to resolve the problem of unbounded state 
growth. An example of this is the Utreexo proposal, which relies on dynamic hash-based 
accumulators [62]. 

The most signifcant problem is bootstrapping a new node with the IBD process. The sys-
tem can support a greater amount of activity without imposing a further burden on the 
initial synchronization process to the extent that many of the above scaling technologies 
can reduce the demand for block space by keeping transactions off-chain, as is done with 
payment channels and rollups. Technologies like Utreexo that keep the state size small can 
improve the synchronization process by allowing it to happen entirely in RAM, obviating 
the need for slower disk queries. The Mimblewimble protocol, described in Section 18.1, 
can make the burden of IBD scale with the state size rather than the complete transaction 
history, which can be a signifcant difference in practice. More exotic cryptographic con-
structions like recursive SNARKs can be used to make IBD near instant, as is done in the 
Mina protocol, which maintains a constant-sized blockchain of less than 22 KB [63]. 

There are other ways to mitigate the burden of IBD, such as by having either the node 
software or blockchain include commitments to the system state. While this does not fun-
damentally solve the IBD scaling problem, it allows new nodes to become useful more 
quickly, though at a lower security level that is roughly on par with light clients. For exam-
ple, some Ethereum clients have a "Fast Sync" mode that takes advantage of state commit-
ments contained in block headers [64]. Fast Sync downloads the full blockchain but skips 
the execution of transactions prior to a specifed launch block, assuming that transaction 
execution has been performed correctly up to that point. The node then contacts its peers 
to request a snapshot of the system state immediately prior to the launch block and verifes 
that the hash of the state matches the state commitment in the block header at that point. 
Afterward, the node performs standard IBD from the launch block toward the chain tip and 
executes transactions normally. 

The "assumeutxo" proposal for Bitcoin is similar but with two major differences [65]. First, 
Bitcoin does not commit to the system state anywhere in the ledger, so a hash of the state is 
hard-coded into the client software for a block height that is suffciently far in the past that a 
signifcant amount of work has been proven since that block height. The node must acquire 

38 



NIST IR 8460 ipd 
April 2023 

1672 

1673 

1674 

1675 

1676 

1677 

1678 

1679 

1680 

1681 

1682 

1683 

1684 

1685 

1686 

1687 

1688 

1689 

1690 

1691 

1692 

1693 

1694 

1695 

1696 

1697 

1698 

1699 

1700 

1701 

1702 

1703 

1704 

1705 

1706 

1707 

the state snapshot itself out of band. Second, while completing the synchronization from 
the snapshot’s block height to the chain tip, a background process starts from the genesis 
block and executes the complete blockchain up to the assumed valid point to ensure that the 
state is correct, at which point the security model becomes identical to that of a full node. 

4. Practical Byzantine Fault Tolerance (PBFT) 

The celebrated Practical Byzantine Fault Tolerance (PBFT) algorithm by Castro and Liskov 
[4] was the frst state machine replication algorithm to possess good enough performance 
to be used in the real world. Because many other permissioned consensus algorithms have 
a similar structure to PBFT, this section will describe the system in its entirety. The algo-
rithm is secure under the partially synchronous network model and is optimally resilient, 
remaining secure against f faulty processes so long as n ≥ 3 f + 1. Roughly, the system 
works as follows: 

1. A client makes a request to the leader/primary replica. 

2. The primary broadcasts the request to the secondary replicas. 

3. Replicas execute the request and reply to the client with the result. 

4. The client accepts the result after receiving f + 1 replies from different replicas with 
the same result. 

In more detail, a client begins with a REQUEST message to the primary with the client 
ID, the command issued, and a timestamp. When the primary receives the request, they 
broadcast it and initiate a 3-phase commit (3-PC) process with the rest of the replicas: 
pre-prepare, prepare, and commit. The frst two phases – pre-prepare and prepare – totally 
order the requests that clients sent in the same view even if the primary replica is faulty. The 
second two phases – prepare and commit – guarantee that committed requests are totally 
ordered across different views. The normal-case operation of the algorithm can be seen in 
Figure 6 and works as follows: 

1. Pre-prepare: The primary broadcasts a signed PRE-PREPARE message with a se-
quence number, a view number, and a cryptographic digest of the request message. 
Replicas accept the message if the signature is valid, the digest matches the message, 
the view is correct, and the sequence number does not match an already accepted 
sequence number in that view. Because this phase relies solely on the primary and 
lacks redundancy, packet loss during this phase has the greatest impact on transaction 
confrmation latency [66]. 

2. Prepare: If a replica accepts a PRE-PREPARE message, it broadcasts a signed PRE-
PARE message to the rest of the replicas, which includes the view number, the se-
quence number, the request digest, and the replica’s ID. Other replicas accept this 
message if the signature is valid, the sequence number is correct, and the view num-

39 



NIST IR 8460 ipd 
April 2023 

Fig. 6. PBFT normal case operation. In this case, C is the client, replica 0 is the primary, and 
replica 3 is faulty. [4] 

1708 

1709 

1710 

1711 

1712 

1713 

1714 

1715 

1716 

1717 

1718 

1719 

1720 

1721 

1722 

1723 

1724 

1725 

1726 

1727 

1728 

1729 

1730 

1731 

1732 

1733 

1734 

ber matches the replica’s current view. A given replica is said to be prepared if they 
have seen a REQUEST, a corresponding PRE-PREPARE, and 2 f + 1 PREPARE 
messages from different secondary replicas that match the PRE-PREPARE (includ-
ing its own). A replica that is prepared on a given request is also sometimes said to 
be locked on that request. Once locked on a request in a given view, a replica will 
only vote for that request in later views unless it "unlocks" from the request, which 
would occur if it fnds out that 2 f + 1 replicas are not locked on that request in that 
view or higher. This unlocking occurs when entering the view change subprotocol, 
as described in Section 4.1. 

3. Commit: When a replica is prepared, it broadcasts a signed COMMIT message 
that includes the view and sequence numbers, the replica ID, and the request di-
gest. Replicas accept COMMIT messages if the signature is valid and the additional 
data matches. A replica is said to be committed-local if it is prepared and has ac-
cepted 2 f + 1 COMMITs from different replicas (including itself) that match the 
PRE-PREPARE for a given request. A request is said to be committed if f + 1 non-
faulty replicas are prepared on that message. The commit phase enforces that if a 
non-faulty replica is committed-local on a given request, then the request is commit-
ted globally. A set of 2 f +1 COMMIT messages from different replicas is sometimes 
called a commit certifcate or quorum certifcate. 

Replicas execute the request when they are committed-local on it and when their state 
refects the sequential execution of all requests with lower sequence numbers. Replicas 
respond to the client with a REPLY message with the current view number, the timestamp 
of the request, the replica ID, and the result of executing the operation. The client accepts 
after seeing f + 1 matching replies from distinct replicas. This typical execution of the 
protocol has communication complexity of O(n2) when the proposer is honest and the 
network is synchronous because every replica must communicate with every other replica. 

The protocol described above creates an append-only totally ordered log of client-issued 

40 



1735

1740

1745

1750

1755

1760

1765

1770

1736 

1737 

1738 

1739 

1741 

1742 

1743 

1744 

1746 

1747 

1748 

1749 

1751 

1752 

1753 

1754 

1756 

1757 

1758 

1759 

1761 

1762 

1763 

1764 

1766 

1767 

1768 

1769 

1771 

1772 

1773 

NIST IR 8460 ipd 
April 2023 

transactions that grows without bound. For performance reasons, it would be benefcial 
if replicas could discard old transactions instead of storing them permanently. Further, if 
a problem arises that causes a replica to fall out of sync with other replicas, it would be 
desirable to have a recovery procedure to acquire the missing state or lost messages. A 
checkpointing subprotocol is used to safely delete old transactions while creating a "proof 
of correctness" that allows a replica to trust that the state provided during recovery is the 
agreed-upon state of the remainder of the honest replicas. For safety, replicas cannot delete 
messages until they know that the associated transactions have been executed by at least 
f + 1 honest replicas and that it can prove this during the view-change subprotocol. 

A checkpoint is generated periodically, such as after a constant number of requests have 
been executed. When a replica generates a checkpoint, it broadcasts a signed CHECK-
POINT message that includes the most recent sequence number and a digest of the state. 
Replicas store these messages until they receive 2 f + 1 CHECKPOINT messages for the 
same sequence number and digest, at which point the checkpoint is considered stable, and 
these 2 f + 1 messages constitute a proof of correctness for the checkpoint. When a replica 
has a proof of correctness for a checkpoint, the message log for requests up to that sequence 
number can be discarded. This method involves taking a snapshot of the system state. The 
system may halt for a few seconds while replicas save their state and stop processing re-
quests. This can be mitigated by having replicas stagger when they take state snapshots 
[67]. 

4.1. PBFT View Change 

The view change subprotocol provides liveness by allowing the state machine to make 
progress even when the leader is faulty. At most, liveness can be impeded by f faulty 
primaries in a row. The subprotocol ensures that replicas agree on the sequence number of 
requests that commit locally in different views at different replicas. 

Secondary replicas start a timer whenever they receive a request (and double the timer 
length if the view change fails for view v + 1 before attempting another view change to 
v+2). If the timer expires, the replica initiates a view change and stops accepting messages 
within the old view. It sends a signed VIEW-CHANGE message with the new view number, 
the sequence number of the last stable checkpoint and its correctness proof, and the set of 
valid PRE-PREPARE/PREPARE messages for requests that have not been committed yet 
in the old view. When the new presumptive primary receives this message from 2 f + 1 
replicas, it broadcasts a signed NEW-VIEW message with the new view number, the set 
of valid VIEW-CHANGE messages received, and a set of PRE-PREPARE messages with 
the new view number. At this point, the primary moves to the new view, and replicas 
accept the new view if the signature is valid, the view number is correct, and the set of 
PRE-PREPAREs is valid. The secondary replicas broadcast PREPARE messages for each 
of these and move into the next view. 

If a replica receives f + 1 valid VIEW-CHANGE messages for views that are not the 

41 



1775

1780

1785

1790

1795

1800

1805

1810

1774 

1776 

1777 

1778 

1779 

1781 

1782 

1783 

1784 

1786 

1787 

1788 

1789 

1791 

1792 

1793 

1794 

1796 

1797 

1798 

1799 

1801 

1802 

1803 

1804 

1806 

1807 

1808 

1809 

1811 

1812 

NIST IR 8460 ipd 
April 2023 

replica’s current view, it will broadcast a VIEW-CHANGE for the lowest view in the set 
(whether its timer has expired or not) to prevent it from starting a new view change too late. 

The communication complexity of the view change subprotocol is O(n3). The cubic mes-
sage complexity comes from requiring the new primary to broadcast a NEW-VIEW mes-
sage with quadratic size that contains 2 f + 1 commit certifcates, where each commit cer-
tifcate contains 2 f + 1 messages. Because there can be up to f leader failures, even under 
synchrony, PBFT has worst-case complexity of O( f n3) or O(n4). More information on 
view change protocols can be found in Section 7.6. 

4.2. PBFT Security 

While rigorous security proofs are out of scope for this document, it is important to un-
derstand why algorithms like PBFT are secure, at least informally. PBFT has optimal 
resilience for a partially synchronous (or asynchronous) protocol, such that the number of 
replicas n ≥ 3 f + 1. If up to f replicas are faulty or have their messages delayed, an honest 
replica must be able to proceed to the next step of the protocol after having communicated 
with only n − f replicas. It is possible that those f missing replicas were actually honest, 
but network asynchrony has delayed their messages. This implies that f out of the n − f 
communicating replicas may in fact be faulty. Safety requires that a replica must hear from 
more honest replicas than faulty ones, so that n − 2 f > f , which implies that n > 3 f . 

Many BFT protocols make their security arguments based on Byzantine quorums [68] (a 
generalization of which is discussed in Section 7.5). The idea is that a set of replicas can 
be divided into a collection of subsets of replicas, called quorums, such that each pair of 
quorums intersects at a minimum of one honest replica. In theory, each quorum can act 
independently on behalf of the system, and quorum intersection guarantees that operations 
performed by distinct quorums maintain consistency. To see this, suppose two different 
transactions at the same position gain 2n 

3 votes (tx1 and tx2). Then a set of 2n 
3 distinct

replicas (Q1) voted for tx1, and another set of distinct replicas (Q2) voted for tx2. Then 
2n |Q1 ∩ Q2| ≥ + 2n n− 3 n = 3 . By assumption, fewer than n 
3 3 replicas are corrupt, so an

honest replica is in the set {Q1 ∩ Q2} and voted for both transactions at the same position. 
However, this is ruled out by the invariant that an honest replica will only vote for one 
transaction at any given position. 

Across multiple views, a locking mechanism provides safety at the end of the prepare 
phase. If tx1 is committed in a view, then a quorum of replicas must have locked on tx1 
in that view. If that quorum contains an honest replica that unlocks from tx1, then another 
quorum must be claiming to not be locked on tx1. The intersection of these two quorums 
contains at least one honest replica, but this honest replica would need to falsely claim that 
it is not locked on tx1, which is a contradiction. This demonstrates why 3-PC is necessary 
instead of 2-PC. A 2-phase commit would fail to achieve safety because a replica cannot 
guarantee that it will be prepared or locked by a suffcient number of honest replicas. That 
is, the replica would not know that f + 1 honest replicas are prepared until receiving 2 f +1 

42 



1815

1820

1825

1830

1835

1840

1845

1813 

1814 

1816 

1817 

1818 

1819 

1821 

1822 

1823 

1824 

1826 

1827 

1828 

1829 

1831 

1832 

1833 

1834 

1836 

1837 

1838 

1839 

1841 

1842 

1843 

1844 

1846 

1847 

1848 

1849 

NIST IR 8460 ipd 
April 2023 

votes in the commit step. Without this assurance, two different requests could be committed 
at the same sequence number, violating safety. In fact, the "delegated BFT" algorithm used 
in the NEO blockchain system was essentially a two-phase version of PBFT with safety 
violations across view changes, and fxing the system involved adding the commit step 
back in [69, 70]. 

As discussed earlier, PBFT’s liveness is ensured by the view change subprotocol. Liveness 
can be framed in terms of quorum availability, which requires a full quorum of 2 f +1 hon-
est replicas available to respond to an honest leader within a view. Assuming that message 
delays do not grow exponentially, quorum availability is achieved via three mechanisms: 

1. To avoid initiating a view change too quickly, replicas use a timer that grows ex-
ponentially with failed attempts at view changes. Exponential growth creates longer 
and longer periods in which replicas can synchronize their views and achieve quorum 
availability during a period of network synchrony. 

2. To avoid initiating a view change too late, after receiving f + 1 VIEW-CHANGE 
messages from other replicas, a replica will broadcast their own VIEW-CHANGE 
message even if the timer has not run out. This helps bring a lagging replica up to 
speed more quickly once they know at least one other honest replica wants to change 
views, and it prevents faulty replicas from forcing view changes too frequently. 

3. Faulty leaders cannot indefnitely hinder progress because there can only be faulty 
leaders for f views in a row at most. 

In PBFT, view changes only occur when leaders appear unresponsive or malicious to at 
least one honest replica. This has an interesting consequence for liveness in that transaction 
censorship cannot reliably be proven by a client. If a primary refused to order transactions 
from a particular client (or based on any other criteria), the client would be unable to prove 
this and force a view change. Therefore, despite formal liveness guarantees, it is possible 
for a primary to censor requests. 

A well-known, open-source PBFT library is BFT-SMaRt, which includes a slight change to 
the view change algorithm to make the system more modular [71]. Another implementation 
designed to be compatible with permissioned versions of Ethereum is called Istanbul BFT. 
However, the original version had both safety and liveness issues [72, 73], which led to an 
improved "IBFT 2.0" [74] upon being fxed. An alternative fxed IBFT is the one deployed 
in the Quorum system [75]. 

4.3. Zyzzyva and Speculative Execution 

When none of the replicas are faulty, it is possible to signifcantly improve the performance 
of BFT protocols. Replicas can execute commands speculatively, assuming that none of 
the other replicas will experience a fault. 

Zyzzyva is an algorithm that pioneered this approach [76]. Replicas (speculatively) execute 

43 



NIST IR 8460 ipd 
April 2023 

1850 

1851 

1852 

1853 

1854 

1855 

1856 

1857 

1858 

1859 

1860 

1861 

1862 

1863 

1864 

1865 

1866 

1867 

1868 

1869 

1870 

1871 

1872 

requests just after receiving the sequence number of the request from the primary and then 
reply to the client. The client verifes consistency by checking that it received 3 f +1 replies 
with the same result. At this point, the replicas do not have a guarantee of consistency, 
but the client does. In Zyzzyva, the client drives the consensus process by informing the 
replicas if they detect an issue. When a client receives conficting responses from replicas, 
the client sends proof (two signed but conficting messages) to the replicas in order to 
initiate a view change. The replicas then "roll back" to a safe state prior to the inconsistent 
execution and change the primary. This approach improves best-case latency and message 
complexity but risks substantially worse performance when the primary is faulty. 

In more detail, the client sets a timer when it makes its request, and if there is a time-out 
where the client only receives between 2 f + 1 and 3 f consistent replies, it broadcasts a 
commit certifcate to the replicas and starts another timer. Upon receiving 2 f + 1 acknowl-
edgements of the commit certifcate, the client considers the request complete. If there is 
a time-out before receiving 2 f + 1 local commit acknowledgements, the client broadcasts 
the request to every replica. The replicas then start a timer, ask the primary to order the 
request, and initiate a view change if they do not receive word from the primary that the 
request was ordered. A diagram of the message fow for Zyzzyva can be seen in Figure 7. 

Fig. 7. Zyzzyva’s speculative execution. In panel (a), all replicas reply to the client with 
consistent results in a timely manner. In panel (b), replica 3 is faulty, so an extra phase of 
commit acknowledgement is required. [77] 

Because Zyzzyva removes one of PBFT’s phases (there is a pre-prepare phase and a second 
phase), the view change requires adjusting. To safely change views without three phases, 
an honest replica must not abandon a view until it knows every other correct replica will. To 
this end, another phase is added to the view change: a correct replica broadcasts a complaint 
when it suspects that the primary is Byzantine. Any replica that sees f + 1 complaints 
knows to commit to a view change. This shifts costs from the agreement subprotocol to 

44 



NIST IR 8460 ipd 
April 2023 

1873 

1874 

1875 

1876 

1877 

1878 

1879 

1880 

1881 

1882 

1883 

1884 

1885 

1886 

1887 

1888 

1889 

1890 

1891 

1892 

1893 

1894 

1895 

1896 

1897 

1898 

1899 

1900 

1901 

1902 

1903 

1904 

1905 

1906 

1907 

1908 

1909 

1910 

1911 

the view change subprotocol (so frequent view changes are performance-intensive). An 
additional adjustment is necessary to ensure that the replicas have a commit certifcate 
when they are unanimous: replicas include all order requests (that is, the PRE-PREPAREs) 
since the last stable checkpoint in their view change messages, and a new honest primary 
extends the log with all requests that occurred in at least f + 1 of the 2 f + 1 view change 
messages they received. Note that the original protocol has a safety violation in the view 
change subprotocol that can be triggered by a faulty primary, which was only found 10 
years later [78]. 

A related protocol, AZyzzyva, does not suffer from the safety violation in Zyzzyva [79]. 
It is essentially the same as Zyzzyva in the optimistic "common case," but it falls back on 
PBFT when detecting asynchrony or failures. That is, if a client does not receive 3 f + 1 
matching replies, it alerts the replicas, and the replicas then send signed message histories 
to the client. Upon receiving 2 f + 1 of these, clients switch to the backup mechanism: 
send these unforgeable histories to the replicas, and the replicas use PBFT to order a pre-
specifed number of requests, including the requests from the signed histories. This requires 
more steps than Zyzzyva on the slow/recovery path and takes longer to switch back to the 
fast path, but it dramatically simplifes the codebase without a safety issue. 

SACZyzzyva uses hardware-assisted trusted monotonic counters to improve upon Zyzzyva 
[80]. SACZyzzyva inherits the optimal resilience of Zyzzyva and eliminates the need for 
non-speculative fallback while only requiring a single replica – the primary – to use a 
trusted monotonic counter at any given time. There must be f + 1 replicas with a trusted 
component to ensure that there is at least one correct replica that can be primary. The 
main idea is that the trusted monotonic counter value is attached to a message so that it 
is detectable if the sender equivocates due to the existence of a hole in the set of counter 
values. The primary uses the counter to bind a sequence of consecutive counter values to 
incoming requests to order them without communication between replicas. 

4.4. A Permissioned DAG: Blockmania 

Blockmania is a partially synchronous BFT algorithm that effectively embeds PBFT-like 
messages inside of a DAG [81]. Essentially, there is a leaderless version of a PBFT state 
machine embedded inside the block content in the DAG, and interpreting the DAG allows 
for recreating a PBFT execution transcript without requiring the transmission of additional 
messages. This is possible because replicas "gossip about gossip," or tell each other every-
thing they learn from every other replica (a similar approach is used in Hashgraph, which 
is discussed in Section 6.2). Every honest replica produces a (single) block in each round 
(hence, being leaderless). To form the DAG, honest replicas include references to all valid 
blocks they have seen, including contradictory ones, when they create their own blocks. 
Compared to PBFT, this approach reduces the worst-case communication complexity from 
O(n4) to O(n2). This performance improvement is because COMMIT, VIEW-CHANGE, 
and NEW-VIEW messages normally need evidence sent with them, but correctly interpret-

45 



1915

1920

1925

1930

1935

1940

1945

1912 

1913 

1914 

1916 

1917 

1918 

1919 

1921 

1922 

1923 

1924 

1926 

1927 

1928 

1929 

1931 

1932 

1933 

1934 

1936 

1937 

1938 

1939 

1941 

1942 

1943 

1944 

1946 

1947 

NIST IR 8460 ipd 
April 2023 

ing the DAG recreates this evidence implicitly. 

In Blockmania, blocks are referenced as (p,k), where p is the creator of the block, and k is 
its sequence number. The block’s contents can include both a list of transactions and a list of 
references to all valid blocks received from other parties. Each replica also stores a current 
view number, viewp, and a list of input and output messages, inp and outp. Assuming no 
timeouts, the normal case operation of the protocol decides on position (p,k) by using a 
protocol similar to PBFT: 

1. To propose a block B as a value for position (p,k), replica p broadcasts a PRE-
PREPARE(p,k,B,v) message, where v is the view number, which begins at 0. 

2. When a replica receives the frst PRE-PREPARE message for view v, if the recipient’s 
viewp = v, it broadcasts a PREPARE(p,k,B,v) message and adds the PREPARE and 
PRE-PREPARE messages to inp. This is the only block that replica p will prepare in 
this view. 

3. Replicas listen for PREPARE(p,k,B,v) messages and add them to inp when viewp ≥ 
v. Once the replica has 2 f + 1 PREPARE(p,k,B,v) messages and the associated 
PRE-PREPARE in inp, it broadcasts COMMIT(p,k,B,v). 

4. Replicas listen for COMMIT(p,k,B,v) messages, adding them to inp when viewp ≥ 
v. Once the replica has 2 f + 1 COMMIT(p,k,B,v) messages in inp, the replica 
considers B to be decided at position (p,k). Note that B may be empty, or ⊥. 

However, timeouts can occur. This triggers a view change, which happens as follows: 

1. The replica increases viewp by one and broadcasts a VIEW-CHANGE(p,k,viewp,S) 
message, where S is the set of all PREPARE and PRE-PREPARE messages support-
ing a block B that replica p is prepared on for position (p,k). If the replica has not 
locked on a value at that position, S = 0./ At this point, replica p stops participating 
in prior views except for potentially receiving more COMMIT messages. 

2. Replicas wait for VIEW-CHANGE(p,k,viewp,S) messages and add them to inp if 
v > viewp. When 2 f + 1 of these messages have been seen, the replica updates viewp 
to v and broadcasts NEW-VIEW(p,k,viewp,V ), where V is the set of 2 f + 1 VIEW-
CHANGE messages. 

3. When a replica sees the frst NEW-VIEW(p,k,v,V ) message where v ≥ viewp and 
v > 0, the replica sets viewp = v. The replica then checks if any VIEW-CHANGE 
messages included in V commit to a block B. If this is the case, the message is 
interpreted as a PRE-PREPARE(p,k,B,v) message; if not, the replica interprets it as 
a PRE-PREPARE(p,k,⊥,v) message. 

4. Replicas respond to the implied PRE-PREPARE accordingly and continue on with 
the protocol as normal. 

46 



NIST IR 8460 ipd 
April 2023 

(a) Correct execution (b) View Change 

Fig. 8. Blockmania state machine interpretation example per block for position (3,2). Each 
state machine includes a view number (v) and a count for prepare (p) and commit (c) 
messages received by the block in red. The out bufer is in the red circle below the blocks (’pp’ 
for PRE-PREPARE, ’pr’ for PREPARE, ’cm’ for COMMIT, ’vc’ for VIEW-CHANGE, and ’nv’ 
for NEW-VIEW). [81] 

1948 

1949 

1950 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

Throughout this process, all sent messages are implicitly included in outp. The protocol 
does not actually get executed via sending those messages directly. Instead, the protocol is 
inferred from the block graph, where each block is interpreted as including a set of PBFT 
state machines for positions that have not yet been decided. Denote a block at position 
(p,k) as B(p,k). Blocks are associated with the union of messages in the out sets of all state 
machines contained in the block. When a block B(p,k) includes a reference to another block 
B(p ′ ,k′ ), a replica interprets this as replica p ′ sending replica p the messages that are included 
in the the out buffer of B(p ′ ,k′ ). Those messages are then used to make progress in the PBFT 
state machines of block B(p,k) based on the ordered sequence of block references. New 
messages are added to the block’s out buffer as the various state machines are interpreted 
while validating the block. When frst attempting to decide on position (p ′ ,k′ ), the replica 
inserts a PRE-PREPARE(p ′ ,k′ ,B(p ′ ,k′ ),v = 0) message, which is then included in its out 
buffer. Eventually, when a PBFT state machine embedded in the DAG decides, then the 
replica interpreting the state machine considers it decided as well. Once decisions are made 
for all n blocks for round k, a total ordering of transactions can be derived in some agreed 
upon way, such as the included fee. 

See Figure 8 for an example of interpreting the DAG. Note that only the blocks are broad-
cast; the material in red is only interpreted from the block but never sent as a separate net-
work communication. Figure 8a is a good execution, and Figure 8b shows a view change 
when replica 3 is faulty. 

An advantage of interpreting a PBFT state machine rather than fully executing PBFT is that 

47 



NIST IR 8460 ipd 
April 2023 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

replicas can simply propagate blocks via gossip instead of having a complicated network-
ing stack that handles the various message types. This can continue seamlessly even when 
view changes are occurring. In addition to the quadratic worst-case performance improve-
ment over PBFT, Blockmania has low overhead due to interpreting blocks as messages 
themselves. Note that any deterministic BFT algorithm, not just PBFT, can be embedded 
in a communication DAG in this way [82]. 

5. Modern High-Performance Blockchains 

Recently, a line of work has dramatically improved the simplicity and performance of BFT 
algorithms via pipelining and eliminating the need for a separate view change algorithm, 
among other innovations. 

5.1. Streamlined Blockchains 

The so-called "streamlined" blockchain is a generalization of a class of newer SMR con-
sensus algorithms that are simple and highly performant [83, 84]. The simplicity of this 
approach makes it ideal for introducing more specifc algorithms that have similar benefts, 
such as HotStuff, Casper-FFG, Tendermint, PiLi, and PaLa. 

Classical BFT protocols had what might be called a "normal mode" and a "recovery mode." 
The normal mode is potentially simple: a designated proposer proposes a block by signing 
it, other replicas vote on it by signing it, and it becomes fnalized upon receiving 2n dis-3 
tinct votes. This assures consistency when fewer than n 

3 nodes are Byzantine, even if the 
proposer is Byzantine, regardless of network assumptions. However, a Byzantine proposer 
can stall liveness by not proposing anything or sending conficting proposals, which neces-
sitates a "recovery mode" (view change) to address liveness. Unfortunately, changes to the 
normal mode must be made to make the recovery mode work. 

This motivates modern protocols that dispense with the view change entirely. Streamlined 
blockchains, such as the Streamlet protocol described below, provide an opportunity to 
elect a new leader in every epoch, so view changes are baked into the normal mode [84]. 
They support multiple proposer-election policies, including the more equitable policy of 
rotating every block and the more stable and performant policy in which rotation only 
occurs upon suspicion of misbehavior. Optimizations can be applied to the streamlined 
approach to improve upon the constant performance parameters presented here, which are 
not tight. Rather, the presentation is meant to be simple and easy to understand. 

A partially synchronous version of the Streamlet protocol is presented here. Note that there 
is an implicit assumption that whenever a replica observes a new message, it echoes it 
to everyone else. In the following, a block is considered notarized upon receiving more 
than 2n votes from distinct replicas, and a chain is considered notarized when the blocks it 3 
includes are all notarized. The protocol follows a Propose-Vote-Finalize paradigm: 

48 



NIST IR 8460 ipd 
April 2023 

Fig. 9. Streamlet Finalization Rule. All blocks are notarized. The chain prefx up to the 
epoch-6 block is fnalized (” ⊥−2 − 5− 6”) once a replica has seen blocks 5, 6, and 7 built 
atop one another. There cannot be another block notarized at the same height as epoch-6, so 
chain ” ⊥−1 − 3” cannot grow further. [84] 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

1. Propose: The primary replica for the current epoch proposes a new block that ex-
tends from the longest notarized chain it has seen and breaks ties arbitrarily. 

2. Vote: Replicas vote for the frst proposal they see from the epoch’s leader if the 
proposed block is appended to one of the longest notarized chains that the replica has 
seen. They do so by signing the proposed block. 

3. Finalize: When there are three adjacent blocks with consecutive epoch numbers in 
any notarized chain, replicas fnalize the prefx of the chain up to the second of the 
three blocks (see Figure 9). 

To make the Streamlet protocol synchronous (and thus honest majority), this paradigm is 
tweaked by 1) decreasing the notarization requirement from 2n> to > n 

3 2 , 2) adjusting the 
fnalization rule to require six consecutive epochs in a notarized chain in order to fnalize 
the prefx of the chain with the last fve blocks removed, and 3) requiring that the six blocks 
in consecutive epochs do not have conficting notarizations at the same lengths at the time 
of fnalization. 

5.2. PiLi and PaLa 

The protocols in this section follow the same Propose-Vote-Finalize paradigm with some 
adjustments in order to attain optimistic responsiveness. Responsiveness is the property 
that transactions are processed without reliance on synchrony. That is, processing depends 
on the actual network delay δ , which may be signifcantly less than worst-case delay: 
δ << ∆. Synchronous protocols usually have slow confrmation latency because ∆ must 
be set conservatively for safety reasons. The idea of optimistic responsiveness – in which 
a protocol is responsive under certain good conditions – was introduced in [85], which 
showed that a 3n 

4 supermajority of honest and online replicas are necessary to attain this 
property for any honest majority protocol. 

49 



2030

2035

2040

2045

2050

2055

2060

2065

2029 

2031 

2032 

2033 

2034 

2036 

2037 

2038 

2039 

2041 

2042 

2043 

2044 

2046 

2047 

2048 

2049 

2051 

2052 

2053 

2054 

2056 

2057 

2058 

2059 

2061 

2062 

2063 

2064 

2066 

2067 

NIST IR 8460 ipd 
April 2023 

The PiLi protocol is secure against rushing adversaries in a weakly synchronous network 
model, which provides resilience to node churn [86]. It attains optimistic responsiveness 
when 3n honest nodes remain online and the proposer is among them. If n 

2 honest nodes are 4 
online for the length of the confrmation delay, transactions are confrmed in an expected 
constant number of synchronous rounds. Consistency is guaranteed for all honest nodes, 
even those that drop offine sometimes, as long as the total number of offine and corrupt 
nodes are less than n 

2 . This makes the protocol more robust than classical synchronous 
consensus. Compared to the synchronous Streamlet protocol, PiLi gains these advantages 
at the expense of worse fnalization latency. 

In the PiLi protocol, a block is considered notarized upon receiving votes from the majority 
of voters. The fnalization rule is that if a notarized chain ends with 13 consecutive epochs, 
the trailing eight blocks and the chain prefx are considered fnal. Defne a normal block 
to be one where its epoch number is one greater than its parent’s epoch number and a skip 
block to be one with an epoch number that is a multiple of 16 and at least 16 epochs apart 
from its parent. 

In each epoch, the leader proposes a block that extends the freshest notarized chain it has 
seen (the freshest chain is the one whose chain tip has the higher epoch number). Replicas 
then vote on the frst valid proposal they see, given that 1) the block extends from a parent 
block of an epoch no older than the freshest notarized chain that the replica had seen by 
the beginning of the previous epoch, and 2) if the block is not a skip block itself, then 
the replica has not observed any notarizations for conficting blocks with the same epoch 
number for every block in the chain since the last skip block in the chain that the proposed 
block extends from. 

Further, at the beginning of each epoch, replicas set a timer. If the timer goes off, replicas 
send each other timeout messages and advance to the next epoch upon receiving timeout 
messages from the majority of replicas. Alternatively, when an epoche block receives votes 
from a 3n supermajority of voters, an epoche+1 block can be proposed and immediately 4 
voted on by the the leader of epoch e + 1, thus achieving optimistic responsiveness. 

For weak synchrony, replicas must only believe in "no-confict" (that is, condition 2 above) 
if the majority of nodes confrm that belief rather than just using their own view. Voting on 
a block acts as an attestation that the replica has not seen recent conficts, so a notarization 
on a block means that many replicas have not seen conficts. Skip blocks prevent a denial-
of-service attack where corrupt replicas double-vote, preventing honest nodes from voting 
due to confict. Refusing to vote acts as a "complaint" that temporarily halts chain growth, 
but progress continues when an honest node produces a skip block during a period of 
synchrony. 

A related protocol is the partially synchronous PaLa protocol, which tolerates n 
3 corruptions 

[87]. For PaLa, notarization requires 2n votes. If two blocks are built on top of each other 3 
in back-to-back epochs, the frst of them is fnalized. The protocol description defnes the 

50 



NIST IR 8460 ipd 
April 2023 

2068 

2069 

2070 

2071 

2072 

2073 

2074 

2075 

2076 

2077 

2078 

2079 

2080 

2081 

2082 

2083 

2084 

2085 

2086 

2087 

2088 

2089 

2090 

2091 

2092 

2093 

2094 

2095 

2096 

2097 

2098 

2099 

2100 

2101 

2102 

2103 

2104 

2105 

terms "second" and "minute" using the constant c = 6, where a second is c∆ and a minute 
is c2∆. 

In each epoch e, a node is elected to be the proposer. If the proposer’s chain ends with a 
block from epoch e − 1, they immediately propose a new block. If their chain ends with a 
block from an epoch earlier than e−1 (that is, the prior proposer’s block was not included), 
they wait for one second to potentially receive a fresher chain before proposing a new block. 
Whenever a replica during epoch e receives an epoche block, it votes for the block if 1) it is 
consistent with the existing chain, 2) at least as fresh as the chain they saw at the beginning 
of epoch e, and 3) it has not previously signed a block for this epoch. 

A replica advances to epoch e when it is currently in an epoch earlier than e and either of the 
following occur: it sees a notarized chain for epoch e − 1, or it receives signed timeout(e) 
messages from more than 2n replicas. Replicas set a timer for one minute upon entering 3 
epoch e − 1 before broadcasting a timeout(e) message. 

Because the replicas must wait to collect notarizations for each block of the entire chain 
before voting on the next block, performance can be hindered signifcantly in high latency 
environments, even when there is considerable bandwidth available. This motivates the 
"doubly pipelined" variant of PaLa, which rotates leaders less frequently and has better 
performance. Here, replicas vote even if not all notarizations have been collected for the 
ancestor chain so long as the number of blocks at the tip that are not notarized is bounded 
by a security parameter k (with the above scheme having k = 1), and fnalization requires 
k consecutively notarized blocks. For the current epoch, a proposer can repeatedly propose 
blocks so long as there are fewer than k proposed but not notarized blocks at the end of the 
chain. 

PaLa allows committee reconfguration to be done for half of the committee at a time, 
splitting the reconfguration among two consecutive sets of k blocks to maintain safety 
when half of the committee has switched, assuming that each committee-half has fewer 
than n 

3 corruptions. 

5.3. HotStuf 

HotStuff is a state-of-the-art high-performance BFT algorithm that utilizes pipelining while 
remaining secure in partially synchronous networks [88]. A synchronous version will be 
introduced later in this section [89], and an asynchronous version called VABA has also 
been proposed [90]. A variant of HotStuff is slated to be used in the Libra cryptocurrency 
(later renamed as Diem) [91]. 

The protocol has optimistic responsiveness, O(n) communication complexity when the pro-
poser is honest, O(n) communication complexity for view changes, and O( f n) worst-case 
complexity with f leader failures. That is, compared to PBFT, the view change procedure 
has a quadratic reduction in communication complexity. The cost of having a new leader 
drive consensus is no greater than that for the current leader, which supports frequent leader 

51 



NIST IR 8460 ipd 
April 2023 

2106 

2107 

2108 

2109 

2110 

2111 

2112 

2113 

2114 

2115 

2116 

2117 

2118 

2119 

2120 

2121 

2122 

2123 

2124 

2125 

2126 

2127 

2128 

2129 

2130 

2131 

2132 

2133 

2134 

2135 

2136 

2137 

2138 

2139 

2140 

2141 

2142 

2143 

changes. These improvements come at the cost of adding an extra phase to each view. If 
the new pre-commit phase were removed, then liveness could be permanently stalled by an 
attacker. Note that there are similar protocols, such as Tendermint and Casper FFG, that 
make a different design choice and sacrifce optimistic responsiveness in order to avoid 
adding the extra phase. 

The protocol defnes a "quorum certifcate" (QC) – sometimes also called a "commit cer-
tifcate" – as n − f votes on a proposal. These quorum certifcates serve as proof that a 
suffcient number of replicas agree on something and may have different names depending 
on what they are used for. 

The PBFT view change involves a proposer broadcasting proof from 2 f + 1 replicas about 
their highest commit certifcates, each of which includes 2 f + 1 signatures. HotStuff im-
proves upon this by a linear factor by including only one commit certifcate and adding 
a rule that replicas only unlock a commit vote if they receive a commit certifcate from a 
higher phase. An additional linear improvement to communication complexity comes from 
using aggregated threshold signatures instead of individual signatures and sending them to 
the leader instead of broadcasting them to everyone. 

When entering a new view or after a timeout occurs, replicas transmit NEW-VIEW mes-
sages that include prepareQC, which is the highest QC for which a replica has voted to 
pre-commit. Replicas also store lockedQC, which is the highest QC for which the replica 
has voted to commit, and use the Sa f eNode() predicate to decide whether a proposal is safe 
to accept. The predicate is true if either of the following holds: the proposal extends from 
the currently locked node (to maintain safety), or the proposal has a higher view number 
than the current lockedQC (to maintain liveness). The basic partially synchronous HotStuff 
algorithm is described here before pipelining is added: 

1. Prepare: As leader, wait for n− f NEW-VIEW messages, select the highest prepareQC 
included, and denote it highQC. The leader creates a proposal that extends from this 
block and broadcasts a PREPARE message with the proposal and highQC justifying 
its safety. Upon receiving a PREPARE message, other replicas decide to accept it or 
not using Sa f eNode() and send a PREPARE message with a (partial) signature on 
the proposal to the leader. 

2. Pre-commit: When the leader receives n − f PREPARE votes on their proposal, 
they aggregate them into a prepareQC that is then broadcast in a PRE-COMMIT 
message. Replicas respond to the leader with a signed PRE-COMMIT message on 
the proposal. 

3. Commit: When the leader receives n − f PRE-COMMIT votes on their proposal, 
they aggregate them into a precommitQC that is then broadcast in a COMMIT mes-
sage, and replicas respond with their COMMIT vote. At this point, replicas set their 
lockedQC to the precommitQC they received. 

52 



NIST IR 8460 ipd 
April 2023 

Fig. 10. Pipelining in Chained HotStuf. A quorum certifcate is simultaneously used in 
diferent phases of the protocol to improve efciency. [88] 

2144 

2145 

2146 

2147 

2148 

2149 

2150 

2151 

2152 

2153 

2154 

2155 

2156 

2157 

2158 

2159 

2160 

2161 

2162 

2163 

2164 

2165 

2166 

2167 

2168 

2169 

2170 

2171 

2172 

2173 

4. Decide: When the leader receives n − f COMMIT votes, they combine them into 
a commitQC and broadcast it in a DECIDE message. Upon receiving a DECIDE 
message, a replica considers the proposal linked to the commitQC to be committed, 
executes the commands, and moves to the next view. 

The pipelined version of HotStuff is dubbed "Chained HotStuff" and works by having one 
epoch’s commit step be executed during the next epoch’s prepare phase. The idea is de-
picted in Figure 10. 

Chained HotStuff improves upon the basic algorithm above by initiating a new view on 
every prepare phase. This not only allows pipelining but also reduces the scheme to two 
message types: NEW-VIEW and GENERIC. During the prepare phase of view v, the leader 
collects other replicas’ votes into a genericQC, which is then sent to the next views’ leader 
as part of delegating the next phase of the protocol. Instead of following through with a 
pre-commit phase, the new leader initiates a new prepare phase with its own proposal for 
view v + 1. That is, this second prepare phase is the prepare phase for view v + 1 while 
simultaneously satisfying the pre-commit phase for view v. This continues such that the 
prepare phase in view v + 2 acts as the pre-commit phase for view v + 1 as well as the 
commit phase for view v. 

Each block contains a quorum certifcate which may or may not point to the direct par-
ent block of the chain. When a block b∗ has a QC that refers to (and thus justifes) 
a direct parent, it is called a "One-Chain." That is, b ∗ .QC.block = b ∗ .parent. Defne 
b′′ = b ∗  .QC.block. Then block b∗ is a Two-Chain if it is a One-Chain and b′′.QC.block = 
b′′ .parent. It forms a Three-Chain if b′′ forms a Two-Chain. There may also be gaps, which 
represent leader failures. Assume the chain of justifcations is b  ← b′ ← b′′ ← b∗. When 
b∗ is a One-Chain, the prepare phase of b′′ has succeeded. When b∗ is a Two-Chain, then 
the pre-commit of block b′ has succeeded. When b∗ is a Three-Chain, the commit phase of 
block b has succeeded, and b is committed and fnal. This is illustrated in Figure 11. 

In more detail, Chained HotStuff works as follows. For each view v, the leader of the view 
will update their highQC based on NEW-VIEW messages received and update genericQC 
if highQC is higher. They then create a proposal b∗ and begin the prepare phase by sending 
a GENERIC message. 

53 



NIST IR 8460 ipd 
April 2023 

Fig. 11. Chained HotStuf justifcation. The blocks for v4, v5, and v6 form a Three-Chain, 
whereas v8 fails to form a One-Chain. v8 also shows a quorum certifcate that justifes a block 
that is not the direct parent of the block proposed in that view. Instead, the parent is a dummy 
block that represents the leader failure in v7. [88] 

2174 

2175 

2176 

2177 

2178 

2179 

2180 

2181 

2182 

2183 

2184 

2185 

2186 

2187 

2188 

2189 

2190 

2191 

2192 

2193 

2194 

2195 

2196 

2197 

2198 

2199 

2200 

2201 

2202 

2203 

Each replica then checks the predicate Sa f eNode(b∗), and if it evaluates to true, they send 
a GENERIC vote on b∗ to the leader of view v + 1. If b ∗ .parent = b′′ , the replica updates 
genericQC to b∗ .QC. Here, b∗ is a One-Chain, so the prepare phase for b′′ has succeeded, 
and the replica begins to pre-commit on b′′ . If b ∗ .parent = b′′ and b′′ .parent = b′ , the 
replica updates lockedQC to b′′ .QC. This means that b∗ is a Two-Chain, so the replica 

, b′′ enters the commit phase of b∗’s grandparent, b′ . If b ∗ .parent = b′′ .parent = b′ , and 
b′ .parent = b, then the replica executes commands through b and responds to clients. That 
is, when b∗ is a Three-Chain, the replica enters the decide phase on b∗’s great-grandparent, 
b. The leader of the next view waits for all messages until they see n− f votes on a proposal 
and then updates their own genericQC. 

5.3.1. Sync HotStuf 

There is also a HotStuff variant intended for synchronous and weakly synchronous net-
works [89]. This variant has nearly optimal latency of 2∆ (+O(δ )), optimistic responsive-
ness with > 3n honest replicas (which requires larger QCs than those used above), and4 

n tolerates up to 2 corruptions. Sync HotStuff removes the need for lock-step execution 
that PiLi has and thus dramatically reduces fnalization latency from what would otherwise 
be between 40∆ and 65∆. The key trick is to move the synchronous waiting periods off 
the critical path, and the only step that requires waiting O(∆) time is to check for leader 
equivocation before committing. 

Leaders propose blocks, and then replicas vote on the proposal as soon as they have seen 
it so long as they have not seen an equivocating proposal. Replicas then start a timer for 
2∆. The proposal is committed if the timer goes off, the view has not changed, and there 
has not been equivocation. Replicas begin timers for subsequent heights without waiting 
for the previous height to commit, so they may have numerous commit timers running 
simultaneously at different heights. View changes are initiated upon detecting equivocation 
or the leader failing to propose a block within 2∆. 

For weakly synchronous networks, the above is changed so that the timer to commit block k 
begins after receiving f +1 proposals for block k+1 (which has the certifcate for k). When 
timeouts occur, replicas broadcast commit messages for block k, and replicas commit after 
seeing f + 1 commit messages. 

54 



NIST IR 8460 ipd 
April 2023 

2204 

2205 

2206 

2207 

2208 

2209 

2210 

2211 

2212 

2213 

2214 

2215 

2216 

2217 

2218 

2219 

2220 

2221 

2222 

2223 

2224 

2225 

2226 

2227 

2228 

2229 

2230 

2231 

2232 

2233 

2234 

2235 

2236 

2237 

2238 

2239 

2240 

In Sync HotStuff, if a replica votes at time t, the commit is considered safe at time t + 2∆. 
Waiting for 2∆ provides safety because the replica’s vote reaches all honest replicas by 
t + ∆, at which point they will not vote for an equivocating block. If another replica voted 
for an equivocating block before t + ∆, the frst replica would have seen it by t + 2∆. This 
also implies that all honest replicas will have voted by t + ∆, so a QC will form by t + 2∆, 
ensuring safety. 

An earlier version of the protocol suffered from a "force-locking" attack that removed 
safety from the synchronous version and liveness from all versions but has since been fxed 
[92]. 

5.4. Further Optimizing Latency 

It is possible to obtain optimistic responsiveness with lower latency than the protocols 
described above using protocols similar to PiLi and Sync HotStuff [93]. The challenge of 
optimizing for latency is in handling the situation where it is unclear whether the fast-path 
optimistic conditions are met. If it is clear that the optimistic conditions hold, there are 
latency-optimized protocols to use for that setting. 

When an optimistically responsive commit rule and a slower synchronous commit rule ex-
ist in synchronous protocols, the sum of the latencies of the two rules must be at least 2∆, 
such that when a faster optimistic commit rule is used, the synchronous commit rule must 
be correspondingly slower to make up for it [93]. For example, if the optimistic commit 
path requires 0.5∆ to commit, then the synchronous path requires at least 1.5∆ to commit. 
In Sync HotStuff, the synchronous slow-path latency is 2∆, while the fast path commit la-
tency is 2δ , so it is not fully optimal. Further, switching between the optimistic and the 
slow paths imposes its own delays of at least ∆. The protocols described in [93] achieve op-
timistic responsiveness and optimal latency simultaneously by removing the explicit switch 
between fast and slow paths and making it such that replicas need not know which path they 
are on; both progress simultaneously. Alternatively, the Apollo SMR protocol has an opti-
mistic fnalization latency of ( f + 1)δ and commits a block every δ time units [94] while 
maintaining linear communication complexity in the best case. It achieves this by having a 
block committed whenever f + 1 blocks are built on top of it, which obviates the need to 
detect equivocation. 

6. Asynchronous BFT 

The protocols described up to this point in the document all fail to maintain liveness when 
messages may be arbitrarily delayed and synchronous ones further lose their safety. Even 
when partially synchronous timing assumptions hold in practice, performance degrades 
rapidly in an unpredictable network, and throughput fails to quickly recover after a tempo-
rary network partition. In contrast, asynchronous protocols are able to continue confrming 
transactions at network speed as protocol messages arrive, regardless of the message delay 

55 



NIST IR 8460 ipd 
April 2023 

2241 

2242 

2243 

2244 

2245 

2246 

2247 

2248 

2249 

2250 

2251 

2252 

2253 

2254 

2255 

2256 

2257 

2258 

2259 

2260 

2261 

2262 

2263 

2264 

2265 

2266 

2267 

2268 

2269 

2270 

2271 

2272 

2273 

2274 

2275 

2276 

2277 

or ordering. These protocols do not rely on timeout mechanisms, which may make them 
easier to implement. 

To see how liveness fails under partial synchrony, one may consider the following adver-
sarial network scheduler attacking an execution of PBFT, which results in zero throughput. 
Assume that a single replica has suffered a crash fault. The adversarial scheduler induces 
message delays whenever the leader is honest, causing an eventual view change on time-
outs and thus moving to the next leader. At some point, the crashed replica becomes the 
next leader, and the scheduler quickly delivers all messages between honest replicas. Un-
fortunately, because the leader is crashed, there is still no progress made. The existence 
of synchronous periods where messages are delivered is insuffcient to maintain liveness 
because they occur at times when the algorithm is unable to make use of them. An asyn-
chronous protocol, on the other hand, would make progress and confrm transactions during 
these synchronous periods. 

Because the timeout interval (usually) increases exponentially in partially synchronous pro-
tocols, even a limited version of this network attack would dramatically slow the network’s 
recovery from a partition. If a replica is crashed, the network is partitioned for a length of 
2D∆, and the scheduler heals the network when the crashed node is supposed to become 
leader, then there is a 2D+1∆ delay before starting a new view change despite the network 
being synchronous. Again, an asynchronous protocol would begin confrming transactions 
immediately during this period. 

6.1. HoneyBadgerBFT 

The frst practical asynchronous BFT algorithm designed was the leaderless HoneyBad-
gerBFT, which utilizes randomization to overcome FLP impossibility [95]. HoneyBad-
gerBFT provides security against static adversaries but can be secure against adaptive ad-
versaries by substituting in different cryptographic primitives at the cost of worse perfor-
mance [96]. The primary novelty is a reduction from atomic broadcast to the asynchronous 
common subset (ACS) primitive, which was improved from O(n2) to O(1) (the prior state-
of-the-art was from [97]) but also uses threshold decryption for censorship resistance and 
improving liveness. 

An ACS protocol allows each replica to propose a value and then ensures that every replica 
outputs a common vector that includes the input values from at least n−2 f correct replicas. 
One can create a state machine replication protocol by simply having each replica propose 
a set of transactions as input into the ACS primitive with the output being the union of the 
transactions. ACS has the following requirements: 

• Agreement – If an honest replica outputs v, then every replica outputs v. 

• Validity – If an honest replica outputs a set v, then |v| ≥ n − f and v contains the 
inputs of at least n − 2 f honest replicas. 

56 



NIST IR 8460 ipd 
April 2023 

Fig. 12. HoneyBadgerBFT’s ACS structure. There are n instances of reliable broadcast 
followed by n instances of asynchronous binary agreement. [98] 

2278 

2279 

2280 

2281 

2282 

2283 

2284 

2285 

2286 

2287 

2288 

2289 

2290 

2291 

2292 

2293 

2294 

2295 

2296 

2297 

2298 

2299 

2300 

2301 

2302 

• Totality – If n − f honest replicas receive an input, then all honest replicas produce 
an output. 

ACS protocols typically involve two phases: 1) reliable broadcast to distribute each replica’s 
proposed values and 2) asynchronous binary Byzantine agreement (sometimes abbreviated 
as ABA or ABBA) to decide on a bit vector that indicates which reliable broadcasts have 
completed. The structure of HoneyBadgerBFT’s ACS protocol can be seen in Figure 12. 

The HoneyBadgerBFT algorithm is composed of a variety of subprotocols, including an ex-
pected constant-time ABA protocol, threshold signatures to produce the common coins re-
quired for the ABA protocol, a bandwidth-effcient reliable broadcast protocol, and thresh-
old decryption. The protocol idea is simple: if the maximum block size is B and there 
are n replicas, each replica will randomly choose B 

n transactions from their mempools and 
encrypt them. This encrypted set is then passed into the ACS protocol, which outputs 
the common subset of transactions. Each replica then performs its share of decryption on 
the common subset and broadcasts its decryption share. Upon receiving f + 1 decryption 
shares, replicas fully decrypt the transaction set. The block that results is the canonically 
sorted set of transactions. 

Note how effciency is improved by having honest replicas try to propose disjoint subsets. 
By having replicas pick transactions randomly, it is expected that each transaction is only 
proposed by a single replica. The addition of threshold decryption prevents some types of 
transaction censorship because replicas will not know which transactions were proposed 
by whom. A trade-off to this is that a faulty replica may propose invalid transactions in the 
ACS, which would not be detected until after they are included in a block. This means that 
after transactions are ordered, the invalid transactions must be removed from the block or 
at least remain unexecuted. 

For the reliable broadcast subprotocol, HoneyBadgerBFT actually employs a more sophis-

57 



NIST IR 8460 ipd 
April 2023 

2303 

2304 

2305 

2306 

2307 

2308 

2309 

2310 

2311 

2312 

2313 

2314 

2315 

2316 

2317 

2318 

2319 

2320 

2321 

2322 

2323 

2324 

2325 

2326 

2327 

2328 

2329 

2330 

2331 

2332 

2333 

2334 

2335 

2336 

2337 

2338 

2339 

ticated primitive called asynchronous verifable information dispersal (AVID). This primi-
tive was frst presented in [99] and combines asynchronous reliable broadcast and erasure 
coding. The use of erasure coding signifcantly reduces communication complexity for 
large messages compared to Bracha’s broadcast protocol described in Section 1.2. 

6.1.1. Mostéfaoui et al.’s Asynchronous Binary Agreement Protocol 

Mostéfaoui et al. introduced a core component of HoneyBadgerBFT and some related 
protocols: asynchronous binary agreement (ABA), where agreement occurs over a single 
bit [100]. Note that the "broadcast" protocols described here do not meet the standard 
defnition used in Section 1.2 because each party transmits a value. 

The protocol is built in layers with the most basic component being a binary value (BV) 
broadcast protocol, which eliminates from consideration any value that was broadcast only 
by malicious parties. Each correct process pi BV-broadcasts a binary value and eventu-
ally obtains a set of binary values stored in bin_valuesi. Let witness(v) be the number 
of different processes from which B_VAL(v) was received, and let bin_valuesi = 0./ The 
operation BV _BroadcastMSG(vi) consists of multicasting B_VAL(vi) and then returning. 
Then, when pi receives B_VAL(v), it does the following: 

1. If pi has not yet multicast B_VAL(v) to other replicas, and if witness(v) ≥ f +1, then 
pi multicasts B_VAL(v). Note that a process echoes a value like this only once. 

2. If witness(v) ≥ 2 f + 1 and v ∈/ bin_valuesi, then pi locally delivers the value by 
setting bin_valuesi ← bin_valuesi ∪{v}. 

The next layer is strong binary value (SBV) broadcast, which synchronizes processes such 
that if a single value v is delivered to an honest process, then v is delivered to all honest pro-
cesses. The operation SBV _BroadcastMSG(vi) begins by invoking BV _BroadcastMSG(vi) 
and waiting until bin_valuesi is non-empty. 

When the waiting stops, bin_valuesi may not be at its fnal value. Nevertheless, pi then 
multicasts a message AUX(w), where w ∈ bin_valuesi. If there is more than one value in 
bin_valuesi, any value w will do. Then pi waits until there exists a set viewi such that its 
values belong to bin_valuesi and come from AUX() messages received from n − f distinct 
processes. Finally, the algorithm returns viewi. 

The third layer is a double-synchronized binary value (DSBV) broadcast algorithm. The 
goal of this algorithm is to replace the potentially distinct values v and w that are broadcast 
by honest replicas by at most one of v or w, plus potentially the default value denoted ⊥. As 
with SBV, this returns a viewi, but it can now contain a default value ⊥ and – at most – only 
one of the two possible binary values. DSBV broadcast reduces the power of Byzantine 
replicas such that no view delivered by an honest replica includes values broadcast only by 
Byzantine replicas (from BV broadcast) and that if a view delivered to an honest replica 
contains only the single value v, then v will be included in the views of all honest replicas 

58 



NIST IR 8460 ipd 
April 2023 

2340 

2341 

2342 

2343 

2344 

2345 

2346 

2347 

2348 

2349 

2350 

2351 

2352 

2353 

2354 

2355 

2356 

2357 

2358 

2359 

2360 

2361 

2362 

2363 

2364 

2365 

2366 

2367 

2368 

2369 

2370 

2371 

2372 

2373 

(from SBV broadcast). The operation DSBV _BroadcastMSG(vi) works as follows: 

1. viewi[0] ← SBV _BroadcastSTAGE[0](vi). 

2. If viewi[0] = {v}, then auxi ← v. Else, auxi ←⊥. 

3. viewi[1] ← SBV _BroadcastSTAGE[1](auxi). 

4. Return viewi[1]. 

That is, DSBV broadcast consists of two stages of SBV broadcast. When the frst SBV 
broadcast returns, it is possible that each of the two binary values are represented in viewi. 
This occurs when honest replicas input different values to their SBV broadcast operation. In 
line (2) of the algorithm, replicas flter the output from the frst SBV broadcast to determine 
their input into the second instance. While two possible values – say, a and b – were 
possible inputs into the DSBV broadcast (and therefore the frst SBV broadcast), the second 
SBV broadcast will only include one of those inputs (which must have been proposed by 
an honest replica) and ⊥. 

The fnal ABA algorithm utilizes this DSBV broadcast operation and a weak common coin. 
Common coin protocols result in some random output that can be observed by all partic-
ipants and is unpredictable to an adversary. For a weak common coin protocol, there is a 
constant probability that the replicas involved will see different random values returned by 
the functionality. In the description of the ABA protocol that follows, the weak common 
coin is invoked by calling CCRandom(). 

The ABA algorithm begins when a process pi invokes propose(vi), where vi ∈ {0,1}. The 
operation begins by setting esti (pi’s current estimate of the decision) to vi and setting 
the round number, ri, to zero. Processes proceed in asynchronous rounds, where each 
round is two phases, and each phase is made up of a single DSBV broadcast instance. Let 
viewi[ri,1..2] be the local results of the DSBV broadcast instance at round ri. The ABA 
algorithm repeats the following sequence indefnitely: 

• ri ← ri + 1. 

• Phase 1: Help replicas agree on a single value. 

1. viewi[ri,1] ← DSBV _BroadcastPHASE[ri,1](esti). 

2. bi[ri] ← CCRandom(). 

3. If viewi[ri,1] = {v} and v ̸=⊥, then set esti ← v. Otherwise, esti ← bi[ri]. 

• Phase 2: Help replicas recognize when they have reached a round where all honest 
replicas will forever maintain the same estimate. 

1. viewi[ri,2] ← DSBV _BroadcastPHASE[ri,2](esti). 

2. If viewi[ri,2] = {v}, then decide v if not yet done. 

59 



2375

2380

2385

2390

2395

2400

2405

2374 

2376 

2377 

2378 

2379 

2381 

2382 

2383 

2384 

2386 

2387 

2388 

2389 

2391 

2392 

2393 

2394 

2396 

2397 

2398 

2399 

2401 

2402 

2403 

2404 

2406 

2407 

2408 

2409 

NIST IR 8460 ipd 
April 2023 

3. Else if viewi[ri,2] = {v,⊥}, then esti ← v. 

4. Else if viewi[ri,2] = {⊥}, then skip to the next round. 

As presented, the ABA algorithm is non-terminating. To make it guarantee termination, 
whenever a process decides, it also terminates and multicasts a message T ERM[r](v) to 
tell other processes it is done. That is, replace "decide v if not yet done" with "multicast 
T ERM[ri](v) and return v." It also requires mild tweaks to the SBV and BV broadcast 
algorithm to accommodate waiting for these messages. 

6.1.2. Reducing HoneyBadgerBFT’s latency with BEAT 

Duan et al. present BEAT – a family of fve asynchronous BFT protocols with different 
trade-offs, all of which outperform HoneyBadgerBFT in latency and some of which im-
prove throughput [101]. These protocols follow a similar structure as HoneyBadgerBFT 
but use more effcient labeled threshold cryptography and erasure coding schemes to im-
prove performance. 

Of the fve algorithms, BEAT0, BEAT1, and BEAT2 are most relevant to this document 
because they are for general state machine replication. In contrast, BEAT3 and BEAT4 
are "BFT storage" algorithms that do not require replicas to maintain the full system state. 
BFT storage only allows read and write operations to a key-value store, and the state is 
erasure-coded, so it cannot support on-chain smart contracts. 

The base algorithm, BEAT0, uses labeled threshold encryption to make transactions uniquely 
identifable. This makes it easier for replicas to ignore duplicate transactions that had been 
input to the ACS subprotocol. Further, instead of HoneyBadgerBFT’s use of threshold sig-
natures to derive the common coin, BEAT0 uses a more effcient threshold pseudorandom 
function. Finally, it uses more effcient erasure-coding. The other BEAT algorithms use 
these improvements as well. 

BEAT1 replaces the AVID reliable broadcast primitive used in HoneyBadgerBFT with 
Bracha’s broadcast. This induces a trade-off because it increases asymptotic communi-
cation complexity. However, in situations where there is little contention and small batches 
(i.e., small blocks), Bracha’s broadcast has signifcantly lower latency than AVID. 

BEAT2 uses Bracha’s broadcast as well. Additionally, it optimistically moves the threshold 
encryption to the client instead of the replicas. This substantially reduces latency because 
the threshold encryption is one of the biggest drivers of latency in HoneyBadgerBFT. The 
trade-off is that there is a weaker version of liveness in which servers may be able to censor 
specifc clients. However, full liveness is restored by using an anonymous communication 
network like Tor. 

The asymptotic communication complexity with n replicas ordering a set of transactions 
of size B is O(nB) in HoneyBadgerBFT and BEAT0. BEAT1 and BEAT2 worsen this to 

60 



NIST IR 8460 ipd 
April 2023 

2410 

2411 

2412 

2413 

2414 

2415 

2416 

2417 

2418 

2419 

2420 

2421 

2422 

2423 

2424 

2425 

2426 

2427 

2428 

2429 

2430 

2431 

2432 

2433 

2434 

2435 

2436 

2437 

2438 

2439 

2440 

2441 

2442 

2443 

2444 

2445 

2446 

O(n2B). BEAT3 and BEAT4, which are not covered in this document, reduce this complex-
ity signifcantly to O(B) by having agreement occur on a constant-sized checksum instead 
of all data in the block as well as some other techniques. 

6.1.3. Improving ACS Performance with Dumbo 

HoneyBadgerBFT’s asynchronous common subset protocol, as shown in Figure 12, re-
quires n instances of reliable broadcast (RBC) to be run so that each replica can propose 
their own set of transactions, followed by n instances of asynchronous binary agreement 
to decide on each of those inputs. In more detail, whenever a replica delivers a value that 
was broadcast by its peer Pi, the replica starts the i-th ABA instance with an input of 1. 
When any honest replica receives 1 from n − f ABA instances, it inputs 0 to the remaining 
instances and moves on. 

Because the ABA protocol is randomized, the expected number of rounds of each ABA in-
stance is constant. However, running n instances at the same time can blow up the expected 
number of rounds considerably. This requirement of executing n ABA instances is a major 
performance bottleneck for the protocol, particularly because the slowest ABA instance 
determines the running time to fnish the ACS execution. This problem is exacerbated by 
having different ABA instances start at different times, depending on when each instance 
of reliable broadcast delivers its value. 

The Dumbo family of protocols improves upon HoneyBadgerBFT’s performance by mod-
ifying the ACS protocol to require substantially fewer instances of the ABA subprotocol to 
be run [98]. Two particular improvements are suggested: 

1. Rather than having an ABA instance per replica, a small set of κ "aggregators" can 
be chosen to lead the reliable broadcast instances, such that only κ instances of ABA 
must be run in the Dumbo1 protocol. 

2. Careful use of multi-valued validated Byzantine agreement (MVBA) can further re-
duce the number of ABA instances required to a constant (an expected three consec-
utive rounds of ABA). 

MVBA was rejected in HoneyBadgerBFT because it has high communication complexity 
when run over values that may be of large size, such as a block of transactions. However, a 
proper strategy would allow MVBA to be run on smaller values, as is done in Dumbo2. Part 
of the trick involves a new primitive – provable reliable broadcast (PRBC) – that outputs 
a short proof that at least one honest peer has received the input to the reliable broadcast. 
The frst improvement can be seen in Figure 13a, and the second is displayed in Figure 13b. 
Note that the insights from BEAT0-BEAT2 can be applied to improve Dumbo as well. 

Dumbo1 requires two phases of reliable broadcast. The frst phase is the same as Honey-
BadgerBFT, where replicas broadcast their input sets of transactions. At this point, if there 
were an honest leader, they could wait until n − f RBC instances have completed and then 

61 



NIST IR 8460 ipd 
April 2023 

(a) ACS of Dumbo1 

(b) ACS of Dumbo2 

Fig. 13. ACS structure of Dumbo protocols. RBC is reliable broadcast, ABA is asynchronous 
binary agreement, CE is committee election, PRBC is provable reliable broadcast, MVBA is 
multi-valued validated Byzantine agreement, CBC is consistent broadcast (a relaxation of 
reliable broadcast), and π is a permutation. [98] 

62 



NIST IR 8460 ipd 
April 2023 

2447 

2448 

2449 

2450 

2451 

2452 

2453 

2454 

2455 

2456 

2457 

2458 

2459 

2460 

2461 

2462 

2463 

2464 

2465 

2466 

2467 

2468 

2469 

2470 

2471 

2472 

2473 

2474 

2475 

2476 

2477 

2478 

2479 

2480 

2481 

2482 

2483 

2484 

2485 

2486 

2487 

simply tell the other replicas what the results were. By selecting κ leaders, the protocol can 
ensure that there is at least one honest leader with high probability. These κ leaders then 
begin a second round of RBC called index-RBC, where they broadcast the set of indices of 
the n− f values that the leader has already received. That is, the inputs into the index-RBC 
instances are just small subsets of indices, denoted Si, rather than the actual transactions. 
The fnal phase is to run κ ABA instances, where an honest replica will input 1 to the i-th 
instance if it has already seen Si and all of the corresponding values from the frst round of 
reliable broadcasts. At least one honest replica will receive all of the input values that cor-
respond to Si, so reliable broadcast ensures that all honest replicas will eventually deliver 
those values as well. When an honest replica outputs 1 for the i-th ABA instance, all honest 
replicas are eventually guaranteed to output 1 as well. The overhead for this procedure is κ 
additional RBC instances and a single coin tossing for committee election (CE in 13a), but 
the ABA savings dominate this overhead. 

While Dumbo1 reduces the number of ABA instances needed, it is still necessary for κ in-
stances to be executed. In theory, this is still κ − 1 "too many" instances. If it were possible 
to identify a single, correct input vector, this could be further reduced. This motivates the 
use of MVBA in Dumbo2. In MVBA, each replica submits an input value, and the output 
is a single value that satisfes a predefned predicate. Since MVBA is ineffcient when there 
are large inputs, and the inputs to the ACS protocol may indeed be large, it is necessary to 
fgure out how to safely reduce the size of the MVBA input. This is done through the clever 
use of a short "indicator" value, denoted Wi in Figure 13b, which is used as the MVBA input 
instead of the much larger original data. The MVBA protocol will output a single indicator 
that honest replicas use to work backward to select the corresponding reliable broadcast 
instance. Unfortunately, honest replicas may end up outputting the indicator from a Byzan-
tine replica. This problem is addressed through the use of a new primitive, provable reliable 
broadcast (PRBC), which provides a succinct proof that at least one honest replica received 
the input. PRBC can be realized through the use of threshold signatures on the RBC index: 
when honest replicas receive a value from a sender, they multicast a signature share on the 
index and can construct the full signature as the proof upon seeing f + 1 signature shares 
for the same index. 

The indicator value will include a set of these proofs and their corresponding RBC in-
dices. The predicate used for MVBA requires that n− f of these indices exist and that their 
corresponding proofs are valid. As a result, an honest replica knows that the transactions 
corresponding to the included RBC indices were received by enough replicas to know that 
at least one (other) honest replica received them and that all honest replicas will eventually 
receive them. Therefore, if an honest replica initiated MVBA after seeing n − f PRBC 
instances complete, all honest replicas simply need to wait to receive the values from the 
PRBC phase. 

The Dumbo protocols can also be combined with an optimistic fast path to substantially 
improve latency when network conditions are good [102]. In this case, a much faster 
consensus protocol is executed, and Dumbo is used as a fallback mechanism in a way that 

63 



NIST IR 8460 ipd 
April 2023 

2488 

2489 

2490 

2491 

2492 

2493 

2494 

2495 

2496 

2497 

2498 

2499 

2500 

2501 

2502 

2503 

2504 

2505 

2506 

2507 

2508 

2509 

2510 

2511 

2512 

2513 

2514 

2515 

2516 

2517 

2518 

2519 

2520 

2521 

2522 

2523 

2524 

2525 

is similar to a view change. 

6.2. An Asynchronous Permissioned DAG: Hashgraph 

The protocols above allow a set of replicas to maintain a sequentially ordered log of trans-
actions or batches of transactions in the form of a blockchain. This section explores Hash-
graph – an asynchronous BFT protocol that operates over a DAG. Like HoneyBadgerBFT, 
Hashgraph is a leaderless protocol that uses randomization to achieve consensus with prob-
ability 1 [103]. The protocol is similar to Blockmania (Section 4.4) in that it involves 
"gossip about gossip" and utilizes "virtual voting" to interpret the resulting communication 
graph (called a hashgraph throughout this section). That is, replicas tell each other about 
the communications that they have received from other replicas, and the communications 
themselves are used to infer how the replicas would vote. 

In the Hashgraph algorithm, an event is a vertex in the hashgraph structure that is signed 
by its creator. When Bob gossips to Alice and sends her his current view of the hashgraph, 
an event is created and signed by Alice. This event contains the hashes of Alice’s most 
recent event (called its self-parent), Bob’s most recent event prior to the gossiping, and 
a timestamp. It can also include transactions that Alice proposes to the network. The 
algorithm occurs in rounds, and the frst event that any given replica creates in a round is 
called a witness. Only witness events are considered in virtual voting. A famous witness is 
a witness that – according to the hashgraph – was received by a supermajority of replicas 
by the start of the next round. Byzantine agreement is sought over the witnesses rather than 
all events, and transactions are ordered based on whether witnesses are famous or not. 

A few more terms must be defned before presenting the algorithm. An event x is an 
ancestor of event y when x is y or when x can be reached from y through any sequence of 
parent relationships. Further, x is a self-ancestor of y if x is y or when x can be reached 
from y by a sequence of self-parent relations. A pair of events – (x,y) – is a fork if x and 
y were created by the same replica, but neither is a self-ancestor of the other. Forks refect 
inconsistencies in the hashgraph. An event x can see event y when y is an ancestor of x, 
and the ancestors of x do not include a fork by the creator of y. Finally, an event x strongly 
sees event y when x can see y, there exists a set of events by more than 2n replicas such that 3 
x can see every event in the set, and every event in the set can see y. Figure 14 shows an 
example of strongly seeing. 

The security of Hashgraph can be argued based on quorum intersection. In particular, if 
a pair of events (x,y) is a fork, and x is strongly seen by event z in hashgraph A, then y 
will not be strongly seen by any event in any hashgraph B that is consistent with A. The 
Hashgraph protocol itself involves replicas running two loops in parallel: 

1. Pick a random replica, gossip to them all known events, and create another event to 
record this gossip. 

2. Receive gossip from another replica, create a new event, and then call three subpro-

64 



NIST IR 8460 ipd 
April 2023 

Fig. 14. Hashgraph strongly seeing. Time advances from the bottom of the hashgraphs to the 
top. The yellow event at the top of each hashgraph can strongly see an orange event on the 
bottom row. In each hashgraph, the orange event is an ancestor of four (or fve) red events by 
diferent block creators, each of which is an ancestor of the yellow event. If the four orange 
events and both parents of the yellow event were created in round r, then the yellow event is 
created in round r + 1 because it strongly sees more than 2n witnesses created by diferent 3 
replicas in round r. [103] 

2526 

2527 

2528 

2529 

2530 

2531 

2532 

2533 

2534 

2535 

2536 

2537 

2538 

2539 

2540 

2541 

2542 

2543 

2544 

2545 

2546 

2547 

2548 

2549 

cedures: divideRounds(), decideFame(), and f indOrder(). 

• divideRounds(): For every event x, the replica sets r as the maximum round 
of the parents of x. Then, if x can strongly see more than 2n of the witnesses 3 
from round r, the replica sets x’s round to be r + 1. Otherwise, it is round r. 
Regardless, the replica then determines whether x is a witness by checking if x 
has no self-parent or if x’s round is greater than the round of x’s self-parent. 

• decideFame(): This is the step where Byzantine agreement occurs. For each 
witness that has been identifed, the replica checks whether it is a famous wit-
ness. Given a witness x in round r, each witness from round r + 1 votes (im-
plicitly) that x is famous if it can see it. If more than 2n agree that x is a famous 3 
witness, agreement has been found and the election is over. This continues for 
as many rounds as necessary to reach agreement. In normal rounds, the witness 
votes in line with the majority of the witnesses it strongly sees from the prior 
round. There are also periodic rounds where the vote is determined via a coin 
fip in order to get around FLP impossibility when networks are asynchronous. 

• fndOrder(): At this point, all witnesses from round r have had their fame de-
cided. The replica removes any famous witness with the same creator as any 
other in that set. The unique famous witnesses that remain are used to totally 
order events. An event has a "received round" of r if that is the frst round in 
which every unique famous witness is a descendent of the event, and the fame 
of each witness was decided by round r. The timestamp of the event is taken 
as the median of the timestamps of the events where each replica frst received 
it. Events are then sorted by received round with ties broken by the median 
timestamp and further ties broken based on the signature on the event XORed 

65 



NIST IR 8460 ipd 
April 2023 

2550 

2551 

2552 

2553 

2554 

2555 

2556 

2557 

2558 

2559 

2560 

2561 

2562 

2563 

2564 

2565 

2566 

2567 

2568 

2569 

2570 

2571 

2572 

2573 

2574 

2575 

2576 

2577 

2578 

2579 

2580 

2581 

2582 

2583 

2584 

2585 

2586 

with the signatures of the unique famous witnesses in the same received round. 

One of the alleged advantages of the Hashgraph protocol is "fairness" in transaction order-
ing (see Section 7.1). In particular, it is claimed that it would be challenging for an attacker 
to "manipulate which of two transactions will be chosen to be frst in the consensus order" 
[103]. Unfortunately, it fails to achieve this, as there is a method that allows an adversary to 
determine the order of transactions by exploiting the use of the median of the timestamps 
[104]. 

Other asynchronous DAG-based protocols that interpret a communication graph in this 
way exist, including Aleph [105] and DAG-Rider [106]. Aleph improves upon Hashgraph 
by using a more effcient binary agreement subprotocol than the decideFame() procedure 
above [105]. DAG-rider improves upon both Hashgraph and Aleph by removing the need 
for signatures to maintain safety and by providing eventual fairness, such that all block 
proposals by honest replicas are guaranteed to eventually be included in the ledger [106]. 

7. Miscellaneous Permissioned BFT 

This section demonstrates some additional properties attainable by or techniques useful 
for BFT algorithms. These properties go beyond agreement and liveness to provide extra 
guarantees or functionality. For example, protocols can prevent replicas from manipulating 
the order of transactions, detect and expel replicas that behave maliciously, or dynamically 
reconfgure the set of replicas participating in consensus. Other protocols give certain repli-
cas special roles to enhance performance, allow clients to have fexibility with respect to 
beliefs about network assumptions or the number of faults, or favor availability over con-
sistency during network partitions (while maintaining deterministic fnality). The details of 
the protocols here are omitted. 

7.1. Fairly Ordering Transactions 

There are situations in which the ability to choose the order of transactions included in the 
ledger provides an unwarranted or undesirable advantage to a replica. A major problem in 
traditional fnance is front-running, where a participant uses the knowledge of somebody 
else’s transactions for selfsh advantage in their own dealings. For example, Bob may 
submit an order to his broker Alice to purchase 1000 shares of stock in company A. Before 
Alice flls the order, she can submit her own order to purchase 1000 shares and immediately 
turn around and sell the 1000 shares to Bob at a higher price for a guaranteed proft. For 
many distributed applications, the privileged position of block producers that choose the 
order of transactions makes them a potential adversary. Some consensus protocols attempt 
to reduce the ability of replicas to perform this and other kinds of manipulation by reducing 
the power of replicas to order transactions [104, 107–109]. 

An early attempt to achieve fairness in transaction ordering was the Helix protocol [108], 
which used threshold cryptography to limit the ability of replicas to censor transactions 

66 



NIST IR 8460 ipd 
April 2023 

2587 

2588 

2589 

2590 

2591 

2592 

2593 

2594 

2595 

2596 

2597 

2598 

2599 

2600 

2601 

2602 

2603 

2604 

2605 

2606 

2607 

2608 

2609 

2610 

2611 

2612 

2613 

2614 

2615 

2616 

2617 

2618 

2619 

2620 

2621 

2622 

2623 

2624 

2625 

2626 

proposed by each other. Threshold decryption is used to create a randomness beacon that 
is then used to elect the next PBFT-esque committee in an unpredictable way and to force 
replicas to randomly sample the choice of transactions they include. Because clients en-
crypt transactions before sending them to replicas, the replicas lack information that would 
be useful to exploit ordering. However, this allows clients to arbitrarily spam the network 
with invalid transactions, so it may require identity verifcation for clients. 

More recently, the Aequitas family of protocols [104] attempted to provide a property 
dubbed order fairness, such that if suffciently many replicas receive transaction tx1 be-
fore a different transaction tx2, then all honest replicas will output tx1 before tx2. While 
it was proven that this property is impossible within blocks, the Aequitas protocols can 
provide this property between blocks. That is, if enough replicas receive tx1 before tx2, 
then tx2 will appear in either the same block as tx1 or a later block. The protocols rely 
on a primitive – FIFO-broadcast – that guarantees that broadcasts are delivered by honest 
replicas in the same order in which they were originally broadcast. Replicas use FIFO-
broadcast to gossip their local transaction ordering and then later come to agreement on the 
set of replicas whose local orderings should be considered for a given transaction before 
ultimately fnalizing the global ordering based on these local orderings. 

A variety of similar fairness-related defnitions can be found in [107], which presents a 
set of protocol extensions or "widgets" that provide fairness. They can be added as a 
preprocessing step to blockchain protocols at the expense of increased latency. As with 
Aequitas, true fairness is impossible because it would require blocks to be of potentially 
unlimited size (this is a trade-off that the Aequitas protocols accept). A variety of more 
relaxed notions are possible, including that fairness be provided with a fxed probability or 
that if all honest parties saw a transaction tx1 by time T and another transaction tx2 after 
time T , then tx1 will be committed before tx2. 

Another proposal, Pompē, decouples the transaction ordering process from the agreement 
process in order to obtain an alternative version of fairness [109]. The replicas involved in 
consensus express their preferences regarding the ordering of transactions, and given these 
sets of preferences, some possible total orderings are not considered valid. Specifcally, 
if replicas base their ordering preferences on the time they frst see a transaction, then the 
protocol guarantees the following: if the lowest timestamp that any honest replica assigns 
to tx2 is higher than the highest timestamp that any honest replica assigns to tx1, then tx1 
will precede tx2 in the ledger. Unlike the order fairness property from [104], this ordering 
property is expressed based on the preferences of honest replicas rather than some fraction 
of all of the replicas, which may include Byzantine ones. This restriction results in pro-
tocols with improved fault tolerance compared to the Aequitas protocols, which require at 
least 4 f + 1 replicas in order to tolerate f failures. 

In addition to providing some notion of fairness in transaction ordering, other possible no-
tions of fairness can exist in permissioned systems. For instance, protocols with leaders 
tend to have an uneven distribution of effort for replicas since the leader does a dispropor-

67 



2630

2635

2640

2645

2650

2655

2660

2627 

2628 

2629 

2631 

2632 

2633 

2634 

2636 

2637 

2638 

2639 

2641 

2642 

2643 

2644 

2646 

2647 

2648 

2649 

2651 

2652 

2653 

2654 

2656 

2657 

2658 

2659 

2661 

2662 

2663 

NIST IR 8460 ipd 
April 2023 

tionate amount of work. Rotating leaders or using leaderless protocols can help. Along 
these lines, [110] proposes a protocol designed to fairly balance the processing load based 
on past performance. It is similar to PBFT but with multiple simultaneous leaders. This 
system partitions client transactions among replicas according to each replica’s process-
ing ability, which prevents replicas from facing "unfairly" large resource burdens. Another 
possible notion of fairness arises if the protocol provides rewards to replicas, such as trans-
action fees. For example, FairLedger is a protocol that – assuming that otherwise-honest 
replicas are rational – ensures that each replica receives fair shares of the fees [111]. Along 
similar lines, [112] proposes the notion of strongly fair validity: if n replicas are involved in 
an instance of Byzantine agreement, then the probability that a particular replica’s proposal 
is accepted by the honest replicas is lower-bounded by 1 − ε , where ε is negligible. Weakly n 
fair validity captures the same idea but over repeated blocks, whereas strongly fair validity 
is with respect to a single-shot BA instance. 

7.2. Accountability Against Malicious Replicas 

Another useful property – and one that is occasionally used to make proof-of-stake proto-
cols more robust – is accountability. In an accountable BA protocol, honest nodes that are 
not in agreement can exchange suffcient information to provably identify at least n 

3 mali-
cious nodes if f ≥ n 

3 . This property relies on the idea that malicious equivocation can be 
detected due to the existence of two signatures from the same key on conficting messages. 
When misbehavior can be detected by honest parties and individual responsibility can be 
assigned, it may be possible to relax some security assumptions while maintaining system 
security [113]. Accountability can also be used to help make BFT protocols more secure 
when some participants are rational rather than altruistic [114]. 

A protocol that provides this is Polygraph, which increases the communication complexity 
of the BA protocol it builds off of by a linear factor [115]. Polygraph relies on the leaderless 
Democratic BFT protocol proposed in [116] and used in the Red Belly Blockchain project 
[117]. It is also used in the Long-Lasting Blockchain (LLB) protocol in order to tolerate 
considerably more than the typical f Byzantine failures [118]. When there are more than 
f Byzantine replicas, a fork can be created and detected via conficting signed messages. 
When LLB detects a fork, there is a recovery procedure that merges the confict instead of 
discarding one of the conficting blocks. 

Reference [119] shows how to provide an alternative notion of accountability in a variety 
of BFT algorithms, including PBFT and HotStuff. Specifcally, if f < n 

3 is the maximum 
number of Byzantine faults that the protocol tolerates but t > f Byzantine faults occur, then 
this notion of accountability guarantees that the protocol can detect at least f +1 Byzantine 
faults, where 2 f + 1 − t honest replicas can testify to that effect, and proof of malfeasance 
only requires communicating with one of those honest replicas. 

68 



NIST IR 8460 ipd 
April 2023 

2664 

2665 

2666 

2667 

2668 

2669 

2670 

2671 

2672 

2673 

2674 

2675 

2676 

2677 

2678 

2679 

2680 

2681 

2682 

2683 

2684 

2685 

2686 

2687 

2688 

2689 

2690 

2691 

2692 

2693 

2694 

2695 

2696 

2697 

2698 

2699 

2700 

2701 

2702 

7.3. Specially Designated Roles for Replicas 

Instead of requiring every replica to perform the same actions throughout a protocol ex-
ecution, some protocols may assign special roles to some replicas in order to enhance 
performance. A simple example of this was seen in the HotStuff protocol (see Section 5.3), 
where replicas sent their signature shares directly to the leader for aggregation instead of 
multicasting them to every replica. The use of threshold signatures in this way is fairly 
common because it can reduce the communication complexity from quadratic to linear. 

This technique is also employed in SBFT, where the aggregating party is called a "collector" 
[120]. In addition, SBFT uses the optimistic fast path from Zyzzyva, where the client 
can be viewed as the collector (see Section 4.3), but makes it more resilient by adding 
redundancy such that more than c faulty replicas are required to leave the fast path. A 
trade-off is that including this redundancy requires more replicas to maintain the same 
degree of fault tolerance (n ≥ 3 f + 2c + 1). SBFT recommends c ≤ f and uses c + 18 
collectors who rotate in round-robin fashion. SBFT further reduces client communication 
via threshold signatures. Instead of waiting for f + 1 replies from replicas, an "execution 
collector" gathers the replies into a single signature over the result to send to the client. 

Another technique, employed in the Proteus protocol, is to elect a subset of c replicas with 
c << n as a "root committee," which is responsible for executing a BFT algorithm among 
themselves [121]. The block proposed by the committee is then validated by the remainder 
of the replicas, and if valid, the replicas sign it and return it to the root committee. When 
the root committee sees 2 f + 1 signatures, they commit the block and send the signatures 
to the remainder of the replicas who will then commit as well. Proteus ensures stable per-
formance regardless of the number of failures. View changes do not just change the leader 
but rather the full committee of c replicas. Compared to the typical O(n2) communication 
complexity of PBFT (and O(n4) for view changes), Proteus has a complexity of O(c2 +cn) 
for normal and view change modes. The root committee tolerates up to 2c failures because 3 
the remainder of the replicas initiate a view change of the committee if the committee fails 
to propose a block. 

7.4. Deterministic Longest Chain Protocols 

Another style of BFT algorithm is the deterministic, longest-chain protocol, such as the 
"proof of authority" (PoA) algorithms Aura and Clique, which have been used for permis-
sioned deployments of Ethereum. This kind of protocol favors availability over consistency 
during network partitions, not unlike Bitcoin and other "longest chain" protocols (see Sec-
tion 10 on Nakamoto Consensus) [122]. This means that the chain can fork temporarily. 
Unlike with Bitcoin, the protocols mentioned here are deterministic, so the schedule of 
block proposers is known in advance. In other BFT protocols, leader election and voting 
are separate processes, but deterministic longest chain protocols combine them. When a 
replica is elected leader, it has the opportunity to vote, and honest replicas vote on the most 
"popular" ledger seen so far. 

69 



2705

2710

2715

2720

2725

2730

2735

2740

2703 

2704 

2706 

2707 

2708 

2709 

2711 

2712 

2713 

2714 

2716 

2717 

2718 

2719 

2721 

2722 

2723 

2724 

2726 

2727 

2728 

2729 

2731 

2732 

2733 

2734 

2736 

2737 

2738 

2739 

2741 

2742 

2743 

NIST IR 8460 ipd 
April 2023 

Aura assumes that replicas have synchronized clocks, and the next leader is elected at reg-
ular intervals. In Aura, the leader broadcasts a signed block to the other replicas, the leader 
is rotated in round-robin style, and future leaders build on the longest chain that they have 
seen. A block is considered fnal after a suffcient number of the replicas sign blocks on 
the same chain extending it. This uses only two rounds of communication as opposed to 
PBFT’s three. Clique allows multiple simultaneous block proposers, resolves forks using 
the GHOST protocol (see Section 11.2), and only requires a single round of communication 
to commit. Early variants of both of these algorithms were subject to various attacks, in-
cluding the "cloning" attack that allowed double-spending during network partitions [123]. 
Note that using GHOST as the fork-choice rule in a permissioned system may be dan-
gerous due to the balance attack, where an adversary keeps the network partitioned and 
prevents transactions from being fnalized by keeping the two partitioned blockchains at 
similar lengths for a period of time [124, 125]. 

In [126], the security of a variant of Aura is proven when n ≥ 3 f + 1 in synchronous 
networks while simultaneously pointing out a vulnerability in an existing implementation. 
The attack prevents consistency by having the network constantly switch back and forth 
between equal-length chains. Prior to this analysis, it had been wrongly believed that the 
protocol was secure as long as the majority was honest. Randomized variants of longest 
chain protocols like Nakamoto Consensus have a better security margin (honest majority) 
and better confrmation times, but deterministic variants are secure against a more powerful 
adversary capable of "after-the-fact message removal," where "the adversary can observe 
what an honest node i wants to send in some round r, adaptively corrupt node i, erase the 
message it originally wanted to send, and then insert arbitrary corrupt messages on behalf 
of node i in round r" [126]. 

Ouroboros-BFT is a deterministic longest chain protocol similar to Aura and secure when 
n ≥ 3 f + 1 [127]. It is synchronous and, thus, not optimally resilient for synchronous 
protocols (though it is optimally resilient for deterministic longest chain protocols). In the 
covert setting, where an adversary does not want to create evidence of their misbehavior 
(the accountability property discussed in Section 7.2 is relevant here), Ouroboros-BFT can 
tolerate n ≥ 2 f + 1. The clock advances in slots every few seconds. Each time the clock 
advances to a new slot, replicas receive some transactions and blockchain candidates from 
the network and 1) update their mempool with the new transactions, 2) update their local 
preferred blockchain via the longest chain rule, and 3) check whether they are the current 
round-robin slot leader. If so, they extend their longest chain with a new block and diffuse 
it to the other replicas. A block is fnalized when it has a slot timestamp more than 3 f + 1 
slots in the past. 

Ouroboros-BFT has a few advantages and trade-offs compared to algorithms like PBFT and 
Zyzzyva. Ouroboros-BFT is simpler in that replicas perform the same steps in each slot 
independently of their view, whereas replicas in PBFT execute different steps depending 
on their current state. Synchrony assumptions differ, and PBFT maintains consistency with 
unbounded delays. When the network delay bound ∆ is violated in Ouroboros-BFT, the 

70 



NIST IR 8460 ipd 
April 2023 

2744 

2745 

2746 

2747 

2748 

2749 

2750 

2751 

2752 

2753 

2754 

2755 

2756 

2757 

2758 

2759 

2760 

2761 

2762 

2763 

2764 

2765 

2766 

2767 

2768 

2769 

2770 

2771 

2772 

2773 

2774 

2775 

2776 

2777 

2778 

2779 

2780 

2781 

chain forks, but replicas will regain a consistent view when the delay bound is respected 
again. Ouroboros-BFT provides speculative execution immediately, while the longest chain 
mechanism orders transactions over time, and communication complexity is optimistically 
Θ(n) per round and Θ(n f ) in the worst case. Transactions have guaranteed liveness after 
5 f + 2 rounds, but a speculative outcome is produced in only two rounds. Zyzzyva has the 
same optimistic performance but requires the client to be actively involved in consensus, 
unlike PBFT and Ouroboros-BFT. 

7.5. Flexible BFT 

Most BFT algorithms provide safety and liveness for all users under certain conditions, 
such as a synchronous network with the majority of replicas being honest. Flexible BFT 
separates the fault model from the protocol design itself, allowing fexible beliefs about 
the network and number of faults. A client may specify a fault threshold and a maximum 
message delay, and safety and liveness will be maintained for any client with correct be-
liefs (and any two clients with correct beliefs will be in agreement with each other) [128]. 
Replicas commit transactions the way other BFT algorithms do: only clients commit, and 
they may do so at different times. The fexibility provided here is akin to the recipient de-
ciding how many confrmations to wait for in Bitcoin. A $10 million transaction deserves 
a lengthier confrmation period than a $10 one. Further, clients may update their beliefs 
based on observation, such that if they notice more votes on conficting values or lengthier 
message delays, they may become more conservative. 

Flexible BFT also introduces a new alive-but-corrupt (a-b-c) fault model, where an ad-
versary will try to violate the safety of the protocol but, failing that, will not try to disrupt 
liveness. This model may be justifed when violating safety could reward an adversary with 
more money (e.g., via double-spending) but violating liveness may not (because keeping 
the service running may allow the adversary to collect transaction fees). This relaxation of 
the fault model allows for protocols that remain secure despite a combination of a-b-c and 
Byzantine faults in excess of n 

3 under partial synchrony and n 
2 under synchrony. To achieve 

these properties, Flexible BFT uses two key techniques: 

1. Replicas run a partially synchronous protocol, but clients assume synchrony bounds 
for committing, which allows fexible assumptions regarding ∆. That is, the timing 
assumptions for replicas and for clients are distinct. 

2. Replicas will use a particular quorum size while executing the protocol, but clients 
choose their own quorum sizes before committing. This allows clients to have diver-
gent beliefs about the security threshold. 

The use of quorums in proving the security of BFT protocols is discussed in Section 4.2. 
Quorum intersection both within and across views can prove safety by demonstrating that 
at least one honest replica would have needed to misbehave to violate safety. Quorum avail-
ability can be used to prove liveness by showing that a suffciently large quorum contains 

71 



NIST IR 8460 ipd 
April 2023 

2782 

2783 

2784 

2785 

2786 

2787 

2788 

2789 

2790 

2791 

2792 

2793 

2794 

2795 

2796 

2797 

2798 

2799 

2800 

2801 

2802 

2803 

2804 

2805 

2806 

2807 

2808 

2809 

2810 

2811 

2812 

2813 

2814 

2815 

2816 

2817 

2818 

no Byzantine replicas, and thus there are enough honest replicas to respond to an honest 
leader. 

Flexible BFT separates out the quorums needed for different parts of the algorithm: locking 
on a value or forming a certifcate requires qlck, while unlocking requires qulck. The quorum 
that clients need for learning certifcate uniqueness is qunq, and the quorum required for 
safely committing is qcmt . Clients require a qunq fraction of votes in the frst round and a 
qcmt fraction of votes in the second round to commit. 

Flexible BFT can ensure quorum intersection within a view by ensuring that every qlck 
quorum intersects with every qunq quorum at a minimum of one honest replica, which 
requires that the fraction of faulty replicas is less than qlck + qunq − 1. This guarantees 
that if a client commits a value, it is the only value with a certifcate in this view. To 
ensure quorum intersection across views, every qulck quorum must intersect with every 
qcmt quorum at a minimum of one honest replica, which requires that the fraction of faulty 
replicas to be less than qulck + qcmt − 1. This guarantees that when a client commits a 
value, replicas that have locked on that value will not later unlock it. To ensure quorum 
availability within a view and thus liveness, the fraction of Byzantine replicas must be less 
than 1 − max(qunq,qcmt ,qlck,qulck). 

Balanced quorum sizes are optimal, such that qlck = qulck = qr and qunq = qcmt = qc. Ad-
ditionally, qc ≥ qr, because the qr votes that replicas use to lock can also be used in the 
qcmt quorums by clients. Here, qr is the quorum that replicas need to lock a value (qr is 
chosen by the system designer), and qc is the quorum that clients need for safety (chosen by 
clients, along with ∆). Taken together, fexible quorum intersection holds when the fraction 
of faulty replicas is < qc + qr − 1, and fexible quorum availability holds when the fraction 
of Byzantine replicas is ≤ 1 − qc. For example, if qr = 0.7 and qc = 0.75, a client can 
maintain security when the fraction of Byzantine replicas is 0.25 and the fraction of a-b-c 
replicas is up to 0.2. 

Other protocols have similar goals to Flexible BFT in that they attempt to accommodate a 
wider variety of assumptions simultaneously. For example, the protocols in Section 8 can 
allow replicas with different trust assumptions to maintain agreement. The Heterogeneous 
Paxos protocol allows different clients to set their own mixed failure tolerances for crash 
and Byzantine faults using differently trusted sets of replicas, essentially combining some 
of the benefts of Flexible BFT and the protocols from Section 8 [129]. The Highway 
protocol allows fexible assumptions regarding the number and types of faulty replicas and 
then uses these assumptions to establish different confdence thresholds for the fnality of 
blocks [130]. Other protocols provide similar fexibility to Flexible BFT, but rather than 
using PBFT as the basis for the algorithm, ones with better communication complexity like 
HotStuff and Streamlet are used instead [131]. 

72 



2820

2825

2830

2835

2840

2845

2850

2855

2819 

2821 

2822 

2823 

2824 

2826 

2827 

2828 

2829 

2831 

2832 

2833 

2834 

2836 

2837 

2838 

2839 

2841 

2842 

2843 

2844 

2846 

2847 

2848 

2849 

2851 

2852 

2853 

2854 

2856 

2857 

NIST IR 8460 ipd 
April 2023 

7.6. View Change Algorithms 

In partially synchronous permissioned consensus protocols with leaders, view changes are 
the mechanism used to maintain liveness despite a malicious leader. A view can be consid-
ered a phase of the protocol where a particular replica acts as the leader and is generally 
represented as a monotonically increasing integer. A view change algorithm, sometimes 
called a pacemaker or synchronizer, has every replica start at view zero. The algorithm al-
lows replicas to signal that they wish to advance to the next view but only actually advances 
the replica to a new view when the synchronizer emits a notifcation to the higher-level con-
sensus protocol. 

The challenge of view synchronization is that during good periods, progress can be main-
tained by the f Byzantine replicas combined with the lowest latency group of f + 1 honest 
replicas. In this case, it is possible that only the quickest f + 1 honest replicas recognize 
that a block has been agreed upon and advance to the next round of the consensus proto-
col, while the f slowest-but-honest replicas fall behind. Later, if the f Byzantine replicas 
stop behaving as though they were honest, the view change mechanism is required in order 
to get the f slow replicas to "catch up" to the same view as the f + 1 quicker ones. The 
Byzantine view synchronization problem is solved by algorithms with the following two 
properties [132]: 

1. View Synchronization: All honest nodes must execute the same view with an honest 
leader for a suffciently long time, and there must be an infnite number of views with 
an honest leader. 

2. Synchronization Validity: A synchronizer will only signal a new view if an honest 
node wished to advance to it. 

A naive approach to view synchronization is to simply double the duration of each view, 
which ensures that there will be a suffciently long period where all honest nodes share 
the same view. This has the advantage of requiring no communication between parties but 
is clearly impractical due to the unbounded latency that it introduces into the system. A 
more practical approach is the broadcast-based view change mechanism used in PBFT (see 
Section 4.1), which has high communication complexity but O(∆) expected latency and 
O( f ∆) worst-case latency. Using this approach, when a replica sees messages suggesting 
that f + 1 replicas wish to enter the same view, it relays its own wish to advance to that 
view using reliable broadcast. 

These algorithms leave room for improvement, and several works have proposed new view 
synchronizers with better performance [132–134]. For example, the Cogsworth synchro-
nizer matches the latency and communication complexity of the broadcast variant but, in 
some scenarios, can improve the communication complexity by a linear factor [132]. In-
stead of having every replica multicast messages to every other replica, they send a message 
directly to the leader of the view to which the replica wishes to advance. An honest leader 
then broadcasts a single message with an aggregated threshold signature with only linear 

73 



2860

2865

2870

2875

2880

2885

2890

2895

2858 

2859 

2861 

2862 

2863 

2864 

2866 

2867 

2868 

2869 

2871 

2872 

2873 

2874 

2876 

2877 

2878 

2879 

2881 

2882 

2883 

2884 

2886 

2887 

2888 

2889 

2891 

2892 

2893 

2894 

2896 

2897 

2898 

NIST IR 8460 ipd 
April 2023 

communication complexity. If the leader of a view is Byzantine instead, then replicas may 
need to time out and attempt each of the f + 1 subsequent leaders until they fnd an honest 
leader who will help relay the aggregated signature. 

The Cogsworth protocol involves four types of messages, including two sent from replicas 
to leaders and another two sent from leaders to the rest of the replicas. Replicas send to 
prospective leaders (WISH,v) and (VOT E,v) messages when they want to move to the 
next step of the protocol, where v is the view number in question. The two that leaders 
send are "time certifcate" and "quorum certifcate" messages, each with one aggregated 
threshold signature: the leader sends (TC,v) upon receiving f + 1 (WISH,v) messages 
or sends (QC,v) upon receiving 2 f + 1 (VOT E,v) messages. When a replica wishes to 
advance to another view v, it sends (WISH,v) to the leader of view v. If the leader of 
view v receives f + 1 of these messages, they broadcast (TC,v). However, if 2∆ time 
passes after the replica sends its frst (WISH,v) without receiving a corresponding (TC,v) 
message, it sends (WISH,v) to the leader of view v + 1. The replica continues to wait in 
2∆ increments, sending (WISH,v) to the leader of view v + 2 until it eventually receives a 
(TC,v) message. Upon receiving (TC,v), replicas send (VOT E,v) to the leader of view v, 
even if they had not already sent a (WISH,v) message. The replica waits 2∆ time to receive 
a (QC,v) message and contacts subsequent leaders as above if time runs out. In this case, 
the replica sends leaders both (VOT E,v) and (TC,v). Replicas enter view v immediately 
upon receiving (QC,v) from a leader. 

A follow-up work proposed an alternative view change algorithm built off of Cogsworth 
[133]. One issue with Cogsworth is that its expected linear communication complexity 
with benign failures becomes quadratic with Byzantine failures in the average case. The 
algorithm in [133] maintains an expected linear message complexity, even with Byzantine 
failures. To achieve this, the algorithm modifes Cogsworth by adding another phase to the 
algorithm and having replicas’ signed messages to leaders include the identity of the leader 
it is intended for. 

One problem with both of the above algorithms is that they rely on a modifed variant of par-
tial synchrony where there is no clock drift, and messages sent before GST cannot be lost 
and will necessarily arrive by time GST + ∆. This is potentially problematic because prior 
to GST, if clocks diverge, then the replicas’ notion of the duration of a view can become 
desynchronized. Further, messages that may be needed in order to get replicas to be in the 
same view can be lost. Worse, the above algorithms require potentially unbounded memory 
space in order to store each (WISH,v) message that falls below the required threshold for 
relaying, as well as maintaining a copy of every message it sends in order to enable it to be 
sent again. The FastSync synchronizer was designed to work under true partial synchrony 
with unbounded clock drift and the possibility of message loss before GST while running in 
bounded space [134]. FastSync works almost exactly like Bracha’s broadcast (see Section 
1.2), but replicas are not constrained to only acting on identical messages. Instead, replicas 
maintain only the highest (WISH,v) message received from each process and can act on 
sets of WISH messages for non-identical views. 

74 



2900

2905

2910

2915

2920

2925

2930

2935

2899 

2901 

2902 

2903 

2904 

2906 

2907 

2908 

2909 

2911 

2912 

2913 

2914 

2916 

2917 

2918 

2919 

2921 

2922 

2923 

2924 

2926 

2927 

2928 

2929 

2931 

2932 

2933 

2934 

2936 

2937 

2938 

NIST IR 8460 ipd 
April 2023 

One of the risks of the leader-based view-by-view progression of partially synchronous 
protocols is that leaders can be targeted in adaptive denial-of-service attacks in order to in-
duce asynchrony and eliminate liveness. A leader-based view abstraction was designed in 
[135], which takes any view-by-view consensus protocol, wraps it in an API, and builds an 
asynchronous SMR system from it. This reduces performance in optimistic cases while dra-
matically improving liveness while under attack or while poor networking conditions hold. 
Separately, an asynchronous view change algorithm has been proposed as a replacement 
for the synchronizers discussed above. When combined with HotStuff, the resulting SMR 
system has linear communication complexity while the network is synchronous, quadratic 
complexity when the network is asynchronous, and always maintains liveness [136]. 

Strongly related to the idea of view changes is the ability to dynamically reconfgure con-
sensus committees, such that replicas may join or leave the system over time. A variety of 
proposals exist that can provide such a functionality [137–142]. Reconfguration can even 
be bundled with accountability (described in Section 7.2) in order to immediately change 
the committee upon detecting Byzantine behavior [142]. A system that is run by a sin-
gle organization may not need to dynamically reconfgure the consensus committee, but 
when the replicated state machine is operated by a consortium of different organizations or 
individuals, the ability to add new members and remove others becomes more important. 

To enable reconfguration, the initial consortium members and their public keys are stored 
in the system’s genesis block. In the scheme presented in [137], transactions that recon-
fgure the committee are included in separate reconfguration blocks. Each normal block 
(the ones that execute client-issued transactions) includes a pointer to the previous recon-
fguration block in the chain, so verifers have access to the public keys needed to validate 
the signatures over proposed blocks. The primary security challenge while dealing with re-
confguration is preventing faulty replicas active in previous views from causing problems 
in later ones, as shown in Figure 15. The attack is analogous to long-range attacks against 
proof of stake, which is discussed in Section 12.1.2. 

One way to resolve this problem is to separate a replica’s "permanent" key pair from their 
"consensus" key pair, which is what is used for block signing. For each new confgura-
tion that a replica is involved in, it generates a new consensus key pair and discards the 
prior one (discarding the old key pair can be done using the "forgetting" scheme described 
in [143]). Securely discarding the old consensus key pair ensures that the faulty replica 
cannot recover the key and sign blocks corresponding to an old confguration should they 
become corrupted after a reconfguration (as is done by replicas B and C in Figure 15). Re-
confguration blocks store the identities of the replicas and each of their consensus public 
keys in the new confguration. 

For a new replica to join the system, it frst asks the current replicas for permission. The 
current replicas choose to accept or reject the new replica, and if they accept, they send 
a signed reply message that includes the replica’s intended consensus public key for the 
next confguration. Upon receiving n− f signed acceptance messages, the prospective new 

75 



NIST IR 8460 ipd 
April 2023 

Fig. 15. Committee reconfguration attack. While the threshold of faulty replicas is respected 
in each view, replicas A, B, and C work together to create a fork by extending the blockchain 
without the reconfguration block at height K. This is possible even though none of the original 
replicas remain in the committee. If a client, aware of the initial confguration C0, is ofine 
during reconfguration and then reconnects, they will contact the committee members from C0. 
If this happens at any time after TK+1, the corrupted quorum will convince the client to follow 
the wrong chain starting from height K. 

2939 

2940 

2941 

2942 

2943 

2944 

2945 

2946 

2947 

2948 

2949 

2950 

2951 

2952 

2953 

2954 

2955 

2956 

replica creates a reconfguration transaction that bundles these signatures together. When 
this transaction is included in a reconfguration block and executed, the new replica can 
begin participating. Replicas can leave the system by themselves or by being kicked out by 
the rest of the replicas. If leaving by choice, the exiting replica gathers consensus public 
keys from existing replicas for a new confguration, bundles them together, and issues a 
reconfguration transaction. If the replica is being kicked out, then existing replicas issue 
special reconfguration transactions that ask the network to remove the target replica and 
provide a new consensus public key for the following confguration. Upon seeing n − f of 
these transactions that remove the same replica, a new reconfguration is generated without 
the replica. 

8. Localizing Trust Over Incomplete Networks With Open Membership 

The consensus protocols described in Sections 4 through 7 require that all n replicas in 
the system be fully aware of each others’ identities. Further, they must all trust each other 
equally despite real-world relationships that may have varying levels of trust. Prior works 
have explored how to loosen restrictions on the knowledge of other replicas when net-
works are not fully connected [144, 145]. However, these BFT-CUP (Consensus with Un-
known Participants) protocols still require that the unknown replicas be equally trusted 
as the known ones; that a fxed set of consensus replicas exist, each with a unique and 

76 



NIST IR 8460 ipd 
April 2023 

2957 

2958 

2959 

2960 

2961 

2962 

2963 

2964 

2965 

2966 

2967 

2968 

2969 

2970 

2971 

2972 

2973 

2974 

2975 

2976 

2977 

2978 

2979 

2980 

2981 

2982 

2983 

2984 

2985 

2986 

2987 

2988 

2989 

2990 

2991 

2992 

Sybil-resistant ID; and that all replicas are aware of the maximum failure threshold f . It is 
also possible to design permissioned agreement algorithms that are unaware of the precise 
values of n and f but maintain optimal resiliency [146]. Another line of work introduces 
asymmetric trust assumptions, where the replicas in the system do not adhere to a sin-
gle global trust assumption [147, 148]. In these systems, each replica can choose which 
combinations of other processes it trusts and which may be considered faulty. 

The protocols described later in this section combine some of the benefts of these sys-
tems. The key feature of these Federated Byzantine Agreement Systems (FBAS), some-
times called Federated Byzantine Quorum Systems (FBQS), is that each replica chooses 
its own group or quorum of trusted replicas to believe without needing to be aware of the 
existence of all other replicas or trusting them to the same degree. These systems represent 
a middle ground between permissioned and permissionless, though in practice, they are far 
closer to permissioned networks in both operation and trust levels. Section 4.2 contains 
some background information on Byzantine quorums. 

8.1. Stellar 

The Stellar Consensus Protocol (SCP) was introduced by Mazieres in [149] and further 
described by the Stellar Development Foundation in [150]. A generalization of Stellar’s 
quorum system with security proofs is provided in [151]. 

8.1.1. FBAS Background 

Stellar and similar protocols allow each user of the system to unilaterally defne their own 
sets of trusted replicas, called quorum slices. A single organization may have multiple 
slices, any one of which suffces to convince them of a statement in case the others fail. A 
replica should choose their quorum slices such that they believe that 

• If every member of a slice agrees about the state of the system, then they are correct 
about the state, and 

• At least one of its slices will be available to provide information about the state of 
the system in a timely manner. 

Let S be the set of replicas from which a set of messages originated. Every replica specifes 
its quorum slices in every message it sends, and it considers the set of messages to have 
reached the quorum threshold when every member of S has a slice included in S. A quorum 
is a non-empty set S of replicas that includes at least one quorum slice of each non-faulty 
member. If S is unanimous, the agreement requirements for all of its members are satisfed. 

Two honest replicas v1 and v2 are considered intertwined when every quorum of v1 inter-
sects every quorum of v2 in at least one honest replica. In an FBAS, agreement is only 
ensured between intertwined replicas. A set of replicas I is intact if I is a quorum whose 
replicas are uniformly honest, such that every pair of members of I is intertwined even 

77 



NIST IR 8460 ipd 
April 2023 

Fig. 16. Federated voting stages. [149] 

2993 

2994 

2995 

2996 

2997 

2998 

2999 

3000 

3001 

3002 

3003 

3004 

3005 

3006 

3007 

3008 

3009 

3010 

3011 

3012 

3013 

3014 

3015 

3016 

3017 

3018 

3019 

3020 

if every replica outside of I is faulty. An intact set I cannot be harmed by the actions of 
non-intact replicas, and the union of two intact sets that intersect is an intact set. Stated 
differently, intact sets are partitions of the honest replicas, where each partition maintains 
safety and liveness under certain conditions but where different partitions may have diver-
gent outputs. 

A v-blocking set is a set of replicas that intersects every quorum slice of v. A v-blocking 
set B of faulty replicas can block progress by replica v because liveness requires that v has 
at least one quorum slice comprised solely of honest replicas. If B unanimously votes for 
a value x, then v knows that either x is true or v is not intact. A full quorum is required in 
order for v to know that x will not be contradicted by intertwined replicas. This requirement 
adds an additional round of communication to Federated Byzantine Agreement protocols 
compared to standard BFT protocols. Ultimately, there are three levels of confdence that 
a replica can have regarding consensus on a particular value: uncommitted, accepted (i.e., 
safe to assume among intact replicas), and confrmed (i.e., safe to assume among inter-
twined replicas). If replicas broadcast the values that they accept and a full quorum accepts 
a value, these values will propagate through intact sets due to the cascade theorem: 

If I is an intact set, Q is a quorum of any member of I, and S is any superset 
of Q, then either S ⊇ I or there is a member v ∈ I such that v ∈/ S and I ∩ S is 
v-blocking. [150] 

8.1.2. Stellar Consensus Protocol (SCP) 

The Stellar Consensus Protocol is a partially synchronous protocol, where each single-shot 
attempt at achieving consensus on a value is called a ballot, and ballots employ increasing 
timeouts in order to synchronize replicas on the same ballot. Ballots are typically called 
views in other protocols. For each ballot n, a process called federated voting occurs on 
both PREPARE and COMMIT statements for a value x. Federated voting is the main 
subprotocol that provides agreement, and its stages can be seen in Figure 16. 

A replica v will vote for any valid statement x that does not contradict its other outstanding 
votes and accepted statements by broadcasting a signed vote message. It then accepts x 

78 



NIST IR 8460 ipd 
April 2023 

(a) (b) (c) (d) (e) 

Fig. 17. Cascade efect in federated voting. Each replica has a single quorum slice indicated by 
arrows to members of the slice. All trust relationships are bidirectional with the exception of 
replica 5 including replica 1 in their quorum slice, but replica 1 does not reciprocate. (a) 
Contradictory statements X and Y are introduced. (b) Replicas vote for valid statements. (c) 
Replicas 1, 2, 3, and 4 accept X after their quorum {1,2,3,4} unanimously votes for X . (d) Set 
{1} is 5-blocking, so replica 5 accepts X and overrules its previous vote for Y . (e) Set {5} is 6-, 
7-, and 8-blocking, so replicas 6, 7, and 8 each accept X and overrule their previous votes for Y . 

3021 

3022 

3023 

3024 

3025 

3026 

3027 

3028 

3029 

3030 

3031 

3032 

3033 

3034 

3035 

3036 

3037 

3038 

3039 

3040 

3041 

if x is consistent with other accepted statements and either 1) v is a member of a quorum 
where each replica either votes for x or accepts x, or 2) a v-blocking set accepts x even 
if v did not vote for x. In this case, if v had previously cast votes that contradicted x, 
those votes are overruled and forgotten. Replica v then broadcasts an accept message for 
x and confrms x when it is in a quorum that unanimously accepts x. Figure 17 shows an 
example execution of federated voting that demonstrates the cascading effect described by 
the cascade theorem. 

Replicas will begin ballot n by initiating federated voting on a PREPARE(n,x) message. If 
a previous PREPARE message was successfully confrmed via federated voting, the replica 
will choose x as the confrmed PREPARE of the highest ballot. Otherwise, it sets x as the 
output of a nomination subprotocol. A replica attempts federated voting on COMMIT(n,x) 
if and only if the replica successfully confrms a PREPARE(n,x) in ballot n. If this suc-
ceeds, then the message is committed. However, if the replicas are unable to confrm a 
COMMIT message in the current ballot, they will employ increasing timeouts in order to 
synchronize on a particular ballot. 

The nomination subprotocol involves federated voting over messages of the form 
NOMINATE(x). Once a replica confrms a single NOMINATE message, it stops voting 
to nominate new values, so the set of nominated values is fnite. This process creates an 
evolving, deterministic combination of all values in confrmed NOMINATE messages. In-
tact replicas will eventually converge on the same set of values at some point arbitrarily late 
in the protocol execution. To reduce the number of values nominated, only a leader who 

79 



NIST IR 8460 ipd 
April 2023 

Fig. 18. FBAS Quorum intersection insufcient for safety. Quorums {v1,v2,v3,v7}, 
{v4,v5,v6,v7}, and {v7} intersect at v7, but because v7 is Byzantine, agreement is not 
guaranteed. [149] 

3042 

3043 

3044 

3045 

3046 

3047 

3048 

3049 

3050 

3051 

3052 

3053 

3054 

3055 

3056 

3057 

3058 

3059 

3060 

3061 

3062 

3063 

3064 

3065 

3066 

3067 

3068 

has not already voted for a NOMINATE message may introduce a new x value. To tolerate 
failures, the set of leaders grows as timeouts occur. 

The leader election mechanism employed in Stellar uses two hash functions, H0 and H1, 
where Hi(m)= SHA256(i||b||r||m), b is the block number, and r is the leader election round 
number. Defne priority(v) = H1(v). Defne weight(u,v) ∈ [0,1] as the fraction of replica 
u’s quorum slices containing replica v. When u is selecting a new leader, it only consider 
its neighbors: neighbors(u) = {v | H0(v) < 2256 ∗ weight(u,v)}. Replica u starts with an 
empty set of leaders, and it adds the replica v in neighbors(u) with the highest priority(v) 
at each round. When the set is empty for a round, replica u instead adds the replica v with 

H0(v)the lowest value of .weight(u,v) 

The normal-case operation of Stellar involves six messages: two to vote and accept a NOM-
INATE, two to accept and confrm a PREPARE, and two to accept and confrm a COMMIT. 

8.1.3. SCP Security 

Quorum intersection is a necessary but insuffcient condition for the safety of the SCP pro-
tocol. This can be seen in Figure 18, where the replica shared across quorums is malicious. 
Instead, SCP requires that quorum intersection continues to hold, even after deleting all of 
the faulty replicas from the trust graph. 

The federated voting procedure of SCP guarantees that no two members of an intertwined 
set confrm contradictory messages because the two quorums would share an honest replica 
that would not accept contradictory messages. However, a split vote can result in a state-
ment becoming permanently stuck waiting for a quorum and not being confrmed. An 
intact set would not become stuck if a replica in it confrms a statement because replicas 
will vote on a value when a v-blocking set accepts it, and the cascade theorem ensures that 
this eventually spreads to the remainder of the intact set. Once the members of the intact 
set vote unanimously, confrmation is guaranteed. 

To see why SCP itself maintains safety, consider an intertwined set S. The safety of fed-
erated voting ensures that, for a given ballot, a maximum of one value can be confrmed 

80 



3070

3075

3080

3085

3090

3095

3100

3105

3069 

3071 

3072 

3073 

3074 

3076 

3077 

3078 

3079 

3081 

3082 

3083 

3084 

3086 

3087 

3088 

3089 

3091 

3092 

3093 

3094 

3096 

3097 

3098 

3099 

3101 

3102 

3103 

3104 

3106 

3107 

3108 

NIST IR 8460 ipd 
April 2023 

prepared by members of S. This implies that at most one value can be confrmed com-
mitted in a given ballot as well. Now assume that COMMIT(n,x) is confrmed. This 
implies that PREPARE(n,x) was also confrmed. PREPARE(n,x) would contradict any 
COMMIT(n ′ ,x ′ ) of different values from earlier ballots (n ′ < n), so federated voting guar-
antees that no other value was decided by members of S in any earlier ballot number. 
Therefore, SCP provides safety when quorum intersection holds in the quorums where 
misbehaving replicas are removed from the trust graph. 

In addition to a suffciently long period of network synchrony, liveness requires that a quo-
rum exists and remains available even after deleting the Byzantine replicas. Specifcally, 
a replica remains live only if it has at least one quorum slice comprised solely of honest 
replicas. The set of faulty replicas must not be v-blocking for any honest v in the system. 
As mentioned in Section 8.1.1, liveness can be guaranteed for intact sets. 

If replicas do not start at the same time or have become desynchronized for any reason, 
timeouts alone will not suffce to achieve quorum availability within a ballot. Replicas 
begin their timers for ballot n only once they are part of a quorum where each replica is at 
ballot n or later, which prevents members of intact sets from staying too far ahead of the 
rest of the set. Additionally, if a replica v ever notices a v-blocking set at a later ballot, v 
will immediately skip to the lowest ballot such that this is no longer the case, regardless of 
timers. These mechanisms combined with the cascade theorem will help replicas that fall 
behind to catch up to the same ballot once the network experiences synchrony. 

Assume that a ballot n is synchronous for a "long enough" time and that I is an intact set. By 
ballot n+1, all replicas in I will have confrmed the same (possibly empty) set of PREPARE 
messages, P. If P = /0, the nomination subprotocol will converge on a value x. If P is not 
empty, let x be the value from the PREPARE message with the highest ballot number in P. 
In either case, replicas in I will perform federated voting on PREPARE(n + 1,x) in ballot 
n+ 1, so there will be a decision on x if ballot n+ 1 is also synchronous. This demonstrates 
that termination is guaranteed if the following conditions hold: the network is synchronous 
for two consecutive ballots, and the faulty members of honest replicas’ quorum slices fail 
to interfere during those ballots. 

Liveness, therefore, assumes that every replica in a quorum of a member of I must become 
synchronized or not send any messages at all for a suffciently long period, which may 
require members of I to adjust their quorum slices. In an FBAS, replicas can unilaterally 
adjust their quorum slices at any time, making recovery from liveness failures substantially 
easier in an FBAS than in a typical closed BFT system. In a closed BFT system, consensus 
must be achieved on the replica reconfguration events themselves, as described in Section 
7.6, and this is especially challenging when the system has lost liveness. 

Because quorum slices are user-confgured, there is no guarantee that the emergent struc-
ture actually satisfes the security requirements regarding quorum intersection and avail-
ability. In fact, the actual Stellar network in January 2019 was suffciently centralized that 
if a mere two replicas – both owned by the Stellar Foundation – were hacked or knocked 

81 



3110

3115

3120

3125

3130

3135

3140

3145

3109 

3111 

3112 

3113 

3114 

3116 

3117 

3118 

3119 

3121 

3122 

3123 

3124 

3126 

3127 

3128 

3129 

3131 

3132 

3133 

3134 

3136 

3137 

3138 

3139 

3141 

3142 

3143 

3144 

3146 

NIST IR 8460 ipd 
April 2023 

offine, a liveness failure would have ensued, though improvements have been made since 
then [152]. Another line of work has shown that determining whether all quorums of a 
given FBAS intersect is actually an NP-complete problem, but there are some heuristic 
algorithms that can increase confdence that a particular confguration is secure [153–156]. 

Despite these heuristics, [155] points out that many of the likely ways that an FBAS would 
end up being confgured revolve around a "top tier," or small group of replicas that are 
essential to providing safety and liveness to the whole system. The membership in this 
top tier cannot change without either the active involvement of existing top tier replicas or 
a loss of safety guarantees, which calls into question how "open" membership truly is in 
practice. 

8.2. Ripple 

The Ripple protocol was originally introduced in [157], but more up-to-date analyses are 
provided in [158, 159], which demonstrate that the original Ripple protocol has problems 
with both liveness and safety. Ripple-affliated researchers have suggested a different algo-
rithm – Cobalt (Section 8.3) – that could be used as an alternative for the network [160]. 

Not unlike Stellar, the Ripple protocol is designed to guarantee consistency even with only 
partial agreement on who participates in consensus. Each user who wants to participate 
defnes a unique node list (UNL), which is the set of replicas that the user will trust for 
making decisions about the state of the network. Safety is determined by the intersection 
of UNLs between pairs of correct replicas. The original protocol authors believed that 
the minimum overlap necessary for security was 20%, but a later analysis suggested it 
was 40%, and fnally [158] showed that it is actually more than 90%, which is a diffcult 
condition to satisfy. This is the primary motivation for Cobalt, which only requires a 60% 
overlap. Further, if there is not universal agreement on the participants, the network can 
get stuck and lose liveness even with 99% UNL agreement and no faulty nodes, requiring 
manual intervention to continue making progress. In contrast, Cobalt can make progress 
during asynchrony. 

In the following description of Ripple’s consensus protocol, let the size of a UNL for replica 
Pi be ni, and defne a quorum, qi, to be 80% of the UNL size. That is, replica Pi can tolerate 
no more than 20% of its UNL being faulty. Additionally, the term "ledger" is often used 
synonymously with "block" or "state" in the description. The consensus algorithm involves 
three steps: deliberation (proposing), validation (voting), and preferred branch (fork-choice 
rule). The algorithm is similar to GHOST (Section 11.2) or leaderless versions of longest-
chain permissioned protocols (Section 7.4). 

In the deliberation phase, replicas iteratively propose sets of transactions to the other repli-
cas in their UNL over the course of several rounds. In round r of deliberation, a replica 
will only include transactions present in at least threshold(r) of the recently received pro-
posals from their UNL, where the thresholds increase from 0.5 → 0.65 → 0.70 → 0.95 as r 

82 



3150

3155

3160

3165

3170

3175

3180

3147 

3148 

3149 

3151 

3152 

3153 

3154 

3156 

3157 

3158 

3159 

3161 

3162 

3163 

3164 

3166 

3167 

3168 

3169 

3171 

3172 

3173 

3174 

3176 

3177 

3178 

3179 

3181 

3182 

3183 

NIST IR 8460 ipd 
April 2023 

increases. The increasing thresholds are intended to prevent slow replicas from preventing 
consensus. When a replica sees a quorum qi of its trusted nodes agree on the transaction 
set, it applies the transactions to its ledger L, broadcasts a validation (vote) VL,i on the set, 
and begins a new round of deliberation. 

Replicas will only issue a validation on one block with a given sequence number. More 
formally, replica Pi only issues a validation VL,i for a block L if its height or sequence 
number seq(L) is greater than that of any previous block validated by Pi. If the replica 
determines that it is not on the preferred branch, it will switch to the preferred one but will 
not issue validations until it catches up to the sequence number it was on prior to switching. 
In the validation phase, replicas listen for validations from other replicas in their UNL. If 
replica Pi sees a quorum qi of validations for block L, then Pi sets the new fully validated 
tip to L. 

The preferred branch phase is the chain-selection or fork-choice rule, and it is used to 
determine how to make progress when the network is not synchronous. The preferred 
branch selection algorithm only switches to a different branch when it knows that enough 
replicas have committed to that chain of blocks such that an alternative chain cannot have 
more support. Let lastVals be the set of most recently validated ledgers (blocks). The three 
types of support used in the algorithm are: 

1. Tip support: The number of trusted replicas whose most recently validated block is 
L 

supptip(L) = |{VL′ ,i ∈ lastVals : L = L′}| 

2. Branch support: The number of trusted replicas whose most recently validated 
block is either L or descended from L 

suppbranch(L) = supptip(L)+ |{VL′ ,i ∈ lastVals : L ∈ ancestors(L′ )}|, 

where ancestors(L′ ) traces back to the genesis block 

3. Uncommitted support on sequence number s: The number of trusted replicas whose 
most recent validated block has either a sequence number lower than s or lower than 
that of the highest block L validation that the replica has personally broadcast 

uncommitted(s) = |{VL′ ,i ∈ lastVals : seq(L′ ) < max(s,seq(L))}| 

To fnd the preferred ledger, a replica walks down the blockchain starting from the block L 
that is the common ancestor of the most recently validated blocks. The replica then selects 
the child block L′ ∈ children(L) with the highest suppbranch(L′ ) that would still have the 
most support even if all uncommitted(seq(L′ )) picked a conficting fork. If no child of L 
satisfes this requirement, then L is the preferred ledger. However, if L′ does exist, then 
the process is repeated on the children of L′ . To break ties on forked blocks, the one with 
the higher hash value is selected. If this process leads to a block that is an ancestor of 
the replica’s current working ledger, they keep that ledger as preferred, since they do not 

83 



NIST IR 8460 ipd 
April 2023 

Fig. 19. Ripple "support" example. Each ledger is labeled with the tuple (supptip, suppbranch, 
uncommitted) from the view of a replica that last validated LF and has fve UNL members. 
Two trusted replicas had last validated LF , and one each had last validated LB , LD , and LE . 
The preferred branch is LD . [158] 

3184 

3185 

3186 

3187 

3188 

3189 

3190 

3191 

3192 

3193 

3194 

3195 

3196 

3197 

3198 

3199 

3200 

3201 

3202 

3203 

3204 

3205 

3206 

3207 

3208 

yet know that they are on the wrong branch. See Figure 19 for an example of the support 
defnitions being used to choose a preferred branch. 

8.3. Cobalt 

Cobalt is another algorithm intended for use in open networks with individualized trust as-
sumptions, and it is slated to be implemented in the Ripple network [160]. As mentioned in 
Section 8.2, Cobalt lowers the UNL overlap requirement from 90% to 60% while provid-
ing liveness in any network that satisfes this overlap bound between every pair of honest 
replicas. Further, the overlap condition for safety is local, so two replicas with suffcient 
overlap with each other cannot arrive at inconsistent ledger states, regardless of the over-
laps between other pairs of nodes. That is, poorly confgured replicas are unable to harm 
properly confgured replicas. This makes evaluating whether the network is in a safe con-
dition easier in comparison to Stellar and the original Ripple protocol, where evaluating 
whether a confguration is safe is an NP-complete problem. Unlike the earlier Ripple pro-
tocol and SCP, Cobalt maintains liveness in asynchronous networks. The Cobalt algorithm 
is similar to Bracha’s broadcast (see Section 1.2) but generalized to incomplete networks 
and combined with a few other techniques. 

8.3.1. Background 

To generalize classic BFT algorithms and techniques to operate in a setting with incomplete 
networks, some additional concepts must be introduced. Defne the extended UNL for 
replica Pi, denoted UNL∞ 

i , to recursively include the UNLs from all honest replicas in 
UNL∞ 

i . The extended UNL is Pi’s view of the whole network and includes any replica that 
may have some impact on Pi. Similar to the idea of quorums in Ripple, replicas have a set of S
essential subsets, ESi, such that UNLi = E. If S ∈E∈ES  

i 
ESi for Pi, defne nS = |S|, and two 

parameters tS (the maximum tolerable number of Byzantine replicas in S for safety), and 
qS (the number of correct replicas needed to guarantee liveness) that satisfy the following: 

84 



NIST IR 8460 ipd 
April 2023 

3209 

3210 

3211 

3212 

3213 

3214 

3215 

3216 

3217 

3218 

3219 

3220 

3221 

3222 

3223 

3224 

3225 

3227 

3226 

3228 

3229 

3230 

3231 

3232 

3233 

3234 

3235 

3236 

3237 

3238 

3239 

3240 

3241 

3242 

3243 

3244 

3245 

3246 

1. 0 ≤ tS,qS ≤ nS. 

2. tS < 2qS − nS. This means that any two subsets of qS replicas must intersect at an 
honest replica unless the number of Byzantine replicas exceeds the tS threshold. This 
guarantees consistency. 

3. 2tS < qS. This ensures that liveness holds for replicas with S ∈ ESi. 

Replicas can confgure qS and tS for each S ∈ ESi on an individual basis, and the above 
conditions hold when nS > 3tS + 1 and qS = nS − tS. 

Replicas Pi and Pj are considered linked if there is an essential subset S ∈ ESi ∩ ES j such 
that fewer than tS replicas in S are Byzantine. Pi and Pj are fully linked if there is some 
essential subset S ∈ ESi ∩ ES j such that at least qS replicas in S are honest, at most tS 
replicas in S are Byzantine, and tS ≤ nS − qS. Linkage is important for consistency while 
full linkage helps provide liveness. A replica is said to be healthy if it is honest and no 
more than min{tS,nS − qS} replicas in each of its essential subsets are not healthy. If a 
replica is healthy, then even the infuence of Byzantine replicas cannot cause it to accept or 
broadcast arbitrary messages. Similarly, a replica is unblocked if it is healthy and at most 
min{tS,nS − qS} replicas in each of its essential subsets are not unblocked. Blocked nodes 
can be arbitrarily prevented from terminating. Replica Pi is strongly connected if every pair 

∞ 
are fully linked with each other and weakly connected if it is ∞ 

i 
fully linked with every healthy replica in UNL 
of healthy replicas in UNL 

i . 

A replica Pi sees strong support for a message M if Pi receives M from qS replicas in every 
essential subset S ∈ ESi. Similarly, Pi sees weak support for a message M if Pi receives M 
from tS + 1 replicas in some essential subset S ∈ ESi. The security of Cobalt can be derived 
based on the following two principles, which suffce to translate normal BFT techniques 
that work in complete networks to ones that can operate securely in incomplete networks: 

1. If two replicas are fully linked, then their essential subsets will overlap to the point 
where if one of the replicas sees strong support for a message, the other replica will 
eventually see weak support. 

2. If two replicas are linked, then their essential subsets will overlap to the point where 
the replicas cannot simultaneously see strong support for messages that contradict 
each other. 

The Cobalt protocol itself combines a number of subprotocols that are each adapted to 
work in incomplete networks. In particular, it uses an adapted form of reliable broadcast 
(RBC) and a multi-value Byzantine agreement (MVBA) that itself uses asynchronous bi-
nary Byzantine agreement (ABA). In essence, proposers distribute their proposals using a 
variant of reliable broadcast called democratic RBC (DRBC), which is described in detail 
in the next section, and then use MVBA to agree on the assignment of a single proposal for 
each slot. The ABA algorithm is adapted from Mostéfaoui’s protocol described in Section 
6.1.1. An extra messaging round is added to Cobalt’s version in order to guarantee that 

85 



NIST IR 8460 ipd 
April 2023 

3247 

3248 

3249 

3250 

3251 

3252 

3253 

3254 

3255 

3256 

3257 

3258 

3259 

3260 

3261 

3262 

3263 

3264 

3265 

3266 

3267 

3268 

3269 

3270 

3271 

3272 

3273 

3274 

3275 

3276 

3277 

3278 

3279 

the ABA’s consistency holds as a local property, which is a signifcant advantage in open 
networks. The MVBA algorithm is out of scope for this document. 

8.3.2. Broadcast in Incomplete Networks 

The broadcast problem and Bracha’s solution to it are described in 1.2. Cobalt generalizes 
the problem and solution to incomplete networks. A solution to the broadcast problem in 
this environment with designated sender Bi has the following properties: 

1. Consistency: If an honest replica accepts a message M, no honest replica linked to 
it ever accepts an alternative message M′ ̸= M. 

2. Reliability: If a replica is strongly connected and any healthy replica in its extended 
UNL accepts a message, then all unblocked replicas in the extended UNL eventually 
accept the message. 

3. Validity: If Bi is honest and broadcasts a message M, then any healthy replica that 
accepts a message must accept M. 

4. Non-triviality: If Bi is honest and can broadcast to every honest replica in the net-
work, then every unblocked replica will eventually accept the message. 

A solution to the democratic reliable broadcast problem has two additional properties that 
replace non-triviality, and allows replicas to elect to support or oppose a message. 

1. Democracy: If a healthy and weakly connected replica accepts a message M, then 
there is an essential subset S ∈ ESi such that the majority of all honest replicas in S 
supported M. 

2. Censorship-resilience: If Bi can broadcast to every honest replica in the network and 
all honest replicas support M, then every unblocked replica will eventually accept M. 

The reliable broadcast protocol below begins by having the designated sender Bi multicast 
INIT(M) to everyone who will listen. Then all replicas Pj perform the following steps, 
where an empty parenthesis implies an arbitrary message. 

1. If a replica receives an INIT(M) message directly from Bi, it multicasts ECHO(M) 
if it has not already sent ECHO(). 

2. If a replica sees weak support for ECHO(M), it multicasts ECHO(M) if it has not 
already sent ECHO(). 

3. If a replica sees strong support for ECHO(M), it multicasts READY(M) if it has not 
already sent READY(). 

4. If a replica sees weak support for READY(M), it multicasts READY(M) if it has not 
already sent READY(). 

86 



NIST IR 8460 ipd 
April 2023 

3280 

3281 

3282 

3283 

3284 

3285 

3286 

3287 

3288 

3289 

3290 

3291 

3292 

3293 

3294 

3295 

3296 

3297 

3298 

3299 

3300 

3301 

3302 

3303 

3304 

3305 

3306 

3307 

3308 

3309 

3310 

3311 

3312 

3313 

3314 

3315 

3316 

3317 

3318 

5. If a replica sees strong support for READY(M), it accepts M. 

This RBC protocol can be modifed to convert it into a DRBC protocol by having replicas 
only send ECHO(M) messages if they actually support the proposal M. Even if a replica 
opposes the proposal, it must participate in the READY phase as normal. 

The ECHO phase of the protocol is used to guarantee consistency, while the READY phase 
is used to provide reliability. To see why the protocol provides consistency, note that a 
replica only accepts a message M if it sees strong support for READY(M). If two honest 
replicas are linked and both accept a message, then by principle (2) above, the messages 
must be the same. 

Proving reliability is trickier due to having much stronger network assumptions than con-
sistency. If a replica Pk is strongly connected, and two healthy replicas Pi and Pj in its 
extended UNL send READY(M) and READY(M′ ) messages, then M = M′ . Steps 3 and 4 
of the protocol have an honest Pi send READY(M) if it saw strong support for ECHO(M) or 
weak support for READY(M). For Pi to see weak support for READY(M), then a healthy 
replica in UNLi ⊆ UNL∞ must have already sent READY(M) k before Pi. This means that
there was some healthy replica – say, Pi′ – that was frst to send READY(M), and they did 
so because they saw strong support for ECHO(M). Therefore, one can assume that two 
healthy replicas exist, Pi′ ,Pj′ ∈ UNL ∞ 

k such that Pi′ saw strong support for ECHO(M) and 
Pj′ saw strong support for ECHO(M′ ). By the defnition of strongly connected, Pi′ and Pj′ 

are fully linked, so M = M′ . 

The insight from the previous paragraph can be used to prove reliability. Note that every 
pair of healthy replicas in UNL∞ N  ∈k are fully linked. If P U ∞

i  Lk accepts M, then by principle 
(1), all unblocked replicas in UNL ∞ will see weak support for READY(M)k . The previous 
paragraph shows that a healthy replica in Pk’s extended UNL cannot have already sent a 
READY(M′ ) for M′ = M. Step 4 of the protocol ensures that a healthy replica in this
extended UNL will eventually send READY M . If P  UNL ∞ ( ) j ∈ k , then all healthy replicas 
in UNL j ⊆ UNL ∞ 

k eventually send READY(M). If Pj is unblocked, it will eventually see
strong support for READY(M) and thus accept M. 

It is clear that the protocol provides validity: healthy replicas do not send ECHO(M) with-
out having received either INIT(M) from the designated sender or ECHO(M) from another 
healthy replica. Since the sender is honest, it sends INIT(M), and no healthy replica will 
send an ECHO(M′ ) with M′ = M. Similar logic holds for the READY messages, implying 
that no healthy replica will see enough READY  (M′) messages to accept M′ . Non-triviality 
is even simpler: every replica can receive INIT(M) from the designated sender, so all 
healthy replicas will send ECHO(M) and eventually READY(M), such that all unblocked 
replicas eventually accept M. 

The proof of censorship-resilience for the DRBC variant is identical to the proof of 
non-triviality for the standard incomplete networks variant. To see why the democracy 
property holds, let Pk be a healthy and weakly connected replica that accepts M. Let 

̸

̸

87 



NIST IR 8460 ipd 
April 2023 

Pi ∈ UNL∞ be the frst healthy replica to have sent READY(k M). Then Pi saw strong
support for ECHO(M). Weak connectivity implies that Pi and Pk are (fully) linked, so 
there exists an essential subset S ∈ ESk where at least qS − tS honest replicas in S send 
ECHO(M) and no more than nS − qS honest replicas in S did not send an ECHO(M). 
Because tS < 2qS − nS (the second assumption on the parameters, from Section 8.3.1), 
qS − tS > qS − (2qS − nS) = nS − qS, so a majority of honest replicas in S supported M. 

9. Proof of Work: The Basics 

The concept of proof of work was frst suggested by Dwork and Naor as a way to counter 
email spam by adding a small cost to sending emails [161]. The term "proof of work" was 
later coined by Jakobsson and Juels [162]. The proof-of-work scheme used in Bitcoin was 
inspired by Adam Back’s "Hashcash" [163]. More recently, "resource burning" has been 
studied in general, which includes proof of work but also proof of space, which is discussed 
in Section 14.1 [164]. 

In the context of a replicated state machine, a proof-of-work consensus algorithm will con-
sist of a specifc proof-of-work puzzle, a diffculty adjustment algorithm, a fork-choice rule 
(and implicitly, a data structure to work on, like a blockchain or DAG), and an incentiviza-
tion scheme. This section marks a shift in this document’s discussion from permissioned 
to permissionless consensus algorithms and will discuss the basic functionality of proof of 
work and how it operates as a Sybil-resistance mechanism for distributed ledger systems. 

9.1. Proof of Work and Sybil Resistance 

The actual mechanics behind constructing a proof of work are quite simple. Some proof-
of-work function must be defned, and a cryptographic hash function is typically used. A 
puzzle diffculty is chosen (in the consensus context, this is done with a diffculty adjust-
ment algorithm, discussed in Section 9.2), that then determines the range of hash function 
outputs that would constitute a successful proof. 

To fnd a proof of work, entities try to fnd partial hash collisions using the given func-
tion, diffculty target, and specifed message format. The message needs to include any-
thing that should be "tied" to the proof. For example, in the context of email spam, the 
message should include the contents of the email to be sent. For a proof-of-work cryp-
tocurrency like Bitcoin, the proof must cover the entire contents of the block to be mined 
and the previous block hash (if a DAG is used instead of a blockchain, then multiple pre-
vious block hashes may be included). Given a proof-of-work function (H), a diffculty 
target to satisfy (Target), a previous block hash to mine on top of (prevHash), and a set 
of transactions to mine into a block (txs), a miner will repeatedly try different nonces until 
H(prevHash||txs||nonce) < Target. 

A good proof-of-work function has several important properties. First, the puzzle must be 
moderately hard, have this hardness be tunable, and be very fast to verify. Partial hash 

3319 

3320 

3321 

3322 

3323 

3324 

3325 

3326 

3327 

3328 

3329 

3330 

3331 

3332 

3333 

3334 

3335 

3336 

3337 

3338 

3339 

3340 

3341 

3342 

3343 

3344 

3345 

3346 

3347 

3348 

3349 

3350 

3351 

3352 

3353 

3354 

3355 

88 



NIST IR 8460 ipd 
April 2023 

3356 

3357 

3358 

3359 

3360 

3361 

3362 

3363 

3364 

3365 

3366 

3367 

3368 

3369 

3370 

3371 

3372 

3373 

3374 

3375 

3376 

3377 

3378 

3379 

3380 

3381 

3382 

3383 

3384 

3385 

3386 

3387 

3388 

3389 

3390 

3391 

3392 

3393 

3394 

3395 

inversions are a good example of this, where the diffculty of the puzzle can be tuned by 
changing the Target, and verifcation is as fast as a single hash query. The function must 
also be memoryless, such that the time it takes to solve the puzzle does not depend on how 
much time has already elapsed or the history of attempts to solve the puzzle. That is, if a 
miner spends fve minutes trying to mine a block, they are no closer to having found it than 
when they began. This is why verifable delay functions by themselves are inadequate for 
proof of work. An adversary with a single processor with sequential processing speeds just 
slightly faster than honest parties will almost inevitably solve every puzzle frst. Contrast 
this with a cryptographic hash function, where guessing nonces can be performed in parallel 
and where previous guesses do not bring the miner closer to fnding a solution to the puzzle. 

Finally, the most fundamentally important property of a good proof-of-work function is that 
there should be no strategies or shortcuts that aid in solving the puzzle. A cryptographic 
hash function (or at least one modeled as a random oracle) is a good example because there 
is no strategy better than arbitrarily guessing nonces. It is this property that ensures that 
any verifed proof-of-work solution implies that the prover invested a suffcient amount of 
computational effort. This is what makes proofs of work useful tools in consensus: by 
imposing a cost on participants who want to send messages, parties running the consensus 
protocol have opportunities to synchronize their local views regarding the state of the sys-
tem [165]. An adversary with a shortcut would be able to out-compete other miners and 
ultimately centralize the system under their control. 

An example that vividly demonstrates the signifcance of potential shortcuts is AsicBoost, 
a technique that improves the effciency of Bitcoin mining by about 20% [166]. Bitcoin’s 
mining algorithm involves performing a double SHA-256 hashing of the 80-byte block 
header. SHA-256 operates on 64-byte chunks of the message at a time, so two chunks must 
be hashed. The Bitcoin block header – including how it is broken down into chunks for 
mining – is displayed in Figure 20a. The two chunks are processed in the manner shown in 
Figure 20b. 

The outer loop of the mining process – shown in green in Figure 20b – preprocesses the 
frst chunk using the expander and compressor functions of SHA-256 and results in an 
output called the midstate. The inner loop – shown in red in Figure 20b – preprocesses 
the second chunk analogously but then takes the midstate from the outer loop as input to 
a second round of SHA-256 expansion and compression. A work item in Bitcoin consists 
of the midstate generated from preprocessing the frst chunk, as well as the tail, timestamp, 
and bits felds from the second chunk. The nonce is incremented in each run through the 
inner loop, requiring another two expansions and two compressions. The performance 
gains from AsicBoost come from reusing the frst expansion of the second chunk across 
multiple work items. To do so, the miner needs multiple block header candidates that share 
the same tail, timestamp, and bits felds. 

Notice how the Merkle root, which commits to every transaction included in the block, 
spans both chunks of the block header. The AsicBoost technique exploits collisions in 

89 



NIST IR 8460 ipd 
April 2023 

(a) Bitcoin block header (b) Bitcoin’s Double-SHA256 mining. 

Fig. 20. Bitcoin mining and AsicBoost. (a) Bitcoin block header, as used for mining. (b) 
Bitcoin’s double SHA-256 mining. The outer loop is in green, while the inner loop is in red. 
[166] 

3396 

3397 

3398 

3399 

3400 

3401 

3402 

3403 

3404 

3405 

3406 

3407 

3408 

3409 

3410 

3411 

3412 

3413 

3414 

3415 

3416 

3417 

3418 

3419 

the last four byte "tail" of the Merkle root. A miner employing the technique will fnd a 
set of Merkle roots that collide in these bytes by varying and/or rearranging the order of 
transactions included in the block (fnding four byte collisions is not too challenging due 
to the birthday paradox). That is, the miner will have a large set of differing frst chunks 
(and their corresponding midstates) that remain valid when paired with a particular second 
chunk. By reusing the current value of the second chunk with Merkle roots colliding in the 
tail, a miner can simply swap out midstates to their precomputed values while skipping the 
frst expansion of the inner loop. As a result, the inner loop only has three large operations 
instead of four. 

Suppose that a miner fnds three Merkle roots where the fnal four bytes collide, and call the 
resulting midstates that arise from the frst chunk A, B, and C. The resulting mining loop 
will begin with the miner setting the nonce to zero and using midstate A, requiring four large 
operations. The miner then keeps the same nonce but swaps in midstate B, which allows 
skipping the frst expansion and only performing three operations. If this fails, computing 
using midstate C also only requires three operations. Then the miner sets the nonce to one 
and resets the midstate to A, computes the inner loop using four operations, and continues 
in this way, swapping midstates before incrementing the nonce. 

One of the major reasons why the discovery of AsicBoost was a signifcant event in the Bit-
coin community was due to patents. The technique itself was patented, but if the technique 
could not be used universally, it would provide a likely insurmountable mining advantage 
to the patent-holder. The AsicBoost patent is now held under the Blockchain Defensive 
Patent License, which obligates any participating entity to share their own mining-related 
patents. As a result, this is less likely to be an issue in the future. Further, the version of 
AsicBoost described above is no longer possible on Bitcoin due to the Segregated Witness 

90 



NIST IR 8460 ipd 
April 2023 

3420 

3421 

3422 

3423 

3424 

3425 

3426 

3427 

3428 

3429 

3430 

3431 

3432 

3433 

3434 

3435 

3436 

3437 

3438 

3439 

3440 

3441 

3442 

3443 

3444 

3445 

3446 

3447 

3448 

3449 

3450 

3451 

3452 

3453 

3454 

3455 

3456 

3457 

soft fork performed in 2017. An overt version of AsicBoost that simply adjusts the version 
number in the frst chunk instead of fnding Merkle root tail collisions is still possible. 

9.1.1. Mining Pools 

Rewards for mining are provided to miners when new blocks are found. In Bitcoin, new 
blocks are found approximately every 10 minutes or 144 per day. Other networks produce 
blocks more frequently, though network latency places fundamental bounds on how quickly 
blocks can be produced (this latency issue is discussed in detail in Section 10.2.1). Because 
there are relatively few opportunities to mine blocks and thus collect rewards, it can take an 
exceedingly long time for small miners to fnd a block once there are a signifcant number 
of miners on the network. As a result, small miners could easily go out of business before 
mining a single block, and the variance in rewards for these miners is substantial. 

This high variance in mining rewards is the primary motivation for mining pools, where a 
variety of hardware operators cooperate in mining and share the rewards among themselves. 
This allows smaller, more frequent mining payouts, which makes mining viable to a much 
wider variety of entities, including those with fewer resources. Pools operate by setting a 
diffculty level that is a small fraction of the diffculty of mining an actual block, and proofs 
of work at these lower diffculty levels are called shares. Participating miners submit shares 
to the pool operator in exchange for a portion of the pool’s reward income (various reward 
schemes and attacks against them are discussed in Section 9.3). Because there are far more 
shares than blocks, there are many more opportunities for small miners to collect payouts. 

Mining pool operators run full nodes and assemble block templates to send to the miners, 
providing each miner with a particular nonce range to search in. Miners themselves simply 
operate the hardware. They do not necessarily validate blocks or otherwise participate 
in the network. The protocol that pool servers use to communicate with miners is called 
Stratum, which lacks authentication and has resulted in some miners losing their payouts 
due to network-layer attacks [167]. 

It is a common misunderstanding that mining pools and miners are effectively the same 
thing, even though individual miners can easily switch pools at will. If a small set of min-
ing pools are responsible for mining the vast majority of blocks, many people conclude that 
only a handful of entities control the network, oversimplifying the nature of "control." Un-
der the current Stratum protocol, there is some truth to this. By assembling block templates 
and thus choosing which transactions to include in a block, mining pools can launch certain 
attacks or otherwise engage in nefarious behavior. This is one of the primary motivations 
for the ongoing development of Stratum v2, which eliminates these risks by letting miners 
select transactions while still pooling rewards [168]. Currently, due to the privileged po-
sition of mining pools as the entities that select transactions, the following behaviors are 
indeed possible: 

• A mining pool can censor the inclusion of transactions that it does not like or that 

91 



3460

3465

3470

3475

3480

3485

3490

3495

3458 

3459 

3461 

3462 

3463 

3464 

3466 

3467 

3468 

3469 

3471 

3472 

3473 

3474 

3476 

3477 

3478 

3479 

3481 

3482 

3483 

3484 

3486 

3487 

3488 

3489 

3491 

3492 

3493 

3494 

3496 

3497 

NIST IR 8460 ipd 
April 2023 

regulators tell them to. If a majority of the computational power of the network is not 
directed at censorship, however, it will only cause increased latency for transaction 
confrmation. Further, pools lose out on transaction fees by censoring, so even if the 
majority of the hash rate is malicious, there is an incentive for miners to deviate from 
the censoring cartel in order to capture more fee revenue. 

• Pools can attempt chain reorganizations for double-spending. This is unlikely to suc-
ceed without a majority of the computational power of the network involved, and 
the miners themselves may have strong incentives not to go along with it. Addi-
tionally, as miners detect an attack in progress, they can migrate to another pool. 
If a successful double-spend would decrease the value of a miner’s virtual assets or 
the hardware used to mine them, there is a signifcant incentive to deviate from the 
double-spending cartel. 

• Pools can use their position to infuence the rules of the network, using the miners 
as leverage. For example, if the pool operator believes that the rules of the net-
work should change to allow higher throughput, they can mine empty blocks and 
allow a backlog of transactions to accumulate in order to increase fees and frustrate 
users. Pools can also direct hashpower to networks with alternative rules (but the 
same proof-of-work algorithm) without the consent of miners. For instance, miners 
who thought they were mining Bitcoin can be made to mine Bitcoin Cash instead. 
Similarly, one of the more common mechanisms employed in changing the rules of 
the network is miner signaling: miners set a bit in their block headers to signify ap-
proval. Pools can thus signal on behalf of miners who may or may not agree. As 
with the other possible attacks, miners can switch pools to those more aligned with 
their values (including, perhaps, proftability) once they detect that their current pool 
is behaving in ways that they do not approve of. To be clear, neither mining pools nor 
miners can arbitrarily change the rules of the network, even with a majority of the 
hash rate. Blocks that are invalid under the "old" rules will be rejected and ignored 
by the rest of the network. 

An interesting consequence of having only a handful of major mining pools operating si-
multaneously is that many pool operators are known, identifed entities. The implications 
of this are mixed: it should be easier for pool operators to coordinate nefarious activity or 
be coerced into performing attacks, but they can also be held more accountable for mis-
behavior due to a desire to maintain their reputation. Again, miners themselves can easily 
switch pools, so a pool that acts against the best interests of its miners may not survive for 
long. 

Even if a (small) majority mining cartel is formed, deviating from the cartel can be highly 
proftable both for pool operators and the miners themselves. If the deviation pushes the 
cartel’s infuence back under 50%, then participants in the cartel gain no rewards, and the 
deviating party (as well as those who never participated in the frst place) temporarily face 
less competition and thus collect greater rewards. Any pool operator representing enough 

92 



3500

3505

3510

3515

3520

3525

3530

3498 

3499 

3501 

3502 

3503 

3504 

3506 

3507 

3508 

3509 

3511 

3512 

3513 

3514 

3516 

3517 

3518 

3519 

3521 

3522 

3523 

3524 

3526 

3527 

3528 

3529 

3531 

3532 

3533 

3534 

3535 

NIST IR 8460 ipd 
April 2023 

hash rate to reduce the cartel back to a minority has a strong incentive to be the one who 
deviates. If the cartel agreement is only between pools, miners within those pools are 
likely to switch to other pools once the attack is detected. The miners themselves face 
electricity and other operational costs to participate in the attack but get no beneft from it 
(while risking the value of their assets, as described above). As a result of these factors, 
an attack by one or more mining pools is likely to only succeed in the short term rather 
than establishing long-term control over the contents of the blockchain. There are many 
more miners than pools, and miners may operate anonymously, so organizing a majority 
cartel of miners is far more challenging in practice. For these reasons, it is a signifcant 
oversimplifcation to suggest that the network is controlled by very few entities. 

Due to the perceived centralization of mining into pools, there have been efforts to remove 
or reduce their power, including the aforementioned Stratum v2 protocol. Another effort is 
P2Pool, a more distributed mining pool. P2Pool miners create their own blockchain that 
is composed of their lower diffculty shares, and the diffculty is set such that shares are 
expected to be found every 30 seconds (or 20 times more frequently than blocks). The 
P2Pool sharechain holds 8,640 shares at a time, and payouts are performed proportionally 
to a miner’s fraction of those shares. To enforce this, miners verify that any shares they 
build off of include the appropriate payouts in the coinbase transaction. Unfortunately, 
P2Pool has not been able to gain a signifcant amount of hash rate, in large part because the 
latency problems that arise in proof of work are magnifed substantially, resulting in a very 
high rate of stale shares. 

A more extreme way to neutralize the power of mining pools is to design a proof-of-work 
algorithm that entirely precludes pools from existing proftably in the frst place. Specif-
ically, non-outsourceable puzzles have the property that if a pool operator is able to out-
source work to a miner, the miner is capable of stealing the reward in a way that does not 
implicate themselves [169]. There are two major problems with this approach: 

1. In many cases, it is possible to devise smart contracts where miners must submit col-
lateral that can be seized by the pool operator should a miner steal the block reward 
[170]. This essentially recreates pools but with higher overhead and complexity. 

2. By reducing the variance of payouts, pools provide a valuable service. Many small 
mining operations simply would not be viable in the frst place if it were not for 
pools. If non-outsourceable puzzles successfully eliminated mining pools, it is quite 
likely that there will be far fewer miners overall, resulting in even more centralization 
of mining. 

9.1.2. Hardware: ASICs and ASIC Resistance 

One of the more signifcant debates among cryptocurrency enthusiasts is whether it is de-
sirable for the proof-of-work algorithm to be mined with specialized hardware, such as 
custom-built application-specifc integrated circuits (ASICs) or general-purpose hardware 

93 



NIST IR 8460 ipd 
April 2023 

3536 

3537 

3538 

3539 

3540 

3541 

3542 

3543 

3544 

3545 

3546 

3547 

3548 

3549 

3550 

3551 

3552 

3553 

3554 

3555 

3556 

3557 

3558 

3559 

3560 

3561 

3562 

3563 

3564 

3565 

3566 

3567 

3568 

3569 

3570 

3571 

3572 

3573 

3574 

3575 

3576 

like CPUs and GPUs. 

ASIC resistance is a property of a proof-of-work algorithm that stipulates that it would be 
challenging to build specialized hardware that is capable of solving proofs of work much 
more effciently than general-purpose hardware. Proponents of ASIC resistance argue that 
the wider availability of CPUs and GPUs results in a far lower barrier to entry for small min-
ers while providing a mechanism for hobbyists to acquire cryptocurrency without needing 
to identify themselves to a centralized exchange. Large segments of the population already 
possess general-purpose hardware or can acquire it without revealing their specifc interest 
in cryptocurrency. Contrast this with ASICs, which tend to cost hundreds or thousands of 
dollars per machine and which leave no plausible deniability for their purpose. ASICs can 
be intercepted at national borders or otherwise stopped by hostile governments or shipping 
companies, and their manufacturers can be identifed and targeted. Additionally, ASIC 
manufacturers themselves can become important players in the "politics" of the networks 
they produce hardware for, which can include advocating for controversial rule changes 
and selectively selling machines to preferred partners. 

Many approaches have been used in attempts to gain the ASIC resistance property, but the 
overwhelming majority of them have failed within a few years. Once there is suffcient 
money at stake – that is, when a proof-of-work cryptocurrency becomes valuable enough 
– it seems that hardware manufacturers fnd a way to build an effcient ASIC for the al-
gorithm. It is unclear to what extent long-term ASIC resistance is even possible in the 
frst place. One of the more promising attempts at ASIC resistance is called RandomX, 
which has most prominently been used for the Monero cryptocurrency since November 
2019 [171]. RandomX is designed to be mined on CPUs. The algorithm relies on a pseu-
dorandom key that is periodically extracted from the blockchain. This key is used to help 
generate random programs in a very general, low-level instruction set where any random 
string is a valid program. This is translated into machine code and executed in a way that 
uses as many components of the CPU as possible before being hashed into a fnal result. 
This use of many CPU components should complicate the design of an ASIC, which is pro-
grammed to only execute a very specifc task. Only time will tell if ASICs are eventually 
built for RandomX as well. 

On the other side of the debate are those who feel that proof of work is more secure when 
specialized hardware is widely used for mining. In this way of thinking, it is good for the 
security of a given network if its proof-of-work algorithm is the dominant application of a 
particular piece of hardware. An ASIC-resistant algorithm is likely to have a huge quantity 
of (unused) potential hash rate and may be more likely to have the security assumptions 
of the network (e.g., honest majority of hash rate) be violated. Every CPU or GPU in the 
world could potentially be turned on to attack the network. This is not solely a concern 
for ASIC-resistant algorithms. If two cryptocurrencies are mined using the same proof-
of-work algorithm (e.g., Bitcoin and Bitcoin Cash), the less valuable one will suffer a 
security defcit for the same reason. In addition, ASICs – by only being useful for a limited 
purpose – require miners to have a vested interest in the network. If the network is attacked, 

94 



NIST IR 8460 ipd 
April 2023 

3577 

3578 

3579 

3580 

3581 

3582 

3583 

3584 

3585 

3586 

3587 

3588 

3589 

3590 

3591 

3592 

3593 

3594 

3595 

3596 

3597 

3598 

3599 

3600 

3601 

3602 

3603 

3604 

3605 

3606 

3607 

3608 

3609 

3610 

3611 

3612 

3613 

3614 

3615 

3616 

3617 

ASIC owners will lose out on their initial hardware investment, which cannot be repurposed 
except to mine an alternative cryptocurrency using the same algorithm that may also be 
attacked by the same hardware. 

Because many believe that long-term ASIC resistance is futile, attempting to provide ASIC 
resistance merely imposes barriers to entry for hardware manufacturers. This makes it even 
easier for the market to become concentrated, perhaps with a single major manufacturer that 
can build ASICs and mine with them in secret. A related risk is that frequently hard-forking 
to eliminate ASICs from the network creates strong incentives for collusion between de-
velopers and hardware manufacturers and, thus, introduces a strong point of centralization 
around the development of the mining algorithm. A related concern is that the designer of 
an ASIC-resistant algorithm that will initially be executed mostly on CPUs can develop an 
optimized GPU implementation that they can run in secret, providing a signifcant mining 
advantage. 

Some of these security claims have been investigated in the literature. For instance, when 
multiple cryptocurrencies use the same proof-of-work algorithm but one has much higher 
diffculty than the other, rational miners from the dominant chain may be incentivized to 
migrate to the minority chain to perform a 51% attack [172]. Several works have contem-
plated what happens when multiple cryptocurrencies share the same proof-of-work algo-
rithm and some portion of miners automatically switch between networks in order to mine 
the more proftable coin [173, 174]. The primary fnding of these works is that there exists 
a hash rate equilibrium between the competing networks based solely on the market price 
of their respective coins and that miners allocating their hash rate off-equilibrium merely 
creates a proftable arbitrage opportunity for other miners. As a result, miners "loyal" to the 
minority chain – that is, miners who will continue mining on the lower diffculty network 
– will mine alone if they exceed the equilibrium allocation. The security of the lower value 
network cannot be improved by allocating more hash rate below the equilibrium value, and 
loyal miners would centralize the network above the equilibrium value by causing other 
miners to migrate back to the stronger network. The only way to alter the equilibrium is to 
change the relative prices of the respective assets, which is non-trivial. 

The relationship between a ledger’s security and the price of its native asset appears to have 
better dynamics under certain conditions that are far more likely to hold when ASICs are 
involved in mining rather than just GPUs and CPUs. A combination of high fxed costs to 
buy hardware and set up a mining operation plus a low salvage value for the hardware itself 
leads to asymmetric hash rate changes in response to price changes [175, 176]. Specifcally, 
when a network relies on ASICs, miners will deploy more hardware as prices increase but 
do not decrease to the same degree when prices decline. By responding less to adverse 
exchange rate shocks, ledgers secured by ASICs are less likely to suffer double-spend 
attacks after a price decline. Empirically speaking, Ethereum’s hash rate responded to price 
symmetrically at frst, but after ASICs were developed for Ethash (Ethereum’s formerly 
ASIC-resistant proof-of-work algorithm), hash rate changes in response to price became 
more asymmetric [176]. This benefcial asymmetry is reduced if the ASIC is transferable 

95 



NIST IR 8460 ipd 
April 2023 

3618 

3619 

3620 

3621 

3622 

3623 

3624 

3625 

3626 

3627 

3628 

3629 

3630 

3631 

3632 

3633 

3634 

3635 

to another cryptocurrency, though it is likely to still exist if the secondary network is small 
relative to the network they are actually mining on. A paper by Garratt and van Oordt 
explains the economic reasoning behind these insights [175]: 

Fig. 21. In the face of an unanticipated price decline, the behavior of miners depends on the 
type of hardware they use. Because miners using general-purpose hardware can leave freely, 
they leave in proportion to the decline in the block reward. In contrast, miners who have 
already invested in ASICs, which cannot be used for other purposes, may continue to mine. 

• Without fxed costs, the decline in the hash rate is proportional to the decline in the 
exchange rate due to free entry and exit into mining. With fxed costs and small 
exchange rate declines, miners continue mining to recover some of these fxed costs 
and will do so until it becomes more proftable to sell the hardware for scrap. ASICs, 
which are useless for anything other than mining on a particular ledger, have very 
low scrap value. This difference is shown in Figure 21. 

• With fxed costs and low scrap value, launching a double-spending attack results in a 
loss in the present value of future mining rewards due to the attack’s negative impact 
on the asset’s price. Without fxed costs, the only costs of attempting a double-
spending attack are the potential loss of mining rewards during the attack if it fails 
and the variable costs of mining for the duration of the attack. 

• With fxed costs and low scrap value, the determination of whether a double-spending 
attack is proftable or not is path-dependent. At any exchange rate, the hash rate will 
be higher if the current exchange rate is less than a previous peak because mining op-
erations will expand as the price approaches its peak. The price decline implies a de-

96 



NIST IR 8460 ipd 
April 2023 

3636 

3637 

3638 

3639 

3640 

3641 

3642 

3643 

3644 

3645 

3646 

3647 

3648 

3649 

3650 

3651 

3652 

3653 

3654 

3655 

3656 

3657 

3658 

3659 

3660 

3661 

3662 

3663 

3664 

3665 

3666 

3667 

3668 

3669 

3670 

3671 

3672 

3673 

3674 

creased present value of future mining rewards, such that proftable double-spending 
attacks are more likely if the current price is the result of a decline from a previous 
peak. The principle here holds regardless of the hardware used but presents a more 
substantial security risk for general-purpose hardware due to the frst point above. 

• When multiple cryptocurrencies are mined with the same hardware and an attack on 
one of the networks is not expected to impact the price of other cryptocurrencies that 
can be mined with the same equipment, double-spending attacks are more likely to 
be proftable than if only a single cryptocurrency were available. Whether an attack 
can be expected to reduce the price of alternative cryptocurrencies using the same 
hardware likely depends on their relative sizes. It is hard to imagine a successful 
attack on the larger cryptocurrency not causing a decline in value for the smaller 
one because it demonstrates the insecurity of the smaller network. An attack on the 
smaller one is less likely to have the same impact and is unlikely to signifcantly 
affect the expected return from a given piece of hardware. 

These arguments strongly suggest that there is a security advantage to a network when it 
is the dominant application of a given piece of hardware. However, the wider availability 
of general-purpose hardware offers other advantages that are diffcult to measure but worth 
considering. 

9.1.3. Mining Centralization in Practice 

Some believe that – due to economies of scale – proof of work in the long term is likely 
to result in a concentration of power among an oligopoly consisting of a handful of large 
miners. For instance, in the model presented in [177], even relatively small economies 
of scale resulted in few miners operating simultaneously, and a miner with an X% cost 
advantage over any other miner will have at least X% of the total hash rate. As a result, 
a world in which a miner is able to gain a signifcant cost advantage over the competition 
is likely to result in a centralized mining network. That said, the model assumes that 
all potential miners decide whether to make investments in equipment simultaneously at 
particular factor prices. In the real world, these decisions are not made simultaneously, and 
prices change, likely disturbing the equilibrium analysis. 

It is diffcult to obtain data on the distribution of hash rate among miners because block 
reward payouts go to the pools rather than to the miners operating the hardware. That said, 
Romiti et al. performed an empirical analysis of Bitcoin mining shares and inferred that 
the addresses paid out from coinbase transactions likely belong to miners of the pool [178]. 
Their data came from three large mining pools and found that fewer than 20 distinct entities 
collect more than half of the rewards within each pool and that rewards from multiple 
pools often go to the same entity. This may sound like a substantial degree of mining 
concentration, but many of these payout addresses belong to exchanges, which dramatically 
complicates the analysis. Every distinct miner who directly sends their payouts to the same 
exchange will be considered a single entity under this methodology. As such, it is diffcult 

97 



3675

3680

3685

3690

3695

3700

3705

3710

3676 

3677 

3678 

3679 

3681 

3682 

3683 

3684 

3686 

3687 

3688 

3689 

3691 

3692 

3693 

3694 

3696 

3697 

3698 

3699 

3701 

3702 

3703 

3704 

3706 

3707 

3708 

3709 

3711 

3712 

3713 

3714 

NIST IR 8460 ipd 
April 2023 

to draw conclusions about how many actual miners operate on the network and their relative 
computational power. 

Regardless of the concentration among miners, it is clear that the majority of miners will 
tend to form only a relatively small number of pools. As described above in Section 9.1.1, 
the centralization into relatively few pools does indeed present risks. For example, majority 
attacks have been conducted against many small and medium-sized networks where that 
ledger was not the dominant application for the relevant mining hardware. Further, even 
Bitcoin had a brief period in 2014 where a mining pool – GHash.io – had more than half the 
total hash rate of the network, though no attacks occurred at that time. On a more optimistic 
note, the ability of miners to allocate their hashes between multiple pools tends to lead to 
the decentralization of pools as larger pools increase their fees [179]. Large pools raise 
fees in order to decrease their hash rate because their positive impact on the diffculty level 
harms them more. In practice, distributing hash power this way is easy for miners. Tools 
exist to help and have been experimentally shown to increase a miner’s Sharpe ratio (i.e., 
average excess reward over its standard deviation/volatility) by 260% compared to more 
passive miners [180]. Additionally, the adoption of Stratum v2 is likely to go a long way 
toward mitigating these pool concentration risks in the future. 

In addition to miners and pools, hardware manufacturing and design is another potential 
avenue of centralization for proof-of-work cryptocurrencies. Designing ASICs requires 
specialized knowledge and capital, and there have historically been very few SHA-256 
ASIC manufacturers (and even fewer for other proof-of-work algorithms). This market 
concentration extends to the foundries responsible for manufacturing the integrated cir-
cuits. That said, in the years since the frst Bitcoin ASIC was produced in 2013, ASIC 
replacement cycles have grown substantially longer [181]. Early designs were obsolete 
within a few months, but designs have caught up with Moore’s Law, and ASICs now often 
last years before more effcient designs make them unproftable. This has opened up new 
competition in ASIC design, resulting in far more competition in the Bitcoin ASIC indus-
try [181]. As it becomes harder and harder to squeeze out further optimizations for these 
chips, ASIC production is expected to become further commoditized, reducing the power 
of manufacturers. 

Besides general concentrations of power, there may be other concerns regarding geographic 
centralization in certain regions or political jurisdictions. If miners or mining pools are 
concentrated in relatively few geographical areas, it becomes substantially easier for the 
governments of those jurisdictions to disrupt the network. It also creates certain risks that 
might not otherwise exist, such as fooding in a region popular for mining, which can take 
a large fraction of the network hash rate offine simultaneously. 

There are a number of reasons why miners may cluster into relatively few geographical 
regions. First, miners are inclined to set up their facilities wherever electricity is cheapest, 
since it is the greatest variable cost for mining and thus one of the simplest ways to gain 
an advantage over the competition. In practice, a number of governments offer generous 

98 

https://GHash.io


3715

3720

3725

3730

3735

3740

3745

3750

3716 

3717 

3718 

3719 

3721 

3722 

3723 

3724 

3726 

3727 

3728 

3729 

3731 

3732 

3733 

3734 

3736 

3737 

3738 

3739 

3741 

3742 

3743 

3744 

3746 

3747 

3748 

3749 

3751 

3752 

3753 

NIST IR 8460 ipd 
April 2023 

electricity subsidies, which tends to attract miners. Second, the incentives of mining pools 
are such that they beneft most by propagating their blocks to more than 50% of the hash 
rate as quickly as possible but not necessarily 100% for network latency-related reasons, as 
discussed in Section 10.2.1. This latter incentive is particularly relevant when governments 
or ISPs engage in network censorship that may slow down the distribution of blocks. If 
the majority of the hash rate is located in such a jurisdiction, then miners outside of that 
jurisdiction face a distinct mining disadvantage. 

However, there are several factors that can mitigate the risks of geographic concentrations 
of miners. For one thing, there are signifcant operational challenges with seizing control 
over all of the deployed physical machines within a country. It is relatively easy to relocate 
machines, which is often done to take advantage of different electricity prices at different 
times of year. In addition, the hardware is already spread out across a variety of regions 
throughout the country. Seizing the vast majority of this equipment would be very chal-
lenging to do quickly and discreetly, and once word has gotten out that such seizures are 
happening, the community can plan for emergency actions, such as a hard fork to change 
the proof-of-work algorithms and render those machines useless. It would be far easier for 
the government to target the pools instead of the miners, but again, it would be challenging 
to do so covertly. Mining pools can quickly be set up in other locations around the world, 
and it is easy for miners to switch pools. Ultimately, when Stratum v2 is more widely used 
by these pools, the attack vector will be closed. 

9.2. Difculty Adjustment Algorithms 

Since proof-of-work cryptocurrencies lack a central authority responsible for determin-
ing who can mine and with what machines, there will inevitably be a varying amount of 
hash power deployed to the network as the exchange rate and mining proftability changes. 
Nevertheless, in order to maintain a specifc monetary policy and provide a better user ex-
perience, new blocks need to be found at a relatively consistent pace (e.g., roughly every 
10 minutes in Bitcoin), regardless of the amount of hash power deployed. In these systems, 
the diffculty adjustment algorithm (DAA) is responsible for adjusting the diffculty of the 
mining puzzle in response to changes in the network’s total hash rate in order to keep block 
production consistent. Without a DAA, an increasing hash rate would result in blocks being 
found more and more frequently, infating the currency more quickly and making payments 
less predictable and secure for users. 

Although the primary purpose of a DAA is to maintain consistent inter-block arrival times 
over the long term despite fuctuations in hash rate, there are a variety of possible consid-
erations that may go into its design. The algorithm should ideally avoid sudden diffculty 
changes when the hash rate remains constant, discourage wild oscillations from the feed-
back between hash rate and diffculty, and avoid exceptionally long intervals between new 
blocks. Generally speaking, DAAs face a trade-off between being more stable or being 
more quickly responsive to changes in hash rate. More stable algorithms, such as Bitcoin’s 

99 



NIST IR 8460 ipd 
April 2023 

3754 

3755 

3756 

3757 

3758 

3759 

3760 

3761 

3762 

3763 

3764 

3765 

3766 

3767 

3768 

3769 

3770 

3771 

3772 

3773 

3774 

3775 

3776 

3777 

3778 

3779 

3780 

3781 

3782 

3783 

3784 

3785 

3786 

3787 

3788 

3789 

3790 

3791 

3792 

DAA, result in more blocks that are "inappropriately" cheap or expensive because they 
measure hash rate less accurately and are more disruptive to users if the hash rate drops 
suddenly, but they are more secure and easier to reason about [182–184]. In Bitcoin, the 
diffculty is adjusted every 2,016 blocks (about two weeks) proportional to the degree to 
which blocks were found too quickly or slowly. For instance, if it takes four weeks to 
mine 2,016 blocks, the diffculty for the following 2,016 block epoch will be cut in half. 
Algorithms that adjust the diffculty more frequently will maintain more consistent block 
times but are easier for miners to game for unfair advantage [185]. Common DAAs include 
variants of simple moving averages and exponential moving averages that adjust after every 
block, though there is a wide design space. 

In a world where more than one proof-of-work ledger exists, there is a risk that diffculty 
changes in one network cause a behavioral shift among miners that affects another network. 
For example, an interaction between the DAAs of Bitcoin and Bitcoin Cash (which share 
the same hardware) caused wild fuctuations and instability in the Bitcoin Cash hash rate 
until a hard fork changed the Bitcoin Cash DAA [186]. More generally, coin-hopping 
attacks are possible between networks that share the same hardware [187]. At the beginning 
of a diffculty epoch, an adversarial or strategic miner can switch to mining on an alternative 
network and then switch back to the original network at the beginning of the following 
diffculty epoch when the diffculty is lower due to the adversary’s withdrawn hash rate. 
This allows the miner to mine at a lower average diffculty and cost than competing miners 
that do not hop between coins. In some circumstances, it may be proftable to perform 
similar strategic deviations for a single network, mining during one diffculty epoch and 
turning machines off during the next, or using only a portion of the miner’s available hash 
rate during some epochs in order to lower the diffculty for future epochs [188, 189]. 

9.3. Attacks Against Mining Pools: Pool-Hopping and Block Withholding 

Mining pools allow miners to lower the variance in their revenue by allowing them to 
split the block reward based on how many shares each miner submits to the pool operator. 
An intuitive scheme for doling out a pool’s rewards to its constituent miners would be to 
defne a round as the period between two blocks being found by a given pool and then 
have individual miner payouts be proportional to the number of shares that each miner 
submitted during the round. Unfortunately, while this proportional reward allocation may 
be simple, it is also insecure due to the pool-hopping attack [190]. In fact, any pool reward-
sharing scheme where the proftability of mining depends on the current state of the pool is 
potentially subject to pool-hopping. 

In a pool-hopping attack, a miner will join a pool, mine within it for some period of time, 
and then leave for another pool in such a way that they receive a disproportionate amount of 
revenue at the expense of other miners who remained in the pool. Under the proportional 
reward scheme, the payout for every share is equal to the block reward divided by the 
number of shares submitted in the round. As more time passes within a round, more shares 

100 



3795

3800

3805

3810

3815

3820

3825

3830

3793 

3794 

3796 

3797 

3798 

3799 

3801 

3802 

3803 

3804 

3806 

3807 

3808 

3809 

3811 

3812 

3813 

3814 

3816 

3817 

3818 

3819 

3821 

3822 

3823 

3824 

3826 

3827 

3828 

3829 

3831 

3832 

NIST IR 8460 ipd 
April 2023 

are submitted, and thus the reward per share decreases. Therefore, an individual miner 
benefts if they submit shares to the pool during its shorter rounds but mine in other pools 
during longer rounds. This can be approximated simply by mining within a given pool for 
a short period and then switching to another pool if the round has not completed yet. As 
a result of this attack, honest miners who continuously participate in the pool can, in the 
worst case, receive 43% less than their "fair share." Unsurprisingly, mining pools no longer 
use the proportional payout scheme. 

Another attack that can be launched against mining pools is the block withholding attack, 
where a malicious miner submits valid shares to the pool operator but does not submit 
blocks when a full proof of work is found [190]. Block withholding can be especially nasty 
when mining pool operators are also miners. With multiple competing mining pools, the 
Nash equilibrium is a mixed strategy where miners use some of their hash rate to infltrate 
competing pools to withhold blocks [191, 192]. This is analogous to the famous prisoner’s 
dilemma in game theory: while everyone would be best off if all parties refrained from 
block withholding, each party benefts from their own malicious deviation. The result is 
that all parties will deviate and withhold blocks, and all parties will be worse off. If mining 
pools are attacking each other in this way, the total potential network hash rate will not be 
fully utilized, and the network will be less secure than it otherwise would be. If the network 
hash rate is static during a diffculty epoch, the attack only becomes proftable after the next 
diffculty adjustment. Until then, block withholding lowers the revenue for both the attacker 
and the victims, though it harms the victims to a greater degree. This has occurred in the 
real world, such as when the Eligius mining pool suffered a 300 bitcoin loss in June 2014 
due to block withholding [193]. However, the need to wait for a diffculty epoch before 
it becomes proftable and the low returns from the attack combine to make it relatively 
uncommon. A related but much stronger attack – fork after withholding – operates the 
same as block withholding, except that when the attacker detects that a competing block 
from a different pool is found, they release the withheld block in order to create a deliberate 
fork [194]. 

It is possible to mitigate the threat of block withholding through an adjustment to the pool 
payout scheme. For example, the "incentive compatible" scheme described in [195] makes 
block withholding unproftable. Let D be the expected number of shares found per full 
proof-of-work solution (i.e., D is the ratio between the full diffculty and the share diff-
culty). When a miner within a pool fnds a block and submits it to the pool operator, D is 
compared with the number of shares submitted in that round, S. If S ≥ D, then rewards are 
proportional. On the other hand, if S < D, each share receives a fxed reward of D 

1 , while 
the remainder of the available block reward goes to the miner who submitted the full solu-
tion. By providing a larger reward for the miner who found the block, they are incentivized 
to report it. Unfortunately, this reward scheme is also susceptible to pool-hopping, as with 
the proportional scheme, and is therefore not appropriate for real-world use. Most existing 
mining pools follow one of three styles of alternative reward-sharing mechanisms: 

101 



3835

3840

3845

3850

3855

3860

3865

3870

3833 

3834 

3836 

3837 

3838 

3839 

3841 

3842 

3843 

3844 

3846 

3847 

3848 

3849 

3851 

3852 

3853 

3854 

3856 

3857 

3858 

3859 

3861 

3862 

3863 

3864 

3866 

3867 

3868 

3869 

3871 

3872 

NIST IR 8460 ipd 
April 2023 

1. Pay-per-share (PPS): Each submitted share immediately credits the miner with a 
fxed payout, and the pool operator keeps the full block reward when blocks are 
found. This minimizes variance-related risks for the miner [196] but turns the pool 
operator into a fnancier who takes on the full mining variance risk. During short 
rounds, the pool operator wins, whereas they lose money during long rounds in which 
many shares are submitted. Due to this risk, PPS pools tend to charge miners higher 
fees. PPS is fully immune to pool-hopping attacks. 

2. Pay-per-last-N-shares (PPLNS): This method eschews the idea of rounds, and in-
stead, the pool operator maintains a queue of the most recent N shares submitted to 
it. Whenever a miner within the pool fnds a block, payouts are proportional to the 
number of shares each miner found that remains on the queue. A randomized version 
of PPLNS is also possible, where instead of a queue in which the oldest share is re-
moved when each new share is found, a random one is removed [197]. While mining 
reward variance is higher for PPLNS than PPS, it has the lowest variance for schemes 
where the mining pool does not risk running out of funds and having a defcit with 
respect to the miners [196]. 

This payout scheme is less susceptible to pool-hopping than the proportional method 
but is not hopping-proof. Miners can beneft from joining a pool immediately before 
the diffculty is about to decrease and leave a given pool when the diffculty is about 
to increase [190]. PPLNS is fairly robust, but there are situations where miners can 
beneft from strategic deviations, such as hoarding a certain number of shares and 
only submitting them to the pool upon fnding a block. This can prevent old shares 
from exiting the queue [198]. 

3. Share-scoring methods: This includes the original Slush method and the superior 
geometric method that it inspired, which is fully resistant to pool-hopping. These 
schemes give each newly submitted share a score that depends on how much time 
has elapsed since the beginning of the current round: as more time passes, the score 
increases. At the end of the round, payouts are proportional to the total score rather 
than the total number of shares. Early shares are worth more than late shares when 
using the proportional method, but the increasing scores over time help to counter 
this effect by reducing the value of early shares. The geometric method includes a 
variable fee that is higher earlier in the round but decays throughout and is parame-
terized such that the score given to any new share is always the same relative to both 
existing and future scores. This removes any advantage that a miner could gain by 
timing when to enter or leave the pool [190]. 

Note that the victim of a block withholding attack depends on the payout scheme used. If 
PPS is used, then the pool operator is the victim because they do not get to collect the block 
reward yet must still pay a constant amount to each miner for their shares. In methods that 
do not have operator risk, such as proportional, PPLNS, and geometric, the other miners 
within the same pool suffer when block withholding attacks are performed. 

102 



NIST IR 8460 ipd 
April 2023 

(a) Bitcoin DAA (b) Variable DAA 

Fig. 22. Selfsh mining strategy. With a DAA that adjusts the difculty every block, the 
e f f ectiveState variable captures the diference in total work between the selfsh miner’s private 
chain and the main chain. For Bitcoin’s DAA, it is sufcient to keep track of the diference in 
blocks instead of work. The i f Lose variable represents what the diference in work would be if 
the honest miners won the next block. It is used to address situations in which the selfsh miner 
currently has the most work chain but would give up if honest miners win the next block. 
[185, 199] 

3873 

3874 

3875 

3876 

3877 

3878 

3879 

3880 

3881 

3882 

3883 

3884 

3885 

3886 

3887 

3888 

3889 

3890 

3891 

3892 

9.4. Selfsh Mining 

Satoshi Nakamoto believed that in the Bitcoin system, it is in miners’ rational interest 
to behave honestly so long as the adversary does not control more than half of the net-
work’s computational power [1]. This was later shown to be false due to the selfsh mining 
phenomenon, where strategically withholding blocks from the network can be more prof-
itable than honest mining, even with only a minority of the network’s hash rate [199–201]. 
While the original attack was described assuming constant diffculty blocks, the strategy 
was expanded to account for variable diffculty blocks in [185]. The attack is relevant to 
Nakamoto Consensus (see Section 10) but also applies to longest-chain proof of stake and 
several other proof of work protocols. 

Selfsh mining works by forcing honest miners to waste their energy mining blocks on a 
chain that is "destined" to be reorganized and become stale. When the attacker success-
fully mines blocks, they keep them private and only reveal them to the rest of the network 
when the honest chain is closer to being caught up with the adversarial chain. The attack 
allows the selfsh miner to gain a disproportionate share of the mining rewards (i.e., it re-
duces chain quality and improves the adversary’s relative revenue) and becomes proftable 
sometime after the diffculty level drops to refect the reduced block production rate. The 
detailed strategy is listed in Figure 22a for the case of Bitcoin’s DAA (or any DAA where 
the diffculty remains constant for an epoch before changing) and in Figure 22b when the 
diffculty changes with every new block. 

103 



NIST IR 8460 ipd 
April 2023 

3893 

3894 

3895 

3896 

3897 

3898 

3899 

3900 

3901 

3902 

3903 

3904 

3905 

3906 

3907 

3908 

3909 

3910 

3911 

3912 

3913 

3914 

3915 

3916 

3917 

3918 

3919 

3920 

3921 

3922 

3923 

3924 

3925 

3926 

3927 

The attack is parameterized by two variables, α and γ , with 0 ≤ α,γ ≤ 1. α is the fraction of 
the total hash rate that is engaged in selfsh mining, and γ represents the fraction of honest 
miners that will add blocks to the chain on top of the selfsh miner’s block during a block 
race (and thus relates to the adversary’s control over the network). γ can be considered a 
measure of the rushing capabilities of the adversary in that it captures the advantage that 
the selfsh miner has when reacting to blocks found by honest peers. 

Whether the selfsh mining strategy is rational or not depends on the values of α and γ . The 
hash rate where a selfsh miner can improve their relative revenue above and beyond what 
they would earn from mining honestly is given in the following inequalities: 

1− γ 1 
< α < (1)

3 − 2γ 2 

1 If γ = 2 , selfsh mining is proftable when α ≥ 1
4 , and if γ = 0, selfsh mining is proftable 

1 when α ≥ 1
3 . The γ = 2 scenario corresponds to the situation in which miners – upon 

seeing two equal-work chain tips – choose randomly between them. Further, if γ = 1, 
selfsh mining is benefcial to the attacker at any hash rate. In the optimized attack from 

1 [202], the required adversarial hash rate is decreased from 25% to 23.21% when γ = 2 . 

Nayak et al. proposed three additional "stubborn" variants of the strategy, which may 
perform better than selfsh mining under some conditions [203]: 

1. Lead stubborn: When a selfsh miner has a lead of two blocks, but the honest miners 
fnd a block and cut the lead to one, the selfsh miner publicizes their longer chain to 
win the race. In contrast, a lead-stubborn miner will only publicize the frst block to 
"match" the honest chain and try to cause a race. 

2. Equal-fork stubborn: In normal selfsh mining, when there is a block race between 
equal length forks and the attacker mines a block, they reveal it immediately to win 
the fork. In equal-fork stubborn mining, they would withhold the new block and just 
have a one block lead again. 

3. Trail stubborn (Tj-stubborn): When a selfsh miner falls behind the honest chain, 
they simply adopt the honest chain. A Tj-stubborn miner will continue mining on 
their private chain until they are j + 1 blocks behind the honest chain. 

Selfsh mining is one of the most well-studied attacks in the permissionless ledger litera-
ture and has been investigated under a wide variety of scenarios. For example, heteroge-
neous network connectivity among honest miners helps a selfsh mining attacker because γ 
rapidly increases as the variance in block propagation delay increases [204]. In [205], self-
ish mining was found to be far more proftable with larger network delays, but technologies 
that speed up block propagation – such as compact blocks and relay networks – effectively 
eliminate this difference for blocks of moderate size (compact blocks and relay networks 
are discussed in Section 10.2.1). 

104 



3930

3935

3940

3945

3950

3955

3960

3965

3928 

3929 

3931 

3932 

3933 

3934 

3936 

3937 

3938 

3939 

3941 

3942 

3943 

3944 

3946 

3947 

3948 

3949 

3951 

3952 

3953 

3954 

3956 

3957 

3958 

3959 

3961 

3962 

3963 

3964 

3966 

NIST IR 8460 ipd 
April 2023 

Most selfsh mining research assumes the existence of a single adversary, but a line of 
work investigates what happens with multiple selfsh miners simultaneously operating on 
the same network [206–209]. Unsurprisingly, the security of the network is further re-
duced with multiple selfsh miners. For example, with two independent selfsh miners, the 
threshold for proftably selfsh mining drops from 25% to 21.48% [206]. As the number of 
simultaneous selfsh miners increases, the proftability threshold for each miner decreases 
[207, 209]. A necessary condition for n selfsh miners to simultaneously beneft from the 
attack is that each of their individual hash rates α 1 1

i is in the range < n+1 αi < n−2 , such that 
up to seven adversaries can operate with 12% of the hash rate each [209]. 

The proftability of selfsh mining depends on the network against which it is applied. The 
DAA is a signifcant factor. For example, in systems where the diffculty is able to rapidly 
adjust downward when blocks are slow, selfsh mining tends to be more proftable. When 
the DAA only looks at a relatively short period of time as the basis for the adjustment, 
selfsh miners can dramatically increase their profts by manipulating the timestamps they 
include in block headers [185]. 

Ethereum, in particular, has received the most attention outside of Bitcoin [210–212]. 
Ethereum’s consensus algorithm, GHOST (discussed in Section 11.2), differs from Bit-
coin’s in that it includes the existence of stale blocks ("uncles") as part of the DAA as 
well as the reward scheme. Most signifcantly, Ethereum miners are rewarded even if 
their blocks do not make it into the main chain so long as they are referenced as uncle 
blocks shortly after being mined. As a result, the threshold for selfsh mining proftabil-
ity is reduced because even when the attacker loses a block race, they are likely to still 
get some reward for taking the risk. Using the observed uncle block ratio from Ethereum 
in December 2017, [211] showed that the proftability threshold for selfsh mining was 
α = 0.185±0.012. Another model found that selfsh mining was proftable with α > 0.163, 
and that beneath this value, the selfsh miner loses far less than they would by attacking Bit-
coin [212]. 

Despite being perhaps the most signifcant theoretical attack on many permissionless sys-
tems (aside from the majority attack), signifcant selfsh mining attacks have not been ob-
served in the real world. There are a number of reasons why this may be the case: 

• Executing the selfsh mining strategy requires specifc software for implementation. 
The expertise to develop this is not widespread and the software itself is likely to be 
bug-prone and challenging to test. Due to the costs imposed by proof of work, a bug 
could cause tens or hundreds of thousands of dollars in losses for the attacker. 

• Most models assume that the exchange rate for the asset being mined selfshly re-
mains constant throughout the duration of the attack and beyond. However, if selfsh 
mining was discovered on a network, one might reasonably expect it to decrease the 
exchange rate of the asset in question, which can dramatically reduce the proftability 
of the attack (especially if the relevant hardware cannot be repurposed). 

105 



NIST IR 8460 ipd 
April 2023 

3967 

3968 

3969 

3970 

3971 

3972 

3973 

3974 

3975 

3976 

3977 

3978 

3979 

3980 

3981 

3982 

3983 

3984 

3985 

3986 

3987 

3988 

3989 

3990 

3991 

3992 

3993 

3994 

3995 

3996 

3997 

3998 

3999 

4000 

4001 

4002 

• For larger networks, like Bitcoin, it would be prohibitively expensive for individ-
ual miners to acquire enough computational power to proftably perform the attack. 
While mining pools can perform selfsh mining, it is likely to be discovered quickly, 
at which point the individual miners can defect to honest pools. Unfortunately, these 
miners are incentivized to remain in the pool and take advantage of the profts that 
come from selfsh mining so long as the exchange rate remains constant (but this 
assumption is questionable). Selfsh mining detection is facilitated by the common 
behaviors of individual miners belonging to multiple pools, as well as pools moni-
toring each other. 

• If enough computational power can be acquired to perform selfsh mining, it is often 
easier and perhaps more proftable to double-spend with a majority attack. This is 
likely the case for small networks where markets exist to rent signifcant portions of 
the hash rate. 

• The parameter γ is important to the proftability of the strategy, but estimating it is 
challenging, and it is likely to change throughout the duration of the attack. 

• Selfsh mining is not proftable until sometime after the diffculty adjusts downward 
to refect the adversary "dropping off" the network. Most research assumes that no 
new miners are enticed to (honestly) mine on the network based on this lower diff-
culty, which may not be realistic. If this assumption turns out to be false, the selfsh 
miner may never recoup their losses from prior to the diffculty adjustment. 

On the other hand, selfsh mining immediately lowers the proftability of honest miners. If 
this induces some of them to quit mining, selfsh mining becomes even more proftable for 
the attacker [213]. 

10. Nakamoto Consensus 

Satoshi Nakamoto frst proposed what has been dubbed "Nakamoto Consensus" in 2008, 
and it ushered in a new era of consensus algorithm research and innovation [1]. The term 
"Nakamoto Consensus" is used frequently and inconsistently in the consensus literature. 
Sometimes, it is used merely to describe the longest chain rule without specifying what 
mechanism is used to prevent Sybil attacks. However, that is not the defnition used here. 
In this document, Nakamoto Consensus is defned by two things: 

1. Proof of work is used as the Sybil-resistance mechanism and for randomized leader 
election. 

2. The longest chain rule (LCR) is used as the fork-choice rule to form a blockchain. 
Technically, the LCR is a misnomer because the "longest" chain is defned as the 
heaviest one or the one that proves the most work rather than the chain with the 
greatest number of blocks. 

106 



4005

4010

4015

4020

4025

4030

4035

4040

4003 

4004 

4006 

4007 

4008 

4009 

4011 

4012 

4013 

4014 

4016 

4017 

4018 

4019 

4021 

4022 

4023 

4024 

4026 

4027 

4028 

4029 

4031 

4032 

4033 

4034 

4036 

4037 

4038 

4039 

4041 

NIST IR 8460 ipd 
April 2023 

Nakamoto Consensus is most prominently used in Bitcoin but is also one of the more 
commonly deployed consensus models overall. In the permissionless design space, it is by 
far the most well-understood protocol with formal security proofs under a wide variety of 
models. Having been deployed in Bitcoin since January 2009, Nakamoto consensus has 
the most real-world battle testing of any permissionless protocol. The assumptions upon 
which its security is derived are simpler than most: 

1. Honest majority. The majority of the work that can be applied to the network is 
being used by honest participants rather than malicious ones. See Section 10.2.2 for 
more details. 

2. Bounded network delay. Messages that are sent by participants must propagate to 
the rest of the network within some bounded period of time. See Section 10.2.1 for 
more details. 

3. Collision-resistant hash function. A collision-resistant cryptographic hashing func-
tion is required in order to maintain the integrity of the blockchain itself and ensure 
that each block acts as a commitment or vote on all preceding blocks in the chain. 

Nakamoto Consensus is also very effcient in terms of minimizing communication over-
head. Other protocols often require the exchange of additional information regarding which 
validators have already seen which blocks or allow duplicate or invalid transactions inside 
of blocks that are only later fltered out. In addition, the simple blockchain structure – as 
opposed to multiple parallel chains or DAGs – ensures that transactions are globally or-
dered as soon as blocks are generated. This reduces transaction confrmation latency and 
is compatible with all smart contract programming models. In contrast, using a different 
structure requires some care to ensure that the transactions are totally ordered so as to be 
suitable for smart contracts. As such, it would not make sense to describe other, more 
recent consensus algorithms as strict improvements over Nakamoto Consensus but rather 
as having trade-offs. Proof-of-work variants that stay close to Nakamoto Consensus are 
described in Section 11.1, while a wider variety are discussed throughout Section 11. 

The mechanics of Nakamoto Consensus are simple. All nodes begin with the genesis block, 
a common reference string that initializes the state of the system. Miners then search for 
proof-of-work solutions to a random puzzle that includes the genesis block as an input (as 
well as a list of transactions and some other metadata). A miner who fnds a proof-of-work 
solution is elected leader and produces a block, which is then published and gossiped over 
a peer-to-peer network. When other nodes see this block, they validate the proof of work 
and the transactions, forward the block to their peers, and begin trying to fnd solutions to 
the next puzzle using the new block as input. Over time, this builds a chain of blocks that 
extend from the genesis block, adding transactions to the ledger and updating the system 
state. 

Due to random chance, network delays, or malice, it is possible for more than one com-
peting proof of work to be found at the same height in the blockchain. For instance, if 

107 



NIST IR 8460 ipd 
April 2023 

4042 

4043 

4044 

4045 

4046 

4047 

4048 

4049 

4050 

4051 

4052 

4053 

4054 

4055 

4056 

4057 

4058 

4059 

4060 

4061 

4062 

4063 

4064 

4065 

4066 

4067 

4068 

4069 

4070 

4071 

4072 

4073 

4074 

4075 

4076 

4077 

4078 

4079 

4080 

Alice and Bob both fnd blocks at height one immediately after the genesis block, then it 
is unclear whether miners should consider legitimate and thus build new blocks on top of 
Alice’s chain or Bob’s chain. In this case, there is a tie, and miners can choose arbitrarily 
(though they typically prefer the one they saw frst). At some point, a miner will extend 
the chain from either Alice’s block or Bob’s block, and then that chain will have the most 
work backing it. This breaks the tie, and all honest nodes will switch to the chain with the 
new block because honest nodes follow the chain with the most work supporting it. This 
process continues indefnitely with honest miners building blocks that extend the longest 
(most work) chain they are aware of and results in a growing ledger of transactions. 

10.1. Theory of Nakamoto Consensus 

Nakamoto Consensus (and sometimes just Bitcoin) is frequently brought up as a solution to 
the Byzantine Generals Problem (see Section 1.1), thus making it a broadcast algorithm. At 
other times, it is presented as an agreement algorithm. Despite these frequent contentions, it 
is not strictly true that Bitcoin and Nakamoto Consensus perfectly ft into these paradigms. 

In particular, the "validity" property of BGP and BA does not hold for Nakamoto Consen-
sus. Recall that BGP validity guarantees that if the leader is honest and begins with input 
value v, then all honest nodes decide v. BA validity guarantees that if all honest nodes 
propose the same value, then any correct node must decide v. There is also weak validity, 
which requires that each honest node’s output must be the input of some honest node. The 
randomized proof-of-work process interferes with achieving these notions of validity. Un-
less the adversary has a negligible fraction of the total computing power of the network, 
they will eventually be frst to produce a proof of work, at which point all honest nodes will 
immediately switch to and extend the chain from this adversarial block and abandon the 
original "honest" input. 

Similarly, the probabilistic guarantees provided by Nakamoto Consensus as a result of 
its proof-of-work process can be framed as providing agreement but not termination or, 
alternatively, termination but not agreement [214]. Ultimately, Nakamoto Consensus sat-
isfes "eventual consistency" or "probabilistic consistency," where the probability of agree-
ment on a particular block at a particular position increases exponentially as additional 
blocks extend the chain’s tip from the block in question. One can, therefore, consider 
Nakamoto Consensus to satisfy agreement but not termination: if the blockchain protocol 
executes forever, then agreement will hold probabilistically with probability 1. Alterna-
tively, Nakamoto Consensus may satisfy termination but not agreement: if x blocks exist 
and the system runs for a fnite duration of k blocks, then consensus is achieved for block 
x, but the probability that agreement is satisfed is less than 1 and grows exponentially with 
k. 

By now, there is a considerable amount of literature proving that Nakamoto Consensus and 
Bitcoin provide particular security properties under a variety of assumptions [9, 165, 182– 
184, 215–230]. Ultimately, Nakamoto Consensus creates a state machine that operates 

108 



NIST IR 8460 ipd 
April 2023 

4081 

4082 

4083 

4084 

4085 

4086 

4087 

4088 

4089 

4090 

4091 

4092 

4093 

4094 

4095 

4096 

4097 

4098 

4099 

4100 

4101 

4102 

4103 

4104 

4105 

4106 

4107 

4108 

4109 

4110 

4111 

4112 

4113 

4114 

4115 

4116 

4117 

4118 

over a distributed ledger that satisfes persistence and liveness with security parameter k, 
sometimes called the "Bitcoin Backbone." 

• Persistence. Once a transaction is at least k blocks "deep" in the blockchain of 
an honest node, then with overwhelming probability, the same transaction will be 
included at the same position of every other honest node’s blockchain and remain 
there permanently. 

• Liveness. Transactions sent by honest clients will eventually be at a depth of more 
than k blocks in honest nodes’ blockchains. 

The frst security proof for Nakamoto Consensus in synchronous networks is from [9], 
where persistence and liveness follow from the common prefx and chain quality properties. 
It was then shown in [215] that an additional chain growth property was, in fact, required 
for liveness. 

• Common prefx. For a security parameter k, the blockchains of two honest nodes 
differ only in the last k blocks from the tip. That is, if one were to "chop off" the 
fnal k blocks of two honest nodes’ chains, one of the resulting subchains would be 
a prefx of the other. A related requirement is future self-consistency, such that at 
any two points in time, with high probability in the security parameter T , the chain 
of an honest node differs only within the last T blocks (i.e., alternating between two 
completely different chains is not allowed). 

• Chain quality. For parameters µ and T , it holds that for any T consecutive blocks in 
the blockchain of an honest party, the ratio of honest blocks is at least µ . Stated differ-
ently, it should be the case that "enough" of the blocks that end up in the blockchain 
were proposed by honest nodes. 

• Chain growth. For parameters τ and s and any honest party P with chain C in a 
given view, it holds that for any s rounds, there are at least τ ∗ s blocks added to the 
chain of P. In other words, the blockchains of honest nodes must continuously grow 
at a certain pace over time. 

The model used in [9] assumed a fxed set of n equally powerful miners (but with n un-
known), where each party can make the same number of queries, q, to a hash function 
modeled as a random oracle. This is considered a "fat" model because each miner is equal, 
but one can imagine differences as being represented by real-world entities controlling vari-
able numbers of players. The adaptive, rushing adversary controls f < n 

2 of those parties 
and can thus make f ∗ q proof-of-work queries per round. In this environment, if n− 

f
f < 1, 

honest parties will have blockchains with large common prefxes when pruning the most 
recent k blocks from the tip of the chain, except for some small probability that drops ex-
ponentially with k. Further, the blockchains of honest parties will include blocks from both 
honest and malicious parties, but so long as the majority of the hash power is honest, the 
ratio of blocks produced by honest parties compared to malicious parties is bounded by 

109 



4120

4125

4130

4135

4140

4145

4150

4155

4119 

4121 

4122 

4123 

4124 

4126 

4127 

4128 

4129 

4131 

4132 

4133 

4134 

4136 

4137 

4138 

4139 

4141 

4142 

4143 

4144 

4146 

4147 

4148 

4149 

4151 

4152 

4153 

4154 

4156 

4157 

4158 

NIST IR 8460 ipd 
April 2023 

f
n− f . This chain quality is fairly low unless there is a large majority of honest miners (see 
Section 9.4 on selfsh mining for one adversarial strategy that reduces chain quality). For 
example, if an adversary controls 1

3 of the hash power, they may end up contributing nearly 
half the blocks. Finally, if the network is unable to remain suffciently synchronized (i.e., 
if the message latency between honest miners approaches the expected time that it takes 
to fnd proof-of-work solutions), then maintaining the common prefx property requires a 
larger and larger hash rate (super)majority. 

The analysis in [216] provides security proofs in the "∆-bounded delay" model. This model 
comports with the standard defnition of partial synchrony presented in [26], where there 
exists a fxed, unknown upper bound ∆ on message delay. However, it does not ft the game-
based description that immediately followed in [26], where the protocol designer designs 
a protocol and the adversary then chooses ∆. Interestingly, this makes systems that depend 
on Nakamoto Consensus, like Bitcoin, behave like asynchronous or partially synchronous 
protocols while still technically being synchronous. 

It is instructive to consider why it is more challenging to address network delays in a proof-
of-work model than in most permissioned systems. To transform a synchronous permis-
sioned protocol into a ∆-bounded delay one, honest replicas can simply wait ∆ time steps 
before responding to any messages. In the permissionless setting using proofs of work, the 
adversary can increase its use of computational resources by a factor of ∆ to try to solve 
puzzles while the honest miners "wait." 

In the context of Nakamoto Consensus, the delay must not only be bounded but suffciently 
bounded. An arbitrary but fnite delay will not suffce. If the delay were truly arbitrary (as 
it would be in an asynchronous network), an adversary with a small fraction of the hash rate 
could simply delay the arrival of honest parties’ messages long enough to guarantee that 
the adversary creates an even longer chain than the ones acknowledged by honest nodes, 
forcing honest nodes to adopt the adversarial chain. Without any adversarial hash power, 
it is still possible for this network adversary to cause common prefx violations. However, 
in a model where the adversary can delay messages with only some probability less than 1, 
Nakamoto Consensus can remain secure even when delays may be quite a bit larger [217], 
which may motivate the use of satellite or radio technologies to broadcast blocks in ways 
that are more diffcult for adversaries to disrupt. 

Even under partial synchrony, if ρ is the fraction of the hash power controlled by the ad-
versary, n is the number of miners, and p is a mining hardness parameter that captures 
the probability that a single random oracle hash query generates a valid proof of work, the 
common prefx property (and thus persistence) will not hold when p 1 > nρ∆ . 

As a result, the mining puzzle’s diffculty must be appropriately set as a function of the 
maximum network delay in order to maintain security. The primary result from [216] is 
that so long as ρ 1 < 2 , then for any delay bound ∆, there exists a suffciently small p such 
that Nakamoto Consensus maintains consistency. The consistency proof relies on a con-
cept dubbed convergence opportunities, which provide honest nodes the opportunity to 

110 



NIST IR 8460 ipd 
April 2023 

4159 

4160 

4161 

4162 

4163 

4164 

4165 

4166 

4167 

4168 

4169 

4170 

4171 

4172 

4173 

4174 

4175 

4176 

4177 

4178 

4179 

4180 

4181 

4182 

4183 

4184 

4185 

4186 

4187 

4188 

4189 

4190 

4191 

4192 

4193 

4194 

4195 

4196 

synchronize themselves and converge upon the same blockchain. A convergence opportu-
nity occurs when: 

1. There is a period of ∆ rounds where no honest miners mine a block. 

2. A round occurs where a single honest miner mines a block. 

3. Another period of ∆ rounds occur without any honest miners mining a block. 

Note that in step 2, only a single honest miner can mine a block during that time. If mul-
tiple honest miners mine competing blocks, there is no convergence opportunity because 
honest miners may be split over which block they ought to mine on top of (later works 
tightened the security proof by relaxing this requirement [225, 226]). To prove the security 
of Nakamoto Consensus, [216] shows that convergence opportunities occur with suffcient 
frequency and that attackers can only prevent them by mining a block that is accepted by 
the honest nodes during this time. An adversarial block that prevents a convergence op-
portunity cannot have been mined and withheld particularly long before the time period in 
question because the honest mining majority will quickly produce and distribute a longer 
chain, making the adversarial block irrelevant. When the adversarial hash rate is suff-
ciently bounded, the number of adversarial blocks will be outnumbered by the frequency 
of convergence opportunities, guaranteeing that honest nodes will eventually converge on 
a consistent chain. 

10.1.1. Nakamoto Consensus With Chains of Variable Difculty 

The above analyses assumed that the mining diffculty remained constant throughout the 
execution of the protocol. In actuality, the diffculty adjusts with the addition or removal 
of computing power so as to maintain an average target block interval (for instance, in 
Bitcoin, the target block interval is 10 minutes or 600 seconds). Several works extend the 
prior analyses to distributed ledgers where the diffculty changes over time [182–184]. 

In [182], the authors extend the synchronous model from [9] to account for Bitcoin’s dif-
fculty adjustment algorithm, which recalibrates the diffculty parameter after every 2,016 
blocks (approximately two weeks) in order to account for changes in hash rate during that 
time. The new model does away with the fxed number of miners n and instead allows 
the number of miners to vary. There are bounds on how quickly the number of players 
can change over time while maintaining consistency, and if these bounds are respected and 
miners do not deviate too far from expectation, the block production rate should remain 
suffciently stable to maintain the common prefx and chain quality properties. The most 
crucial result from the analysis is that the length of a diffculty epoch needs to be suff-
ciently large in order to bound the probability of attacks, which helps to justify the lengthy 
epochs used in Bitcoin (while raising questions as to the security of more rapidly adjusting 
DAAs). Further, Bitcoin’s DAA utilizes "dampening flters" such that the diffculty adjusts 
by no more than a factor of four in either direction, and this dampening is required in order 
to prevent attacks against the common prefx property [200]. 

111 



NIST IR 8460 ipd 
April 2023 

4197 

4198 

4199 

4200 

4201 

4202 

4203 

4204 

4205 

4206 

4207 

4208 

4209 

4210 

4211 

4212 

4213 

4214 

4215 

4216 

4217 

4218 

4219 

4220 

4221 

4222 

4223 

4224 

4225 

4226 

4227 

4228 

4229 

4230 

4231 

4232 

4233 

4234 

Some limitations from [182] are addressed in other papers that account for variable dif-
fculty [183, 184]. In particular, [182] relies on two key assumptions: 1) a synchronous 
network prevents the adversary from delaying network messages between honest parties, 
and 2) the adversary cannot adaptively choose how many players – and thus how much 
hash rate – is deployed in any given round but must instead schedule this in advance. 
Clearly, these assumptions do not hold in the real world, but [183, 184] prove the se-
curity of Nakamoto Consensus with an adaptive work schedule and ∆-bounded message 
delays. Note that changes in computing power must not occur too quickly or else the min-
ing diffculty will not be appropriately set relative to the network delay. The only other 
condition required in the proof from [183] is that the initial diffculty is set appropriately to 
the network delay and available computational power. That is, if the diffculty is properly 
calibrated from the start and does not change too quickly, Nakamoto Consensus remains 
secure. 

The diffculty adjustment algorithm employed in [183] differs slightly from that of Bitcoin. 
In particular, for an additional security parameter κ0, the diffculty calculation "chops off" 
the frst and last κ0 blocks of the epoch, which helps maintain consistency and avoids the 
need to deal with epoch boundaries in the analysis. In addition, the timestamp validity 
rules for a given block differ slightly from that of Bitcoin: all timestamps must strictly 
increase, and honest nodes reject blocks where the timestamp is in the future. Assuming 
that the chain quality property holds, these rules ensure that an honestly produced block 
occurs periodically, forcing adversarial blocks to be located between two nearby honest 
blocks and thus preventing adversarial blocks’ timestamps from deviating too far from the 
actual time. The analysis in [184] uses the real Bitcoin DAA but with similarly modifed 
timestamp rules. 

10.1.2. Additional Analyses of Nakamoto Consensus 

There are quite a few additional security analyses of Nakamoto Consensus and Bitcoin that 
often use different models. For example, 

• Bitcoin was proven secure with universal composability (UC) in [218] in networks 
with bounded delays. A UC-model proof is important because it means that a Bitcoin-
like ledger can be arbitrarily composed with other protocols that may rely on it, such 
as running multi-party computations on top of a blockchain. 

• The Bitcoin Backbone was proven secure in the quantum random oracle model in 
[220, 231], assuming a suffciently bounded quantum adversary. 

• In [221], the Bitcoin Backbone was proven secure when different miners have differ-
ent hash rates (i.e., it avoids the "fat" model where each miner is considered to have 
an equal amount of hash power). 

• The Bitcoin Backbone remains secure even when some of the nodes "prune" their 
blockchains by removing old blocks from their local ledger [224]. 

112 



NIST IR 8460 ipd 
April 2023 

4235 

4236 

4237 

4238 

4239 

4240 

4241 

4242 

4243 

4244 

4245 

4246 

4247 

4248 

4249 

4250 

4251 

4252 

4253 

4254 

4255 

4256 

4257 

4258 

4259 

4260 

4261 

4262 

4263 

4264 

4265 

• A simple proof of the security of Nakamoto Consensus in the continuous time model 
(instead of using discrete rounds) was provided in [229]. 

• The trade-off between confrmation latency and security was formalized in [232], 
which provides guidance for optimizing throughput by choosing appropriate param-
eters for block size and expected block times. 

• Permissionless longest-chain protocols, including Nakamoto Consensus, were proven 
secure in a generalization of the synchronous communication model, where message 
delays are independent, identically distributed, and thus potentially unbounded [233]. 

• Some works have attempted to remove the random oracle assumption from their se-
curity proofs. For example, [223] formalizes a primitive called "signatures of work," 
which enables honest majority consensus in permissionless settings analogously to 
how digital signatures allow honest majority consensus in permissioned settings. The 
"key" for these "signatures" is the most recent block hash seen by a miner, so the key 
ensures timeliness of the work. Unfortunately, the only known instantiations of the 
primitive rely on random oracles themselves. A standard model proof of security 
without the use of a random oracle for the Bitcoin Backbone protocol was provided 
in [165]. 

• Several works have tightened the consistency bounds for longest-chain protocols like 
Nakamoto Consensus [222, 225, 226, 230]. One reason why earlier bounds were not 
tight was due to the negative infuence on security that occurs when multiple honest 
miners mine blocks close to each other (see the discussion on convergence opportu-
nities in Section 10.1), and [226] uses proof techniques that mitigate the impact of 
this. The resulting consistency bound – where ra is the expected number of adver-
sarial proofs of work generated per unit time, rh is the expected number of honest 
proofs of work, and the maximum message delay is ∆0 – is 

1 
ra < 1 (2)

∆0 + rh 

The analysis in [222] produced security bounds in terms of the expected number of 
network delays until a block is mined, c (e.g., if it takes 10 seconds before all miners 
receive and validate a block and the expected block interval is 600 seconds, c = 60). 
In this case, if h is the honest fraction of the hash rate and f is the adversarial fraction, 
consistency is maintained so long as 

2h 
c > (3)

ln( hf ) 

• A particularly interesting result is that the Bitcoin Backbone can maintain its primary 

113 



NIST IR 8460 ipd 
April 2023 

4266 

4267 

4268 

4269 

4270 

4271 

4272 

4273 

4274 

4275 

4276 

4277 

4278 

4279 

4280 

4281 

4282 

4283 

4284 

4285 

4286 

4287 

4288 

4289 

4290 

4291 

4292 

4293 

4294 

4295 

4296 

4297 

4298 

4299 

4300 

4301 

security properties (i.e., chain quality, chain growth, and common prefx) even in 
situations where a dishonest majority temporarily exists so long as there is an honest 
majority in expectation over time [227, 228]. This would capture situations where, 
for example, a mining pool has suffered a denial of service that creates a temporary 
dishonest majority of miners that will be rectifed when the pool comes back online. 

One more analysis that deserves special attention is [219], which uses the game-theoretic 
rational protocol design framework to show that – assuming a particular class of incentives 
within the Bitcoin protocol – the honest majority assumption can be replaced by the weaker 
assumption that miners seek to maximize their profts. The utility function that accounts 
for these incentives incorporates the block subsidy, transaction fees, and mining costs but 
does not include any incentives external to the protocol, such as exploiting the transaction 
ordering for front-running or shorting the bitcoin asset in order to proft from a decrease in 
its price. A number of important conclusions can be drawn from this: 

• In the less realistic model where transaction fees are excluded from the analysis, 
Bitcoin is incentive-compatible, and even large coalitions of miners lack an incentive 
to deviate from the protocol so long as the price of Bitcoin is high enough for mining 
to be proftable. 

• When transaction fees are included, the system remains incentive-compatible so long 
as fees are suffciently large. However, the same is not true for arbitrary transaction 
fee distributions. If some fees are much higher than others, an attacker may try to 
build two chains in parallel with the high fee transactions and maintain the fork long 
enough to spend those fees on both chains. On the other hand, if an honest majority of 
computing power exists, the only proftable deviation by the adversary is to withhold 
high-fee transactions from the rest of the miners in order to claim them without the 
risk of a competitor collecting those fees. As a result, the security assumption for 
Bitcoin can be relaxed from needing an honest majority to needing many high fee 
transactions and only requiring an honest majority when fees are low. 

• As the block subsidy in Bitcoin is reduced over time and miners increasingly rely 
on transaction fees for revenue, there must be a signifcant transaction fee backlog 
in order to maintain incentive compatibility. Specifcally, the total reward for mining 
blocks must be non-decreasing. That is, after a block is mined, other miners must 
have enough transaction fees available in their mempools to be incentivized to move 
the chain forward instead of creating a fork that includes more fees. Ultimately, this 
motivates having a maximum block size limit that is small enough that miners cannot 
build blocks that claim "too much" of the outstanding transaction fees. This issue is 
discussed in more detail in Section 19.1.1. 

114 



NIST IR 8460 ipd 
April 2023 

4302 

4303 

4304 

4305 

4306 

4307 

4308 

4309 

4310 

4311 

4312 

4313 

4314 

4315 

4316 

4317 

4318 

4319 

4320 

4321 

4322 

4323 

4324 

4325 

4326 

4327 

4328 

4329 

4330 

4331 

4332 

4333 

4334 

4335 

4336 

4337 

4338 

10.2. Violating the Nakamoto Consensus Security Assumptions 

Roughly speaking, there are three major ways that Nakamoto Consensus can fail. The 
following sections look at each of these concerns in turn: 

1. The network delay is not suffciently bounded such that blocks take "too long" to 
propagate. 

2. The majority of the computing power deployed to the network can be malicious. 

3. An adversary is able to create hash function collisions. 

10.2.1. Network Delay and Block Propagation 

Section 10.1 described how an adversary who can arbitrarily delay the transmission of 
blocks to honest miners would be capable of causing consensus failure. Whether adversar-
ially induced or simply a result of typical network latency, any delay in block propagation is 
detrimental to Nakamoto Consensus. Specifcally, latency in block propagation can cause 
the blockchain to fork. Two different miners may produce blocks at the same height of the 
chain at approximately the same time because they were both unaware of the competing 
block. Whenever forks occur, honest miners temporarily work on different problems, so 
the actual work that secures the chain is reduced. 

The creation of new blocks is a Poisson process, which means that the times between 
two blocks being mined follow an exponential distribution. Thus, the probability of an 
unintentional fork in the blockchain is 1 − e 

− 
T

x 
, where x is the propagation delay and T is 

the expected block interval. For example, with Bitcoin’s 600 second block interval and 
a 10 second propagation delay, there is approximately a 1.7% chance of conficting forks 
appearing on the network when a block is found, so forks would be expected every 60 
blocks on average. If the block interval were one minute instead, there would be more 
than a 15% chance of forks or forks every 6 or 7 blocks. According to an early study 
on Bitcoin’s block propagation, it took 12.6 seconds for a block to propagate to 90% of 
the network [234]. However, that was prior to the deployment of techniques that reduced 
latency, such as compact blocks and the Fast Internet Block Relay Engine (FIBRE). Since 
then, accidental forks have become extremely rare. 

The concerns regarding frequent forks relate to more than just maintaining consistency 
among nodes. Due to the permissionless nature of Nakamoto Consensus, adequate incen-
tives are required for the system to work properly. When forks occur, only one of the 
competing blocks will actually remain in the chain for the long term, while the others are 
discarded and become stale, leaving their creators with no reward. Unfortunately, this im-
plies that frequent forks can lead to mining power becoming concentrated among a smaller 
and smaller set of larger and larger entities. For example, consider a fork that occurs be-
tween a miner with 35% of the network’s hash rate and a miner with only 5%. Both send 
their block out to the rest of the network and immediately begin mining on top of their own 

115 



4340

4345

4350

4355

4360

4365

4370

4375

4339 

4341 

4342 

4343 

4344 

4346 

4347 

4348 

4349 

4351 

4352 

4353 

4354 

4356 

4357 

4358 

4359 

4361 

4362 

4363 

4364 

4366 

4367 

4368 

4369 

4371 

4372 

4373 

4374 

4376 

4377 

4378 

NIST IR 8460 ipd 
April 2023 

block. In this case, the larger miner instantly has an additional 30% of the network hash 
rate supporting their block compared to the small miner and thus has a 30% lower stale 
block rate. If it takes 30 seconds for a block to propagate to the rest of the network, there 
would be an approximately 4.88% chance of a confict, so the larger miner gains an overall 
1.46% revenue advantage. Diffculty adjustments make mining a low-margin business, so 
this revenue advantage can be substantial. In other words, big miners will create larger 
and larger blocks in order to squeeze out the competition over time (in the absence of a 
suffciently small maximum block size limit). 

Similar centralization issues arise based not just on the relative size of the miners but also on 
their relative network connectivity [235–237]. Miners who have low latency connections 
to other miners have the same types of advantages during forks that large miners do – the 
remaining miners are more likely to build off of the well-connected miner’s block because 
they will see it frst. In addition, better latency improves a miner’s ability to include high fee 
transactions in their blocks before the transaction has fully propagated through the network. 

A related concern is that miners are not strictly incentivized to get their blocks propagated 
to 100% of the network hash rate as quickly as possible but rather somewhere above 50% 
and less than 100% (see Section 9.4 on selfsh mining, which is a related problem). This 
implies that crafting big blocks that reach the majority quickly but slowly propagate to the 
rest can harm small miners. It also implies that networking impediments like the Great 
Firewall of China are problematic. If the majority of the hash rate is on one side of the 
frewall, that side has a signifcant advantage over the miners on the other side. Miners can 
intentionally slow down block propagation in a few ways, such as stuffng blocks full of 
transactions that have not been forwarded to the rest of the network or including transac-
tions in blocks that are deliberately slow to validate (see Section 19.2 for more information 
on slow to validate transactions). 

Improving block propagation signifcantly reduces security issues with Nakamoto Consen-
sus. One way of doing this is to increase the number of network connections that each node 
has, though that comes with the cost of increased bandwidth consumption [238]. There are 
also a variety of techniques that can be used to reduce block propagation time. Only com-
pact blocks and the FIBRE relay network are described here because they are used on the 
Bitcoin network, though a variety of other block transmission mechanisms have been pro-
posed (e.g., Xthin, Xthinner, Graphene, BlockTorrent, Falcon relay network, etc.). While 
important, these techniques have some limitations: 

• They rely on the assumption that nodes have relatively synchronized mempools and 
perform poorly when this is not the case. That is, if there are many transactions 
that are included in a block but have not propagated to all of the miners, the extra 
network round trips and bandwidth of transmitting those transactions will reduce the 
effectiveness of compact blocks and increase latency and orphan rates. As block sizes 
increase and expected block intervals decrease, more transactions will exist that have 
not propagated fully. 

116 



NIST IR 8460 ipd 
April 2023 

Fig. 23. Compact block message fow in which node A receives a block and sends it to node 
B. [239] 

4379 

4380 

4381 

4382 

4383 

4384 

4385 

4386 

4387 

4388 

4389 

4390 

4391 

4392 

4393 

4394 

4395 

4396 

4397 

4398 

4399 

• While they may reduce latency and bandwidth for nodes that are currently online, 
nodes that were offine for a period of time or are being booted up for the frst time 
must still download the complete block. Therefore, these techniques do not improve 
the performance of an initial synchronization and thus do not represent a complete 
scaling "solution." 

• An adversary who does not want their block quickly propagated to all of the miners 
may use these techniques solely for personal advantage by, for example, using com-
pact blocks to send blocks to a favored portion of the network and sending full blocks 
or nothing at all to a disfavored portion. 

The compact blocks technique involves transmitting only the 80-byte block header, short-
ened transaction identifers (txid) that are hardened to prevent denial-of-service attacks, the 
coinbase transaction, and a small selection of full transactions that the sending peer predicts 
the receiving peer may not have seen yet [239]. The receiving peer then tries to reconstruct 
the block themselves using the information provided and their own mempool and then re-
quests any missing transactions. There’s also a high-bandwidth mode where the receiving 
peer has a few of their peers send new blocks without asking frst, which increases band-
width (because the node may receive the block multiple times simultaneously) but reduces 
latency. The message fow can be seen in Figure 23. Typically, these can reduce what 
would have been a 1 MB block transmission to approximately 20 KB of data over the wire. 

The short txids are created by taking a SHA-256 hash of the block header and nonce, using 
the fast hashing algorithm SipHash on the txid and some of the output of the SHA-256 hash, 

117 



4400

4405

4410

4415

4420

4425

4430

4435

4401 

4402 

4403 

4404 

4406 

4407 

4408 

4409 

4411 

4412 

4413 

4414 

4416 

4417 

4418 

4419 

4421 

4422 

4423 

4424 

4426 

4427 

4428 

4429 

4431 

4432 

4433 

4434 

4436 

4437 

NIST IR 8460 ipd 
April 2023 

and removing the two most signifcant bytes of the result. The short txid is the remaining six 
bytes. Without this hashing procedure, it would be possible to create short txid collisions 
too easily, allowing attackers to prevent the scheme from working. While a 48-bit hash 
is not suffcient to prevent intentional collisions, the use of the block hash as a key to the 
hashing algorithm prevents an attacker from predicting the actual keys that will be used 
when the adversarially created transactions are included in a block. Additionally, peers 
have a 64-bit nonce that they share with each other and are unique per connection. These 
are mixed in to prevent even the block creator from controlling where collisions occur. The 
use of SHA-256 for this mixing is much slower than SipHash but is only performed once 
per block, so it does not add much overhead. 

Another way that block propagation has been sped up is with the use of FIBRE,1 

1https://bitcoinfbre.org/ 

which uses 
UDP instead of TCP and encodes (compact) blocks using forward error correction (FEC). 
TCP requires receiving the network packets that include the block in order, whereas UDP 
allows data to be consumed as fast as the network allows. FEC helps by better handling 
dropped packets. A FIBRE network is essentially an allowlist of miners who prioritize ex-
tremely low latency in block transmission. Because it consists of a curated or permissioned 
set of nodes, the network operator can theoretically perform censorship. However, anyone 
can set up a FIBRE network, so it is not conceptually dependent on a single centralized 
entity. Miners who utilize a relay network are substantially more likely to win in a block 
race than those who do not participate [240]. 

10.2.2. Majority Hash Rate Attacks (51% Attacks) 

For Nakamoto Consensus (and other pure proof-of-work consensus mechanisms), a secu-
rity assumption has been violated if the majority of the hash rate is malicious. An entity 
that controls the majority of the computational power deployed to the network has com-
plete control over the content of blocks and can thus double-spend or censor transactions 
with certainty given enough time. This does not give the adversary the ability to change 
the rules arbitrarily, but it does allow them to decide which subset of valid transactions are 
added to the ledger and in which order. 

One of the more unfortunate aspects of majority attacks is that they are largely self-funding. 
The majority attacker can replace any blocks created by honest miners with their own 
and thus claim 100% of the block rewards. Once an attacker acquires the majority of the 
computational power deployed on the network, incentive compatibility requires that the 
block rewards must be large relative to the benefts of attacking the chain. This condition 
is diffcult to maintain unless "(i) the mining technology used to run the blockchain is both 
scarce and non-repurposable, and (ii) any majority attack is a ’sabotage’ in that it causes a 
collapse in the economic value of the blockchain" [241]. Stated differently, to dissuade a 
majority attacker, the proofs of work and the hardware used to create them must be useless 
outside of the network in question, and an attack must cause a decrease in the purchasing 

118 

https://1https://bitcoinfibre.org


4440

4445

4450

4455

4460

4465

4470

4438 

4439 

4441 

4442 

4443 

4444 

4446 

4447 

4448 

4449 

4451 

4452 

4453 

4454 

4456 

4457 

4458 

4459 

4461 

4462 

4463 

4464 

4466 

4467 

4468 

4469 

4471 

4472 

4473 

4474 

NIST IR 8460 ipd 
April 2023 

power of the underlying asset. 

Part of the security argument against majority attacks is that a rational attacker is not going 
to harm the system that pays them. Of course, this does not hold in what is known as a 
Goldfnger attack – when an attacker expects to gain utility by causing the asset price to 
crash, perhaps because they have shorted the asset or are a central bank that fears currency 
competition. 

This rationality argument is also inapplicable if a temporary majority can be created by 
renting hash rate. This is easier when the diffculty is low, perhaps because the network 
is still young or when the proof-of-work algorithm is ASIC-resistant and does not require 
specialized hardware. One strategy for renting computational power would be to form a 
negative fee mining pool that would have higher payouts than honest pools, which entices 
otherwise honest miners to the attacker’s pool [242]. This is also possible using bribery 
via out-of-band payments, which require more trust, or whale transactions [243], which 
are high-value transactions intended to bribe miners onto a particular side of a fork. To 
create whale transactions, the attacker needs to frst move some money to an address in 
the frst block of their preferred fork so that spending from that address cannot happen on 
the other side of the fork. The attacker then creates a transaction with j outputs that are 
spendable by anyone but "timelocked" so that they can only be claimed in a series of j 
escalating blocks from the fork point. Miners who mine on this fork can then claim these 
bribes in the blocks they mine, but the bribes are never paid if the attacker’s fork does not 
take over. As an alternative to this anyone-can-spend output method, a stream of high-fee 
transactions could work but would be less effective than the timelocks. Larger miners are 
more likely to switch to the whale transaction branch than smaller miners because the fork 
is then more likely to succeed, and larger miners may collect a higher proportion of blocks 
on the forked chain. It is also possible to use smart contracts deployed on other systems in 
order to facilitate bribery attacks [244–247]. 

In an extension to the model in [241], the ability for 51% attack victims to retaliate with 
their own rented hash rate or whale transaction bribes – which appears to have occurred on 
the Bitcoin Gold blockchain in February 2020 – disincentivizes majority attacks in the frst 
place [248]. This result makes the relatively weak assumptions that the cost of the attacks 
and counterattacks increase over time and that the victim would suffer a cost in reputation 
for being the victim of a double-spending attack. This assumption is likely true for entities 
like cryptocurrency exchanges, which are also most likely to be the victims of majority 
attacks. However, this argument does not hold if the attacker is merely trying to censor 
transactions instead of double-spend. The simplest defense against censorship attacks is 
to have high transaction fees, which increases the opportunity cost of censorship to the 
attacker. 

119 



4475

4480

4485

4490

4495

4500

4505

4510

4476 

4477 

4478 

4479 

4481 

4482 

4483 

4484 

4486 

4487 

4488 

4489 

4491 

4492 

4493 

4494 

4496 

4497 

4498 

4499 

4501 

4502 

4503 

4504 

4506 

4507 

4508 

4509 

4511 

4512 

NIST IR 8460 ipd 
April 2023 

10.2.3. Hash Function Collisions 

If there were effcient ways to produce hash collisions, then proof of work would not be 
effective as a Sybil-resistance mechanism, and consensus would trivially fail. In addition, 
the hash references to previous blocks in the blockchain would no longer commit to the 
entirety of the chain up to that point and would fail to properly commit to the data in 
the blockchain itself. For example, an adversary capable of fnding hash collisions would 
be able to arbitrarily change the content of blocks at any point in the blockchain without 
actually breaking the chain itself and could thus arbitrarily manipulate the state of the 
system to their advantage. As a consequence, none of the data in the blockchain would be 
tamper-resistant or have any integrity, and it would be impossible for nodes to agree on the 
state of the system. 

10.3. (More) Attacks Against Nakamoto Consensus 

Even when the typical security assumptions for Nakamoto Consensus hold, there are still 
possible attacks against users of the system. In particular, attackers with less than half 
of the network’s hash rate can still attempt to double-spend or censor transactions. The 
Bitcoin white paper [1] considered double-spending with less than half the computational 
power assuming a fxed hash rate and constant diffculty, although the calculations were 
fawed and later corrected by Rosenfeld in [249]. The updated probabilities can be found 
in Figure 24. 

The frst step of the attack is to mine a block that includes a transaction in which the at-
tacker sends some of their funds to themselves. They withhold this block from the network 
and then broadcast a transaction that sends those same funds to a merchant. The merchant 
waits for k confrmations before giving the attacker whatever they purchased, and the at-
tacker continues mining on their secret branch of the chain during this time. If the attacker 
manages to build a longer chain, they broadcast it to the network, which then adopts that 
chain as the best one. This overwrites the transaction sending funds to the merchant, and 
the attacker can walk away with both their original funds and the goods they did not pay 
for. 

A piece of Bitcoin folk wisdom is that merchants should wait for six confrmations before 
accepting a transaction. This number was selected by bounding the risk of a double-spend 
to 0.1%, assuming that the attacker has amassed no more than 10% of the network’s hash 
power. However, these numbers are arbitrary, and as the attacker’s computational power 
gets closer to 50%, the number of required confrmations blows up toward infnity. On the 
other hand, small valued transactions are likely safe after just one or two confrmations. To 
be proftable (rather than just probable), the attacker should incorporate a stopping thresh-
old for when their private chain falls too far behind and success is unlikely [250]. 

The attack can also be run multiple times concurrently to steal from multiple merchants at 
once. This makes it harder for a merchant to calculate how long to wait based on the value 

120 



NIST IR 8460 ipd 
April 2023 

Fig. 24. Probability of successful double spend as a function of the attacker’s hash rate q and 
number of confrmations. These probabilities assume that the attacker has already mined and 
withheld a single block that includes the self-paying double-spend transaction. [249] 

4513 

4514 

4515 

4516 

4517 

4518 

4519 

4520 

4521 

4522 

4523 

4524 

4525 

4526 

4527 

4528 

4529 

4530 

4531 

of a transaction, and they may conservatively have to consider the value of an entire block. 
Further, an attacker with arbitrarily low hash rate can proftably implement a double-spend 
by combining it with selfsh mining. In this case, the attacker mines in secret for a double-
spend, but when it is unlikely that they will be able to reorg a suffcient number of blocks, 
they switch to selfsh mining and publish their secret blocks to get the block rewards. 

Sometimes, for small transactions, a merchant may accept a transaction without any con-
frmations (colloquially called "0-conf"), even though the protocol provides no security 
guarantees for these transactions even against adversaries that do not control any computa-
tional power. Assuming that most spenders are honest, this might be acceptable from a risk 
management perspective. However, when the attacker does control computational power, 
additional attacks are possible, including the Finney attack and vector76 attack. Both of 
these attacks can be generalized in order to attack merchants who require confrmations as 
well [251]. 

The Finney attack was proposed by cryptographer Hal Finney and starts with the attacker 
mining a block that contains a transaction sending their funds to another address that the 
attacker controls. Instead of broadcasting the block to the network, the attacker broadcasts a 
transaction from the original address to the merchant, collects the goods from the merchant, 
and fnally broadcasts the pre-mined block to double-spend [252]. The Finney attack can 
also be used when the merchant requires k confrmations before accepting a transaction. In 

121 



NIST IR 8460 ipd 
April 2023 

Fig. 25. Finney attack example. [251] 

4532 

4533 

4534 

4535 

4536 

4537 

4538 

4539 

4540 

4541 

4542 

4543 

4544 

4545 

4546 

4547 

4548 

4549 

4550 

4551 

4552 

4553 

4554 

4555 

4556 

4557 

4558 

4559 

4560 

4561 

4562 

this case, the adversary works on a secret chain that embeds the double-spend transaction, 
tx2, which conficts with the merchant transaction, tx1. The attacker attempts to create k+1 
blocks more than the honest miners but aborts if the honest miners ever get ahead of the 
attacker, potentially restarting at a later block in the chain. Once the attacker has a k + 1 
block lead, they broadcast tx1, wait for the honest miners to produce enough blocks for 
tx1 to have k confrmations, and then broadcast their private chain to overtake the network 
and reverse tx1. An example of a 1-conf generalized Finney attack appears in Figure 25. 
Importantly, if the attacker can choose when they want to submit a transaction, the pre-
mining stage can be attempted repeatedly until the attack can be executed with a near-
guarantee of success. 

The vector76 attack requires the adversary to have a direct connection to the victim [253]. 
The attacker mines a block that includes a transaction sending funds to the merchant but 
does not broadcast the block or the transaction to the rest of the network. The attacker then 
waits until another block is mined at the same height by the honest miners before sending 
the pre-mined block directly to the victim (hopefully before the victim sees the other block) 
and collecting the goods. Finally, the attacker broadcasts a conficting transaction that 
refunds themselves. The network adds this double-spend transaction to a block, and the 
original pre-mined attack block becomes stale. 

There is a generalized version of this attack that works against victims that do not relay 
blocks they have received, like light clients [251]. This is one reason why light clients 
are less secure than full nodes and why merchants using light clients should wait for more 
confrmations than they otherwise would. For example, say that a merchant only uses a light 
client for validation and requires k confrmations to accept a transaction. The attacker starts 
pre-mining a secret branch that includes a transaction to the merchant, tx1, in the frst block 
of their private chain. They continue mining on this branch until tx1 has k confrmations. 
If the attacker’s branch is longer than the honest branch, they show the merchant their 
pre-mined chain, collect the goods, and stop mining on the private branch. Finally, the 
attacker broadcasts a conficting transaction, tx2, to the network, which is unaware of the 
attack chain that is known only to the attacker and the merchant. Eventually, the honest 
network will build a longer branch than the private one that includes tx2, thus reversing 
tx1. Figure 26 shows an example of this attack executed against a merchant requiring two 

122 



NIST IR 8460 ipd 
April 2023 

Fig. 26. Vector76 attack example. [251] 

4563 

4564 

4565 

4566 

4567 

4568 

4569 

4570 

4571 

4572 

4573 

4574 

4575 

4576 

4577 

4578 

4579 

4580 

4581 

4582 

4583 

4584 

4585 

4586 

4587 

4588 

4589 

4590 

confrmations. 

So far, this section has only considered ways in which a minority hash rate attacker can 
double-spend against adversaries who require only a small number of confrmations. An 
adversary could also attempt to censor transactions via feather-forking [254]. In a feather-
forking attack, the miner with a minority of the hash rate commits to not mining on top 
of any chain that contains an address or transaction that they would like to censor, at least 
for several blocks. If the attacker makes it credibly known to other miners that they are 
following this policy, then other miners are less likely to include the address or transaction 
in question for fear that their block might be reorged. If the attacker is able to coax more 
than half of the total hash rate to censor, they have succeeded. 

11. More Proof-of-Work Protocols 

Nakamoto Consensus is the paradigmatic proof-of-work consensus algorithm, but many 
others have been proposed or implemented. This section begins by considering some more 
modest adjustments to Nakamoto Consensus. Most of these protocols attempt to address 
one of its primary faws: the degradation of security that occurs when block transmission 
latency is too high. Several also attempt to improve upon its low chain quality in order 
to resist selfsh mining attacks. The GHOST fork-choice rule is used to allow blocks to 
be produced more quickly and reduce the time until transaction settlement. FruitChains 
modify the blockchain structure in order to achieve better chain quality guarantees. 

Other protocols run Nakamoto Consensus over multiple separate blockchains in paral-
lel, which can substantially reduce the latency of transaction settlement. By giving these 
blockchains different roles, the Prism construction is able to increase throughput and im-
prove latency. Several protocols utilize DAGs instead of linear blockchains. These ap-
proaches address Nakamoto Consensus’s block transmission issue by largely doing away 
with the concept of stale blocks in the frst place and allowing all competing blocks to ulti-
mately be incorporated into the ledger. This comes with increased complexity in protocol 
design and analysis and, in some cases, only results in a partial rather than total ordering of 
transactions, making them unsuitable for generic smart contracts. 

123 



NIST IR 8460 ipd 
April 2023 

4591 

4592 

4593 

4594 

4595 

4596 

4597 

4598 

4599 

4600 

4601 

4602 

4603 

4604 

4605 

4606 

4607 

4608 

4609 

4610 

4611 

4612 

4613 

4614 

4615 

4616 

4617 

4618 

4619 

4620 

4621 

4622 

4623 

4624 

4625 

4626 

4627 

Finally, there are protocols that use proof of work as a Sybil-resistance mechanism to con-
trol who may participate in classical permissioned BFT consensus. These protocols allow 
responsive transaction commitment, where settlement occurs at the actual speed of network 
communication rather than based on the maximum network delay. This advantage comes 
at the cost of increased trust assumptions that are more in line with proof-of-stake protocols 
than the other proof-of-work ones discussed here. 

Note that many of the protocols presented in this section have a proof-of-stake "equivalent" 
or can be used as subprotocols in proof-of-stake systems. The security ramifcations would 
need to be considered in their respective environments, but the protocols are included here 
because they were originally proposed and analyzed in the proof-of-work context. This is 
the case for GHOST, FruitChains, Parallel Chains, and several of the DAG protocols. 

11.1. Nakamoto Consensus Protocol Adjustments 

Recall that the primary security challenge with Nakamoto Consensus relates to the network 
latency of block transmission (see Section 10.2.1). A variety of algorithms attempt to work 
around this limitation. 

11.1.1. Weak Blocks and Pre-Consensus 

Weak blocks are a way to slightly modify Nakamoto Consensus in order to help synchro-
nize mempools between miners. The idea is that there are two separate proof-of-work 
diffculty targets: the typical one for mining blocks and a substantially easier one for min-
ing weak blocks (analogous to mining pool shares). For example, the weak block diffculty 
may be set to 10

1 of the normal block diffculty such that, in expectation, there are 10 weak 
blocks found in between normal blocks. 

Like normal blocks, weak blocks carry transactions. This helps miners know which trans-
actions other miners have seen in the meantime. Essentially, blocks are transmitted piece 
by piece during the standard block interval rather than all at once in a burst when blocks 
are found. This helps minimize block propagation delays and allows for higher through-
put without increasing the risk of stale blocks. Weak blocks also allow "pre-consensus" 
on transactions that have yet to be confrmed, slightly increasing the security of accepting 
transactions with no confrmations. Weak blocks require additional overhead and are only 
effective if the majority of miners participate. Further, non-mining full nodes may not be 
incentivized to broadcast weak blocks because they use bandwidth but only beneft miners 
directly. 

Specifc weak block proposals include Subchains [255] and Flux [256]. The Subchains 
idea is merely an addition to Nakamoto Consensus, whereas Flux actually modifes the 
consensus algorithm. The Subchains protocol works as follows, starting from the point 
where a miner sees and accepts a regular block: 

1. The miner begins working on the next block, including a hash pointer to the block that 

124 



NIST IR 8460 ipd 
April 2023 

4628 

4629 

4630 

4631 

4632 

4633 

4634 

4635 

4636 

4637 

4638 

4639 

4640 

4641 

4642 

4643 

4644 

4645 

4646 

4647 

4648 

4649 

4650 

4651 

4652 

4653 

4654 

4655 

4656 

4657 

4658 

4659 

4660 

4661 

4662 

4663 

4664 

4665 

was just accepted, and fnds a proof-of-work that satisfes the weak block diffculty. 
The miner broadcasts this weak block to the network. 

2. Miners verify the weak block. If valid, miners adjust the coinbase transaction’s re-
ward to include the new transaction fees, add any new transactions to their block 
candidate that they desire, and compute a new Merkle root for the block header. 
They then continue looking for a valid nonce to fnd another proof of work. Denote 
the new coinbase transaction, the newly included transactions, the Merkle root, and 
the previous block hash as a ∆-block. 

3. When miners compute new proofs of work that create weak blocks, they broadcast 
only the ∆-block and the hash of the previous weak block. That is, miners essentially 
cooperate to build the next block incrementally by building a subchain. 

4. Eventually, a miner will fnd a regular block that satisfes the more diffcult target. 
When they do so, they broadcast only their ∆-block and the hash of the previous weak 
block. Note that this should require signifcantly less bandwidth than broadcasting a 
full block, thus improving latency. 

If there are multiple competing subchains, honest miners build on top of the longest sub-
chain that they are aware of. If conficting transactions exist, any transaction included in a 
subchain is prioritized over competing transactions that only exist in their mempool. 

Flux modifes the fork-choice rule to include the work from weak blocks in the total work 
when deciding which chain is "longest" so that a lengthy chain of weak blocks can reorg a 
normal block. Flux also changes the incentives to include revenue sharing among those who 
mine weak blocks. When building a subchain of weak blocks, miners must include the prior 
weak block miner addresses in their coinbase transaction in order to be considered valid, 
proportional to the number of weak blocks found. This revenue-sharing scheme reduces 
the variance of the mining reward and may reduce the proftability of selfsh mining. On 
the other hand, miners who have already created weak blocks in the subchain lose rewards 
when new weak blocks are added, so they may try to create forks in the subchain or not 
propagate other miners’ weak blocks. Additionally, once a long subchain exists, miners 
may no longer fnd it proftable to mine until the next regular block is found. 

11.1.2. Bitcoin-NG 

Bitcoin-NG ("next generation") was one of the earliest proposals for modifying Nakamoto 
Consensus to reduce block transmission latency [257]. The primary idea is to separate 
the leader election process from transaction serialization, which is achieved by having key 
blocks and microblocks. Key blocks are like normal Bitcoin blocks from a consensus per-
spective but do not include transactions and that specify a public key for the leader. Mi-
croblocks are produced between key blocks and contain transactions. Mining a key block 
makes the public key holder the leader of the next epoch, and they are entitled to mine 
microblocks at a fxed rate (microblocks do not require proof of work but rather are signed 

125 



NIST IR 8460 ipd 
April 2023 

4666 

4667 

4668 

4669 

4670 

4671 

4672 

4673 

4674 

4675 

4676 

4677 

4678 

4679 

4680 

4681 

4682 

4683 

4684 

4685 

4686 

4687 

4688 

4689 

4690 

4691 

4692 

4693 

4694 

4695 

4696 

4697 

4698 

4699 

4700 

4701 

4702 

4703 

by the specifed public key). Bitcoin-NG uses the longest chain rule for the chain of key 
blocks but changes the incentives: the block subsidy goes to whomever fnds the key block, 
but transaction fees are split so that 40% goes to the leader (and thus microblock producer) 
and 60% goes to the miner who fnds the next key block. 

Microblocks do not include a proof of work, so a malicious leader can split the chain (of 
microblocks) for free. To prevent this, Bitcoin-NG uses poison transactions to invalidate 
the rewards of malicious leaders. Poison transactions include the header of the frst mi-
croblock of a conficting fork to prove that fraud has occurred. This special transaction can 
be included in any key block during the coinbase maturity window of the malicious leader’s 
key block and rewards the leader who includes it with a fraction of the forfeited funds. 

Because key blocks do not include transactions, they are small and should propagate through 
the network quickly, so increasing transaction throughput does not increase the risk of a key 
block becoming stale. However, there are a number of trade-offs, including making SPV 
light clients impractical, eliminating the ability of individual miners to choose which trans-
actions are in a block (only mining pool leaders can do so), and potentially encouraging 
denial-of-service attacks against leaders by revealing their identity before they have pro-
duced microblocks. 

Several works have revisited Bitcoin-NG’s incentives [258, 259]. In [258], it is shown that 
the reward split should provide only 11

3 of the reward to the leader instead of 40% because 
the original analysis ignored the possibility that a miner in one epoch also gets the key 
block for the next epoch. Several additional selfsh mining-related attacks are shown in 
[259], and the microblock architecture increases the proftability of selfsh mining when 
the attacker has more than 35% of the network’s hash rate. 

11.1.3. Tie-Breaking Schemes 

When multiple blocks are mined simultaneously, miners must decide which block to mine 
on top of. In Bitcoin, nodes accept the frst block they see until one side of the fork has 
more work than the other. In Ethereum and Bitcoin-NG, nodes choose uniformly at random 
which side of the fork to prefer (UTB). In the following sections, additional schemes called 
DECOR+ and Publish or Perish (PoP) suggest other tie-breaking methods (DECOR+ is 
discussed in more detail in Section 11.1.4, and PoP is detailed in Section 11.1.5). An early 
DECOR+ proposal broke ties using the chain tip with the smallest hash (SHTB) [260]. The 
updated DECOR+ uses an unpredictable deterministic tie-breaking scheme (UDTB) where 
the winner is chosen based on a pseudorandom function taking all competing blocks as 
inputs [261]. PoP compares chain "weights," and blocks published after their competitors 
do not contribute weight, while blocks that incorporate links to their parents’ competitors 
have higher weights. Thus, blocks that are kept secret until competing blocks are published 
will contribute to neither or both branches and thus confer no advantage in winning the 
block race [262]. 

126 



NIST IR 8460 ipd 
April 2023 

4704 

4705 

4706 

4707 

4708 

4709 

4710 

4711 

4712 

4713 

4714 

4715 

4716 

4717 

4718 

4719 

4720 

4721 

4722 

4723 

4724 

4725 

4726 

4727 

4728 

4729 

4730 

4731 

4732 

4733 

4734 

4735 

4736 

4737 

4738 

4739 

4740 

4741 

4742 

4743 

Each of these choices has its own security ramifcations, particularly with respect to self-
ish mining resistance (see Section 9.4 for background). By accepting the frst seen block, 
Bitcoin allows the honest computational power to become split such that suffciently well-
connected adversaries can selfsh mine proftably at arbitrarily low hash rates. However, if 
the attacker is not well-placed on the network, it is the tie-breaking method most resistant 
to selfsh mining. UTB and UDTB have nearly identical resistance to selfsh mining, and 
neither outperforms Nakamoto Consensus when γ ≤ 0.5. By not taking into account the 
time that a block was received, both UTB and UDTB allow an attacker who mines "from 
behind" to still win the block race with a tie [263]. SHTB has the lowest chain quality 
of all because a miner who fnds a block with a particularly low hash can continue self-
ish mining privately and feel confdent that they will win block races when they occur, so 
they can strategically deviate when the odds are in the attacker’s favor. SHTB also suffers 
from the same mining from behind issue as UTB and UDTB. When γ = 0, none of these 
protocols have better chain quality than Nakamoto Consensus for α < 0.39. However, PoP 
begins to outperform Nakamoto Consensus when α ≥ 0.4 [263]. The poor chain quality 
of Nakamoto Consensus and these other tie-breaking variants is caused by an informa-
tion asymmetry, where the attacker has more information than the honest miners regarding 
network connectivity [263]. 

11.1.4. DECOR+ 

DECOR+ (deterministic confict resolution) is a revenue-sharing mechanism intended to 
incentivize miners to converge on the same block during block races [260, 261]. It tries 
to share the reward among all miners who mined a block at the same height (uncles) in 
order to allow faster block production. DECOR+ was designed such that if all nodes have 
access to the same blockchain state, any conficts will be quickly resolved in a deterministic 
fashion that is incentive-compatible for miners [260]. This prevents honest miners from 
splitting their hash rate between two forks for long. Originally, it was supposed to break 
ties using the block with the highest fees and then the smallest hash if fees were tied, but 
fees are gameable by miners (e.g., they can include their own transactions with arbitrary 
fees paid to themselves, and users can also pay fees to miners out-of-band). In [261], a 
different selection function was proposed: hash all block headers and then take the XOR-
sum, modulo the number of competing blocks. This way, the miner cannot compute their 
block in a way that gives them a higher chance of winning. 

A number of possible reward functions were described in [261], each of which accounts 
for uncle blocks in order to incentivize the inclusion of uncle references in blocks. To 
bound the maximum money supply, the reward function can bound the number of uncles 
for which a reward is provided. For instance, the reward function may put the L competing 
block headers in order by block hash and reward the N lowest ones. There can also be a 
punishment fee if a miner does not follow the deterministic selection function. For example, 
let X be the deterministically selected block, Z the block selected by the miner, Y the mined 
block, r the total block reward, i the inclusion reward per uncle, and p the punishment fee. 

127 



r r 
[ri1 , · · · ,riN ,riN+1 , · · · ,riN+L ,RY ] := [ , · · · , ,0, ...,0,rY + iN] (4)

N + 1 N + 1 

NIST IR 8460 ipd 
April 2023 

r(1−p) r 
4744 

4745 

4746 

4747 

4748 

4749 

4750 

4751 

4752 

4753 

4754 

4755 

4756 

4757 

4758 

4759 

4760 

4761 

4762 

4763 

4764 

4765 

4766 

4767 

4768 

4769 

4770 

4771 

4772 

4773 

4774 

4775 

4776 

4777 

If X ≠ Z, let ry = . Otherwise, let ry = N+1 . Then the reward array is:. N+1 

By punishing miners who deviate from the deterministic block of choice, DECOR+ is more 
resistant to selfsh mining and double-spending but at the cost of being more susceptible 
to feather-forking censorship [263]. This is because a malicious miner has an easier time 
decreasing the income of honest miners. 

11.1.5. Publish or Perish 

Publish or Perish (PoP) was proposed as a defense against selfsh mining and makes it so 
that withholding blocks does not provide a miner with an advantage in winning block races 
[262]. In this scheme, a node will consider a block in time if the height of the block is larger 
than the node’s local best chain height or if its height matches the local best chain height 
and is received within a bounded length of time (corresponding to a typical network delay) 
from seeing the frst block of that height. PoP uses a nonstandard defnition of "uncle" 
blocks, where an "uncle" must be in time, and the height of a block’s "uncle" must be one 
less than the height of the block. Miners are encouraged to include references to these 
"uncles" in the blocks that they mine. 

The fork-choice rule nodes follow in PoP uses the weight of a chain, which is the number 
of in-time blocks plus the number of in-time "uncles" referenced in the in-time blocks. It 
also uses a security parameter k (where k = 3 is suggested by the authors), which manages 
a trade-off between selfsh mining resistance and the ability of nodes to quickly recover 
from network partitions. Specifcally, when a block race occurs, the fork-choice rule is as 
follows: 

1. If one chain is longer than another by at least k blocks, then follow the longest chain. 

2. If the difference is less than k blocks, then follow the chain with the most weight. 

3. If chains are tied for highest weight, then follow a random one. 

If a selfsh miner withholds a block and keeps it secret until after a competing block has 
already been published, then the selfsh miner’s block will not contribute to the weight of 
the attacker’s chain. Alternatively, if the attacker’s block is published around the same time 
as the competing honest block, then the next honest block that is produced can include an 
"uncle" reference to the previously secret block, which increases the weight of the honest 
chain. In either case, the selfsh miner does not gain an advantage in the block race by 
withholding. Because of the trade-off between selfsh mining resistance and tolerating 
network partitions, merchants in a system that uses the PoP fork-choice rule may want 
to wait at least k blocks before considering a transaction of non-trivial value suffciently 
confrmed. 

128 



NIST IR 8460 ipd 
April 2023 

(a) NC-Max proposal window (b) Block propagation in NC vs. NC-Max 

Fig. 27. NC-Max block propagation mechanism. Panel (a) shows the NC-Max proposal 
window with w f ar = 4 and wclose = 2. If a transaction is proposed in block U and committed in 
B, the transaction fee goes to the miner of block N. Panel (b) shows how compact blocks can 
propagate more quickly using NC-Max compared to Nakamoto Consensus. [264, 265] 

4778 

4779 

4780 

4781 

4782 

4783 

4784 

4785 

4786 

4787 

4788 

4789 

4790 

4791 

4792 

4793 

4794 

4795 

4796 

4797 

4798 

4799 

4800 

4801 

4802 

4803 

11.1.6. NC-Max 

NC-Max attempts to remove the latency-related scalability bottleneck of Nakamoto Con-
sensus by separating transaction synchronization from transaction confrmation [264, 265]. 
It builds off of the compact blocks idea (see Section 10.2.1) and attempts to work around 
the issue of requiring more round-trip communication to handle transactions that have not 
propagated through the network when blocks are found. It does so via a two-step process 
of transaction proposal and transaction commitment. 

In NC-Max, miners include references to uncle blocks (stale blocks in the same diffculty 
epoch) within the blocks that they fnd. The part of the block that contains transactions 
is called the transaction commitment zone. Each block also has a transaction proposal 
zone that includes txpids, or the frst few bytes of the transaction ID, and a transaction is 
considered proposed if it is included here (or if it was proposed in an uncle block that was 
referenced). The transactions referenced in the transaction proposal zone need not be valid 
transactions for the block itself to be valid. A new validity rule is added for transactions in 
the commitment zone at height h: it must have been proposed during the proposal window 
in a block of height h − w f ar to h − wclose. An example is shown in Figure 27a. Note that 
the coinbase transaction is excluded from this mechanism. 

Nodes forward compact blocks that include the transactions in the proposal zone to their 
peers once they themselves have reconstructed the commitment zone. They should have all 
of these transactions after receiving the blocks in the proposal window. In the meantime, 
the node requests any proposed transactions they have not yet seen from their peers. As 
a result, the extra round-trips required to receive these transactions do not impact block 
propagation time. A comparison of compact block propagation in Nakamoto Consensus 
and NC-Max is in Figure 27b. 

NC-Max also adjusts the reward distribution and the diffculty adjustment algorithm. When 
a transaction is committed, the fee is split 70%-30% between the miner who commits it and 

129 



NIST IR 8460 ipd 
April 2023 

Fig. 28. GHOST fork choice rule, assuming all blocks have the same difculty. An attacker 
chain would overtake the "longest" chain but not the GHOST chain, which consists of blocks 
0, 1B, 2C, 3D, and 4B. In this example, the subtree that begins at block 1B has 12 blocks, 
whereas its competitor at 1A only has six. The subtree of block 2D has four blocks, for 2C has 
fve blocks, and for 2B has only two blocks. The subtree beginning at block 3D has two blocks, 
as opposed to only one block for 3E and 3C. Every block added to the subtree of block 1B, 
regardless of block height, contributes to the security of block 1B. [266] 

4804 

4805 

4806 

4807 

4808 

4809 

4810 

4811 

4812 

4813 

4814 

4815 

4816 

4817 

4818 

4819 

4820 

4821 

4822 

4823 

4824 

the miner who proposes it [265]. Uncle miners do not collect any reward. The details of 
the diffculty adjustment are out of scope for this document but take into account the uncle 
blocks from the prior epoch in order to target a pre-specifed stale block rate. 

11.2. Greedy Heaviest-Observed Sub-Tree (GHOST) 

One of the earliest proposed fork-choice rules aside from the longest chain rule was GHOST, 
a variant of which was later used in the Ethereum network [266]. It allows the expected 
block interval to be much shorter than Nakamoto Consensus because the proofs of work 
used for stale blocks are counted when deciding which chain is canonical. In other words, 
blocks that do not make it into the main blockchain still contribute to the total work for the 
chain. Contrast this with Nakamoto Consensus, where stale blocks contribute nothing to 
the security of the chain. 

In a GHOST blockchain, blocks contain an extra feld that is used to reference uncle blocks. 
This creates a DAG of blocks and block references but still only chooses a linear chain of 
blocks by using the information contained in the DAG. When a fork exists, the GHOST 
algorithm greedily selects the heaviest subtree of blocks that begin from any fork point, 
starting from the genesis block. See Figure 28 for an example of the GHOST fork-choice 
rule. As one may infer from the example, GHOST leads to a small weakening in the chain 
growth property compared to Nakamoto Consensus, but this does not adversely impact the 
security of the chain. 

GHOST has been proven secure in a synchronous network with constant diffculty and 
has superior liveness (when not under attack) though worse chain quality compared to 

130 



4825

4830

4835

4840

4845

4850

4855

4860

4826 

4827 

4828 

4829 

4831 

4832 

4833 

4834 

4836 

4837 

4838 

4839 

4841 

4842 

4843 

4844 

4846 

4847 

4848 

4849 

4851 

4852 

4853 

4854 

4856 

4857 

4858 

4859 

4861 

4862 

4863 

NIST IR 8460 ipd 
April 2023 

Nakamoto Consensus [267]. The consistency property of GHOST was also proven in 
[230], but contrary to many peoples’ expectations, it has the same consistency bounds 
as Nakamoto Consensus. Therefore, GHOST is unable to handle a signifcantly higher 
throughput with the same security from a consistency perspective. It will degrade in secu-
rity just as Nakamoto Consensus does (though it can still tolerate shorter block intervals). 

GHOST’s liveness can suffer due to an attack that requires less than half of the network’s 
computational power [230]. The adversary attempts to maintain forks for as long as possi-
ble and thus delay transaction confrmation. When a fork occurs, the adversary attempts to 
keep both subtrees balanced by using their computational power on whichever side of the 
fork requires it. When the block interval is low compared to block propagation time, [230] 
showed that forks can be maintained for 10 or more blocks with non-negligible probabil-
ity. GHOST is more susceptible to this attack because blocks mined by the adversary can 
be withheld from the network for longer than they can in Nakamoto Consensus and still 
contribute to the subtree as uncle blocks. 

Due to its use in Ethereum, GHOST has been subject to more real-world testing than any 
fork-choice rule other than the longest chain rule of Nakamoto Consensus. However, be-
cause it is not as simple of a rule, it makes other aspects of the system – such as incen-
tivization and the choice of diffculty adjustment algorithm – more complicated and less 
well-studied. This can lead to security issues. For instance, Ethereum’s variant of GHOST 
provides incentives for miners of uncle blocks, and an old version of the protocol allowed 
a strategy that would create undesirable infation and allowed greedy miners to gain at the 
expense of coin-holders [268]. This issue resulted in a change to Ethereum’s diffculty ad-
justment algorithm. Additionally, GHOST with uncle rewards is more susceptible to selfsh 
mining than Nakamoto Consensus [210–212]. As α increases, the revenue of both selfsh 
and honest miners increases due to uncle rewards, which may lead to greater infation of 
the supply of ether. Rewarding uncle blocks may also encourage block withholding and 
fork-after-withholding attacks [269, 270]. 

11.3. FruitChains 

Unlike GHOST, which reduces chain quality, the FruitChains protocol was designed in or-
der to improve chain quality and reduce the effcacy of selfsh mining [271]. Specifcally, 
FruitChains are δ -approximately fair: any honest miners that control a φ fraction of com-
putational power are guaranteed (with high probability) to get at least a (1 − δ )φ -fraction 
of the rewards in any Ω(κ

δ ) length portion of the chain, with κ as a security parameter. This 
prevents any adversarial minority of the hash rate from improving their revenue more than 
a factor of (1 + 3δ ) compared to honest mining. 

The FruitChains protocol has miners simultaneously mine normal blocks as well as fruits, 
which have a lower diffculty. As with Nakamoto Consensus, miners follow the chain of 
blocks with the most work. However, unlike Nakamoto Consensus, blocks contain fruits 
instead of transactions, and the fruits are where transactions are recorded. A fruit must be 

131 



NIST IR 8460 ipd 
April 2023 

Fig. 29. FruitChains architecture. Assume the recency parameter T0 = 3. In this case, fruits F3 
and F4 are valid fruits included in block B4, because they point to only the two most recent 
blocks. Fruit F1 could not be included in block B4, because it isn’t sufciently recent. Fruit F2 
also cannot be included, because it points to a stale block. 

4864 

4865 

4866 

4867 

4868 

4869 

4870 

4871 

4872 

4873 

4874 

4875 

4876 

4877 

4878 

4879 

4880 

4881 

4882 

4883 

4884 

4885 

4886 

4887 

4888 

suffciently "recent" to count; that is, it must include a reference to a block not too far in 
the past from the block that contains the fruit (say, within T0 blocks). This prevents fruits 
mined long in the past from being included. It also prevents fruit-withholding attacks, 
where the attacker builds up a bank of fruits and then mines them all into the chain in 
a short period of time, causing a large fraction of fruits to be adversarial. To construct 
a linearized log of transactions, an ordered sequence of distinct fruits must be extracted 
from the chain, including only the frst fruit if duplicates exist. Then the transactions are 
extracted in order from this chain of fruits, also removing duplicates as needed. The block 
reward and transaction fees for a block are evenly distributed to the miners of a constant-
length number of blocks preceding the block in question. The FruitChains architecture is 
shown in Figure 29. 

The simultaneous mining of fruits and blocks utilizes a "2-for-1" proof-of-work technique 
described in [9], which allows a singe random oracle H() to operate as two independent 
oracles, H0() and H1(). In other words, miners can attempt to compute proofs of work 
for two different schemes for the cost of one oracle query without the ability to use their 
compute power to favor one process over the other. An example would be to use the m 
most signifcant bits of the hash function’s output for one scheme (e.g., mining blocks) and 
the n least signifcant bits for another (mining fruits). 

A detailed security analysis of FruitChains was provided in [263]. In FruitChains, mining 
a block provides no direct reward (except a share of the rewards from future blocks), which 
has signifcant security implications. For example, a selfsh miner has no incentive to pub-
lish blocks when neither the secret chain nor the honest chain have reached T0 blocks since 
the fork point – the attacker’s fruits that were mined before the T0-th block – will also ap-
pear in the honest chain. If the attacker is able to win a block race of at least T0 blocks, they 
can invalidate all honest fruits, so double-spending is more proftable against FruitChains 

132 



NIST IR 8460 ipd 
April 2023 

4889 

4890 

4891 

4892 

4893 

4894 

4895 

4896 

4897 

4898 

4899 

4900 

4901 

4902 

4903 

4904 

4905 

4906 

4907 

4908 

4909 

4910 

4911 

4912 

4913 

4914 

4915 

4916 

4917 

4918 

4919 

4920 

4921 

4922 

4923 

4924 

4925 

4926 

than against Nakamoto Consensus. Increasing T0 makes this more challenging and reduces 
the incentive to selfsh mine, but the safe transaction confrmation delay increases linearly 
with T0. By making fruit mining increasingly less diffcult compared to block mining (a 
larger fruit-to-block ratio), selfsh mining becomes less proftable but at the expense of 
having more repeated transactions and fruits that need to be removed from the ledger, thus 
wasting bandwidth. On the positive side, FruitChains are more censorship-resistant than 
Nakamoto Consensus because the attacker would need to overwrite T0 blocks to invalidate 
honest fruit. 

11.4. Parallel Chain Approaches 

One way to reduce the latency of transaction settlement is to run multiple blockchains 
in parallel and then use some procedure to combine the contents of the separate chains 
[272, 273]. To that end, [272] generalizes the "2-for-1" mining technique of [9] (and 
described in Section 11.3) into an m-for-1 mining scheme. Then, given an underlying 
blockchain protocol, the technique can be used to execute m instances of it in parallel while 
the same mining operation is used across all m instances without allowing a deviant miner 
to focus their computational power onto a particular chain. A generic technique for then de-
terministically combining these m (nearly) independent ledgers into a single virtual ledger 
was described in [273]. Care must be taken when handling the design of the diffculty ad-
justment algorithm for schemes that employ parallel chains because naive adaptations of 
common DAAs are insecure in this context [274]. 

Nakamoto Consensus has relatively high transaction settlement latency due to the need to 
wait for enough blocks to confrm a transaction and stabilize an agreed-upon chain prefx, 
where the possibility of a common prefx violation decreases exponentially in the num-
ber of blocks. This settlement latency is directly related to and limited by the latency of 
block propagation on the underlying network. By combining m ledgers like this in paral-
lel, settlement time can be reduced by up to a Θ(m) multiplicative factor when including a 
transaction in each ledger. This is done by using a ranking algorithm for each underlying 
ledger and then combining these ranks by an exponential sum of the ranks of the transaction 
from each individual chain. This allows for a trade-off between transaction fees and set-
tlement time: clients can issue a transaction on a single ledger and pay one transaction fee 
with settlement times roughly on par with the settlement time of the underlying blockchain 
or alternatively pay up to m transaction fees to achieve the multiplicative Θ(m) reduction 
in settlement time. 

The details of how this ranking and combining are performed are beyond the scope of 
this document, but roughly, the ranking for a blockchain using Nakamoto Consensus could 
be the timestamp embedded in the block that contains the transaction in question. The 
combined rank is then essentially an average of the ranks in the individual blockchains, 
which amplifes the exponential rate at which transactions are settled: 

133 



m 
− combinedrank(tx) 1 − ranki(tx) 

e L = ∗ ∑ e L , (5)
m 

NIST IR 8460 ipd 
April 2023 

i=1 

4927 

4928 

4929 

4930 

4931 

4932 

4933 

4934 

4935 

4936 

4937 

4938 

4939 

4940 

4941 

4942 

4943 

4944 

4945 

4946 

4947 

4948 

4949 

4950 

4951 

4952 

4953 

4954 

4955 

4956 

4957 

4958 

4959 

4960 

4961 

where L is a parameter that is proportional to the security parameter of the system. 

The following subsection presents the Prism algorithm, which is a concrete instantiation of 
a parallel chains approach rather than the abstract and generic one presented here. 

11.4.1. Prism 

Unlike the generic parallel chains construction discussed above, Prism optimizes through-
put in addition to latency [275, 276]. It is capable of achieving optimal throughput by 
taking advantage of the network’s full communication bandwidth and near-optimal trans-
action settlement latency of approximately the network propagation delay. 

In a longest chain protocol, blocks perform several functions: they elect leaders, add trans-
actions into the ledger, and vote for their ancestor blocks via parent link relationships. 
Prism separates these roles by using three separate types of blocks: proposer blocks for 
leader election, transaction blocks for transaction inclusion, and voter blocks to confrm 
transactions. Whenever a block is mined, it is randomly sortitioned into one of the three 
types of blocks and, if it is a voter block, further sortitioned into one of m voter chains 
(m = 1000 is suggested). This sortition process ensures that miners are unable to choose 
which type of block they mine. Rather, they simultaneously mine for each chain and only 
learn the type of the mined block after a valid proof of work is found. Proposer blocks 
contain a list of references to transaction blocks, as well as a single reference to a par-
ent proposer block. As with Nakamoto Consensus, honest miners will mine on top of the 
longest proposer chain they are aware of. However, it is the voter chains that determine the 
fnal sequencing of proposer blocks (and thus elected leaders). 

Defne the level of a proposer block as its distance from the genesis block of the proposer 
chain and the height of the proposer chain as the maximum level containing any proposer 
blocks. Voter blocks include a reference to a proposer block in order to cast a vote on it that 
is subject to two requirements: 1) the voter block is in the longest chain of its respective 
voter tree, and 2) each voter chain votes for exactly one proposer block at each level. The 
leader sequence, then, is the proposer block at each level with the highest number of votes 
among all proposer blocks at that level with ties broken by the smallest hash of the proposer 
blocks. With the proposer blocks ordered, their references to transaction blocks create 
an agreed-upon ordering of transaction blocks and thus transactions. The ordered list of 
transactions must then be sanitized in order to remove invalid or duplicate transactions. 
See Figure 30 for Prism’s structure. 

Ultimately, the security of the system is provided by the voter trees that give confrma-
tions/votes to the proposer blocks. Changing an elected leader requires reversing a suff-
cient number of voter blocks, and each vote is secured by following the longest chain rule 

134 



NIST IR 8460 ipd 
April 2023 

Fig. 30. Prism structure. [276] 

4962 

4963 

4964 

4965 

4966 

4967 

4968 

4969 

4970 

4971 

4972 

4973 

4974 

4975 

4976 

4977 

4978 

4979 

4980 

4981 

4982 

4983 

4984 

4985 

4986 

4987 

4988 

in its voter tree. Due to the large number of voter chains and the global hash rate being split 
among them, it is possible to minimize the amount of forking in each voter chain. So long 
as the voter chains are secure, the proposer chain will be secure as well. As with the more 
abstract parallel chain protocol above, the existence of many voter chains substantially im-
proves the latency of the transaction settlement. 

Prism has security proofs in synchronous networks in a couple of different models [277, 
278], and it can be made capable of handling smart contracts [279]. On the other hand, the 
protocol as described does not have a clear way of supporting light clients, which would be 
especially important for a protocol designed to maximize throughput. More research must 
also be performed to develop a suitable incentive system for Prism. 

11.5. Proof-of-Work DAGs 

One of the more common design decisions in the distributed ledger space is to utilize DAGs 
rather than singularly linked blockchains. The primary motivation – as with most of the pro-
tocols described above – is to increase the transaction throughput of the system by reducing 
the negative security ramifcations of block propagation latency. DAG-based ledgers are 
similar to GHOST (Section 11.2) in that blocks incorporate references to more than one 
previous block but go further by including those blocks directly into the ledger rather than 
merely using them as input to determine a particular chain to follow. While not a perfect 
analogy, each block produced acts as a confrmation for all prior blocks it references rather 
than just one. As a result of this architectural change, blocks can be produced dramatically 
more frequently, which allows miners to maintain eventual consistency with incomplete 
information about the state of the DAG. 

On the other hand, it also complicates the design and analysis of these systems. For ex-
ample, [280] investigates the fairness (i.e., whether a miner’s rewards are proportional to 
their hash power) and effciency (i.e., the fraction of transactions broadcast to the network 
that are included in the ledger after a certain period of time) of some DAG-based protocols. 
They found that – unlike Nakamoto Consensus – several DAG-based protocols lack fair-

135 



NIST IR 8460 ipd 
April 2023 

4989 ness even when all miners are honest because fairness is inherently limited by the number of 
4990 block pointers that can be included in a given block. Both fairness and effciency may break 
4991 down when miners have varying connectivity to the network, and perversely, large miners 
4992 may beneft from having reduced connectivity. While DAG-based schemes are promising, 
4993 extreme care must be taken to ensure that they can remain secure and incentive-compatible 
4994 in the real world. 

4995 11.5.1. Inclusive Blockchains and Confux 

4996 One of the early proposals for a DAG-based ledger was the Inclusive protocol [281], a vari-
4997 ant of which was later employed in the Confux system [282, 283]. Inclusive was designed 
4998 to tolerate larger and more frequent blocks to enable higher throughput without penalizing 
4999 miners who are poorly connected to the network. The protocol is called Inclusive because 
5000 it includes transactions from all blocks in the DAG into the fnal ledger. Unlike some other 
5001 DAG protocols, Inclusive creates only a single main chain, but that chain incorporates 
5002 transactions from blocks that are not ultimately accepted into the main chain. In an Inclu-
5003 sive protocol, miners include a reference to every chain tip that they are aware of in their 
5004 own blocks rather than just one. The DAG formed by these blocks and references allows 
5005 the "simulation" of any chain selection rule, including the longest chain rule and GHOST. 
5006 The frst listed reference should be for the block that would be the preferred chain tip based 
5007 on the system’s chain selection rule. 

5008 The algorithm performs a postorder traversal of the block DAG while incorporating valid 
5009 transactions from off the main chain into the linearized ledger of accepted transactions. For 
5010 a canonical chain C = B1,B2, ...,BL of blocks Bi, the Inclusive rule will place all the blocks 
5011 of the system in a particular order, including those outside of C. Let past(B) be the set of 
5012 blocks reachable from B in the DAG. The ordering operates as follows: for Bi ∈ C, insert 
5013 before Bi all blocks in the set past(Bi) \ past(Bi−1). The included set of blocks are sorted 
5014 topologically with ties broken in favor of the lowest block hash. When blocks are ordered 
5015 this way, some invalid or duplicate transactions will exist, which are then removed from 
5016 the ledger of transactions. 

5017 Fees are given to the miner of the block that a transaction is included in, even if the block 
5018 is not in the canonical chain. Say a miner mines a block B, and let T (B) be the set of 
5019 transactions included in the ledger from block B. Depending on the block’s location in the 
5020 DAG (specifcally, how quickly the block is referenced by a canonical chain block), the 
5021 block producer may only get a fraction of the total fees included in T (B). 

5022 Let be f ore(B) be the latest block from the main chain that is reachable from B and a f ter(B) 
5023 the earliest block from the main chain from which B can be reached. If a f ter(B) does not 
5024 exist, it is considered a "virtual block" with height infnity, representing the location of 
5025 the next block that a miner with the same view of the ledger would produce. When B 
5026 is in the canonical chain, be f ore(B) = a f ter(B) = B. Let gap(B) := a f ter(B).height − 
5027 be f ore(B).height describe the delay in a block’s publication with respect to the canonical 

136 



If 3 < gap(B) < 10, the miner collects ∗ tx∈T (B) f ee(tx).7 

NIST IR 8460 ipd 
April 2023 

5028 

5029 

5030 

5031 

5032 

5033 

5034 

5035 

5036 

5037 

5038 

5039 

5040 

5041 

5042 

5043 

5044 

5045 

5046 

5047 

5048 

5049 

5050 

5051 

5052 

5053 

5054 

5055 

5056 

5057 

5058 

5059 

5060 

5061 

5062 

5063 

5064 

5065 

chain. The fraction of the fees collected by the miner of B will be a weakly decreasing 
function of gap(B). Main chain blocks, as well as blocks that are relatively synchronized 
with the main chain, receive the full reward. As gap(B) increases, the fraction of the fees 
that the miner collects decreases until a certain cutoff point where they no longer receive 
a reward. For example, the reward function may work as follows, where f ee(tx) is the 
transaction fee for transaction tx: 

• If 0 ≤ gap(B) ≤ 3, the miner collects the full reward, Σtx∈T (B) f ee(tx). 

• 10−gap(B) 
Σ

• If gap(B) ≥ 10, the miner gets nothing. 

This type of fractional fee scheme has security trade-offs. Providing fees for off-chain 
blocks is what allows poorly connected and smaller miners to continue receiving signif-
cant enough rewards instead of being competed out of existence by larger miners. However, 
to the extent that miners of off-chain blocks receive rewards, malicious behaviors are en-
couraged. An attacker who tries and fails to double-spend still receives some revenue from 
their off-chain blocks, and thus the attack is subsidized. As a result, double-spending is eas-
ier in Inclusive than it is in, say, Nakamoto Consensus and thus requires waiting for more 
confrmations for the same level of security. In addition, Inclusive provides no defense 
against selfsh mining. 

The authors of [281] argue that under a number of game theoretic models, miners will at-
tempt to include transactions that minimize collisions with other blocks rather than merely 
include those with the highest fees. The higher performance of Inclusive stems from 
this collision-avoiding transaction selection policy because collisions waste bandwidth and 
other resources. Unfortunately, this may make miners less likely to broadcast transactions 
with high fees to the network because they would prefer to keep those fees to themselves 
without risking collisions. 

The Confux protocol is distinct from Inclusive but highly related [282, 283]. The primary 
difference is that Confux blocks include two distinct types of references to other chain 
tips instead of treating all references equally, as Inclusive does. By distinguishing between 
parent edges and reference edges, Confux’s safety follows more directly from the safety 
of the GHOST fork-choice rule that it employs (see Section 11.2 to review this rule). In 
Confux, the parent edges act as votes on the proper chain history, whereas reference edges 
demonstrate only that the referenced blocks were produced before the block that referenced 
them. When a miner mines a block, it sets the parent edge to be the chain tip that follows 
GHOST, and the sequence of parent edges create a canonical chain called the pivot chain. 
In other words, miners compute the pivot chain based on GHOST, then set the tip of the 
pivot chain as their parent edge, and any other chain tip off of the pivot chain is set as a 
reference edge. Each pivot chain block establishes a new epoch, where an epoch contains 
every block in the DAG that is reachable from the pivot chain block and is not in a prior 

137 



NIST IR 8460 ipd 
April 2023 

Fig. 31. Example of local Confux DAG state. The pivot chain is composed of the yellow 
blocks, which are used to partition the DAG into epochs. The block total order is: Genesis, A, 
B, C, D, F, E, G, J, I, H, and K. The transaction total order is: T x0, T x1, T x2, T x4, with T x3 
and a duplicate T x4 excluded. [282] 

5066 

5067 

5068 

5069 

5070 

5071 

5072 

5073 

5074 

5075 

5076 

5077 

5078 

5079 

5080 

5081 

5082 

5083 

5084 

5085 

5086 

5087 

5088 

5089 

5090 

5091 

5092 

epoch. 

Confux then totally orders the blocks and uses the block ordering to totally order the trans-
actions. To totally order the blocks, the blocks are frst grouped together by epoch – all 
blocks in an epoch come before any block in the following epoch. Within each epoch, 
blocks are ordered based on a topological ordering that follows the reference edges, break-
ing ties in some deterministic way (e.g., the smallest hash). The total ordering of trans-
actions follows logically from the ordering of the blocks, with invalid and duplicate trans-
actions removed. Figure 31 shows an example of Confux’s procedure for creating a total 
ordering of transactions from the block DAG. 

Confux includes an additional rule that is intended to mitigate the threat of certain liveness 
attacks against GHOST [283, 284]. The structure of the past-subgraph of the DAG is used 
to detect when an attack is underway, at which point the fork-choice rule is adjusted to 
assign blocks an adaptive weight: the weight is h with probability 1 

h , or zero otherwise. 
When no attack is detected, the weight is one. The adaptive weight should help miners 
converge on a single chain by disrupting the ability of an adversary to balance the weights 
of each chain against each other. 

11.5.2. SPECTRE and Phantom 

SPECTRE (or “Serialization of Proof-of-work Events: Confrming Transactions via Recur-
sive Elections”) is a DAG-based algorithm that was designed to allow for very high block 
creation rates without reducing the honest majority consensus bound (i.e., regardless of 
network conditions, an attacker requires a majority of the computational power to prevent 
agreement) [285]. Unlike the proof-of-work algorithms considered so far, SPECTRE does 
not lead to a total ordering of transactions but rather a partial order, so it cannot be used for 
arbitrary smart contracts. The algorithm outputs a pairwise ordering between blocks, so it 
is possible that cycles may exist in the ordering. If a total ordering is required, the Phantom 
protocol, which was inspired by SPECTRE, should be used instead [286, 287]. However, 
SPECTRE’s performance stems largely from not running a complete consensus algorithm. 

138 



NIST IR 8460 ipd 
April 2023 

5093 

5094 

5095 

5096 

5097 

5098 

5099 

5100 

5101 

5102 

5103 

5104 

5105 

5106 

5107 

5108 

5109 

5110 

5111 

5112 

5113 

5114 

5115 

5116 

5117 

5118 

5119 

5120 

5121 

5122 

5123 

5124 

5125 

5126 

5127 

As a result, miners need not be concerned with how well-synchronized other miners are. 
This allows very low latencies for transaction acceptance. As block creation rates increase, 
this latency reduces approximately to the propagation delay for reaching a large amount of 
honest nodes. To understand how these algorithms operate, a few defnitions are needed: 

• past(B,G) represents blocks that were provably created before block B in the DAG 
G. Once block B is mined, the set past(B,G) does not change. 

• f uture(B,G) represents blocks that were provably created after block B in the DAG 
G. 

• cone(B,G) is the set of blocks in the DAG G that have been ordered with respect to 
B. That is, cone(B,G) := past(B,G) ∪ f uture(B,G) ∪{B}. 

• anticone(B,G) is the set of blocks in the DAG G that are not directly ordered com-
pared to B. That is, anticone(B,G) := G \ past(B,G) ∪ f uture(B,G) ∪{B}. 

• tips(G) is the set of chain tips, or the blocks without any incoming edges in G. 

• virtual(G) is a non-existent, hypothetical block that satisfes past(virtual(G)) = G. 
It represents the next block that a miner would create if their view of the DAG was 
G. 

As with other DAG protocols, miners include references to all known chain tips inside 
their blocks. The block DAG is then interpreted in order to extract a partial ordering of 
transactions that everyone can agree on. Naturally, if a block X ∈ past(Y ), then X precedes 
Y , or X ≺ Y . Similarly, if tx1 ∈ X and tx2 ∈ Y , tx1 ≺ tx2. For a pair of blocks (X ,Y ) ∈ G, 
all other blocks B ∈ G are interpreted as votes on the pairwise ordering of X and Y . The 
voting rules of SPECTRE correspond to a generalization of Nakamoto Consensus’s longest 
chain rule applied to DAGs. Specifcally, for a block B ∈ G ∪ virtual(G), voting uses the 
following rules (an example of these voting rules being applied to a DAG can be seen in 
Figure 32): 

1. If B ∈ f uture(X) but B ∈/ f uture(Y ), then B’s vote is that X ≺ Y . This rule gives 
votes to blocks that were published quickly instead of being withheld. 

2. If B ∈ f uture(X) ∩ f uture(Y ), then B’s vote is the same vote as virtual(past(B)). 
Ties are broken arbitrarily in some agreed upon way. This rule, as well as rule 4, 
gives more votes to blocks that are already supported by the majority in order to help 
nodes quickly converge on the same precedence relations. 

3. If B ∈/ f uture(X) ∪ f uture(Y ), then B’s vote will match that of the majority of blocks 
in f uture(B). This rule counters pre-mining attacks where a block is withheld for a 
long time. 

4. If B = virtual(G), then B’s vote will match that of the majority of blocks in G. 

139 



NIST IR 8460 ipd 
April 2023 

Fig. 32. SPECTRE voting example. Blocks X and 6-8 vote X ≺ Y because they see X but not 
Y in their past(). Blocks Y and 9-11 vote Y ≺ X for the same reason. Blocks 6-11 vote based 
on rule 1 in the text, and blocks X and Y vote using rule 5. Blocks 1-5 vote X ≺ Y because 
they see more X ≺ Y than Y ≺ X votes in their f uture(). Blocks 1-5 use rule 3 to determine 
their votes. Because block 12 is in f uture(X) ∩ f uture(Y ), it votes according to a recursive call 
on the DAG that does not include blocks 10, 11, or 12, which are not in its past(). Block 12 
votes using rule 2. Finally, a miner with this view of the DAG would create a block that 
references blocks 11 and 12, and its vote would be that X ≺ Y based on rule 4. [285] 

5128 

5129 

5130 

5131 

5132 

5133 

5134 

5135 

5136 

5137 

5138 

5139 

5140 

5141 

5142 

5143 

5144 

5145 

5146 

5. If B ∈ {X ,Y}, then B’s vote is such that for any block Z ∈ past(B), Z ≺ B, and for 
any block Z′  ∈/ past(B), B ≺ Z′. 

For a merchant to consider a transaction tx as confrmed, all of the transaction’s inputs must 
be confrmed. Two additional conditions must hold, assuming tx is contained in a block B. 
If there are conficting transactions in anticone(B), then the blocks where those conficting 
transactions reside must be preceded by B. Finally, any conficting transactions in past(B) 
must have been rejected. 

The voting procedure described above is fairly unintuitive, but a few key ideas can help 
show why SPECTRE is secure. First, if a block is seen by honest miners, then those 
miners will (directly or indirectly) reference it, such that it ends up in the past sets of newly 
created honest blocks. By rule 5, blocks support other blocks in their past. This implies 
that an attacker who withholds their blocks will lose votes. Second, when a block X has 
the majority of votes compared to a potentially conficting block Y , this majority quickly 
becomes amplifed, allowing miners to converge and making it challenging for an attacker 
to reverse the precedence relation. This is because, by rules 2 and 4, new blocks will vote 
the same way as the majority of blocks in their past. Third, by rule 1, blocks created in the 
past will vote based on which competing block is in its future. This incentivizes miners to 
reference recently created blocks in order to solicit those blocks’ votes. A block created 
by an attacker that does not reference recent blocks (perhaps because it was withheld in 

140 



NIST IR 8460 ipd 
April 2023 

5147 order to try to double-spend) will lose votes compared to the honest miners. Finally, blocks 
from the past will counter-balance pre-mining attacks where blocks are withheld. By rule 
3, blocks produced by honest miners who are unaware of the pre-mined block will vote 
in line with the majority of blocks in their future set. To see why this matters, consider 
an attacker who attempts to double-spend by pre-mining a long secret chain and sending 
a conficting transaction to a merchant, which ends up in a publicly known block. Honest 
blocks produced while the double-spending block was withheld will vote with the majority 
of blocks in their future set. As long as the attacker does not have the majority of the 
computational power, it becomes exponentially more likely as time passes that past blocks 
will support the block paying a merchant. 

Unfortunately, SPECTRE has a number of implementation complexities. The handling of 
diffculty adjustments and transaction fees are out of scope for this document. Further-
more, there are practical limits to how many blocks can be referenced by any given block 
and, thus, the extent to which block creation rates can be increased before the overhead 
of the references themselves becomes prohibitive. That said, the throughput and latency 
improvements are still substantial. 

The Phantom protocol is based off of the same ideas as SPECTRE but uses some additional 
techniques to enforce a total ordering of transactions. Thus, it is suitable for a broader 
variety of settings at the cost of higher transaction settlement latency [286, 287]. Note 
that the original Phantom protocol from [286] suffered from a liveness issue where a low-
hash-rate attacker could delay transaction confrmation indefnitely, as pointed out in [282]. 
This is fxed in [287]. Technically, Phantom requires solving an NP-hard problem, and 
GHOSTDAG is the algorithm that approximates an "ideal" Phantom, but this section will 
use the more well-known name Phantom for both. 

Honest miners in Phantom (as well as other systems) are expected to broadcast their blocks 
as quickly as they are found. They are also expected to reference as many chain tips as 
they are aware of and ideally be well-connected to each other. If the majority of miners 
are honest, this should result in a cluster of blocks that are well-connected to each other. 
Adversarial miners may, in contrast, withhold blocks temporarily or create new blocks 
that do not reference publicly visible chain tips in order to overwrite other blocks. These 
malicious behaviors are detectable based on the structure of the DAG because they will not 
be as well connected to the majority honest cluster (although, as with Nakamoto Consensus, 
this malicious behavior cannot be distinguished from a network partition). 

In more detail, let ∆ be the upper bound on the network’s propagation delay, and assume 
that an honest miner found a block B at time t. Then all blocks that were broadcast by 
time t − ∆ will be in past(B), and B will be in the past set of any honestly produced blocks 
after t + ∆. Recall that anticone(B) is the set of blocks that are not referenced by B and 
that do not reference B. This implies that anticone(B) will contain only malicious blocks 
(ignoring network partitions) and a small number of honest blocks produced in the 2∆-
sized interval [t − ∆, t + ∆]. Due to the nature of proof of work, this number of blocks will 

5148 

5149 

5150 

5151 

5152 

5153 

5154 

5155 

5156 

5157 

5158 

5159 

5160 

5161 

5162 

5163 

5164 

5165 

5166 

5167 

5168 

5169 

5170 

5171 

5172 

5173 

5174 

5175 

5176 

5177 

5178 

5179 

5180 

5181 

5182 

5183 

5184 

5185 

5186 

141 



NIST IR 8460 ipd 
April 2023 

5187 

5188 

5189 

5190 

5191 

5192 

5193 

5194 

5195 

5196 

5197 

5198 

5199 

5200 

5201 

5202 

5203 

5204 

5205 

5206 

5207 

5208 

5209 

5210 

5211 

5212 

5213 

5214 

5215 

5216 

5217 

5218 

5219 

5220 

5221 

be bounded by some k with high probability. That is, the parameter k is a function of the 
network delay. The idea behind Phantom is to recognize and select the largest cluster of 
blocks in the DAG by observing these anticones. Specifcally, Phantom attempts to solve 
the maximum k-cluster subDAG problem: given a DAG G = (V,E), Phantom attempts to 
output a maximally sized subset S∗ ⊂ V such that |anticone(B) ∩ S ∗ | ≤ k for all B ∈ S∗. 

Phantom generalizes Nakamoto Consensus to a DAG, where every block produced ulti-
mately ends up in the ledger, but adversarially produced blocks should appear later in the 
total ordering. This is done by extracting a well-connected cluster of blocks that are pre-
sumed to be honest by the honest majority assumption and then totally ordering blocks in 
a way that prioritizes blocks inside of the cluster. Phantom uses a greedy algorithm that 
approximates a solution to the maximum k-cluster subDAG problem, where blocks within 
the cluster are called Blue blocks, and ones outside of the cluster are Red. The algorithm, 
OrderDAG(G,k), outputs a set of Blue blocks and an ordered list of all blocks in G: 

1. If G = {genesis}, then return [{genesis},{genesis}]. 

2. For B ∈ tips(G) do: [BlueBlocksB,OrderedBlocksB] ← OrderDAG(past(B),k). That 
is, use recursion on the chain tips in order to fnd the best tip. 

3. Inherit the Blue set of the best tip, and add this tip to the Blue set and the end of the 
ordered list. 

• Bmax ← argmax{|BlueBlocksB| : B ∈ tips(G)} (break ties according to lowest 
hash) 

• BlueBlocksG ← BlueBlocksBmax 

• OrderedBlocksG ← OrderedBlocksBmax 

• add Bmax to BlueBlocksG 

• add Bmax to the end of OrderedBlocksG 

4. For B ∈ anticone(Bmax,G) do (in some topological ordering): If BlueBlocksG ∪ 
{B} is a k-cluster, then add B to BlueBlocksG. Either way, add B to the end of 
OrderedBlocksG. 

5. Return [BlueBlocksG,OrderedBlocksG]. 

To summarize, the DAG is colored recursively, so the Blue set will include all of the Blue 
blocks from the chain tip with the largest Blue set in its past (denoted Bmax). New Blue 
blocks are then added from blocks that lie outside of past(Bmax) but not before checking 
whether the k-clustering would be violated by their inclusion (step 4). The ordering works 
similarly and begins by inheriting the ordering from Bmax. Then Bmax is next, and then 
blocks that lie outside of past(Bmax) are topologically ordered in some agreed-upon way. 
An example of this algorithm is in Figure 33. Once blocks are totally ordered, transac-

142 



NIST IR 8460 ipd 
April 2023 

Fig. 33. Phantom example, constructing BlueBlocksG with parameter k = 3. For each block, 
the circle near it represents its "score," or the number of Blue blocks in its past set. The 
algorithm begins at the highest scoring tip, Bmax = M, and greedily selects its predecessors: K, 
H, D (arbitrarily breaking the tie between C, D, and E), and the genesis block. This creates a 
chain from Bmax back to genesis. The block V is a hypothetical "virtual" block that references 
all tips of the DAG. The set BlueBlocksG begins empty and is constructed recursively as 
follows. (1) Visit D, and add the genesis block to BlueBlocksG since it is the only block in 
past(D). (2) Visit H, and add blocks C, D, and E to BlueBlocksG because they are in past(H). 
(3) Visit K, and add blocks H and I to BlueBlocksG. Block B is in past(K), but anticone(B) 
has 4 Blue blocks and thus is not included. (4) Visit M, and add K to BlueBlocksG. Block F is 
not added because, like block B, anticone(F) has more than k Blue blocks. (5) Visit the virtual 
block, V , and add M to BlueBlocksG. Block L is not added because anticone(L) includes C, H, 
K, and M, which exceeds k (there is an error in the image, and L should not be colored Blue). 
Block J is not added because the inclusion of J would add another Blue block to to 
anticone(I), which already contains blocks C, D, and H. [287] 

5222 

5223 

5224 

5225 

5226 

5227 

5228 

5229 

5230 

5231 

5232 

5233 

5234 

tions are totally ordered in the natural way, removing duplicates and invalid transactions. 
Note that, similar to Inclusive (Section 11.5.1), miners are incentivized to randomize their 
transaction selection in order to maximize fees, though this may also encourage them to 
withhold high-fee transactions. 

It is instructive to compare Phantom to other protocols. Recall that ∆ is the upper bound 
on network propagation delay, but as with Nakamoto Consensus, its value is unknown. 
That said, it is assumed to be smaller than a constant ∆max, which is used to derive the 
hard-coded parameter k. This parameter is the maximum number of blocks that may not be 
referenced by each other that can be created by the full mining network over the course of a 
single delay (and a larger k requires increasing the waiting time for transaction settlement). 
Phantom’s security model differs from that of SPECTRE primarily due to the reliance on 
∆max, which must be used explicitly in Phantom but is what allows a total order to be 
established. 

143 



NIST IR 8460 ipd 
April 2023 

1 
5235 

5236 

5237 

5238 

5239 

5240 

5241 

5242 

5243 

5244 

5245 

5246 

5247 

5248 

5249 

5250 

5251 

5252 

5253 

5254 

5255 

5256 

5257 

5258 

5259 

5260 

5261 

5262 

5263 

5264 

5265 

5266 

5267 

5268 

5269 

5270 

5271 

Let the block creation rate of a system be λ (λ = 600 blocks per second in Bitcoin, for 
example). In Nakamoto Consensus, the security threshold of the system decreases toward 
zero as ∆λ increases. That is, the less time there is to synchronize between blocks being 
found, the lower the security threshold. In contrast, as long as ∆ ≤ ∆max, Phantom’s se-
curity threshold is at least 1

2 ∗ (1 − ε) for some small ε . As a result, Phantom can tolerate 
much higher block creation rates and throughput while maintaining security under honest 
majorities. Put differently, 

• Nakamoto Consensus assumes that ∆λ ≪ 1. 

• The parallel chains approach with m chains, described in Section 11.4, assumes that 
∆λ ≪ 1.m 

• Phantom assumes ∆λ ≪ k. 

11.5.3. Tangle 

The other DAG-based protocols discussed in this section construct DAGs where the vertices 
are blocks, but some designs – including the Tangle – use transactions as vertices instead 
[288]. A primary motivation for the Tangle structure is to enable fee-less transactions by 
allowing typical clients to operate as miners. Instead of submitting transaction fees, each 
transaction is accompanied by a small proof of work that includes validating and approving 
two other transactions within the Tangle. 

The most important concept in a Tangle-based system is the tip selection strategy, or 
how a client chooses which two transactions at the "tip" of the DAG to reference and ap-
prove. This policy cannot be imposed by the network, so it is imperative that an incentive-
compatible and secure default exists. The security assumption behind the Tangle is that 
there must be a large enough infow of transactions posted to the network that are gener-
ated by honest clients to outweigh the computational ability of an adversary. Honest clients 
must frequently issue transactions for this to happen and for the Tangle to work in a permis-
sionless environment without centralized coordination [289]. If this assumption holds, the 
Tangle can maintain a partial order (not a total order) over transactions. As with SPECTRE 
(Section 11.5.2), this makes it unsuitable for generic smart contracts. 

Transactions in the Tangle have a weight associated with them, which corresponds to the 
amount of work performed to issue it. The own weight of a transaction specifcally refers 
to the work performed to issue a transaction, which is normalized to one in this document. 
Transactions also have a cumulative weight, which is the transaction’s own weight plus the 
sum of the own weights of every transaction that approves of it (directly or indirectly). A 
transaction’s score is its own weight plus the sum of the own weights of all transactions 
directly or indirectly approved by it. Stated differently, a transaction’s cumulative weight 
is the sum of the own weights of the transaction’s future set and itself, while the transac-
tion’s score corresponds to the own weights of all transactions in its past set and itself. A 

144 



−α(Htx1 −Htx2 )e 
−α(Htx1 −Htx2 ) 

. 
Σtx∈T X e 

5275

5280

5285

5290

5295

5300

5305

5272 

5273 

5274 

5276 

5277 

5278 

5279 

5281 

5282 

5283 

5284 

5286 

5287 

5288 

5289 

5291 

5292 

5293 

5294 

5296 

5297 

5298 

5299 

5301 

5302 

5303 

5304 

5306 

5307 

5308 

NIST IR 8460 ipd 
April 2023 

transaction’s height is the length of the longest path from it to the genesis transaction, and 
its depth is the length of the longest (reverse) path from it to some chain tip. 

The originally proposed tip-selection algorithm is dubbed the Markov chain Monte Carlo 
algorithm (MCMC). It starts by choosing some locations in the Tangle and then performing 
random walks toward chain tips. Specifcally, where Htx is the cumulative weight of a 
transaction tx in the Tangle, and using W and α as parameters, a client selects chain tips to 
approve as follows: 

1. Consider all transactions in a particular range of the Tangle, [W,2W ], as possible 
starting locations. Randomly choose N of these transactions. 

2. Perform independent, biased random walks from these N locations based on prior 
approvals, such that the walk moves from tx1 to tx2 only if tx2 directly referenced tx1. 
Let the set of transactions that directly reference tx1 be denoted T X . The probability 

of transitioning from tx1 to tx2 is 

3. Once two of these random walks end at chain tips, select those tips. However, if a 
random walk ends up at a chain tip "too quickly," it may be considered a lazy tip and 
discarded. A lazy tip is one that approved of an old transaction in order to avoid the 
effort of verifying transactions. Lazy tips have a low probability of being selected 
because the cumulative weight of the lazy tip and any others would be substantial. 

The parameter α used in MCMC is important. Higher values of α (closer to one) are more 
"deterministic" and provide a better defense against various adversarial strategies because 
they increase the chance of the random walk moving to high-scoring tips. A lower value 
of α (closer to zero) makes the system more stable with respect to transaction confrmation 
times. A high α will result in many stale tips that need to be reattached to the Tangle in 
order to achieve confrmation. 

Some potential attacks on the Tangle include parasite chain attacks, large weight attacks, 
and splitting attacks. The parasite chain attack, displayed in Figure 34, is a classic double-
spend attack. The attacker builds a subtangle in secret while occasionally referencing the 
main Tangle in order to infate the secret subtangle’s score. When the attacker has less 
computational power than the honest portion of the network, the parasite chain attack is 
challenging for the same reason that selecting lazy tips is unlikely: the attacker’s subtangle 
is likely to have lower cumulative weight, so the random walks will likely remain on the 
main Tangle. Other techniques for detecting and mitigating parasite chain attacks have 
been proposed as well [290]. 

In a large weight attack, as shown in Figure 35, an adversary attempts to double-spend by 
putting an especially large amount of work into the double-spending transaction in order to 
outweigh the honest portion of the Tangle. To protect against this attack, there should be 
an upper bound on the own weight of any given transaction. 

145 



NIST IR 8460 ipd 
April 2023 

Fig. 34. Parasite chain attack against the Tangle. The two red circles indicate a double-spend 
attempt by the attacker. [288] 

5309 

5310 

5311 

5312 

5313 

5314 

5315 

5316 

5317 

5318 

5319 

5320 

5321 

5322 

5323 

5324 

5325 

5326 

5327 

Finally, a splitting attack is one in which the adversary attempts to divide the Tangle into 
two incompatible branches and then keep them balanced over time until they can spend 
the same funds on both sides of the split. The attacker issues conficting transactions near 
the beginning of the split so that the two sides cannot be reconnected. If honest miners 
are divided between the two subtangles, a low-hash-rate attacker can attempt to mine on 
whichever side of the split is required to maintain balance. Starting the random walks at 
transactions with greater depths in the Tangle makes this attack more challenging to pull 
off. In addition, the splitting attack is much easier with low α . When higher, random walks 
quickly converge toward the subtangle with higher cumulative weight. 

In addition to the explicit attacks on the Tangle, there are potential game-theoretic issues 
relating to the incentives of the participants. Intuitively, in order to encourage more clients 
to approve of one’s transactions, one would want to place their transactions in the heavier 
subtangles because that is where the random walks are more likely to end up. This sug-
gests that incentives are aligned properly, but an alternative strategy would be to simply 
remember the last 10 or so transactions that were gossiped and approve two of those when 
issuing a transaction instead of storing the full Tangle.2 

2Suggested in https://twitter.com/AlexSkidanov/status/1130505820930695169. 

Assuming that most other clients 
are honest, then the most recently seen transactions are likely to be where random walks 
end up. If the majority of clients were to use this strategy, then transactions would con-
tinue to be approved and everything would appear normal, but the actual security bound 

Fig. 35. Large weight attack against the Tangle. [288] 

146 

https://twitter.com/AlexSkidanov/status/1130505820930695169


5330

5335

5340

5345

5350

5355

5360

5328 

5329 

5331 

5332 

5333 

5334 

5336 

5337 

5338 

5339 

5341 

5342 

5343 

5344 

5346 

5347 

5348 

5349 

5351 

5352 

5353 

5354 

5356 

5357 

5358 

5359 

5361 

5362 

5363 

NIST IR 8460 ipd 
April 2023 

decreases toward zero. An attacker can cause a deep fork by quickly posting multiple (in 
this case, more than 10) transactions in a row on a different subtangle, at which point all of 
the lazy clients will immediately switch to it and begin approving them. 

A number of works have explored the ramifcations of alternative tip-selection algorithms 
[291–294]. Simple algorithms – such as uniformly random tip selection and the use of 
unbiased random walks – are highly susceptible to parasite chain attacks, while using bi-
ased random walks (MCMC) with large α protects against attacks [291]. A modifcation to 
the MCMC algorithm that makes parasite chain attacks more diffcult while maintaining a 
lower α is to incorporate the derivative of the cumulative weight with respect to time in the 
random walk probabilities [292]. Another proposal, dubbed G-Iota, attempts to maintain a 
higher α while mitigating the issue that this leads to more honest chain tips becoming stale 
[293]. Finally, the E-Iota proposal attempts to reduce the number of random walks that 
need to be executed while maintaining the best security guarantees of MCMC and G-Iota 
[294]. The algorithm is parameterized by p1 < p2 < 1. Any time the client needs to select 
new tips, it generates a random number r. If r < p1, the client uses N uniform random 
walks for tip selection. If p1 ≤ r < p2, it uses N biased random walks with a low α value. 
If r ≥ p2, it uses N biased random walks with high α . 

11.5.4. Meshcash 

Meshcash is a modular consensus algorithm that combines aspects of proof of work with 
asynchronous binary Byzantine agreement (ABA) protocols (see Section 6.1.1) [295]. It 
involves a slower proof-of-work protocol, dubbed the "tortoise," that provides eventual 
consensus, as well as a quicker "hare" protocol. If the hare protocol succeeds, agreement 
occurs quickly, but if it fails, the tortoise protocol will ensure eventual consistency. The 
Meshcash protocol provides the following minimal security guarantees, which are not tight: 

• If an adversary controlling less than 1
3 of the system’s computational power is unable 

to disrupt the hare protocol, then the Meshcash protocol achieves consensus. 

• The tortoise protocol achieves consensus against adversaries who control less than 

15
1 of the computational power, regardless of the outcome of the hare protocol. 

Both the ABA protocol and the tortoise protocol rely on a weak common coin (as defned in 
Section 2.7). This is implemented via the proof-of-work algorithm with an expected block 
time of T (e.g., T = 600 seconds in Bitcoin). For a player P beginning at time t, the weak 
common coin protocol works as follows: 

1. P waits until time t + T and keeps track of the set of valid blocks received between 
time t and t + T , denoted SP. 

2. P sorts the blocks in SP by their hashes. The weak common coin output is the least 
signifcant bit of the smallest hash block in SP. 

147 



5365

5370

5375

5380

5385

5390

5395

5400

5364 

5366 

5367 

5368 

5369 

5371 

5372 

5373 

5374 

5376 

5377 

5378 

5379 

5381 

5382 

5383 

5384 

5386 

5387 

5388 

5389 

5391 

5392 

5393 

5394 

5396 

5397 

5398 

5399 

5401 

NIST IR 8460 ipd 
April 2023 

The Meshcash ledger is constructed as a layered DAG, where each block belongs to a 
particular layer and references blocks from earlier layers (the number of layers that can 
be referenced by miners depends on the hare protocol). The hare protocol is used for 
consensus on blocks from more recent layers, while the tortoise protocol orders blocks in 
the more distant past. Honest miners must remain relatively synchronized with respect to 
the layers they are participating in, so the layer counter is incremented whenever a miner 
sees a threshold of valid blocks in a given layer. The hare protocol has two additional 
requirements: 

1. Blocks on layer i are valid only if there are at least Tmin valid blocks on layer i− 1 in 
their past sets. This prevents miners from pre-mining blocks in future layers. 

2. For a block B in layer i, honest miners with layer counters in the range [i + t, i + 
s] agree on the validity of B and will continue to do so throughout the interval 
[starti+t ,starti+s+1), where starti is the time that the frst honest miner entered layer 
i. This property is called limited [t,s]-consistency. 

A variety of suitable hare protocols are possible. In the hare protocol, blocks on a given 
layer are used to elect a committee that runs a traditional ABA protocol (e.g., the one 
described in Section 6.1.1) off-chain in order to get agreement on the blocks within the 
layer and then to append signatures to these blocks to attest to their validity. An ABA 
instance is run for each block in the layer. A block claiming to be in layer i is valid if and 
only if it has valid signatures from the majority of layer-i committee members. 

The tortoise protocol is derived from a hare protocol Π with output interval [t,s]. In addition 
to any requirements from Π, the tortoise protocol requires that honestly produced blocks 
include references to every chain tip (view references) as well as references to all valid 
blocks in layers [i − s, i − t] (voting references). Additionally, given a network propagation 
delay upper bound of ∆, miners include a coin bit, a before coin bit, and an early block bit. 
The coin bit is the result of the weak common coin protocol that begins at time starti + ∆. 
The before coin bit is set to indicate whether the block was produced before the common 
coin protocol concluded in order to abstain from voting when the coin bit matters. Finally, 
the early block bit is set if the block was produced less than ∆ time after the layer began 
so that these blocks abstain from voting if late blocks from the prior layer would make a 
difference. 

The tortoise protocol’s block voting procedure, an example of which is in Figure 36, is 
performed on any block B in layer i′ < i− s. All valid blocks in the range [i′ + 1, i− 1] vote 
on B if they were received by starti + ∆. Votes are weighted by the proof-of-work diffculty 
of the blocks, and B is valid if this weighted sum is positive. A block Q in layer j > i′ votes 
on block B using the following rules and a protocol-defned threshold θ : 

1. When j < i′ + t, Q votes zero because Q was generated before the hare protocol had 
a chance to achieve consensus on B. 

148 



NIST IR 8460 ipd 
April 2023 

Fig. 36. Example of Meshcash block voting. Here, s = 4 and t = 3. The blocks in layers 
[i − s, i − t] vote 0 by rule 1. The blocks in layers [i − 2, i − 1] vote according to rule 2. Three of 
these blocks have voting edges to B, and two do not. Block A considers block B valid by rule 3 
because the sum of block votes in its past in favor of B is positive. This assumes that, weighted 
by the proof-of-work difculty, this sum is greater than θ . [295] 

5402 

5403 

5404 

5405 

5406 

5407 

5408 

5409 

5410 

5411 

5412 

5413 

5414 

5415 

5416 

5417 

5418 

2. When j is in the range [i′ + t, i′ + s], Q votes 1 if it has a voting reference to B and -1 
otherwise. 

3. When j > i′ + s, Q will vote in agreement with the weighted sum of blocks in its past 
set so long as this sum is outside of the range [−θ ,θ ]. However, if this weighted sum 
is in the range [−θ ,θ ], then Q’s vote will be determined by the coin bit and before 
coin bit: 

• If the before coin bit is set to 1, then Q votes 0. 

• If the before coin bit is set to 0 and the coin bit is set to 1, then Q’s vote is 1. 

• If the before coin bit is set to 0 and the coin bit is set to 0, then Q’s vote is -1. 

This consensus protocol is compatible with any way of allocating rewards, but the authors 
suggest that transaction fees be distributed to all miners who created blocks in recent layers 
in order to decrease the incentive for miners to keep high-fee transactions secret. This 
would also make Meshcash more resistant to selfsh mining, not unlike FruitChains (see 
discussion in Section 11.3). Specifcally, the total fees from layer i would be split among 
the miners of the prior k blocks proportionally to the number of blocks in each layer. By 
splitting the reward in this way, double-spending attacks become subsidized, but censorship 
becomes more challenging. 

149 



NIST IR 8460 ipd 
April 2023 

5419 

5420 

5421 

5422 

5423 

5424 

5425 

5426 

5427 

5428 

5429 

5430 

5431 

5432 

5433 

5434 

5435 

5436 

5437 

5438 

5439 

5440 

5441 

5442 

5443 

5444 

5445 

5446 

5447 

5448 

5449 

5450 

5451 

5452 

5453 

5454 

5455 

11.6. Proof of Work for Committee Selection 

An alternative approach to permissionless consensus is to use proof of work as a Sybil-
resistance measure for electing a committee of miners to act as replicas in a standard per-
missioned BFT protocol. Some of the best advantages of proof of work are removed when 
using schemes that elect committees in this way. In particular, this introduces the posterior 
corruption issue that separates proof-of-stake protocols from many proof-of-work ones, 
making the protocols weakly subjective (see Section 12.1.2). Essentially, this means that a 
new node joining the network (or returning online after an extended absence) must acquire 
a copy of the chain from a trusted party. If past committees are compromised, they can 
create alternative histories that would be believed by these newly online nodes. In addition, 
these protocols are less safe against bribery attacks because once a node is in the commit-
tee, no additional proof-of-work resource expenditure is needed for it to issue malicious 
statements. 

On the other hand, these protocols are able to provide responsiveness, or the ability to 
confrm transactions at the speed of the actual network delay, rather than the worst-case 
delay (see Section 5.2). For a permissionless proof-of-work system to be responsive, [296] 
proved that four conditions must hold: 

1. The protocol must know an upper bound on the network delay, ∆. 

2. There must be a non-responsive "warmup" period, after which transaction confrma-
tion can become responsive. 

3. There must be some "stickiness" to honest nodes. That is, it must take some time for 
an adversary to corrupt a node or knock it offine. These protocols can only be secure 
against mildly adaptive adversaries, not fully adaptive ones. 

4. Fewer than 1
3 of the nodes can be corrupt. 

11.6.1. Hybrid Consensus 

The Hybrid Consensus algorithm uses proof of work to agree on a rotating committee, and 
the committee uses a traditional BFT algorithm to select transactions [296]. The protocol 
utilizes an underlying blockchain protocol, such as Nakamoto Consensus or FruitChains, 
though FruitChains is preferable (see Section 11.3 for discussion on FruitChains). Miners 
who have successfully mined blocks in the recent past are elected to a committee that then 
runs the classic PBFT algorithm among themselves (PBFT is described in Section 4). 

In more detail, Hybrid Consensus works as follows, where λ is the common prefx con-
sistency parameter (all nodes agree on the contents of the blockchain, except for possibly 
the trailing λ blocks). A new committee is elected whenever the underlying blockchain 
adds an additional λ blocks. To elect the committee safely, the trailing Θ(λ ) blocks must 
not be considered because they are potentially unstable. The most recent λ blocks’ min-
ers within the common prefx are the new committee members. This means that the same 

150 



NIST IR 8460 ipd 
April 2023 

5456 

5457 

5458 

5459 

5460 

5461 

5462 

5463 

5464 

5465 

5466 

5467 

5468 

5469 

5470 

5471 

5472 

5473 

5474 

5475 

5476 

5477 

5478 

5479 

5480 

5481 

5482 

5483 

5484 

5485 

5486 

5487 

5488 

5489 

5490 

5491 

5492 

5493 

miner may occupy multiple spots in the committee proportional to the number of blocks 
they have mined in the stable portion of the chain. Prior works that attempted to elect BFT 
committees using proof of work failed to remove the trailing Θ(λ ) blocks, which made 
them insecure because there was no agreement on the members of the committee itself. By 
the chain growth property, new committees are elected at regular, somewhat predictable 
intervals. 

Finally, consider chain quality. If the underlying blockchain has at least 2
3-chain quality, 

then it can guarantee that for each period of λ consecutive blocks, at least 2
3 of them will be 

mined by honest replicas. This is necessary to ensure that at least 2λ of the BFT committee 3 
members are honest. If Nakamoto Consensus were used for the underlying blockchain 
protocol, then 3

4 of the hash rate would need to be honest in order to achieve 2
3-chain quality 

(see discussion on selfsh mining in Section 9.4). This motivates the use of FruitChains as 
the underlying ledger because it has a higher chain quality than Nakamoto Consensus and, 
thus, allows near optimal resilience. 

As described, if an old committee ever surpasses the adversarial corruption threshold, Hy-
brid Consensus is subject to the issue of posterior corruptions, where new nodes will be 
unable to tell which of two conficting chain forks is the correct one. To protect against 
this, whenever a committee is switched out and a new committee is elected, at least 1

3 of 
the old committee will sign a hash of the ledger (or rather, the portion of the ledger that the 
committee worked on) and include those signatures in the blockchain. This prevents old 
committees from equivocating. 

Transitioning smoothly between multiple consensus committees is also non-trivial. The old 
committee must undergo some stopping procedure that will overlap with the new commit-
tee’s reign. Because of this overlap, the new committee’s output should be deferred until 
the old committee has fully completed its term. The stopping procedure involves sending 
special signed stop instructions until more than 1

3 of the committee have done so, at which 
point transactions are ignored. 

11.6.2. Solida 

Solida is another proposal that combines aspects of proof of work with classical BFT con-
sensus [297]. Unlike with Hybrid Consensus, Solida does not use proof of work to es-
tablish an underlying blockchain but rather as a more generic Sybil-resistance mechanism 
for leader election. A modifed version of PBFT (Section 4) is used to commit blocks of 
transactions or reconfguration events for the consensus committee into the ledger. In order 
to join the committee, miners must fnd a proof of work for a computational puzzle, and the 
existing committee tries to commit the miner’s public key, the proof of work, and the sys-
tem state into the ledger. The miner then joins the committee, pushing the oldest member 
of the committee out of it. 

The normal PBFT leader cannot be in charge of these reconfguration events because a 

151 



NIST IR 8460 ipd 
April 2023 

5494 

5495 

5496 

5497 

5498 

5499 

5500 

5501 

5502 

5503 

5504 

5505 

5506 

5507 

5508 

5509 

5510 

5511 

5512 

5513 

5514 

5515 

5516 

5517 

5518 

5519 

5520 

5521 

5522 

5523 

5524 

5525 

5526 

5527 

5528 

5529 

5530 

5531 

Byzantine leader can stall the network until the adversary can generate more proofs of 
work and become over-represented on the committee. Instead, it is the successful miner 
who leads the attempt to elect themselves onto the committee. The new member immedi-
ately becomes the new PBFT leader for committing transactions. The challenge with this 
approach is how to address contention issues – that is, when more than one miner fnds a 
proof of work at around the same time. Solida addresses this with a ranking scheme, such 
that only higher ranked miners can interrupt the reconfguration of lower ranked miners. 

Solida is essentially composed of three subprotocols: the steady state protocol to commit 
transactions into slots, denoted s; the view change protocol to replace faulty leaders; and the 
reconfguration protocol. Any given confguration c can have multiple lifespans, denoted 
e, and each lifespan can have multiple views v. Each Solida leader L(c,e,v) is ranked in c, 
e, v order and uses the following rules: 

1. When reconfguration events are committed, each committee member switches to a 
new confguration by incrementing c and setting e = v = 0. 

2. When a new proof of work is found under the current confguration, each committee 
member increments e and sets v = 0. 

3. If a timeout occurs and a faulty leader is detected, each committee member incre-
ments v. For some hash function H in a system with n committee members, let 
l = H(c,e)+ v mod n. Then L(c,e,v) is the l-th member of the existing committee. 

The steady state protocol for committing blocks of transactions is nearly identical to PBFT 
with two changes: 1) the original pre-prepare, prepare, and commit phase messages include 
extra contextual information, particularly the (c,e,v) tuple; and 2) an additional "notify" 
step occurs at the end. After committing a block, replicas send a NOTIFY message that 
includes a commit certifcate and move to slot s + 1. Upon receiving a NOTIFY message, 
replicas commit, broadcast their own NOTIFY message, and move to slot s + 1. The view 
change protocol requires more substantial adjustments and works as follows when the net-
work delay upper bound is ∆: 

1. Upon advancing to the next slot s, replicas set a timer and initiate a view change 
if it reaches 4∆ before the replica has committed anything in slot s. It does so by 
broadcasting a VIEW-CHANGE(c,e,v) message to the rest of the committee. If a 
replica sees 2 f + 1 matching VIEW-CHANGE(c,e,v) messages and has not already 
advanced to a higher view, it forwards the set of VIEW-CHANGE(c,e,v) messages 
to the new leader L(c,e,v + 1). The replica then listens for a NEW-VIEW message 
from the new leader, and if they do not receive it within 2∆ time, they broadcast a 
VIEW-CHANGE(c,e,v + 1) message. 

2. When L(c,e,v+1) receives 2 f +1 matching VIEW-CHANGE messages, they broad-
cast a NEW-VIEW(c,e,v + 1) message (which includes the set of VIEW-CHANGE 
messages) and enter (c,e,v + 1). When replicas receive this message and are not 

152 



5535

5540

5545

5550

5555

5560

5565

5532 

5533 

5534 

5536 

5537 

5538 

5539 

5541 

5542 

5543 

5544 

5546 

5547 

5548 

5549 

5551 

5552 

5553 

5554 

5556 

5557 

5558 

5559 

5561 

5562 

5563 

5564 

5566 

5567 

5568 

5569 

NIST IR 8460 ipd 
April 2023 

already in a view higher than (c,e,v + 1), they begin the new view and start another 
timer. If the timer hits 8∆ and no slot has been committed, replicas give up on the 
current leader and broadcast another VIEW-CHANGE message. 

3. When entering view (c,e,v), a replica sends a STATUS message to L(c,e,v) that 
contains the slot number s − 1, the value committed in that slot (denoted h), the 
corresponding commit certifcate C, the value accepted in slot s (denoted h′), and 
the corresponding prepare certifcate P. When the leader receives 2 f + 1 STATUS 
messages, they concatenate them into a status certifcate, S. The leader then fnds the 
STATUS message that corresponds to the highest last-committed slot s∗, breaking 
ties using the message that contains the highest ranked prepared value in slot s ∗ +1. 
Denote the commit certifcate and prepare certifcate from this message as C∗ and 
P∗, respectively. 

4. The new leader broadcasts a REPROPOSE message that includes s ∗ +1, h′ , S, C∗, 
and P∗. Receiving C∗ allows replicas to commit slot s∗. In addition, the inclusion 
of S and P∗ prove that h′ is a safe value for slot s ∗ +1, so h′ is reproposed for that 
slot. If the message is valid, replicas commit slot s∗ if they have not already and then 
move into the prepare phase of the steady state protocol for slot s ∗ +1. 

The reconfguration protocol requires miners to submit a proof-of-work solution to a confguration-
specifc puzzle, puzzle(c). The puzzle diffculty is periodically updated in order to maintain 
an expected average reconfguration interval that is analogous to the block interval in other 
systems. Naively, this would allow an adversary to gain an advantage over the honest por-
tion of the network by withholding their puzzle solutions analogously to selfsh mining. To 
bound the advantage that withholding provides an attacker, puzzle(c + 1) includes any set 
of f + 1 commit certifcates from the NOTIFY messages in the most recent reconfgura-
tion. This ensures that adversaries learn a puzzle at most 2∆ earlier than honest miners. 
The reconfguration protocol operates as follows: 

1. A successful miner broadcasts their puzzle solution to the committee members. Com-
mittee members then enter view (c,e+1,0) with the miner as the new leader and start 
a timer. If no slot is committed by the time the timer hits 8∆, replicas initiate a new 
view change. 

2. In the new lifespan, replicas perform the same actions that they would in the STATUS 
step of the view change protocol. 

3. Let h∗ be the committed value in the highest committed slot s∗ in the status certif-
cate and h′ be the highest ranked prepared value in slot s ∗ +1. The new external 
leader will then take action based on whether h∗ and h′ are blocks of transactions or 
reconfguration events: 

(a) If h∗ is a reconfguration event that advances to confguration c + 1, the leader 
broadcasts the commit certifcate C and gives up joining the committee. An 

153 



NIST IR 8460 ipd 
April 2023 

5570 

5571 

5572 

5573 

5574 

5575 

5576 

5577 

5578 

5579 

5580 

5581 

5582 

5583 

5584 

5585 

5586 

5587 

5588 

5589 

5590 

5591 

5592 

5593 

5594 

5595 

5596 

5597 

5598 

5599 

5600 

5601 

5602 

5603 

5604 

5605 

5606 

alternative leader has already completed reconfguration, so the miner begins 
working on puzzle(c + 1). 

(b) If h∗ is a block of transactions and h′ is a reconfguration event to c + 1, then 
the leader broadcasts a REPROPOSE message that includes (c,e,v = 0,s ∗ 
+1,h′ ,S,C∗,P∗) and terminates the reconfguration protocol. 

(c) If h∗ is a block of transactions and h′ is empty, then the leader attempts to move 
to slot s ∗ +1 by broadcasting a REPROPOSE message that includes (c,e,v = 
0,s ∗ +1,h,S,C∗,P∗), where h is a reconfguration event that would allow the 
leader to join the committee. Should h be committed, then in slot s∗+2, replicas 
advance to the next confguration that includes the miner as a replacement for 
the oldest committee member. 

(d) If h∗ and h′ are both blocks of transactions, then the leader broadcasts a RE-
PROPOSE message that includes (c,e,v = 0,s ∗ +1,h′ ,S,C∗,P∗) in order to 
repropose h′ for slot s ∗ +1. Next, the leader tries to join the committee by get-
ting a reconfguration event, h, into slot s ∗ +2. They do this with a PROPOSE 
message that includes (c,e,v = 0,s ∗ +2,h). Should h be committed, then in 
slot s∗ +3, replicas advance to the next confguration that includes the miner as 
a replacement for the oldest committee member. 

Except for case 3a, committee members handle receipt of the REPROPOSE message iden-
tically to how they would during the view change protocol. 

This approach differs markedly from the Hybrid Consensus protocol described earlier. One 
beneft of this approach is that the identities of committee members need not be buried 
under several blocks’ worth of work and, thus, are publicly exposed for a shorter period 
of time (though they are still exposed, so Solida cannot be secure against fully adaptive 
adversaries either). Note that as the adversarial hash rate approaches 33%, the number of 
committee members required to maintain safety blows up toward infnity, and the system 
is unable to recover if a committee ever has f + 1 Byzantine replicas in it. 

12. Proof of Stake: The Basics 

Proof of stake is the frst major permissionless Sybil-resistance mechanism introduced af-
ter proof of work and is, in part, motivated by the desire to reduce the high electricity 
consumption of proof of work while achieving similar goals. This section introduces the 
idea and provides the context necessary for understanding the more advanced protocols de-
scribed in Section 13. First, some of the earliest proof-of-stake systems are discussed and 
then used to demonstrate security issues that are unique to proof of stake and how they are 
addressed in more mature protocols. Next, leader election mechanisms for provably secure 
instantiations of proof of stake are introduced. The leader election process in proof of stake 
is fundamentally different from that of proof of work, leading to security issues that result 

154 



NIST IR 8460 ipd 
April 2023 

5607 

5608 

5609 

5610 

5611 

5612 

5613 

5614 

5615 

5616 

5617 

5618 

5619 

5620 

5621 

5622 

5623 

5624 

5625 

5626 

5627 

5628 

5629 

5630 

5631 

5632 

5633 

5634 

5635 

5636 

5637 

5638 

5639 

5640 

5641 

5642 

5643 

5644 

5645 

from being able to know in advance when a block producer will be elected. Finally, the 
block reward mechanism is investigated with a focus on how different reward schemes can 
lead to or avoid wealth concentration and, thus, centralization. 

There are two broad styles of proof-of-stake consensus algorithm. Chain-based schemes 
are modeled after Nakamoto Consensus with a major difference: using proof of work, a 
block is constructed before it is determined whether the miner has permission to broadcast 
it, but in proof of stake, permission to broadcast a block is provided prior to the block 
actually being constructed [298]. BFT-based schemes effectively operate as permissionless 
generalizations of traditional, permissioned BFT consensus. With some minor adjustments, 
many of the permissioned BFT algorithms covered earlier in this document can be made to 
work in a proof-of-stake context. Chain-based schemes have greater fault tolerance since 
they are secure so long as the majority of the stake is honest. In contrast, BFT-based proof 
of stake inherits the security threshold of the underlying BFT scheme, which is typically 
1 
3 . Chain-based schemes maintain availability during network partitions, while BFT-based 
ones sacrifce availability for consistency. Unlike chain-based schemes, BFT-based proof 
of stake can result in low latency while fnalizing transactions. The specifc properties, of 
course, depend on the design of the proof-of-stake algorithm. 

12.1. Early Attempts at Proof of Stake 

The frst network to use proof of stake was Peercoin, proposed in 2012 [299]. The network 
retained an element of proof of work in order to distribute the coins fairly, but the fork-
choice rule used for consensus replaces total work accrued with total coin age destroyed. 
Coin age is defned as the number of units of currency times the length of time that the units 
have been held without use. Peercoin blocks include a special transaction where the block 
producer consumes their coin age by sending funds to themselves. The frst input from this 
transaction is called the kernel, and the kernel is hashed and checked against a target value 
similarly to how this is performed in proof of work. The target is calculated per unit of coin 
age spent in the kernel such that consuming more coin age proportionally increases the 
chance of being able to produce a block. As with Nakamoto Consensus, this process can 
result in multiple blocks being produced at the same time, but instead of choosing which 
fork to stay on based on the greatest total work, Peercoin validators prefer the fork with the 
highest coin age destroyed, where every transaction in a block contributes to the consumed 
coin age. 

This system includes protection against some very basic attacks. For instance, to prevent 
users from moving their stake from one output to another in order to increase their chance 
of producing a block, the coin age computation requires a minimum age of one month and 
is considered zero below this. Centralized, developer-signed checkpoints are then periodi-
cally issued in order to ensure that every node agrees on transactions older than one month, 
which is necessary for verifying the kernel. A winning block producer could potentially 
use their single proof of stake to create many valid blocks for use in a denial-of-service 

155 



NIST IR 8460 ipd 
April 2023 

5646 

5647 

5648 

5649 

5650 

5651 

5652 

5653 

5654 

5655 

5656 

5657 

5658 

5659 

5660 

5661 

5662 

5663 

5664 

5665 

5666 

5667 

5668 

5669 

5670 

5671 

5672 

5673 

5674 

5675 

5676 

5677 

5678 

5679 

5680 

5681 

5682 

5683 

5684 

attack. To prevent this, nodes collect all kernels and associated timestamps they have seen 
and ignore any blocks with the same (kernel, timestamp) tuple as a previously received 
block. 

After Peercoin, a second generation of proof-of-stake networks launched that entirely es-
chew proof of work, including BlackCoin and NXT. BlackCoin’s consensus, PoS v2, is 
similar to Peercoin but removes coin age and makes several other small changes [300]. The 
use of coin age has the unfortunate side-effect of encouraging users to stay offine most of 
the time and only open their wallets to stake once every month or so. Further, when a user 
has a large amount of coin age built up, they can produce new blocks almost immediately 
and more easily execute double-spend attacks. Another observation was that of predictabil-
ity – the input into the hashing algorithm for leader election does not prevent an adversary 
from precomputing future proofs of stake, which allows them to know in advance when 
they might produce several blocks in a row which facilitates double-spend attacks (this is 
discussed in detail in Section 12.2). PoS v2 mitigates this by including a stake modifer 
in the hash calculation that changes relatively frequently and allows for shorter precompu-
tation windows. Finally, BlackCoin considerably restricts the timestamp rules for blocks, 
such that a node only accepts blocks with timestamps less than 15 seconds ahead of local 
time, while the timestamp granularity is changed from one second to 16 second intervals. 
This gives potential block producers less freedom to produce more blocks by trying to hash 
kernels with different timestamps. 

The previous point is important. If a staker has a large degree of freedom in selecting the 
input to the hash function used in leader election, they can perform a stake grinding attack, 
where they iterate through these potential inputs until they fnd one that is especially advan-
tageous to them. An attacker can go through the history of the blockchain and – wherever 
their stake was selected to be the next block producer – modify the next block header or 
kernel over and over until it fnds one that helps elect them as the next block’s producer as 
well. By changing the granularity of timestamps from one second to 16 seconds, Black-
Coin reduced the number of grinding attempts by a factor of 16. Later, a set of incremental 
improvements was made to PoS v2, leading to the creation of PoS v3 [301]. The staking 
process for PoS v3 works as follows and loops forever: 

1. Nodes check their system clocks and set the (potential) block timestamp to the system 
time modulo 16. 

2. The network diffculty is computed, and the local diffculty target is computed by 
multiplying network diffculty by the number of coins held in a particular UTXO. 

3. The node iterates through each UTXO in its wallet. For each UTXO, the node com-
putes a SHA-256 hash of several pieces of data, including the previous block’s stake 
modifer, some data from the UTXO, and the timestamp. 

4. These hashes are compared to the local diffculty targets for each UTXO, and if the 
value of a hash is less than the target, the node can create a new block. The block 

156 



NIST IR 8460 ipd 
April 2023 

5685 

5686 

5687 

5688 

5689 

5690 

5691 

5692 

5693 

5694 

5695 

5696 

5697 

5698 

5699 

5700 

5701 

5702 

5703 

5704 

5705 

5706 

5707 

5708 

5709 

5710 

5711 

5712 

5713 

5714 

5715 

5716 

5717 

5718 

5719 

hash is then signed by the public key specifed in the special staking transaction. 

5. If no hash satisfes the target, then the node waits 16 seconds and tries again with the 
new timestamp. 

Unlike BlackCoin and Peercoin, NXT uses an account model instead of UTXOs [302]. The 
entire NXT supply was distributed up front in a presale and then encoded into the genesis 
block. That is, there is no infationary block subsidy, and block producer rewards consist 
solely of transaction fees. The NXT leader election protocol is called "forging" (instead of 
mining) and is described below. 

As with Peercoin and BlackCoin, potential block producers hash some input in the hopes 
that the hash is less than a particular target value, which changes from block to block in a 
manner analogous to proof-of-work diffculty adjustment algorithms (Section 9.2) in order 
to maintain 60-second block intervals on average. This target is computed individually for 
each account and determined in part by a base target value common to all users. Let S be 
the average block interval for the last three blocks, Tp the base target for the previous block, 
and Tb the base target being calculated for the current block. Then, 

(
Tp ∗min(S,67) S > 60

Tb = 60 
Tp ∗0.64∗(60−max(S,53)) Tp − S ≤ 6060 

Here, the constants 67 and 53 bound the size of target adjustments, while 0.64 is included 
to allow block intervals to be shortened more rapidly than they can increase, which helps 
reduce the incidence of extremely lengthy block intervals. Each account can then compute 
its individual target value, T , as T = Tb ∗ Sp ∗ Be, where Sp is the number of seconds that 
have passed since the previous block and Be is the effective balance of the account. Only 
coins that have been in the account for at least 1440 blocks (one day) count toward the 
effective balance for staking. 

Each block includes a generation signature, which is a 32-byte hash output. Stakers will 
concatenate the previous block’s generation signature with their public key and hash it 
to form the next block’s potential generation signature. The frst eight bytes of this hash 
are interpreted as an integer called the hit. As with proof of work, if the hit is less than 
the target, the account holder is authorized to produce a block. Unlike with proof of work, 
generation signatures make it possible to predict which account will produce the next block 
with fairly high accuracy. The target value increases with every second passed since the 
previous block, so even if most accounts are offine, a block will eventually be produced. If 
multiple blocks are produced around the same time, nodes prefer the fork with the highest 
cumulative diffculty (diffculty being the inverse of the target value). The current block 
diffculty, Dcb, is calculated as Dcb = Dpb + 2 64 

T , where Dpb is the previous block’s diffculty. 
b 

In addition, NXT eschews centralized checkpoints and instead just maintains a local rule 
that nodes will never reorg more than 720 blocks. 

157 



5720

5725

5730

5735

5740

5745

5750

5755

5760

5721 

5722 

5723 

5724 

5726 

5727 

5728 

5729 

5731 

5732 

5733 

5734 

5736 

5737 

5738 

5739 

5741 

5742 

5743 

5744 

5746 

5747 

5748 

5749 

5751 

5752 

5753 

5754 

5756 

5757 

5758 

5759 

NIST IR 8460 ipd 
April 2023 

Another early proof-of-stake variant, delegated proof of stake (DPoS), continues to be 
widely used despite not being formally studied to the degree that many other protocols 
have been. Technically, a variety of proof-of-stake protocols, including some chain-based 
ones, allow nodes to delegate their stake to another party, which allows the delegator to 
contribute to the network’s security even while they are offine. Here, DPoS is used to refer 
to a specifc type of protocol where only elected delegates participate directly in consensus 
as block producers, but all users have the ability to delegate their stake in order to elect a 
committee of delegates. The frst DPoS system, BitShares, went live in July 2014 [303]. 
Since then, it has been used in a variety of projects, including EOS, Lisk, Steemit, and 
Tron, as well as some sidechains (sidechains are discussed in Section 16.3). 

The mechanics of DPoS are relatively simple: users with stake in the system vote for a 
committee of n delegates who execute a permissioned BFT algorithm among themselves. 
Stake delegation usually involves signing a message from the public key that holds the 
stake, which assigns that user’s stake to another user. In many systems, stakeholders can 
delegate their stake to several potential delegates at a time. Users are ordered by the amount 
of stake assigned to their keys. The top n become the delegates that make up the committee, 
and more act as backups who are ready to take over should votes change. This delegation 
occurs on a continuous basis, so the delegates themselves can be swapped in and out at any 
time based on changes to the stake delegation distribution. The actual consensus algorithm 
executed by the committee may differ, but one possibility is that leaders rotate in round-
robin fashion, where a block is fnalized after 2n delegates have voted for it by building 3 
blocks on top of it. Validators follow the longest chain but will not reorg past a fnalized 
block. 

By having only a small number of delegates participate directly in consensus, DPoS can 
maintain high transaction throughput because the few delegates can run expensive, high-
performance servers. In addition, it has relatively low latency due to fnalization, unlike 
most proof of work or chain-based proof-of-stake systems. These performance benefts 
come at the cost of the increased security risks related to centralization. Delegates are 
likely to be easier to locate and conduct denial-of-service attacks against because they are 
likely to be recognized, fairly static entities who operate nodes in data centers, possibly 
with public IP addresses, and the time slots in which they are supposed to produce blocks 
are publicly known in advance. This also makes it easier for block producers to collude and 
perform censorship, and if throughput is high and validation is expensive, it can be hard to 
vote them out and fnd replacements. 

In DPoS systems, there is a distinct risk of having factions or cartels form, resulting in a 
form of oligopoly among delegates. In most DPoS models, delegates share block rewards 
with stakeholders who delegate to them. One implication of this is that stakeholders are 
likely to delegate only to those potential delegates who are highly likely to be elected, which 
implies that delegates who have already been elected to the committee are more likely to 
be voted for and remain in place. To maintain their position in power, these delegates may 
organize into factions that vote for each other and then impose a requirement that stake-

158 



NIST IR 8460 ipd 
April 2023 

5761 

5762 

5763 

5764 

5765 

5766 

5767 

5768 

5769 

5770 

5771 

5772 

5773 

5774 

5775 

5776 

5777 

5778 

5779 

5780 

5781 

5782 

5783 

5784 

5785 

5786 

5787 

5788 

5789 

5790 

5791 

5792 

5793 

5794 

5795 

5796 

5797 

5798 

5799 

holders must delegate to every member of the cartel in order to receive their "kickback" 
payment. This is exacerbated by low voter turnout combined with highly unequal distri-
butions of stake, resulting in a handful of big players dominating. This occurred in Lisk, 
where two large factions controlled a combined 85% of the 101 delegates, with one alone 
controlling more than half of the total delegates [304]. Similarly, Steemit’s top delegates 
are rarely replaced, and the support of only a few large stakeholders is suffcient to keep 
them in place [305]. 

Social choice theory suggests that there may be some risks to the use of delegation in proof-
of-stake systems. If some potential delegates are malicious but honest stakeholders are un-
able to tell whether a potential delegate is malicious or not, it is possible for malicious ones 
to gain disproportionate power in some circumstances [306]. In addition, delegation favors 
a minority view, which could amplify the power of a malicious minority of stake [307]. 
On the other hand, there may exist delegation schemes that avoid the over-representation 
of minority views on a committee and make it as expensive as possible to elect a certain 
threshold of delegates (say, 1

3 of the committee) [308]. More research is needed to gain a 
better understanding of how delegation impacts the security of proof of stake. 

12.1.1. Nothing-at-Stake and Costless Simulation 

The most obvious and fundamental difference between proof of work and proof of stake 
with respect to their ability to act as Sybil-resistance mechanisms is the nothing-at-stake 
problem, sometimes called costless simulation. In proof of work, a signifcant amount of 
computation is required in order to determine who has the right to produce a block, whereas 
it takes only a handful of hashing operations to elect a leader under proof of stake. As a 
result, it costs (practically) nothing for a block producer to append a new block simulta-
neously to as many chains as possible. This costlessness, combined with the reward for 
creating blocks, implies that block producers may update the ledger at any opportunity, 
even if the update would perpetuate disagreement. That is, if a proof-of-stake block pro-
ducer is presented with multiple competing chains, they do not need to commit to one of 
them as miners must when using proof of work but rather can produce blocks on both 
chains for free, giving them the best chance of having a block they produced end up in 
the canonical chain. As a result, validators may struggle to converge on a single chain as 
everyone builds on every chain they see. 

Costless simulation does not present an insurmountable problem for a proof-of-stake sys-
tem, and there are some who argue that it hardly presents a real problem for consensus at 
all [309]. In short, the argument states that equivocating block producers undermine the 
utility of the system, which should lead to a loss in the exchange value of their stake, and 
thus there are indeed real costs to producing blocks on multiple chains simultaneously. In 
order to make sure this condition is suffcient to induce an incentive to maintain consensus, 
[309] recommends that: 

1. There should be a minimum stake requirement in order to participate as a block 

159 



5800

5805

5810

5815

5820

5825

5830

5835

5801 

5802 

5803 

5804 

5806 

5807 

5808 

5809 

5811 

5812 

5813 

5814 

5816 

5817 

5818 

5819 

5821 

5822 

5823 

5824 

5826 

5827 

5828 

5829 

5831 

5832 

5833 

5834 

5836 

5837 

5838 

NIST IR 8460 ipd 
April 2023 

producer. A small stakeholder only undermines their own wealth to a very small 
degree by trying to delay consensus through taking advantage of costless simulation, 
whereas larger stakeholders undermine their own wealth to a larger degree. 

2. Block rewards should be suffciently low. Under proof of stake, stakeholder incen-
tives come from both the value of the initial coin holdings as well as the block reward. 
By keeping the block reward component small relative to the initial stake, maintain-
ing coin value by honestly participating in consensus becomes more important than 
short-term rewards from block inclusion. As the block reward decreases, the mini-
mum stake requirements can become looser. 

Consider a scenario in which block producers receive no explicit reward for publishing 
blocks. If the value of the underlying stake is lowered by delaying consensus, then taking 
advantage of costless simulation indeed imposes a cost with no offsetting reward. If other 
stakeholders are honestly following the longest chain rule, then a malicious costless simu-
lator undermines their own wealth both by refusing to add a block to the longest chain and 
by adding blocks to a shorter chain (and not being compensated for doing so). As a result, 
following the longest chain rule is an equilibrium for stakeholders when there is no block 
reward. With a block reward, this equilibrium continues to hold so long as the minimum 
stake is high enough [309]. 

In practice, the most common solution to nothing-at-stake instability is to require potential 
stakers to submit a bond that may be slashed (i.e., seized and destroyed by the protocol) if 
malicious behavior is detected. For example, in Ethereum 2.0 (Section 13.2), participating 
in consensus requires depositing 32 ETH into a smart contract that is capable of verifying 
that a particular stakeholder signed equivocating blocks and then seizing the stake from 
them. Another possible solution is the idea of "virtual ASICs," which mimics proof of work 
in a proof-of-stake context – stakeholders purchase virtual mining machines and power 
them with virtual electricity, inducing an operational cost for block production [310]. 

The early schemes described in the previous section did not take steps to address the 
nothing-at-stake problem, with the possible exception of NXT. NXT has no block sub-
sidy, so as long as transaction fees are suffciently small, consensus should be stable based 
on the argument presented in [309]. None of the other protocols imposed a minimum stake 
requirement or eliminated block rewards, so they are likely susceptible to costless simula-
tion attacks. Delegated proof of stake is especially susceptible to costless simulation since 
the value of the stake used to elect delegates is not fully owned by the delegates themselves. 

For example, these protocols are more likely to fall victim to bribery attacks than their 
proof-of-work equivalents. Consider a merchant who waits for six confrmations before 
providing a good to a customer. After six confrmations, a malicious customer could pub-
licly announce the intention to create a fork that would revert those six blocks and offer 
a bribe to any stakeholders who would sign blocks on the attacker’s branch [311]. Unlike 
with proof of work, stakeholders who collude with the attacker in this way risk nothing if 

160 



5840

5845

5850

5855

5860

5865

5870

5875

5839 

5841 

5842 

5843 

5844 

5846 

5847 

5848 

5849 

5851 

5852 

5853 

5854 

5856 

5857 

5858 

5859 

5861 

5862 

5863 

5864 

5866 

5867 

5868 

5869 

5871 

5872 

5873 

5874 

5876 

5877 

NIST IR 8460 ipd 
April 2023 

the attack fails. Proof-of-work miners have real-world costs imposed on them while mining 
on the attacker’s fork, whereas there is nothing at stake for stakeholders (except for causing 
consensus delay, as described above). 

Proof of work also acts as a rate limiter of how quickly consensus-related messages can be 
generated in a way that proof of stake cannot. A bug shared by at least fve proof-of-stake 
cryptocurrencies using PoS v3 resulted in improper validation of stake and allowed nodes 
without any stake at all to perform resource exhaustion attacks against any victim node, 
completely flling RAM or disk space [312]. 

A concept strongly related to costless simulation is that of stake shift. Ideally, leader elec-
tion would be based on the most up-to-date stake distribution possible in order to provide 
the maximum amount of Sybil resistance. Unfortunately, this distribution cannot be as 
recent as desired for two main reasons. First, in chain-based systems such as the ones de-
scribed above, there is no agreement on the most recent few blocks, so they cannot be used 
as part of the stake distribution. More generally, even in BFT-based systems where con-
sensus is achieved on a single block before proceeding to the next, the most recent stake 
distribution cannot be used because the distribution must be fully determined before an 
adversary can acquire any information on the randomness used to sample from the stake 
distribution. As a result, for all known proof-of-stake systems, there is a gap between the 
current stake distribution that establishes the actual incentives for participants and the stake 
distribution that is in fact used for leader election. This is problematic because a stakeholder 
can divest themselves of their stake between the time that their stake is used in leader elec-
tion and the time they are entitled to produce a block. When it comes time to produce the 
block, they no longer have anything at stake to prevent bad behavior. This suggests that an 
additional security requirement for proof-of-stake ledgers is that stake cannot change hands 
"too quickly" [313, 314]. 

The stake distribution in deployed proof-of-stake protocols typically has a lag of one to 
10 days, with chain-based protocols like Snow White and the Ouroboros family being 
on the longer side, while BFT-based protocols like Algorand have lags on the lower end 
of that range [315]. The degree of stake shift that occurs during this lag should count 
directly as part of the adversarial stake when evaluating the security margin of proof-of-
stake consensus. More formally, if σ is the stake shift, α is the fraction of adversarial 
stake, and T is the normal security threshold of the system (i.e., 1

2 for most chain-based 
systems and 1

3 for most BFT-based ones), a proof-of-stake protocol maintains safety if 
α < (1−ε)∗T −σ for some ε > 0. Stake shifts for some more established cryptocurrencies 
can be seen in Figure 37 and appear to be a few percentage points for typical lags. 

12.1.2. Long-Range Attacks, Posterior Corruption, and Weak Subjectivity 

Most of the early proof-of-stake protocols described in Section 12.1 included a mechanism 
for establishing checkpoints in the ledger, such that a node will never reorganize the chain 
to overwrite the checkpointed block. This is due to the possibility of long-range attacks, 

161 



NIST IR 8460 ipd 
April 2023 

Fig. 37. Empirical measurements of stake shift for some high market capitalization 
cryptocurrencies. While these assets do not use proof of stake, there is little reason to believe 
that fund movements would difer based on the Sybil-resistance mechanism. Stake shift appears 
to be smaller on longer-running, more established networks. [315] 

5878 

5879 

5880 

5881 

5882 

5883 

5884 

5885 

5886 

5887 

5888 

5889 

5890 

5891 

5892 

5893 

5894 

5895 

5896 

5897 

5898 

5899 

5900 

where an adversary creates a fork very deep in the chain in an attempt to overwrite the 
canonical chain. Because producing blocks in a proof-of-stake system is free, a malicious 
stakeholder suffers no additional costs for attempting to fork the chain from further back in 
time (even all the way back to the genesis block), as opposed to forking near the chain tip. 
Checkpoints limit how far back such a reorg can go. 

Consider a proof-of-stake system without checkpoints where participating nodes do not 
have synchronized system clocks. A malicious stakeholder could create a competing blockchain 
that forks the chain far into the past. If other stakeholders are honest, however, they will 
not build on the malicious chain unless it is also the longest one, which is unlikely if the 
attacker has a minority of the stake. However, without synchronized clocks, the adversary 
can continue to construct blocks that appear to be from the future, ultimately creating the 
longest chain and succeeding in the attack regardless of the adversarial fraction of stake. 
As a result, proof-of-stake protocols require synchronized clocks, so most schemes have 
an external dependency on a clock synchronization protocol, such as the Network Time 
Protocol (NTP) [316]. 

Assuming that clocks are synchronized but checkpoints are not in use, such a long-range 
attack is extremely unlikely to succeed without a majority of the stake backing the attack 
chain. It is generally assumed that acquiring the majority of the network’s stake at any point 
in time would be prohibitively expensive. However, due to the possibility of posterior cor-
ruption, this may not be the case. Former stakeholders who have since traded away their 
stake can collude to extend the ledger from any point at which they did have the majority 
of stake in the past. This can be rational because it is costless to build an alternate chain 
and is not detrimental to them because they do not have current stake in the success of the 

162 



NIST IR 8460 ipd 
April 2023 

5901 

5902 

5903 

5904 

5905 

5906 

5907 

5908 

5909 

5910 

5911 

5912 

5913 

5914 

5915 

5916 

5917 

5918 

5919 

5920 

5921 

5922 

5923 

5924 

5925 

5926 

5927 

5928 

5929 

5930 

5931 

5932 

5933 

5934 

5935 

5936 

5937 

5938 

5939 

5940 

network. Thus, old private keys have some positive value and may be kept after spend-
ing the associated stake and then sold to malicious parties. In case of majority posterior 
corruption, the honest chain can be overwritten from a point deep in the blockchain. 

Another variant of long-range attack is stake bleeding [317], which exploits the ability 
of transactions that are valid on the canonical chain to be equally valid on a competing 
chain. This allows a long-range attacker to use the history of transactions from the canon-
ical ledger on their own attack chain, collect their transaction fees and block rewards, and 
increase their amount of adversarial stake on the attack chain. As a result, a minority stake 
attacker can become a majority attacker, particularly if the network has been running for a 
long time. A fx that prevents stake bleeding – though one with high overhead – is to make 
transactions context-aware by requiring that they include a recent block hash and are only 
valid in chains where that block hash exists before the transaction is included. 

The most common and simplest fx to implement for each of these long-range attacks is 
the aforementioned checkpointing. Unfortunately, checkpointing fundamentally changes 
the system model to one that is weakly subjective rather than objective. When a system 
is objective, a new node (or one that has been offine for an extended period of time) 
that properly implements the protocol and receives the full set of blocks or other relevant 
consensus messages will fully agree with the rest of the network regarding the current state. 
However, a subjective system can have stable states in which nodes do not agree, thus 
necessitating a social context (e.g., reputation) in order to work. In a weakly subjective 
system, the new node can come to agree with the rest of the network so long as it has a 
properly implemented protocol, the complete set of consensus-related messages and blocks, 
and – crucially – a suffciently recent (say, N blocks) state that is known to be valid; that is, 
a checkpoint. 

There are two ways in which a node can acquire a suffciently recent known-valid state: 
1) being online frequently (at a minimum, at less than N block intervals) and witnessing 
the checkpoint block as an active participant of the network or 2) by getting the checkpoint 
from a trusted party if the node has been offine for more than N blocks (or is frst joining 
the network). As a result, the security model for new nodes and those that have been offine 
for a while is fundamentally different because they are required to get a checkpoint from a 
trusted party. Without a trusted checkpoint, these nodes would be unable to differentiate the 
canonical chain from alternative valid chains. This must be contrasted with (most) proof-
of-work schemes that can be objectively validated without introducing a trusted component 
because total work can be evaluated without having been online. 

When a new node attempts to connect to a proof-of-stake blockchain for the frst time (or 
the frst time in more than N blocks), it is that user’s responsibility to verify a recent state 
out-of-band by checking a block explorer website, asking businesses they would like to 
interact with, or asking a friend for a recent block hash. In fairness to proof of stake, there 
is always a certain degree of subjectivity in terms of downloading a software client from a 
trusted source because the software must properly implement the protocol for the network 

163 



NIST IR 8460 ipd 
April 2023 

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

 that the user wants to connect to. That is, a user who downloads software that falsely 
 claims to implement the Bitcoin protocol can accept a non-canonical, attacker-controlled 
 chain. That said, code signing can help by allowing a user to verify that they are running 
 the desired software for a given network. 

 In addition to checkpoints, a number of long-range attack mitigations are possible [318]. 
 As mentioned earlier, context-aware transactions can prevent stake bleeding but do not fx 
 posterior corruption. Another mitigation is to use key-evolving signatures. Key-evolving 
 signatures allow signatures to be valid only for short time periods while also allowing the 
 private key to evolve as these periods advance despite maintaining the same public key. 
 In the erasure model, where honest nodes are assumed to securely delete their old private 
 keys from local systems, key-evolving signatures can address posterior corruption but not 
 stake bleeding. These kinds of signatures were suggested for use in Ouroboros Praos [319]. 
 Long-range attacks can also be addressed by a change in the fork-choice rule, as is done 
 in Ouroboros Genesis. Roughly speaking, stakeholders using the new rule will prefer the 
 chain that has a greater density of blocks for some period of time after the block where the 
 chains diverge. As discussed in Section 13.1.3, this is not entirely without trade-offs. It 
 may also be possible to protect against long-range attacks using verifable delay functions, 
 which can be used to prevent an adversary from producing blocks from a time when they 
 were not online but with a signifcantly reduced security margin [320]. 

 Finally, note that security deposits are not a solution to long-range attacks. While they can 
 address short-term nothing-at-stake issues, users need to be able to eventually withdraw 
 their stake for other uses. Once the security deposit is withdrawn, the ability to hold the 
 stakeholder accountable is eliminated, and they can freely engage in long-range attacks 
 without penalty. 

 12.1.3. Leader Election, Anonymity, and Security Against Adaptive Adver-
saries  

 In the early proof-of-stake protocols described above, two different types of leader election 
 are performed. Most of them use a Bitcoin-esque process of hashing some data, called 
 the kernel, and checking to see if the hash is beneath an agreed-upon target. The kernel 
 structure itself should be designed to reduce or eliminate opportunities for stake grinding. 
 With this style of leader election, offine users do not contribute stake to the security of the 
 system, so the majority of online stake must be honest for security to hold. DPoS leader 
 election simply establishes a list of delegates based on stake delegated to them and assigns 
 leaders in round-robin fashion. This is deterministic and results in leaders being known in 
 advance with high probability. 

 These leader election processes leave much to be desired. Luckily, as proof-of-stake pro-
 tocols are studied further, the security properties of the leader election subprotocol have 
 become better understood. This section provides a brief overview of some possible im-
 provements in proof-of-stake leader election but is not intended to be comprehensive. More 

164 



5980

5985

5990

5995

6000

6005

6010

6015

5981 

5982 

5983 

5984 

5986 

5987 

5988 

5989 

5991 

5992 

5993 

5994 

5996 

5997 

5998 

5999 

6001 

6002 

6003 

6004 

6006 

6007 

6008 

6009 

6011 

6012 

6013 

6014 

6016 

6017 

6018 

6019 

NIST IR 8460 ipd 
April 2023 

details on a variety of these and other schemes are provided in Section 13. 

The frst major alternative is a method called follow the satoshi, which is used in the Chains 
of Activity protocol described in Section 13.1.1. In Bitcoin, the smallest possible atomic 
unit of cryptocurrency is called a satoshi. Given a random index into the set of all exist-
ing satoshis, one can fnd the block in which that particular satoshi was minted and then 
trace the transaction fow from that block to the present to fnd the public key of whoever 
currently owns that satoshi. To generate the random seed, each block producer includes 
a uniformly random bit in their blocks, and at the end of an epoch, the seed is a concate-
nation of these bits. The seed is used for the follow-the-satoshi elections two epochs later 
(that is, after skipping an epoch). This procedure results in leaders who are publicly known 
in advance and, thus, is insecure against adaptive adversaries. To address the problem of 
offine stake, when an output is selected by follow the satoshi three times without a block 
being produced, that output can no longer produce blocks until they have spent their coins. 
This helps maintain consistent block production even when a signifcant amount of stake 
may be offine. 

Snow White (Section 13.1.2) uses two separate phases to determine each epoch’s leaders 
and the random seed. Each phase lasts for roughly κ blocks, with κ a security parameter. 
As with Chains of Activity, Snow White block producers include random data in their 
blocks, which are used in the second phase. In the frst phase, the stake distribution used 
for leader election is determined as the distribution that existed 2κ blocks in the past. The 
random seed is extracted from the blocks in chain[−2κ : −κ]. As long as a single block is 
produced by an honest user during this κ-block epoch, the seed can be used securely (this 
assumption only holds if the majority of the stake is honest). Because the stake distribution 
is set in stone κ blocks prior to the seed being known, an adversary is unable to adaptively 
select their public key to perform stake grinding by sending funds to themselves at public 
keys that would give them an advantage. However, once the adversary knows the next seed 
used for leader election, they have a one epoch delay in which to try to adaptively corrupt 
the leaders for the epoch in which the seed will be used. The actual mechanics of leader 
election are similar to the kernel hash ones above, where a hash of the seed, public key, and 
timestamp are checked against a diffculty target. 

Ouroboros Praos was the frst proof-of-stake consensus algorithm to achieve security against 
fully adaptive adversaries (Section 13.1.3), which it accomplished through the use of a ver-
ifable random function (VRF). The VRF provides the property that only the block produc-
ers themselves are aware that they have been elected to produce a block in a given time 
slot, so other validators – and the adversary – do not know who the leader will be until they 
have received a signed block with a valid VRF proof from the leader. At that point, it is 
already too late to perform an adaptive corruption or denial-of-service attack against the 
leader. Although secure against adaptive adversaries, this method still results in stakehold-
ers knowing locally and in advance when they will have the right to produce a block. This 
predictability has security ramifcations that are discussed in Section 12.2. 

165 



6020

6025

6030

6035

6040

6045

6050

6055

6021 

6022 

6023 

6024 

6026 

6027 

6028 

6029 

6031 

6032 

6033 

6034 

6036 

6037 

6038 

6039 

6041 

6042 

6043 

6044 

6046 

6047 

6048 

6049 

6051 

6052 

6053 

6054 

6056 

6057 

NIST IR 8460 ipd 
April 2023 

In addition to the leader election mechanisms mentioned above and in Section 13, a variety 
of schemes have been proposed in the literature. Of note is the idea of single secret leader 
election (SSLE), which has some advantages over VRFs [321, 322]. In particular, while 
VRFs have the beneft of hiding the identity of potential block producers until the blocks 
are announced, they can result in there being no leaders elected to a given time slot or 
multiple leaders being elected within the same time slot. In the latter case, multiple leaders 
can cause undesirable forks in the chain. An SSLE scheme has the following properties: 

• Uniqueness: Each election results in exactly one leader chosen. 

• Fairness: If there are N registered users in the system, then each user has a N 
1 chance 

of being elected in a given time slot. Further, a single honest user participating in 
the protocol should suffce to prevent a set of malicious participants from biasing the 
results of the election. 

• Unpredictability: If the adversary does not control the elected leader, the adversary 
cannot learn which user was elected. 

Unfortunately, concrete protocols for SSLE tend to rely on very advanced cryptographic 
primitives, such as indistinguishability obfuscation, threshold fully homomorphic encryp-
tion, and public key encryption with keyword search. Another, more practical one is secure 
under the decisional Diffe-Hellman assumption and uses random shuffes but requires re-
laxing a security property. SSLE protocols are promising, but more work should be done 
to improve their performance and make them secure using less exotic cryptography. 

The leader election schemes discussed thus far provide neither privacy nor anonymity to 
the leader. That is, in each case, the leader must reveal their public key to the network in 
order to create a block. Similarly, the above schemes also provide some information on 
the quantity of stake owned by the block producer. It is desirable to have leader election 
protocols that can hide such information, and some work has been done toward this end. 
For example, in the Ouroboros family of protocols, the Ouroboros Crypsinous proposal 
is designed so that leader election can occur even in a system where privacy-preserving 
techniques are used to hide the number of coins associated with each public key, although 
it does not provide anonymity for the chosen leader and their public key [323]. 

Other proposals focus on providing anonymity for proof-of-stake leader election [324, 
325]. Note how in proof of work, the leader election process does not depend on the 
identity of the miner because they can include a fresh public key in every block they mine, 
and the proof is just a valid puzzle solution. Proof of stake, on the other hand, cannot sep-
arate the identity of the selected leader from their proof of eligibility. That said, advanced 
techniques can be used to hide this identity, even if it is used as part of the proof. 

The approach in [324] has the ledger store commitments to the total number of coins as-
sociated with a public key rather than the amount itself, and stakeholders use NIZK proofs 
to show that they were elected properly. By itself, this would still leak information based 

166 



6060

6065

6070

6075

6080

6085

6090

6095

6058 

6059 

6061 

6062 

6063 

6064 

6066 

6067 

6068 

6069 

6071 

6072 

6073 

6074 

6076 

6077 

6078 

6079 

6081 

6082 

6083 

6084 

6086 

6087 

6088 

6089 

6091 

6092 

6093 

6094 

NIST IR 8460 ipd 
April 2023 

on the frequency with which a given public key is elected and thus provide clues as to 
the balance of an account. A new anonymous VRF (AVRF) primitive addresses this. In 
an AVRF, multiple verifcation keys exist for the same private key, and given two proofs 
for different inputs under different verifcation keys, an eavesdropper cannot tell whether 
the proofs were generated using the same private key. The proof statement for the private 
leader election takes the list of all accounts as an input, proves knowledge of a private key 
corresponding to a public key in the list, and proves that the stake in that particular ac-
count won the election. Unfortunately, the approaches used in both [323] and [324] fail to 
account for information leaks at the network level and can have their anonymity attacked 
by an adversary who can control the network delay facing targeted parties. By infuencing 
stakeholders’ local views of the network, the adversary can infer stake quantities based on 
how their targets publish blocks and which views those blocks are consistent with [326]. 

An alternative approach is described in [325], which proposes an anonymous variant of 
Algorand’s leader election scheme (further detailed in Section 13.4.2). Each party Pi is 
identifed by a public key pki. All roles that one could be a leader for are given a tag, tag, 
that may include things like the protocol round, the specifc step or role in the round, and the 
random seed. Pi checks whether they are eligible for tag by signing tag with their private 
key ski, creating signature σi. This signature is input into a hash function H, generating 
y = H(σi). If this output is below a threshold T , Pi has been selected, and proves this with 
(y,σi). Verifying this requires pki and, thus, is not anonymous. 

To anonymize this, [325] utilizes a trapdoor permutation, T RP. Each Pi has a public value 
associated with it for each possible tag, Vi = H(i|tag), as well as a public key T RP.pki for 
a trapdoor permutation f . Party Pi checks whether they are a leader for tag by using their 
private trapdoor key T RP.ski to calculate vi = (Vi) and then checks if vi is less than f −1 

T RP.ski 
the relevant threshold. If so, they compute a zk-SNARK that proves they know a preimage 
of one of the Vi that makes them eligible. 

To summarize this section, there are certain desirable properties that proof-of-stake leader 
election should have: 

• The selection function should resist stake grinding. That is, stakeholders should have 
minimal fexibility when it comes to computing their eligibility query. This often 
necessitates having restrictive rules on timestamps. 

• The stake distribution used for leader election should be fxed prior to generating 
a random seed to prevent the specifc form of stake grinding that comes from an 
adversary adaptively choosing their public keys. 

• Ideally, the selection function should be privately evaluated, such that only the stake-
holder knows that they are elected before they announce this to the network. This 
can be done by making the selection function depend on the stakeholder’s secret key, 
most commonly using a VRF. This is necessary for preventing adaptive corruptions. 

167 



NIST IR 8460 ipd 
April 2023 

6096 

6097 

6098 

6099 

6100 

6101 

6102 

6103 

6104 

6105 

6106 

6107 

6108 

6109 

6110 

6111 

6112 

6113 

6114 

6115 

6116 

6117 

6118 

6119 

6120 

6121 

6122 

6123 

6124 

6125 

6126 

6127 

6128 

6129 

6130 

6131 

6132 

• The selection function should be fair in that a stakeholder’s chance of being elected 
leader is proportional to their share of the total system stake. Part of this involves 
minimizing the bias that an adversary can force into the random seed. This bias can 
be suffciently bounded by allowing block producers to include random data in their 
blocks and having enough blocks in an epoch such that – with high probability – at 
least one block producer is honest. 

• Selecting multiple leaders in a time slot can lead to forks, so it is better to have only 
a single leader per slot. VRFs can lead to multiple leaders, but SSLE protocols can 
solve this. 

• Protecting the anonymity of the block producer would be ideal, but most existing 
leader election procedures do not provide this property. 

12.2. Leader Predictability and Security 

Every proof-of-stake scheme discussed thus far suffers, to some extent, from the problem 
of predictability. When proof of work is used, a miner does not know that they are a block 
producer until the moment they have succeeded in generating a proof. In contrast, a proof-
of-stake system necessarily results in stakeholders being aware of their right to produce a 
block a minimum of one block in advance. This advance knowledge of leadership slots 
provides important information to an adversary, which can help them more confdently 
engage in selfsh mining/staking, double-spending, and bribery attacks [327, 328]. Before 
explaining these attacks, some additional defnitions are useful. In the following, a block 
denoted Pred(B) is the predecessor of block B, and PredD(B) is the D-th predecessor block 
of B. 

• D-locally predictable: A unit of stake s has this property if, at block A, the owner of s 
knows that they will be able to produce a block B after D blocks. That is, after seeing 
A, the owner of s knows that they can produce a block B such that PredD(B) = A. 

• D-globally predictable: A unit of stake s has this property if, at block A, every 
stakeholder knows that the owner of s will be able to produce a block B after D 
blocks. That is, after seeing A, all participants know that the owner of s can produce 
a block B such that PredD(B) = A. 

• D-recent: This is a negation of local predictability. A unit of stake s has this property 
if, at block A, the owner of s does not know whether or not they will have the right 
to produce a block B such that PredD(B) = A. The validity of block B depends on 
some information contained in the most recent D predecessors of B. 

All proof-of-stake protocols, including BFT-based ones, are (at least) 1-locally predictable. 
This is necessarily the case because all information used as input into the leader election 
procedure must be agreed upon prior to the leader election. Additionally, for any D and 
any block A, a given unit of stake is either D-locally predictable or D-recent. Protocols 

168 



6135

6140

6145

6150

6155

6160

6165

6170

6133 

6134 

6136 

6137 

6138 

6139 

6141 

6142 

6143 

6144 

6146 

6147 

6148 

6149 

6151 

6152 

6153 

6154 

6156 

6157 

6158 

6159 

6161 

6162 

6163 

6164 

6166 

6167 

6168 

6169 

6171 

NIST IR 8460 ipd 
April 2023 

with recency have security risks in that competing chains may use different random seeds 
for leader election, which can make it more challenging to detect certain malicious pro-
tocol deviations. As a result, there are security trade-offs between protocols with recency 
compared to those with local predictability. 

As mentioned above, predictability facilitates more advanced versions of selfsh mining, 
double-spending, and bribery. In protocols with global predictability, selfsh mining and 
double-spending attacks can be conducted in a way that is guaranteed to succeed. With 
local predictability, these attacks are not entirely risk-free, but the adversary is still provided 
with a signifcant statistical edge due to knowledge of the attacker’s future blocks. Luckily, 
global predictability is not necessary. The use of VRFs allow leader election to be privately 
evaluated and publicly verifed. That said, globally predictable protocols do exist, so the 
security concerns relating to them cannot simply be dismissed. 

Predictable selfsh mining and double-spending operate almost identically, so the following 
description of selfsh staking applies to both (selfsh mining was introduced in Section 9.4). 
Let block A be the current best chain tip on a protocol with D-global predictability and t be 
the current timestamp, and let S() be a score function for a chain (e.g., S(B) may be equal to 
the number of predecessor blocks in a longest chain protocol). Globally predictable selfsh 
mining works as follows [327]: 

1. For all k ∈ {1, ...,D}, let tk 
′ be the earliest time that the adversary is entitled to produce 

a block B such that S(B) > S(A)+ k and where the adversary is the block producer 
of all blocks between A and B. 

2. For all k ∈ {1, ...,D}, let tk 
∗ be the earliest time that the rest of the network is able to 

produce a block B such that S(B) > S(A)+ k and where the adversary is the block 
producer for none of the blocks between A and B. 

3. At time t, if a k exists such that tk 
′ < tk 

∗ , the adversary should immediately stop pub-
lishing blocks until tk 

′ , at which point they publish B and every block along the path 
from A to B from the frst step. If multiple k exist where this holds, the strongest 
attack is to use the largest one. 

This works exactly like selfsh mining in the proof-of-work case, except that all of the 
risks are eliminated for the attacker. An adversary only withholds blocks from the net-
work when they know for sure that the attack will succeed. Predictable double-spending 
works the same way, except for the details of including the specifc transactions on each 
side of the fork. With local predictability, the attacker cannot perform the second step but 
can choose to perform the attack when they know they will produce a disproportionately 
large number of blocks in a certain window to maximize their chance of success. These 
prediction attacks were studied as applied to the Tezos blockchain, where it was found that 
it is often proftable to create two-block reorgs for selfsh mining and that opportunities for 
predictable double-spending could be frequent. An adversary with 36% of the stake could 
expect to perform a predictable 20-block reorg once per year, and a 40% stakeholder could 

169 



NIST IR 8460 ipd 
April 2023 

6172 

6173 

6174 

6175 

6176 

6177 

6178 

6179 

6180 

6181 

6182 

6183 

6184 

6185 

6186 

6187 

6188 

6189 

6190 

6191 

6192 

6193 

6194 

6195 

6196 

6197 

6198 

6199 

6200 

6201 

6202 

6203 

6204 

6205 

6206 

6207 

6208 

6209 

6210 

6211 

expect an opportunity for a 20-block predictable double-spend on a daily basis [329, 330]. 

Using a VRF for leader election, as Ouroboros Praos does, provides security against adap-
tive adversaries. However, the adaptive adversary model used in this and other protocols 
fails to account for bribery attacks, such as the one depicted in Figure 38a [328]. Consider 
a proof-of-stake protocol with D-local predictability, where a merchant – and potential vic-
tim – considers a transaction fnal when the block it is included in has κ confrmations. 
First, consider the typical case where D > κ . An adversary can announce to the world that 
they would like to bribe block producers to contribute to an adversarial chain, and block 
producers can use their VRF proofs to demonstrate their eligibility. If the adversary can get 
κ + 1 eligibility proofs, they send a transaction to the victim merchant that is included in 
the next block. The attacker allows the honest chain to grow by κ blocks until the merchant 
provides whatever the adversary purchased. With goods in hand, the adversary creates a 
double-spend transaction and uses the κ + 1 eligibility proofs to publish a longer chain. 
For this attack to work, it is only necessary that κ + 1 out of the next 2κ block producers 
participate, but each of those block producers can have an infnitesimally small amount of 
stake. In addition, the bribed block producers have plausible deniability, as they need not 
sign conficting blocks. 

A naive solution to this problem would be for merchants to increase their required number 
of confrmations to something beyond the prediction window (κ > D). Note, however, that 
the security of these proof-of-stake protocols depends on generating random seeds with 
minimal bias. If the majority of block proposers in an epoch are bribed, the adversary can 
control the random seed to perform stake grinding and enlarge the prediction window into 
future epochs. 

While BFT-based proof of stake may appear to be largely immune to this kind of attack, 
this is not necessarily true. Consider Algorand, where Byzantine agreement must occur 
over every block, each step of the agreement protocol has a separate committee, and the 
committees are 1-locally predictable. An adversary who can bribe 2

3 of the committee at 
any given step can sign a block that conficts with the one that honest stakeholders agreed 
on in an earlier step, as shown in Figure 38b. Because Algorand has relatively small, 
constant-sized committees, this 2

3 supermajority may represent only a small fraction of the 
total stake. 

Revisiting the leader election schemes discussed in Section 12.1.3, one can see that both 
Chains of Activity and Snow White have global predictability, while Ouroboros Praos and 
Algorand are locally predictable, though with very different predictability windows. Pro-
tocols with (short) recency face a different security obstacle: the undetectable nothing-at-
stake attack, shown in Figure 39. 

Let A be the highest scoring chain tip that an adversary is aware of in some D-recent 
protocol, and assume that the adversary has spread their coins across many public keys. 
To perform an undetectable nothing-at-stake attack, the adversary fnds a block A′ , where 
S(A′ ) is maximal over all blocks that are not descendants of PredD(A) (i.e., A′ is the "next 

170 



NIST IR 8460 ipd 
April 2023 

Fig. 38. Predictable bribe attacks against proof of stake. [328] 

(a) Chain-based 

(b) BFT-based 

Fig. 39. Undetectable nothing-at-stake attack. The attacker creates both B and B′ . [327] 

171 



NIST IR 8460 ipd 
April 2023 

6212 

6213 

6214 

6215 

6216 

6217 

6218 

6219 

6220 

6221 

6222 

6223 

6224 

6225 

6226 

6227 

6228 

6229 

6230 

6231 

6232 

6233 

6234 

6235 

6236 

6237 

6238 

6239 

6240 

6241 

6242 

6243 

6244 

6245 

6246 

6247 

6248 

6249 

6250 

best" block after A). Next, the attacker simultaneously tries to produce blocks B and B′ on 
top of A and A′ , respectively. Should they successfully produce block B, they broadcast it. 
If they successfully produce B′ , they broadcast B′ as well, so long as doing so would not 
cause a provable deviation. The two types of provable deviation occur when the same unit 
of stake is used to: 

1. Sign two blocks, B and B′, that have the same timestamp or 

2. Sign two blocks, B and B′ , where the timestamp of B′ is greater than that of B 
(t  

B′ > tB), but S(B) > S(Pred(B′)). This is a provable deviation because if S(B) > 
S   (Pred(B′)), an honest stakeholder would not produce B′ at time tB. 

Because the protocol is D-recent, whether a valid B′ can be produced on top of A′ using a 
given unit of stake depends on blocks between A′ and PredD(A′ ). As a result, each unit of 
stake provides another opportunity to produce a block on top of A′ . Checkpointing protects 
against this. 

The existence of this nothing at stake attack concretely lowers the security bounds of proof-
of-stake protocols with recency. For example, a protocol called Nakamoto-PoS has recency 
and is secure against adversaries with less than 1 

1+e  (≈ 26.9%) of the total stake [328]. In 
Nakamoto-PoS, the random seed is updated with every block and consists of the hash of the 
predecessor block with leader election using a VRF that takes the timestamp and previous 
block hash as input. Given that the randomness depends on the block and lacks consensus, 
the adversary can take advantage of the nothing-at-stake phenomenon to lower the security 
threshold. At the same time, this minimizes predictability, such that stakeholders only 
know if they can produce a block upon seeing the previous one. Note that, for predictable 
proof-of-stake systems like Snow White and Ouroboros Praos where the same random seed 
is reused for an extended period, asymptotic consistency guarantees match that of Bitcoin 
and Nakamoto Consensus, despite the nothing-at-stake problem [331, 332]. 

Interestingly, [328] showed how to adjust the Nakamoto-PoS protocol to create a family 
of chain-based proof-of-stake protocols that decouple the prediction window D from the 
security parameter, κ . This allows for dramatic reductions in the predictability window 
compared to algorithms like Ouroboros Praos and Snow White, where the epoch length 
(and thus prediction window) is proportional to κ . This family of protocols are defned by 
two parameters: c and s. The block hash used for randomness is updated every c blocks 
(so standard Nakamoto-PoS has c = 1), and only coins that are s blocks deep count toward 
the stake distribution used for leader election. Instead of following the longest chain rule, 
stakeholders use a fork-choice rule inspired by Ouroboros Genesis (Section 13.1.3). When 
comparing two chains, the stakeholder fnds the block where the two chains diverge and 
prefers the chain where s blocks were produced after the fork most quickly based on their 
reported timestamps. If fewer than s blocks have been produced after the fork, then the 
longest chain rule is used. As c increases, the fraction of adversarial stake that the proto-
col can tolerate increases toward 50%, though predictability increases as well. This family 

172 



NIST IR 8460 ipd 
April 2023 

6251 

6252 

6253 

6254 

6255 

6256 

6257 

6258 

6259 

6260 

6261 

6262 

6263 

6264 

6265 

6266 

6267 

6268 

6269 

6270 

6271 

6272 

6273 

6274 

6275 

6276 

6277 

6278 

6279 

6280 

6281 

6282 

6283 

6284 

6285 

6286 

6287 

6288 

of protocols can achieve any level of predictability by setting c to the desired predictabil-
ity window while simultaneously being secure for any confrmation depth κ by using an 
appropriate value for s. 

Recency is also problematic for proof-of-stake protocols that use the GHOST fork-choice 
rule (Section 11.2) because an adversary with little stake can dramatically increase the size 
of a particular subtree by trying to produce new blocks on top of every existing block in 
the subtree, magnifying the nothing-at-stake attack [327]. This subtree will grow expo-
nentially faster than the number of blocks produced by honest stakeholders, forcing honest 
participants to accept the attacker’s subtree. 

12.3. Wealth Concentration, Block Rewards, and Centralization 

In a proof-of-work cryptocurrency, miners face electricity costs and other operational ex-
penditures, which often requires them to sell the cryptocurrency on the open market to fund 
their operations. This has the benefcial side-effect of distributing the coins to the public in 
a relatively "fair" way. However, when proof of stake is used, these costs no longer exist. 
As a result, there is a perception – real or imagined – that proof of stake faces the problem 
of wealth concentration, or "the rich getting richer." This section explores the consequences 
and likelihood of such a wealth concentration issue. 

In a proof-of-stake network, the resource used to provide Sybil resistance is the native as-
set of the system. As a result, the block reward schedule (i.e., the monetary policy of the 
network) has potential implications for the security of the network beyond that of similar 
proof-of-work schemes. It is conceivable that under some reward schemes, large stakehold-
ers are more likely to capture greater and greater shares of the total stake, whereas others 
do not encourage centralization in this way. Whether a particular reward scheme induces 
wealth concentration depends on the specifc consensus algorithm. There may be differ-
ences when delegation to stake pools is allowed, if offine stakeholders exist, if a minimum 
bond must be posted in order to stake, and so on. Different studies investigate different 
models, and this remains a relatively understudied area, so care must be taken when trying 
to draw conclusions regarding the problem of wealth concentration. 

In one study on this issue, Fanti et al. defne the notion of equitability, which quantifes 
the degree to which a stakeholder’s share of the total stake at some point in the future can 
change under a given reward function compared to their initial investment [333]. When 
a reward function is more equitable, the variability in this stake fraction should be small. 
The model used in [333] assumes that all stake is always online and available to produce a 
block when elected and that all rewards are reinvested into staking. When this is the case, 
they found that: 

• The rich do get richer because larger stakeholders have lower variance in their invest-
ment returns than small ones, which allows their stake to compound. Allowing stake 
pools can lower this variance and, thus, the impact of compounding wealth. 

173 



6290

6295

6300

6305

6310

6315

6320

6325

6289 

6291 

6292 

6293 

6294 

6296 

6297 

6298 

6299 

6301 

6302 

6303 

6304 

6306 

6307 

6308 

6309 

6311 

6312 

6313 

6314 

6316 

6317 

6318 

6319 

6321 

6322 

6323 

6324 

6326 

6327 

NIST IR 8460 ipd 
April 2023 

• A large initial stake should be allocated in order for rewards to be more equitable. 
That is, the block reward should be small relative to the initial stake. 

• The most equitable reward function is a geometric reward function where a constant 
fraction of the total stake is emitted at each block because rewards are smallest when 
the total system stake is smallest. Rewards then grow proportionally to the total 
system stake, thus bounding the wealth-compounding impact of each block. This 
implies an ever-increasing infation rate. A constant reward function resulted in low 
equitability, and a decreasing reward function was even worse. 

• Strategic behavior, such as selfsh staking, exacerbates equitability issues more under 
proof of stake than under proof of work due to this compounding effect (even before 
considering predictability issues, as discussed in the previous section). Even the geo-
metric reward function failed to mitigate the impact of compounding in the presence 
of selfsh stakers. 

Rosu and Saleh arrive at very different conclusions under a similar model but where the 
time horizon is infnite rather than fnite [334]. They argue that while it is true that larger 
stakeholders are more likely to be elected and thus increase their share of the total stake, 
their share is decreased by an even larger amount when they are not elected. The result 
of these two competing forces is that a stakeholder’s share is not expected to change over 
time from its initial value. While a geometric reward may minimize the variance of a 
stakeholder’s share of the total stake over a fnite period, it has high variance over large time 
periods and leads to wealth concentration in the limit. Contrary to [333], Rosu and Saleh 
predict that constant and decreasing reward functions induce a stable wealth concentration. 
Both analyses agree that a large initial stake total results in more stability for stakeholder 
shares. 

Irresberger also investigated the evolution of share distributions resulting from different 
reward functions [335]. In this model, not all coins are actively staked, and participants 
must choose to either stake their coins or have them available for spending. Under these 
circumstances, the geometric reward schedule (called "constant" in [335]) results in greater 
centralization of stake than a dynamic reward schedule that targets a specifc participation 
rate in consensus. That is, the least centralizing reward scheme is one that picks a certain 
number of stakers and increases the rewards when there are fewer or decreases rewards 
when there are surplus stakers. However, the difference between the geometric rewards and 
dynamic rewards was small as long as the geometric infation rate remained low (1-5%). 
When block rewards decrease over time, the number of staking nodes tends to decrease as 
well and lead to signifcant wealth centralization. 

The idea of having a dynamic reward schedule that adjusts in order to target a specifc 
number of block producers has other advantages. In particular, because the capital used 
for staking is fairly liquid, the return on investment to staking must be competitive with 
alternative on-chain uses for that capital, such as collateralized lending protocols (i.e., de-

174 



6330

6335

6340

6345

6350

6355

6360

6365

6328 

6329 

6331 

6332 

6333 

6334 

6336 

6337 

6338 

6339 

6341 

6342 

6343 

6344 

6346 

6347 

6348 

6349 

6351 

6352 

6353 

6354 

6356 

6357 

6358 

6359 

6361 

6362 

6363 

6364 

6366 

6367 

6368 

NIST IR 8460 ipd 
April 2023 

centralized fnance [DeFi]) [336, 337]. If yields from these alternatives become higher than 
the yield from staking, "bank runs" can occur, where a signifcant number of stakers "un-
stake" their coins at around the same time, leading to a collapse in the security level of the 
system [336]. This is an especially signifcant concern in systems with decreasing block 
rewards or low infation levels. A dynamically adjusting staking yield or a withdrawal de-
lay for "unstaking" a participant’s coins (as is done in Ethereum 2.0, discussed in Section 
13.2) can help prevent this collapse. Interestingly, [337] found that both wealth concentra-
tion effects and the security risk from higher yield lending can be mitigated using staking 
derivatives. Consider a (fctional) asset, STK, that is used in a proof-of-stake system. A 
staking derivative is a synthetic asset, say, sSTK, that a staker can acquire while borrowing 
against their staked STK tokens. For the stakeholder to recover their STK and any block 
rewards they have earned from staking, they must buy back the STK with sSTK through an 
on-chain smart contract. Unfortunately, the positive results in terms of wealth distribution 
and security only hold when there is a non-negligible risk of having one’s stake slashed, 
which is also undesirable. 

Thus far, reward schemes have only been discussed for chain-based proof-of-stake schemes, 
where only a single stakeholder ultimately produces a block in a given time slot. For BFT-
based proof-of-stake schemes, where an entire committee of stakeholders are involved in 
producing each block, incentive design becomes even trickier, as some of the committee 
members may be faulty and undeserving of reward. It is possible to design a fair reward 
scheme for this kind of system, where fairness means that any honest stakeholder should 
receive a fraction of the total reward equal to their fraction of the total stake, but only if the 
network is synchronous [338]. Without synchrony, it is not possible to determine whether a 
committee member is Byzantine or experiencing network delays, so rewarding stakehold-
ers based on merit is not possible. Weighted voting – where the past behavior of faulty 
processes that do not send messages is used to assign them less infuence in the consensus 
process – can further improve fairness but also induces centralization [339]. 

Another complication with some of this research on wealth concentration is the assumption 
that every stakeholder is actively staking and online at all times. There are several reasons 
why this is unlikely to be the case. First, without some form of stake delegation or stake 
pools, most individuals are not likely to keep an application up and running at all times due 
to sheer inconvenience. Second, being a block producer will usually require running a fully 
validating node, which may be performance intensive and contribute to the inconvenience 
of participation. Third, even with delegation or stake pools, it is likely that some (perhaps 
small) portion of users will fail to delegate or join a pool. In particular, it is likely to 
be small stakeholders who fail to overcome the friction involved because their expected 
absolute returns to staking are small. Finally, individuals who are less fnancially well off 
are likely to need or want greater liquidity from their assets, so these individuals may not 
be able to stake in systems where they must post a bond to become a block producer. Of 
course, only those who actually stake will get block rewards, so to the extent that some are 
excluded from staking, it is likely the case that wealth will tend to grow more concentrated 

175 



NIST IR 8460 ipd 
April 2023 

Table 1. Percentages of eligible tokens actively staked as of April 4, 2023. Adjusted reward is 
the annualized reward rate adjusted by the expected infation of the network supply. [340] 

Network Reward Adj. Reward Staked Value Stake Ratio 
Ethereum 4.79% 5.01% $35.8 B 15.62% 
Cardano 3.23% 0.16% $9.5 B 68.04% 
Solana 6.47% –1.05% $8.3 B 72.83% 

BNB Chain 2.66% 8.3% $7.5 B 15.35% 
Avalanche 7.96% 2.32% $4.5 B 61.27% 
Polygon 7.34% 3.89% $4.1 B 39.93% 
Polkadot 14.34% 6.66% $4.0 B 47.03% 

Tron 3.77% 1.69% $2.6 B 42.97% 
Cosmos 23.1% 4.53% $2.6 B 66.97% 

Internet Computer (Dfnity) 7.41% –2.4% $1.8 B 73.2% 
NEAR 9.24% 4.19% $1.0 B 45.34% 
Tezos 5.32% 0.92% $774 M 72.41% 

6369 

6370 

6371 

6372 

6373 

6374 

6375 

6376 

6377 

6378 

6379 

6380 

6381 

6382 

6383 

6384 

6385 

6386 

6387 

6388 

6389 

6390 

6391 

6392 

within these systems. Table 1 shows the percentage of eligible tokens that are actively 
staked in some of the proof-of-stake networks with the greatest total value staked as of 
April 4, 2023. 

This lack of universal staking suggests that stake pools may help reduce wealth concen-
tration effects that could otherwise result from proof of stake (though care must be taken 
to avoid "address malleability" attacks if doing so [341]). Of course, this creates the need 
for reward schemes that properly incentivize the creation of a decentralized network of 
stake pools, which is a non-trivial problem. In fact, a "fair" scheme that rewards pools pro-
portionally to their size/stake leads to an equilibrium with a single dominating stake pool 
[342]. Instead, [342] proposes a "cap-and-margin" reward scheme that has a Nash equilib-
rium resulting in the desired number of pools forming if participants are rational. If k stake 
pools are desired, the reward function caps the rewards for a pool once it reaches a size 
greater than 1 

k -th of the total stake in the system so that there is no longer an incentive for 
users to stake with a large pool. The reward function is also infuenced by the amount of 
stake contributed by the leader of the pool, such that the pool leader will get higher returns 
by contributing more of their own stake to the pool. This is intended to discourage Sybil 
attacks, where a single entity with low stake is a leader for many different pools. There is a 
parameter that controls a trade-off between this Sybil-resistance property and the egalitari-
anism of the system, such that more Sybil-resistant rewards imply a less egalitarian reward 
scheme. 

The egalitarianism of a system is a metric proposed in [343] based on the idea that a certain 
investment in capital to become a block producer should generate returns proportional to 
the capital invested. That is, in expectation, wealthier investors should not be able to gain 
disproportionate rewards compared to poorer investors. Egalitarianism is distinct from the 

176 



6395

6400

6405

6410

6415

6420

6425

6430

6393 

6394 

6396 

6397 

6398 

6399 

6401 

6402 

6403 

6404 

6406 

6407 

6408 

6409 

6411 

6412 

6413 

6414 

6416 

6417 

6418 

6419 

6421 

6422 

6423 

6424 

6426 

6427 

6428 

6429 

6431 

6432 

NIST IR 8460 ipd 
April 2023 

equitability metric mentioned earlier in this section. Equitability captures the idea that over 
a series of blocks, a stakeholder’s share of the total stake should not vary signifcantly from 
where it began. Egalitarianism, on the other hand, is about minimizing the variation in 
expected returns given an initial capital distribution. Stated differently, the randomness 
involved in equitability is over an execution of the protocol and how stake shares evolve, 
whereas the randomness involved in egalitarianism is over the distribution of wealth at the 
beginning of the protocol execution. Stake pools likely improve equitability by eliminating 
the penalty that comes from being offine but reduce the level of egalitarianism. 

Proof of stake is more egalitarian than ASIC-resistant proof of work, which is more egali-
tarian than proof of work using ASICs [343]. This refects the greater economies of scale 
that are possible under proof of work. In this respect, proof of stake has an advantage over 
proof of work in the likelihood of centralization, though egalitarianism does not quite cap-
ture the "rich getting richer" phenomenon the way equitability does. One reason for this is 
that the wealthy can afford to stake a much greater percentage of their assets than individ-
uals with fewer resources (who need more liquidity). Since the egalitarianism metric is the 
return on capital invested and not the ability to invest capital in the frst place, it does not 
account for this. Ultimately, the two Sybil-resistance mechanisms are simply different, and 
there is not a long enough history of deployment of either mechanism to determine whether 
one or the other is "better" at avoiding centralization. A few points of comparison are in 
order: 

• In both proof of stake and proof of work, incentives matter for security and de-
centralization. However, the specifc details of the incentives under proof of stake 
have greater signifcance and are less well understood. For instance, preventing the 
nothing-at-stake issue is easier when block rewards are small, but the research pre-
sented in this section is inconclusive regarding the infation schedule. 

• Proof of stake is far more dependent on the initial stake distribution for security than 
proof of work is. Achieving a good distribution is challenging both for technical 
reasons as well as a lack of understanding of what a "good" distribution would be 
in the frst place. One way to overcome this is to have a proof-of-work phase where 
the cryptocurrency is frst distributed "fairly" before switching to proof of stake. In 
practice, it is common for the cryptocurrency to be auctioned off when the system is 
initiated, but this is an inherently centralized process. 

• It is usually assumed that the Sybil-resistance resource (work or stake) is acquired 
by honestly paying for it. In proof of stake, this should increase the exchange rate 
of the asset and the cost of the attack (this price increase may raise the cost of the 
attack by 20-40%, depending on several factors [344]). However, there are ways 
for well-positioned malicious parties to acquire the resource for free or cheap. In 
proof of work, the physical hardware used for mining can be stolen (or the owners 
of the hardware coerced). Depending on the situation, the attacker may still need 
to pay for operational costs, such as electricity. In proof of stake, the private keys 

177 



6435

6440

6445

6450

6455

6460

6465

6433 

6434 

6436 

6437 

6438 

6439 

6441 

6442 

6443 

6444 

6446 

6447 

6448 

6449 

6451 

6452 

6453 

6454 

6456 

6457 

6458 

6459 

6461 

6462 

6463 

6464 

6466 

6467 

6468 

6469 

6470 

NIST IR 8460 ipd 
April 2023 

used for staking can be hacked or stolen (including from vulnerable smart contracts), 
at which point there are no ongoing costs to use the stake. Identifying targets for 
such attacks in proof of work can involve monitoring electricity usage to detect large 
mining farms. In proof of stake, some large stakeholders can be easily identifable: 
exchanges are likely to be large stakeholders and have the personal information of 
other large stakeholders. That said, it is likely easier to stake at signifcant scale 
without being detected than it is to mine undetected. On the other hand, the need for 
hardware in proof-of-work systems may add considerable friction for attackers that 
may result in the attacker being detected. 

Apart from these differences, the consequences of a concentration of wealth or consensus 
power in these networks can differ. For example, both Nakamoto Consensus and chain-
based proof of stake can recover from adversaries that gain a temporary majority of the 
Sybil-resistance resource, whereas BFT-based proof of stake is unable to recover [228]. In 
chain-based proof of stake, the spike in adversarial stake must be shorter than an epoch 
length in order to recover. Here, "recover" means that the ledger properties of persistence 
and liveness return after some period of insecurity. Of course, with proof of stake, any 
temporary majority can become a permanent majority if the majority behaves in any way 
that does not result in their stake being slashed. 

Slashing is one of the biggest advantages of proof of stake compared to proof of work. 
Consider a situation where a powerful adversary manages to acquire a majority of the 
Sybil-resistance resource and has the capital to maintain this advantage for a while. For a 
proof-of-work system to survive, the proof-of-work algorithm must be changed in a hard 
fork. If the network used an ASIC-resistant algorithm when it forked, the attacker can use 
the same equipment to attack the hard-forked chain. If the algorithm was mined by ASICs, 
then a hard fork would resolve the attack by making all of the attacker’s hardware useless, 
but this nuclear option destroys all of the honest miners’ hardware as well. Proof of stake 
with slashing is better here because for the most serious kinds of misbehavior – such as 
a block producer equivocating and producing conficting blocks at the same height – the 
protocol can specifcally target the adversary’s stake for slashing. This is like burning down 
an entire mining farm in proof of work but avoids collateral damage. Slashing requires extra 
care in situations where the network has a hard fork that causes a chain split because two 
blocks may then be signed at the same height on both sides of the fork and slashed. 

13. Proof-of-Stake Protocols 

13.1. Chain-Based Proof of Stake 

13.1.1. Chains of Activity 

An early chain-based proof-of-stake proposal is the Chains of Activity (CoA) algorithm 
that was designed for the UTXO model [311]. Unlike many of the proof-of-stake protocols 
described later in this document, the security of CoA is heuristic rather than proven. It 

178 



NIST IR 8460 ipd 
April 2023 

6471 

6472 

6473 

6474 

6475 

6476 

6477 

6478 

6479 

6480 

6481 

6482 

6483 

6484 

6485 

6486 

6487 

6488 

6489 

6490 

6491 

6492 

6493 

6494 

6495 

6496 

6497 

6498 

6499 

6500 

6501 

6502 

6503 

6504 

6505 

6506 

borrows the follow-the-satoshi idea from the proof-of-activity hybrid algorithm described 
in Section 14.2 and introduced in Section 12.1.3. To "follow" a satoshi, one takes an index 
of the atomic unit of cryptocurrency, fnds the block in which that unit was minted, and then 
traces the transaction graph from its minter to the public key of whoever currently owns that 
unit. Given some suitable procedure for securely generating that initial index, validators 
are able to agree on a leader. The CoA protocol utilizes the following parameters: 

• There are 2κ satoshis minted in the system. 

• w ≥ 1 is a subgroup length. 

• L = κ ∗ w is a group length . 

• comb() is a function with L bit domain and κ bit range. It can be as simple as 
concatenating the inputs, but a variety of functions are possible. 

• G0 is the minimum block interval time. 

• T0 is the double-spending safety bound. 

• C0 is the minimal stake amount. 

• C1 is an award amount such that 0 ≤ C1 < C0. 

The protocol itself can be described by assuming that some leader with a publicly known 
identity has been elected via some mechanism, and they construct and sign block Bi. Each 
block Bi is associated with a deterministically generated, uniformly distributed bit bi (e.g., 
the least signifcant bit of a hash of Bi). For two blocks Bi and B j, the time gap between 
them must be at least | j − i− 1| ∗ G0, and a newly created block is considered invalid if the 
timestamp is too far in the future compared to the local clock’s time. It is possible that a 
leader elected for a given slot is inactive, in which case their slot would be empty and have 
no block associated with it. 

An epoch in CoA consists of L valid blocks Bi1 , ...,BiL being created. After an epoch is 
completed, the network forms a κ-bit seed SBiL = comb(bi1 , ...,biL ). The seed is then used 
to derive the identities of the block producers two epochs later (i.e., skipping L blocks) 
using follow-the-satoshi. Specifcally, if the next L blocks are BiL+1,BiL+2, ...,BiL+L, then 
the stakeholder elected to create block BiL+L+z is the one found by following the satoshi 
with index H(iL,z,SBiL ) for z ∈ {1, ...,L}. If a node is ever presented with multiple chains, 
the chain with the most blocks is canonical. 

CoA uses slashing to penalize bad behavior by forfeiting the stake of a malicious validator 
when misbehavior is detected. It may be the case that the satoshi used in leader election 
belongs to an unspent output with c < C0 coins, or below the minimum. In this case, the 
leader must submit an additional signature proving ownership of the difference, C0 − c 
coins, before creating their block, and at least C0 coins must be available to be slashed. The 
relevant outputs may not be spent for another T0 blocks after the newly created one. The 

179 



NIST IR 8460 ipd 
April 2023 

6507 

6508 

6509 

6510 

6511 

6512 

6513 

6514 

6515 

6516 

6517 

6518 

6519 

6520 

6521 

6522 

6523 

6524 

6525 

6526 

6527 

6528 

6529 

6530 

6531 

6532 

6533 

6534 

6535 

6536 

6537 

6538 

6539 

6540 

6541 

6542 

6543 

6544 

6545 

stakeholder who creates a block Bi may equivocate by creating another block at the same 
height, B′ i, but any other leader elected in the next T0 blocks can submit the conficting 
signatures as a special transaction in their block to forfeit C0 of the equivocator’s coins, 
awarding the leader who caught them with C1 of the forfeited coins. 

There is also a "three strikes" rule to exclude inactive participants. If an output txout0 
was selected by follow-the-satoshi and has not created a block three times in a row, then 
txout0 is no longer allowed to participate in the creation of new blocks (once the coins in 
txout0 are spent, the new UTXO can be used for staking). Should follow-the-satoshi select 
txout0, the slot is skipped and no block is produced. This helps CoA maintain liveness and 
performance even when users lose their coins or are offine for long periods. 

The leader election process in CoA leaves a few things to be desired from a security per-
spective. First, as discussed in Section 12.2, having leader assignments known in advance 
is a security risk. An adversary who knows that they are the leader for several consecu-
tive blocks may be able to perform predictable double-spends that succeed with certainty. 
Further, as discussed in Section 12.1.3, CoA results in leaders being publicly known in 
advance, so it cannot be secure against adaptive adversaries. This combination – but es-
pecially the predictability – can facilitate bribery attacks, though the slashing mechanism 
partially mitigates this risk. For a large epoch length L, this predictability problem becomes 
worse. On the other hand, a small L would make it easier for a malicious coalition to in-
fuence future leader elections. Finally, CoA requires a form of checkpointing to prevent 
long-range attacks. 

13.1.2. Snow White 

The frst provably secure proof-of-stake system designs were Snow White [313, 314] and 
Ouroboros Praos (Section 13.1.3). Snow White is secure against weakly adaptive adver-
saries, where corruption takes place with some delay, whereas Praos is secure against fully 
adaptive adversaries. Snow White follows the longest chain rule and is secure if there is 
an honest majority of online stake but requires longer confrmation times than Nakamoto 
Consensus (simulations show 34% to 43% more blocks are required). From a networking 
perspective, Snow White follows the "sleepy consensus" model, which is similar to syn-
chrony but allows nodes to go offine and start back up without losing security guarantees 
[28]. 

To address the issues of stake grinding and adaptive public key selection (to adversarially 
bias the random seed), Snow White uses a "two-lookback" mechanism, where each epoch’s 
committee and random seed are generated in two separate phases with each phase lasting 
for roughly κ blocks, where κ is a security parameter. In the frst phase, the prefx of 
the chain with the trailing 2κ blocks removed is used to determine the next consensus 
committee. In the second phase, randomness is extracted from the blocks in chain[−2κ : 
−κ] to generate a random seed used for leader election in the current epoch. By forcing the 
committee to be selected κ blocks before the seed, an adversary cannot adaptively choose 

180 



NIST IR 8460 ipd 
April 2023 

6546 

6547 

6548 

6549 

6550 

6551 

6552 

6553 

6554 

6555 

6556 

6557 

6558 

6559 

6560 

6561 

6562 

6563 

6564 

6565 

6566 

6567 

6568 

6569 

6570 

6571 

6572 

6573 

6574 

6575 

6576 

6577 

6578 

6579 

6580 

6581 

6582 

6583 

6584 

6585 

their public key based on the random seed to perform stake grinding. 

When an honest validator creates a block, they include some random data in it. As long as a 
single honest block is produced in chain[−2κ : −κ], randomness can be extracted from the 
chain in order to create the agreed upon random seed. This means that κ should be set such 
that the chain quality property can ensure at least one honest block over the κ block period. 
Snow White uses the FruitChains idea (Section 11.3) to improve chain quality. This setup 
still allows an adversary to bias the seed slightly by using strategically chosen data in its 
own blocks at the end of an epoch, but they cannot gain a signifcant long-term advantage 
as long as the same seed is reused for leader election a suffcient number of times in a row. 

The Snow White protocol frames its lookback parameters by clock time rather than blocks. 
Here, 2ω is a lookback parameter for determining the next committee, and it must be 
suffciently large that alert nodes will have a common prefx in their local chains by the 
start of an epoch. Similarly, ω is the lookback parameter for determining the next epoch’s 
random seed. Let extract pks() be a function that takes a chain and determines a committee 
from it as a set of public keys. Similarly, extractseed() takes a chain, outputs the random 
seed used for leader election, and may be as simple as concatenating the random data 
included in each block of the chain prefx. 

The e-th epoch takes place during the time interval [start(e),end(e)), and lasts for a dura-
tion of Tepoch time steps. An alert validator determines the committee for epoch e by fnding 
the last block of its local chain with a timestamp no later than start(e)−2ω . Denote the in-
dex of this block in the chain as L0. The committee is the output of extract pks(chain[: L0]). 
Similarly, at any time t ∈ [start(e),end(e)), alert validators determine the random seed by 
fnding the last block in its local chain whose timestamp is no greater than start(e) − ω 
and denote its index as L1. The random seed is the output of extractseed(chain[: L1]). At 
any time step t, a validator determines if it has been elected the block proposer by checking 
whether Hseede (pk, timestamp) < Dp, where Dp is a diffculty parameter, H is a random 
oracle, and pk is the public key of an elected committee member. In proof of stake, if a 
public key has m units of cryptocurrency associated with it, then the block proposer check 
can be Hseede (pk||i, timestamp) < Dp for i ∈ {1, ...,m}. The diffculty parameter is set such 
that a committee member is elected in a given time step with probability p. If elected, 
the validator extends its longest chain by signing a new block. Block timestamps must be 
strictly increasing, and validators reject blocks with timestamps in the future. The security 
of this scheme depends on the lookback parameters being suffciently far in the past that 
alert nodes will share common prefxes up to at least block L1 and that the parameters are 
suffciently spaced apart such that seede cannot be predicted until suffciently long after the 
committee is elected. 

Snow White uses checkpoints to handle posterior corruption attacks. New nodes or those 
offine for a long time need to be able to determine the correct history to believe in. They 
can do this by contacting a list of nodes (perhaps provided to them upon startup) – the 
majority of which are alert (i.e., honest and online) – and trusting the majority view in 

181 



NIST IR 8460 ipd 
April 2023 

6586 

6587 

6588 

6589 

6590 

6591 

6592 

6593 

6594 

6595 

6596 

6597 

6598 

6599 

6600 

6601 

6602 

6603 

6604 

6605 

6606 

6607 

6608 

6609 

6610 

6611 

6612 

6613 

6614 

6615 

6616 

6617 

6618 

6619 

6620 

6621 

6622 

6623 

terms of stake. Further, alert validators will always reject any chain sent to them that would 
reorg "too many" blocks. Specifcally, any chain that would revert κ0 = κ 

2 blocks is rejected 
by alert validators. 

Given a suffcient posterior corruption window, even a majority of corrupt stake before 
that window should not be able to harm consensus, which implies that security requires 
that cryptocurrency not change ownership "too quickly" (the stake shift issue described in 
Section 12.1.1). The posterior corruption window, W > ω , also relates to security against 
weakly adaptive adversaries. When an adversary knows the next seed used for leader elec-
tion, they must not be able to adaptively corrupt leaders for at least one epoch length. Of 
course, such adaptive corruptions are possible in the real world. Security requires that for 
any committee, the alert stake must outnumber the adversarial stake for a time window of 
W . The protocol ensures that if a validator is corrupted after time t +W , they can no longer 
infuence any of the chain’s history before time t. 

13.1.3. Ouroboros Family: Praos and Genesis 

Ouroboros Praos was the frst proof-of-stake protocol to be proven secure against fully 
adaptive adversaries [319]. Praos uses a VRF for adaptively secure leader election, which 
maintains unpredictability even against adversarially chosen keys. To address posterior 
corruption issues, Praos uses forward secure key-evolving signatures, where old keys must 
be securely erased after a short period (validators are trusted to perform this erasure, even 
though it may not be rational). This prevents an adversary from generating signatures for 
messages that were issued in the past. As with Nakamoto Consensus, Praos follows the 
longest chain rule and was proven secure in the bounded delay model assuming an honest 
majority of stake. Unlike with Nakamoto Consensus, Praos validators will not reorg more 
than k blocks of the chain, where k is a security parameter. 

Praos divides time into discrete slots, only some of which have blocks created in them. 
Empty slots allow honest validators to remain synchronized. This is analogous to how 
Nakamoto Consensus requires the expected block time to be signifcantly longer than the 
time it takes to propagate the block across the network. The canonical longest chain will 
have at most one block per slot, though there may be multiple leaders elected during a 
particular slot. The use of a VRF ensures that only slot leaders themselves are aware that 
they are a leader in a given slot, and other validators are not until they receive signed blocks 
that include a valid VRF proof from the legitimate leader. The leader election process in 
Ouroboros uses the following parameters: 

• R is the number of slots in each epoch. 

• f is the active slot coeffcient, or the chance that anyone is elected leader of a partic-
ular slot. 

• φ f is the function that – given a stake fraction αi for user i – outputs the probability 
of being elected leader: φ α

f (αi) = 1− (1 − f ) i . 

182 



NIST IR 8460 ipd 
April 2023 

6624 

6625 

6626 

6627 

6628 

6629 

6630 

6631 

6632 

6633 

6634 

6635 

6636 

6637 

6638 

6639 

6640 

6641 

6642 

6643 

6644 

6645 

6646 

6647 

6648 

6649 

6650 

6651 

6652 

6653 

6654 

6655 

6656 

6657 

6658 

6659 

6660 

6661 

6662 

• k is the maximum reorg depth. 

• η j is the random seed for epoch j. 

• s is the number of slots to check for chain density in Ouroboros Genesis. 

The protocol is defned over a sequence of L = ER slots, S = {sl1, ...,slL}, consisting of 
E epochs with R slots in each epoch. For each new epoch e j, the stakeholder distribution 
used to select leaders is drawn from the most recent block with timestamp up to ( j − 2)R 
in the local canonical chain. Using the stake distribution as of two epochs in the past helps 
ensure agreement and, as with Snow White, prevents an adversary from adaptively choos-
ing their public keys to aid in stake grinding. To generate the random seed for epoch e j, a 
validator takes every block from the chain belonging to the frst two-thirds of epoch e j−1, 
concatenates the block randomness VRF outputs and proofs into a value v, and computes 
the new epoch randomness η j as H(η j−1|| j||v). Stated differently, validators use the frst 
2R blocks of the prior epoch to determine the current epoch’s randomness using the entropy 3 
contained in each block from the leader election process itself. 

With the stake distribution and epoch randomness determined, slot leader assignment works 
as follows. A stakeholder Ui is independently selected as leader for slot sl j with probability 
pi depending only on their relative stake, αi. The active slot coeffcient, f , determines 
the relationship between the probability and the relative stake. Specifcally, pi = φ f (αi) = 
1− (1− f )αi . Since φ f (1) = f , f is the probability that someone with all of the stake is the 
slot leader. This function is unaffected by whether a party splits up their stake into multiple 
virtual identities or not. The threshold for a stakeholder Ui for epoch e j with a stake of αi

j is 
Ti

j 
= 2LV RF φ f (αi

j
), where LV RF is the length of the VRF output. Validators check whether 

they are slot leader by evaluating the VRF with the secret key associated with their stake, 
taking the slot number and epoch randomness η as input. They are elected to be a leader 
if the VRF output is beneath the threshold. The procedure described here is very similar to 
Snow White but protects against fully adaptive corruptions. It still allows some mild stake 
grinding via the hashing of VRF outputs, which an adversary may infuence, but the bias 
that this allows is bounded with suitable parameter choices. 

With leader election out of the way, the rest of consensus is simple: validators follow and 
build off of the longest valid chain they are aware of but refuse to overwrite more than 
k blocks of the chain. When a node is offine for a long time or is bootstrapped for the 
frst time, it must acquire the chain or a checkpoint from a trusted party. The Ouroboros 
Genesis protocol was proposed in an effort to remove this trusted component and allow 
a new node to bootstrap themselves securely from the genesis block without needing to 
acquire a trusted checkpoint [345]. 

Ouroboros Genesis is nearly identical to Praos but modifes the chain selection rule. Let 
the local best chain be Cmax. For each potential new chain Ci, if Ci forks from Cmax at most 
k blocks, and len(Ci) > len(Cmax), then set Cmax = Ci. If, however, Ci forks from Cmax 
by more than k blocks, validators apply a different rule. Let j be the highest slot index 

183 



6665

6670

6675

6680

6685

6690

6695

6700

6663 

6664 

6666 

6667 

6668 

6669 

6671 

6672 

6673 

6674 

6676 

6677 

6678 

6679 

6681 

6682 

6683 

6684 

6686 

6687 

6688 

6689 

6691 

6692 

6693 

6694 

6696 

6697 

6698 

6699 

6701 

NIST IR 8460 ipd 
April 2023 

where Ci and Cmax have a block in common and s be a parameter for the rule. Then, if 
len(Ci[0 : j + s]) > len(Cmax[0 : j + s]), set Cmax = Ci. That is, for some s-slot period after 
the point where the two chains diverge, validators compare the density of the two chains 
and prefer the one with more blocks shortly after the fork. During this short period after 
the fork, the two chains still share a view of how leader election should occur in the post-
fork slots. Intuitively, an honest majority at that time will work on the chain that ends up 
becoming canonical, so the canonical chain should be the one that contains more blocks 
during that period. 

This new chain selection rule is not without risk and may require re-parameterizing the 
system in ways that may be detrimental to security. This is because this new chain selection 
rule allows the following attack: 

1. An adversary acquires a substantial amount of stake but still less than half. This 
adversary runs a modifed version of the software that does not erase old private keys 
after evolving them. 

2. At the start of each epoch, the adversary checks which slots they will be eligible for. 
If the number of slots they are selected for suggests that there is a signifcant chance 
of producing more blocks than everyone else combined during some s-slot period of 
the epoch, the adversary will observe the production of blocks but avoid creating any. 
When the s-slot period is over, the adversary will have near certainty that they could 
have overwritten the chain during that period. Let the frst slot of this s-slot period 
be denoted sl j. 

3. The adversary may then wait any arbitrary period of time after the requirements 
from the prior step have been met. At any time, they may create an alternative chain 
forking from sl j. This alternative chain will include every block that the adversary 
is entitled to (they can do this because they did not delete their keys). Because the 
chain density in the s slots after sl j is higher in this attack chain, the network will 
reorg around the attack chain (even, say, 10 years after the fork occurred). 

This attack will be possible if there is any adversary who can acquire more blocks than 
everyone else for any s-slot period in the lifetime of the system. It would permanently 
eliminate the security of the system in a way that may be undetectable to honest parties 
until after the fact. Therefore, the security of the system relies on having a parameterization 
that would make it vanishingly unlikely for a party possessing a “realistic” amount of stake 
to ever be in a position where they can reorg the rest of the network during any s-slot 
period. In particular, this requires the product s ∗ f – that is, the number of blocks that 
the system expects to be produced over s slots – to be large. Increasing f is equivalent to 
lowering the expected block time, which reduces the security margin due to latency issues 
(see Section 10.2.1). Alternatively, increasing s necessitates increasing the epoch length 
R. Longer epochs mean that chain-based predictability attacks become more severe (see 
Section 12.2), and there is a longer period for stake shift to reduce the security margin. 

184 



6705

6710

6715

6720

6725

6730

6735

6702 

6703 

6704 

6706 

6707 

6708 

6709 

6711 

6712 

6713 

6714 

6716 

6717 

6718 

6719 

6721 

6722 

6723 

6724 

6726 

6727 

6728 

6729 

6731 

6732 

6733 

6734 

6736 

6737 

6738 

6739 

NIST IR 8460 ipd 
April 2023 

Ignoring this extra attack, Ouroboros Genesis comes extremely close to providing the same 
security guarantees as Bitcoin. However, it is still subject to posterior corruption if the 
erasure model does not hold, requires a secure initial distribution of stake, and relies on 
more advanced cryptographic primitives. 

There are several other protocols in the Ouroboros family, but the details of their oper-
ation are out of scope for this document. Ouroboros Chronos extends Genesis in order 
to remove the need for globally synchronized clocks and, thus, remove dependence on 
the Network Time Protocol (NTP) that proof-of-stake protocols typically require [346]. 
Ouroboros Crypsinous is a design that ensures that provably secure proof-of-stake leader 
election can occur in a system that includes privacy-preserving transactions such that it is 
not clear from the ledger how many coins are associated with each public key [323]. 

13.1.4. DFINITY 

The DFINITY consensus protocol is composed of four layers: identity registration, a ran-
domness beacon, the blockchain, and the notarization layer [347]. By combining these 
layers, DFINITY is able to offer some of the benefts of both chain-based and BFT-based 
proof-of-stake systems. 

Identity registration requires potential validators to make a deposit of stake associated with 
their public key so that a known and agreed upon number of parties exists in order to per-
form the necessary threshold cryptography utilized by the protocol and so that misbehavior 
can be punished by slashing these deposits. These registered keys are then used to set up the 
randomness beacon by creating a VRF out of the BLS threshold signature scheme. A group 
of validators must run a distributed key generation (DKG) protocol to create a group pub-
lic key for verifying the random outputs. To compute the random seed for round r, seedr, 
members of the group provide partial signatures over the round number and seedr−1. The 
partial signatures are aggregated into the fnal signature, which is then hashed to produce 
seedr. 

Since many users are expected to participate, the scalability of the system requires that 
only subsets of the registered users are involved in generating random beacon values (as 
well as participating in notarization, which is described later). A random seed is used as 
part of a cryptographic shuffe to select a list of m groups or committees. The committees 
run the DKG protocol, and the resulting public keys can be put in the genesis block. The 
round r committee used for the beacon and notarization, Gr, is the j-th listed group, where 
j = seedr mod m. The members of group Gr create the random seed used to select group 
Gr+1 . 

In practice, it is unlikely that all identities will be registered before the system starts up, and 
allowing dynamic participation is desirable. To do so, special registration and deregistration 
transactions can be used to join or exit the system. Time is divided into epochs, where the 
frst block of the epoch contains a summary of all the registrations or deregistrations from 

185 



6740

6745

6750

6755

6760

6765

6770

6775

6741 

6742 

6743 

6744 

6746 

6747 

6748 

6749 

6751 

6752 

6753 

6754 

6756 

6757 

6758 

6759 

6761 

6762 

6763 

6764 

6766 

6767 

6768 

6769 

6771 

6772 

6773 

6774 

6776 

6777 

6778 

6779 

NIST IR 8460 ipd 
April 2023 

the prior epoch. In this new block, a random seed is used for a cryptographic shuffe as with 
the static case, and new groups can perform DKG and issue another special transaction to 
register their aggregated group public key. These newly registered groups can participate 
and be selected two epochs after they have been registered. 

The blockchain itself is constructed using the probabilistic slot protocol and notarization. 
These layers assume that a group Gr and random beacon value seedr has been selected 
for round r. Any user U ∈ Gr may produce a block in round r, but the probabilistic slot 
protocol establishes a priority among group members and favors high priority blocks. A 
cryptographic shuffe is performed using seedr to establish a ranked order among group 
members, where a lower rank means a higher priority. There is also a weight function 
w(x) = 2−x, and a block B’s weight is w(B′s rank). The weight of a chain is the sum of the 
weight of its blocks. Similar to other longest chain protocols, the heaviest chain wins in 
DFINITY. 

As validators produce blocks in a round, they are sent to the group in charge of notarization 
for that round, which may be the same group. The notary waits for a protocol-specifed 
BlockTime to receive proposed blocks. After BlockTime, notary group members will sign 
all of the highest priority valid blocks that they saw in that time and continue to sign the 
highest priority blocks until the next round begins. The next round begins after observing a 
notarization for the current round, where a notarization is an aggregated threshold signature 
on the block. The notarized block is broadcast to the network, and validators will update 
their local chains, end the round, and have the random beacon output a seed for the next 
round. Because the notary is optimistic instead of a full consensus algorithm, it can notarize 
two conficting blocks at the same height. This is resolved through the chain selection rule’s 
weight function. The role of notarization is to make it impossible for an adversary to build a 
secret chain of notarized blocks, thus addressing nothing-at-stake issues and selfsh mining. 
It also establishes fnality for blocks, such that a fnalized block can never be undone. 

The fnalization procedure involves gathering notarized block proposals and placing them 
into buckets based on their round. Once a notarized block is found in round r, fnalization is 
scheduled for the blocks of round r − 1 in T time units. At that time, the heaviest common 
prefx ending at round r − 1 is fnalized. If at round r, all valid, notarized blocks Br−1 point 
to the same predecessor, Br−2, validators fnalize Br−2 and its predecessors. Each observer 
can specify their own T ; it need not be common. 

The security proof for DFINITY assumes a synchronous network and is secure for an hon-
est majority of stake against mildly adaptive adversaries. If ∆ is the maximum network de-
lay, then secure parameterization of DFINITY requires that BlockTime ≥ 3∆ and T ≥ 2∆. 
The DFINITY protocol was further analyzed in [348], which pointed out that if the highest 
priority member of a group is Byzantine, the communication complexity of the protocol 
is unbounded because they can send an unlimited number of highest-priority blocks, and 
honest validators are required to vote on all of them. To fx this, whenever an honest val-
idator sees two blocks from the same block proposer, the conficting signatures are used as 

186 



NIST IR 8460 ipd 
April 2023 

6780 

6781 

6782 

6783 

6784 

6785 

6786 

6787 

6788 

6789 

6790 

6791 

6792 

6793 

6794 

6795 

6796 

6797 

6798 

6799 

6800 

6801 

6802 

6803 

6804 

6805 

6806 

6807 

6808 

6809 

6810 

6811 

6812 

6813 

6814 

6815 

6816 

proof of misbehavior and lower the effective priority of the block. This fx increases DFIN-
ITY’s worst-case latency to 17∆. In the optimistic case that the actual network delay is 
small compared to ∆, the expected latency is 8∆. When the actual delay is ∆, the expected 
latency is 14∆ without equivocation. 

13.2. Ethereum 2.0 

The Ethereum network has recently undergone a transition from a pure proof-of-work sys-
tem using GHOST as the fork-choice rule (Section 11.2) to a hybrid system that combines 
proof-of-work and a proof-of-stake fnality layer (Casper FFG, described in Section 14.3.2) 
and, fnally, to a pure proof-of-stake system dubbed Ethereum 2.0 [349]. This section may 
not completely match the "fnal" design for Ethereum’s proof-of-stake system since it is 
under continual development and subject to change. 

The architecture of Ethereum 2.0 includes a beacon chain that handles random number gen-
eration and coordinates separate shard chains. Sharding is a scalability technique in which 
each shard is its own separate blockchain with its own state (described in further detail in 
Section 15). It allows nodes to only validate a fraction of the system’s total transaction 
throughput. The beacon chain stores validator information and establishes consensus over 
data related to the state of each shard while mediating cross-shard communications. To 
become a beacon chain validator, users must deposit 32 ETH into a staking contract so that 
their stake may be slashed in case of misbehavior. This amount was chosen to balance com-
peting factors: larger deposits prevent people from participating, whereas smaller deposits 
increase the overhead of verifying the chain. The beacon chain divides time into 12 second 
slots, and each epoch has 32 slots (6.4 minutes). An "eek" is 2,048 epochs (≈ 9 days). In 
each epoch, validators make attestations, which consist of: 

• A hash of what the validator considers the chain tip 

• A hash of what the validator believes is the correct shard block to include 

• The "source" and "target" hashes from Casper FFG (see Section 14.3.2 for details) 

• A signature from the validator over the above data 

These attestations are used to come to consensus using a combination of a variant of the 
GHOST fork-choice rule called Latest Message Driven (LMD) GHOST and Casper FFG 
[350]. LMD GHOST is a proof-of-stake variant of GHOST where, at each fork, nodes pre-
fer the fork that contains more total support from validators (based on the stake-weighted 
sum of attestations) while counting only the most recent message from each validator. The 
combined protocol (dubbed "Gasper") fnalizes blocks, keeps track of the latest justifed 
checkpoint using Casper FFG, and uses the LMD GHOST rule to determine the chain tip 
by treating the latest justifed checkpoint as the root of the chain. The LMD GHOST rule 
is shown in Figure 40. 

Validators are rewarded or punished based on their attestations. Correct attestations are 

187 



NIST IR 8460 ipd 
April 2023 

Fig. 40. LMD GHOST. The number in each block is the weight of a block when each vote has 
weight one (circles represent votes). The blue chain, ending with the block of weight three, is 
the canonical chain. [350] 

6817 

6818 

6819 

6820 

6821 

6822 

6823 

6824 

6825 

6826 

6827 

6828 

6829 

6830 

6831 

6832 

6833 

6834 

6835 

6836 

6837 

6838 

6839 

rewarded, whereas missed slots result in penalties. The interest rate for correct voting de-
pends on how many validators are participating. Fewer staking validators will raise the 
interest rate to entice more validators to secure the chain. If penalties accrue to the point 
where a validator has less than 16 ETH at stake, they are ejected from the validator set. Val-
idators who equivocate by voting for conficting blocks are slashed, lose some fraction of 
their deposit (substantially more than the penalty for missing a slot), are removed from the 
set of validators, and have the remainder of their deposit frozen for an extra four eeks be-
fore being allowed to withdraw their funds. During this waiting period after being slashed, 
the validator is penalized proportionally to how many other validators are slashed during 
that same period. This is to discourage correlated failures. Isolated, honest mistakes will 
not be penalized as heavily as active attacks using a large portion of the total stake. It also 
means that smaller validators take on less risk than larger ones and discourages validators 
from joining large stake pools. 

Validators may also voluntarily leave the system and are allowed to withdraw their funds 
after 256 epochs, or about one day. If a large number of validators try to exit at once, a 
queue will form and they will exit over time. This queuing prevents an adversary from 
creating many validators, performing some malicious action, and then exiting before they 
can be slashed. Validator registration is similarly rate-limited. 

Leader election in Ethereum 2.0 requires generating unpredictable random seeds using a 
commit-reveal mechanism inspired by a process called RANDAO. Ultimately, the random 
seed is used both to determine block proposers and to assign validators to committees. 
There is a beacon chain committee per slot, where one validator is the block proposer and 
the rest of the committee members issue attestations for the slot. There are also committees 

188 



6840

6845

6850

6855

6860

6865

6870

6875

6841 

6842 

6843 

6844 

6846 

6847 

6848 

6849 

6851 

6852 

6853 

6854 

6856 

6857 

6858 

6859 

6861 

6862 

6863 

6864 

6866 

6867 

6868 

6869 

6871 

6872 

6873 

6874 

6876 

6877 

6878 

NIST IR 8460 ipd 
April 2023 

of validators responsible for handling each particular shard chain. A cryptographic shuffe 
is performed on the validator list using the seed as input, and committees are consecutive 
slices of the resulting list. 

To prevent stake grinding via adversarial key selection, the validator set is fxed four epochs 
in advance. There is only a single block proposer per slot, and this proposer includes a 
randao mix into their block. The randao mix is a hash that is XORed into the seed to update 
it every slot. Specifcally, it is the hash of a BLS signature over the current epoch. This 
hash is unknown to other validators ahead of time, but there is only one valid submission 
due to the uniqueness property of BLS signatures. The randao mix from the beginning of 
epoch e is used to calculate the seed in epoch e + 1. Note that only the last proposer in an 
epoch has the ability to bias the seed by one bit, which they can do based on their decision 
to publish a block or not, potentially sacrifcing their reward by withholding a block. This 
process is shown in Figures 41a and 41b. 

To prevent even this single bit of bias that an adversary can induce, the output of the randao 
mix can be input into a verifable delay function (VDF). The VDF’s delay is parameterized 
to be longer than the time window where a validator could beneft from infuencing the 
random seed, or at least one epoch. This prevents the fnal block proposer from being able 
to know the eventual seed quickly enough to decide whether to withhold their own randao 
mix or not. The Ethereum 2.0 randomness generation process favors liveness over being 
unbiasable because of the possibility of using a VDF as well as the economic penalty that 
comes from sacrifcing the block it would take to manipulate the seed. As a result, the 
beacon chain can continue producing pseudorandom numbers even when many validators 
are partitioned from the network or offine. Contrast this with, say, DFINITY, where a 
group may fail to reach the threshold needed to produce the aggregate BLS signature, thus 
stalling the chain until the network is healed. 

13.3. DAG-based Proof of Stake 

13.3.1. Fantômette 

Fantômette is a DAG-based protocol that was designed to be game-theoretically secure un-
der the BAR model (see Section 1.4) so long as the non-altruistic stake is less than 1

3 of the 
total stake [353]. Specifcally, a coalition of less than 1

3 of participants are unable to sig-
nifcantly increase their rewards if the rest of the participants are altruistic, and a coalition 
of up to one-fourth of the participants being Byzantine are unable to lower the payoff for 
altruistic participants. It employs several cryptographic tools, such as publicly verifable 
secret sharing (PVSS), a verifable random function (VRF), and a verifable delay func-
tion (VDF). In Fantômette, the DAG is formed using two kinds of references: each block 
has a single parent block, denoted Bprev, but can also reference a set of other chain tips, 
which they call leaves and denote Blea f . Fantômette is inspired by the Phantom protocol, 
and its description utilizes much of the same language employed in Section 11.5.2. Some 
additional defnitions are used as well: 

189 



NIST IR 8460 ipd 
April 2023 

(a) Ethereum 2.0 randomness 

(b) RANDAO in Ethereum 2.0 

Fig. 41. Ethereum 2.0 Randao architecture. Note that 128 slots would take 25.6 minutes 
rather than 17, based on the proposed slot duration of 12 seconds. [351, 352] 

190 



NIST IR 8460 ipd 
April 2023 

6879 

6880 

6881 

6882 

6883 

6884 

6885 

6886 

6887 

6888 

6889 

6890 

6891 

6892 

6893 

6894 

6895 

6896 

6897 

6898 

6899 

6900 

6901 

6902 

6903 

6904 

6905 

6906 

6907 

6908 

6909 

6910 

6911 

6912 

6913 

6914 

6915 

• Ancestors(B) is the set of all blocks that are direct or indirect parents of B. 

• DirectFuture(B) is the set of blocks that directly reference B (that is, blocks where 
B ∈ B′ lea f for any B′). Contrast this with f uture(B), which includes blocks that indi-
rectly reference B as well. 

• The biggest common prefx DAG (BCPD) is the largest subDAG that more than half 
of the players agree on. 

• Double is the set of all blocks that use the same proof-of-stake leader election eligi-
bility proof but different contents. That is, these are equivocating blocks. 

Fantômette uses a leader election protocol called Caucus that is designed to be secure 
against fully adaptive adversaries and is similar to Algorand’s cryptographic sortition (Sec-
tion 13.4.2). To be considered during the leader election process, participants are required 
to post a security deposit that may be slashed if misbehavior is detected. Caucus has four 
steps: 

1. Commit. Participants must commit to their VRF secret key, sk, by issuing a special 
commit transaction, txcom, that specifes their corresponding public key pk. These 
commitments are appended to a list of commitments, c, that is part of the system’s 
public state, statepub. After being added to c, a participant must wait for some fxed 
number of protocol rounds, xwait , before they may be elected as leader. The added 
waiting time maintains unpredictability and prevents the adversary from grinding 
through adversarially chosen keys. Denote the round that a participant issued txcom 
as rnd joined . 

2. Update. This step is run only on the frst round, where rnd = 1. A certain threshold 
of participants must have successfully committed to the leader election. At this point, 
the participants run a coin-tossing protocol (using a PVSS) to generate a random 
value, R1, and then update the system state to statepub = (c,R1). 

3. Reveal. Participants check their own eligibility in each round where rnd > 1. Let 
yrnd = V RFsk(Rrnd), nrnd be the number of eligible participants that have waited 
enough rounds since their commitment round, and target = Hmax 

n . A participant is 
rnd 

eligible if H(yrnd) < target. If a participant discovers that they are eligible, they is-
sue a special reveal transaction, txrev, that includes yrnd and prnd = psk(Rrnd), where 
prnd is the VRF proof. 

4. Verify. When a participant sees a transaction txrev from participant i, they check 
whether Veri f yV RF(Rrnd,yrnd, prnd) = 1 and that rnd joined > rnd − xwait . If so, then 
the public randomness is updated to Rrnd+1 ← Rrnd ⊕ yrnd , and the verifcation is 
considered a success. Otherwise, the public state remains unchanged. 

In some rounds, there will not be any elected leader, or an adversary is elected but 
does not issue a txrev. If no participant reveals txrev in a given round, the public 

191 



6920

6925

6930

6935

6940

6945

6916 

6917 

6918 

6919 

6921 

6922 

6923 

6924 

6926 

6927 

6928 

6929 

6931 

6932 

6933 

6934 

6936 

6937 

6938 

6939 

6941 

6942 

6943 

6944 

6946 

6947 

6948 

6949 

6950 

6951 

NIST IR 8460 ipd 
April 2023 

randomness is updated as Rrnd ← V DF(Rrnd). If an honest participant fnds that they 
are not eligible in the reveal phase, they immediately begin computing the VDF. If 
they have not seen a valid txrev by the time the VDF is computed, they re-check their 
eligibility using the new VDF output as Rrnd . This maintains liveness. 

There may also be more than one valid txrev. In this case, the winning leader can be 
the participant whose yrnd is the lowest. 

The Caucus protocol may be modifed in order to improve fairness by ensuring that the 
same participant is not elected leader a disproportionate number of times. When computing 
the target, the system may use nrnd 

2 
+1 instead of nrnd . In this case, the verify step would 

add a rule that the participant was not leader in the prior nrnd−1 rounds.2 

The basic idea behind Fantômette is that participants use their stake to bet on the block that 
they believe has the highest score, where a block is considered a bet on its ancestor set, 
while simultaneously demonstrating that they are well-connected and honest by including 
other leaf block references. 

Fantômette employs a distributed checkpointing scheme in order to fnalize blocks. Begin-
ning from the genesis block, a candidate for fnalization is a block that bets on the genesis 
block or specifes the genesis block as its parent. Candidate blocks have a rank, where this 
frst set of blocks (with the genesis block as parent) belongs to rank rk = 1. In a system 
with n participants, a block B is a witness for candidate block C if 2n participants have bet3 
on C when considering the set past(B) ∪{B}. In this case, C is said to be justifed. If, in 
turn, a block B2 is a witness of B, it is said to be a second witness of C. When a block B 
bets on a second witness with rank rk, then B is considered a candidate for rank rk + 1. As 
described, this procedure requires a fxed set of participants and would require adjustment 
to allow participants to join or leave during the checkpointing process. 

Fantômette’s fork-choice rule calculates the score of a leaf block B as the sum of the number 
of references made by each block in past(B), except for equivocating blocks (those in the 
set Double). To decide which block to bet on, a validator computes the score of each block 
and sets the parent reference as the highest scoring leaf block. More formally, given a DAG 
G: 

1. w ← 0/ 

2. For B ∈ Leaves(G) do: for B′ ∈ past(B) \ Double do: w[B′ ] = |B′ [Blea f ]| 

3. CW ← argmaxB∈lea f (G)w(B) 

4. In case of a tie, choose the block with the smallest hash: B ← argminB∈CW H(B), and 
return B. 

After computing the winning block B based on the fork-choice rule above, the validator 
checks their most recent second witness block and, to avoid long-range attacks, ensures 

192 



NIST IR 8460 ipd 
April 2023 

6952 

6953 

6954 

6955 

6956 

6957 

6958 

6959 

6960 

6961 

6962 

6963 

6964 

6965 

6966 

6967 

6968 

6969 

6970 

6971 

6972 

6973 

6974 

6975 

6976 

6977 

6978 

6979 

6980 

6981 

6982 

that there is a candidate block associated with it in Ancestors(B). They then check whether 
they are eligible using the VRF and, if so, produce a block with B as the parent and every 
other leaf they see as a reference. The block B is considered valid if: 

1. Bprev = ForkChoiceRule(past(B)). That is, B bets on the block that the fork choice 
rule requires based on B’s view of the DAG. 

2. The creator of block B successfully proves their eligibility. 

3. If a witness block exists in past(B), then there is also a witness block in Ancestors(B). 
In other words, a participant may not bet on a non-justifed block if they are aware of 
a justifed one. 

4. If B bets on a second witness block Bs, then B also bets on a block in past(Bs). That 
is, Ancestors(B) ∩ past(Bs)  = 0./ 

Incentivization in Fantômette uses a function inspired by Phantom that labels each block as 
a winner, a loser, or neutral. If the fork-choice rule selects a block B, then B and blocks in 
Ancestors(B) are labeled as winners. A block that bets on a winner is neutral, and winning 
and neutral blocks in DAG G form BlueSetG. Similar to Phantom, for a parameter k, a block 
B where |anticone(B) ∩ BlueSetG| ≤ k is labeled neutral. If |anticone(B) ∩ BlueSetG| > k, 
then the block is a loser. Specifcally, the labeling function with input a DAG G and output 
a labeling of the DAG M is: 

1. Set: 

• B ← ForkChoiceRule(G) 

• BlueSetG ← BlueSetG ∪{B} 

• M(B) = winner 

2. For Bi ∈ Ancestors(B) do: 

• BlueSetG ← BlueSetG ∪{Bi} 

• M(Bi) = winner 

• For B j ∈ DirectFuture(Bi) \ Ancestors(B) do: 

– BlueSetG ← BlueSetG ∪{B j} 

– M(B j) = neutral 

3. For Bi ∈ G \ BlueSetG do: 

• If |anticone(Bi) ∩ BlueSetG| ≤ k, then: 

– BlueSetG ← BlueSetG ∪{Bi} 

̸

193 



NIST IR 8460 ipd 
April 2023 

6983 

6984 

6985 

6986 

6987 

6988 

6989 

6990 

6991 

6992 

6993 

6994 

6995 

6996 

6997 

6998 

6999 

7000 

7001 

7002 

7003 

7004 

7005 

7006 

7007 

7008 

7009 

7010 

7011 

7012 

7013 

7014 

7015 

7016 

7017 

7018 

7019 

7020 

– M(B j) = neutral 

• else: M(Bi) = loser 

4. Return M 

Rewards are calculated over a period of some number of blocks, at which point the above la-
beling function is applied to the BCPD. To encourage participants to reference each others’ 
blocks and have the DAG be well-connected, the reward that a block provides is propor-
tional to the number of leaves it references: rwd(B) = |Blea f |∗c, for some protocol-defned 
constant c. There are also two constants for punishing misbehavior or poor connectivity: 
blocks labeled as losers will penalize their creator by pun, and malicious behaviors (like 
equivocation or not referencing one’s own blocks) are punished by bigpun. 

Fantômette’s reward scheme is incentive-compatible, so participants have the highest utility 
by behaving honestly. Recall that the validity of a block depends on it being the one chosen 
via the fork-choice rule based on its past set. In addition, rewards are proportional to the 
number of leaves referenced in the block, and the score of a block also corresponds to the 
number of leaves it references. Because the participant must follow the fork-choice rule, 
the only way they can pick another block is by reducing the number of leaves it references. 
However, this makes the block more likely to be labeled as a loser (as it will have a larger 
anticone) and decreases its reward if it is not. Participants can also withhold their blocks, 
but doing so means they will not be referenced as frequently and are less likely to be labeled 
as winners. 

13.3.2. Avalanche 

Avalanche is a leaderless protocol that provides a partial ordering of transactions via a 
transaction DAG [354]. It is typically associated with proof of stake but is agnostic to the 
Sybil-resistance mechanism (there is even a proposal for using IP prefxes for this purpose 
[355]). Avalanche – or rather, the Snowball protocol that it is based off of – operates rather 
differently from other algorithms described in this document. Nodes arrive at decisions 
based on repeatedly sampling other nodes for their opinion and then being steered toward 
a common view as rounds progress. This structure provides considerable effciency advan-
tages: there is only O(1) communication cost per round over an expected O(log n) rounds 
for a given node. 

In fact, [354] presents a family of "Snow" protocols that follow a similar structure. Of 
particular importance is the Snowball protocol, because Avalanche is actually composed of 
multiple Snowball instances organized over a transaction DAG, which reduces costs from 
logarithmic in the number of nodes to constant and results in very low latencies for trans-
action settlement. As with several other DAG-based protocols, the algorithm is framed as 
deciding between two different colors: red and blue. Essentially, Snowball can be consid-
ered a synchronous binary agreement protocol where the agreement property is relaxed to 
be probabilistic. 

194 



NIST IR 8460 ipd 
April 2023 

7021 

7022 

7023 

7024 

7025 

7026 

7027 

7028 

7029 

7030 

7031 

7032 

7033 

7034 

7035 

7036 

7037 

7038 

7039 

7040 

7041 

7042 

7043 

7044 

7045 

7046 

7047 

7048 

7049 

7050 

7051 

7052 

In Snowball, a node will repeatedly sample a constant number k of other nodes on the 
network until it has suffcient confdence that the network is consistent. There are two 
relevant security parameters – α and β – that are decision-making thresholds employed in 
the algorithm. Nodes also maintain some internal state for keeping track of their confdence 
in deciding on a color. Specifcally, d[R] and d[B] are counters that are incremented each 
time a round of sampling results in their respective color receiving a threshold α of votes 
(where α > ⌊2 

k ⌋). An additional counter, cnt, is incremented each time a round of sampling 
fails to change the node’s preference to the other color and is reset to one whenever the 
color preference switches. For a node to change its color preference, its confdence count 
in the alternate color must exceed the confdence count in its currently preferred color. That 
is, if the node currently prefers red, then it will switch to blue only when d[B] > d[R], and 
vice versa. A node will only consider a decision fnal on their current color when it has at 
least β consecutive rounds where the color preference was unchanged (i.e., when cnt ≥ β ). 
More formally, Snowball works as follows in order to decide between red and blue, where 
a node takes col0 ∈ {R,B,⊥} as input: 

1. Initialize state. 

• col := col0 

• lastcol := col0 

• cnt := 0 

• d[R] := 0 

• d[B] := 0 

2. While undecided, do: 

(a) If col =⊥, continue 

(b) K := Sample(k) 

(c) P := [Query(v,col) for v ∈ K] 

(d) ma j := f alse 

(e) For col′ ∈ {R,B}, do: 

i. If P.COUNT (col′ ) ≥ α , then: 

• ma j := true 

• d[col′ ]++ 

ii. If d[col′ ] > d[col], then: col := col′ 

iii. If col′ ̸= lastcol, then: 

195 



NIST IR 8460 ipd 
April 2023 

7053 

7054 

7055 

7056 

7057 

7058 

7059 

7060 

7061 

7062 

7063 

7064 

7065 

7066 

7067 

7068 

7069 

7070 

7071 

7072 

7073 

7074 

7075 

7076 

7077 

7078 

7079 

7080 

7081 

7082 

7083 

7084 

7085 

7086 

7087 

7088 

7089 

7090 

• lastcol := col′ 

• cnt := 1 

iv. Else if col′ = lastcol, then: cnt ++ 

v. If cnt ≥ β then ACCEPT(col′). 

(f) If ma j = f alse, then: cnt := 0 

Snowball is able to provide probabilistic consistency guarantees with failure probability 
ε (not unlike Nakamoto Consensus). Even if the network begins in a fully bivalent state 
(equal preference for each color), the random perturbations that occur due to sampling 
will cause the preferences to drift toward one color or the other by some amount δ . As 
δ increases, it becomes exponentially less likely that the minority value will overtake the 
majority. Consistency requires properly setting the parameters k, α , and β . The liveness √ 
guarantee provided by Snowball is such that if the number of adversarial nodes f ≤ O( n), 
then the protocol terminates with probability ≥ 1 − ε in O(log n) rounds. The number of 
rounds increases as the adversary controls more nodes, requiring an exponentially increas-
ing number as f approaches n 

2 (as with Nakamoto Consensus). 

Avalanche uses Snowball internally to decide between confict sets, or transactions that 
spend the same funds. When there are no double-spends on the network, a confict set 
contains just a single transaction. When clients issue transactions, they specify one or more 
parent transactions which form the edges of a DAG. The DAG improves effciency because 
voting for a particular transaction also counts as a vote on all of its ancestor transactions 
back to genesis. 

Let tx be a transaction that an Avalanche node is trying to decide on. The node will query 
a sample of its peers to ask about tx. Other nodes will only support tx if every trans-
action reachable from tx in the DAG is the preferred transaction in their respective con-
fict sets. Stated differently, a node will only vote yes on tx if ∀tx j ∈ Con f lictSet(txi), 
∀txi ∈ past(tx) ∪{tx}, txi is preferred over tx j. Should a threshold α of yes votes be re-
ceived, the transaction collects a chit. A node’s confdence in a transaction is the number 
of chits in the future set of that transaction, or transactions from which it is reachable in 
the DAG. As such, confdence increases as the DAG expands. Ties are broken in favor of 
the transaction that a node saw frst. The transaction recipient decides when to accept the 
transaction based on a threshold of β consecutive chits in its favor. 

This procedure is similar to that employed in the Tangle algorithm (Section 11.5.3). A 
crucial difference is that in Avalanche, confdence in a transaction is not based solely on the 
structure of the DAG but rather the accumulation of chits. This makes Avalanche resistant 
to certain attacks that Tangle-based systems are subject to, like parasite chain attacks, where 
the adversary creates large subDAGs to overpower the honest portion of the graph. Another 
protocol that is very similar to Avalanche is Fast Probabilistic Consensus (FPC) [356]. 
FPC assumes that nodes have access to some form of trusted randomness beacon, perhaps 

196 



NIST IR 8460 ipd 
April 2023 

7091 

7092 

7093 

7094 

7095 

7096 

7097 

7098 

7099 

7100 

7101 

7102 

7103 

7104 

7105 

7106 

7107 

7108 

7109 

7110 

7111 

7112 

7113 

7114 

7115 

7116 

7117 

7118 

7119 

7120 

7121 

7122 

7123 

7124 

7125 

7126 

7127 

through a distributed random number generation process. A round of the FPC protocol 
works in three steps with a different k queries to different nodes in each round. Replicas 
maintain a counter that is incremented in each round where the consensus value remains 
the same, and the protocol terminates for the node when this exceeds another threshold 
value. The three steps in a round are: 

1. Each node samples the beliefs of k other nodes. 

2. After sampling, the nodes run some kind of distributed randomness generation pro-
tocol to determine a (moving) threshold Xr where 0.5 < Xr < 1. 

3. Each node then chooses 1 if the number of nodes in their sample was greater than 
k ∗ Xr and 0 otherwise. 

The frst round has a separate initial threshold value for step two, but what is described 
above is for all other rounds. Because the random value is chosen after the sampling is per-
formed, even a nearly omniscient adversary (knowing everything except the future random 
value) will not know which threshold to attempt to sway the sample toward. In particular, 
this helps with speedy termination relative to Snowball when an adversary attempts to in-
terfere. The security threshold for FPC is atypical and approximately 38%, but the reasons 
are beyond the scope of this document. 

13.3.3. Parallel Chains 

The idea of composing a ledger out of m separate ledgers was discussed in the proof-of-
work context in Section 11.4. In that case, it was used to reduce the settlement latency 
of transactions. A similar approach for proof of stake was proposed in [357], where the 
composition of m chains is used to achieve nearly optimal transaction throughput. Unlike 
the proof-of-work case, this scales throughput rather than latency, and transactions can only 
appear on a single chain instead of multiple chains. Each chain shares a common genesis 
block, and the leader election procedure is executed independently for each chain but using 
the shared stake distribution across the entire system. 

The idea from [357] can be used with other chain-based proof-of-stake protocols but is 
described as the composition of m separate chains that operate using a modifed version of 
Ouroboros Praos (Section 13.1.3) that also adopts the Inclusive rule described in Section 
11.5.1. The use of the Inclusive rule means that this scheme runs m parallel DAGs, though 
a single linear chain is formed for each of the m DAGs by including blocks that would 
have otherwise been rejected by the longest chain rule. A combining procedure is used to 
take these m separate DAGs and form a single linearized ledger of transactions. Unlike 
many DAG protocols, this approach keeps separate graphs that grow more slowly and fork 
infrequently. Typical DAGs increase throughput by producing blocks rapidly and accepting 
frequent forks. 

Validators include references in their blocks to other blocks off of the main chain other than 

197 



7130

7135

7140

7145

7150

7155

7160

7165

7128 

7129 

7131 

7132 

7133 

7134 

7136 

7137 

7138 

7139 

7141 

7142 

7143 

7144 

7146 

7147 

7148 

7149 

7151 

7152 

7153 

7154 

7156 

7157 

7158 

7159 

7161 

7162 

7163 

7164 

NIST IR 8460 ipd 
April 2023 

the specifc parent reference, as is typical in DAGs. For a main chain C = B1,B2, ...,BL of 
blocks Bi, the Inclusive rule includes blocks outside of C into a single chain as follows: for 
Bi ∈ C, insert before Bi all blocks in past(Bi) \ past(Bi−1), where those blocks are sorted 
topologically and ties are broken via block hash. 

The parallel chains approach is to then perform a comparable procedure across all m chains, 
C1, ...,Cm. All blocks in all chains are frst put in order based on their respective slot index 
with ties broken based on their chain number c ∈ {1, ...,m}. The result is a sequence of S
blocks B1,B2, ...,BL. Then, ∀i ∈ {1, ...,L}, insert prior to Bi all blocks from i∈{1,...,m} Si ∩ 
{past(Bi) \ past(Bi−1)} sorted topologically (and breaking ties by block hash). Here, Si is 
the portion of chain Ci that is stable (i.e. , with blocks at the end chopped off to maintain 
a common prefx). Finally, based on this block ordering, transactions must be sanitized in 
order to remove those that are invalid. 

13.4. BFT-Based Proof of Stake 

13.4.1. Tendermint 

The Tendermint algorithm, which is an adaptation of the PBFT algorithm to proof of stake, 
is described in [358]. The original version had faws that were found and fxed in [359], 
and the latest version was analyzed and proven secure in [360]. The novelties of Tender-
mint as compared to PBFT are the use of gossip for networking and the elimination of 
the separate view change algorithm (similar to some of the algorithms from Section 5). A 
new leader is elected in each round as part of the normal processing rather than using the 
additional subprotocol described in Section 4.1. This improves Tendermint’s worst-case 
communication complexity from PBFT’s O(n4) to O(n3) because processes locally keep 
track of potentially decided values rather than exchanging all of the messages they have 
already delivered. Instead of requiring 2n validator signatures, as in PBFT, Tendermint re-3 
quires 2

3 of the total stake to sign off on blocks. For ease of exposition, this will sometimes 
be described as seeing 2 f + 1 signatures or messages. Unlike most other proof-of-stake 
algorithms, Tendermint’s reliance on PBFT makes it secure under partial synchrony rather 
than only in synchronous networks. Unlike PBFT, validators are not necessarily connected 
over a complete network but rather communicate via gossip over a peer-to-peer overlay 
network. 

Leader election follows a stake-weighted round-robin process, such that block proposers 
are selected proportionally to their stake. In Tendermint, a single block is created at a given 
chain height, but multiple rounds may be required to generate this block if replicas cannot 
agree on a value under a given leader. Each consensus instance is described by a chain 
height and round number, and all messages exchanged will include those values. Ten-
dermint uses PROPOSAL, PREVOTE, and PRECOMMIT messages (which correspond to 
their PBFT equivalents of PRE-PROPOSE, PROPOSE, and COMMIT, respectively), and 
each of these message phases has a corresponding timeout. 

198 



NIST IR 8460 ipd 
April 2023 

7166 

7167 

7168 

7169 

7170 

7171 

7172 

7173 

7174 

7175 

7176 

7177 

7178 

7179 

7180 

7181 

7182 

7183 

7184 

7185 

7186 

7187 

7188 

7189 

7190 

7191 

7192 

7193 

7194 

7195 

7196 

7197 

7198 

7199 

7200 

7201 

7202 

7203 

The PROPOSAL message includes the full block proposed, but the PREVOTE and PRE-
COMMITs just carry a block hash in order to save bandwidth. After receiving a PRO-
POSAL for value v, validators send a PREVOTE for it if valid (or a PREVOTE with a 
special nil value if invalid or timed out). Upon receiving PREVOTE messages for v signed 
by keys associated with more than 2

3 of the system’s stake, validators send a PRECOMMIT 
message for v (or PRECOMMIT with a nil value on timeout or if the replica has not seen a 
valid block with the given hash). Similarly, after receiving 2 f +1 matching PRECOMMITs 
in a given round, a correct process decides on that value. If multiple rounds are necessary at 
a given chain height, a correct round leader will propose the same value as the prior round 
leader if that value is valid. So far, this is just standard PBFT, but Tendermint also includes 
several locking variables in order to maintain safety across different rounds without a view 
change mechanism: 

• lockedValue is the most recent value with respect to a round number for which a 
PRECOMMIT has been sent. 

• lockedRound is the last round in which the validator sent a PRECOMMIT that is not 
nil. 

• validValue is the most recent possible decision value. validValue is the last value 
that a validator delivered 2 f + 1 times and can differ from lockedValue. 

• validRound is the last round in which validValue was updated. 

Leaders send PROPOSAL messages that include their local validValue if their validValue = 
nil. These messages include validRound, so other processes are informed about the last 
round in which the proposer observed validValue as a possible decision value. Other val-
idators then check the PROPOSAL against their own local lockedValue. A PROPOSAL 
is accepted if it is valid and either the round number in the PROPOSAL ≥ lockedRound 
or the PROPOSAL matches their lockedValue. Otherwise, they send a PREVOTE with nil 
value, which they also do if there is a timeout and they have yet to send a PREVOTE for 
the current round. This is timeoutPropose, which is triggered when a new round begins. 

After receiving the 2 f + 1 PREVOTEs on a valid PROPOSAL, a validator "locks" on that 
value (they set lockedValue and lockedRound before sending a PRECOMMIT if still in 
the prevote step and set validValue and validRound if in the prevote or precommit steps). 
Otherwise they send a PRECOMMIT to nil, which is also sent if a timer expires without 
having sent a PRECOMMIT in their current round. This is timeoutPrevote, and its timer 
begins when an honest validator sends a PREVOTE or receives 2 f + 1 PREVOTEs in a 
round. The block is committed if the replica sees a valid PROPOSAL and 2 f + 1 matching 
PRECOMMITs, and validators move on to the next height of the chain. At any point, if a 
validator sees f + 1 messages of the same kind for a round greater than the local round, the 
validator advances to that round’s proposal step. 

Processes "unlock" a block only when the block is committed or when seeing 2 f + 1 PRE-

̸

199 



7205

7210

7215

7220

7225

7230

7235

7240

7204 

7206 

7207 

7208 

7209 

7211 

7212 

7213 

7214 

7216 

7217 

7218 

7219 

7221 

7222 

7223 

7224 

7226 

7227 

7228 

7229 

7231 

7232 

7233 

7234 

7236 

7237 

7238 

7239 

7241 

NIST IR 8460 ipd 
April 2023 

VOTEs on a conficting block (note that a vulnerability, discussed below, existed at this 
step until corrected in [359]). When locked on a value, an honest validator only sends 
messages for that value. There is also a timer to prevent blocking on the fnal precommit 
step, timeoutPrecommit, where the timer begins upon receiving any 2 f + 1 PRECOMMIT 
messages in the current round, regardless of whether the values confict. If it expires, they 
move to the next round. 

The original Tendermint protocol had a potential safety violation during the unlocking 
process. Say that a validator is locked on a block B. If that validator sees 2 f + 1 support for 
block B′, they set lockedValue = nil. However, the validator must ensure that B ̸= B′ at this 
step so that the following scenario does not occur: the validator locks on B in round r and 
then sees 2 f + 1 support for B again in round r ′ > r, which then unlocks B but fails to lock 
it again. In this case, some validators may commit to B, while others commit to B′ ̸= B. 

Tendermint is unable to have light clients work the "standard" way that clients would work 
for PBFT. Clients do not query validators directly and, thus, cannot check for f + 1 match-
ing answers. Furthermore, the proof-of-stake validator set is constantly changing, and a 
light client needs an accurate view of this set in order to check the validity of signatures on 
blocks. An approach to creating Tendermint light clients was described in [361]. 

A variant of the Tendermint algorithm, Tenderbake, was designed to be secure even with 
bounded message buffers [138]. As it stands, validators need to store messages for a po-
tentially unbounded number of rounds. Tenderbake has the additional advantage of termi-
nating more quickly than Tendermint, but it loses the optimistic responsiveness that comes 
with partial synchrony. 

13.4.2. Algorand 

Algorand uses proof of stake and cryptographic sortition (using a VRF) to elect a com-
mittee of validators who then execute a novel single-shot Byzantine agreement algorithm 
called BA⋆ [362]. A primary beneft of the algorithm is that forks are (effectively) impossi-
ble and, thus, transactions are fnalized (almost) immediately upon inclusion in a block. Al-
gorand’s liveness relies on a "strong synchrony" assumption, where most honest users will 
see the messages of most other honest users within a known time bound. Safety requires 
"weak synchrony," where the network can be asynchronous for a lengthy but bounded in-
terval, but must then be followed by a suffciently long synchronous period (confusingly, 
this is distinct from the weakly synchronous model introduced in Section 1.5). A variant of 
the Algorand protocol can also be modifed to be secure in the sleepy model, though with 
a performance penalty [363]. 

Algorand can scale to a large number of validators by running each step of BA⋆ with a 
committee of only a subset of validators large enough to ensure that no selected committee 
would exceed the security threshold over the lifetime of the system (with high probabil-
ity). Messages from the BA⋆ execution are gossiped across the network instead of sent 

200 



NIST IR 8460 ipd 
April 2023 

7242 

7243 

7244 

7245 

7246 

7247 

7248 

7249 

7250 

7251 

7252 

7253 

7254 

7255 

7256 

7257 

7258 

7259 

7260 

7261 

7262 

7263 

7264 

7265 

7266 

7267 

7268 

7269 

7270 

7271 

7272 

7273 

7274 

7275 

7276 

7277 

7278 

7279 

7280 

7281 

point-to-point between elected committee members. The BA⋆ algorithm does not require 
participants to maintain any private state other than their private keys, and participants are 
expected to only send a single message, which allows them to be immediately replaced 
after sending their message. Each step of BA⋆ has a new set of committee members. Com-
bined with the VRF for sortition, this makes the system adaptively secure and resistant to 
targeted denial of service on committee members. 

The sortition process provides each selected member with a priority, which can be com-
pared between participants. Since multiple validators may be selected to propose blocks, 
priority determines which one should be adopted. Validators initialize BA⋆ with the highest 
priority block they have seen, and BA⋆ then executes in repeated steps. Each step begins 
with sortition to determine the committee members, and elected members broadcast a proof 
of their selection over the network. These steps are then repeated until there are enough 
participants in the committee to reach consensus. Each validator checks whether they were 
elected for the next step as soon as the previous step ends. 

The sortition process uses a role parameter that specifes the particular roles that a partic-
ipant may play in the consensus process (e.g., block producer, committee member in step 
two, etc.). For any given role, an expected number τ of participants are selected. A single 
user may be elected as multiple sub-users for a given role based on their stake (i.e., an en-
tity with a large stake may count as multiple members of a single committee). Let seed be 
a random seed to be discussed shortly, w be the number of atomic units of cryptocurrency 
owned by a particular user, W be the total stake in the system, p = τ 

W be the probability of 
a particular unit of stake being selected, and the probability that exactly k of the user’s w 
stake units are selected is binomially distributed and denoted as B(k;w, p). Users compute 
(y,π) = V RFsk(seed||role) and then use the pseudorandom value y to determine how many 
sub-users they control that were elected. To do so, the interval [0,1) is divided into subin-
tervals I j = [∑

j 
k=0 B(k;w j

, p),∑ +1
k=0  B(k;w, p)) for j ∈ {0,1, ...,w}. If ylen is the length of the 

output of the VRF, then a user has j sub-users selected if the value y ∈ I j
2ylen . The priority 

of a block produced by sub-user i for i ∈ {1, ..., j} is equal to H(y||i). 

In Algorand, a new block is appended to the blockchain in each round, and each round r has 
a corresponding random seed, seedr. When selected to be a block proposer in round r − 1, 
validator i also proposes a seed to be used for round r as (seedr,π) = V RFsk (seedr−1||i r) 
and includes the seed in their proposed block. Once there is agreement on a block for round 
r − 1, all validators will agree on the seed to be used for round r. If a proposed block does 
not contain a valid seed (or the block is otherwise invalid), participants treat the block as 
though it were empty and compute seedr = H(seedr−1||r) for some hash function H. 

To be secure, ski must be chosen suffciently far in advance of its use in determining a seed, 
such that the seed will remain pseudorandom even if i is malicious. To prevent the adversary 
from manipulating the sortition process, the seed used for sortition itself is changed only 
every R rounds, such that the round r seed used in sortition is actually seedr−1−(r mod R). 
For some timing parameter b, round r’s sortition uses the ski’s and their associated stake 

201 



NIST IR 8460 ipd 
April 2023 

7282 

7283 

7284 

7285 

7286 

7287 

7288 

7289 

7290 

7291 

7292 

7293 

7294 

7295 

7296 

7297 

7298 

7299 

7300 

7301 

7302 

7303 

7304 

7305 

7306 

7307 

7308 

7309 

7310 

7311 

7312 

7313 

7314 

7315 

7316 

7317 

7318 

7319 

7320 

7321 

from the last block created b-time before block r − 1 − (r mod R). Security requires that 
there be at least one honestly produced block in this b-timed interval. By keeping b large, 
network adversaries are less likely to be able to keep the network partitioned long enough 
to produce all empty blocks and control the seed. On the other hand, a longer b leads to 
higher stake shift and correspondingly lowers the security margin. 

Algorand selects up to τproposer proposers via sortition, so multiple blocks may be produced 
in a round. Validators wait for some short period of time (on the order of 10 seconds) to 
see blocks in a round before beginning BA⋆ – keeping the highest priority block they have 
seen in a round – and ignore blocks with a lower priority. When the time is up, they start 
BA⋆ with the highest priority block as input or an empty block if none were seen. 

BA⋆ has two phases, the frst of which has two steps, and the second of which has at least 
two steps. In the frst phase, one of the proposed blocks is chosen to compete against an 
empty block in the second phase, which runs binary Byzantine agreement. Each step has 
an expected number of participants τstep, except for the fnal step which has an expected 

2 
τ f inal . The voting threshold at each step is then either T ∗ τstep or T ∗ τ f inal , where T > 3 is 
the same at all steps except potentially the fnal step. 

The CommitteeVote() procedure runs sortition for the "committee" role of a given round 
and step and then votes on a block hash taken as input. The CountVotes() procedure 
takes the votes for the current round and step and outputs the block hash of the frst 
proposed block to gather the appropriate threshold of votes. At each step, validators run 
CommitteeVote() on some block hash, and everyone waits for a specifed amount of time 
to count votes before timing out if enough votes are not accumulated. 

In the frst step of the frst phase, committee members vote for the block hash that BA⋆ was 
initially passed. In the second step, members vote for either a block hash that received at 
least T ∗ τstep or an empty block if the voting threshold is not reached. At the end of this 
phase, honest participants will have no more than a single non-empty block to consider in 
the next phase. An empty block is more likely to be chosen if the highest-priority block 
proposer was malicious and equivocated or if the network is not synchronous. 

In the second phase, a binary BA algorithm is executed in order to have validators agree 
on a choice between an empty block and the hopefully non-empty block output from the 
frst phase. Should a validator receive the threshold of votes needed for a block hash in 
any step of this phase, they will vote for that block hash if they are elected as a committee 
member for the next step. On the other hand, the network may not be synchronous, or 
an adversary may allow a particular validator to see enough votes to decide on a block 
while preventing other validators from seeing enough votes before they time out. In this 
case, the algorithm must ensure that votes in the next step do not result in a different block 
being decided by different validators, so members’ next step votes are of a specifc value 
that could have been returned in a given step, and each step can only return one particular 
value. In addition, whenever a participant returns a block from the protocol, they continue 
to vote for it for the following three steps in order to help that value gain enough votes in 

202 



NIST IR 8460 ipd 
April 2023 

7322 

7323 

7324 

7325 

7326 

7327 

7328 

7329 

7330 

7331 

7332 

7333 

7334 

7335 

7336 

7337 

7338 

7339 

7340 

7341 

7342 

7343 

7344 

7345 

7346 

7347 

7348 

7349 

future steps. Specifcally, given a parameter MAXST EPS, the binary Byzantine agreement 
protocol works as follows while step < MAXST EPS: 

1. Check for agreement on block_hash: 

(a) CommitteeVote() 

(b) v ← CountVotes() 

(c) If v = T IMEOUT , then v ← block_hash 

(d) Else if v = empty_hash: 

i. For step < s ′ ≤ step + 3, call CommitteeVote() 

ii. If step = 1, call CommitteeVote(FINAL) 

iii. Return v 

(e) step ++ 

2. Check for agreement on empty_hash: 

(a) CommitteeVote() 

(b) v ← CountVotes() 

(c) If v = T IMEOUT , then v ← empty_hash 

(d) Else if v = empty_hash: 

i. For step < s ′ ≤ step + 3, call CommitteeVote() 

ii. Return v 

(e) step ++ 

3. Use a common coin: 

(a) CommitteeVote() 

(b) v ← CountVotes() 

(c) If v = T IMEOUT and CommonCoin() = 0, then v = block_hash 

(d) If v = T IMEOUT and CommonCoin() = 1, then v = empty_hash 

(e) step ++ 

With an honest block proposer and a synchronous network, most committee members will 
begin with the same block and return on the frst step. However, during a network partition, 
it is possible for honest users to return different blocks in the protocol as described so far. 

̸

203 



NIST IR 8460 ipd 
April 2023 

7350 

7351 

7352 

7353 

7354 

7355 

7356 

7357 

7358 

7359 

7360 

7361 

7362 

7363 

7364 

7365 

7366 

7367 

7368 

7369 

7370 

7371 

7372 

7373 

7374 

7375 

7376 

7377 

7378 

7379 

7380 

7381 

7382 

7383 

7384 

7385 

7386 

7387 

Algorand solves this through the notions of tentative consensus and fnal consensus. After 
the binary BA algorithm returns, there is one last voting step in BA⋆ in which votes are 
counted and a block is decided if validators see T ∗ τ f inal votes for it. Final consensus 
exists if enough validators return at the frst step and then see enough votes from other 
committee members demonstrating that they did too. If the highest priority block proposer 
was honest and the network is synchronous, then fnal consensus is achieved after four 
interactive steps. A particularly lucky adversary may cause this to take an expected 13 
steps, which requires the adversary to be the highest priority proposer for the round and to 
control a large fraction of committee members at each step. 

An adversary who controls the network can prevent a subset of validators from reaching 
either fnal or tentative consensus for an arbitrary number of steps, and each step increases 
the adversary’s chance of getting consensus on an empty block. To prevent this, BA⋆ has a 
bounded number of steps, MAXST EPS, before halting and requiring a recovery procedure. 
For an attacker to keep the validators from agreeing, they need to know how a participant 
will vote after they have a timeout during vote counting. The CommonCoin() procedure 
makes this more diffcult. Each user sets their common coin to be the least signifcant bit 
of the lowest committee member hash (produced from the VRF) seen during the step. 

When consensus on a block is only tentative, it is possible for multiple forks to exist, which 
can inhibit liveness. To remedy this, users passively monitor all BA⋆ votes to keep track 
of all forks and periodically use sortition to propose one of the forks for fnalization. If a 
validator is chosen via sortition, they propose an empty block that extends their preferred 
fork of the chain. Other validators then wait for the highest priority proposal, check that it 
extends their longest local chain, and invoke BA⋆ on that proposed block. 

Finally, Algorand’s design does not require checkpointing or having parties regularly be 
online. The BA⋆ process results in a certifcate that can be used to prove consensus on a 
block. Specifcally, a certifcate is composed of the votes from the last step of the binary 
BA algorithm (but not the "fnal" step that comes after). 

14. Hybrid and Alternative Sybil-Resistance Mechanisms 

14.1. Proof of Space 

While proof of work and proof of stake get most of the attention when it comes to Sybil-
resistance mechanisms in permissionless environments, another promising avenue is proof 
of space (PoSpace) [364]. In a proof-of-space system, users must prove that they are ded-
icating disk space rather than computational resources through a challenge that requires a 
signifcant amount of memory or disk space to solve. 

The proof-of-space protocol introduced in [364] is an interactive protocol between a prover 
and a verifer that has an initialization phase and an execution phase. The initialization 
phase results in the prover storing some data and the verifer storing a short commitment to 
the data. In the execution phase, the verifer sends a challenge to the prover, who responds 

204 



7390

7395

7400

7405

7410

7415

7420

7425

7388 

7389 

7391 

7392 

7393 

7394 

7396 

7397 

7398 

7399 

7401 

7402 

7403 

7404 

7406 

7407 

7408 

7409 

7411 

7412 

7413 

7414 

7416 

7417 

7418 

7419 

7421 

7422 

7423 

7424 

NIST IR 8460 ipd 
April 2023 

with an answer that requires reading some portion of the original data stored on disk. In a 
consensus setting, there is no designated verifer, so anyone with a view of the public ledger 
must be able to verify the proof. 

The security ramifcations of proof of space may be similar to that of ASIC-resistant proof 
of work in some ways (see Section 9.1.2). Because hard drives are widely available and 
distributed, proof of space allows people with typical consumer-grade hardware to partic-
ipate in consensus using their idle resources. Further, storage is never "used up," so hard 
drives used for proving storage can be used for useful storage later. Disk space can be 
repurposed and thus has high salvage value, like a CPU or GPU that can be used for other 
purposes when not participating in consensus. On the other hand, proof of space requires 
few ongoing costs, unlike proof of work. The cost of participation is the upfront cost of 
acquiring storage plus the opportunity costs of using that storage to participate in consensus 
instead of doing something else with it. Stated differently, the vast majority of the expenses 
incurred from proof of space are capital expenditures rather than operational expenditures. 
In this respect, proof of space is more similar to proof of stake. 

14.1.1. Spacemint 

Spacemint is an academic proof of concept of a cryptocurrency that uses proof of space 
instead of proof of work [365]. Adapting proof of space to the cryptocurrency setting re-
quires addressing several challenges, including two that are familiar from proof of stake: 
grinding attacks and costless simulation to mine multiple chains simultaneously (see Sec-
tion 12.1.1). 

In a grinding attack, an adversary who mines block Bi can (cheaply) try out multiple block 
hashes and use one that gives them an advantage in constructing block Bi+1. Spacemint 
decouples the hash chain that includes the proofs of space from a separate signature chain 
for transactions, which prevents adversaries from manipulating the block hash based on the 
included transactions. The transactions must be bound to the proof chain, so the purpose of 
the signature chain is to prevent past transactions from being altered when new blocks are 
added. This architecture is displayed in Figure 42. 

Spacemint addresses the costless simulation issue by defning a proof’s quality and making 
it fxed for a given time step in order to eliminate the beneft of trying many chains. The 
probability that a proof has the best quality should be equal to that miner’s fraction of the 
total space being used to mine the chain. Miners who publish multiple conficting blocks 
can then be punished by having their reward forfeit and giving half of it to the miner who 
includes proof of equivocation. Because the proof-of-space miner does not have stake 
that can be taken, this punishment is limited and less effective than it is in proof-of-stake 
systems. The penalty only deters attacks like selfsh mining, where the potential gain may 
be less than the potential penalty, but is unlikely to discourage double-spending attacks. 

The proof-of-space challenge for block Bi is the hash of block Bi−δ , where δ is parameter-

205 



NIST IR 8460 ipd 
April 2023 

Fig. 42. Spacemint grinding defense. The proof chain is denoted PC, and the signature chain 
is denoted SC. If an honest miner mines the i-th block and does not equivocate, then past 
transactions cannot be changed. If an adversary wanted to change transactions in the j-th 
block, j < i, while maintaining the same proof chain, they would need to compute new 
signatures for all of the blocks in between, which requires the corresponding secret keys. [365] 

7426 

7427 

7428 

7429 

7430 

7431 

7432 

7433 

7434 

7435 

7436 

7437 

7438 

7439 

7440 

7441 

7442 

7443 

7444 

7445 

7446 

7447 

7448 

7449 

7450 

7451 

7452 

ized such that Bi−δ is a block that was mined a short while in the past. However, δ cannot 
be set arbitrarily high because miners can precompute their answers for δ time steps and 
then not need to access their storage for some time. This would potentially allow a miner to 
reuse the same storage space for multiple space commitments because they could perform 
the initialization procedure multiple times. Therefore, a related security requirement is that 
initialization must be time consuming (at least δ blocks’ worth of time). 

A fnal consideration in Spacemint is that miners must commit to the storage space they 
intend to mine with in advance. This requires a special space commitment transaction 
that specifes the miner’s public key and their space commitment used for verifcation. If 
miners were not required to commit this in advance on the blockchain, then they would be 
able to reuse the same space for multiple commitments due to properties of the proof-of-
space scheme from [364]. An unfortunate side-effect of this is that if an adversary acquired 
the majority of the storage space used to secure the chain, they could censor new space 
commitment transactions and maintain their majority indefnitely. 

14.1.2. Chia 

The Chia network consensus algorithm is inspired by Spacemint, but adds a verifable 
delay function (VDF) and fxes some of its weaknesses. The description in this section 
corresponds to the original Chia "Green Paper" [366], but the Chia network as deployed 
may differ slightly from the presentation here. 

Chia addresses grinding attacks by combining two interlinked chains in a manner similar 
to Spacemint; an ungrindable trunk contains the proof-of-space and VDF output, while the 
foliage chain contains transactions, timestamps, and signatures that bind the foliage to the 
trunk. The proof-of-space challenge is derived from the last VDF output. Specifcally, the 
challenge is the hash of a BLS signature over the VDF output, which is unpredictable to an 
adversary. The uniqueness of BLS signatures, where there is only one valid signature for a 
given public key and message pair, prevents grinding over different challenges in the trunk. 
This architecture is shown in Figure 43. 

206 



NIST IR 8460 ipd 
April 2023 

Fig. 43. Chia design. A block β = (σ ,τ) – where σ is a proof of space and τ is a VDF output 
– is in the ungrindable trunk chain. The foliage blocks α j contain transactions, a signature on 
the previous foliage block (to create a blockchain linked by signatures), and a signature on the 
proof of space (to bind the foliage to the trunk). Because the challenges for the proof of space 
and VDF come from previous trunk values, grinding on various values of data in the foliage 
does not give the attacker an advantage. [366] 

7453 

7454 

7455 

7456 

7457 

7458 

7459 

7460 

7461 

7462 

7463 

7464 

7465 

7466 

7467 

7468 

7469 

7470 

7471 

7472 

7473 

7474 

7475 

7476 

7477 

7478 

7479 

7480 

Chia uses a proof-of-space algorithm where the initialization procedure is non-interactive, 
unlike the one from [364] used in Spacemint. This removes the need to pre-register the 
storage commitment in a special transaction, which Spacemint uses to prevent grinding 
attacks. 

Chia alternates between proofs of space and VDF executions, where the VDF is used to 
protect against long-range attacks and remove the need for synchronized clocks. In Chia 
parlance, the entities that compute the proofs of space are called farmers, and the ones 
that compute the VDF are called time lords. In a proof-of-space system, unlike proof of 
work or proof of stake, any farmer can generate a valid proof during any time slot, so 
a mechanism is required to determine which block would "win." To prevent unbounded 
bandwidth consumption, proofs that are unlikely to win are disallowed in the frst place. 
Chia adopts the idea of assigning a quality to each proof of space (proportional to the 
amount of space used to construct it) and agreeing on the best quality one as the legitimate 
chain extension, as was done in Spacemint. Here, quality is the hash of the proof, and the 
best quality proof is the one with the lowest valued hash. This mechanism is augmented 
by requiring a VDF output in order to consider the block valid. The VDF is parameterized 
such that the time it takes the time lords to compute it is linear in the quality of the proof of 
space (specifcally, the VDF time parameter is the quality times the current diffculty level), 
which leads to having the best quality proofs completed frst, as desired. 

The use of the VDF opens up the possibility for another subtle grinding vector that could 
be used to launch double-spending attacks, which is addressed by slightly modifying the 
diffculty adjustment from the one used by Bitcoin. The time parameter for the VDF de-
pends on the diffculty level, which is computed from the timestamps located in the foliage. 
Grinding on the timestamp in the foliage can lead to grinding against the VDF output in the 
trunk if the new diffculty kicks in immediately following the block whose timestamp was 
used to recompute the diffculty, as is done in Bitcoin. This threat is prevented by having 
the diffculty adjust only after several additional blocks have been constructed. An example 
of this grinding attack is shown in Figure 44. 

207 



NIST IR 8460 ipd 
April 2023 

Fig. 44. Chia difculty grinding. The foliage blocks α1 
i , α

2 
i , and α3 

i each have diferent 
timestamps. Because they occur right before the difculty reset at block i, each of the three 
chains has a slightly diferent difculty parameter to be used for blocks at height i+ 1 or 
greater. The adversary can run three VDF executions in parallel, and there will be three 
diferent outputs at height i + 1, causing each chain to have a diferent proof-of-space 
challenge, c1, c2, or c3 for blocks at height i+ 2. [366] 

7481 

7482 

7483 

7484 

7485 

7486 

7487 

7488 

7489 

7490 

7491 

7492 

7493 

7494 

7495 

7496 

7497 

7498 

Chia does not follow Spacemint in using punishment to discourage costless simulation 
attacks where farmers extend multiple chains at once. Instead, it embraces this "double-
dipping" and allows honest farmers to engage in the practice as well. If honest farmers 
do not double-dip, then at least ≈ 73.1% of the total allocated space must be supplied by 
honest farmers. Chia improves this bound by adding a local security convention where 
honest farmers extend the frst κ > 1 chains at every chain depth. It is recommended that 
κ = 3, which reduces the security margin to requiring ≈ 61.5% of space to be supplied by 
honest farmers. A higher value of κ improves the security margin (Chia would be secure 
with an honest majority if farmers were required to extend every block) but requires that 
honest farmers compute a factor of κ more proofs and makes agreement take longer. 

While the chain quality and chain growth properties were demonstrated in the original Chia 
paper, the crucial common prefx property was not proven until [225]. Chia’s security anal-
ysis differs from that of chain-based proof of stake, despite both suffering from a variant 
of the nothing-at-stake problem. This difference arises because in, say, Ouroboros Praos 
and Snow White, the same randomness is used across multiple blocks, whereas Chia’s 
randomness is independent at each block. This gives an adversary in Chia an indepen-
dent opportunity for winning leader election at every block, which magnifes the attacker’s 
power by a factor of e. 

208 



7500

7505

7510

7515

7520

7525

7530

7535

7499 

7501 

7502 

7503 

7504 

7506 

7507 

7508 

7509 

7511 

7512 

7513 

7514 

7516 

7517 

7518 

7519 

7521 

7522 

7523 

7524 

7526 

7527 

7528 

7529 

7531 

7532 

7533 

7534 

7536 

7537 

NIST IR 8460 ipd 
April 2023 

If one were to naively adopt an equivalent of a longest chain rule and apply it to a proof-
of-space system, one might have honest farmers agree on the chain where the sum of the 
qualities of the included proofs is highest. This opens up the possibility of long-range 
attacks because it is possible to generate a heavier chain as long as the adversary has enough 
space to beat the average of the space used across the entire honest chain. If the value of 
farming Chia blocks increased signifcantly or the cost of storage decreased signifcantly 
after the chain began, beating the average might be much easier than overpowering the 
amount of space currently allocated to Chia farming. Spacemint mitigates this by only 
considering the quality of more recent blocks when comparing the quality of chains. This 
is not a problem for Chia because the VDF prevents an adversary who forks the chain far 
in the past from catching up to the honest chain. 

14.2. Proof of Activity 

Proof of activity (PoA) is a hybrid proof-of-work and proof-of-stake system intended to 
diversify the types of entities securing the blockchain, particularly as transaction fees be-
come a more important component of the block reward [367]. Stakers pick transactions to 
include in blocks, which makes it harder for miners to censor transactions using feather-
forking or majority attacks. PoA requires that a majority of the online stake is honest in 
order to maintain security. 

Leader election is performed using the "follow-the-satoshi" idea, similar to how it is done 
in the Chains of Activity protocol (Section 13.1.1). A pseudorandom seed is used to select 
uniformly from the total set of satoshis (atomic cryptocurrency units) based on when it 
was minted. That satoshi is then traced through the transaction graph to the public key 
that currently controls it, which determines the leader. Note that this procedure can cause 
some challenges when using more advanced scripting capabilities than simple public key 
to public key fnancial transfers. 

The PoA protocol begins by having miners mine a block header that does not include any 
transactions and broadcasting the empty block to the network upon success. The hash 
of this block header is then used as the seed to deterministically derive N pseudorandom 
stakeholders (with N = 3 suggested). The follow-the-satoshi procedure is invoked N times 
using H(header_hash||previous_block_hash||i) for i ∈ {1, ...,N}. All online stakeholders 
check whether they are one of the N selected stakeholders for that block. The frst N − 1 
stakeholders sign the hash of the empty header and broadcast it to the network. The N-
th stakeholder creates and broadcasts a wrapped block that extends the empty header by 
including transactions, the N − 1 other signatures, and their own signature over all of this 
information. Nodes continue to follow the longest chain rule, as in Nakamoto Consensus. 
The transaction fees are shared between the block’s miner and the N stakeholders. 

If not all of the N stakeholders are online, another miner will mine another header at the 
same height of the chain, which will derive a different N stakeholders. The use of proof of 
work limits the ability of an attacker to bias the randomness used for the stake election. To 

209 



7540

7545

7550

7555

7560

7565

7570

7575

7538 

7539 

7541 

7542 

7543 

7544 

7546 

7547 

7548 

7549 

7551 

7552 

7553 

7554 

7556 

7557 

7558 

7559 

7561 

7562 

7563 

7564 

7566 

7567 

7568 

7569 

7571 

7572 

7573 

7574 

NIST IR 8460 ipd 
April 2023 

incentivize a certain level of online stake, the N-th stakeholder can include in their block 
all of the other empty blocks mined at the same height but without the required signatures. 
Nodes can count how many empty blocks were mined during a diffculty retargeting win-
dow. If too many were mined, then stakeholders can get a higher fraction of the block 
reward during the next window, and vice versa. 

By combining PoW and PoS, an adversary may need to acquire both a signifcant amount 
of computational power and stake to pull off attacks. Specifcally, if the follow-the-satoshi 
procedure is a random oracle, then an attacker with α fraction of the online stake needs 
more than (

α 
1 − 1)N times the hash power of honest miners in order to perform typical 

majority attacks, like censorship and double-spending. An implication of this is that an 
adversary with the majority of the online stake will actually have their computational power 
magnifed substantially. On the other hand, with N = 3 and only one-third of the online 
stake, an adversary requires eight times more computational power than the honest nodes. 
The inclusion of proof of stake increases the susceptibility of PoA to bribery attacks, which 
become more severe as N increases. An attacker may be able to bribe stakeholders to 
withhold their signatures and only needs to bribe a single stakeholder per block. 

14.3. Checkpoints and Finality Gadgets 

The CAP theorem states that a distributed system can only maintain consistency or avail-
ability in the face of a network partition but not both. Many of the protocols discussed 
in this document, most notably Nakamoto Consensus, favor availability over consistency. 
When the network of miners is partitioned, transactions can still be put into blocks on both 
sides of the partition (availability), but these transactions may confict and need to be recon-
ciled when the partition ends. Eventually, the confict is resolved, so Nakamoto Consensus 
has eventual consistency. However, even this notion of eventual consistency leaves a small 
possibility that a block may be reverted in the future. 

Contrast this with the idea of fnality. Permissioned systems, some committee-based proof-
of-work systems, and BFT-based proof of stake tend to have fnality, where a fnalized 
block can never be reverted under any circumstances. As a trade-off, this means that the 
system halts during a network partition. Finality is a desirable property because any ap-
plication that relies on the underlying state machine can truly treat a fnalized transaction 
as fnal rather than needing to be prepared to revert its execution. Furthermore, it is not 
too diffcult to notice when the system halts for an extended period, so manual intervention 
may be able to fx the availability issues fairly quickly. This section discusses protocols for 
adding fnality to permissionless blockchain systems, including those that otherwise favor 
availability. 

14.3.1. Ad Hoc Finality Layers and Reorg Protection 

The earliest form of ad hoc checkpointing were the hard-coded checkpoints that Satoshi 
included in early versions of the Bitcoin software. Typically, during a software release, 

210 



NIST IR 8460 ipd 
April 2023 

7576 

7577 

7578 

7579 

7580 

7581 

7582 

7583 

7584 

7585 

7586 

7587 

7588 

7589 

7590 

7591 

7592 

7593 

7594 

7595 

7596 

7597 

7598 

7599 

7600 

7601 

7602 

7603 

7604 

7605 

7606 

7607 

7608 

7609 

7610 

7611 

7612 

7613 

7614 

7615 

Satoshi would pick a block hash from a few months earlier, embed that hash into the node 
software, and enforce a rule that the node will never accept a chain that does not include the 
hard-coded checkpoints. While this technically provided fnality for transactions through 
the latest checkpoint block, it was generally too far in the past to be of practical use. The 
real beneft of hard-coded checkpoints in early Bitcoin was to prevent denial-of-service 
attacks that stemmed from the very low diffculty of mining blocks at that time. A modestly 
resourced attacker could generate long chains of low diffculty blocks to fll up a node’s 
disk or prevent them from being able to synchronize the chain. This threat was later solved 
when the Bitcoin software was updated to perform headers-frst synchronization, where the 
node verifes a complete chain of headers and their proofs of work before downloading the 
contents of the blocks themselves. 

Hard-coded checkpoints like this provide fnality in a way that is easy to reason about. It 
also grants software developers considerable centralized power. While this is not much 
of an issue if the checkpoints are from the distant past, as in early Bitcoin, hard-coded 
checkpoints are only practically useful for fnality if issued for the recent past. In this 
case, it may allow developers to unfairly determine which chain might be preferred as the 
canonical one. 

Other proof-of-work cryptocurrencies have added more sophisticated forms of fnality, or 
reorg protection, primarily to mitigate the threat of majority hash rate attacks. For example, 
several of the more popular Bitcoin Cash clients include a default rule that they will not 
perform a reorg of more than 10 blocks at any time, even if the alternative chain has greater 
proof of work. The justifcation for this extra rule was that, because only a small minority 
of the available double-SHA-256 computational power was mining on Bitcoin Cash, the 
network was highly susceptible to a 51% attack, and cryptocurrency exchanges wanted to 
be protected from this risk. If the exchange ran a client enforcing this rule, then they could 
accept deposits after 10 confrmations knowing that even a well-resourced attacker could 
not revert. As a side beneft, checkpoints also reduce the proftability of selfsh mining. 

That said, these "moving checkpoints" are not without risk. Most obviously, this rule cre-
ates a race condition that can cause accidental chain splits. If the network is partitioned 
for a few hours, or if an adversary mines a 10-block private chain and publishes it at the 
right time, there will be a permanent chain split that requires manual intervention to fx. In 
addition, the new rule removes one of the biggest advantages of Nakamoto Consensus by 
making the system weakly subjective (see Section 12.1.2), such that a bootstrapping node 
(or one that has been offine for a few hours) can no longer be assured that the most-work 
chain is the correct one and must acquire it from a trusted source. 

In addition, the fnality benefts may be illusory. For instance, an exchange that is temporar-
ily partitioned from the network may have fnality for a customer deposit on the particular 
chain that the exchange is following, but if the network splits, the fnalized chain might 
not be the one that the exchange wants to follow, particularly if most of the network is 
following a different chain. In this case, an exchange that would have quickly rejoined the 

211 



NIST IR 8460 ipd 
April 2023 

7616 

7617 

7618 

7619 

7620 

7621 

7622 

7623 

7624 

7625 

7626 

7627 

7628 

7629 

7630 

7631 

7632 

7633 

7634 

7635 

7636 

7637 

7638 

7639 

7640 

7641 

7642 

7643 

7644 

7645 

7646 

7647 

7648 

7649 

7650 

7651 

7652 

7653 

7654 

rest of the network at the conclusion of the attack instead has a false sense of security and 
must manually intervene in order to join the rest of the network while still suffering from a 
double-spend attack. 

Reorg protection protocols of this nature were formalized in [368], where an additional 
"front-running" attack was proposed that prevents liveness when there is a rushing ad-
versary with a hash rate majority. The adversary mines their own private chain without 
adopting any honest blocks. Whenever a new block is published that extends the longest 
honest chain, the adversary publishes a block while keeping the remainder of their private 
chain hidden. Because the adversary has the majority of the computational power, they 
can counter every block, and because they are rushing, adversarial blocks will always win. 
In this case, every block on the canonical chain will be adversarial. While the intentions 
of reorg protection assume that there is an adversarial hash rate majority, it is not trivial 
for an adversary to be rushing on a permissionless network, so this attack is not easy to 
pull off. The checkpointing mechanisms presented in [368] resist this attack by operating 
as an unpredictable randomness beacon that "refreshes" the execution at each checkpoint, 
preventing the adversary from using blocks mined before the checkpoint was issued so that 
they do not maintain a persistent advantage. 

Another interesting implementation of reorg protection is the ChainLocks system deployed 
on the Dash cryptocurrency network [369]. Dash was a pure proof-of-work Nakamoto 
Consensus cryptocurrency until ChainLocks was added, making it a hybrid with proof 
of stake. Any Dash user with 1000 Dash can become a masternode and provide extra 
services to the network in exchange for some of the block reward. For each block that is 
published, a set of a few hundred masternodes is selected, which attempt to fnalize the 
block by issuing a ChainLock on it, where a ChainLock is a BLS threshold signature. Each 
selected masternode submits a signature share for the frst block that they see at each chain 
height, and if enough of these masternodes sign the same block, the threshold signature 
is created and broadcast to the rest of the network as a ChainLock. Any node that has 
seen a ChainLock for a given block will not reorg past that block. Under normal network 
conditions, this will likely result in blocks being fnalized almost immediately and make 
it more diffcult for an adversary to cause a chain split. This also gives the masternodes 
a signifcant amount of power that can be wielded to an adversary’s advantage, but the 
adversary would need to own a very large amount of Dash (well over half) or be able to 
bribe other masternode owners in order to take advantage of it. 

14.3.2. Casper the Friendly Finality Gadget (FFG) 

The Ethereum network began as a pure proof-of-work cryptocurrency that followed the 
GHOST fork-choice rule but is currently undergoing a multi-phase process to become a 
pure proof-of-stake network colloquially called Ethereum 2.0, as described in Section 13.2. 
One step of the process is to adopt a hybrid approach of maintaining the underlying proof-
of-work chain and augmenting it with a proof-of-stake fnality gadget called Casper FFG 

212 



7655

7660

7665

7670

7675

7680

7685

7690

7656 

7657 

7658 

7659 

7661 

7662 

7663 

7664 

7666 

7667 

7668 

7669 

7671 

7672 

7673 

7674 

7676 

7677 

7678 

7679 

7681 

7682 

7683 

7684 

7686 

7687 

7688 

7689 

7691 

NIST IR 8460 ipd 
April 2023 

[370, 371]. The intention is to combine Casper FFG and the GHOST fork-choice rule 
("Gasper"), as described in [350], which can work in a pure proof-of-stake system as well. 

Casper FFG uses any block proposal mechanism (e.g., leader election via proof of work) 
and uses proof of stake to fnalize blocks, called checkpoints, such that a checkpoint can 
never be reverted. Checkpoints are created 100 blocks apart and form a checkpoint tree 
or chain. Casper provides accountable safety in that it is impossible for two conficting 
checkpoints to be fnalized unless more than 1

3 of the deposited stake violates a slashing 
condition (accountability in BFT protocols is discussed in Section 7.2) and can thus be 
punished. Casper also provides plausible liveness, such that if ≥ 2

3 of the stake is honest, it 
is possible to continue fnalizing new checkpoints without having any validators violate a 
slashing condition. 

To be entitled to vote in Casper FFG, a potential validator must put up a stake deposit 
as collateral to be slashed in case of misbehavior. A vote consists of a signed message 
containing hashes of source and target checkpoints, denoted s and t, as well as the heights 
of s and t in the checkpoint tree, h(s) and h(t). The target checkpoint must be a descendant 
of the source in the checkpoint tree. Casper uses the following defnitions: 

• A supermajority link is an ordered pair of checkpoints a 2→ b where at least 3 of 
validators have cast votes with source a and target b. Supermajority links may skip 
over checkpoint blocks. 

• A checkpoint c is considered justifed if it is the genesis block or if there exists a 
supermajority link c ′  c where c ′ → is justifed. 

• A checkpoint c is considered fnalized if it is the genesis block or if the following 
conditions hold: c is justifed, there exists a supermajority link c → c ′ , there is no 
confict between c and c ′, and h(c ′ ) = h(c)+ 1. 

• The dynasty of a block b is the number of fnalized checkpoints in the chain from the 
genesis block to the parent of block b. 

Justifcation and fnalization are analogous to the frst and second voting rounds in a typical 
BFT protocol (i.e., prepare and commit, respectively, in PBFT). Recall that Casper provides 
accountable safety, meaning that the only way for two conficting checkpoints to become 
fnalized is for at least 1

3 of the deposited stake to violate a slashing condition. If a validator 
violates one of these conditions, an honest validator can prove it and submit a special 
transaction to the blockchain that forfeits the malicious validator’s deposit and rewards the 
honest validator with some portion of it. A validator may not publish two distinct votes, 
(s1, t1,h(s1),h(t1)), and (s2, t2,h(s2),h(t2)) where either of the following is true: 

• h(t1) = h(t2). That is, a validator may not vote for the same target height twice. 

• h(s1) < h(s2) < h(t2) < h(t1). That is, a validator may not vote within the span of its 
other votes. 

213 



7695

7700

7705

7710

7715

7720

7725

7692 

7693 

7694 

7696 

7697 

7698 

7699 

7701 

7702 

7703 

7704 

7706 

7707 

7708 

7709 

7711 

7712 

7713 

7714 

7716 

7717 

7718 

7719 

7721 

7722 

7723 

7724 

7726 

7727 

7728 

7729 

NIST IR 8460 ipd 
April 2023 

Honest validators in Casper FFG will follow the chain that contains the justifed checkpoint 
of the greatest height and never revert past a known fnalized checkpoint. Where ties ex-
ist, chains are prioritized based on the underlying proof-of-work scheme, be it Nakamoto 
Consensus or GHOST. 

Slight adjustments must be made in order for Casper FFG to safely handle dynamic val-
idator sets. To join the set of validators, a user sends a deposit message. If it is included 
in a block with dynasty d, then this validator joins the validator set at the frst block with 
dynasty d + 2, and this starting dynasty is denoted as DS(v). To exit, withdrawal mes-
sages are handled similarly, with the ending dynasty denoted DE(v). When DE(v) begins, 
the deposit is locked for some period of time so that the exiting validator can be slashed 
for misbehavior. Defne the forward validator set and rear validator set for dynasty d as 
Vf (d) ≡ {v : DS(v) ≤ d < DE(v)} and Vr(d) ≡ {v : DS(v) < d ≤ DE(v)}, respectively. 
To handle these validator sets, Casper redefnes a supermajority link (s, t) for a target in 
dynasty d such that at least 2

3 of both Vf (d) and Vr(d) have published votes s → t. The 
fnalization of checkpoint c then has an additional requirement: the votes for the two super-
majority links c → c ′ and the one that justifes c must be included in c ′’s blockchain prior 
to the child of c ′ or before block h(c ′ ) ∗ 100 + 1. This change prevents safety violations in 
the pathological case where two grandchild blocks of a fnalized checkpoint have different 
dynasties and evidence of slashing condition violations are included in one chain but not 
the other. This situation is displayed in Figure 45a. 

A fnal component of Casper FFG is the inactivity leak, which is intended to maintain 
liveness even if more than a third of validators are partitioned from the network or crash 
at the same time. In this case, supermajority links can no longer be created, preventing 
the fnalization of additional checkpoints. For this reason, when validators fail to vote for 
checkpoints, they are slowly penalized by having their deposit reduced until connected 
validators become a supermajority again. This mechanism, shown in Figure 45b, can result 
in conficting fnalized blocks and cause chain splits. In practice, this would require the 
network partition to last for about three weeks [371]. 

There is a liveness attack against Casper FFG called the bouncing attack, which allows an 
attacker with less than 1

3 of the total stake to prevent fnalization by "bouncing" between 
justifying one side of a fork or another [372]. The attack is possible when there is a latest 
justifed checkpoint C and justifable checkpoint C′ such that C′ is from a later epoch than C 
and conficts with C. A justifable checkpoint is one in which the attacker has enough votes 
to justify it but has not published them. A potential fx is to only allow the latest justifed 
checkpoint to change during the frst third of an epoch, otherwise marking it as pending 
and reevaluating when the epoch ends. A comparable attack is also possible against the 
Gasper protocol that combines Casper FFG with GHOST [373, 374]. The bouncing attack 
is shown in Figure 45c. 

214 



NIST IR 8460 ipd 
April 2023 

Fig. 45. Casper FFG attacks. (a) The validator sets fnalizing checkpoints c and c ′ are 
disjoint, so no one gets slashed despite violating the slashing condition that c and c ′ are at the 
same height. (b) The checkpoint on the left can be fnalized immediately, but a network 
partition prevents some validators from seeing the relevant votes. If the partition lasts for 
enough time, the stake deposits of those voters who support the left checkpoint will 
continuously deplete until a supermajority link can be formed on the right side. (c) Bouncing 
attack on Casper FFG. [370, 372] 

215 

(a) Dynamic validator sets (b) Inactivity leak 

(c) Bouncing attack 



NIST IR 8460 ipd 
April 2023 

7730 

7731 

7732 

7733 

7734 

7735 

7736 

7737 

7738 

7739 

7740 

7741 

7742 

7743 

7744 

7745 

7746 

7747 

7748 

7749 

7750 

7751 

7752 

7753 

7754 

7755 

7756 

7757 

7758 

7759 

7760 

7761 

7762 

7763 

7764 

7765 

7766 

14.3.3. More Finality Gadgets and Checkpointing Protocols 

Several other checkpointing protocols have been proposed [373, 375–379], and this section 
compares a few at a high level. 

Winkle is a very different checkpointing mechanism that was designed to thwart long-
range attacks in account-based proof-of-stake systems but can be used as a more general 
checkpointing mechanism as well [377]. In Winkle, clients issue stake-weighted votes for 
checkpoints with their transactions by including a hash of the most recent block they are 
aware of. A checkpoint is issued whenever at least 2

3 of the total stake has voted in favor of 
a block. Based on actual transaction data, a checkpoint on Ethereum would take between 
50 days and a year to fnalize; on Bitcoin, it would take between four months and three 
years. To speed up the checkpointing process, Winkle also allows stake to be delegated, in 
which case a new checkpoint could be issued every few hours or days. 

Most similar to Casper FFG is a fnality gadget called GRANDPA, which is deployed on 
the Polkadot network [376]. The biggest difference is that participants in GRANDPA vote 
on the block of the greatest height they are aware of rather than a block at a predetermined 
chain height, and the vote transitively applies to all blocks preceding the one voted on. 
Roughly, the highest block with a supermajority of votes becomes fnalized. It operates 
very similarly to PBFT, where there are two rounds of voting to fnalize the chain and 
explicit timeouts to begin a new round. Because it is partially synchronous, fnalization 
stops if there is a network partition, though blocks continue to be produced. Unlike with 
Casper FFG, there is no inactivity leak to continue fnalization during a partition. After 
the partition ends, fnalization only needs to happen once near the chain tip rather than for 
everything that came before. Like Casper FFG, GRANDPA provides accountable safety 
and allows for the ability to slash participants’ stake for misbehaving. 

Finality layers for eventually consistent blockchains were formalized in [375], where the 
Afgjort fnality layer was proposed. In the model provided, a fnality layer must: 

• Form a chain of fnalized blocks; 

• Have all parties agree on the fnalized blocks; 

• Ensure that the last fnalized block does not fall too far behind the last block of the 
underlying block proposal mechanism (i.e., the fnalized chain should grow about as 
fast as the underlying chain); and 

• Require that all fnalized blocks have at some point been on the chain accepted by at 
least k honest parties measured as a fraction of stake or computation, depending on 
the Sybil-resistance mechanism used for the underlying blockchain (k-support). 

The Afgjort protocol can speed up fnality by an order of magnitude or so compared to 
eventually consistent algorithms like Nakamoto Consensus under good conditions and can 
"turn off" to avoid safety violations under bad conditions, such as an adversary trying to 

216 



NIST IR 8460 ipd 
April 2023 

7767 

7768 

7769 

7770 

7771 

7772 

7773 

7774 

7775 

7776 

7777 

7778 

7779 

7780 

7781 

7782 

7783 

7784 

7785 

7786 

7787 

7788 

7789 

7790 

7791 

7792 

7793 

7794 

7795 

7796 

7797 

7798 

7799 

7800 

7801 

7802 

7803 

7804 

7805 

7806 

disrupt the protocol. In particular, blocks are declared fnal once they are in the common 
prefx of the underlying blockchain, but blocks are no longer fnalized when there are be-
tween n 

3 and n 
2 adversarial nodes, though the underlying blockchain remains live. 

Naively, a simple way to fnalize a block at height d would be to run a typical Byzantine 
agreement algorithm and consider the agreed upon block as fnal. Unfortunately, the valid-
ity property of most BA algorithms only guarantees that if every honest party starts with 
the same input, that is the agreed-upon value. However, if honest parties start with different 
inputs, then the agreed-upon value may be arbitrary. This implies that if the BA algorithm 
is executed before the common prefx of all honest parties includes height d, then an arbi-
trary block absent from the chains of all honest parties may become fnalized and violate 
the k-support property. 

Afgjort addresses this issue in a rather intuitive way: wait until the same block at height 
d is in the common prefx of all honest parties. When a member of the fnalization com-
mittee has a valid chain up to height d + 1, they vote on the block at height d in some 
BFT algorithm that requires unanimity to succeed, and the block is fnalized if successful. 
Otherwise, committee members will continue attempting to fnalize the block until they 
do succeed, where the i-th attempt occurs when they have a chain of height d + 2i . This 
exponential backoff guarantees that if the underlying blockchain is secure, d is eventually 
in the common prefx. 

Of course, while all honest parties may have d in their common prefx, adversarial nodes 
can always vote to prevent unanimity. There are two Afgjort variants that solve this is-
sue. The frst is more effcient and secure but requires the additional security assumption 
of bounded dishonest chain growth, which states that a chain only adopted by dishonest 
parties grows more slowly than the chains of honest parties. This assumption will not hold 
if the underlying blockchain uses proof of work but has a diffculty adjustment algorithm 
that adjusts rapidly. If it does hold, however, Afgjort simply requires that participants vot-
ing for the block at depth d also send the 2i following block hashes in order to justify 
their vote. Participants then run a subprotocol, Freeze, that quickly settles on a uniquely 
justifed block or ⊥, followed by binary Byzantine agreement to agree on that block. The 
randomness in the binary agreement algorithm comes from a VRF. The protocol satisfes 
all desired properties above with n 

3-support as long as fewer than n 
3 corrupted parties are in 

the fnalization committee. The alternative protocol that does not rely on the bounded dis-
honest chain growth assumption adds an extra fltering step to the beginning of the Freeze 
subprotocol that attempts to remove votes that came from dishonest parties. It does so by 
ignoring any votes that were supported by fewer than f + 1 committee members. As a 
consequence, this version only has 1-support, a much weaker property. 

Afgjort must also ensure that fnalization does not fall too far behind the underlying chain’s 
growth. To this end, block producers include a pointer to the most recently fnalized block 
and committee member signatures in their block to attest to this fnalization. When the 
chain grows too quickly, there will be blocks produced where the pointer differs from the 

217 



NIST IR 8460 ipd 
April 2023 

7807 

7808 

7809 

7810 

7811 

7812 

7813 

7814 

7815 

7816 

7817 

7818 

7819 

7820 

7821 

7822 

7823 

7824 

7825 

7826 

7827 

7828 

7829 

7830 

7831 

7832 

7833 

7834 

7835 

7836 

7837 

7838 

7839 

7840 

7841 

7842 

7843 

7844 

7845 

7846 

actual most recently fnalized block, and the next block to fnalize can be adjusted ahead to 
account for this. 

Afgjort improves upon GRANDPA in a number of ways. GRANDPA only achieves 1-
n support as opposed to Afgjort’s 3-support. GRANDPA also relies on a leader, which 

may impact liveness if the leader is corrupted or suffers from a denial of service. Fi-
nally, GRANDPA includes explicit fxed timeouts, which prevent it from being responsive. 
Afgjort can fnalize blocks based on the actual network delay rather than needing to wait 
for timeouts to occur. 

More recently, a family of so-called snap-and-chat protocols, inspired by Flexible BFT 
(Section 7.5), has been proposed [373, 378]. Snap-and-chat protocols output two ledgers 
instead of one: a dynamically available ledger that can remain secure with an unknown 
number of nodes that may go offine temporarily (such as a blockchain using Nakamoto 
Consensus) and a fnalized ledger. When network conditions are poor, the dynamically 
available ledger is live but potentially unsafe, while the fnalized ledger is safe but may not 
be live. When the network becomes synchronous again, the dynamically available ledger 
reconciles any inconsistencies while the fnalized ledger catches up. Similar to Flexible 
BFT, snap-and-chat protocols support clients with differing beliefs: clients who priori-
tize safety under network partitions can follow the fnalized chain, while those who prefer 
availability can follow the other. When the network heals, all clients will agree on a sin-
gle history. A major difference between Flexible BFT and snap-and-chat protocols is that 
Flexible BFT only guarantees consistency when clients have the same beliefs, whereas 
snap-and-chat maintains a common prefx regardless of client beliefs. 

Snap-and-chat protocols use an off-the-shelf dynamically available protocol, ΠLC (LC for 
longest chain), and an off-the-shelf partially synchronous BFT protocol, ΠBFT , and run 
the two subprotocols in parallel. If the underlying BFT protocol provides accountability, 
then snap-and-chat can provide accountable safety as well [374]. Transactions are input 
to ΠLC, which outputs a growing ledger LOGLC. Nodes periodically take snapshots of 
LOGLC, which are then input to ΠBFT , which spits out a growing ledger of these snap-
shots, LOGBFT , in an attempt to fnalize some of the transactions. The fnalized ledger, 
LOG f in, is formed by concatenating the snapshots in LOGBFT and then removing duplicate 
transactions. To create the dynamically available ledger, LOGda, the fnalized LOG f in is 
prepended to LOGLC and sanitized again. This sanitization breaks typical light clients, but 
a more complicated light client design is presented in [378]. 

Clients who want availability follow the LOGda ledger, not LOGLC. These two ledgers are 
equivalent under favorable network conditions, but under less favorable conditions, LOG f in 
and LOGLC may diverge. In this case, by prepending LOG f in to LOGLC, the fnalized 
ledger is guaranteed to be a prefx of LOGda and remain safe so long as ΠBFT remains 
safe. This ensures that all clients eventually agree on a single history regardless of the 
chain they follow. A malicious party could attempt to break safety by using a fake snapshot 
with unconfrmed transactions as input to ΠBFT . To prevent this, ΠBFT requires a slight 

218 



7850

7855

7860

7865

7870

7875

7880

7847 

7848 

7849 

7851 

7852 

7853 

7854 

7856 

7857 

7858 

7859 

7861 

7862 

7863 

7864 

7866 

7867 

7868 

7869 

7871 

7872 

7873 

7874 

7876 

7877 

7878 

7879 

7881 

7882 

7883 

7884 

NIST IR 8460 ipd 
April 2023 

adjustment, where honest nodes refuse to accept the fnalization of snapshots that the node 
does not believe are confrmed in their view of ΠLC. 

Around the same time that the snap-and-chat construction was proposed, [379] described 
a protocol with similar goals called the checkpointed longest chain. Like snap-and-chat, 
the checkpointed longest chain allows clients the fexibility to choose whether they prefer 
guaranteed fnality or availability. Unlike snap-and-chat, however, the checkpointed longest 
chain construction provides coupled validity, wherein fnalized blocks exist on a single lin-
ear chain, so one can verify a transaction based on the information from the blockchain 
leading up to the block that the transaction is included in. Because of this, block proposers 
know which transactions are valid when they propose blocks, which assures them that the 
transaction fees included in the block will be received. It also enables simple light clients 
who merely verify that a transaction is included in a block while making the network more 
effcient by not processing invalid or duplicate transactions. In [379], four desirable prop-
erties of a checkpointing protocol are described, where the properties hold under network 
synchrony: 

1. Safety: Even during periods of asynchrony, honest participants checkpoint the same 
block in an iteration of the protocol, and this checkpoint lies on the same chain as all 
prior checkpoints. 

2. Recency condition: A newly checkpointed block must have been at an exact depth 
k in the chain of an honest user within the recent past. If arbitrarily old checkpoints 
could be issued, many honestly mined blocks could be overwritten, so this property 
bounds the number of honest blocks that may be reorged. 

3. Gap in checkpoints: There must be a large enough interval between checkpoints 
that the recency condition holds. This limits the frequency with which honest blocks 
may be overwritten by checkpoints. 

4. Conditional liveness: If all honest nodes share a common prefx in all but a few 
blocks, then a new checkpoint will be issued within a bounded time. 

The checkpointing subprotocol used in the checkpointed longest chain protocol is just a 
slight modifcation of Algorand’s BA⋆ protocol (described in Section 13.4.2) extended 
from single-shot BA to a repeated version. BA⋆ satisfes all four properties, but many 
alternative BFT algorithms do not. For example, PBFT and HotStuff fail the recency con-
dition, which provides an adversary with a powerful attack: lock on a block privately while 
the leader of a view, but wait to fnalize it until it is not in the longest chain anymore (de-
spite being a descendent of the most recent checkpoint). This attack would cause many 
honest blocks to be invalidated. 

Of the above listed properties, Afgjort only requires safety, though it adds two other desired 
properties. Afgjort requires that the fnalized chains held by honest nodes keep up with 
the underlying blockchain’s chain growth, which is the opposite of having a suffciently 

219 



NIST IR 8460 ipd 
April 2023 

large gap in checkpoints, as required by the checkpointed longest chain. Both protocols 
provide n 

3-support. The properties of GRANDPA include safety, the recency condition, and 
conditional liveness, but it does not satisfy the gap in checkpoints property. GRANDPA 
tries to fnalize blocks close to the tip of the chain, where blocks may not yet be in a 
common prefx of honest nodes. Because honest nodes might have different views of blocks 
near the tip, it is likely that more honest blocks must be discarded when they are found to 
confict with blocks that are ultimately fnalized. 

7885 

7886 

7887 

7888 

7889 

7890 

7891 

7892 

7893 

7894 

7895 

7896 

7897 

7898 

7899 

7900 

7901 

7902 

7903 

7904 

7905 

7906 

7907 

7908 

7909 

15. Sharding 

Sharding is a scaling methodology from traditional database systems. In the context of 
state machine replication, the goal of sharding is to divide the required network communi-
cation, state data storage, and transaction processing computations across different subsets 
of validating nodes. In this way, a given node need not maintain or process the entire log 
of the state machine. There are many academic and commercial sharding proposals, such 
as Elastico [380], OmniLedger [381], RapidChain [382], Monoxide [383], Zilliqa [384], 
NEAR Protocol [385], Ethereum 2.0, and more [386–393]. The basic idea of sharding is 
shown in Figure 46. 

Fig. 46. Sharding architecture. The system is partitioned into groups that each maintain 
separate shards with their own distinct ledger and transactions. A cross-shard transaction 
protocol is needed in order for shards to interact safely in parallel. In some sharded systems, a 
single node may participate in multiple shards, displayed here as multicolored circles. [396] 

A sharding protocol that implements state machine replication typi-
cally contains the following subcomponents [394, 395]: 

• Identity establishment and committee selection, which may include registering public 
keys or IP addresses and submitting proof-of-work solutions or other Sybil-resistance 
measures 

• An overlay setup for committees so that committee members may communicate with 
one another 

• Intra-committee consensus to agree on a set of transactions within a shard 

• Cross-shard transaction processing to maintain atomicity when a transaction requires 
reading or writing the state of multiple shards 

220 



7910

7915

7920

7925

7930

7935

7940

7945

7911 

7912 

7913 

7914 

7916 

7917 

7918 

7919 

7921 

7922 

7923 

7924 

7926 

7927 

7928 

7929 

7931 

7932 

7933 

7934 

7936 

7937 

7938 

7939 

7941 

7942 

7943 

7944 

7946 

7947 

7948 

NIST IR 8460 ipd 
April 2023 

• Epoch reconfguration, which generally requires unpredictable and unbiasable ran-
domness 

Essentially, a sharding protocol will take a registered set of validators and securely sort 
them into committees responsible for validating particular shards. Each committee executes 
a consensus algorithm to agree on a transaction log within a particular shard. Transactions 
that take place across shards must be handled with extra care. Periodically, the committees 
need to be re-shuffed in order to prevent an adversary from taking over individual shards. 
Depending on the scheme, there may be some fxed number of shards, or more shards may 
be added as new validators join the network. Designing a scalable and secure sharding 
protocol is non-trivial, and each one of the above components has its own challenges and a 
wide design space. 

There is a limit to how much sharding can improve the scalability of state machine repli-
cation. In particular, sharding cannot improve scalability in the face of a fully adaptive 

nadversary but can scale from O(n) to O( ) against mildly adaptive adversaries (i.e., cor-log n 
ruptions are determined at the beginning of each epoch and static throughout), where n is 
the number of validators in all shards [397]. This improvement requires the system to pro-
vide a mechanism to create succinct proofs that the epoch’s state updates were valid (e.g., 
issuing checkpoints or some form of verifable computation) at the end of every epoch. 
Scalability is greatly impacted by how many transactions take place across shards and how 
many shards they involve. If validators are required to keep track of the information in the 
corresponding shards of all cross-shard transactions, then the sharding protocol does not 
(asymptotically) improve scalability [397]. 

15.1. Intra-Shard Consensus 

The participants are split into shards that each independently run their own consensus al-
gorithm. One of the primary challenges in sharding design is to ensure that validators are 
partitioned into committees such that all committees satisfy the security threshold of the 
underlying consensus mechanism with overwhelming probability. Access to unpredictable 
randomness is critical to this process and is discussed in more detail in Section 15.2. Be-
cause there are fewer validators per shard, it is more challenging to prevent individual 
shards from being taken over by an adversary than it is to secure an unsharded network. 

Most sharding proposals use a permissioned BFT algorithm to maintain consensus within 
an individual shard. One of the frst sharding systems proposed, Elastico, simply uses 
PBFT. Unfortunately, because PBFT’s communication complexity is O(n4) in the worst 
case, shards are unable to support many validators. This leads to an unacceptably high 
failure probability for individual shards at the claimed security level, which tolerates up to 
1 
4 of the computational power of the network being Byzantine (where proof of work is used 
to register identities). Elastico was tested with shards of only 100 validators. Based on the 
cumulative binomial distribution, the probability of having at least 34 Byzantine validators 
assigned to a shard is 2.76% per shard. 

221 



NIST IR 8460 ipd 
April 2023 

7949 

7950 

7951 

7952 

7953 

7954 

7955 

7956 

7957 

7958 

7959 

7960 

7961 

7962 

7963 

7964 

7965 

7966 

7967 

7968 

7969 

7970 

7971 

7972 

7973 

7974 

7975 

7976 

7977 

7978 

7979 

7980 

7981 

7982 

7983 

7984 

7985 

7986 

7987 

OmniLedger improves upon this by suggesting a more scalable BFT protocol called Byz-
CoinX. In ByzCoinX, the communication pattern is changed so that instead of every valida-
tor being pairwise connected, validators are assigned evenly to groups within each shard. 
The protocol leader assigns one validator in each group to be a group leader in charge of 
communicating with the protocol leader on behalf of the group members, and new group 
leaders are chosen if they do not respond quickly enough. Within each group, signatures 
are aggregated to reduce communication complexity, and once the protocol leader gets re-
sponses from 2

3 of group leaders, they can move on to the next phase of the consensus 
protocol. This pattern allows far more validators to participate in a shard and is, thus, able 
to attain security when up to 1

4 of the computational power is Byzantine. 

RapidChain is able to improve this threshold to tolerate up to 1
3 of the computational power 

being adversarial by using a synchronous BFT protocol (secure under an honest majority 
of participants) for intra-shard consensus. While this does allow a shard to remain secure 
with fewer validators, cross-shard transactions can cause consensus failure if the synchrony 
assumption is violated. 

The division into small committees presents other security issues. The incentives for val-
idators to behave properly within a shard are understudied, and for a simple scheme where 
rewards are equally split among participating validators, the Nash equilibrium includes not 
participating in committee tasks like validation and message passing [398]. Worse, if the 
adversary is capable of bribing committee members, it can be substantially cheaper to bribe 
and corrupt enough validators on a particular shard than to take over the entire system. If 
an invalid state transition occurs in one shard, invalid state may propagate to other shards 
via cross-shard transactions, which can allow actions like spending funds that do not exist. 
Fraud proofs, discussed in Section 15.5, are an attempt to remedy this. 

15.2. Identity Registration, Committee (Re)confguration, and Epoch Ran-
domness 

Like the other systems described in this document, some kind of Sybil-resistance mecha-
nism is required to participate in a sharded ledger system. Many systems employ a global 
ledger (sometimes called the beacon chain, identity chain, reference chain, etc.) to keep 
track of these identities and other shard-related metadata. 

In Elastico, the number of committees grows linearly with the total computational power 
deployed on the network. In the frst step of every epoch, validators generate an identity by 
completing a proof of work that covers a public key, IP address, and the epoch’s random 
seed. An identity is assigned to a committee of c validators based on the least signifcant 
bits of the proof-of-work solution. Upon creating an identity, a validator must fgure out 
which other validators are assigned to the same shard in order to establish point-to-point 
connections with them. To reduce the bandwidth of communicating these identities, par-
ties contact a directory committee composed of the frst c identities created within the same 
epoch according to that party’s view and receive at least 2c lists of c identities. The valida-3 

222 



7990

7995

8000

8005

8010

8015

8020

8025

7988 

7989 

7991 

7992 

7993 

7994 

7996 

7997 

7998 

7999 

8001 

8002 

8003 

8004 

8006 

8007 

8008 

8009 

8011 

8012 

8013 

8014 

8016 

8017 

8018 

8019 

8021 

8022 

8023 

8024 

8026 

8027 

NIST IR 8460 ipd 
April 2023 

tor then considers the union of these lists to be their committee. This leads to discrepancies 
in validators’ knowledge of who else is in the same committee, but these discrepancies 
are bounded. Each shard runs its intra-committee consensus algorithm on disjoint transac-
tion sets and then sends the valid transactions to the fnal committee. The fnal committee 
merges the transactions from each shard, which is then broadcast to the network. 

The last step of the epoch requires the fnal committee to generate and broadcast the next 
epoch’s random seed using a commit-and-XOR protocol. Each member of the fnal com-
mittee generates an r-bit random string, Ri, and sends the hash H(Ri) to the other members. 
The committee executes a consensus instance to agree on a set S of at least 2c 

3 hashes, and 
then S is broadcast to the network. Next, each fnal committee member reveals their Ri 
preimage to the complete network. At this point, every node will have received between 
2c 
3 and 3c 

2 random strings, discarding ones that do not match their hash. In the next epoch, 
users determine their random seed by XORing any c +2 1 of the Ri. Since nodes may choose 
different Ri, nodes must include the set of random strings in their identity so that others may 
verify that they match the commitments in S. 

There are a number of weaknesses to this scheme, which are improved upon in later de-
signs. Firstly, the commit-and-XOR randomness generation process can be biased by at-
tackers. In addition, validators will frequently switch shards, which reduces scalability; 
switching only some nodes per epoch would help. This is compounded by the need to store 
and propagate every transaction in the system from every shard. Only the transaction vali-
dation and execution process is improved, but neither storage nor bandwidth improve from 
sharding this way. As a result, there are no cross-shard transactions in Elastico. Finally, 
Elastico requires a trusted setup to generate the initial epoch randomness, which must be 
revealed to all parties at the same time. 

OmniLedger improves upon Elastico in a number of ways. Identities are generated sim-
ilarly and then committed to a global identity blockchain, where the commitment must 
occur the epoch prior to a validator participating in the system. In each epoch, a new, 
bias-resistant random seed is generated using a VRF in a manner similar to that used in 
Algorand (Section 13.4.2). The VRF output is used to elect a leader to run a distributed 
random beacon protocol called RandHound, which is then used to create the epoch’s ran-
dom seed. 

More specifcally, let e be the epoch, con f ige be the list of registered validators from 
the identity blockchain, and v be the view. Then, when epoch e begins, each validator i 
computes ticketi,e,v = V RFsk (”leader”|| |i con f ige| v) and broadcasts it to the network. After 
waiting for ∆ time, validators accept the lowest valued ticket as the leader for RandHound. 
Validators wait another ∆ time for the leader to initiate RandHound, incrementing the view 
number if the leader fails. Eventually, RandHound will output a random seed and correct-
ness proof, which is broadcast to all registered validators. The random value is used to 
permute the registered validator list, which is then divided into roughly equal-sized com-
mittees. To maintain liveness during epoch changes, shards are reconfgured only in small 

223 



8030

8035

8040

8045

8050

8055

8060

8065

8028 

8029 

8031 

8032 

8033 

8034 

8036 

8037 

8038 

8039 

8041 

8042 

8043 

8044 

8046 

8047 

8048 

8049 

8051 

8052 

8053 

8054 

8056 

8057 

8058 

8059 

8061 

8062 

8063 

8064 

8066 

NIST IR 8460 ipd 
April 2023 

batches of at most 1
3 of the shard size at a time. 

Crucial to OmniLedger’s performance is the idea of state blocks, which commit to the 
complete state of the shard and are analogous to checkpoints in classic BFT systems like 
PBFT. At the end of each epoch, the state block is appended to the shard’s chain and points 
to the previous epoch’s state block. When a validator switches shards, they do not execute 
every transaction included but rather bootstrap their state based on the state block. This 
enables transactions from older epochs to be pruned from the shard chain. 

OmniLedger still requires a trusted setup to generate the initial random seed for the VRF. 
RapidChain solves this problem with a secure bootstrapping subprotocol that uses verifable 
secret sharing (VSS). During bootstrapping, the initial set of RapidChain participants agree √ 
on a set of O( n) nodes to be the root group. The root group generates a random seed 
using VSS to be used to elect a reference committee, CR, of size O(log n). The reference 
committee then creates k more shards of similar size by hashing participants’ identities to 
the range [0,1) and partitioning this space into k regions. To create the initial root group, √ 
RapidChain participants are divided uniformly at random into groups of size O( n) using 
a deterministic process. Each group creates its own random seed using VSS. Within each 
group, all participants hash the seed and their public key. A small constant number of 
the lowest hashes from each group are elected and make up the root group. To inform 
everyone else, these hashes are gossiped to other groups with at least half of the signatures 
of the group. 

Identity registration in RapidChain is performed using proof of work that incorporates the 
prior epoch’s randomness. Upon solving a proof-of-work puzzle, a node submits it to the 
reference committee to be included in a reference block, which contains the active identities 
for the next epoch, the shards they are mapped to, and the next epoch’s randomness. The 
reference block is then sent to each committee. 

The epoch reconfguration protocol in RapidChain is based on the Cuckoo rule, which 
is safe because it only allows a constant number of validators to switch their committee 
per epoch. This makes RapidChain resistant to attacks where the adversary strategically 
attempts to join or leave the network in order to concentrate their power within a target 
shard. As a result, committees can be reconfgured more frequently than with OmniLedger. 
The Cuckoo rule works as follows: new identities that join the network are mapped to a 
random position r ∈ [0,1). For some constant x, identities within the interval (r − x,r + x) 
are moved to new random positions. Partitioning nodes into k groups of O(log n) has been 
proven secure against an adversary with ≤ 1− 1 

2 k of the computational power. That is, each 
committee will have a bounded number of Byzantine nodes. 

The issue of shard (re)allocation was studied more formally in [399], where the Worm-
hole protocol was proposed. This work describes two performance metrics for sharding 
allocation: 

1. Self-balance: Ideally, nodes would be uniformly distributed among shards. Other-

224 



NIST IR 8460 ipd 
April 2023 

8067 

8068 

8069 

8070 

8071 

8072 

8073 

8074 

8075 

8076 

8077 

8078 

8079 

8080 

8081 

8082 

8083 

8084 

8085 

8086 

8087 

8088 

8089 

8090 

8091 

8092 

8093 

8094 

8095 

8096 

8097 

8098 

8099 

8100 

8101 

8102 

8103 

8104 

8105 

8106 

wise, shards with fewer nodes will have weaker fault tolerance, while shards with 
more nodes will have worse performance. While it may not be possible to attain 
perfect load-balancing in a permissionless network due to nodes freely joining and 
leaving, the optimal load balance can be achieved by having a random subset of 
nodes move to other shards. Self-balance, then, is the ability of the sharding protocol 
to recover when the load becomes imbalanced. 

2. Operability: When nodes move from one shard to another, they must synchronize 
their state to match that of the blockchain in the new shard. This process can have 
high overhead and reduce these nodes’ availability while synchronizing. Operability 
measures the cost of performing this relocation to another shard. 

Unfortunately, it is impossible for a shard allocation protocol to simultaneously satisfy both 
optimal self-balance and optimal operability. Existing protocols tend to fall into extremes 
on either self-balance or operability. For example, Elastico and OmniLedger optimize self-
balance at the expense of operability, while Monoxide (Section 15.4) has optimal operabil-
ity but lacks self-balance. RapidChain does not fall into either extreme but has inferior per-
formance compared to Wormhole. Luckily, there is another property, non-memorylessness, 
which allows a shard allocation protocol to parameterize between the two metrics. A proto-
col is non-memoryless if each shard allocation does not rely solely on current and incoming 
system states but also takes into account prior system states. Wormhole has this property 
and, thus, allows a system designer to parameterize this trade-off instead of picking one to 
optimize. 

Wormhole (Figure 47) assumes the existence of an external randomness beacon and uses 
the beacon output as input to a VRF. The VRF output determines shard allocation. Each 
randomness beacon output updates the system state used for non-memorylessness. How-
ever, the more prior system states that are used, the more information it takes to prove 
membership in a shard. Furthermore, the shard membership proof in epoch r depends on 
the proof in epoch r − 1 in a recursive manner. Wormhole prevents this proof from be-
coming unbounded in size by using a parameter, w, that controls how often old proofs are 
discarded. An era consists of w epochs, where each epoch corresponds to a new beacon 
output. Each node must have one non-memory-dependent allocation epoch per era in or-
der to discard old proofs. If all nodes were to discard their historical proofs and have this 
non-memory-dependent allocation in the same epoch, operability would be signifcantly 
impacted as many nodes would change their shards simultaneously. Instead, Wormhole 
randomly assigns nodes to non-memory-dependent allocation epochs. When w is larger, 
nodes joining the system will need to execute the VRF more times, making it more expen-
sive for an adversary to join a target shard by trying to join the system repeatedly. 

Wormhole uses an operability parameter, op, to manage the trade-off between operability 
and self-balance. When op is large, there is only a low probability that a node will be 
moved to another shard. To determine which shard a node is allocated to in memory-
dependent epoch r, nodes consider the most recent VRF outputs since their latest non-

225 



NIST IR 8460 ipd 
April 2023 

8107 

8108 

8109 

8110 

8111 

8112 

8113 

8114 

8115 

8116 

8117 

8118 

8119 

8120 

8121 

8122 

8123 

memory-dependent epoch, x. Let m be the number of shards and {hx, ...,hr} be the set 
of VRF outputs in memory. Then, for j ∈ [x + 1,r], nodes check whether the op most 
signifcant bits of h j match the op least signifcant bits in the VRF output from the most 
recent epoch where a node changed shards. If so, the node switches to shard (hr mod m)+1, 
and if not, the node remains on the same shard. 

Fig. 47. Wormhole shard allocation. Simplifed example in hexadecimal with parameters 
op = 4, w = 5, and m = 163 shards. Epoch 0 is the most recent non-memory-dependent epoch 
for node i, so they join a shard based solely on the VRF output. In the other w − 1 epochs, 
node i compares the op most signifcant bits of the new VRF output with the op least 
signifcant bits of the output that most recently assigned them to a new shard. Matches are 
shown in blue, and misses are in red. 

15.3. Cross-Shard Transaction Processing 

In order for sharding to improve a system’s throughput, it is necessary for transactions to 
be partitioned across shards such that not all nodes need to process every transaction or 
maintain the full system state. As a result, many transactions are likely to take place across 
multiple shards: if Alice’s account is on shard A and Bob’s account is on shard B, then 
Alice and Bob will not be able to transact without impacting the state of both shards. For 
this to be safe, sharding systems require an atomic commit for the state changes that occur 
across shards; either both accounts are updated, or neither is. The most common algorithm 
for solving this problem is the two-phase commit (2PC) algorithm, and the protocols in this 
section follow that paradigm. 

OmniLedger presents a UTXO-based cross-shard transaction subprotocol called Atomix. 
In order to remove the need for direct shard-to-shard communication, Atomix tasks the 

226 



NIST IR 8460 ipd 
April 2023 

8124 

8125 

8126 

8127 

8128 

8129 

8130 

8131 

8132 

8133 

8134 

transacting client with the responsibility of driving the process forward but allows other 
parties to help if a transaction is stalled. Atomix is a three-step process of initialization, 
locking, and unlocking, shown in Figure 48a. Atomix is initialized by having the client 
create a cross-shard transaction and gossiping it to each shard responsible for the transac-
tion inputs. If the transaction is valid, it is included in a shard block, and a Merkle proof 
of inclusion is the transaction’s proof of acceptance. If the transaction is invalid, a proof 
of rejection is created instead by setting a bit in the block. The client gathers proofs of 
acceptance from each input shard and can communicate them to the output shards who can 
then generate the needed UTXOs. Alternatively, with a proof of rejection, the client can 
abort the transaction to unlock their funds on the input shards. 

RapidChain adopts a different approach to cross-shard transactions in the UTXO model. 

227 

Fig. 48. Cross-shard transactions. (a) Atomix. (b) RapidChain. The top panel shows each 
shard maintaining a routing table with O(log n) other shards to improve communication 
efciency. Committee C0 can reach C3 via C2 for transactions beginning with 0x11. The bottom 
shows a cross-shard transaction being split into three pieces. (c) S-BAC. Transaction T has two 
inputs, o1 and o2, and one output o3. The client sends T to all nodes in the input shards. A 
designated leader in each shard sends either a prepared(accept,T ) or prepared(abort,T ) 
message to the nodes within their shard. The leader of each shard determines whether all 
shards are in a state of proposed(accept,T ) or if there are any in proposed(abort,T ), handles 
the accept(T,∗) messages, and sends the decision to the client. [386, 396] 

(a) Atomix (b) RapidChain Cross-Shard Transactions 

(c) S-BAC 



NIST IR 8460 ipd 
April 2023 

8135 

8136 

8137 

8138 

8139 

8140 

8141 

8142 

8143 

8144 

8145 

8146 

8147 

8148 

8149 

8150 

8151 

8152 

8153 

8154 

8155 

8156 

8157 

8158 

8159 

8160 

8161 

8162 

8163 

8164 

8165 

8166 

8167 

8168 

8169 

8170 

8171 

8172 

To reduce the amount of communication used between shards, a Kademlia-like overlay 
network is used to route cross-shard transactions to the appropriate shards, as shown in 
Figure 48b. Cross-shard transactions in RapidChain are broken into multiple transactions. 
For instance, for a two-input one-output transaction with inputs I1 and I2 from shards one 
and two and output O in shard three, the transaction in Figure 48b will be executed as three 
different sub-transactions: 

• tx1 consumes input I1 and creates output I′ 1 belonging to shard three. 

• tx2 consumes input I2 and creates output I′ 2 belonging to shard three. 

• tx3 consumes inputs I′ ′ 
1 and I2 and creates output O. 

In effect, tx1 and tx2 transfer I1 and I2 to the output shard, which are then spent in tx3 
to create the intended output O. Each sub-transaction occurs on a single shard, and the 
committee for the output shard will route the input transactions to their relevant shard 
committees. If, say, tx2 were to fail while tx1 was successfully committed, the owner of 
UTXO I1 instead uses I′ 1 in a future transaction. 

Another approach, S-BAC (Sharded Byzantine Atomic Commit), was proposed for the 
sharded smart contract platform Chainspace [386]. S-BAC is similar to Atomix but eschews 
the client-driven model in favor of one that explicitly runs a Byzantine agreement algorithm 
combined with atomic commit, as shown in Figure 48c. The client sends their transaction, 
T , to the input shards, which internally execute PBFT in order to agree on a tentative de-
cision to accept or abort the transaction. Those tentative decisions are then broadcast to 
the other shards involved in the transaction as prepared(abort,T ) or prepared(accept,T ) 
messages that include signatures from shard members proving they decided a particular 
way. If the transaction was locally accepted, the input is considered locked. Shard mem-
bers listen for responses from the other shards involved. If all responses support accept-
ing transaction T , then it is committed, but if any shards want to abort, the transaction is 
aborted. The shards then exchange a round of accept(commit,T ) or accept(abort,T ) mes-
sages based on their decision and send them to the client as well. Once the transaction is 
committed, the output shards generate new outputs, and the inputs are consumed. If the 
transaction is aborted, input shards unlock the inputs. 

Both S-BAC and Atomix were susceptible to replay attacks that do not require violating 
Byzantine thresholds [400]. It is crucial for a system design for cross-shard transactions to 
defend itself against replay attacks in order to prevent invalid state from being incorporated 
into the ledger. The attacks had two causes, which informed their fxes: 

1. The input shards do not have a way of knowing that particular protocol messages 
received correspond to a specifc instance of a transaction, so old messages can be 
replayed. To fx this, sequence numbers are added to transactions. 

2. In some cases, the output shards are only involved in the later unlocking phase of the 
protocol and therefore have no knowledge of the transaction context that is available 

228 



8175

8180

8185

8190

8195

8200

8205

8210

8173 

8174 

8176 

8177 

8178 

8179 

8181 

8182 

8183 

8184 

8186 

8187 

8188 

8189 

8191 

8192 

8193 

8194 

8196 

8197 

8198 

8199 

8201 

8202 

8203 

8204 

8206 

8207 

8208 

8209 

8211 

NIST IR 8460 ipd 
April 2023 

to the input shards. To fx this, output shards create dummy objects in the earlier 
locking phase, which makes them input shards as well. 

A concern related to cross-shard transactions is how to partition the system state across 
shards. Because cross-shard transactions have higher latency and require more effort from 
the network, dividing the state in such a way that accounts that frequently interact with 
each other are located on the same shard would improve the system’s performance. On the 
other hand, partitioning the state this way can lead to very memory-ineffcient mappings 
between shards and the state they are responsible for. Most schemes partition the state 
based on a simple mapping of account prefxes to shards, which is essentially random. 
Assuming that there are 100 shards, one would expect 99% of transactions to be cross-
shard. With only 10 shards, this still results in 90% of transactions being cross-shard. A 
few alternative mapping strategies that can reduce the fraction of cross-shard transactions 
while being relatively memory-effcient are explored in [401]. This includes ideas such as 
using graph clustering on accounts that historically have interacted with each other (though 
this is an NP-hard optimization problem), clustering the most heavily used accounts and 
assigning the rest randomly, and clustering based on the most frequently used accounts 
during a recent time period. 

15.4. A Diferent Approach: Monoxide 

Monoxide proposes a very different approach to sharding from what has been discussed so 
far [383]. Unlike the above examples, identities in Monoxide are established only once, 
and there is no committee reconfguration. Monoxide uses accounts rather than UTXOs, 
and accounts are partitioned based on their most signifcant bits. Each individual shard 
uses proof of work and the GHOST fork-choice rule (Section 11.2) for consensus. Every 
node in Monoxide must be a light client of every shard and maintain a chain of block 
headers for each. Nodes also maintain a distributed hash table (DHT) for routing cross-
chain transactions and for peer discovery. 

The most noteworthy aspect of Monoxide is its use of chu-ko-nu mining, which is similar to 
the concept of merged mining (see Section 16.2). Chu-ko-nu mining allows miners to create 
blocks in multiple shards simultaneously with a single proof of work, allowing honest 
miners to amplify their hash rate and prevent malicious miners from concentrating their 
computational power into taking over single shards. If every honest miner takes advantage 
of this and mines on every shard simultaneously, then Monoxide attains security assuming 
an honest majority of the hash rate. Miners will gather valid transactions from all shards 
and include a Merkle root of the block headers for each shard in their proof of work. 

While this mechanism increases the adversarial threshold required to attack Monoxide 
compared to other sharding protocols, it is imperfect. A miner needs to verify all trans-
actions in order to participate in all of the shards and achieve the honest majority security 
bound, but this eliminates the scalability benefts for those miners. The result is likely to 
be severe centralization pressure among miners, since well-resourced miners can mine on 

229 



NIST IR 8460 ipd 
April 2023 

8212 

8213 

8214 

8215 

8216 

8217 

8218 

8219 

8220 

8221 

8222 

8223 

8224 

8225 

8226 

8227 

8228 

8229 

8230 

8231 

8232 

8233 

8234 

8235 

8236 

8237 

8238 

8239 

8240 

8241 

8242 

8243 

8244 

8245 

8246 

8247 

8248 

8249 

8250 

more shards and collect more transaction fees. 

Monoxide also takes a different approach to cross-shard transactions, bypassing the over-
head of the locking and unlocking operations used in other protocols. Instead, Monoxide 
accepts that transaction atomicity only holds eventually with high probability. As a result, a 
credit can happen on one shard before the corresponding debit on a different shard has been 
fully settled. Transactions are validated in the shard of the payer and then verifed in the 
shard of the payee using the header chain of the payer’s shard and and a relay transaction. 
The relay transaction exists on the payer’s shard and provides any metadata required to 
validate the original transaction using only the shard’s header chain. A miner in the payee 
shard then verifes that the relay transaction is stable and includes it in a block on that shard 
as well. 

While interesting, Monoxide has some challenges. In addition to the mining centralization 
pressure, it may be challenging to handle transaction fees, particularly for cross-shard trans-
actions. Similarly, keeping track of infation of the money supply is diffcult or impossible 
without completely validating all transactions on all shards. Finally, the requirement to act 
as a light client for all shards makes it so that Monoxide does not scale asymptotically, 
though it may offer a signifcant constant factor improvement. 

15.5. Fraud Proofs and Data Availability 

In a sharded blockchain system, the frst challenge to resolve is the so-called 1% attack, 
where an adversary with a small fraction of the total network resources (e.g., work, stake, 
validated identities, etc.) can concentrate them in a single shard and exceed its Byzantine 
threshold, as seen in Figure 49a. These types of attacks are typically prevented using a 
form of random sampling to assign validators to shards in an unpredictable way, such as 
the mechanisms described in Section 15.2. Unfortunately, reshuffing has high overhead. 
Each time a validator is assigned to a new shard, it must download the state of that shard 
in order to validate a new block, which can take an extended period of time. This prevents 
reshuffing from happening too frequently. Naively, this would require downloading and 
executing all shard blocks that have been produced since the last time the node was assigned 
to that shard, in which case sharding has provided no scalability beneft. One step toward 
mitigating this is to have every shard block’s header commit to the state of the shard, so 
nodes need not store the complete system state at all times. However, it does not ensure 
that the state at the tip of the chain is correct, which would require processing all of the 
shard blocks anyway. 

On the other hand, the frequency with which shard reallocation is performed relates to how 
adaptive of an adversary the system can tolerate. When reallocations are infrequent, the 
adversary is given a lot of time to (adaptively) target and corrupt validators on individual 
shards, reintroducing the risk of single-shard takeover attacks. In most of the systems 
described above, the shards implicitly trust each other. That is, nodes in shard A simply 
assume that no invalid state is ever committed to shard B. This may not be realistic in the 

230 



NIST IR 8460 ipd 
April 2023 

real world, where adversaries may indeed be adaptive and can even bribe validators. In this 
case, the security of the protocol decreases linearly in the number of shards. When invalid 
state is committed to a shard, it can then infuence the rest of the system via cross shard 
transactions, as shown in Figure 49b. 

Fig. 49. Invalid shard state transition after a single shard takeover attack. An invalid state 
transition occurred in block B, perhaps crediting an account with undeserved tokens. A 
cross-shard transaction moves these counterfeit coins to another shard. Any honest node on 
the corrupted shard can generate a fraud proof and submit it to the victim shard to 
demonstrate that the state transition was invalid and should be rolled back. [385] 

(a) Single shard takeover attack 

(b) Invalid state transition (c) Fraud proof 

To provide security against fully adaptive or bribing attackers, a sharding system should 
provide validators with the ability to quickly see if a proposed shard block is valid or 
not. Security in this model is possible using fraud proofs, where a node supplies proof 
of an invalid state change, and adding an any-trust assumption on the validators that were 
assigned to the shard in the last round. That is, as long as there is a single honest and 
available validator assigned to the shard, it can construct a fraud proof in response to an 
invalid block being created on their shard, as shown in Figure 49c. A fraud proof may 
contain the invalid transaction and some Merkle tree data verifable from the shard block 
header’s state commitment. In other words, a fraud proof will contain the relevant portions 

8251 

8252 

8253 

8254 

8255 

8256 

8257 

8258 

8259 

8260 

8261 

8262 

8263 

231 



NIST IR 8460 ipd 
April 2023 

Fig. 50. Data availability attack. The left and right sides are indistinguishable after T3. [402] 

8264 

8265 

8266 

8267 

8268 

8269 

8270 

8271 

8272 

8273 

8274 

8275 

8276 

8277 

8278 

8279 

8280 

8281 

8282 

8283 

8284 

8285 

8286 

8287 

8288 

8289 

of the state needed to process the block, as well as intermediate hashes of the Merkle tree 
that prove that the provided state is in fact the state that the block claims to be using [402]. 
For example, for an invalid transaction that debits 100 units of currency from an account 
possessing only 50 units, the fraud proof would include the transaction itself, an assertion 
that the account’s balance before the transaction was only 50 units, and a Merkle proof 
showing that this account balance was committed in the state root of the block header. 

For this to work, there must be some bounded challenge period where an honest validator 
has suffcient time to download and process the block, prepare a fraud proof if it is invalid, 
and send it across the network. While the challenge period must be long enough to allow 
invalid shard blocks to be caught, longer periods delay the settlement of cross-shard trans-
actions. Furthermore, this creates a new attack vector where malicious nodes send invalid 
fraud proofs. This can be mitigated by requiring stake deposits from validators; if a node 
sends an invalid fraud proof, they lose their deposit. Similarly, if a node submits a valid 
fraud proof, the creator of the invalid block loses their deposit, and a portion of it can go to 
the node who created the proof as a fnder’s fee. 

One more major problem remains. Consider an adversary who controls a supermajority 
of the validators on a shard. This adversary creates an invalid block and signs off on its 
validity through the validator keys they control. Now, the adversary announces the block 
by broadcasting its header but withholds some or all of the block data itself. In this case, 
the honest validators on the shard are unable to produce a fraud proof and can only claim 
that block data is being withheld. Unfortunately, after an honest node makes this claim, the 
adversary can immediately publish the data, and other nodes will be unable to distinguish 
between a situation where the block producer maliciously withheld the block or a malicious 
validator raised a false alarm, as shown in Figure 50. 

This speaker-listener fault equivalence prevents the system from punishing false data avail-
ability alarms or rewarding valid ones. As a result, under adversarial conditions, all valida-

232 



8290

8295

8300

8305

8310

8315

8320

8325

8291 

8292 

8293 

8294 

8296 

8297 

8298 

8299 

8301 

8302 

8303 

8304 

8306 

8307 

8308 

8309 

8311 

8312 

8313 

8314 

8316 

8317 

8318 

8319 

8321 

8322 

8323 

8324 

8326 

8327 

8328 

NIST IR 8460 ipd 
April 2023 

tors would have to download all shard blocks, eliminating any scalability gains. To see this, 
suppose an attacker executes this attack (Case 1 in Figure 50). If the expected return from 
raising an alarm were positive, this would encourage malicious validators to submit false 
alarms frequently and pocket the proceeds. If the expected reward were neutral, then this 
false alarm method provides a free denial of service to force everyone to download all shard 
blocks. If the expected reward were negative, then raising the alarm would be altruistic and 
irrational. An adversary could simply outlast the altruists and then launch data availability 
attacks while honest nodes have no recourse [402]. 

This attack is why data availability proofs are required for effective sharding protocols 
in models that assume fully adaptive or bribing attackers. These proofs can be generated 
using erasure codes, where a block M chunks in size is expanded into N chunks, N > M, 
such that any M chunks are suffcient to recover the original data. Block headers include a 
Merkle root committing to these N chunks. Light clients can then contact fully validating 
nodes to check whether the majority of the N chunks are available. If the majority is indeed 
available, this implies one of three possibilities: 

1. The full block is available and valid with a correctly constructed erasure code. In this 
case, the light client should accept the block. 

2. The full block is available, and the erasure code is correctly constructed, but the block 
is invalid. In this case, the light client would expect an honest full node to construct 
a fraud proof and broadcast it to the network shortly. 

3. The full block is available, but the erasure code is not properly constructed. In this 
case, the light client would expect an honest full node to construct and broadcast a 
special fraud proof that demonstrates that the erasure code is incorrect. 

Essentially, after conducting the data availability check and having it pass, a light client can 
wait for the duration of some challenge period to see a fraud proof and treat the block as 
valid if none are forthcoming. A clever attacker may try to beat this by releasing individual 
chunks of data as clients ask for them. Since light clients will only sample chunks proba-
bilistically, if there are not enough light clients performing this sampling, an attacker can 
indeed pull this off and trick them into thinking the block is fully available when it is not. 
This necessitates an additional security assumption: there are enough light clients making 
data availability queries that it is overwhelmingly likely that the intersection of their re-
quests covers enough erasure-coded data to recover the full block. Erasure coding forces 
the adversary to withhold a much greater fraction of the block than they otherwise could 
have to perform malice, while the data availability queries make it harder for the adversary 
to get away with it. 

The adversary still has one more trick up their sleeve: they can honestly answer requests 
from many light clients but stop responding before the clients can verify enough of the 
block’s availability. In this case, the adversary can still trick some of the light clients into 
thinking the block is available when it is not. To address this, clients should send their data 

233 



NIST IR 8460 ipd 
April 2023 

8329 

8330 

8331 

8332 

8333 

8334 

8335 

8336 

8337 

8338 

8339 

8340 

8341 

8342 

8343 

8344 

8345 

8346 

8347 

8348 

8349 

8350 

8351 

8352 

8353 

8354 

8355 

8356 

8357 

8358 

8359 

8360 

8361 

8362 

8363 

8364 

8365 

8366 

availability queries through an anonymous network like Tor, so the adversary cannot tell 
which queries came from the same client. 

A relatively effcient proof system using sparse Merkle trees to represent the system state 
and 2-dimensional Reed-Solomon erasure codes for data availability is presented in [403]. 
This system encodes k chunks of data as 2k erasure-coded chunks and then provides the 
following guarantees under synchrony with maximum network delay ∆: 

• Soundness: If an honest light client is convinced that a block is available, then there 
exists at least one honest full node with the complete block within some delay k ∗ ∆. 

• Agreement: If an honest light client is convinced that a block is available, then every 
light client will consider it available within some delay k ∗ ∆. 

The fraud proofs from [403] grow logarithmically in size with the size of the block and 
state, while the availability proofs grow proportional to the square root of the block size. 
Similar schemes using a new primitive called Coded Merkle Trees have been proposed 
[404–406]. 

By combining fraud and data availability proofs, the security of the system can be assured 
by assuming a suffcient number of light clients querying for data availability, as well as 
a single honest full node per shard who is capable of producing and broadcasting a fraud 
proof within the challenge period. If the adversary is capable of linking validator IDs to 
IP addresses (perhaps using Sybil nodes on the network and performing traffc analysis), 
they can violate the any-trust assumption by launching denial-of-service attacks against 
validators who refuse to collude. 

Recall that when a validator changes shards, they need to synchronize their state in order to 
process and verify new shard blocks. If the validator needed to fully execute all of the shard 
blocks since they were last validating the shard, this could take hours or days. However, 
given a system of fraud and data availability proofs, and assuming that there are suffcient 
light clients to verify data availability and the any-trust assumption within the shard holds, 
this synchronization process can be sped up dramatically: download the new state, verify 
that it matches the state commitment in the block header, and wait for a single challenge 
period to see if anyone submits a fraud proof. 

Despite the speedup, this still leaves new nodes unavailable for some period of time after 
being reassigned to a new shard. One mechanism that can mitigate the consequences of 
this is to abstract different protocol roles to different parties. For instance, the management 
of data and execution may be split between nodes with different roles: block proposers, 
data availability notaries, and transaction executors [407]. Block proposers build a chain of 
shard blocks, and notaries attest to the availability of data from the shard blocks. The block 
proposers do not perform any state-dependent validation. Executors take the shard chain 
agreed upon by the block proposers and execute the transactions, skipping over any that are 
invalid and signing the state. This would allow executors to stay on one shard while block 

234 



NIST IR 8460 ipd 
April 2023 

8367 

8368 

8369 

8370 

8371 

8372 

8373 

8374 

8375 

8376 

8377 

8378 

8379 

8380 

8381 

8382 

8383 

8384 

8385 

8386 

8387 

8388 

8389 

8390 

8391 

8392 

8393 

8394 

8395 

8396 

8397 

8398 

8399 

8400 

8401 

8402 

8403 

proposers and notaries can be shuffed and reassigned more frequently. Unfortunately, 
this has several important trade-offs, such as complicating the design of light clients and 
making block proposers ignorant of the validity of the transactions they include in their 
blocks, which makes it harder to keep the system design incentive-compatible. 

This delay issue can be fully resolved with the idea of stateless clients [408]. Roughly, 
these would be clients that only maintain the state root, not the state itself. Instead of 
downloading and maintaining the full system state, stateless clients download a block wit-
ness composed of Merkle proofs for all of the pieces of state accessed in the block. This 
allows the node to compute new state roots without needing a full copy of the state. Block 
witnesses computed this way are quite large themselves, making this scheme impractical. 
Recent cryptographic advancements, such as Verkle trees, may be able to reduce witness 
sizes suffciently to enable stateless clients [409]. 

16. Interoperability 

Due to the proliferation of distributed ledgers that have been and will be deployed, some de-
gree of interoperability is desirable. This can allow for atomically exchanging assets across 
multiple ledgers, creating "wrapped" representations of assets that can exist on alternative 
ledgers, and other cross-chain smart contracts [410, 411]. 

16.1. Cross-Chain Communication, Fair Exchange, and Atomic Swaps 

A basic requirement to have interoperability among distributed ledgers is for the relevant 
ledgers be able to "communicate" with each other. In particular, a ledger should be able 
to validate that certain events have occurred in another ledger in order to interact with it. 
More formally, an entity P monitoring ledger LX and entity Q monitoring ledger LY should 
be able to synchronize with each other such that Q writes T XQ to LY if and only if P has 
written T XP to LX [412]. In other words, the goal of cross-chain communication is to 
ensure that either both of T XQ and T XP are written to their respective ledgers or neither is. 
An example is shown in Figure 51. 

Cross-chain communication is very similar to the atomic commit problem mentioned in the 
context of cross-shard transactions in Section 15.3, where relevant processes must agree on 
whether a transaction was committed or aborted. More specifcally, non-blocking atomic 
commit (NB-AC) requires that all correct processes decide on a common outcome even 
when other processes fail. Cross-chain communication is essentially the NB-AC problem, 
but participants can have Byzantine failures instead of just crash failures. 

In fact, it has been proven that cross-chain communication reduces to the fair exchange 
problem [412]. In a fair exchange, two parties want to exchange goods, and either both 
items are transferred successfully or neither are. In the analog world, this can be thought of 
as the problem of a customer simultaneously handing cash to the cashier while the cashier 
hands the customer a purchased product. In the digital realm, this is often associated with 

235 



NIST IR 8460 ipd 
April 2023 

Fig. 51. Cross-chain communication example. Systems X and Y maintain ledgers LX and LY , 
respectively. A node Q writes T XQ if and only if P has written T XP. In this example, 
transactions are committed in the next block of the ledger once broadcast (liveness delays 
uX = uY = 0). For safety, the persistence delays for systems X and Y are kX = 4 and kY = 3. 
[412] 

8404 

8405 

8406 

8407 

8408 

8409 

8410 

8411 

8412 

8413 

8414 

8415 

8416 

8417 

8418 

8419 

8420 

8421 

8422 

8423 

8424 

either selling access to fles or trading digital signatures. Unfortunately, it has long been 
known that fair exchange is impossible without a trusted third party in asynchronous net-
works [413]. Cross-chain communication, therefore, requires either: 

• Synchrony between participants such that one ledger can verify the existence of a 
transaction on another ledger within a known, bounded amount of time or 

• A trusted third party, which can be abstracted as a separate replicated state machine. 

A line of research has produced protocols for fair exchange that use smart contracts as the 
trusted third party and often rely on incentives and the rationality of the participants for 
security [414–418]. These protocols punish malicious users who try to violate the fairness 
of the exchange such that a rational participant will not do so. However, this does not 
ensure correct execution of the exchange, even if it prevents honest parties from being 
harmed economically. While these protocols tend to operate on a single ledger, similar 
concepts are frequently used in interoperability protocols. 

One of the earliest interoperability proposals in the distributed ledger space is the atomic 
swap, where an asset from one blockchain system is traded for an asset on a separate 
blockchain system without using a trusted intermediary. A specifc mechanism for doing so 
using hashed timelocked contracts (HTLCs) was proposed by TierNolan [419], generalized 
and formalized in [420], and machine verifed in [421]. The atomic swap protocol provides 
the following guarantees: 

• When all parties execute the protocol honestly, all swaps will occur. 

• If any parties deviate from the protocol, honest parties will not end up worse off. 

236 



NIST IR 8460 ipd 
April 2023 

8425 

8426 

8427 

8428 

8429 

8430 

8431 

8432 

8433 

8434 

8435 

8436 

8437 

8438 

8439 

8440 

8441 

8442 

8443 

8444 

8445 

8446 

8447 

8448 

8449 

8450 

8451 

8452 

8453 

8454 

8455 

8456 

8457 

8458 

• No party or coalition of parties is incentivized to deviate from the protocol. 

An example of a cross-chain atomic swap is shown in Figure 52. Assume that Alice pos-
sesses some of an asset, ACoin, that resides on blockchain A, while Bob possesses BCoin 
on blockchain B. Alice and Bob can perform an atomic swap as follows: 

1. Alice generates a random number s and keeps it secret until later. 

2. Alice publishes a smart contract with a hash lock H(s) and time lock tA to blockchain 
A. If Bob can show s before tA, the ACoin is transferred to Bob; otherwise, Alice can 
reclaim it after tA. 

3. Seeing the published value H(s), Bob publishes a smart contract on blockchain B 
using hash lock H(s) and time lock tB with tB < tA. If Alice provides s before tB, then 
BCoin is transferred to Alice; otherwise, Bob can reclaim it after tB. 

4. Prior to tB, Alice will publish s and acquire BCoin from Bob’s smart contract. At this 
point, s is revealed on blockchain B. 

5. Prior to tA, Bob publishes s to acquire ACoin from Alice’s smart contract. 

Many other atomic swap protocols have been proposed since. For example, JugglingSwap 
works even when the elliptic curves used for transaction signing differ across blockchains 
[424]. Another alternative, AC3WN, allows participants to publish their smart contracts 
simultaneously and thus substantially reduce latency for the swap [425]. Other proposals 
focus on specifc cryptocurrency pairs with unique challenges, such as swapping Bitcoin 
and Monero [426, 427]. Because Monero does not include a scripting language, different 
techniques are required. There are also protocols for more general atomic commerce, such 
as auctions, arbitrage, brokering deals, and escrow-based payments [428, 429]. Atomic 
debt instruments [430] and options contracts [422] have also been proposed. Finally, there 
are a variety of cross-chain communication protocols that allow arbitrary smart contracts 
to function across multiple blockchains [431–436]. 

A known issue with most atomic swap protocols is that they behave like a free American 
call option for one of the parties to the swap [437–440]. An American call option is a 
contract that allows a party to purchase some quantity of an asset at an agreed-upon price 
at any point prior to the agreed-upon expiry time. The party that initiates the atomic swap is 
the "buyer" of the American call option but does not need to pay a premium for this option. 
This can cause problems if the exchange rate between the swapped assets changes during 
the period that the swap is executed. The option buyer can abort the swap if the change 
in exchange rate is unfavorable to them. Adding an extra phase where a premium is paid 
helps mitigate this issue [440]. 

237 



NIST IR 8460 ipd 
April 2023 

(a) Swap contracts (b) Workfow 

Fig. 52. Atomic swap. (a). Each box is a transaction. Boxes with red fll color take place on 
the ACoin blockchain, whereas those with blue fll color are for the BCoin blockchain. Alice can 
publish transactions with red borders, while Bob can publish transactions with blue borders. A 
box directly beneath another box represents a transaction that should be published in response 
to the one above it. (b). Another representation of the atomic swap workfow. [422, 423] 

238 



8460

8465

8470

8475

8480

8485

8490

8495

8459 

8461 

8462 

8463 

8464 

8466 

8467 

8468 

8469 

8471 

8472 

8473 

8474 

8476 

8477 

8478 

8479 

8481 

8482 

8483 

8484 

8486 

8487 

8488 

8489 

8491 

8492 

8493 

8494 

8496 

8497 

8498 

NIST IR 8460 ipd 
April 2023 

16.2. Bootstrapping Methods: Merged Mining and Proof of Burn 

Merged mining is a specialized form of interoperability where a miner mines on multi-
ple blockchain networks simultaneously. It is primarily a mechanism for bootstrapping a 
new "child" proof-of-work blockchain by piggybacking on the security of a more mature 
"parent" chain. 

When using merged mining, a valid proof-of-work solution for the parent chain is consid-
ered valid for the child, which allows the child chain to inherit the security of the parent 
chain. Miners construct a block template for the child chain and include a hash of this 
block in their template for the parent chain. Miners work off of this parent chain template 
and search for proofs of work at either the (lower) diffculty level of the child chain or the 
(higher) diffculty of the parent chain. When a valid proof of work at the parent diffculty 
level is found, it is a normal valid block in that network, and the child chain block hash 
is ignored by participants in the parent network. If a valid proof of work is found at the 
lower child diffculty level, a block on the child chain is created and will include the parent 
chain block header, the coinbase transaction where the child hash is included, and a proof 
that the coinbase transaction is included in the parent block. This block is submitted to the 
child chain’s network, which accepts the proof of work. Because the parent chain header 
cannot be created without including the child chain’s hash, this still proves that work was 
performed while constructing the child block. Of course, a block solved at the parent dif-
fculty level will also satisfy the child diffculty level. An example of the merged mining 
procedure is shown in Figure 53. 

There are a number of prominent blockchain networks that employ merged mining, includ-
ing Namecoin and Rootstock on Bitcoin and Dogecoin on Litecoin [442, 443]. According 
to [443], some 90% of Bitcoin miners are merged mining as of October 2020, which is 
a dramatic increase compared to a few years prior. At that time, Rootstock was the most 
popular chain for merged mining, with 40 to 50% of Bitcoin miners participating. 

Merged mining has security implications for both the parent and child chains. Merged 
mining includes a certain amount of overhead, primarily to perform validation of the child 
chain. Larger miners on the parent chain are more likely to be able to afford this overhead 
and thus claim the extra rewards from mining the child chain, which may lead to centraliza-
tion pressure for the parent chain [444, 445]. An alternative merged mining proposal called 
blind merged mining may be able to address the centralization concerns for the parent chain 
[446]. This will be discussed more in the next section in the context of the Drivechains pro-
tocol [447, 448]. Because validation costs are the primary cost of participating in merged 
mining, the miners are also less likely to validate the child chain. As a result, the security 
of the child chain may not be as signifcant as the hash rate would suggest. In practice, 
it has frequently been the case that the hash rate on merged mined child chains fuctuates 
signifcantly and is highly concentrated [444]. 

There are additional risks to parent chains, which can present interesting problems given 
that a parent chain cannot prevent being merged-mined by child chains. This issue is com-

239 



NIST IR 8460 ipd 
April 2023 

Fig. 53. Merged mining example, where Namecoin is the child chain to Bitcoin. In the frst 
step, a Namecoin block is constructed, and its hash is placed in the coinbase transaction of a 
Bitcoin block. If a proof of work is found at Bitcoin’s difculty level, the Bitcoin block header, 
the coinbase transaction, and a Merkle proof of the coinbase transaction are included in a 
special portion of the Namecoin block. [441] 

8499 

8500 

8501 

8502 

8503 

8504 

8505 

8506 

8507 

8508 

8509 

8510 

8511 

8512 

8513 

8514 

8515 

8516 

8517 

8518 

8519 

pounded by the advent of multi-merged-mined cryptocurrencies that have multiple parent 
chains. A miner for this cryptocurrency could attack a subset of the parent chains at no 
additional cost [444]. Parent chains can also be attacked when there are (social) disputes 
over the rules that a ledger should follow, though it would be challenging to pull off such 
an attack [449]. 

Another technique that is frequently used for interoperability and to bootstrap new ledgers 
is proof of burn, or the verifable destruction of a cryptocurrency [450]. To "burn" an asset 
involves sending it from a source ledger to a provably unusable address. The proof of 
burn itself consists of the transaction that burned the asset, the block header for the block 
containing the burn transaction, a (Merkle) proof demonstrating that the burn transaction 
was included in that block, and a proof that the submitted block is in the "best" source 
blockchain (e.g., the chain with the most proof of work) and is stable. This technique is 
used in asset transfer using relay smart contracts, as described in the next section, but also 
sometimes as a Sybil-resistance mechanism for a separate consensus algorithm. 

Related to proof of burn is another bootstrapping mechanism employed in the Stacks 
blockchain called proof of transfer (PoX), where the security of the Stacks ledger is an-
chored to Bitcoin [451]. In PoX, instead of burning units of the base cryptocurrency (Bit-
coin), validators transfer those coins to owners of the new cryptocurrency (e.g., Stacks) via 
a predetermined set of Bitcoin addresses as a reward for producing blocks on the new chain. 
A Stacks block producer commits to their proposed block in a Bitcoin transaction, and one 
of the various block commit transactions within a single Bitcoin block is chosen via a VRF 

240 



NIST IR 8460 ipd 
April 2023 

8520 

8521 

8522 

8523 

8524 

8525 

8526 

8527 

8528 

8529 

8530 

8531 

8532 

8533 

8534 

8535 

8536 

8537 

8538 

8539 

8540 

8541 

8542 

8543 

8544 

8545 

8546 

8547 

8548 

8549 

8550 

8551 

8552 

8553 

8554 

8555 

in proportion to the amount of Bitcoin transferred. Stacks block producers then follow the 
longest chain rule. This mechanism ensures that the entire history of Stacks forks is public 
unless the adversary launches a majority attack against the underlying Bitcoin chain. As a 
result, network participants can react to reorg attempts (e.g., by increasing the number of 
required confrmations) in order to make it far more diffcult to launch proftable attacks 
[452]. 

16.3. Sidechains, Relays, and Asset Transfer 

A sidechain, frst proposed in [445], is a blockchain whose currency is "pegged" to a 
"main chain" but is responsible for its own consensus security, independent of the main 
chain. A sidechain protocol, therefore, includes a main-chain consensus mechanism, a 
sidechain consensus mechanism, and cross-chain communication. A sidechain may be 
centrally administered, federated (i.e., permissioned), or permissionless, though permis-
sionless sidechains have known issues and are relatively untested in the real world. A 
sidechain may have a two-way peg, in which case sidechain assets can be transferred back 
to the main chain or a one-way peg, where sidechain assets permanently remain on the 
sidechain. Several desirable properties of pegged sidechains were described in [445]: 

• Assets should be able to be transferred with minimal counterparty risk. 

• An asset on a sidechain should be able to be transferred back to the main chain by 
the current holder of the asset and no one else, including previous holders of the 
sidechain asset (if there is a two-way peg). 

• Asset transfers should not have failure modes that result in the loss of funds or the 
fraudulent creation of assets. 

• Participants in the system should not need to monitor sidechains that they are not 
actively involved with. 

• Sidechains ought to be frewalled from each other and the main chain. That is, if 
there is a bug or blockchain reorganization in a sidechain, asset infation or the theft 
of assets should be localized to the sidechain in question. 

Examples of federated sidechains include private Ethereum sidechains [453] and the Liquid 
sidechain on Bitcoin [454, 455]. A federated sidechain may employ various security fea-
tures, such as having separate federations for managing sidechain consensus and moving 
assets from the sidechain to the main chain, as well as using hardware security modules for 
transaction and consensus signing. 

A related interoperability concept is that of relays, which operate as smart contracts on 
one ledger that act as light clients for another ledger. The relay smart contract is sup-
plied with block headers from the alternative chain that it needs to validate. Examples 
include BTC Relay, allowing Bitcoin verifcation on Ethereum [456]; PeaceRelay, which 

241 



NIST IR 8460 ipd 
April 2023 

8556 

8557 

8558 

8559 

8560 

8561 

8562 

8563 

8564 

8565 

8566 

8567 

8568 

8569 

8570 

8571 

8572 

8573 

8574 

8575 

8576 

8577 

8578 

8579 

8580 

8581 

8582 

8583 

8584 

8585 

8586 

8587 

8588 

8589 

8590 

8591 

8592 

8593 

8594 

creates a two-way bridge between Ethereum and Ethereum Classic [457]; Dogethereum, 
allowing Dogecoin on Ethereum [458]; and XCLAIM, which can work with a variety of 
ledgers [459]. A scalability issue with this simple type of relay is that there is an increasing 
overhead for submitting an up-to-date block header as the length of time since the prior 
submission increases. All intermediate headers must be submitted and validated as well. 

While most relays accept the full chain of block headers from the alternative chain, some 
designs are more advanced. For example, FlyClient is a more effcient way of performing 
light validation using only a logarithmic number of block headers [460]. Other relays use 
advanced cryptographic primitives, like SNARKs, to produce concise proofs of valid chain 
progression [461, 462]. Another proposal uses cryptoeconomic incentives to optimistically 
accept block headers instead of validating them and allows submitted headers to be chal-
lenged. Submitters post a bond to the relay smart contract that is forfeit if a successful 
challenge proves the header invalid [463]. 

In addition to relay smart contracts, there are relay chains that are purpose-built for in-
teroperability, such as Polkadot [464] and Cosmos [465]. These schemes have a central 
blockchain that acts as a communication hub between the various interoperable blockchains 
within their respective networks, not unlike how sharding works (Section 15). The two 
projects differ in several important ways [466]: 

• The security models of each project differ. In Polkadot, the interoperating blockchains 
inherit the security of the global relay chain. As a result, relay chain validators have 
the fnal say over state changes in the individual "shards" (called "parachains" in 
Polkadot parlance). In contrast, individual chains in the Cosmos network are in-
dependent and responsible for securing themselves. This makes the chains more 
"sovereign" by allowing them to be run independently but also requires them to boot-
strap their own security. 

• The governance of the respective projects differ. To become a parachain in Polkadot, 
one must acquire a signifcant quantity of Polkadot’s native DOT cryptocurrency and 
stake them. Polkadot can only support a particular number of parachains. Cosmos 
lacks fxed membership rules, allowing anyone to establish a new blockchain within 
the network with its own custom governance process. 

• Polkadot allows arbitrary message passing between participating parachains, includ-
ing interoperable smart contract calls. Cosmos is particularly focused on asset trans-
fer between chains. Architecturally, this manifests itself in the "tight coupling" of 
Polkadot’s parachains, achieved by using fraud and data availability proofs to handle 
invalid blocks on parachains (see Section 15.5). Cosmos lacks this tight coupling, so 
users of participating blockchain A need to "trust" the relay chain used to communi-
cate with blockchain B. In Cosmos, a malicious validator cannot corrupt a blockchain 
that they do not belong to. In Polkadot, on the other hand, the entire system is im-
pacted if invalid parachain blocks are not challenged. 

242 



NIST IR 8460 ipd 
April 2023 

8595 

8596 

8597 

8598 

8599 

8600 

8601 

8602 

8603 

8604 

8605 

8606 

8607 

8608 

8609 

8610 

8611 

8612 

8613 

8614 

8615 

8616 

8617 

8618 

8619 

8620 

8621 

8622 

8623 

8624 

8625 

8626 

8627 

8628 

8629 

8630 

8631 

8632 

8633 

• The two projects use different consensus algorithms. Polkadot uses the GRANDPA 
algorithm, which scales to a potentially large number of validators [376]. The Cos-
mos relay chain, or hub, uses Tendermint consensus, which handles fewer validators 
but provides quick fnality [358, 360]. 

16.3.1. Permissionless Sidechains 

Sidechains that utilize a permissionless consensus algorithm are more challenging to de-
sign than permissioned sidechains, despite being the original motivation for the sidechain 
concept in the frst place. As originally conceived, the state machines of sidechain and 
main chain would need to be capable of acting as light clients for other blockchains. In 
particular, they would need to be able to validate SPV proofs in order to verify that trans-
fers from the main chain to the sidechain (and vice versa) were included and stable in the 
canonical chain [445]. 

For this type of sidechain, there would be special outputs on the main chain that are desig-
nated as belonging to the sidechain. To transfer coins from the main chain to the sidechain, 
a user will lock their coins in one of these special outputs for a certain confrmation period. 
The confrmation period exists to allow enough proof of work to be generated to prevent 
denial-of-service attacks against another waiting period that follows. Once the confrma-
tion period is over, the user can create a transaction on the sidechain that references the 
special main-chain output and uses an SPV proof to demonstrate that the locking was per-
formed correctly and generate corresponding sidechain coins. Once this is done, the user 
must wait for a contest period during which the newly converted assets are unspendable on 
the sidechain. This contest period is used to prevent a double-spending attack vector where 
previously locked coins on the main chain are transferred to a non-sidechain address due 
to a majority hash rate attack. During the contest period, any sidechain user may publish a 
reorganisation or reorg proof showing that there exists a main chain with greater aggregate 
proof of work and where the block containing the locked output no longer exists. This in-
validates the main-chain-to-sidechain transfer. This two-way pegging mechanism is shown 
in Figure 54, where it is contrasted with federated and centralized pegs. 

There are several challenges with this sidechain mechanism. First, it leads to the risk of 
centralization of mining in the same way that merged mining does. Larger miners are more 
able to cope with the demands of validating the sidechain and are thus more likely to collect 
transaction fees on the sidechain. Over time, it is conceivable that the extra revenue source 
can drive smaller miners out of business. Second, the security model seems to rely on the 
ability to publish reorg proofs on the sidechain. However, an adversary capable of perform-
ing a lengthy reorg on the main chain is likely capable of doing the same on the sidechain, 
in which case they can censor the inclusion of a reorg proof. This kind of sidechain, there-
fore, may allow a majority hash rate attacker to steal all of a sidechain’s coins for free. 
Third, SPV proofs grow linearly with the size of the chain, so main-to-sidechain and side-
to-main-chain transfers will involve increasingly large transactions. Luckily, these proofs 

243 



NIST IR 8460 ipd 
April 2023 

Fig. 54. Sidechain pegging methods. [467] 

8634 

8635 

8636 

8637 

8638 

8639 

8640 

8641 

8642 

8643 

8644 

8645 

8646 

8647 

8648 

8649 

8650 

8651 

8652 

can be made logarithmic using modifed light client protocols, such as FlyClient [460]. 
An alternative technology that can make proofs logarithmic is the idea of non-interactive 
proofs of proofs of work (NIPoPoWs), which use skip lists to take advantage of blocks that 
prove more work than necessary for the diffculty level, which occur with relatively pre-
dictable frequency [468, 469]. Unfortunately, NIPoPoWs are currently unable to handle 
chains where the diffculty level is variable, making them less practical than FlyClient. 

Proof of stake sidechains have also been proposed [470]. In this case, instead of proving 
that a suffcient amount of work occurred during the confrmation period, a proof includes 
the set of signatures from the elected slot leaders whose length is proportional to the com-
mon prefx confrmation security parameter. One of the challenges related to bootstrapping 
a proof-of-stake sidechain is that it would be highly vulnerable to attack before a signifcant 
amount of stake is dedicated to it, but validators may not want to commit their stake to the 
sidechain while it is vulnerable. This is addressed by the idea of merged-staking, where 
stakeholders from the main chain can signal their awareness of a sidechain in order to be 
eligible for block creation on that sidechain but without needing to transfer the stake itself. 

Another proposal for proof-of-work sidechains is called Drivechains [447, 448]. A Drivechain 
is like a "plugin" for a main chain, and a main-chain full node is a required component of 
running a sidechain full node. In the context of Bitcoin’s state machine rules, all coins in 
a particular Drivechain are locked in an "anyone can spend" address on the Bitcoin chain, 

244 



8655

8660

8665

8670

8675

8680

8685

8690

8653 

8654 

8656 

8657 

8658 

8659 

8661 

8662 

8663 

8664 

8666 

8667 

8668 

8669 

8671 

8672 

8673 

8674 

8676 

8677 

8678 

8679 

8681 

8682 

8683 

8684 

8686 

8687 

8688 

8689 

8691 

NIST IR 8460 ipd 
April 2023 

and a new soft-forked rule is added to prevent these coins from being spent on the Bitcoin 
chain unless additional conditions are met. 

Drivechains replace the requirement of submitting chains of block headers for each trans-
action with a more explicit form of miner voting. Transfers from the main chain to the 
sidechain no longer require a lengthy confrmation period and can be done nearly instantly 
upon deposit in the "anyone can spend" address. On the other hand, sidechain-to-main-
chain transfers use a much slower mechanism. When sidechain users want to withdraw 
their coins back to the main chain, they create a sidechain withdrawal transaction that burns 
the sidechain coins. Over an extended period of time, these withdrawal transactions accu-
mulate on the sidechain and are eventually aggregated into a large main-chain transaction 
from the locked "anyone can spend" address to the withdrawal addresses specifed in the 
sidechain withdrawal transactions. The transaction ID of this aggregated withdrawal trans-
action can then be embedded in the coinbase transaction on the main chain and represents 
a withdrawal attempt. For some pre-specifed number of blocks following the inclusion of 
this withdrawal attempt, miners vote on whether the withdrawal is valid. If the miner vote 
passes a threshold in favor of the withdrawal, the actual withdrawal transaction is included 
in a block. Due to the lengthy withdrawal period, users may tend to perform atomic swaps 
with main-chain coins rather than withdraw directly. 

This security model allows a majority coalition of main-chain miners to steal the full con-
tents of a sidechain by creating and voting to approve any withdrawal transaction of their 
choosing. Because the main chain is unaware of the sidechain state, users of the sidechain 
may be required to organize themselves into a user-activated soft fork that prevents this 
theft. Realistically, this would only be plausible with relatively popular sidechains. 

A fnal piece of the Drivechain puzzle is the use of blind merged mining to reduce the 
centralizing impact that other permissionless sidechains may have [446]. The underlying 
centralization concern is that the sidechain fees are only available to those entities with the 
resources to run a fully validating sidechain node. Blind merged mining allows main-chain 
miners to opt out of running a sidechain node but without the opportunity cost of losing 
sidechain fees. It does this by providing a mechanism for main-chain miners to "sell" the 
service of fnding a sidechain block in a trustless way. Miners on the sidechain know that 
a valid sidechain block with hash H is worth, say, X sidechain coins in transaction fees 
and are thus willing to pay up to (approximately) X main-chain coins to have H included 
in the main chain’s coinbase transaction (and thus acquire X sidechain coins themselves). 
A main-chain miner can be unaware of the sidechain and still accept payment of X main-
chain coins to include H in a block they are constructing at no cost to themselves. Should 
H be invalid according to the sidechain rules, the sidechain can simply ignore it, and the 
main-chain miner keeps the main-chain payment anyway. The sidechain miner can keep a 
small amount for themselves, but this should create a competitive market with main-chain 
bribes close to X . 

245 



NIST IR 8460 ipd 
April 2023 

8692 

8693 

8694 

8695 

8696 

8697 

8698 

8699 

8700 

8701 

8702 

8703 

8704 

8705 

8706 

8707 

8708 

8709 

8710 

8711 

8712 

8713 

8714 

8715 

8716 

8717 

8718 

8719 

8720 

8721 

8722 

8723 

8724 

8725 

8726 

8727 

8728 

8729 

17. Networking 

In any distributed system, processes are required to communicate over a network. In the 
majority of permissioned systems, every node will have direct, point-to-point communi-
cation channels with every other node (see Section 8 for some examples of exceptions). 
Permissionless networks, on the other hand, have a more complex design space. 

17.1. Networking for Permissionless Systems 

Neudecker and Hartenstein identify fve goals for the networking layer of a permissionless 
system: 1) performance, 2) low cost of participation, 3) anonymity, 4) resistance to denial-
of-service attacks, and 5) topology hiding [471]. These goals sometimes confict with each 
other. For example, high performance and resistance to denial-of-service attacks tend to 
require more data to be transmitted, while anonymity, low cost, and topology hiding tend to 
require transmitting less data over the network. All fve of these goals have implications for 
system security. For example, if the performance of block dissemination is not extremely 
fast in Nakamoto Consensus, the security bound decreases, as discussed in Section 10.2.1. 
Low cost of participation is critical to permissionless systems in general lest full node 
ownership not be well distributed (see Section 3.2). 

Network-layer adversaries may engage in passive or active attacks to achieve certain goals. 
An adversary may want to deanonymize users of the system by linking network informa-
tion to application-layer information. For example, the adversary may attempt to discern 
which IP address a particular transaction was frst broadcast from. Alternatively, the ad-
versary may try to exploit the network to deny service to certain nodes in order to provide 
the attacker with a monetary reward. For example, an attacker could induce a network 
partition to increase γ for selfsh mining purposes (see Section 9.4), and fully isolating a 
node through an eclipse attack can increase the chance of a successful double-spend. These 
attacks all beneft from knowledge of the network topology, so an adversary may try to map 
the topology as an initial phase of their attack. 

Methods for topology inference have been studied for Bitcoin [472], Ethereum [473], Zcash 
[474], Monero [475], and probably other systems. Various methods of connecting IP ad-
dresses to transactions have been suggested for the Bitcoin network (similar methods would 
work for comparable systems), some of which fnd or exploit knowledge of the topology 
[476–478]. Networking side-channels have also been found to deanonymize users of pri-
vate cryptocurrency systems Zcash and Monero [479]. 

Network-layer attackers may take advantage of nuances in the networking protocols of 
permissionless systems in order to force a victim node to connect to the network solely 
through attacker-controlled nodes, thus allowing an attacker to control the victim’s view 
of the blockchain. Specifc eclipse attacks have been found against both the Bitcoin [480] 
and Ethereum networks [481, 482]. A security requirement for a node on a permissionless 
network is to have at least one honest peer connection, but eclipse attacks can violate this 

246 



8730

8735

8740

8745

8750

8755

8760

8765

8731 

8732 

8733 

8734 

8736 

8737 

8738 

8739 

8741 

8742 

8743 

8744 

8746 

8747 

8748 

8749 

8751 

8752 

8753 

8754 

8756 

8757 

8758 

8759 

8761 

8762 

8763 

8764 

8766 

8767 

NIST IR 8460 ipd 
April 2023 

assumption and make targeted double-spending attacks much easier. 

An attacker may also attempt to cause more signifcant network partitions. In practice, 
Bitcoin nodes are concentrated among relatively few autonomous systems, so an adversary 
could cause network partitions by performing BGP hijacking of relatively few IP prefxes 
[483, 484]. On the other hand, if a signifcant number of mining pool nodes are hidden 
behind Tor, BGP hijacking can be made signifcantly more diffcult [485]. BGP hijacking 
is easily detected, but far stealthier network partitioning attacks have also been proposed 
[486]. Due to there being IP addresses that host nodes from multiple cryptocurrency net-
works, it may be possible to attack several networks at once by attacking a small subset 
of nodes [487]. There are designs for relay networks that are resistant to BGP hijacking 
attacks, such as SABRE [488]. Additionally, blocks can be transmitted over satellite or 
radio networks in case of network partitions. 

More esoteric attacks are also possible, such as timejacking [489]. Some systems, such as 
Bitcoin, have nodes adjust their clocks based on the median timestamp reported to them 
by their peers. This allows a Sybil attack variant where malicious nodes connect, report 
incorrect times, and move the clock of a victim node. This can get them to do things 
like temporarily believe that a block is invalid and cause temporary network partitions. In 
tandem with a software bug, this can also cause permanent chain splits that require manual 
intervention to fx [490]. 

17.1.1. Peer Discovery 

The frst thing that a new node needs to do upon startup is fnd a set of reachable IP ad-
dresses in order to create outgoing connections to peers. Usually, the software for run-
ning a node includes some hard-coded "seed" nodes that are DNS servers run by respected 
community members. This is inevitably a more centralized process than is desirable, as 
malicious seed nodes can eclipse a victim node by providing only IP addresses under their 
control (if the user contacts only a single seed node). A malicious seed node can also use 
their position to strategically impact the network topology. Finally, if the seed nodes are 
unavailable, new nodes are unable to start, which may make them a target for denial-of-
service attacks. 

To mitigate these risks, there should ideally be a relatively large number of seed nodes be-
ing operated and available. When a new node starts up for the frst time, it should contact 
multiple different seed nodes and establish outgoing connections using IP addresses sup-
plied by each of them. Topology hiding can be improved at the expense of increased cost 
of participation if clients only connect to a small portion of the IP addresses supplied by 
the seeds. 

Once a node has an established connection, it can also discover new peers from the existing 
ones, either by asking for more IP addresses or receiving them unsolicited. Here, there is 
a tension between the quality of the connection and topology hiding. When IP addresses 

247 



8770

8775

8780

8785

8790

8795

8800

8805

8768 

8769 

8771 

8772 

8773 

8774 

8776 

8777 

8778 

8779 

8781 

8782 

8783 

8784 

8786 

8787 

8788 

8789 

8791 

8792 

8793 

8794 

8796 

8797 

8798 

8799 

8801 

8802 

8803 

8804 

8806 

NIST IR 8460 ipd 
April 2023 

are announced, it provides information that can be used as part of an eclipse attack or to 
infer the network topology, especially if nodes announced their neighbors. On the other 
hand, announced IP addresses should be reachable nodes, which suggest strategies such as 
announcing the IP addresses of recent or current connections. Because nodes frequently 
leave and rejoin the network, there is a risk of announcing IP addresses that are old and 
unreachable. 

Accounting for this node churn is important. The overwhelming majority of nodes will 
leave and rejoin the network multiple times over the course of a couple of months, the av-
erage exceeds four churns per node per day, and churn increases block propagation time by 
weakening the performance of compact blocks (discussed in Section 10.2.1) [491]. Con-
siderable churn has been observed on the Ethereum network as well [492]. Luckily, large 
networks with more than 4,000 nodes are fairly resistant to the negative effects of churn 
[493]. 

17.1.2. Neighbor Selection 

Peer discovery provides a node with a set of IP addresses to establish outgoing connections 
to. With this set, the node must decide which specifc peers to connect to, as well as how 
to handle incoming connection requests. Given a list of IP addresses, a node can either try 
connecting to random ones or use their knowledge about the peers to inform the decision. 
This knowledge can include information based on the IP address itself, such as the AS or 
region where the IP address is located. Alternatively, it can use information based on past 
experience with the peer or information from trusted external sources. A Bitcoin node, for 
example, limits the number of outgoing connections it establishes within a given IP address 
range. This forces adversaries to control a larger and more diverse set of IP addresses in 
order to perform an eclipse attack. Bitcoin nodes also utilize past observations from their 
own connections to block peers that misbehave. 

Another component of the neighbor selection policy is deciding how many outgoing and in-
coming connections to establish. A larger number of connections can improve block prop-
agation speed and make the network more robust to eclipse and partitioning attacks. On the 
other hand, more connections increase the cost of participation. Outgoing connections are 
more trustworthy than incoming ones because even weak adversaries can establish a sig-
nifcant number of incoming connections to an honest peer. As a result, denial-of-service 
resistance increases to a greater degree from more outgoing connections than additional 
incoming ones. That said, a large number of incoming connection slots is desirable so that 
other peers can establish outgoing connections and to prevent an adversary from using up 
the available incoming connection slots. 

The node software must also decide whether to maintain established connections for as 
long as possible or to strategically disconnect from some neighbors and replace them with 
others. Maintaining connections for longer makes it easier for an adversary to infer the 
network topology but more challenging to exploit it using their own Sybil nodes. It is 

248 



NIST IR 8460 ipd 
April 2023 

8807 

8808 

8809 

8810 

8811 

8812 

8813 

8814 

8815 

8816 

8817 

8818 

8819 

8820 

8821 

8822 

8823 

8824 

8825 

8826 

8827 

8828 

8829 

8830 

8831 

8832 

8833 

8834 

8835 

8836 

8837 

8838 

8839 

8840 

8841 

8842 

8843 

8844 

8845 

also possible for the neighbor selection protocol to strategically generate certain network 
topologies. For instance, creating clusters of nodes based on geographic proximity can 
speed up information propagation but makes it easier to infer the network topology and 
launch various attacks. 

Finally, nodes can monitor their own connections for performance and security and dis-
connect from peers that send too much or too little information, are slow to respond, or 
otherwise behave unexpectedly. While this can improve resistance to attacks, adversaries 
can occasionally take advantage of these mechanisms to aid in other attacks. For example, 
an attack on the Bitcoin network was proposed where nodes connecting over Tor can be 
eclipsed by taking advantage of peer monitoring [494]. 

17.1.3. Communication Strategy 

While peer discovery and neighbor selection determine the network structure, nodes must 
also have a communication strategy to determine how best to disseminate information. 
Messages may be treated differently based on their content or the context they occur in. For 
example, in Bitcoin, a received block is immediately relayed (after being verifed), whereas 
transactions are relayed with a random delay. Similarly, a node may relay transactions 
differently when created by the user of the node itself as opposed to transactions received 
from the network. As a fnal example, nodes may not participate in transaction relay at all 
when they are still performing their initial block download to synchronize with the network. 
Using message content and context in this way can help balance competing priorities. 

One dimension of the communication strategy is whether messages should be pushed in an 
unsolicited fashion or whether messages should be announced frst and only sent directly 
if requested by the peer. Pushing messages results in them being disseminated across the 
network more quickly than the announce-and-request method because information is sent 
in half a round trip instead of 1.5 round trips. On the other hand, the announce-and-request 
method uses much less bandwidth than the unsolicited push by avoiding duplicate mes-
sages. Nodes must also decide whether to food a message to all of its neighbors or gossip 
the message to a (possibly random) subset of connections. Flooding uses more bandwidth 
than gossip but is also more robust against attacks. A node might, for instance, pick a few 
peers to push unsolicited blocks to in order to speed up block propagation while following 
announce-and-request for blocks sent to other peers (and transactions sent to all peers) in 
order to keep bandwidth consumption modest. 

Nodes must also determine when to send messages to their peers. They can, for instance, 
add a random delay before forwarding messages, which can improve topology hiding and 
anonymity while slowing down performance. They can also choose to aggregate several 
messages together to send simultaneously, which reduces the bandwidth overhead. For 
instance, a node might forward fve transactions at a time. This has other potential benefts, 
such as making the code cleaner by maintaining only a single outgoing message queue 
per connection. Allowing messages to accumulate has an unclear impact on propagation 

249 



NIST IR 8460 ipd 
April 2023 

8846 

8847 

8848 

8849 

8850 

8851 

8852 

8853 

8854 

8855 

8856 

8857 

8858 

8859 

8860 

8861 

8862 

8863 

8864 

8865 

8866 

8867 

8868 

8869 

8870 

8871 

8872 

8873 

8874 

8875 

8876 

8877 

8878 

8879 

8880 

8881 

8882 

speed but can improve it on average if new outgoing messages are added to a queue that 
was already scheduled to be sent (assuming they would otherwise be sent with a random 
delay). Message accumulation also has an unclear impact on anonymity and topology 
hiding. Message transmission times depend on information about received messages that 
an attacker may not be privy to. On the other hand, it can open up new attack vectors, such 
as inferring when a peer received a certain message from another peer using information 
from the aggregated set of messages. 

18. State Machines 

Distributed ledger systems utilize consensus in order to execute a state machine, where a 
set of servers execute commands on behalf of clients in an agreed-upon order to modify 
the state of the system. The state machine is the set of rules that validating servers enforce 
while transforming the state based on these client-submitted commands, called transac-
tions. While a wide variety of rules are possible, some types of rules appear frequently. For 
instance, a transaction that modifes a piece of the state of the system should include a valid 
signature from a client that is authorized to act on that portion of the state. Other common 
rules include establishing a maximum block size that block proposers can create, requiring 
a particular syntax for blocks and transactions, and ensuring that all transactions included 
in a block are committed to in the block header. 

The idea of state machines was introduced in Section 2.8. There are two primary models 
that distributed ledgers use to organize and manage their state: the UTXO model and the 
account model, discussed in detail in Section 2.8.1. Some unique challenges with respect to 
changing the rules of distributed ledgers were discussed in Section 2.8.2. This section will 
provide some additional details regarding state machine design. A variety of alternative 
state machines with different properties are possible. In addition, "off-chain" or "second 
layer" systems that take advantage of the properties of the underlying state machine to 
improve scalability are introduced. 

18.1. Virtual Machine Design 

The majority of distributed ledger systems include a runtime environment or virtual ma-
chine that executes platform-independent code in a low-level programming language (ex-
ceptions exist, such as Monero). Transactions act as miniature programs or function calls 
that modify a portion of the state of the ledger by executing a series of opcodes, or in-
structions. Some systems – like Bitcoin – use a set of opcodes with limited functionality, 
while others – like Ethereum – use a Turing-complete instruction set capable of executing 
any general program. In many cases, higher-level languages exist that are friendlier to the 
programmer and compile down to bytecode made up of virtual machine-specifc opcodes. 

Bitcoin uses the Bitcoin Script language, a Forth-like, stack-based scripting system with no 
loops. The original implementation had many more opcodes, but a large number of them 

250 



8885

8890

8895

8900

8905

8910

8915

8920

8883 

8884 

8886 

8887 

8888 

8889 

8891 

8892 

8893 

8894 

8896 

8897 

8898 

8899 

8901 

8902 

8903 

8904 

8906 

8907 

8908 

8909 

8911 

8912 

8913 

8914 

8916 

8917 

8918 

8919 

8921 

8922 

NIST IR 8460 ipd 
April 2023 

were deprecated early on in Bitcoin’s history due to fears of denial of service and other 
attacks. The instruction set includes a number of "no operation" opcodes, OP_NOP, which 
allow new opcodes to be added via soft fork. In Bitcoin’s UTXO model, outputs contain a 
scriptPubKey feld that includes an encumbrance, or a condition to satisfy in order to spend 
the output. When an input spends an output, it uses the input’s scriptSig feld to include 
data and opcodes that satisfy the spending condition in the scriptPubKey. To validate an 
input being spent, an empty stack is created, and the program to execute consists of the 
scriptSig prepended to the scriptPubKey of the output being spent. This combined script 
is executed from left to right and is considered valid if nothing triggers failure during the 
script execution and the top stack item when the script completes is True (or non-zero). 

One of the most common, standard transaction types in Bitcoin is the pay-to-
public-key-hash (P2PKH) transaction, which transfers some bitcoin from one ad-
dress to another (where an address is a hash of a public key). In this case, 
the scriptPubKey will look like the following, where bracketed items are data to 
be pushed to the stack: OP_DUP OP_HASH160 <Owner’s address> OP_EQUALVERIFY 
OP_CHECKSIG. The corresponding scriptSig consists of two push operations: <Owner’s 
signature> <Owner’s public key>. As a result, the combined script to be executed is 
the following: <Owner’s signature> <Owner’s public key> OP_DUP OP_HASH160 
<Owner’s address> OP_EQUALVERIFY OP_CHECKSIG. 

Execution proceeds from left to right, so the frst thing that happens is that the signature is 
pushed to the stack, and then the owner’s public key is pushed to the stack above it. The 
OP_DUP operation duplicates the top item on the stack (in this case, the public key). Next, 
the OP_HASH160 opcode takes the public key at the top of the stack and replaces it with the 
RIPEMD-160 hash of the SHA-256 hash of the public key. The owner’s address is then 
pushed to the top of the stack. From top to bottom, the stack now consists of the address 
supplied in the output, the hash of the public key given in the input, the public key itself, 
and the signature from the input. The OP_EQUALVERIFY opcode checks that the top two 
items on the stack are equal and fails if they are not, in which case it ensures that the public 
key supplied in the scriptSig is a preimage for the address given in the scriptPubKey. 
Assuming that they match, the top two stack items are removed, leaving just the public key 
on top of the signature. Finally, OP_CHECKSIG takes the public key and signature, pops 
them off the stack, and pushes True if the signature is valid. 

To check whether the signature is valid, the execution environment needs to know what 
message is being signed. To this end, the signature includes a one byte SIGHASH fag that 
determines which portions of the transaction are used to form the message. This provides 
some fexibility for users, so that only some parts of the transaction are signed, allowing 
others to modify the transaction if desired. For instance, it may be desirable to have the 
message only include a single output, allowing other users to contribute additional inputs 
to the transaction so long as the specifed output is included too. 

In contrast to Bitcoin, Ethereum uses the Turing-complete Ethereum Virtual Machine 

251 



8925

8930

8935

8940

8945

8950

8955

8960

8923 

8924 

8926 

8927 

8928 

8929 

8931 

8932 

8933 

8934 

8936 

8937 

8938 

8939 

8941 

8942 

8943 

8944 

8946 

8947 

8948 

8949 

8951 

8952 

8953 

8954 

8956 

8957 

8958 

8959 

8961 

8962 

NIST IR 8460 ipd 
April 2023 

(EVM) as its execution environment and uses the account model rather than the UTXO 
model. The EVM is capable of executing any deterministic program but subject to the 
EVM’s gas limit. Gas is a unit of measurement that is intended to correspond to the com-
putational effort required to execute an opcode, so each opcode has a particular gas cost. 
The gas limit is analogous to a maximum block size but for computational effort instead 
of space. There are two types of accounts in Ethereum: contract accounts and externally 
owned accounts (EOAs). EOAs are typical user accounts controlled by a private key that 
allows the user to transfer the ether currency or interact with contract accounts. Special 
transactions are used to deploy smart contracts by creating contract accounts that include 
the smart contract’s bytecode. These contract accounts are then controlled by the EVM 
bytecode when an EOA triggers a function call on the smart contract. 

The EVM’s global state is a mapping between addresses and the associated account’s state. 
Each account has an ether balance, a nonce, a hash of the code deployed to that address, 
and a hash of the account’s storage. There is also a machine state that includes a program 
counter pointing to the next instruction to execute, the remaining gas available, a stack, 
and memory. To invoke a smart contract, a user signs a transaction where the recipient 
feld contains the smart contract address, and the data feld contains information on the 
function to be called and arguments to pass to it. A transaction’s execution may fail and 
throw an exception, in which case gas fees are still charged to the account and given to the 
transaction’s miner, but any state transitions the transaction would have caused are reverted. 

It is extremely challenging for developers to write smart contracts directly as low-level 
bytecode. Instead, developers will typically use a high-level language, such as Solidity 
or Vyper, and compile it down to EVM bytecode before deploying. Other high-level lan-
guages have been developed for other distributed ledger platforms, such as the Move lan-
guage created for the Diem blockchain. Move was designed to handle the problem of con-
servation, or ensuring that fund transfers preserve the total monetary supply in the system 
[495]. Solidity handles this naturally by associating each account with a balance that can 
only be modifed by special instructions. For tokens built on Ethereum, the EVM cannot 
maintain this supply conservation property without encoding it in the token smart contract 
itself, whereas the Move language maintains this property even for custom tokens. 

A number of projects use WebAssembly (WASM) as their runtime environment for smart 
contracts. Due to its support on most modern web browsers, distributed ledger clients will 
be able to run in the browser more easily. WASM instructions can be directly mapped 
to machine instructions, so it should be highly performant. In the future, Ethereum will 
likely migrate from the EVM to eWASM, or a restricted subset of WebAssembly de-
signed for Ethereum. Specifcally, eWASM is the same as WASM but with foating point 
non-determinism removed, gas metering added, and an Ethereum-specifc interface [496]. 
While eWASM is expected to ultimately improve performance, current implementations 
have variable but relatively poor execution speeds [497]. 

A fnal point on Turing-completeness is in order. An interesting side-effect of having a 

252 



NIST IR 8460 ipd 
April 2023 

8963 

8964 

8965 

8966 

8967 

8968 

8969 

8970 

8971 

8972 

8973 

8974 

8975 

8976 

8977 

8978 

8979 

8980 

8981 

8982 

8983 

8984 

8985 

8986 

8987 

8988 

8989 

8990 

8991 

8992 

8993 

8994 

8995 

8996 

8997 

8998 

8999 

9000 

9001 

9002 

Turing-complete instruction set with gas metering is that it makes it unsafe to conduct 
some kinds of soft forks due to opening up a denial-of-service vector [498]. On the bright 
side, this also prevents some malicious soft forks, such as smart contract censorship. Con-
sider a soft fork that made any transaction that operates on a particular contract invalid. 
Once the soft fork is deployed, an attacker can broadcast many transactions to the network 
that perform a variety of challenging computations before invoking the censored smart con-
tract. Miners that run the soft fork code would have to execute these transactions before 
fnding them invalid, but due to the soft fork, they would not be able to claim gas fees as 
compensation, nor would the attacker pay fees. Since this costs the attacker nothing, they 
can amplify the attack by setting high gas prices, encouraging miners to waste more com-
putational resources. Static analysis could be used to see whether the transaction interacts 
with the censored address, but this address could be obfuscated, and static analysis is itself 
computationally intensive. Turing-completeness implies that, due to the halting problem, 
transactions must be executed in order to determine how the computation will unfold. 

A different approach is taken in the Mimblewimble protocol, where the scripting language 
is removed entirely [499–501]. Mimblewimble’s design prioritizes improved scalability for 
newly joining nodes while also providing a privacy boost for users. When a node joins a 
Mimblewimble network, the bandwidth and computational effort required to synchronize 
with the network is roughly proportional to the size of the UTXO set, whereas the effort 
is proportional to the entire transaction history for Bitcoin and most other ledgers. This is 
accomplished by allowing transaction cut-through. Consider a ledger following the UTXO 
model. If a transaction spends output T XO1 and creates T XO2, and a second transaction 
spends T XO2 and creates T XO3, this is equivalent to a single alternative cut-through trans-
action that spends T XO1 and creates T XO3. In Bitcoin, cut-through is impossible once 
transactions are included in the ledger, but the Mimblewimble ledger is ultimately a sin-
gle aggregated transaction with a set of outputs equivalent to the full UTXO set. With 
no scripting language, Mimblewimble lacks a virtual machine, but it still performs state 
machine replication when combined with a consensus algorithm. 

18.1.1. Concurrency in Smart Contracts 

In state machine replication, where all transactions are totally ordered, it is natural to think 
in terms of sequential execution of transactions. However, one of the best ways to improve 
performance in computing is to exploit parallelism to make better use of available CPU 
cores. The primary challenge in adding concurrency to state machine execution is that the 
runtime environment requires determinism to ensure that validators remain in agreement 
with one another. It may nevertheless be worthwhile to attempt to solve this problem 
since some estimates suggest that if all available concurrency opportunities in Ethereum 
were exploited, there would be a factor of six improvement in execution speed [502]. A 
variety of approaches to adding concurrency to smart contracts have been explored [503– 
509]. Solana, for example, is a prominent smart contract platform where transactions must 
specify in advance the portions of system state that are accessed, which allows validators 

253 



9005

9010

9015

9020

9025

9030

9035

9040

9003 

9004 

9006 

9007 

9008 

9009 

9011 

9012 

9013 

9014 

9016 

9017 

9018 

9019 

9021 

9022 

9023 

9024 

9026 

9027 

9028 

9029 

9031 

9032 

9033 

9034 

9036 

9037 

9038 

9039 

9041 

9042 

NIST IR 8460 ipd 
April 2023 

to execute non-conficting transactions in parallel [510]. 

An early approach used a locking mechanism to divide transactions across several threads 
of execution [503]. Whenever a transaction attempts to access a portion of the system’s 
state, the thread attempts to acquire a lock for it and will not execute the transaction without 
having a lock on the relevant state. Because this is not a deterministic process, a miner 
needs to keep track of the history of which threads acquired which locks. This history 
creates a happens-before graph of the executed transactions, which must be transmitted to 
validators as a part of the block. Validators can use this graph to spawn the required threads 
and assign transactions to them. 

Another approach utilizes speculative execution in order to achieve concurrency in a lock-
free manner [504]. First, all transactions are executed concurrently, assuming that there 
are no conficts. When conficts do occur, the transaction is aborted and put into a sep-
arate "bin" for sequential transactions. Once the speculative concurrent execution of all 
transactions has completed, the sequential transactions are executed. As a result, when a 
transaction causes a confict, it must be executed twice, introducing some overhead. 

A third approach takes advantage of software transactional memory systems (STMs) 
[506, 507]. In contrast with the use of locks, transactional memory assumes that simul-
taneous access to state will not cause confict; that is, it is optimistic. Therefore, threads 
do not need to wait for each other in order to access the same portion of the state. Dur-
ing transaction execution, miners attempt to update the state but do not fully commit these 
changes until later. When a state change is about to be committed, the runtime environ-
ment checks for conficts based on prior commits, and the changes are reverted in case of 
confict. This process is non-deterministic in the same way as using locks, so the miner 
generates a happens-before graph to transmit to validators in a similar way. This method 
results in a lot less waiting time when multiple transactions access the same piece of state 
but in ways that do not cause conficts. 

One can also parallelize existing ledger systems by using some basic static analysis. For 
example, [505] defnes the notion of strongly swappable transactions: transactions T X1 and 
T X2 are strongly swappable if the state variables that each transaction accesses are disjoint. 
To exploit this, any method of static analysis can be used to over-approximate the portions 
of state accessed in a transaction. For UTXO-based ledgers, such as Bitcoin, a simple 
check on the inputs and outputs is suffcient. Strong swappability then implies a partial 
ordering of transactions that validators can deduce themselves and that is guaranteed to be 
equivalent to a serial execution of transactions. 

Finally, [508] describes a clever solution that utilizes a variant of locking, concurrency 
delegation, and static analysis. Each state variable is augmented with a taint value. A state 
variable that has not been accessed during the current execution is considered untainted, 
but once a thread attempts to read or write to it, it is considered tainted with a value that 
identifes the thread. This is a relaxation of the idea of locking such that long wait times are 
avoided. Instead, if a thread attempts to access a tainted variable, the execution immediately 

254 



9045

9050

9055

9060

9065

9070

9075

9080

9043 

9044 

9046 

9047 

9048 

9049 

9051 

9052 

9053 

9054 

9056 

9057 

9058 

9059 

9061 

9062 

9063 

9064 

9066 

9067 

9068 

9069 

9071 

9072 

9073 

9074 

9076 

9077 

9078 

9079 

9081 

NIST IR 8460 ipd 
April 2023 

stops. The thread then forwards the conficting transaction to the thread that tainted the 
variable, which is more likely to be able to execute it. After the transaction is delegated 
in this way, it may still not be able to be executed, in which case it is added to a queue of 
sequential transactions to be executed later. 

This delegation process requires that transactions are initially distributed to threads in some 
way, ideally while minimizing conficts. To this end, transactions are analyzed based on 
static information to provide "hints" without needing to execute the transactions. For ex-
ample, the sending address in a transaction constitutes a good hint. A programmer can 
then annotate transactions with these hints, which are benefcial despite being imperfect. A 
primary thread uses this information to distribute transactions across worker threads, who 
use tainting and delegation as described above. If a tainted transaction cannot be executed 
by the thread it was delegated to, the worker thread sends it back to the primary. Workers 
let the primary thread know that they have completed execution, at which point the work-
ers are shut down, and the sequential queue is executed. Finally, the primary thread labels 
transactions based on which worker thread they were executed by or whether they were 
sequential, providing that information to validators and allowing deterministic execution. 

18.1.2. Zero-Knowledge Proofs and Verifable Computation 

A common technique in distributed ledger protocols is to employ zero-knowledge proofs, 
frequently zk-SNARKS, in order to prove that some computation was performed correctly 
while revealing no additional information. Depending on the exact techniques used, this 
can enhance privacy as well as improve the scalability of distributed ledgers by having 
validators verify short proofs of computation instead of performing all computations them-
selves. 

An early application of this is the Zerocash protocol, which has been deployed in the Zcash 
network [511]. In Zcash, zk-SNARKS are used to create "shielded" transactions that hide 
the transaction’s inputs, outputs, and amount. The zk-SNARK proves to the rest of the 
network that the transaction adhered to the state machine’s rules. The proof demonstrates 
that the amount of Zcash transmitted in the inputs is equal to the amount of Zcash in the 
outputs less a fee and that the spender possesses the requisite private key to spend funds. 
Similar techniques can be used to add privacy to smart contracts on Ethereum or other 
Turing-complete platforms. Zether, for example, uses a different form of zero-knowledge 
proof (called Bulletproofs) to hide transaction amounts while performing fund transfers to 
and from smart contracts [512]. This enables things like sealed-bid auction smart contracts. 

Other schemes make the smart contract computations themselves more private rather than 
just payments [513–515]. For example, the Hawk system can be used to hide the inputs 
to smart contracts from everyone except a special party called the manager, which may be 
implemented via multi-party computation [513]. Zexe hides not just the inputs and outputs 
of a function to be executed but also the function itself as well as the internal state of the 
smart contract that executes it [514]. To see why this is valuable, one can imagine that 

255 



NIST IR 8460 ipd 
April 2023 

9082 

9083 

9084 

9085 

9086 

9087 

9088 

9089 

9090 

9091 

9092 

9093 

9094 

9095 

9096 

9097 

9098 

9099 

9100 

9101 

9102 

9103 

9104 

9105 

9106 

9107 

9108 

9109 

9110 

9111 

9112 

9113 

9114 

9115 

9116 

9117 

9118 

9119 

9120 

every token on Ethereum is built with a Zerocash-like scheme that hides the transaction 
details of token transfers. In this case, transactions would still leak which particular tokens 
were involved in a transaction. An eavesdropper may not know how much of a token was 
transferred, but they could still deduce the token smart contract that was used. In Zexe, a 
shared execution environment is created in which transactions reveal no information about 
the offine computations performed for a smart contract, are unlinkable to other transactions 
by the same user and/or the same type of computation, and can be verifed in constant 
time regardless of the complexity of the computation. Users perform the computations 
themselves (or, in an extension to the protocol, delegate the computations to someone else) 
on plaintext inputs, encrypt the inputs and outputs to the computation, and combine it with a 
zk-SNARK before submitting the transaction to the network. Validators only need to verify 
that the zk-SNARKs included in the transactions are valid but do not need to re-execute the 
computations. 

Another approach, dubbed smartFHE, uses fully homomorphic encryption to allow smart 
contracts where users maintain privacy over their inputs and outputs to the contract function 
[515]. That is, it allows computation to be performed on encrypted data supplied by one 
or more users, where the results of the computation remain private to those users as well. 
Fully homomorphic encryption allows users to submit to a smart contract a list of encrypted 
inputs to a function to execute as well as a zero-knowledge proof that the submitted cipher-
texts are well-formed. After verifying the proof, miners will execute the requested function 
calls on the ciphertexts. In contrast to Zexe, the private computations in smartFHE are 
performed on-chain, and the smart contract’s code is public. smartFHE does not provide 
anonymity to users interacting with the smart contracts. 

18.1.3. Delegating Execution 

Most distributed ledgers require all participants to execute every transaction. Combined 
with a consensus algorithm that guarantees agreement over a total ordering of these trans-
actions, this is a natural way to achieve state machine replication. However, requiring that 
every node executes every transaction hinders the scalability of the network and reduces the 
privacy of the computation. It would be better if only a subset of participants were required 
to execute transactions rather than every node on the network. 

TrueBit is a scheme that uses smart contracts to outsource computation and provides eco-
nomic incentives such that rational participants will execute the computation correctly 
[516]. As a result, network validators need not execute these computations, while the com-
plexity of the computations can be signifcantly greater than the base layer’s gas limit would 
typically allow. A user who would like a computation executed deposits some funds to pay 
for the result. Anyone can act as a solver or verifer in the system by submitting a deposit 
to the contract, though solvers are matched to computational tasks at random. To provide 
proper incentives for verifers in TrueBit, potential verifers need to believe that there is a 
real chance of fnding a fawed computation from a solver. As a result, TrueBit periodically 

256 



NIST IR 8460 ipd 
April 2023 

9121 

9122 

9123 

9124 

9125 

9126 

9127 

9128 

9129 

9130 

9131 

9132 

9133 

9134 

9135 

9136 

9137 

9138 

9139 

9140 

9141 

9142 

9143 

9144 

9145 

9146 

9147 

9148 

9149 

9150 

9151 

9152 

9153 

9154 

9155 

9156 

9157 

9158 

9159 

9160 

requires incorrect solutions to be submitted. Once a solver is randomly assigned to a task, 
they calculate both a correct and incorrect result to the computation and send commitments 
to both to the TrueBit contract. The contract determines whether a "forced error" should 
occur for this computation, in which case the solver opens the commitment to the incorrect 
result (otherwise, they open the correct result). Verifers then check the solution and issue 
a challenge if they disagree with the solver. The verifer receives a large payment if the 
solution is erroneous and the forced error regime is in effect. The system will accept the 
result as accurate if no verifer challenges it, but if a challenge exists, a verifcation game is 
played. 

Assume that the requested computation runs in t time steps and requires at most s bits of 
state at any given point in the computation. Both the solver and the challenger create a 
mapping of each time step of the computation to its internal state at that time. Let c > 1 
be a parameter of the verifcation game that determines a trade-off between the number of 
game rounds and the amount of communication required with the underlying ledger. 

The verifcation game runs a loop that attempts to determine where in the computation 
the discrepancy arises. At the start of the loop, the solver picks c equally spaced state 
confgurations based on the current range of the disputed computation. For each of these 
c confgurations, the solver creates a Merkle tree with s leaves that correspond to each 
bit of the internal state and publishes the roots to the TrueBit contract. The challenger 
submits i ≤ c to the contract, where i is the frst time step in the list where they disagree 
with the state. The TrueBit contract verifes that c Merkle roots have been submitted and 
that 1 ≤ i ≤ c and has the relevant party lose if a check fails. The loop begins again but 
only using the state confgurations between the (i − 1)-th and i-th confgurations from the 
prior round of the loop. Eventually, this loop converges to the frst disputed step over the 
whole computation, and this step is then verifed by the smart contract. If this is the e-th 
time step, the solver will submit to the contract paths from time e − 1 and e’s Merkle roots 
to the leaves that contain the relevant Turing-machine variables needed to check the one 
computational step. The winner of the verifcation game is determined by whether these 
paths are valid and the computation step was executed properly. 

Another technique, employed in Hyperledger Fabric, is to decouple the ordering of transac-
tions and their execution [517]. For most ledgers, a consensus algorithm frst orders batches 
of transactions that are then executed serially, updating the state when execution completes. 
In contrast, Fabric uses the execute-order-validate (EOV) paradigm, where transactions are 
frst executed, then ordered by the consensus algorithm, and fnally validated for consis-
tency to remove conficts before updating the state. These approaches are compared in Fig-
ure 55. Because potentially invalid transactions will be ordered, throughput can be harmed 
by the inclusion of duplicate or conficting transactions [518]. To mitigate the performance 
impact of this, client authentication and other techniques may be used. 

Because not all parties need to care about every smart contract on the system, each contract 
in Fabric specifes a set of endorsers that execute the transactions and an endorsement 

257 



NIST IR 8460 ipd 
April 2023 

Fig. 55. Comparison between execute-order-validate and order-execute. [519] 

9161 

9162 

9163 

9164 

9165 

9166 

9167 

9168 

9169 

9170 

9171 

9172 

9173 

9174 

9175 

9176 

9177 

9178 

9179 

9180 

9181 

9182 

9183 

9184 

policy that provides the threshold that must agree or any specifc peers to trust. In the 
execution phase, clients sign transactions and send them to the relevant endorsers. The 
endorsers create a read set and write set of the pieces of state that were read from or 
written to by the transaction and reply to the client with a signed endorsement of these sets 
and the result. Clients collect endorsements until the endorsement policy is met. The client 
bundles up these endorsements and creates a signed transaction to send to the ordering 
service, which uses a consensus algorithm to totally order transactions. In the validation 
phase, replicas verify that transactions meet their endorsement policies and are marked 
invalid if they fail. Replicas then sequentially check transactions for conficts in their read 
and write sets and are marked as invalid if conficts arise. Finally, the state is updated by 
the valid transactions, the block is committed, and clients are notifed. 

Arbitrum is a mechanism that allows a smart contract to be defned as a virtual machine 
where computation is performed off-chain, and both the code and the data for the smart 
contract remain off-chain for improved privacy [520]. When a contract is deployed, the 
creator selects a set of VM managers who are in charge of executing the code. As long 
as one VM manager is honest, security is maintained. Transactions are sent to the VM 
managers, who execute them and sign the result. If there is unanimous agreement among 
VM managers, their signatures are published to the underlying ledger, and replicas are 
only required to verify the signatures instead of performing the requested computation. If 
parties behave irrationally, a TrueBit-like verifcation game is played that resolves disputes 
by examining the execution of a single instruction. 

ACE is a scheme that is intended to allow highly complex contracts that may take min-
utes to execute on top of an underlying ledger, such that computations themselves occur 
off-chain and asynchronously [521]. As with Arbitrum, contract issuers appoint a set of 

258 



NIST IR 8460 ipd 
April 2023 

9185 

9186 

9187 

9188 

9189 

9190 

9191 

9192 

9193 

9194 

9195 

9196 

9197 

9198 

9199 

9200 

9201 

9202 

9203 

9204 

9205 

9206 

9207 

9208 

9209 

9210 

9211 

9212 

9213 

9214 

9215 

9216 

9217 

9218 

9219 

9220 

9221 

9222 

service providers to execute the code. However, ACE allows fexible thresholds instead of 
requiring unanimous agreement and allows different smart contracts to safely interact with 
each other in a composable way. In ACE, blocks include separate ordering and result sec-
tions. Miners will pre-order transactions, and service providers execute transactions from 
this section off-chain when their contracts are called. Service providers sign and broadcast 
the results of the execution over the network and create a special state change transaction. 
If a suffcient threshold of service providers signs off on the state change, miners include it 
in the results section of a block, thereby committing the transaction. By having each execu-
tion result reference the preceding contract state, consistency can be maintained even when 
the threshold is less than half of the designated service providers. A similar scheme can 
also be implemented on Bitcoin and other networks with less expressive scripting support 
[522]. 

A different approach employed in LazyLedger is to have the blockchain order transactions 
and make them available but shift the burden of executing and validating transactions to the 
clients who care about them [523]. For consensus participants, verifying a block consists 
solely of verifying data availability, either by downloading the whole block or by using 
probabilistic techniques like those discussed in Section 15.5. The LazyLedger blockchain 
just stores messages for smart contracts, but the contract logic itself is off-chain, can be 
written in any language or environment, and can be changed without a hard fork. This ar-
chitecture allows the users of a smart contract to ignore messages related to other contracts 
and only execute or validate state transitions that they care about. While this can dramat-
ically improve the scalability of computation, there is a risk of denial-of-service attacks 
on smart contracts if malicious clients create many invalid transactions, so LazyLedger 
may work better in a permissioned system. Another limitation is that it is challenging to 
construct light clients for smart contracts using this architecture. 

18.2. Layer 2 Protocols 

Generally speaking, distributed ledgers scale somewhat poorly because every single node 
on the network is required to process every transaction. This consumes large amounts of 
storage and bandwidth, and verifying a large number of signatures can be taxing on a CPU. 
It is preferable for transactions to be processed locally by the parties involved rather than 
by every single node. This is where "layer 2" techniques can be useful. Smart contracts can 
rely on a small amount of global state in order to execute many transactions "off-chain," 
using the ledger itself only for settlement and dispute resolution. 

18.2.1. Payment and State Channels 

The most basic second layer scaling technology is the payment channel. Once set up, the 
participants can send a potentially limitless number of transactions back and forth between 
each other without needing to touch the underlying ledger except for fnal settlement. In-
stead of issuing a separate transaction for each morning coffee for a month, a customer 

259 



9225

9230

9235

9240

9245

9250

9255

9223 

9224 

9226 

9227 

9228 

9229 

9231 

9232 

9233 

9234 

9236 

9237 

9238 

9239 

9241 

9242 

9243 

9244 

9246 

9247 

9248 

9249 

9251 

9252 

9253 

9254 

9256 

9257 

9258 

9259 

NIST IR 8460 ipd 
April 2023 

could open a payment channel with the coffee shop on-chain at the beginning of the month, 
purchase each coffee off-chain, and close the channel at the end of the month. In this case, 
instead of having 30 different transactions processed globally, only two are required. The 
same idea can be applied to smart contracts in general rather than just payments, in which 
case it is called a state channel. 

A variety of payment channel constructions exist [524, 525]. This section describes the 
basics of the Lightning Network (LN) payment channel construction [526, 527]. An LN 
channel consists of the following transactions (where the notation is from [524]): 

• Funding: This transaction opens the channel and deposits funds into it, similar to a 
prepaid debit card. It is signed by both parties and creates a 2-of-2 multisig UTXO. 

• Commitment: These transactions spend from the multisig output and thus require 
signatures from both channel participants, who receive their counterparty’s signature 
in advance of usage. These transactions have two outputs: the frst sends coins to the 
broadcaster, and the second sends coins to the counterparty. The counterparty can 
spend the second output by signing it. The frst output has two potential spending 
conditions: 

1. A signature from the broadcaster plus a relative lock time such that the commit-
ment transaction has depth λ in the ledger before being spendable 

2. A signature from the counterparty plus a preimage SX , j of revocation hash 
hX , j = H(SX , j) 

• Revocable Delivery: These transactions send coins to their broadcaster and require 
the signature of the broadcaster and for the commitment transaction they spend from 
to have a depth of λ blocks in the ledger. 

• Delivery: These transactions immediately send the counterparty their share of coins 
when signed by the counterparty that did not broadcast their commitment transaction. 

• Breach Remedy: These transactions can only be broadcast after a revoked commit-
ment transaction is included on-chain. They require a signature from the counterparty 
that did not broadcast the revoked commitment transaction, as well as the preimage 
SX , j of the revocation hash from the commitment transaction. The breach remedy 
transaction has no relative lock time, so the counterparty can immediately take all of 
the channel’s coins. 

A channel can be closed either cooperatively or unilaterally. If both parties are online and 
cooperative, they can simply agree upon a transaction that sends each party their correct 
share. There is also a dispute process for when one of the parties is not online: either party 
can broadcast their most recent commitment transaction and revocable delivery transaction 
to recover their funds, while the counterparty then broadcasts their delivery transaction to 
receive their own share. If either party publishes an outdated commitment transaction, the 

260 



NIST IR 8460 ipd 
April 2023 

9260 

9261 

9262 

9263 

9264 

9265 

9266 

9267 

9268 

9269 

9270 

9271 

9272 

9273 

9274 

other party can punish them by taking all of the coins in the channel with their breach 
remedy transaction. An example of this is shown in Figure 56. 

Fig. 56. Lightning network channel closing. In this example, the channel is updated twice 
of-chain. A malicious channel party tries to close the channel with an outdated state favorable 
to them by broadcasting the corresponding commitment transaction. The malicious party must 
wait λ blocks before their portion is spendable. The honest counterparty sees the malicious 
transaction confrmed on the blockchain before the timelock expires, and submits a breach 
remedy transaction to claim all the funds in the channel - including the coins of the malicious 
party. [528] 

Payment channels would have limited utility if they only allowed transactions between di-
rect channel partners. This would require consumers to open channels with every business 
they frequent. Luckily, the Lightning Network allows payments to fow across a network 
of open payment channels: if Alice has an open channel with Bob, and Bob has an open 
channel with Carol, then Alice can pay Carol using Bob as an untrusted intermediary. This 
process can be seen in Figure 57 and utilizes HTLCs, as described in Section 16.1. The 
fnal recipient chooses a preimage, and sends its hash to the original sender. The parties 
along the payment path set up HTLCs with each other using this as the hashlock, with 
timelocks getting shorter with each payment channel the path crosses. The preimage is 
then passed backwards along the path in order to allow each payment to complete. 

This payment method utilizing HTLCs is susceptible to the wormhole attack, which allows 
colluding users to steal transaction fees from intermediaries [530]. If Alice and Carol 
colluded (or were, in fact, a single entity), steps 6 and 7 in Figure 57 could be skipped, and 

261 



NIST IR 8460 ipd 
April 2023 

9275 

9276 

9277 

9278 

9279 

9280 

9281 

9282 

9283 

9284 

9285 

9286 

9287 

9288 

9289 

9290 

9291 

9292 

9293 

9294 

9295 

9296 

9297 

9298 

9299 

9300 

9301 

9302 

9303 

9304 

Carol could directly share the secret preimage with Alice instead of Bob. In this case, Bob’s 
timelock will be left to expire, but Alice can complete the payment afterward because her 
timelock is longer. In the end, Bob will not collect his fee, leaving Alice and Carol with 
extra funds. This vulnerability stems from the use of the same preimage across the entire 
payment but can be solved using a cryptographic primitive called adaptor signatures. An 
adaptor signature is essentially a promise that the publication of an agreed-upon signature 
will reveal a secret value. 

Fig. 57. Lightning Network payment. The notation HT LC(Alice,Bob,y,α, t) means that: (1) 
If timeout t expires, Alice can get back the α coins she locked, and (2) If Bob reveals a value x 
such that H(x) = y before timeout t, then Alice will pay α coins to Bob. [529] 

While payment channels are useful for payments, more general use cases may require the 
use of state channels, which are like payment channels but for arbitrary smart contracts. 
In many cases, these take advantage of Turing-complete state machines, such as the EVM. 
However, Bitcoin-compatible state channels have also been proposed [531]. These use 
adaptor signatures to create generalized state channels capable of executing any operation 
that the underlying network (e.g., Bitcoin) supports but off-chain. Turing-completeness is 
also sometimes required for certain types of payment channels, such as Perun virtual chan-
nels, where once set up, intermediaries are no longer required to be online for payments 
between endpoints [532]. Virtual channels were later extended to the UTXO model using 
only signatures and timelocks in order to be Bitcoin-compatible [533, 534]. Perun was 
extended to a multi-hop environment and for generalized state channels in [535] (which in-
troduced state channels contemporaneously with [536]). These virtual state channels were 
further extended to allow contracts with more than two parties in [537]. 

General state channels operate very similarly to payment channels. Alice and Bob can 
execute smart contract code off-chain by deploying a state channel, G. First, both parties 
agree to an initial state G0 of G and then exchange signatures on the tuple (G0,0), where 
the second item is a sequence number. The smart contract is then executed over time by 
exchanging further tuples of an agreed-upon state and sequence number. Let (Gs,s) be the 
most recent mutually signed state and sequence number. If Alice wants to call a function 
f of the smart contract using input x, she will execute the function call locally using the 
current state Gs. Next, she sends Bob the signed tuple (Gs+1,s + 1) along with f and x. If 
Bob believes the computation was accurate, he replies with his signature over (Gs+1,s+1). 
The state channel can be closed cooperatively using both parties’ signatures over the most 

262 



9305

9310

9315

9320

9325

9330

9335

9340

9306 

9307 

9308 

9309 

9311 

9312 

9313 

9314 

9316 

9317 

9318 

9319 

9321 

9322 

9323 

9324 

9326 

9327 

9328 

9329 

9331 

9332 

9333 

9334 

9336 

9337 

9338 

9339 

9341 

9342 

9343 

NIST IR 8460 ipd 
April 2023 

recent state. If one party is uncooperative, the contract will accept a new mutually signed 
state with a higher sequence number during a dispute period, allowing an honest user to 
ensure that the most recent state is committed on-chain. 

An early state channel proposal is Sprites [538], which requires a form of globally shared 
state that Bitcoin does not provide. Sprites, when used for payments, implements HTLCs in 
a globally shared smart contract such that the expiration time and hash-lock can be enforced 
in the single smart contract instead of along each channel individually, so collateral need 
not be locked for as long along a payment path. If an LN payment is transferred across a 
path of L channels, and ∆ is the amount of time before a transaction can be committed on 
chain, then collateral must be locked for Θ(L∆) time. Sprites reduces the collateral cost 
to Θ(L + ∆) by using a smart contract (dubbed the PreimageManager) that logs statements 
along the lines of "the preimage R of hash H = H(R) was recorded on the ledger before time 
Texpiration." Sprites contracts have a dispute handler that will query the PreimageManager 
contract to determine whether R was revealed on time, ensuring that disputed channels 
close in a consistent way using the single time Texpiration. 

One of the more signifcant shortcomings of payment and state channels is that participants 
must periodically go online and check the underlying ledger to see if their channel coun-
terparty has published an old state. If so, they need to initiate a dispute in order to prevent 
being defrauded. To reduce the impact of this requirement, the idea of watchtowers has 
been proposed [539–543]. Watchtowers act as an online monitor that can handle disputes 
on behalf of a channel party while the party is offine. Watchtower constructions have a va-
riety of trade-offs: some scale poorly, may not be incentive-compatible, may harm privacy, 
or may require more complicated channel constructions to work properly. Another alterna-
tive is to design state channels that remain secure under asynchrony, such as Brick, which 
only allows unilateral channel closure after getting approval from an external committee 
[544]. Note that this section only scratched the surface of the issues involved in payment 
and state channels. Most known attacks and privacy issues have not been discussed here 
nor were the complexities of network topology and payment routing explored. 

18.2.2. Plasma and Rollups 

Other second layer technologies include Plasma and an idea called "rollups." Like 
sidechains (Section 16.3), these schemes involve running a separate blockchain system 
in parallel to a primary, parent ledger. Unlike sidechains, however, the security of transac-
tions on these chains is derived from the underlying parent chain, and they are not required 
to run and secure their own consensus algorithm. 

A Plasma chain is a blockchain whose security is anchored to its parent chain but where 
security is maintained by having users submit fraud proofs in order to resolve disputes 
(fraud proofs are discussed in Section 15.5). The entity or entities running the Plasma 
chain submit block headers – including a commitment to the state of the Plasma chain – to 
a parent chain smart contract (e.g., on Ethereum). If anyone detects invalid state transitions 

263 



9345

9350

9355

9360

9365

9370

9375

9380

9344 

9346 

9347 

9348 

9349 

9351 

9352 

9353 

9354 

9356 

9357 

9358 

9359 

9361 

9362 

9363 

9364 

9366 

9367 

9368 

9369 

9371 

9372 

9373 

9374 

9376 

9377 

9378 

9379 

9381 

9382 

9383 

NIST IR 8460 ipd 
April 2023 

on the Plasma chain, they can dispute the block by submitting a fraud proof along with a 
bond to prevent misbehavior. If the fraud proof is valid, the Plasma chain is rolled back 
past the offending block, and the block creator is penalized. 

As with payment and state channels, withdrawing funds from a Plasma chain requires a 
delay. In this case, the delay is to allow other parties to submit fraud proofs that challenge 
the blocks in which those withdrawals were processed. Plasma chains operate in the UTXO 
model, and an exiting party submits a bitmap of UTXOs to withdraw funds. Anyone else 
may submit a bonded fraud proof that challenges the original bitmap to prove that some of 
those funds have already been spent. Several Plasma variants have been proposed, often 
differentiating themselves based on their withdrawal mechanism [545–548]. For example, 
the original Plasma [545] and the simplifed "Minimum Viable Plasma" proposal [546] 
require each party to individually submit an exit transaction, and they are prioritized based 
on how old the relevant UTXOs are. This prevents invalid withdrawal requests from being 
processed before valid ones that are less likely to come "out of nowhere." Alternatively, the 
"More Viable Plasma" proposal [547] prioritizes withdrawals based on the youngest input 
referenced in the exit transaction. 

The constructions discussed so far have a variety of problems. Besides the user experi-
ence issue of needing to wait for a full challenge period before withdrawals are processed, 
Plasma users need to keep track of and verify the entire Plasma chain in order to detect ma-
licious behavior to initiate an exit in the frst place. Further, it may be the case that all users 
of a Plasma chain need to exit at once if the Plasma chain operator becomes unavailable 
and does not serve relevant data to users. This "mass exit" scenario requires the entire state 
of the Plasma chain to be dumped onto the parent ledger, which could cause signifcant 
congestion and prevent fraud proofs from being processed on time. 

An alternative construction, Plasma Cash, resolves some of these issues [548]. Plasma Cash 
reduces users’ data-checking requirements by using non-fungible tokens (NFTs) and sparse 
Merkle Trees. With this, users need only keep track of their own coins rather than the whole 
chain. The recipient of transactions on a Plasma Cash chain is responsible for checking 
that the coins being spent have a valid history on the chain based on proofs supplied by 
the spender. A limitation of Plasma Cash is that it only works with fxed denominations, 
requiring each NFT to be spent in full in any given transaction. Unfortunately, both Plasma 
Cash and the original (fungible) Plasma are unable to prevent an adversary from forcing 
honest users to take some involuntary, potentially expensive (in terms of transaction fees) 
on-chain action, be it a mass exit for fungible Plasma or non-constant sized exits for honest 
users on Plasma Cash [549]. 

Rollups are an alternative to Plasma that address the data availability problem (and, thus, 
mass exits) by taking all of the transactions that occur on the rollup chain and committing 
some of the transaction metadata to the parent chain. In the Ethereum context, this is done 
by taking this "rolled up" data and posting it in a transaction’s calldata feld, which is a 
read-only portion of Ethereum transactions that supply function call arguments. Calldata is 

264 



NIST IR 8460 ipd 
April 2023 

9384 

9385 

9386 

9387 

9388 

9389 

9390 

9391 

9392 

9393 

9394 

9395 

9396 

9397 

9398 

9399 

9400 

9401 

9402 

9403 

9404 

9405 

9406 

9407 

9408 

9409 

9410 

9411 

9412 

9413 

9414 

9415 

9416 

9417 

9418 

9419 

9420 

vastly cheaper than typical blockchain storage, making this approach effcient. By ensuring 
that this transaction data is always available, user liveness requirements and data availabil-
ity assumptions can be dispensed with, thus improving substantially over Plasma (and state 
channels). Because transaction data is available on-chain and consensus is maintained over 
that rollup data, any user can process the full rollup when desired and thus detect fraud or 
initiate withdrawals. Further, by resolving the data availability problem, assets need not be 
mapped to owners, which allows rollups to be general-purpose. Instead of just handling 
payments, the full EVM can be run inside of a rollup [550]. 

Two types of rollups have been proposed: optimistic rollups and zk-rollups. In an opti-
mistic rollup, all blocks are simply assumed to be valid unless proven otherwise, and fraud 
proofs can be submitted to challenge an invalid block. This means that, as with Plasma, 
withdrawals require a delay such that challenges can be submitted and the rollup chain can 
be rolled back to deal with fraud. For zk-rollups, each rollup block comes with a SNARK 
that proves that the included transactions were properly executed. As such, zk-rollups al-
low withdrawals nearly instantly, but they create a burden on a chain operator, who must 
create an expensive proof. Rollups are likely to fgure prominently in Ethereum’s attempts 
to scale. 

19. Incentives 

In distributed ledger systems – especially permissionless environments – an important chal-
lenge is to have the incentives of the various participants aligned such that rational partic-
ipants behave honestly. Incentives have been discussed throughout this document already, 
but this section will introduce some of the more nuanced aspects of how incentives interface 
with the security of the network. 

19.1. Block Rewards: Subsidies and Transaction Fees 

The most important and frequently discussed source of incentives in distributed ledger sys-
tems is the block reward that is earned when a block is produced. The block reward consists 
of one or both of a block subsidy (newly minted cryptocurrency units) and transaction fees, 
which clients pay in order to prioritize their transaction for inclusion in a block. Generally 
speaking, block rewards should be allocated proportionally to hash rate or stake in order to 
maintain desirable properties, such as being resistant to Sybil attacks and miner collusion 
[551, 552]. 

The block subsidy is a result of the monetary policy of the network and provides an intuitive 
method of distributing newly minted coins. In the Bitcoin network, for example, the block 
subsidy began as 50 bitcoin per block but is halved every four years until a total of 21 mil-
lion bitcoin exist, which should occur by approximately year 2140. In contrast, Ethereum’s 
initial supply of 72 million ether was distributed in a sale and placed in the genesis block, 
while the initial block subsidy was 5 ether per block (ignoring uncle blocks). This has been 

265 



NIST IR 8460 ipd 
April 2023 

9421 

9422 

9423 

9424 

9425 

9426 

9427 

9428 

9429 

9430 

9431 

9432 

9433 

9434 

9435 

9436 

9437 

9438 

9439 

9440 

9441 

9442 

9443 

9444 

9445 

9446 

9447 

9448 

9449 

9450 

9451 

9452 

9453 

9454 

9455 

9456 

9457 

9458 

9459 

reduced several times via hard fork. Some proof of stake coins will distribute the entire 
supply in the genesis block and have no subsidy. Others, such as Monero, reduce the is-
suance up to a point and then have a tail emission, where a constant quantity of monero is 
minted per block. This is sometimes called a disinfationary monetary policy. 

As of 2023, block subsidies dominate the block reward for most cryptocurrencies, and 
transaction fees make up a trivially small portion of the total rewards in networks other 
than Bitcoin and Ethereum. However, since block subsidies in most networks decrease 
over time, transaction fees are expected to become a more and more important compo-
nent of the block reward. The implications of having transaction fees become the primary 
means of funding network security are worth exploring. If transactions are being broadcast 
at approximately the same pace that they are put into blocks, miners who order transac-
tions based on the order they are seen will generate revenue substantially less than those 
who process transactions greedily based on fees [553]. As a result, if a miner is deciding 
between several conficting transactions to include in their block, they are strongly incen-
tivized to mine the transactions with the highest fee rate. This justifes certain policies, 
such as replace-by-fee, where clients can replace transactions in other nodes’ mempools by 
bidding up their transaction fee enough to cover the additional bandwidth that the trans-
action will consume. This also suggests that the censorship resistance for transactions in 
most cryptocurrencies is primarily a result of the transaction fees provided because the fee 
is the opportunity cost to miners for censoring the transaction. A related issue is that miners 
may have little incentive to propagate high-fee transactions because they would prefer to 
claim the fees for themselves [554]. However, doing so increases block propagation time 
and thus increases the risk that the miner’s block becomes stale. 

One of the earliest insights into Bitcoin’s fee economics was that if there is no maximum 
block size limit, transaction fees will fall toward zero, resulting in negligible security for 
the system [555]. This is generally true if there is an abundance of block space. If there 
is not a competitive market for this space, then fees will tend toward zero. Unless there is 
a persistent block subsidy (or suffciently limited block size), the system may experience 
instability and low security. This is discussed in more detail in the next section. 

19.1.1. The Mining Gap and (the Absence of a) Block Subsidy 

The block subsidy provides a fairly consistent reward for miners, whereas transaction fees 
will vary from block to block based on the supply of and demand for block space. When 
the block subsidy dominates transaction fee income, the reward for any given block is 
nearly constant. On the other hand, as the subsidy becomes dominated by transaction fees, 
the variance in block rewards becomes signifcant. This variance may cause instability in 
consensus by encouraging miners to abandon the longest chain rule and perform adversarial 
mining strategies instead. 

Carlsten et al. investigated the rational behavior of miners in a regime with no block sub-
sidy, transaction fees accruing in the mempool at a constant rate, no latency in transaction 

266 



NIST IR 8460 ipd 
April 2023 

9460 

9461 

9462 

9463 

9464 

9465 

9466 

9467 

9468 

9469 

9470 

9471 

9472 

9473 

9474 

9475 

9476 

9477 

9478 

9479 

9480 

9481 

9482 

9483 

9484 

9485 

9486 

or block propagation, and – crucially – miners having the space to include all available 
transactions in the next block if desired [556]. That is, the maximum allowed block size 
is signifcantly larger than what is in the mempool at any given time. In this scenario, it 
is possible for a mining gap to form: immediately after a block is mined, the mempool is 
empty and there are no transaction fees to put into the next block, so it makes sense for 
miners to shut down their machines until there is enough fee income to be worth the elec-
tricity and other operating costs. The idea behind the mining gap is illustrated in Figure 
58. 

Fig. 58. Mining gap. The potential block reward is equal to the average transaction fee (a) 
multiplied by elapsed time (t) since the prior block was mined. [556] 

This mining gap also incentivizes miners to undercut each other instead of moving the 
chain forward. If a block mined at height X claimed all available transaction fees in the 
mempool, then it makes little sense for competing miners to build off of that block at height 
X +1. Instead, they can gain an advantage by mining a different block at height X that only 
claims a portion of the total transaction fees. This leaves revenue available for other miners 
to be incentivized to mine at height X + 1 on top of the adversary’s block. Undercutting 
becomes an even more signifcant problem when nodes have heterogeneous internet con-
nection speeds [237]. Miners may undercut each other more and more aggressively, forking 
with smaller and smaller fees and leaving more and more remaining available for others to 
mine on top of. This aggressive undercutting can lead to transactions failing to become 
confrmed as the chain fails to advance forward. An example of undercutting is shown in 
Figure 59. 

Further, selfsh mining is more proftable in this regime. A selfsh miner’s block on average 
will tend to be larger and include more transactions and, thus, rewards than when block 
subsidies exist and most block rewards are similar. This is because when the selfsh miner 
has a long lead, the blocks that they mine are disproportionately large since it tends to take 
longer for the adversary to mine a block than the rest of the network. During this time, 
more transaction fees accumulate, and the selfsh miner can still include transactions that 
were included in competing blocks on the public chain. 

267 



NIST IR 8460 ipd 
April 2023 

Fig. 59. Undercutting attack. [556] 

9487 

9488 

9489 

9490 

9491 

9492 

9493 

9494 

9495 

9496 

9497 

9498 

9499 

9500 

9501 

9502 

9503 

9504 

9505 

9506 

9507 

9508 

9509 

9510 

9511 

9512 

9513 

9514 

The mining gap was further studied in [557], where the block subsidy was not reduced 
to zero but where transaction fees were nevertheless a signifcant component of the block 
reward. To this end, they defne a metric – EBRR – that is the ratio between the expected 
base reward and the expected accumulated fees. Here, the base reward includes whatever 
transaction fees remain in the mempool after the most recent block has been mined. The 
expected accumulated fees is the expected block interval multiplied by the rate at which 
new transaction fees are added to the mempool. A mining gap is expected to form when 
the EBRR is approximately six but can be avoided if suffciently high. An interesting result 
of that paper is that the consequences of the mining gap differ depending on the size of the 
miner. Because large miners are more likely to mine the next block and get a reward, they 
are willing to wait longer before turning their machines back on and cut electricity expenses 
while still having a good chance of winning. On the other hand, very small miners with 
low hash rate have almost no chance of winning unless they mine continuously and must 
therefore pay the electricity costs in order to maintain what little chance they have. In 
extreme scenarios, this could reduce mining utilization by up to 90%. There are several 
potential solutions to the issues related to the mining gap and undercutting attacks, each of 
which is intended to reduce the variance in block rewards: 

1. The monetary policy in the network can include a block subsidy that is large enough 
to dominate transaction fees in perpetuity. This solution is simple but results in per-
manent infation of the underlying asset. 

2. The maximum block size can be suffciently constrained such that, given the demand 
for block space, there is a nearly perpetual transaction backlog in the mempool. This 
option may increase transaction commit latency and fees for users. This was empir-
ically shown to be effective in [558], where miners earn close to their fair share of 
rewards and avoid undercutting so long as they leave enough fees available in the 
mempool for the next miner. 

3. The reward scheme can be designed such that the transaction fees for transactions 
in a given block are shared among miners of future blocks. Unfortunately, this has 

268 



NIST IR 8460 ipd 
April 2023 

9515 

9516 

9517 

9518 

9519 

9520 

9521 

9522 

9523 

9524 

9525 

9526 

9527 

9528 

9529 

9530 

9531 

9532 

9533 

9534 

9535 

9536 

9537 

9538 

9539 

9540 

9541 

9542 

9543 

9544 

9545 

9546 

9547 

9548 

9549 

9550 

several drawbacks that will be discussed in Section 19.3. Most signifcantly, it fails 
to solve the problem in the common case where out-of-band payments can be made 
to miners for transaction inclusion. 

4. In some cases, the state machine may provide mechanisms that ensure that a transac-
tion is only valid if included after particular blocks, such as the lock_time feld in 
Bitcoin transactions. By default, Bitcoin wallets set the transaction lock_time to the 
height of the next block that they expect to be created. That is, if the wallet is aware 
of the chain tip being at block height X , the new transaction will only be considered 
valid in blocks of height X + 1 or higher. 

Finally, while the mining gap issue does not exist for proof-of-stake ledgers due to the lack 
of operational expenses like electricity, undercutting attacks are still a concern. 

19.2. State Machines, Incentives, and Security 

There are security ramifcations to the interactions between the consensus algorithm and 
the state machine that is being replicated through it. The particulars of the state machine 
and the types of transactions that clients want executed can cause consensus instability 
through a variety of mechanisms. In this section, three issues will be discussed: 

1. Miner extractable value 

2. Mispriced computations 

3. The Verifer’s Dilemma 

Miner extractable value (MEV) is the total reward that a block producer can gain by ma-
nipulating the order of transactions in a particular time frame [559, 560]. Examples include 
front-running attacks (introduced in Section 7.1) and the undercutting attacks mentioned in 
the previous section. In many cases, MEV is captured by parties that are not block pro-
ducers themselves, but miners are best positioned to capitalize on the existence of MEV 
given their privileged position in transaction ordering (they are essentially a "rushing ad-
versary"). The ability to choose the order of transactions in the ledger is valuable in itself 
and can provide an additional source of revenue that exists exogenously to the consensus 
protocol. If MEV is signifcant enough, it may be used as a way of subsidizing chain reorg 
attacks. Empirical evidence suggests that MEV is a signifcant and growing phenomenon 
[559–563]. It has appeared in decentralized exchanges (DEXes), collectible games, gam-
bling, name services, and initial coin offerings (ICOs) and was used by a prominent mining 
pool, F2Pool, to front-run the Status ICO [560]. While still a small minority, thousands 
of Ethereum blocks contain more MEV than honest block rewards [559, 563]. There are a 
variety of ways of exploiting MEV, and the most well-known are shown in Figure 60. 

Front-running comes in two varieties: destructive and cooperative. When destructive front-
running occurs, an attacker’s transaction is placed in front of a victim transaction in a 

269 



NIST IR 8460 ipd 
April 2023 

9551 

9552 

9553 

9554 

9555 

9556 

9557 

9558 

9559 

9560 

9561 

9562 

9563 

9564 

9565 

9566 

9567 

9568 

9569 

block, causing the victim transaction to become invalid. 

Fig. 60. Front-running and Miner Extractable Value. Attacker transactions are denoted TA and 
marked in red, while the victim transaction is denoted TV and is marked in blue. When 
destructive front-running occurs, the victim’s transaction becomes invalid and fails to execute. 

In cooperative front-running, the 
displaced victim transaction remains valid and executed but only after the attacker’s trans-
action executes. Back-running is the opposite: the attacker wishes to have their transaction 
placed immediately after a particular target transaction. Finally, an attacker may try to clog 
the network with transactions in order to push a victim transaction into a future block. Con-
tracts that have deadlines may create an incentive to clog the blockchain with transactions 
in order to suppress another user from having their transaction confrmed on time. For ex-
ample, many of the layer 2 schemes discussed in Section 18.2 require parties to challenge 
fraudulent transactions within a given time limit. 

These MEV building blocks may be proftable to exploit on their own, or they can be com-
bined into more advanced attacks. For example, in a sandwich attack, a trader on a DEX 
will both front and back-run a victim transaction, TV , simultaneously. The adversary listens 
on the network until a transaction arrives in their mempool that – after being executed – 
is expected to cause a change in price of an asset on the exchange. Say TV is expected to 
increase the price of an asset. The attacker will frst broadcast transaction TA1, which buys 
the asset and uses it to cooperatively front-run TV . This way, the asset is purchased before 
TV raises the price. Next, the adversary broadcasts TA2, which sells the asset and back-runs 
it immediately behind TV . 

In addition to DEXes, common fnancial applications built into smart contracts are lending 

270 



9570

9575

9580

9585

9590

9595

9600

9605

9610

9571 

9572 

9573 

9574 

9576 

9577 

9578 

9579 

9581 

9582 

9583 

9584 

9586 

9587 

9588 

9589 

9591 

9592 

9593 

9594 

9596 

9597 

9598 

9599 

9601 

9602 

9603 

9604 

9606 

9607 

9608 

9609 

NIST IR 8460 ipd 
April 2023 

and debt protocols. Typically, borrowers are required to over-collateralize their debt by 
locking, say, 150% of the value that the borrower wants to be loaned. For example, a user 
may lock $1,500 of ether in a smart contract that then provides them $1,000 worth of a 
stablecoin. If the collateral value decreases below $1,500 and the borrower fails to deposit 
more collateral, the original collateral is made available to liquidators to purchase at a 
discount in order to repay the debt. This can be exploited in multiple ways by liquidators. 
For instance, if the execution of a block creates a liquidation opportunity, the adversary 
can create transaction TA that liquidates the collateral and keep bidding up its fee in order 
to destructively front-run competing liquidators. Alternatively, the adversary may spot 
a transaction TV by an off-chain pricing oracle that creates a liquidation opportunity by 
adjusting the on-chain market price between the collateral asset and the borrowed asset. In 
this case, they can back-run TV with their liquidation transaction. This has the advantage 
of avoiding a transaction fee bidding war. 

Addressing MEV is challenging, especially in open blockchains where the ledger is public. 
Developers should be aware of MEV when designing applications and ideally design the 
application in such a way that transaction ordering is unimportant. Another possibility is to 
adjust the consensus layer so as to remove the ability of miners to arbitrarily order transac-
tions. This is the approach taken in [564], which extends the Aequitas protocol mentioned 
in Section 7.1 to the permissionless setting. Finally, cryptography may be used to reduce 
an adversary’s visibility of transactions in order to reduce the information available for 
the adversary to exploit. For example, HoneyBadgerBFT (Section 6.1) orders encrypted 
transactions, so an adversary would need to take advantage of meta-information in order 
to proftably front-run. Recently, a new cryptographic primitive called "multi-party timed 
commitments" has been proposed as a way for application developers to address front-
running [565]. 

Another consensus security issue that arises due to the state machine is that the cost of 
executing certain operations may not accurately refect the amount of computational effort 
or other resources required for the execution. Not every operation performed in the virtual 
machine has identical costs. Verifying a signature, for instance, is more computationally 
intensive than performing a simple addition, and the (gas) price of opcodes should refect 
the costs of running them as accurately as possible. Finding accurate costs is a challenging 
task, particularly because these costs may not remain static over time or consistent across 
machines. The primary risk of mispriced state machine instructions is that they can en-
able network-wide denial-of-service attacks by creating transactions that are exceedingly 
diffcult to verify. 

The pricing of EVM opcodes has been studied empirically, and problems have been iden-
tifed [566–568]. The main factor that seems to make gas prices improperly tuned is the 
role of state storage for smart contracts. The system state is too large to store in memory 
on most systems, so disk access is often required when a transaction must read or write to 
smart contract state. Not only is this a slow operation, but there can be high variability in 
its execution time depending on whether the data is cached already or if using an HDD or 

271 



NIST IR 8460 ipd 
April 2023 

9611 

9612 

9613 

9614 

9615 

9616 

9617 

9618 

9619 

9620 

9621 

9622 

9623 

9624 

9625 

9626 

9627 

9628 

9629 

9630 

9631 

9632 

9633 

9634 

9635 

9636 

9637 

9638 

9639 

9640 

9641 

9642 

9643 

9644 

9645 

9646 

9647 

9648 

9649 

9650 

SSD. This implies that high-end miners are advantaged relative to smaller hobbyist miners 
[566]. The mispricing opens up the possibility of malicious contracts that are extremely 
slow to verify. For example, [567] showed how to construct an Ethereum block that would 
take 93 seconds to verify – multiples longer than the expected block interval. 

Opcode pricing was actually exploited on the live Ethereum network in September 2016, 
when an attacker constructed a malicious smart contract that required reading large amounts 
of state but where those operations were severely underpriced. This attack vector was fxed 
by increasing the gas cost of a variety of storage-accessing opcodes in EIP 150 [569]. A 
similar vulnerability existed on the live network but was fxed in April 2021 [570]. Bitcoin’s 
more limited scripting support provides only marginal protection from this. It is possible 
to construct Bitcoin transactions that take an exceedingly long time to verify as well [571, 
572]. One mitigation employed in Bitcoin is that developers have created standardized 
transaction templates for the most common types of transactions, and nodes have a policy 
where they refuse to propagate non-standard transactions. This means that in practice, the 
attacker would need to be a miner or collude with a miner. 

A third security issue due to incentive alignment problems from state machines is called the 
Verifer’s Dilemma [573]. When an honest node receives a newly mined block, it will verify 
that the block is valid before forwarding it to its peers and potentially mining on top of it 
himself. Unfortunately, this makes nodes susceptible to resource exhaustion attacks. For 
example, it is possible to design smart contracts that are slow to execute but that result in 
predictable state changes without the designer needing to execute it [574]. Fully verifying 
the block also imposes a delay for a miner, who would prefer to assume that the block is 
valid and immediately start working on the next block. That is, skipping verifcation can 
provide a revenue advantage for a miner by allowing them to fnd the next block more 
quickly. As a result, some miners may not validate blocks, which opens up the possibility 
of invalid blocks being accepted as part of the canonical consensus chain. 

More broadly, the incentive to verify the correctness of transactions may not be suffciently 
strong. In particular, as blocks grow larger and computational complexity increases, val-
idators are more and more likely to skip verifcation to gain some advantage. If Ethereum 
were to raise the block gas limit signifcantly, non-verifying miners could gain substantially 
at the expense of those who verify [575]. Other research has shown that if validation takes 
20% of the expected block time, then a non-validating miner with 33% of the hash rate 
can mine between 53% and 68% of main chain blocks, depending on network connectiv-
ity/delay [576]. Bitcoin’s more limited scripting and the use of standardized transactions 
help mitigate this issue, but these are not complete solutions. In fact, on July 4, 2015, the 
Bitcoin network had a temporary six-block fork built on top of an invalid block, which 
suggests that a large segment of mining pools were not validating blocks that they received 
at the time [61]. 

In permissioned systems, the incentives will typically be exogenous to the system instead 
of denominated in a native token. The validator benefts because they can provide a better 

272 



NIST IR 8460 ipd 
April 2023 

9651 

9652 

9653 

9654 

9655 

9656 

9657 

9658 

9659 

9660 

9661 

9662 

9663 

9664 

9665 

9666 

9667 

9668 

9669 

9670 

9671 

9672 

9673 

9674 

9675 

9676 

9677 

9678 

9679 

9680 

9681 

9682 

9683 

9684 

9685 

9686 

9687 

9688 

9689 

service and/or reduce the cost of providing the service. The costs for validators can be 
imposed legally instead of being in the form of work to prove or a capital investment in 
stake that can be slashed. However, this has not been tested legally in the real world, and 
complications such as jurisdictional questions and the possibility of accidentally produc-
ing invalid blocks (e.g., via a software bug) may make it non-trivial to impose those legal 
costs. If legal penalties cannot be relied upon, it can be rational for otherwise "honest" per-
missioned validators to accept invalid blocks under some circumstances, especially when 
blocks are very large or computationally intensive [577, 578]. 

Addressing the Verifer’s Dilemma and the potential disincentive to validate blocks in gen-
eral is challenging. Fundamentally, this requires that the cost of verifying blocks and trans-
actions be substantially limited through having modest maximum block sizes or gas limits. 
Additionally, some of the alternative state machine techniques discussed in Sections 18.1.2 
and 18.1.3 can limit the problem. 

19.3. Alternative Transaction Fee Protocols 

The current transaction fee mechanism used in Bitcoin and most existing cryptocurrency 
networks is a multi-unit frst-price auction for block space. Clients attach a fee to their 
transactions, which is paid to the miner of the block that includes the transaction (in Bitcoin, 
the fee is determined implicitly as the difference between the input amounts and output 
amounts). Miners maximize their revenue by choosing the highest fee transactions (or 
more accurately, the highest fee rate) from the mempool up to the block size limit. 

Ideally, clients would place bids that honestly represent the value that the user would get 
from transaction inclusion. Unfortunately, frst-price auctions lead to strategic fee selection 
when bidding for block space. Instead of bidding the true value, the appropriate strategy 
for users is to deliberately underbid and then use techniques like replace-by-fee to increase 
their bid as needed. In practice, this can lead to rapid increases in fees as congestion 
increases and having those fees be "sticky" even when congestion goes back down. This 
makes both fees and the latency of transactions unpredictable to clients, which creates 
a negative user experience while consuming more bandwidth due to re-broadcasting the 
transactions. Another issue with the current scheme is that if there is insuffcient demand 
for block space, clients can offer arbitrarily small fees above the marginal risk of the block 
becoming stale due to increased propagation delay, which creates a race to the bottom 
where miners may not be paid suffciently to secure the network. 

These issues led to several proposals for alternative fee mechanisms inspired by generalized 
multi-unit second-price auctions [579, 580]. In a second-price auction, the winning bidder 
only pays the bid of the second-highest bidder. In a generalized second-price auction (or 
K-th priced auction), K items are sold to the K-highest bidders, who each pay the K + 1-th 
highest bid. This type of auction is known to lead to the dominant strategy where users’ 
bids refect their true value for the items. In the context of distributed ledgers, however, 
this type of auction is impossible to enforce because there is no consensus on the K + 1-

273 



9690

9695

9700

9705

9710

9715

9720

9725

9691 

9692 

9693 

9694 

9696 

9697 

9698 

9699 

9701 

9702 

9703 

9704 

9706 

9707 

9708 

9709 

9711 

9712 

9713 

9714 

9716 

9717 

9718 

9719 

9721 

9722 

9723 

9724 

9726 

9727 

9728 

NIST IR 8460 ipd 
April 2023 

th highest bid, which will only exist in miners’ mempools. These two new fee protocols 
charge users the K-th bid, which is actually observable. In both cases, the advantage to be 
gained from strategic bidding goes toward zero as the number of clients issuing transactions 
increases. 

While both new protocols operate similarly, they are optimized for different goals. The 
LSZ protocol from [579] is designed to decouple the fee market from the block size, such 
that an increase in the block size limit (or a decrease in demand for block space) will not 
lead to plummeting fees. That is, LSZ is intended to maximize fee revenue to improve 
security but comes at the expense of the social welfare of users. On the other hand, the 
BEOS protocol from [580] attempts to maximize social welfare and thus results in lower 
fees for users, as well as better throughput and latency for transactions than [579]. 

The LSZ protocol has clients specify in each transaction the maximal fee that user is willing 
to pay for transaction inclusion. Miners have full latitude to decide which transactions to 
put in blocks, but all transactions will end up paying the the same fee, which is equivalent 
to the lowest fee included in that block. For example, if the set of fees available in a 
miner’s mempool is {5,2,1,1}, the miner will maximize their revenue by including only 
the transaction that pays fve units of fees. Had the miner included all of those transactions 
in their block or just the frst two, they would only end up claiming four units of fees. 

The BEOS protocol differs from LSZ in two primary ways: 

1. Under BEOS, miners are required to completely fll their blocks with transactions. If 
demand is insuffcient, then the miner must stuff their block with "artifcial" transac-
tions, where the miner sends funds between addresses under their control. 

2. The transaction fees are shared between miners over a period of B blocks. When a 
miner successfully mines a block, they are paid the average fee collected over the 
most recent B blocks, including their own. 

Using the example above, the miner would be required to include all of the transactions 
available up to the block size limit and would thus generate four units of fees, which are 
then shared with the next B winning miners. This results in higher throughput and more 
stable fees for miners but lower overall mining rewards than either LSZ or the existing 
frst-price auction mechanism. This may result in a lower amount of computational effort 
or stake used to secure the network. Reward sharing reduces the risk for miners to fork 
the ledger in order to try to double-spend but can improve censorship resistance by making 
it harder for miners to invalidate other miners’ rewards. That said, it also weakens the 
censorship resistance beneft to users that comes with paying higher fees. Note that reward 
sharing is important in this scheme to reduce profts from miner manipulation of the fee 
mechanism. In the running example, assuming no reward sharing and a requirement of 
four transactions included in a block, a miner could gain by including three self-paying 
transactions with a fee of fve units each. This would result in fve units of fee revenue 
instead of four. 

274 



9730

9735

9740

9745

9750

9755

9760

9765

9729 

9731 

9732 

9733 

9734 

9736 

9737 

9738 

9739 

9741 

9742 

9743 

9744 

9746 

9747 

9748 

9749 

9751 

9752 

9753 

9754 

9756 

9757 

9758 

9759 

9761 

9762 

9763 

9764 

9766 

9767 

9768 

NIST IR 8460 ipd 
April 2023 

While these mechanisms both have desirable features, they have several problems. First, 
these schemes fail to account for the benefts miners can gain through MEV, as discussed 
in the previous section. Second, these mechanisms may be challenging to implement, par-
ticularly for UTXO ledgers. Because fees are typically implied by the difference between 
the inputs and the outputs, some mechanism is required in order to provide a refund for the 
surplus transaction fees included in their bid. This would require a substantial change to 
the system architecture and the way transactions are constructed. Third, and most impor-
tantly, these generalized second-price auction schemes do not have a mechanism to address 
out-of-band payments to miners or miner collusion with transaction senders. The BEOS 
scheme, in particular, creates an explicit incentive for side-dealing by sharing the reward. 
Miners are inclined to accept side payments from clients who want to transact in exchange 
for accepting transactions with low fees because miners cannot be forced to share the out-
of-band payment. These bribes can be implemented easily in Bitcoin by including an extra 
output in a transaction that has a scriptPubKey set to OP_TRUE and is, thus, immediately 
spendable by anyone. Whoever mines the transaction that includes this output can then 
spend the output to themselves within the same block, accepting the bribe. 

Not only can transactors bribe miners out-of-band, but miners can also collude with trans-
actors to raise fees. If a transaction sender would have normally submitted a low fee of 
flow, a miner can ask them to include a higher transaction fee of fhigh instead and then pay 
the transactor fhigh − flow [581]. This allows the miner to capture some of the revenue that2 
would otherwise be lost by excluding transactions (in LSZ) or flling the block with dummy 
transactions (in BEOS, if rewards were not shared). 

Both frst- and second-price auctions leave much to be desired in the context of fee pro-
tocols. In addition to the issues already discussed above, an ideal fee mechanism would 
take into account the marginal social costs, or externalities, imposed on nodes for process-
ing transactions. Transaction inclusion provides a private beneft to the sender but imposes 
computation, bandwidth, and storage costs on every node. To internalize these externalities, 
the fee mechanism ought to result in fees commensurate to the resources used. This can be 
done by either setting a quantity limit, like a maximum block size, or by fxing a minimum 
price. In traditional economic theory, if the marginal social cost of resource consumption 
is fxed but the marginal private beneft is decreasing, it is more effcient to set a price for 
the resource instead of setting quantity limits. However, when marginal social costs are 
increasing, quantity limits are superior to price setting [581]. An informal analysis of the 
marginal social costs of transactions suggests a decreasing marginal cost at low transaction 
throughput and rapidly increasing marginal costs with higher throughput (due to decreased 
security), which "suggests that a fat per-weight-unit in-protocol transaction fee, coupled 
with a hard limit at the point where the marginal social cost starts rapidly increasing, is 
superior to a pure weight limit-based regime" [581]. This reasoning ultimately led to the 
fee mechanism described in EIP-1559, which is currently deployed in several networks, 
including Ethereum and Filecoin [582]. 

275 



9770

9775

9780

9785

9790

9795

9800

9805

9769 

9771 

9772 

9773 

9774 

9776 

9777 

9778 

9779 

9781 

9782 

9783 

9784 

9786 

9787 

9788 

9789 

9791 

9792 

9793 

9794 

9796 

9797 

9798 

9799 

9801 

9802 

9803 

9804 

9806 

NIST IR 8460 ipd 
April 2023 

EIP-1559 breaks the total transaction fee down into two components: an algorithmically 
computed base fee that is burned and a user-supplied "tip" that is collected by the miner 
of the transaction. The base fee does not depend on the transactions included in a block 
but rather is determined by the preceding blocks. A target block size, starget , is selected 
at the start, and the maximum block size is double this amount. Whenever the size of the 
most recent block is greater than starget , the base fee is adjusted upward; if it is smaller 
than the target, the base fee decreases. Specifcally, if rpred is the base fee of the preceding 
block and spred is the size of the preceding block, then the current block’s base fee rcur := 

1 spred−starget rpred ∗ (1 + 8 ∗ ). Transactions specify a tip and a fee cap, and transactions will starget 

not be included in the chain unless the fee cap exceeds rcur. 

A game-theoretic analysis of the EIP-1559 mechanism was performed in [583]. Rational 
miners are disincentivized from including fake transactions in their blocks, and the mecha-
nism provides no avenues for miners and users to proftably collude using side payments. 
Furthermore, the mechanism itself does not lead to a decrease in security against selfsh 
mining or double-spending, except insofar as the fee burn reduces the total hash rate. As 
a result, the infationary block subsidy takes on increased importance. In addition, the 
optimal bidding strategy for users – except during sudden demand spikes – is to set their 
transaction’s fee cap to their true value of having the transaction included. A separate anal-
ysis of the dynamics of EIP-1559 found that with steady transaction demand, there can be 
chaotic periods with alternating full and empty blocks. This is far more likely to occur if 
user valuations for what to tip are similar to each other and, thus, have low variance [584]. 
Another variant of EIP-1559 that eliminates the frst-price auction optimal bidding issue 
during demand spikes has been proposed as well [585]. 

To review, frst-price auctions, as currently used in most permissionless ledger systems, 
make reasoning about fees challenging for users. The optimal bid for the user depends on 
bids offered by other users at the same time. Second-price auctions can be manipulated by 
miners by stuffng blocks with their own transactions instead of real user ones. However, 
these strategic issues do not arise in fxed-price sales, so establishing a base fee indepen-
dent of transactions in the current block is a reasonable way of easing the burden of fee 
estimation on users. If the user values transaction inclusion more than the base fee, they 
bid the base fee plus enough to compensate the miner for the marginal costs of transaction 
inclusion. The base fee must be burned or otherwise withheld from the block’s miner to 
prevent side dealing, and it must adjust dynamically as demand for block space changes. 
There must be agreement over the base fee, so a proxy for demand is used (e.g., in the 
case of EIP-1559, a variable block size). If the entirety of the fee was burned, then miners 
would have no incentive to include transactions in their blocks at all. The extra tip resolves 
this issue while also providing a way for users to signal how much they value transaction 
inclusion. 

276 



NIST IR 8460 ipd 
April 2023 

9807 

9808 

9809 

9810 

9811 

9812 

9813 

9814 

9815 

9816 

9817 

9818 

9819 

9820 

9821 

9822 

9823 

9824 

9825 

9826 

9827 

9828 

9829 

9830 

9831 

9832 

9833 

9834 

9835 

9836 

9837 

9838 

9839 

9840 

9841 

9842 

9843 

9844 

9845 

9846 

9847 

References 

[1] Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. 
[2] Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. 

Journal of the ACM (JACM) 27(2):228–234. 
[3] LAMPORT L, SHOSTAK R, PEASE M (1982) The byzantine generals problem. 

ACM Transactions on Programming Languages and Systems 4(3):382–401. 
[4] Castro M, Liskov B, et al. (1999) Practical byzantine fault tolerance. OSDI, Vol. 99, 

pp 173–186. 
[5] Yaga D, Mell P, Roby N, Scarfone K (2018) Blockchain technology overview (Na-

tional Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency 
or Internal Report (IR) 8202. https://doi.org/10.6028/NIST.IR.8202. 

[6] Bracha G (1987) Asynchronous byzantine agreement protocols. Information and 
Computation 75(2):130–143. 

[7] Lamport L (1984) Using time instead of timeout for fault-tolerant distributed 
systems. ACM Transactions on Programming Languages and Systems (TOPLAS) 
6(2):254–280. 

[8] Schneider FB (1990) Implementing fault-tolerant services using the state machine 
approach: A tutorial. ACM Computing Surveys (CSUR) 22(4):299–319. 

[9] Garay J, Kiayias A, Leonardos N (2015) The bitcoin backbone protocol: Analysis 
and applications. Annual International Conference on the Theory and Applications 
of Cryptographic Techniques (Springer), pp 281–310. 

[10] Blum E, Katz J, Loss J (2020) Network-agnostic state machine replication. arXiv 
preprint arXiv:200203437 . 

[11] Garay J, Kiayias A (2020) Sok: A consensus taxonomy in the blockchain era. Cryp-
tographers’ Track at the RSA Conference (Springer), pp 284–318. 

[12] Guerraoui R, Kuznetsov P, Monti M, Pavlovič M, Seredinschi DA (2019) The con-
sensus number of a cryptocurrency. Proceedings of the 2019 ACM Symposium on 
Principles of Distributed Computing, pp 307–316. 

[13] Sliwinski J, Wattenhofer R (2019) Abc: Asynchronous blockchain without consen-
sus. arXiv preprint arXiv:190910926 . 

[14] Baudet M, Danezis G, Sonnino A (2020) Fastpay: High-performance byzantine fault 
tolerant settlement. arXiv preprint arXiv:200311506 . 

[15] Collins D, Guerraoui R, Komatovic J, Monti M, Xygkis A, Pavlovic M, Kuznetsov P, 
Pignolet YA, Seredinschi DA, Tonkikh A (2020) Online payments by merely broad-
casting messages (extended version). arXiv preprint arXiv:200413184 . 

[16] Auvolat A, Frey D, Raynal M, Taïani F (2020) Money transfer made simple. hal-
02861511v2f . 

[17] Cohen S, Keidar I (2021) Tame the wild with byzantine linearizability: Reliable 
broadcast, snapshots, and asset transfer. arXiv preprint arXiv:210210597 . 

[18] Georghiades Y, Streit R, Garg V (2021) Who needs consensus? a distributed mon-
etary system between rational agents via hearsay. arXiv preprint arXiv:210407574 

277 

https://doi.org/10.6028/NIST.IR.8202


9850

9855

9860

9865

9870

9875

9880

9885

9848 

9849 

9851 

9852 

9853 

9854 

9856 

9857 

9858 

9859 

9861 

9862 

9863 

9864 

9866 

9867 

9868 

9869 

9871 

9872 

9873 

9874 

9876 

9877 

9878 

9879 

9881 

9882 

9883 

9884 

9886 

9887 

9888 

9889 

NIST IR 8460 ipd 
April 2023 

. 
[19] Kuznetsov P, Pignolet YA, Ponomarev P, Tonkikh A (2021) Permissionless and asyn-

chronous asset transfer [technical report]. arXiv preprint arXiv:210504966 . 
[20] Aiyer AS, Alvisi L, Clement A, Dahlin M, Martin JP, Porth C (2005) Bar fault 

tolerance for cooperative services. Proceedings of the twentieth ACM symposium on 
Operating systems principles, pp 45–58. 

[21] McMenamin C, Daza V, Pontecorvi M (2020) Achieving state machine replication 
without honesty assumptions. arXiv preprint arXiv:201210146 . 

[22] Fischer MJ, Lynch NA, Paterson MS (1985) Impossibility of distributed consensus 
with one faulty process. Journal of the ACM (JACM) 32(2):374–382. 

[23] Ben-Or M (1983) Another advantage of free choice: Completely asynchronous 
agreement protocols (extended abstract),". Proceedings of the 2nd ACM Annual 
Symposium on Principles of Distributed Computing, Montreal, Quebec, pp 27–30. 

[24] Rabin MO (1983) Randomized byzantine generals. 24th Annual Symposium on 
Foundations of Computer Science (sfcs 1983) (IEEE), pp 403–409. 

[25] Bracha G, Toueg S (1985) Asynchronous consensus and broadcast protocols. Jour-
nal of the ACM (JACM) 32(4):824–840. 

[26] Dwork C, Lynch N, Stockmeyer L (1988) Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2):288–323. 

[27] Spiegelman A (2020) In search for a linear byzantine agreement. arXiv preprint 
arXiv:200206993 . 

[28] Pass R, Shi E (2017) The sleepy model of consensus. International Conference on 
the Theory and Application of Cryptology and Information Security (Springer), pp 
380–409. 

[29] Guo Y, Pass R, Shi E (2019) Synchronous, with a chance of partition tolerance. 
Annual International Cryptology Conference (Springer), pp 499–529. 

[30] Kim J, Mehta V, Nayak K, Shrestha N (2021) Making synchronous bft protocols 
secure in the presence of mobile sluggish faults. IACR Cryptology ePrint Archive 
:603. 

[31] Pass R, Shi E (2017) Rethinking large-scale consensus. 2017 IEEE 30th Computer 
Security Foundations Symposium (CSF) (IEEE), pp 115–129. 

[32] Wang Q, Yu J, Chen S, Xiang Y (2020) Sok: Diving into dag-based blockchain 
systems. arXiv preprint arXiv:201206128 . 

[33] Douceur JR (2002) The sybil attack. International workshop on peer-to-peer systems 
(Springer), pp 251–260. 

[34] Bowman M, Das D, Mandal A, Montgomery H (2021) On elapsed time consensus 
protocols. IACR Cryptol ePrint Arch :086. 

[35] Yandamuri S, Abraham I, Nayak K, Reiter MK (2021) Communication-effcient bft 
protocols using small trusted hardware to tolerate minority corruption. IACR Cryptol 
ePrint Arch :184. 

[36] Deuber D, Döttling N, Magri B, Malavolta G, Thyagarajan SAK (2018) Minting 
mechanisms for blockchain-or-moving from cryptoassets to cryptocurrencies. IACR 

278 



9890

9895

9900

9905

9910

9915

9920

9925

9930

9891 

9892 

9893 

9894 

9896 

9897 

9898 

9899 

9901 

9902 

9903 

9904 

9906 

9907 

9908 

9909 

9911 

9912 

9913 

9914 

9916 

9917 

9918 

9919 

9921 

9922 

9923 

9924 

9926 

9927 

9928 

9929 

9931 

NIST IR 8460 ipd 
April 2023 

Cryptol ePrint Arch . 
[37] Neiheiser R, Matos M, Rodrigues L (2021) The quest for scaling bft consensus 

through tree-based vote aggregation. arXiv preprint arXiv:210312112 . 
[38] Wang L, Shen X, Li J, Shao J, Yang Y (2019) Cryptographic primitives in 

blockchains. Journal of Network and Computer Applications 127:43–58. 
[39] Partala J, Nguyen TH, Pirttikangas S (2020) Non-interactive zero-knowledge for 

blockchain: A survey. IEEE Access 8:227945–227961. 
[40] Micali S, Rabin M, Vadhan S (1999) Verifable random functions. 40th annual sym-

posium on foundations of computer science (cat. No. 99CB37039) (IEEE), pp 120– 
130. 

[41] Boneh D, Lynn B, Shacham H (2001) Short signatures from the weil pairing. In-
ternational conference on the theory and application of cryptology and information 
security (Springer), pp 514–532. 

[42] Dryja T, Liu QC, Narula N (2020) A lower bound for byzantine agreement and 
consensus for adaptive adversaries using vdfs. arXiv preprint arXiv:200401939 . 

[43] Boneh D, Bonneau J, Bünz B, Fisch B (2018) Verifable delay functions. Annual 
international cryptology conference (Springer), pp 757–788. 

[44] Pietrzak K (2018) Simple verifable delay functions. 10th innovations in theoretical 
computer science conference (itcs 2019) (Schloss Dagstuhl-Leibniz-Zentrum fuer 
Informatik). 

[45] Wesolowski B (2019) Effcient verifable delay functions. Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (Springer), pp 
379–407. 

[46] (2015) Not bitcoin xt. Accessed on April 13, 2021. Available at https://github.com 
/xtbit/notbitcoinxt. 

[47] Daian P (2017) On soft fork security. Accessed on April 4, 2021. Available at https: 
//pdaian.com/blog/on-soft-fork-security/. 

[48] Folkson M (2021) Should block height or mtp or a mixture of both be used in a 
soft fork activation mechanism?. Accessed on April 13, 2021. Available at https: 
//bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-m 
ixture-of-both-be-used-in-a-soft-fork-activatio. 

[49] Buterin V (2017) Hard forks, soft forks, defaults and coercion. Accessed on April 13, 
2021. Available at https://vitalik.ca/general/2017/03/14/forks_and_markets.html. 

[50] Wuille P (2015) Bitcoin core and hard forks. Accessed on April 13, 2021. Available 
at https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009515.html. 

[51] Srinivasan BS, Lee L (2017) Quantifying decentralization. Accessed on April 20, 
2021. Available at https://news.earn.com/quantifying-decentralization-e39db233c 
28e. 

[52] Sztork P (2015) Measuring decentralization. Accessed on April 20, 2021. Available 
at https://www.truthcoin.info/blog/measuring-decentralization/. 

[53] Kwon Y, Liu J, Kim M, Song D, Kim Y (2019) Impossibility of full decentralization 
in permissionless blockchains. Proceedings of the 1st ACM Conference on Advances 

279 

https://github.com/xtbit/notbitcoinxt
https://github.com/xtbit/notbitcoinxt
https://github.com/xtbit/notbitcoinxt
https://pdaian.com/blog/on-soft-fork-security/
https://pdaian.com/blog/on-soft-fork-security/
https://pdaian.com/blog/on-soft-fork-security/
https://bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-mixture-of-both-be-used-in-a-soft-fork-activatio
https://bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-mixture-of-both-be-used-in-a-soft-fork-activatio
https://bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-mixture-of-both-be-used-in-a-soft-fork-activatio
https://bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-mixture-of-both-be-used-in-a-soft-fork-activatio
https://bitcoin.stackexchange.com/questions/103854/should-block-height-or-mtp-or-a-mixture-of-both-be-used-in-a-soft-fork-activatio
https://vitalik.ca/general/2017/03/14/forks_and_markets.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009515.html
https://news.earn.com/quantifying-decentralization-e39db233c28e
https://news.earn.com/quantifying-decentralization-e39db233c28e
https://news.earn.com/quantifying-decentralization-e39db233c28e
https://www.truthcoin.info/blog/measuring-decentralization/


NIST IR 8460 ipd 
April 2023 

9932 

9933 

9934 

9935 

9936 

9937 

9938 

9939 

9940 

9941 

9942 

9943 

9944 

9945 

9946 

9947 

9948 

9949 

9950 

9951 

9952 

9953 

9954 

9955 

9956 

9957 

9958 

9959 

9960 

9961 

9962 

9963 

9964 

9965 

9966 

9967 

9968 

9969 

9970 

9971 

9972 

9973 

in Financial Technologies, pp 110–123. 
[54] Gervais A, Capkun S, Karame GO, Gruber D (2014) On the privacy provisions of 

bloom flters in lightweight bitcoin clients. Proceedings of the 30th Annual Com-
puter Security Applications Conference, pp 326–335. 

[55] Osuntokun O, Akselrod A, Posen J (2017) Client side block fltering. Accessed on 
April 22, 2021. Available at https://github.com/bitcoin/bips/blob/master/bip-0157. 
mediawiki. 

[56] Osuntokun O, Akselrod A (2017) Compact block flters for light clients. Accessed 
on April 22, 2021. Available at https://github.com/bitcoin/bips/blob/master/bip-015 
8.mediawiki. 

[57] Hearn M (2012) [bitcoin-development] roadmap to getting users onto spv clients. 
Accessed on April 27, 2021. Available at https://lists.linuxfoundation.org/pipermai 
l/bitcoin-dev/2012-December/002083.html. 

[58] Research B (2019) Bitcoin’s initial block download. Accessed on April 22, 2021. 
Available at https://blog.bitmex.com/bitcoins-initial-block-download/. 

[59] Todd P (2015) [bitcoin-development] fwd: Block size increase requirements. Ac-
cessed on April 22, 2021. Available at https://lists.linuxfoundation.org/pipermail/bi 
tcoin-dev/2015-June/008407.html. 

[60] Zhang R, Preneel B (2017) On the necessity of a prescribed block validity consensus: 
Analyzing bitcoin unlimited mining protocol. Proceedings of the 13th International 
Conference on emerging Networking EXperiments and Technologies, pp 108–119. 

[61] Bitcoinorg (2015) Some miners generating invalid blocks. Available at https://bitcoi 
n.org/en/alert/2015-07-04-spv-mining. 

[62] Dryja T (2019) Utreexo: A dynamic hash-based accumulator optimized for the bit-
coin utxo set. IACR Cryptol ePrint Arch :611. 

[63] Bonneau J, Meckler I, Rao V, Shapiro E (2020) Mina: Decentralized cryptocurrency 
at scale. Available at https://minaprotocol.com/wp-content/uploads/technicalWhit 
epaper.pdf. 

[64] karalabe (2015) eth/63 fast synchronization algorithm. Accessed on April 28, 2021. 
Available at https://github.com/ethereum/go-ethereum/pull/188. 

[65] jamesob (2019) assumeutxo. Accessed on April 28, 2021. Available at https://gith 
ub.com/bitcoin/bitcoin/issues/15605. 

[66] Loruenser T, Rainer B, Wohner F (2021) Towards a performance model for byzan-
tine fault tolerant (storage) services. arXiv preprint arXiv:210104489 . 

[67] Bessani A, Santos M, Felix J, Neves N, Correia M (2013) On the effciency of 
durable state machine replication. 2013 {USENIX} Annual Technical Conference 
({USENIX}{ATC} 13), pp 169–180. 

[68] Malkhi D, Reiter M (1998) Byzantine quorum systems. Distributed computing 
11(4):203–213. 

[69] Wang Q, Yu J, Peng Z, Bui VC, Chen S, Ding Y, Xiang Y (2020) Security analysis 
on dbft protocol of neo. International Conference on Financial Cryptography and 
Data Security :20–31. 

280 

https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2012-December/002083.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2012-December/002083.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2012-December/002083.html
https://blog.bitmex.com/bitcoins-initial-block-download/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008407.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008407.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008407.html
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://github.com/ethereum/go-ethereum/pull/188
https://github.com/bitcoin/bitcoin/issues/15605
https://github.com/bitcoin/bitcoin/issues/15605
https://github.com/bitcoin/bitcoin/issues/15605


9975

9980

9985

9990

9995

10000

10005

10010

10015

9974 

9976 

9977 

9978 

9979 

9981 

9982 

9983 

9984 

9986 

9987 

9988 

9989 

9991 

9992 

9993 

9994 

9996 

9997 

9998 

9999 

10001 

10002 

10003 

10004 

10006 

10007 

10008 

10009 

10011 

10012 

10013 

10014 

NIST IR 8460 ipd 
April 2023 

[70] Wang Q, Li R, Chen S, Xiang Y (2021) Formal security analysis on dbft protocol of 
neo. arXiv preprint arXiv:210507459 . 

[71] Bessani A, Sousa J, Alchieri EE (2014) State machine replication for the masses with 
bft-smart. 2014 44th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (IEEE), pp 355–362. 

[72] Saltini R, Hyland-Wood D (2019) Correctness analysis of ibft. arXiv preprint 
arXiv:190107160 . 

[73] Saltini R (2019) Ibft liveness analysis. 2019 IEEE International Conference on 
Blockchain (Blockchain) (IEEE), pp 245–252. 

[74] Saltini R, Hyland-Wood D (2019) Ibft 2.0: A safe and live variation of the ibft 
blockchain consensus protocol for eventually synchronous networks. arXiv preprint 
arXiv:190910194 . 

[75] Moniz H (2020) The istanbul bft consensus algorithm. arXiv preprint 
arXiv:200203613 . 

[76] Kotla R, Alvisi L, Dahlin M, Clement A, Wong E (2007) Zyzzyva: speculative 
byzantine fault tolerance. Proceedings of twenty-frst ACM SIGOPS symposium on 
Operating systems principles, pp 45–58. 

[77] Wang G (2021) Sok: Understanding bft consensus in the age of blockchains. Cryp-
tology ePrint Archive :911. 

[78] Abraham I, Gueta G, Malkhi D, Alvisi L, Kotla R, Martin JP (2017) Revisiting fast 
practical byzantine fault tolerance. arXiv preprint arXiv:171201367 . 

[79] Guerraoui R, Knežević N, Quéma V, Vukolić M (2010) The next 700 bft protocols. 
Proceedings of the 5th European conference on Computer systems, pp 363–376. 

[80] Gunn LJ, Liu J, Vavala B, Asokan N (2019) Making speculative bft resilient with 
trusted monotonic counters. 2019 38th Symposium on Reliable Distributed Systems 
(SRDS) (IEEE), pp 133–13309. 

[81] Danezis G, Hrycyszyn D (2018) Blockmania: from block dags to consensus. arXiv 
preprint arXiv:180901620 . 

[82] Schett MA, Danezis G (2021) Embedding a deterministic bft protocol in a block 
dag. arXiv preprint arXiv:210209594 . 

[83] Shi E (2019) Streamlined blockchains: A simple and elegant approach (a tutorial 
and survey). International Conference on the Theory and Application of Cryptology 
and Information Security (Springer), pp 3–17. 

[84] Chan BY, Shi E (2020) Streamlet: Textbook streamlined blockchains. IACR Cryptol 
ePrint Arch 2020:88. 

[85] Pass R, Shi E (2018) Thunderella: Blockchains with optimistic instant confrmation. 
Annual International Conference on the Theory and Applications of Cryptographic 
Techniques (Springer), pp 3–33. 

[86] Chan TH, Pass R, Shi E (2018) Pili: A simple, fast, and robust family of blockchain 
protocols (Cryptology ePrint Archive, Report 2018/980, 2018. https://eprint. iacr. 
org . . . ), 

[87] Chan THH, Pass R, Shi E (2018) Pala: A simple partially synchronous blockchain. 

281 

https://eprint


NIST IR 8460 ipd 
April 2023 

10016

10017

10018

10019

10020

10021

10022

10023

10024

10025

10026

10027

10028

10029

10030

10031

10032

10033

10034

10035

10036

10037

10038

10039

10040

10041

10042

10043

10044

10045

10046

10047

10048

10049

10050

10051

10052

10053

10054

10055

10056

10057

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IACR Cryptol ePrint Arch 2018:981. 
[88] Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I (2018) Hotstuff: Bft consensus 

in the lens of blockchain. arXiv preprint arXiv:180305069 . 
[89] Abraham I, Malkhi D, Nayak K, Ren L, Yin M (2019) Sync hotstuff: Simple and 

practical synchronous state machine replication. IACR Cryptology ePrint Archive 
:270. 

[90] Abraham I, Malkhi D, Spiegelman A (2019) Asymptotically optimal validated asyn-
chronous byzantine agreement. Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing, pp 337–346. 

[91] Baudet M, Ching A, Chursin A, Danezis G, Garillot F, Li Z, Malkhi D, Naor O, 
Perelman D, Sonnino A (2019) State machine replication in the libra blockchain. 
The Libra Assn, Tech Rep . 

[92] Momose A, Cruz JP (2019) Force-locking attack on sync hotstuff. IACR Cryptol 
ePrint Arch :1484. 

[93] Abraham I, Nayak K, Ren L, Shrestha N (2020) On the optimality of optimistic 
responsiveness. IACR Cryptol ePrint Arch :458. 

[94] Bhat A, Bandarupalli A, Bagchi S, Kate A, Reiter MK (2021) Apollo–optimistically 
linear and responsive smr. IACR Cryptol ePrint Arch :180. 

[95] Miller A, Xia Y, Croman K, Shi E, Song D (2016) The honey badger of bft protocols. 
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp 31–42. 

[96] Liu C, Duan S, Zhang H (2020) Epic: Effcient asynchronous bft with adaptive secu-
rity. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems 
and Networks (DSN) (IEEE), pp 437–451. 

[97] Cachin C, Kursawe K, Petzold F, Shoup V (2001) Secure and effcient asynchronous 
broadcast protocols. Annual International Cryptology Conference (Springer), pp 
524–541. 

[98] Guo B, Lu Z, Tang Q, Xu J, Zhang Z (2020) Dumbo: Faster asynchronous bft pro-
tocols. IACR Cryptology ePrint Archive :841. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[99] Cachin C, Tessaro S (2005) Asynchronous verifable information dispersal. 24th 
IEEE Symposium on Reliable Distributed Systems (SRDS’05) (IEEE), pp 191–201. 

[100] Mostéfaoui A, Moumen H, Raynal M (2015) Signature-free asynchronous binary 
byzantine consensus with t < n/3, o(n2) messages, and o(1) expected time. Journal 
of the ACM (JACM) 62(4):1–21. 

[101] Duan S, Reiter MK, Zhang H (2018) Beat: Asynchronous bft made practical. Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 
Security, pp 2028–2041. 

[102] Lu Y, Lu Z, Tang Q (2021) Bolt-dumbo transformer: Asynchronous consensus as 
fast as pipelined bft. arXiv preprint arXiv:210309425 . 

[103] Baird L (2016) The swirlds hashgraph consensus algorithm: Fair, fast, byzantine 
fault tolerance. Swirlds, Inc Technical Report SWIRLDS-TR-2016 1. 

[104] Kelkar M, Zhang F, Goldfeder S, Juels A (2020) Order-fairness for byzantine con-

282 



10060

10065

10070

10075

10080

10085

10090

10095

10058 

10059 

10061 

10062 

10063 

10064 

10066 

10067 

10068 

10069 

10071 

10072 

10073 

10074 

10076 

10077 

10078 

10079 

10081 

10082 

10083 

10084 

10086 

10087 

10088 

10089 

10091 

10092 

10093 

10094 

10096 

10097 

10098 

10099 

NIST IR 8460 ipd 
April 2023 

sensus (IACR Cryptology ePrint Archive, 2020: 269), 
[105] Gagol A, Lesniak ´ D, Straszak D, Swietek M (2019) Aleph: Effcient atomic broad-

cast in asynchronous networks with byzantine nodes. Proceedings of the 1st ACM 
Conference on Advances in Financial Technologies, pp 214–228. 

´ 

[106] Keidar I, Kokoris-Kogias E, Naor O, Spiegelman A (2021) All you need is dag. 
arXiv preprint arXiv:210208325 . 

[107] Kursawe K (2020) Wendy, the good little fairness widget. arXiv preprint 
arXiv:200708303 . 

[108] Asayag A, Cohen G, Grayevsky I, Leshkowitz M, Rottenstreich O, Tamari R, Yakira 
D (2018) A fair consensus protocol for transaction ordering. 2018 IEEE 26th Inter-
national Conference on Network Protocols (ICNP) (IEEE), pp 55–65. 

[109] Zhang Y, Setty S, Chen Q, Zhou L, Alvisi L (2020) Byzantine ordered consensus 
without byzantine oligarchy. 14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20), pp 633–649. 

[110] Avarikioti Z, Heimbach L, Schmid R, Wattenhofer R (2020) Fnf-bft: Exploring per-
formance limits of bft protocols. arXiv preprint arXiv:200902235 . 

[111] Lev-Ari K, Spiegelman A, Keidar I, Malkhi D (2019) Fairledger: A fair blockchain 
protocol for fnancial institutions. arXiv preprint arXiv:190603819 . 

[112] Kuo PC, Chung H, Chao TW, Cheng CM (2020) Fair byzantine agreements for 
blockchains. IEEE Access 8:70746–70761. 

[113] Küsters R, Rausch D, Simon M (2020) Accountability in a permissioned blockchain: 
Formal analysis of hyperledger fabric (full version). IACR Cryptology ePrint Archive 
. 

[114] Ranchal-Pedrosa A, Gramoli V (2021) Agreement in the presence of disagreeing 
rational players: The huntsman protocol. arXiv preprint arXiv:210504357 . 

[115] Civit P, Gilbert S, Gramoli V (2019) Polygraph: Accountable byzantine agreement. 
IACR Cryptol ePrint Arch :587. 

[116] Crain T, Gramoli V, Larrea M, Raynal M (2018) Dbft: Effcient leaderless byzantine 
consensus and its application to blockchains. 2018 IEEE 17th International Sympo-
sium on Network Computing and Applications (NCA) (IEEE), pp 1–8. 

[117] Crain T, Natoli C, Gramoli V (2018) Evaluating the red belly blockchain. arXiv 
preprint arXiv:181211747 . 

[118] Ranchal-Pedrosa A, Gramoli V (2020) Blockchain is dead, long live blockchain! 
accountable state machine replication for longlasting blockchain. arXiv preprint 
arXiv:200710541 . 

[119] Sheng P, Wang G, Nayak K, Kannan S, Viswanath P (2020) Bft protocol forensics. 
arXiv preprint arXiv:201006785 . 

[120] Golan-Gueta G, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter MK, Seredin-
schi DA, Tamir O, Tomescu A (2019) Sbft: A scalable and decentralized trust in-
frastructure. 2019 49th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN) :568–580. 

[121] Jalalzai MM, Busch C, Richard GG (2019) Proteus: A scalable bft consen-

283 



10100

10105

10110

10115

10120

10125

10130

10135

10140

10101 

10102 

10103 

10104 

10106 

10107 

10108 

10109 

10111 

10112 

10113 

10114 

10116 

10117 

10118 

10119 

10121 

10122 

10123 

10124 

10126 

10127 

10128 

10129 

10131 

10132 

10133 

10134 

10136 

10137 

10138 

10139 

10141 

NIST IR 8460 ipd 
April 2023 

sus protocol for blockchains. 2019 IEEE International Conference on Blockchain 
(Blockchain) (IEEE), pp 308–313. 

[122] De Angelis S, Aniello L, Baldoni R, Lombardi F, Margheri A, Sassone V (2018) Pbft 
vs proof-of-authority: applying the cap theorem to permissioned blockchain. Pro-
ceedings of the Second Italian Conference on Cyber Security, Milan, Italy, February 
6th - to - 9th, 2018 2058. 

[123] Ekparinya P, Gramoli V, Jourjon G (2019) The attack of the clones against proof-of-
authority. arXiv preprint arXiv:190210244 . 

[124] Natoli C, Gramoli V (2017) The balance attack or why forkable blockchains are 
ill-suited for consortium. 2017 47th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN) (IEEE), pp 579–590. 

[125] Ekparinya P, Gramoli V, Jourjon G (2018) Double-spending risk quantifca-
tion in private, consortium and public ethereum blockchains. arXiv preprint 
arXiv:180505004 . 

[126] Shi E (2019) Analysis of deterministic longest-chain protocols. 2019 IEEE 32nd 
Computer Security Foundations Symposium (CSF) (IEEE), pp 122–12213. 

[127] Kiayias A, Russell A (2018) Ouroboros-bft: A simple byzantine fault tolerant con-
sensus protocol. IACR Cryptol ePrint Arch :1049. 

[128] Malkhi D, Nayak K, Ren L (2019) Flexible byzantine fault tolerance. Proceedings 
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 
pp 1041–1053. 

[129] Sheff I, Wang X, van Renesse R, Myers AC (2021) Heterogeneous paxos. 24th Inter-
national Conference on Principles of Distributed Systems (OPODIS 2020) (Schloss 
Dagstuhl-Leibniz-Zentrum für Informatik). 

[130] Kane D, Fackler A, G agol ˛ A, Straszak D, Zamfr V (2021) Highway: Effcient con-
sensus with fexible fnality. arXiv preprint arXiv:210102159 . 

[131] Xiang Z, Malkhi D, Nayak K, Ren L (2021) Strengthened fault tolerance in byzan-
tine fault tolerant replication. arXiv preprint arXiv:210103715 . 

[132] Naor O, Baudet M, Malkhi D, Spiegelman A (2019) Cogsworth: Byzantine view 
synchronization. arXiv preprint arXiv:190905204 . 

[133] Naor O, Keidar I (2020) Expected linear round synchronization: The missing link 
for linear byzantine smr. arXiv preprint arXiv:200207539 . 

[134] Bravo M, Chockler G, Gotsman A (2020) Making byzantine consensus live (ex-
tended version). arXiv preprint arXiv:200804167 . 

[135] Spiegelman A, Rinberg A (2019) Ace: Abstract consensus encapsulation for liveness 
boosting of state machine replication. arXiv preprint arXiv:191110486 . 

[136] Gelashvili R, Kokoris-Kogias L, Spiegelman A, Xiang Z (2021) Be prepared 
when network goes bad: An asynchronous view-change protocol. arXiv preprint 
arXiv:210303181 . 

[137] Bessani A, Alchieri E, Sousa J, Oliveira A, Pedone F (2020) From byzan-
tine replication to blockchain: Consensus is only the beginning. arXiv preprint 
arXiv:200414527 . 

284 



NIST IR 8460 ipd 
April 2023 

10142 

10143 

10144 

10145 

10146 

10147 

10148 

10149 

10150 

10151 

10152 

10153 

10154 

10155 

10156 

10157 

10158 

10159 

10160 

10161 

10162 

10163 

10164 

10165 

10166 

10167 

10168 

10169 

10170 

10171 

10172 

10173 

10174 

10175 

10176 

10177 

10178 

10179 

10180 

10181 

10182 

10183 

[138] Astef¸ anoaei L, Chambart P, Del Pozzo A, Tate E, Tucci S, Zalinescu ˘ E (2020) 
Tenderbake–classical bft style consensus for public blockchains. arXiv preprint 
arXiv:200111965 . 

[139] Hao X, Yu L, Zhiqiang L, Zhen L, Dawu G (2018) Dynamic practical byzantine fault 
tolerance. 2018 IEEE Conference on Communications and Network Security (CNS) 
(IEEE), pp 1–8. 

[140] Kuznetsov P, Tonkikh A (2020) Asynchronous reconfguration with byzantine fail-
ures. arXiv preprint arXiv:200513499 . 

[141] Vizier G, Gramoli V (2018) Comchain: Bridging the gap between public and con-
sortium blockchains. 2018 IEEE International Conference on Internet of Things 
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE 
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data) (IEEE), pp 1469–1474. 

[142] Freitas de Souza L, Kuznetsov P, Rieutord T, Tucci-Piergiovanni S (2021) Ac-
countability and reconfguration: Self-healing lattice agreement. arXiv preprint 
arXiv:210504909 . 

[143] Martin JP, Alvisi L (2004) A framework for dynamic byzantine storage. Interna-
tional Conference on Dependable Systems and Networks, 2004 (IEEE), pp 325–334. 

[144] Alchieri EA, Bessani AN, da Silva Fraga J, Greve F (2008) Byzantine consensus 
with unknown participants. International Conference On Principles Of Distributed 
Systems (Springer), pp 22–40. 

[145] Alchieri EAP, Bessani A, Greve F, da Silva Fraga J (2016) Knowledge connectiv-
ity requirements for solving byzantine consensus with unknown participants. IEEE 
Transactions on Dependable and Secure Computing 15(2):246–259. 

[146] Khanchandani P, Wattenhofer R (2021) Byzantine agreement with unknown partici-
pants and failures. arXiv preprint arXiv:210210442 . 

[147] Cachin C, Tackmann B (2019) Asymmetric distributed trust. arXiv preprint 
arXiv:190609314 . 

[148] Cachin C, Zanolini L (2020) Asymmetric byzantine consensus. arXiv preprint 
arXiv:200508795 . 

[149] Mazieres D (2015) The stellar consensus protocol: A federated model for internet-
level consensus. Stellar Development Foundation . 

[150] Lokhava M, Losa G, Mazières D, Hoare G, Barry N, Gafni E, Jove J, Malinowsky 
R, McCaleb J (2019) Fast and secure global payments with stellar. Proceedings of 
the 27th ACM Symposium on Operating Systems Principles, pp 80–96. 

[151] García-Pérez Á, Schett MA (2019) Deconstructing stellar consensus (extended ver-
sion). arXiv preprint arXiv:191105145 . 

[152] Kim M, Kwon Y, Kim Y (2019) Is stellar as secure as you think? 2019 IEEE Eu-
ropean Symposium on Security and Privacy Workshops (EuroS&PW) (IEEE), pp 
377–385. 

[153] Lachowski Ł (2019) Complexity of the quorum intersection property of the federated 
byzantine agreement system. arXiv preprint arXiv:190206493 . 

285 



10185

10190

10195

10200

10205

10210

10215

10220

10225

10184 

10186 

10187 

10188 

10189 

10191 

10192 

10193 

10194 

10196 

10197 

10198 

10199 

10201 

10202 

10203 

10204 

10206 

10207 

10208 

10209 

10211 

10212 

10213 

10214 

10216 

10217 

10218 

10219 

10221 

10222 

10223 

10224 

NIST IR 8460 ipd 
April 2023 

[154] Gaul A, Khoff I, Liesen J, Stüber T (2019) Mathematical analysis and algorithms 
for federated byzantine agreement systems. arXiv preprint arXiv:191201365 . 

[155] Florian M, Henningsen S, Scheuermann B (2020) The sum of its parts: Analysis of 
federated byzantine agreement systems. arXiv preprint arXiv:200208101 . 

[156] Bracciali A, Grossi D, de Haan R (2019) Decentralization in open quorum systems. 
arXiv preprint arXiv:191108182 . 

[157] Schwartz D, Youngs N, Britto A, et al. (2014) The ripple protocol consensus algo-
rithm. Ripple Labs Inc White Paper 58 . 

[158] Chase B, MacBrough E (2018) Analysis of the xrp ledger consensus protocol. arXiv 
preprint arXiv:180207242 . 

[159] Amores-Sesar I, Cachin C, Mici´ ć J (2020) Security analysis of ripple consensus. 
arXiv preprint arXiv:201114816 . 

[160] MacBrough E (2018) Cobalt: Bft governance in open networks. arXiv preprint 
arXiv:180207240 . 

[161] Dwork C, Naor M (1992) Pricing via processing or combatting junk mail. Annual 
International Cryptology Conference (Springer), pp 139–147. 

[162] Jakobsson M, Juels A (1999) Proofs of work and bread pudding protocols. Secure 
information networks (Springer), pp 258–272. 

[163] Back A, et al. (2002) Hashcash-a denial of service counter-measure . 
[164] Gupta D, Saia J, Young M (2020) Resource burning for permissionless systems. 

arXiv preprint arXiv:200604865 . 
[165] Garay J, Kiayias A, Panagiotakos G (2020) Blockchains from non-idealized hash 

functions (Cryptology ePrint Archive 2019/315, https://eprint. iacr. org/2019/315), 
[166] Hanke T (2016) Asicboost-a speedup for bitcoin mining. arXiv preprint 

arXiv:160400575 . 
[167] Recabarren R, Carbunar B (2017) Hardening stratum, the bitcoin pool mining pro-

tocol. Proceedings on Privacy Enhancing Technologies 2017(3):57–74. 
[168] StopAndDecrypt (2019) Betterhash: Decentralizing bitcoin mining with new hash-

ing protocols. Available at https://medium.com/hackernoon/betterhash-decentraliz 
ing-bitcoin-mining-with-new-hashing-protocols-291de178e3e0. 

[169] Miller A, Kosba A, Katz J, Shi E (2015) Nonoutsourceable scratch-off puzzles to 
discourage bitcoin mining coalitions. Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pp 680–691. 

[170] Chepurnoy A, Saxena A (2020) Bypassing non-outsourceable proof-of-work 
schemes using collateralized smart contracts. IACR Cryptol ePrint Arch 2020:44. 

[171] tevador (2019) Randomx. Available at https://github.com/tevador/RandomX. 
[172] Han R, Sui Z, Yu J, Liu J, Chen S (2019) Fact and fction: Challenging the honest 

majority assumption of permissionless blockchains. IACR Cryptol ePrint Arch . 
[173] Kwon Y, Kim H, Shin J, Kim Y (2019) Bitcoin vs. bitcoin cash: Coexistence or 

downfall of bitcoin cash? 2019 IEEE Symposium on Security and Privacy (SP) 
(IEEE), pp 935–951. 

[174] Bissias G, Böhme R, Thibodeau D, Levine BN (2020) Pricing security in proof-of-

286 

https://medium.com/hackernoon/betterhash-decentralizing-bitcoin-mining-with-new-hashing-protocols-291de178e3e0
https://medium.com/hackernoon/betterhash-decentralizing-bitcoin-mining-with-new-hashing-protocols-291de178e3e0
https://medium.com/hackernoon/betterhash-decentralizing-bitcoin-mining-with-new-hashing-protocols-291de178e3e0
https://github.com/tevador/RandomX
https://eprint


NIST IR 8460 ipd 
April 2023 

10226 

10227 

10228 

10229 

10230 

10231 

10232 

10233 

10234 

10235 

10236 

10237 

10238 

10239 

10240 

10241 

10242 

10243 

10244 

10245 

10246 

10247 

10248 

10249 

10250 

10251 

10252 

10253 

10254 

10255 

10256 

10257 

10258 

10259 

10260 

10261 

10262 

10263 

10264 

10265 

10266 

10267 

work systems. arXiv preprint arXiv:201203706 . 
[175] Garratt R, van Oordt MR (2019) Why fxed costs matter for proof-of-work based 

cryptocurrencies. Available at SSRN . 
[176] Mueller P (2020) Cryptocurrency mining: Asymmetric response to price movement. 

Available at SSRN 3733026 . 
[177] Arnosti N, Weinberg SM (2018) Bitcoin: A natural oligopoly. arXiv preprint 

arXiv:181108572 . 
[178] Romiti M, Judmayer A, Zamyatin A, Haslhofer B (2019) A deep dive into 

bitcoin mining pools: An empirical analysis of mining shares. arXiv preprint 
arXiv:190505999 . 

[179] Cong LW, He Z, Li J (2019) Decentralized mining in centralized pools. The Review 
of Financial Studies . 

[180] Chatzigiannis P, Baldimtsi F, Griva I, Li J (2019) Diversifcation across mining 
pools: Optimal mining strategies under pow. arXiv preprint arXiv:190504624 . 

[181] Elmandjra Y, Hsue D (2020) Bitcoin mining the evolution of a multibillion dollar 
industry. Available at https://research.ark-invest.com/hubfs/1_Download_Files_A 
RK-Invest/White_Papers/ARKInvest_031220_Whitepaper_BitcoinMining.pdf. 

[182] Garay J, Kiayias A, Leonardos N (2017) The bitcoin backbone protocol with chains 
of variable diffculty. Annual International Cryptology Conference (Springer), pp 
291–323. 

[183] Chan TH, Ephraim N, Marcedone A, Morgan A, Pass R, Shi E (2017) Blockchain 
with varying number of players. 

[184] Garay JA, Kiayias A, Leonardos N (2020) Full analysis of nakamoto consensus in 
bounded-delay networks. IACR Cryptol ePrint Arch :277. 

[185] Davidson M, Diamond T (2020) On the proftability of selfsh mining against multi-
ple diffculty adjustment algorithms. IACR Cryptol ePrint Arch :94. 

[186] Werner SM, Ilie DI, Stewart I, Knottenbelt WJ (2020) Unstable throughput: When 
the diffculty algorithm breaks. arXiv preprint arXiv:200603044 . 

[187] Meshkov D, Chepurnoy A, Jansen M (2017) Short paper: Revisiting diffculty 
control for blockchain systems. Data Privacy Management, Cryptocurrencies and 
Blockchain Technology (Springer), pp 429–436. 

[188] Goren G, Spiegelman A (2019) Mind the mining. Proceedings of the 2019 ACM 
Conference on Economics and Computation, pp 475–487. 

[189] Fiat A, Karlin A, Koutsoupias E, Papadimitriou C (2019) Energy equilibria in proof-
of-work mining. Proceedings of the 2019 ACM Conference on Economics and Com-
putation, pp 489–502. 

[190] Rosenfeld M (2011) Analysis of bitcoin pooled mining reward systems. arXiv 
preprint arXiv:11124980 . 

[191] Luu L, Saha R, Parameshwaran I, Saxena P, Hobor A (2015) On power splitting 
games in distributed computation: The case of bitcoin pooled mining. 2015 IEEE 
28th Computer Security Foundations Symposium (IEEE), pp 397–411. 

[192] Eyal I (2015) The miner’s dilemma. 2015 IEEE Symposium on Security and Privacy 

287 

https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARKInvest_031220_Whitepaper_BitcoinMining.pdf
https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARKInvest_031220_Whitepaper_BitcoinMining.pdf
https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/ARKInvest_031220_Whitepaper_BitcoinMining.pdf


10270

10275

10280

10285

10290

10295

10300

10305

10268 

10269 

10271 

10272 

10273 

10274 

10276 

10277 

10278 

10279 

10281 

10282 

10283 

10284 

10286 

10287 

10288 

10289 

10291 

10292 

10293 

10294 

10296 

10297 

10298 

10299 

10301 

10302 

10303 

10304 

10306 

10307 

10308 

10309 

NIST IR 8460 ipd 
April 2023 

(IEEE), pp 89–103. 
[193] wizkid057 (2014) Eligius: 0% fee btc, 105% pps nmc, no registration, cppsrb. Avail-

able at https://bitcointalk.org/?topic=441465.msg7282674. 
[194] Kwon Y, Kim D, Son Y, Vasserman E, Kim Y (2017) Be selfsh and avoid dilem-

mas: Fork after withholding (faw) attacks on bitcoin. Proceedings of the 2017 ACM 
SIGSAC Conference on Computer and Communications Security, pp 195–209. 

[195] Schrijvers O, Bonneau J, Boneh D, Roughgarden T (2016) Incentive compatibil-
ity of bitcoin mining pool reward functions. International Conference on Financial 
Cryptography and Data Security (Springer), pp 477–498. 

[196] Roughgarden T, Shikhelman C (2021) Ignore the extra zeroes: Variance-optimal 
mining pools. International Conference on Financial Cryptography and Data Secu-
rity (Springer), pp 233–249. 

[197] Katz J, Lazos P, Marmolejo-Cossío FJ, Zhou X (2021) Rpplns: Pay-per-last-n-shares 
with a randomised twist. arXiv preprint arXiv:210207681 . 

[198] Zolotavkin Y, García J, Rudolph C (2017) Incentive compatibility of pay per last 
n shares in bitcoin mining pools. International Conference on Decision and Game 
Theory for Security (Springer), pp 21–39. 

[199] Eyal I, Sirer EG (2014) Majority is not enough: Bitcoin mining is vulnerable. In-
ternational conference on fnancial cryptography and data security (Springer), pp 
436–454. 

[200] Bahack L (2013) Theoretical bitcoin attacks with less than half of the computational 
power (draft). arXiv preprint arXiv:13127013 . 

[201] Kiayias A, Koutsoupias E, Kyropoulou M, Tselekounis Y (2016) Blockchain mining 
games. Proceedings of the 2016 ACM Conference on Economics and Computation, 
pp 365–382. 

[202] Sapirshtein A, Sompolinsky Y, Zohar A (2016) Optimal selfsh mining strategies 
in bitcoin. International Conference on Financial Cryptography and Data Security 
(Springer), pp 515–532. 

[203] Nayak K, Kumar S, Miller A, Shi E (2016) Stubborn mining: Generalizing selfsh 
mining and combining with an eclipse attack. 2016 IEEE European Symposium on 
Security and Privacy (EuroS&P) (IEEE), pp 305–320. 

[204] Göbel J, Keeler HP, Krzesinski AE, Taylor PG (2016) Bitcoin blockchain dynam-
ics: The selfsh-mine strategy in the presence of propagation delay. Performance 
Evaluation 104:23–41. 

[205] Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S (2016) On 
the security and performance of proof of work blockchains. Proceedings of the 2016 
ACM SIGSAC conference on computer and communications security (ACM), pp 3– 
16. 

[206] Bai Q, Zhou X, Wang X, Xu Y, Wang X, Kong Q (2019) A deep dive into blockchain 
selfsh mining. ICC 2019-2019 IEEE International Conference on Communications 
(ICC) (IEEE), pp 1–6. 

[207] Leelavimolsilp T, Tran-Thanh L, Stein S (2018) On the preliminary investigation of 

288 

https://bitcointalk.org/?topic=441465.msg7282674


10310

10315

10320

10325

10330

10335

10340

10345

10350

10311 

10312 

10313 

10314 

10316 

10317 

10318 

10319 

10321 

10322 

10323 

10324 

10326 

10327 

10328 

10329 

10331 

10332 

10333 

10334 

10336 

10337 

10338 

10339 

10341 

10342 

10343 

10344 

10346 

10347 

10348 

10349 

10351 

NIST IR 8460 ipd 
April 2023 

selfsh mining strategy with multiple selfsh miners. arXiv preprint arXiv:180202218 
. 

[208] Marmolejo-Cossío FJ, Brigham E, Sela B, Katz J (2019) Competing (semi-) selfsh 
miners in bitcoin. Proceedings of the 1st ACM Conference on Advances in Financial 
Technologies, pp 89–109. 

[209] Zhang S, Zhang K, Kemme B (2020) Analysing the beneft of selfsh mining with 
multiple players. 2020 IEEE International Conference on Blockchain (Blockchain) 
(IEEE), pp 36–44. 

[210] Grunspan C, Pérez-Marco R (2019) Selfsh mining in ethereum. arXiv preprint 
arXiv:190413330 . 

[211] Ritz F, Zugenmaier A (2018) The impact of uncle rewards on selfsh mining in 
ethereum. 2018 IEEE European Symposium on Security and Privacy Workshops 
(EuroS&PW) (IEEE), pp 50–57. 

[212] Feng C, Niu J (2019) Selfsh mining in ethereum. 2019 IEEE 39th International 
Conference on Distributed Computing Systems (ICDCS) (IEEE), pp 1306–1316. 

[213] Shibuya Y, Yamamoto G, Kojima F, Shi E, Matsuo S, Laszka A (2021) Selfsh min-
ing attacks exacerbated by elastic hash supply. arXiv preprint arXiv:210308007 . 

[214] Gramoli V (2020) From blockchain consensus back to byzantine consensus. Future 
Generation Computer Systems 107:760–769. 

[215] Kiayias A, Panagiotakos G (2015) Speed-security tradeoffs in blockchain protocols. 
IACR Cryptol ePrint Arch :1019. 

[216] Pass R, Seeman L, Shelat A (2017) Analysis of the blockchain protocol in asyn-
chronous networks. Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques (Springer), pp 643–673. 

[217] Wei P, Yuan Q, Zheng Y (2018) Security of the blockchain against long delay at-
tack. International Conference on the Theory and Application of Cryptology and 
Information Security (Springer), pp 250–275. 

[218] Badertscher C, Maurer U, Tschudi D, Zikas V (2017) Bitcoin as a transaction ledger: 
A composable treatment. Annual International Cryptology Conference (Springer), 
pp 324–356. 

[219] Badertscher C, Garay J, Maurer U, Tschudi D, Zikas V (2018) But why does it work? 
a rational protocol design treatment of bitcoin. Annual international conference on 
the theory and applications of cryptographic techniques (Springer), pp 34–65. 

[220] Cojocaru A, Garay JA, Kiayias A, Song F, Wallden P (2019) The bitcoin backbone 
protocol against quantum adversaries. IACR Cryptol ePrint Arch :1150. 

[221] Ni P, Li H, Pan D (2020) Analysis of bitcoin backbone protocol in the non-fat model. 
Science China Information Sciences 63(3):1–14. 

[222] Zhao J (2019) An analysis of blockchain consistency in asynchronous networks: 
Deriving a neat bound. arXiv preprint arXiv:190906587 . 

[223] Garay JA, Kiayias A, Panagiotakos G (2020) Consensus from signatures of work. 
Cryptographers’ Track at the RSA Conference (Springer), pp 319–344. 

[224] Duong T, Chepurnoy A, Zhou HS (2018) Multi-mode cryptocurrency systems. Pro-

289 



NIST IR 8460 ipd 
April 2023 

10352 

10353 

10354 

10355 

10356 

10357 

10358 

10359 

10360 

10361 

10362 

10363 

10364 

10365 

10366 

10367 

10368 

10369 

10370 

10371 

10372 

10373 

10374 

10375 

10376 

10377 

10378 

10379 

10380 

10381 

10382 

10383 

10384 

10385 

10386 

10387 

10388 

10389 

10390 

10391 

10392 

10393 

ceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Con-
tracts, pp 35–46. 

[225] Dembo A, Kannan S, Tas EN, Tse D, Viswanath P, Wang X, Zeitouni O (2020) 
Everything is a race and nakamoto always wins. arXiv preprint arXiv:200510484 . 

[226] Gazi P, Kiayias A, Russell A (2020) Tight consistency bounds for bitcoin. IACR 
Cryptol ePrint Arch . 

[227] Avarikioti G, Käppeli L, Wang Y, Wattenhofer R (2019) Bitcoin security under tem-
porary dishonest majority. International Conference on Financial Cryptography and 
Data Security (Springer), pp 466–483. 

[228] Badertscher C, Gazi P, Kiayias A, Russell A, Zikas V (2020) Consensus redux: 
Distributed ledgers in the face of adversarial supremacy. IACR Cryptol ePrint Arch 
:1021. 

[229] Ren L (2019) Analysis of nakamoto consensus. IACR Cryptol ePrint Arch :943. 
[230] Kiffer L, Rajaraman R, Shelat A (2018) A better method to analyze blockchain con-

sistency. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp 729–744. 

[231] Cojocaru A, Garay J, Kiayias A, Song F, Wallden P (2020) Post-quantum security 
of the bitcoin backbone and quantum multi-solution bernoulli search. arXiv preprint 
arXiv:201215254 . 

[232] Li J, Guo D, Ren L (2020) Close latency–security trade-off for the nakamoto con-
sensus. arXiv preprint arXiv:201114051 . 

[233] Sankagiri S, Gandlur S, Hajek B (2021) The longest-chain protocol under random 
delays. arXiv preprint arXiv:210200973 . 

[234] Decker C, Wattenhofer R (2013) Information propagation in the bitcoin network. 
IEEE P2P 2013 Proceedings (IEEE), pp 1–10. 

[235] Silva P, Vavřicka ˇ D, Barreto J, Matos M (2020) Impact of geo-distribution and min-
ing pools on blockchains: A study of ethereum. 50th IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN) . 

[236] Xiao Y, Zhang N, Lou W, Hou YT (2020) Modeling the impact of network 
connectivity on consensus security of proof-of-work blockchain. arXiv preprint 
arXiv:200208912 . 

[237] Jain A, Siddiqui S, Gujar S (2021) We might walk together, but i run faster: Network 
fairness and scalability in blockchains. arXiv preprint arXiv:210204326 . 

[238] Shahsavari Y, Zhang K, Talhi C (2020) A theoretical model for block propagation 
analysis in bitcoin network. IEEE Transactions on Engineering Management . 

[239] Corallo M (2016) Compact block relay. Available at https://github.com/bitcoin/bip 
s/blob/master/bip-0152.mediawiki. 

[240] Otsuki K, Banno R, Shudo K (2020) Quantitatively analyzing relay networks in 
bitcoin. 2020 IEEE International Conference on Blockchain (Blockchain) (IEEE), 
pp 214–220. 

[241] Budish E (2018) The economic limits of bitcoin and the blockchain (National Bureau 
of Economic Research), 

290 

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki


10395

10400

10405

10410

10415

10420

10425

10430

10435

10394 

10396 

10397 

10398 

10399 

10401 

10402 

10403 

10404 

10406 

10407 

10408 

10409 

10411 

10412 

10413 

10414 

10416 

10417 

10418 

10419 

10421 

10422 

10423 

10424 

10426 

10427 

10428 

10429 

10431 

10432 

10433 

10434 

NIST IR 8460 ipd 
April 2023 

[242] Bonneau J, Felten EW, Goldfeder S, Kroll JA, Narayanan A (2016) Why buy when 
you can rent? bribery attacks on bitcoin consensus. Citeseer . 

[243] Liao K, Katz J (2017) Incentivizing blockchain forks via whale transactions. Inter-
national Conference on Financial Cryptography and Data Security (Springer), pp 
264–279. 

[244] Teutsch J, Jain S, Saxena P (2016) When cryptocurrencies mine their own business. 
International Conference on Financial Cryptography and Data Security (Springer), 
pp 499–514. 

[245] McCorry P, Hicks A, Meiklejohn S (2018) Smart contracts for bribing miners. Inter-
national Conference on Financial Cryptography and Data Security (Springer), pp 
3–18. 

[246] Winzer F, Herd B, Faust S (2019) Temporary censorship attacks in the presence of 
rational miners. 2019 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW) (IEEE), pp 357–366. 

[247] Judmayer A, Stifter N, Zamyatin A, Tsabary I, Eyal I, Gazi P, Meiklejohn S, Weippl 
ER (2019) Pay-to-win: Cheap, crowdfundable, cross-chain incentive manipulation 
attacks on cryptocurrencies. IACR Cryptol ePrint Arch :775. 

[248] Moroz DJ, Aronoff DJ, Narula N, Parkes DC (2020) Double-spend counterattacks: 
Threat of retaliation in proof-of-work systems. arXiv preprint arXiv:200210736 . 

[249] Rosenfeld M (2014) Analysis of hashrate-based double spending. arXiv preprint 
arXiv:14022009 . 

[250] Grunspan C, Pérez-Marco R (2019) On proftability of nakamoto double spend. 
arXiv preprint arXiv:191206412 . 

[251] Sompolinsky Y, Zohar A (2016) Bitcoin’s security model revisited. arXiv preprint 
arXiv:160509193 . 

[252] Finney H (2011) Best practice for fast transaction acceptance - how high is the risk?. 
Available at https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384. 

[253] vector76 (2011) Fake bitcoins?. Available at https://bitcointalk.org/index.php?topi 
c=36788.msg463391#msg463391. 

[254] Miller A (2013) Feather-forks: enforcing a blacklist with sub-50% hash power. 
Available at https://bitcointalk.org/index.php?topic=312668.0. 

[255] Rizun PR (2016) Subchains: A technique to scale bitcoin and improve the user 
experience. Ledger 1:38–52. 

[256] Zamyatin A, Stifter N, Schindler P, Weippl ER, Knottenbelt WJ (2018) Flux: Revis-
iting near blocks for proof-of-work blockchains. IACR Cryptol ePrint Arch :415. 

[257] Eyal I, Gencer AE, Sirer EG, Van Renesse R (2016) Bitcoin-ng: A scalable 
blockchain protocol. 13th {USENIX} symposium on networked systems design and 
implementation ({NSDI} 16), pp 45–59. 

[258] Yin J, Wang C, Zhang Z, Liu J (2018) Revisiting the incentive mechanism of bitcoin-
ng. Australasian Conference on Information Security and Privacy (Springer), pp 
706–719. 

[259] Niu J, Wang Z, Gai F, Feng C (2020) Incentive analysis of bitcoin-ng, revisited. 

291 

https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
https://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
https://bitcointalk.org/index.php?topic=312668.0


NIST IR 8460 ipd 
April 2023 

10436 

10437 

10438 

10439 

10440 

10441 

10442 

10443 

10444 

10445 

10446 

10447 

10448 

10449 

10450 

10451 

10452 

10453 

10454 

10455 

10456 

10457 

10458 

10459 

10460 

10461 

10462 

10463 

10464 

10465 

10466 

10467 

10468 

10469 

10470 

10471 

10472 

10473 

10474 

10475 

10476 

10477 

arXiv preprint arXiv:200105082 . 
[260] Lerner SD (2015) Decor+ hop: A scalable blockchain protocol. 
[261] Camacho P, Lerner SD (2016) Decor+ lami: A scalable blockchain protocol. 
[262] Zhang R, Preneel B (2017) Publish or perish: A backward-compatible defense 

against selfsh mining in bitcoin. Cryptographers’ Track at the RSA Conference 
(Springer), pp 277–292. 

[263] Zhang R, Preneel B (2019) Lay down the common metrics: Evaluating proof-of-
work consensus protocols’ security. 2019 IEEE Symposium on Security and Privacy 
(SP) (IEEE), pp 175–192. 

[264] Zhang R, Zhang D, Wang Q, Xie J, Preneel B (2020) Nc-max: Breaking the through-
put limit of nakamoto consensus. IACR Cryptol ePrint Arch :1101. 

[265] Zhang R, Zhang D, Wang Q, Wu S, Xie J, Preneel B (2022) Nc-max: Breaking 
the security-performance tradeoff in nakamoto consensus. 29th Annual Network and 
Distributed System Security Symposium, NDSS 2022, San Diego, California, USA, 
April 24-28, 2022 (The Internet Society). Available at https://www.ndss-symposium 
.org/ndss-paper/auto-draft-255/. 

[266] Sompolinsky Y, Zohar A (2015) Secure high-rate transaction processing in bitcoin. 
International Conference on Financial Cryptography and Data Security (Springer), 
pp 507–527. 

[267] Kiayias A, Panagiotakos G (2017) On trees, chains and fast transactions in the 
blockchain. International Conference on Cryptology and Information Security in 
Latin America (Springer), pp 327–351. 

[268] Lerner SD (2016) Uncle mining, an ethereum consensus protocol faw. Available at 
https://bitslog.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-fla 
w/. 

[269] Chang SY, Park Y, Wuthier S, Chen CW (2019) Uncle-block attack: Blockchain 
mining threat beyond block withholding for rational and uncooperative miners. In-
ternational Conference on Applied Cryptography and Network Security (Springer), 
pp 241–258. 

[270] Werner SM, Pritz PJ, Zamyatin A, Knottenbelt WJ (2019) Uncle traps: harvest-
ing rewards in a queue-based ethereum mining pool. Proceedings of the 12th EAI 
International Conference on Performance Evaluation Methodologies and Tools, pp 
127–134. 

[271] Pass R, Shi E (2017) Fruitchains: A fair blockchain. Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp 315–324. 

[272] Fitzi M, Gazi P, Kiayias A, Russell A (2018) Parallel chains: Improving throughput 
and latency of blockchain protocols via parallel composition. IACR Cryptol ePrint 
Arch :1119. 

[273] Fitzi M, Gaži P, Kiayias A, Russell A (2020) Ledger combiners for fast settlement. 
IACR Cryptol ePrint Arch :675. 

[274] Wang X, Muppirala VV, Yang L, Kannan S, Viswanath P (2021) Securing parallel-
chain protocols under variable mining power. arXiv preprint arXiv:210502927 . 

292 

https://www.ndss-symposium.org/ndss-paper/auto-draft-255/
https://www.ndss-symposium.org/ndss-paper/auto-draft-255/
https://www.ndss-symposium.org/ndss-paper/auto-draft-255/
https://bitslog.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/
https://bitslog.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/
https://bitslog.com/2016/04/28/uncle-mining-an-ethereum-consensus-protocol-flaw/


10480

10485

10490

10495

10500

10505

10510

10515

10478 

10479 

10481 

10482 

10483 

10484 

10486 

10487 

10488 

10489 

10491 

10492 

10493 

10494 

10496 

10497 

10498 

10499 

10501 

10502 

10503 

10504 

10506 

10507 

10508 

10509 

10511 

10512 

10513 

10514 

10516 

10517 

10518 

10519 

NIST IR 8460 ipd 
April 2023 

[275] Bagaria V, Kannan S, Tse D, Fanti G, Viswanath P (2019) Prism: Deconstructing 
the blockchain to approach physical limits. Proceedings of the 2019 ACM SIGSAC 
Conference on Computer and Communications Security, pp 585–602. 

[276] Yang L, Bagaria V, Wang G, Alizadeh M, Tse D, Fanti G, Viswanath P (2019) Prism: 
Scaling bitcoin by 10,000 x. arXiv preprint arXiv:190911261 . 

[277] Li J, Guo D (2020) Continuous-time analysis of the bitcoin and prism backbone 
protocols. arXiv preprint arXiv:200105644 . 

[278] Li J, Guo D (2020) Liveness and consistency of bitcoin and prism blockchains: The 
non-lockstep synchronous case. 2020 IEEE International Conference on Blockchain 
and Cryptocurrency (ICBC) (IEEE), pp 1–9. 

[279] Wang G, Wang S, Bagaria V, Tse D, Viswanath P (2020) Prism removes consensus 
bottleneck for smart contracts. arXiv preprint arXiv:200408776 . 

[280] Birmpas G, Koutsoupias E, Lazos P, Marmolejo-Cossío FJ (2020) Fairness and eff-
ciency in dag-based cryptocurrencies. International Conference on Financial Cryp-
tography and Data Security (Springer), pp 79–96. 

[281] Lewenberg Y, Sompolinsky Y, Zohar A (2015) Inclusive block chain protocols. In-
ternational Conference on Financial Cryptography and Data Security (Springer), pp 
528–547. 

[282] Li C, Li P, Zhou D, Xu W, Long F, Yao A (2018) Scaling nakamoto consensus to 
thousands of transactions per second. arXiv preprint arXiv:180503870 . 

[283] Li C, Li P, Zhou D, Yang Z, Wu M, Yang G, Xu W, Long F, Yao ACC (2020) A de-
centralized blockchain with high throughput and fast confrmation. 2020 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 20), pp 515–528. 

[284] Li C, Long F, Yang G (2020) Ghast: Breaking confrmation delay barrier in 
nakamoto consensus via adaptive weighted blocks. arXiv preprint arXiv:200601072 
. 

[285] Sompolinsky Y, Lewenberg Y, Zohar A (2016) Spectre: A fast and scalable cryp-
tocurrency protocol. IACR Cryptol ePrint Arch :1159. 

[286] Sompolinsky Y, Zohar A (2018) Phantom: A scalable blockdag protocol. IACR 
Cryptol ePrint Arch :104. 

[287] Sompolinsky Y, Zohar A (2020) Phantom and ghostdag: A scalable generalization 
of nakamoto consensus, . 

[288] Popov S (2016) The tangle. 
[289] Bramas Q (2018) The stability and the security of the tangle. HAL archives-ouvertes 

hal-01716111 . 
[290] Penzkofer A, Kusmierz B, Capossele A, Sanders W, Saa O (2020) Parasite chain 

detection in the iota protocol. arXiv preprint arXiv:200413409 . 
[291] Kusmierz B, Sanders W, Penzkofer A, Capossele A, Gal A (2019) Properties of the 

tangle for uniform random and random walk tip selection. 2019 IEEE International 
Conference on Blockchain (Blockchain) (IEEE), pp 228–236. 

[292] Cullen A, Ferraro P, King C, Shorten R (2019) Distributed ledger technology for iot: 
Parasite chain attacks. arXiv preprint arXiv:190400996 . 

293 



10520

10525

10530

10535

10540

10545

10550

10555

10560

10521 

10522 

10523 

10524 

10526 

10527 

10528 

10529 

10531 

10532 

10533 

10534 

10536 

10537 

10538 

10539 

10541 

10542 

10543 

10544 

10546 

10547 

10548 

10549 

10551 

10552 

10553 

10554 

10556 

10557 

10558 

10559 

10561 

NIST IR 8460 ipd 
April 2023 

[293] Bu G, Gürcan Ö, Potop-Butucaru M (2019) G-iota: Fair and confdence aware tan-
gle. IEEE INFOCOM 2019-IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS) (IEEE), pp 644–649. 

[294] Bu G, Hana W, Potop-Butucaru M (2019) Metamorphic iota. arXiv preprint 
arXiv:190703628 . 

[295] Bentov I, Hubácek P, Moran T, Nadler A (2017) Tortoise and hares consensus: 
the meshcash framework for incentive-compatible, scalable cryptocurrencies. IACR 
Cryptol ePrint Arch :300. 

[296] Pass R, Shi E (2017) Hybrid consensus: Effcient consensus in the permission-
less model. 31st International Symposium on Distributed Computing (DISC 2017) 
(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik). 

[297] Abraham I, Malkhi D, Nayak K, Ren L, Spiegelman A (2016) Solida: A 
blockchain protocol based on reconfgurable byzantine consensus. arXiv preprint 
arXiv:161202916 . 

[298] Lewis-Pye A, Roughgarden T (2020) Resource pools and the cap theorem. arXiv 
preprint arXiv:200610698 . 

[299] King S, Nadal S (2012) Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. 
self-published paper . 

[300] Vasin P (2014) Blackcoin’s proof-of-stake protocol v2. Accessed on March 17, 2021. 
Available at https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf. 

[301] Earls J (2017) The missing explanation of proof of stake version 3. Accessed on 
March 17, 2021. Available at http://earlz.net/view/2017/07/27/1904/the-missing-e 
xplanation-of-proof-of-stake-version. 

[302] Nxt whitepaper. Accessed on March 17, 2021. Available at https://nxtdocs.jelurida 
.com/Nxt_Whitepaper. 

[303] Delegated proof of stake (dpos). Accessed on March 18, 2021. Available at https: 
//how.bitshares.works/en/master/technology/dpos.html. 

[304] Günther S (2018) Lisk - the mafa blockchain. Accessed on March 18, 2021. Avail-
able at https://medium.com/coinmonks/lisk-the-mafia-blockchain-47248915ae2f. 

[305] Li C, Palanisamy B (2019) Incentivized blockchain-based social media platforms: 
A case study of steemit. Proceedings of the 10th ACM Conference on Web Science, 
pp 145–154. 

[306] Gersbach H, Mamageishvili A, Schneider M (2021) Vote delegation and misbehav-
ior. arXiv preprint arXiv:210208823 . 

[307] Gersbach H, Mamageishvili A, Schneider M (2021) Vote delegation favors minority. 
arXiv preprint arXiv:210208835 . 

[308] Cevallos A, Stewart A (2020) A verifably secure and proportional committee elec-
tion rule. arXiv preprint arXiv:200412990 . 

[309] Saleh F (2020) Blockchain without waste: Proof-of-stake. Available at SSRN 
3183935 . 

[310] Ganesh C, Orlandi C, Tschudi D, Zohar A (2020) Virtual asics: Generalized proof-
of-stake mining in cryptocurrencies. IACR Cryptol ePrint Arch :791. 

294 

https://blackcoin. co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://earlz.net/view/2017/07/27/1904/the-missing-explanation-of-proof-of-stake-version
http://earlz.net/view/2017/07/27/1904/the-missing-explanation-of-proof-of-stake-version
http://earlz.net/view/2017/07/27/1904/the-missing-explanation-of-proof-of-stake-version
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://how.bitshares.works/en/master/technology/dpos.html
https://how.bitshares.works/en/master/technology/dpos.html
https://how.bitshares.works/en/master/technology/dpos.html
https://medium.com/coinmonks/lisk-the-mafia-blockchain-47248915ae2f


NIST IR 8460 ipd 
April 2023 

10562 

10563 

10564 

10565 

10566 

10567 

10568 

10569 

10570 

10571 

10572 

10573 

10574 

10575 

10576 

10577 

10578 

10579 

10580 

10581 

10582 

10583 

10584 

10585 

10586 

10587 

10588 

10589 

10590 

10591 

10592 

10593 

10594 

10595 

10596 

10597 

10598 

10599 

10600 

10601 

10602 

10603 

[311] Bentov I, Gabizon A, Mizrahi A (2016) Cryptocurrencies without proof of work. 
International conference on fnancial cryptography and data security (Springer), pp 
142–157. 

[312] Kanjalkar S, Kuo J, Li Y, Miller A (2019) Short paper: I can’t believe it’s not stake! 
resource exhaustion attacks on pos. International Conference on Financial Cryptog-
raphy and Data Security (Springer), pp 62–69. 

[313] Bentov I, Pass R, Shi E (2016) Snow white: Provably secure proofs of stake. IACR 
Cryptol ePrint Arch :919. 

[314] Daian P, Pass R, Shi E (2019) Snow white: Robustly reconfgurable consensus and 
applications to provably secure proof of stake. International Conference on Finan-
cial Cryptography and Data Security (Springer), pp 23–41. 

[315] Stütz R, Gaži P, Haslhofer B, Illum J (2020) Stake shift in major cryptocurrencies: 
An empirical study. International Conference on Financial Cryptography and Data 
Security (Springer), pp 97–113. 

[316] Mills DL (2017) Computer network time synchronization: the network time protocol 
on earth and in space (CRC press). 

[317] Gaži P, Kiayias A, Russell A (2018) Stake-bleeding attacks on proof-of-stake 
blockchains. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT) 
(IEEE), pp 85–92. 

[318] Deirmentzoglou E, Papakyriakopoulos G, Patsakis C (2019) A survey on long-range 
attacks for proof of stake protocols. IEEE Access 7:28712–28725. 

[319] David B, Gaži P, Kiayias A, Russell A (2018) Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques (Springer), pp 
66–98. 

[320] Deb S, Kannan S, Tse D (2020) Posat: Proof-of-work availability and unpredictabil-
ity, without the work. arXiv preprint arXiv:201008154 . 

[321] Boneh D, Eskandarian S, Hanzlik L, Greco N (2020) Single secret leader election. 
IACR Cryptol ePrint Arch :25. 

[322] Catalano D, Fiore D, Giunta E (2021) Effcient and universally composable single 
secret leader election from pairings. IACR Cryptol ePrint Arch :344. 

[323] Kerber T, Kiayias A, Kohlweiss M, Zikas V (2019) Ouroboros crypsinous: Privacy-
preserving proof-of-stake. 2019 IEEE Symposium on Security and Privacy (SP) 
(IEEE), pp 157–174. 

[324] Ganesh C, Orlandi C, Tschudi D (2019) Proof-of-stake protocols for privacy-aware 
blockchains. Annual International Conference on the Theory and Applications of 
Cryptographic Techniques (Springer), pp 690–719. 

[325] Baldimtsi F, Madathil V, Scafuro A, Zhou L (2020) Anonymous lottery in the proof-
of-stake setting. IACR Cryptol ePrint Arch :533. 

[326] Kohlweiss M, Madathil V, Nayak K, Scafuro A (2021) On the anonymity guarantees 
of anonymous proof-of-stake protocols. IACR Cryptol ePrint Arch :409. 

[327] Brown-Cohen J, Narayanan A, Psomas A, Weinberg SM (2019) Formal barriers to 

295 



10605

10610

10615

10620

10625

10630

10635

10640

10645

10604 

10606 

10607 

10608 

10609 

10611 

10612 

10613 

10614 

10616 

10617 

10618 

10619 

10621 

10622 

10623 

10624 

10626 

10627 

10628 

10629 

10631 

10632 

10633 

10634 

10636 

10637 

10638 

10639 

10641 

10642 

10643 

10644 

NIST IR 8460 ipd 
April 2023 

longest-chain proof-of-stake protocols. Proceedings of the 2019 ACM Conference 
on Economics and Computation, pp 459–473. 

[328] Bagaria V, Dembo A, Kannan S, Oh S, Tse D, Viswanath P, Wang X, Zeitouni 
O (2019) Proof-of-stake longest chain protocols: Security vs predictability. arXiv 
preprint arXiv:191002218 . 

[329] Neuder M, Moroz DJ, Rao R, Parkes DC (2019) Selfsh behavior in the tezos proof-
of-stake protocol. arXiv preprint arXiv:191202954 . 

[330] Neuder M, Moroz DJ, Rao R, Parkes DC (2020) Defending against malicious reorgs 
in tezos proof-of-stake. Proceedings of the 2nd ACM Conference on Advances in 
Financial Technologies, pp 46–58. 

[331] Blum E, Kiayias A, Moore C, Quader S, Russell A (2020) The combinatorics of the 
longest-chain rule: Linear consistency for proof-of-stake blockchains. Proceedings 
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SIAM), 
pp 1135–1154. 

[332] Kiayias A, Quader S, Russell A (2020) Consistency of proof-of-stake blockchains 
with concurrent honest slot leaders. arXiv preprint arXiv:200106403 . 

[333] Fanti G, Kogan L, Oh S, Ruan K, Viswanath P, Wang G (2019) Compounding of 
wealth in proof-of-stake cryptocurrencies. International Conference on Financial 
Cryptography and Data Security (Springer), pp 42–61. 

[334] Rosu I, Saleh F (2020) Evolution of shares in a proof-of-stake cryptocurrency. HEC 
Paris Research Paper No FIN-2019-1339 . 

[335] Irresberger F (2018) Coin concentration of proof-of-stake blockchains. Leeds Uni-
versity Business School Working Paper . 

[336] Chitra T (2019) Competitive equilibria between staking and on-chain lending. arXiv 
preprint arXiv:200100919 . 

[337] Chitra T, Evans A (2020) Why stake when you can borrow? Available at SSRN 
3629988 . 

[338] Amoussou-Guenou Y, Del Pozzo A, Potop-Butucaru M, Tucci-Piergiovanni 
S (2019) On fairness in committee-based blockchains. arXiv preprint 
arXiv:191009786 . 

[339] Leonardos S, Reijsbergen D, Piliouras G (2019) Weighted voting on the blockchain: 
Improving consensus in proof of stake protocols. 2019 IEEE International Confer-
ence on Blockchain and Cryptocurrency (ICBC) (IEEE), pp 376–384. 

[340] (2021) Proof of stake crypto assets ranking and yields. Accessed on April 4, 2023. 
Available at https://www.stakingrewards.com/proof-of-stake. 

[341] Karakostas D, Kiayias A, Larangeira M (2020) Account management in proof of 
stake ledgers. IACR Cryptol ePrint Arch :525. 

[342] Brünjes L, Kiayias A, Koutsoupias E, Stouka AP (2018) Reward sharing schemes 
for stake pools. arXiv preprint arXiv:180711218 . 

[343] Karakostas D, Kiayias A, Nasikas C, Zindros D (2019) Cryptocurrency egalitarian-
ism: A quantitative approach. International Conference on Blockchain Economics, 
Security and Protocols (Tokenomics 2019) (Schloss Dagstuhl-Leibniz-Zentrum fuer 

296 

https://www.stakingrewards.com/proof-of-stake


NIST IR 8460 ipd 
April 2023 

10646 

10647 

10648 

10649 

10650 

10651 

10652 

10653 

10654 

10655 

10656 

10657 

10658 

10659 

10660 

10661 

10662 

10663 

10664 

10665 

10666 

10667 

10668 

10669 

10670 

10671 

10672 

10673 

10674 

10675 

10676 

10677 

10678 

10679 

10680 

10681 

10682 

10683 

10684 

10685 

10686 

10687 

Informatik). 
[344] Catalini C, Jagadeesan R, Kominers SD (2020) Markets for crypto tokens, and secu-

rity under proof of stake. Available at SSRN . 
[345] Badertscher C, Gaži P, Kiayias A, Russell A, Zikas V (2018) Ouroboros genesis: 

Composable proof-of-stake blockchains with dynamic availability. Proceedings of 
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp 
913–930. 

[346] Badertscher C, Gazi P, Kiayias A, Russell A, Zikas V (2019) Ouroboros chronos: 
Permissionless clock synchronization via proof-of-stake. IACR Cryptol ePrint Arch 
:838. 

[347] Hanke T, Movahedi M, Williams D (2018) Dfnity technology overview series, con-
sensus system. arXiv preprint arXiv:180504548 . 

[348] Abraham I, Malkhi D, Nayak K, Ren L (2018) Dfnity consensus, explored. IACR 
Cryptol ePrint Arch :1153. 

[349] Ethereum 2.0 specifcations. Available at https://github.com/ethereum/eth2.0-specs. 
[350] Buterin V, Hernandez D, Kamphefner T, Pham K, Qiao Z, Ryan D, Sin J, Wang Y, 

Zhang YX (2020) Combining ghost and casper. arXiv preprint arXiv:200303052 . 
[351] Buterin V Vitalik’s annotated ethereum 2.0 spec. Available at https://github.com/eth 

ereum/annotated-spec/blob/master/phase0/beacon-chain.md. 
[352] Drake J (2018) Ethereum 2.0 randomness using a verifable delay function (vdf). 

Available at https://docs.google.com/presentation/d/1VKBMcEMaY6PQjDJK4y 
AFtxn0vD41eYXW05YA3vdTBsI/edit#slide=id.g4677b9389c_0_732. 

[353] Azouvi S, McCorry P, Meiklejohn S (2018) Betting on blockchain consensus with 
fantomette. arXiv preprint arXiv:180506786 . 

[354] Rocket T, Yin M, Sekniqi K, van Renesse R, Sirer EG (2019) Scalable 
and probabilistic leaderless bft consensus through metastability. arXiv preprint 
arXiv:190608936 . 

[355] Auvolat A, Bromberg YD, Frey D, Taïani F (2021) Basalt: A rock-solid foundation 
for epidemic consensus algorithms in very large, very open networks. arXiv preprint 
arXiv:210204063 . 

[356] Popov S, Buchanan WJ (2019) Fpc-bi: Fast probabilistic consensus within byzantine 
infrastructures. arXiv preprint arXiv:190510895 . 

[357] Fitzi M, Gazi P, Kiayias A, Russell A (2020) Proof-of-stake blockchain protocols 
with near-optimal throughput. IACR Cryptol ePrint Arch :37. 

[358] Buchman E, Kwon J, Milosevic Z (2018) The latest gossip on bft consensus. arXiv 
preprint arXiv:180704938 . 

[359] Amoussou-Guenou Y, Del Pozzo A, Potop-Butucaru M, Tucci-Piergiovanni S 
(2018) Correctness and fairness of tendermint-core blockchains. arXiv preprint 
arXiv:180508429 . 

[360] Amoussou-Guenou Y, Del Pozzo A, Potop-Butucaru M, Tucci-Piergiovanni S 
(2019) Dissecting tendermint. International Conference on Networked Systems 
(Springer), pp 166–182. 

297 

https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://docs.google.com/presentation/d/1VKBMcEMaY6PQjDJK4yAFtxn0vD41eYXW05YA3vdTBsI/edit#slide=id.g4677b9389c_0_732
https://docs.google.com/presentation/d/1VKBMcEMaY6PQjDJK4yAFtxn0vD41eYXW05YA3vdTBsI/edit#slide=id.g4677b9389c_0_732
https://docs.google.com/presentation/d/1VKBMcEMaY6PQjDJK4yAFtxn0vD41eYXW05YA3vdTBsI/edit#slide=id.g4677b9389c_0_732


10690

10695

10700

10705

10710

10715

10720

10725

10688 

10689 

10691 

10692 

10693 

10694 

10696 

10697 

10698 

10699 

10701 

10702 

10703 

10704 

10706 

10707 

10708 

10709 

10711 

10712 

10713 

10714 

10716 

10717 

10718 

10719 

10721 

10722 

10723 

10724 

10726 

10727 

10728 

10729 

NIST IR 8460 ipd 
April 2023 

[361] Braithwaite S, Buchman E, Khoff I, Konnov I, Milosevic Z, Ruetschi R, Widder J 
(2020) A tendermint light client. arXiv preprint arXiv:201007031 . 

[362] Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N (2017) Algorand: Scaling 
byzantine agreements for cryptocurrencies. Proceedings of the 26th Symposium on 
Operating Systems Principles, pp 51–68. 

[363] Goyal V, Li H, Raizes J (2021) Instant block confrmation in the sleepy model. In-
ternational Conference on Financial Cryptography and Data Security . 

[364] Dziembowski S, Faust S, Kolmogorov V, Pietrzak K (2015) Proofs of space. Annual 
Cryptology Conference (Springer), pp 585–605. 

[365] Park S, Kwon A, Fuchsbauer G, Gaži P, Alwen J, Pietrzak K (2018) Spacemint: 
A cryptocurrency based on proofs of space. International Conference on Financial 
Cryptography and Data Security (Springer), pp 480–499. 

[366] Cohen B, Pietrzak K (2019) The chia network blockchain. 
[367] Bentov I, Lee C, Mizrahi A, Rosenfeld M (2014) Proof of activity: Extending bit-

coin’s proof of work via proof of stake. ACM SIGMETRICS Performance Evaluation 
Review 42(3):34–37. 

[368] Karakostas D, Kiayias A (2020) Securing proof-of-work ledgers via checkpointing. 
IACR Cryptol ePrint Arch :173. 

[369] Block A (2018) Chainlocks. Available at https://github.com/dashpay/dips/blob/mas 
ter/dip-0008.md. 

[370] Buterin V, Griffth V (2017) Casper the friendly fnality gadget. arXiv preprint 
arXiv:171009437 . 

[371] Buterin V, Reijsbergen D, Leonardos S, Piliouras G (2019) Incentives in ethereum’s 
hybrid casper protocol. 2019 IEEE international conference on blockchain and cryp-
tocurrency (ICBC) (IEEE), pp 236–244. 

[372] Nrryuya (2019) Analysis of bouncing attack on ffg. Available at https://ethresear.ch 
/t/analysis-of-bouncing-attack-on-ffg/6113. 

[373] Neu J, Tas EN, Tse D (2020) Ebb-and-fow protocols: A resolution of the 
availability-fnality dilemma. arXiv preprint arXiv:200904987 . 

[374] Neu J, Tas EN, Tse D (2021) The availability-accountability dilemma and its reso-
lution via accountability gadgets. arXiv preprint arXiv:210506075 . 

[375] Dinsdale-Young T, Magri B, Matt C, Nielsen JB, Tschudi D (2019) Afgjort: A par-
tially synchronous fnality layer for blockchains, . 

[376] Stewart A, Kokoris-Kogia E (2020) Grandpa: a byzantine fnality gadget. arXiv 
preprint arXiv:200701560 . 

[377] Azouvi S, Danezis G, Nikolaenko V (2019) Winkle: Foiling long-range attacks in 
proof-of-stake systems. IACR Cryptol ePrint Arch :1440. 

[378] Neu J, Tas EN, Tse D (2020) Snap-and-chat protocols: System aspects. arXiv 
preprint arXiv:201010447 . 

[379] Sankagiri S, Wang X, Kannan S, Viswanath P (2020) The checkpointed longest 
chain: User-dependent adaptivity and fnality. arXiv preprint arXiv:201013711 . 

[380] Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena P (2016) A secure 

298 

https://github.com/dashpay/dips/blob/master/dip-0008.md
https://github.com/dashpay/dips/blob/master/dip-0008.md
https://github.com/dashpay/dips/blob/master/dip-0008.md
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113


10730

10735

10740

10745

10731 

10732 

10733 

10734 

10736 

10737 

10738 

10739 

10741 

10742

10743

10744 

10746 

 

 

[385] Skidanov A, Polosukhin I (2019) Nightshade: Near protocol sharding design. URL: 
https://nearprotocol com/downloads/Nightshade pdf :39. 

10750

10755

10760

10765

10770

10747 

10748 

10749 

10751 

10752 

10753 

10754 

10756 

10757 

10758 

10759 

10761 

10762 

10763 

10764 

10766 

10767 

10768 

10769 

10771 

NIST IR 8460 ipd 
April 2023 

sharding protocol for open blockchains. Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp 17–30. 

[381] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B (2018) Om-
niledger: A secure, scale-out, decentralized ledger via sharding. 2018 IEEE Sympo-
sium on Security and Privacy (SP) (IEEE), pp 583–598. 

[382] Zamani M, Movahedi M, Raykova M (2018) Rapidchain: Scaling blockchain via 
full sharding. Proceedings of the 2018 ACM SIGSAC Conference on Computer and 
Communications Security, pp 931–948. 

[383] Wang J, Wang H (2019) Monoxide: Scale out blockchains with asynchronous con-
sensus zones. 16th {USENIX} Symposium on Networked Systems Design and Im-
plementation ({NSDI} 19), pp 95–112. 

[384] Team Z, et al. (2017) The zilliqa technical whitepaper. Retrieved September 16:2019. 

[386] Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G (2017) Chainspace: A 
sharded smart contracts platform. arXiv preprint arXiv:170803778 . 

[387] Li S, Yu M, Avestimehr S, Kannan S, Viswanath P (2018) Polyshard: Coded shard-
ing achieves linearly scaling effciency and security simultaneously. arXiv preprint 
arXiv:180910361 . 

[388] Das S, Krishnan V, Ren L (2020) Effcient cross-shard transaction execution in 
sharded blockchains. arXiv preprint arXiv:200714521 . 

[389] Rana R, Kannan S, Tse D, Viswanath P (2020) Free2shard: Adaptive-adversary-
resistant sharding via dynamic self allocation. 2005.09610. 

[390] Wang C, Raviv N (2020) Low latency cross-shard transactions in coded blockchain. 
arXiv preprint arXiv:201100087 . 

[391] Hellings J, Hughes DP, Primero J, Sadoghi M (2020) Cerberus: Minimalistic multi-
shard byzantine-resilient transaction processing. arXiv preprint arXiv:200804450 . 

[392] Androulaki E, De Caro A, Elkhiyaoui K, Gorenfo C, Sorniotti A, Vukolic M 
(2020) Multi-shard private transactions for permissioned blockchains. arXiv preprint 
arXiv:201008274 . 

[393] David B, Magri B, Matt C, Nielsen JB, Tschudi D (2021) Gearbox: An effcient uc 
sharded ledger leveraging the safety-liveness dichotomy. IACR Cryptol ePrint Arch 
:211. 

[394] Wang G, Shi ZJ, Nixon M, Han S (2019) Sok: Sharding on blockchain. Proceedings 
of the 1st ACM Conference on Advances in Financial Technologies, pp 41–61. 

[395] Liu Y, Liu J, Salles MAV, Zhang Z, Li T, Hu B, Henglein F, Lu R (2021) Building 
blocks of sharding blockchain systems: Concepts, approaches, and open problems. 
arXiv preprint arXiv:210213364 . 

[396] Yu G, Wang X, Yu K, Ni W, Zhang JA, Liu RP (2020) Survey: Sharding in 
blockchains. IEEE Access 8:14155–14181. 

[397] Avarikioti G, Kokoris-Kogias E, Wattenhofer R (2019) Divide and scale: Formaliza-
tion of distributed ledger sharding protocols. arXiv preprint arXiv:191010434 . 

299 

2005.09610
https://nearprotocol


NIST IR 8460 ipd 
April 2023 

10772 

10773 

10774 

10775 

10776 

10777 

10778 

10779 

10780 

10781 

10782 

10783 

10784 

10785 

10786 

10787 

10788 

10789 

10790 

10791 

10792 

10793 

10794 

10795 

10796 

10797 

10798 

10799 

10800 

10801 

10802 

10803 

10804 

10805 

10806 

10807 

10808 

10809

10810

10811

10812 

10813 

 

 

 

[398] Manshaei MH, Jadliwala M, Maiti A, Fooladgar M (2018) A game-theoretic analysis 
of shard-based permissionless blockchains. IEEE Access 6:78100–78112. 

[399] Han R, Yu J, Zhang R (2020) Analysing and improving shard allocation protocols 
for sharded blockchains. IACR Cryptol ePrint Arch :943. 

[400] Sonnino A, Bano S, Al-Bassam M, Danezis G (2019) Replay attacks and de-
fenses against cross-shard consensus in sharded distributed ledgers. arXiv preprint 
arXiv:190111218 . 

[401] Mizrahi A, Rottenstreich O (2020) Blockchain state sharding with space-aware rep-
resentations. IEEE Transactions on Network and Service Management . 

[402] Buterin V (2018) A note on data availability and erasure coding. Available at https: 
//github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-cod 
ing. 

[403] Al-Bassam M, Sonnino A, Buterin V (2018) Fraud and data availability proofs: 
Maximising light client security and scaling blockchains with dishonest majorities. 
arXiv preprint arXiv:180909044 . 

[404] Yu M, Sahraei S, Li S, Avestimehr S, Kannan S, Viswanath P (2020) Coded merkle 
tree: Solving data availability attacks in blockchains. International Conference on 
Financial Cryptography and Data Security (Springer), pp 114–134. 

[405] Mitra D, Tauz L, Dolecek L (2020) Concentrated stopping set design for coded 
merkle tree: Improving security against data availability attacks in blockchain sys-
tems. arXiv preprint arXiv:201007363 . 

[406] Sheng P, Xue B, Kannan S, Viswanath P (2020) Aced: Scalable data availability 
oracle. arXiv preprint arXiv:201100102 . 

[407] Buterin V (2017) On sharding blockchains. Sharding FAQ . 
[408] Buterin V (2017) The stateless client concept. Available at https://ethresear.ch/t/the 

-stateless-client-concept/172. 
[409] .Kuszmaul, J.: Verkle trees. In: Verkle Trees, pp. 1–12 (2019). 

https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf. 
[410] Belchior R, Vasconcelos A, Guerreiro S, Correia M (2020) A survey on blockchain 

interoperability: Past, present, and future trends. arXiv preprint arXiv:200514282 . 
[411] Robinson P (2020) Consensus for crosschain communications. arXiv preprint 

arXiv:200409494 . 
[412] Zamyatin A, Al-Bassam M, Zindros D, Kokoris-Kogias E, Moreno-Sanchez P, Ki-

ayias A, Knottenbelt WJ (2019) Sok: communication across distributed ledgers. 
Cryptology ePrint Archive :1128. 

[413] Pagnia H, Gärtner FC (1999) On the impossibility of fair exchange without a trusted 
third party (Citeseer), 

[414] Dziembowski S, Eckey L, Faust S (2018) Fairswap: How to fairly exchange digital 
goods. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp 967–984. 

[415] Eckey L, Faust S, Schlosser B (2020) Optiswap: Fast optimistic fair exchange. Pro-
ceedings of the 15th ACM Asia Conference on Computer and Communications Se-

300 

https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf


10815

10820

10825

10830

10835

10840

10845

10850

10855

10814 

10816 

10817 

10818 

10819 

10821 

10822 

10823 

10824 

10826 

10827 

10828 

10829 

10831 

10832 

10833 

10834 

10836 

10837 

10838 

10839 

10841 

10842 

10843 

10844 

10846 

10847 

10848 

10849 

10851 

10852 

10853 

10854 

NIST IR 8460 ipd 
April 2023 

curity, pp 543–557. 
[416] Shook JM, Simon S, Mell P (2019) A smart contract refereed data retrieval protocol 

with a provably low collateral requirement. IACR Cryptol ePrint Arch :541. 
[417] Hall-Andersen M (2019) Fastswap: Concretely effcient contingent payments for 

complex predicates. IACR Cryptol ePrint Arch :1296. 
[418] Janin S, Qin K, Mamageishvili A, Gervais A (2020) Filebounty: Fair data exchange. 

2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) 
(IEEE), pp 357–366. 

[419] TierNolan (2013) Alt chains and atomic transfers. Available at https://bitcointalk.or 
g/index.php?topic=193281.msg2224949#msg2224949. 

[420] Herlihy M (2018) Atomic cross-chain swaps. Proceedings of the 2018 ACM sympo-
sium on principles of distributed computing, pp 245–254. 

[421] van der Meyden R (2019) On the specifcation and verifcation of atomic swap smart 
contracts. 2019 IEEE International Conference on Blockchain and Cryptocurrency 
(ICBC) (IEEE), pp 176–179. 

[422] Liu JA (2018) Atomic swaptions: cryptocurrency derivatives. arXiv preprint 
arXiv:180708644 . 

[423] Lesavre L, Varin P, Yaga D (2021) Blockchain networks: Token de-
sign and management overview (National Institute of Standards and Tech-
nology, Gaithersburg, MD), NIST Interagency or Internal Report (IR) 8301. 
https://doi.org/10.6028/NIST.IR.8301. 

[424] Shlomovits O, Leiba O (2020) Jugglingswap: Scriptless atomic cross-chain swaps. 
arXiv preprint arXiv:200714423 . 

[425] Zakhary V, Agrawal D, Abbadi AE (2019) Atomic commitment across blockchains. 
arXiv preprint arXiv:190502847 . 

[426] Gugger J (2020) Bitcoin–monero cross-chain atomic swap. IACR Cryptol ePrint 
Arch :1126. 

[427] Hoenisch P, Soriano del Pino L (2021) Atomic swaps between bitcoin and monero. 
arXiv preprint arXiv:210112332 . 

[428] Herlihy M, Liskov B, Shrira L (2019) Cross-chain deals and adversarial commerce. 
arXiv preprint arXiv:190509743 . 

[429] van Glabbeek R, Gramoli V, Tholoniat P (2019) Cross-chain payment protocols with 
success guarantees. arXiv preprint arXiv:191204513 . 

[430] Black M, Liu T, Cai T (2019) Atomic loans: Cryptocurrency debt instruments. arXiv 
preprint arXiv:190105117 . 

[431] Liu Z, Xiang Y, Shi J, Gao P, Wang H, Xiao X, Wen B, Hu YC (2019) Hyperser-
vice: Interoperability and programmability across heterogeneous blockchains. Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications 
Security, pp 549–566. 

[432] Fynn E, Bessani A, Pedone F (2020) Smart contracts on the move. arXiv preprint 
arXiv:200405933 . 

[433] Robinson P, Hyland-Wood D, Saltini R, Johnson S, Brainard J (2019) Atomic cross-

301 

https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://doi.org/10.6028/NIST.IR.8301


NIST IR 8460 ipd 
April 2023 

10856 

10857 

10858 

10859 

10860 

10861 

10862 

10863 

10864 

10865 

10866 

10867 

10868 

10869 

10870 

10871 

10872 

10873 

10874 

10875 

10876 

10877 

10878 

10879 

10880 

10881 

10882 

10883 

10884 

10885 

10886 

10887 

10888 

10889 

10890 

10891 

10892 

10893 

10894 

10895 

10896 

10897 

chain transactions for ethereum private sidechains. arXiv preprint arXiv:190412079 
. 

[434] Robinson P, Ramesh R (2020) General purpose atomic crosschain transactions. 
arXiv preprint arXiv:201112783 . 

[435] Nissl M, Sallinger E, Schulte S, Borkowski M (2020) Towards cross-blockchain 
smart contracts. arXiv preprint arXiv:201007352 . 

[436] Ghaemi S, Rouhani S, Belchior R, Cruz RS, Khazaei H, Musilek P (2021) 
A pub-sub architecture to promote blockchain interoperability. arXiv preprint 
arXiv:2101:12331 . 

[437] Xu J, Ackerer D, Dubovitskaya A (2020) A game-theoretic analysis of cross-chain 
atomic swaps with htlcs. arXiv preprint arXiv:201111325 . 

[438] Han R, Lin H, Yu J (2019) On the optionality and fairness of atomic swaps. Proceed-
ings of the 1st ACM Conference on Advances in Financial Technologies, pp 62–75. 

[439] Rueegger J, Machado GS (2020) Rational exchange: Incentives in atomic cross 
chain swaps. 2020 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC) (IEEE), pp 1–3. 

[440] Xue Y, Herlihy M (2021) Hedging against sore loser attacks in cross-chain transac-
tions. arXiv preprint arXiv:210506322 . 

[441] Zamyatin A (2016) Merged Mining: Analysis of Effects and Implications. Ph.D. the-
sis. PhD thesis. Master’s thesis, Vienna University of Technology, 2016 (cit. on . . . , 
. 

[442] Merged mining introduction. Available at https://tlu.tarilabs.com/merged-mining/ 
merged-mining-scene/MergedMiningIntroduction.html. 

[443] Research B (2020) The growth of bitcoin merge mining. Available at https://blog.b 
itmex.com/the-growth-of-bitcoin-merge-mining/. 

[444] Judmayer A, Zamyatin A, Stifter N, Voyiatzis AG, Weippl E (2017) Merged min-
ing: Curse or cure? Data Privacy Management, Cryptocurrencies and Blockchain 
Technology (Springer), pp 316–333. 

[445] Back A, Corallo M, Dashjr L, Friedenbach M, Maxwell G, Miller A, Poelstra A, 
Timón J, Wuille P (2014) Enabling blockchain innovations with pegged sidechains . 

[446] Sztork P, CryptAxe (2019) Bip 301. Available at https://github.com/bitcoin/bips/bl 
ob/master/bip-0301.mediawiki. 

[447] Sztork P (2015) Drivechain - the simple two way peg. Available at http://www.trut 
hcoin.info/blog/drivechain/. 

[448] Sztork P, CryptAxe (2017) Drivechain documentation – hashrate escrows. Available 
at https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow. 
md. 

[449] Weippl E (2018) Pitchforks in cryptocurrencies: Enforcing rule changes through of-
fensive. Data Privacy Management, Cryptocurrencies and Blockchain Technology: 
ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Barcelona, 
Spain, September 6-7, 2018, Proceedings (Springer), Vol. 11025, p 197. 

[450] Karantias K, Kiayias A, Zindros D (2019) Proof-of-burn. IACR Cryptol ePrint Arch 

302 

https://tlu.tarilabs.com/merged-mining/merged-mining-scene/MergedMiningIntroduction.html
https://tlu.tarilabs.com/merged-mining/merged-mining-scene/MergedMiningIntroduction.html
https://tlu.tarilabs.com/merged-mining/merged-mining-scene/MergedMiningIntroduction.html
https://blog.bitmex.com/the-growth-of-bitcoin-merge-mining/
https://blog.bitmex.com/the-growth-of-bitcoin-merge-mining/
https://blog.bitmex.com/the-growth-of-bitcoin-merge-mining/
https://github.com/bitcoin/bips/blob/master/bip-0301.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0301.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0301.mediawiki
http://www.truthcoin.info/blog/drivechain/
http://www.truthcoin.info/blog/drivechain/
http://www.truthcoin.info/blog/drivechain/
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md
https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md


10900

10905

10910

10915

10920

10925

10930

10935

10898 

10899 

10901 

10902 

10903 

10904 

10906 

10907 

10908 

10909 

10911 

10912 

10913 

10914 

10916 

10917 

10918 

10919 

10921 

10922 

10923 

10924 

10926 

10927 

10928 

10929 

10931 

10932 

10933 

10934 

10936 

10937 

10938 

10939 

NIST IR 8460 ipd 
April 2023 

2019:1096. 
[451] Ali M, Blankstein A, Freedman MJ, Galabru L, Gupta D, Nelson J, Soslow J, Stanley 

P (2020) Pox: Proof of transfer mining with bitcoin. Blockstack PBC . 
[452] Nelson J (2021) What kind of blockchain is stacks?. Available at https://stacks.org/s 

tacks-blockchain. 
[453] Robinson P (2018) Requirements for ethereum private sidechains. arXiv preprint 

arXiv:180609834 . 
[454] Dilley J, Poelstra A, Wilkins J, Piekarska M, Gorlick B, Friedenbach M (2016) 

Strong federations: An interoperable blockchain solution to centralized third-party 
risks. arXiv preprint arXiv:161205491 . 

[455] Nick J, Poelstra A, Sanders G (2020) Liquid: A bitcoin sidechain . 
[456] Btc relay. Available at https://github.com/ethereum/btcrelay. 
[457] Peace relay. Available at https://github.com/loiluu/peacerelay. 
[458] Teutsch J, Straka M, Boneh D (2019) Retroftting a two-way peg between 

blockchains. arXiv preprint arXiv:190803999 . 
[459] Zamyatin A, Harz D, Lind J, Panayiotou P, Gervais A, Knottenbelt W (2019) 

Xclaim: Trustless, interoperable, cryptocurrency-backed assets. 2019 IEEE Sym-
posium on Security and Privacy (SP) (IEEE), pp 193–210. 

[460] Bünz B, Kiffer L, Luu L, Zamani M (2020) Flyclient: Super-light clients for cryp-
tocurrencies. 2020 IEEE Symposium on Security and Privacy (SP) (IEEE), pp 928– 
946. 

[461] Garoffolo A, Kaidalov D, Oliynykov R (2020) Zendoo: a zk-snark verifable cross-
chain transfer protocol enabling decoupled and decentralized sidechains. arXiv 
preprint arXiv:200201847 . 

[462] Westerkamp M, Eberhardt J (2020) zkrelay: Facilitating sidechains using zksnark-
based chain-relays. Contract 1(2):3. 

[463] Frauenthaler P, Sigwart M, Spanring C, Schulte S (2020) Testimonium: A cost-
effcient blockchain relay. arXiv preprint arXiv:200212837 . 

[464] Burdges J, Cevallos A, Czaban P, Habermeier R, Hosseini S, Lama F, Alper HK, 
Luo X, Shirazi F, Stewart A, et al. (2020) Overview of polkadot and its design con-
siderations. arXiv preprint arXiv:200513456 . 

[465] Goes C (2020) The interblockchain communication protocol: An overview. arXiv 
preprint arXiv:200615918 . 

[466] Koh J (2019) 5 differences between cosmos & polkadot. Available at https://medi 
um.com/@juliankoh/5-differences-between-cosmos-polkadot-67f09535594b. 

[467] Wang G (2021) Sok: Exploring blockchains interoperability. IACR Cryptol ePrint 
Arch :537. 

[468] Kiayias A, Miller A, Zindros D (2017) Non-interactive proofs of proof-of-work. 
IACR Cryptol ePrint Arch 2017(963):1–42. 

[469] Kiayias A, Zindros D (2019) Proof-of-work sidechains. International Conference on 
Financial Cryptography and Data Security (Springer), pp 21–34. 

[470] Gaži P, Kiayias A, Zindros D (2019) Proof-of-stake sidechains. 2019 IEEE Sympo-

303 

https://stacks.org/stacks-blockchain
https://stacks.org/stacks-blockchain
https://stacks.org/stacks-blockchain
https://github.com/ethereum/btcrelay
https://github.com/loiluu/peacerelay
https://medium.com/@juliankoh/5-differences-between-cosmos-polkadot-67f09535594b
https://medium.com/@juliankoh/5-differences-between-cosmos-polkadot-67f09535594b
https://medium.com/@juliankoh/5-differences-between-cosmos-polkadot-67f09535594b


10940

10945

10950

10955

10960

10965

10970

10975

10980

10941 

10942 

10943 

10944 

10946 

10947 

10948 

10949 

10951 

10952 

10953 

10954 

10956 

10957 

10958 

10959 

10961 

10962 

10963 

10964 

10966 

10967 

10968 

10969 

10971 

10972 

10973 

10974 

10976 

10977 

10978 

10979 

10981 

NIST IR 8460 ipd 
April 2023 

sium on Security and Privacy (SP) (IEEE), pp 139–156. 
[471] Neudecker T, Hartenstein H (2018) Network layer aspects of permissionless 

blockchains. IEEE Communications Surveys & Tutorials 21(1):838–857. 
[472] Deshpande V, Badis H, George L (2018) Btcmap: Mapping bitcoin peer-to-peer 

network topology. 2018 IFIP/IEEE International Conference on Performance Eval-
uation and Modeling in Wired and Wireless Networks (PEMWN) (IEEE), pp 1–6. 

[473] Wang T, Zhao C, Yang Q, Zhang S (2020) Ethna: Analyzing the underlying peer-to-
peer network of the ethereum blockchain. arXiv preprint arXiv:201001373 . 

[474] Daniel E, Rohrer E, Tschorsch F (2019) Map-z: Exposing the zcash network in 
times of transition. 2019 IEEE 44th Conference on Local Computer Networks (LCN) 
(IEEE), pp 84–92. 

[475] Cao T, Yu J, Decouchant J, Luo X, Verissimo P (2020) Exploring the monero peer-
to-peer network. Financial Cryptography and Data Security 2020, Sabah, 10-14 
February 2020 . 

[476] Delgado-Segura S, Bakshi S, Pérez-Solà C, Litton J, Pachulski A, Miller A, Bhat-
tacharjee B (2019) Txprobe: Discovering bitcoin’s network topology using orphan 
transactions. International Conference on Financial Cryptography and Data Secu-
rity (Springer), pp 550–566. 

[477] Miller A, Litton J, Pachulski A, Gupta N, Levin D, Spring N, Bhattacharjee B (2015) 
Discovering bitcoin’s public topology and infuential nodes. Available at http://ww 
w.cs.umd.edu/projects/coinscope/coinscope.pdf. 

[478] Koshy P (2013) Coinseer: A telescope into bitcoin . 
[479] Tramèr F, Boneh D, Paterson K (2020) Remote side-channel attacks on anony-

mous transactions. 29th {USENIX} Security Symposium ({USENIX} Security 20), 
pp 2739–2756. 

[480] Heilman E, Kendler A, Zohar A, Goldberg S (2015) Eclipse attacks on bitcoin’s 
peer-to-peer network. 24th {USENIX} Security Symposium ({USENIX} Security 
15), pp 129–144. 

[481] Marcus Y, Heilman E, Goldberg S (2018) Low-resource eclipse attacks on 
ethereum’s peer-to-peer network. IACR Cryptol ePrint Arch :236. 

[482] Henningsen S, Teunis D, Florian M, Scheuermann B (2019) Eclipsing ethereum 
peers with false friends. 2019 IEEE European Symposium on Security and Privacy 
Workshops (EuroS&PW) (IEEE), pp 300–309. 

[483] Apostolaki M, Zohar A, Vanbever L (2017) Hijacking bitcoin: Routing attacks on 
cryptocurrencies. 2017 IEEE Symposium on Security and Privacy (SP) (IEEE), pp 
375–392. 

[484] Saad M, Cook V, Nguyen L, Thai MT, Mohaisen A (2019) Partitioning attacks on 
bitcoin: colliding space, time, and logic. 2019 IEEE 39th International Conference 
on Distributed Computing Systems (ICDCS) (IEEE), pp 1175–1187. 

[485] Saad M, Anwar A, Ravi S, Mohaisen D (2021) Hashsplit: Exploiting bitcoin asyn-
chrony to violate common prefx and chain quality. IACR Cryptol ePrint Arch :299. 

[486] Tran M, Choi I, Moon GJ, Vu AV, Kang MS (2020) A stealthier partitioning at-

304 

http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
http://www.cs.umd.edu/projects/coinscope/coinscope.pdf


NIST IR 8460 ipd 
April 2023 

10982 

10983 

10984 

10985 

10986 

10987 

10988 

10989 

10990 

10991 

10992 

10993 

10994 

10995 

10996 

10997 

10998 

10999 

11000 

11001 

11002 

11003 

11004 

11005 

11006 

11007 

11008 

11009 

11010 

11011 

11012 

11013 

11014 

11015 

11016 

11017 

11018 

11019 

11020 

11021 

11022 

11023 

tack against bitcoin peer-to-peer network. IEEE Symposium on Security and Privacy 
(S&P). 

[487] Paphitis A, Kourtellis N, Sirivianos M (2021) A frst look into the structural proper-
ties and resilience of blockchain overlays. arXiv preprint arXiv:210403044 . 

[488] Apostolaki M, Marti G, Müller J, Vanbever L (2018) Sabre: Protecting bitcoin 
against routing attacks. arXiv preprint arXiv:180806254 . 

[489] Boverman A (2011) Timejacking & bitcoin. Available at http://culubas.blogspot.c 
om/2011/05/timejacking-bitcoin_802.html. 

[490] Company EC (2020) New releases: 2.1.1 and hotfx 2.1.1-1. Available at https: 
//electriccoin.co/blog/new-releases-2-1-1-and-hotfx-2-1-1-1/. 

[491] Imtiaz MA, Starobinski D, Trachtenberg A, Younis N (2019) Churn in the bit-
coin network: Characterization and impact. 2019 IEEE International Conference 
on Blockchain and Cryptocurrency (ICBC) (IEEE), pp 431–439. 

[492] Kiffer L, Salman A, Levin D, Mislove A, Nita-Rotaru C (2021) Under the hood of 
the ethereum gossip protocol. Proceedings of the Financial Cryptography and Data 
Security (FC’21) St George’s, Grenada . 

[493] Motlagh SG, Mišic ´ J, Mišic ´ VB (2020) Impact of node churn in the bitcoin network.
IEEE Transactions on Network Science and Engineering . 

[494] Biryukov A, Pustogarov I (2015) Bitcoin over tor isn’t a good idea. 2015 IEEE 
Symposium on Security and Privacy (IEEE), pp 122–134. 

[495] Blackshear S, Dill DL, Qadeer S, Barrett CW, Mitchell JC, Padon O, Zohar Y (2020) 
Resources: A safe language abstraction for money. arXiv preprint arXiv:200405106 
. 

[496] Schwartz C (2019) Ethereum 2.0: A complete guide. ewasm.. Available at https: 
//medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac7 
56baf. 

[497] Zheng S, Wang H, Wu L, Huang G, Liu X (2020) Vm matters: A comparison 
of wasm vms and evms in the performance of blockchain smart contracts. arXiv 
preprint arXiv:201201032 . 

[498] Hess T, Keefer R, Sirer EG Emin Sirer (2016) Ethereum’s dao wars soft fork is a 
potential dos vector. Available at https://hackingdistributed.com/2016/06/28/ethere 
um-soft-fork-dos-vector/. 

[499] Jedusor TE (2016) Mimblewimble. Available at https://scalingbitcoin.org/papers/mi 
mblewimble.txt. 

[500] Poelstra A (2016) Mimblewimble. Available at https://download.wpsoftware.net/bi 
tcoin/wizardry/mimblewimble.pdf. 

[501] Fuchsbauer G, Orrù M, Seurin Y (2019) Aggregate cash systems: A cryptographic 
investigation of mimblewimble. Annual International Conference on the Theory and 
Applications of Cryptographic Techniques (Springer), pp 657–689. 

[502] Reijsbergen D, Dinh TTA (2020) On exploiting transaction concurrency to speed up 
blockchains. arXiv preprint arXiv:200306128 . 

[503] Dickerson T, Gazzillo P, Herlihy M, Koskinen E (2019) Adding concurrency to smart 

305 

http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
https://electriccoin.co/blog/new-releases-2-1-1-and-hotfix-2-1-1-1/
https://electriccoin.co/blog/new-releases-2-1-1-and-hotfix-2-1-1-1/
https://electriccoin.co/blog/new-releases-2-1-1-and-hotfix-2-1-1-1/
https://medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://medium.com/chainsafe-systems/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf


11025

11030

11035

11040

11045

11050

11055

11060

11065

11024 

11026 

11027 

11028 

11029 

11031 

11032 

11033 

11034 

11036 

11037 

11038 

11039 

11041 

11042 

11043 

11044 

11046 

11047 

11048 

11049 

11051 

11052 

11053 

11054 

11056 

11057 

11058 

11059 

11061 

11062 

11063 

11064 

NIST IR 8460 ipd 
April 2023 

contracts. Distributed Computing :1–17. 
[504] Saraph V, Herlihy M (2019) An empirical study of speculative concurrency in 

ethereum smart contracts. arXiv preprint arXiv:190101376 . 
[505] Bartoletti M, Galletta L, Murgia M (2020) A theory of transaction parallelism in 

blockchains. arXiv preprint arXiv:201113837 . 
[506] Anjana PS, Kumari S, Peri S, Rathor S, Somani A (2019) An effcient framework 

for optimistic concurrent execution of smart contracts. 2019 27th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing (PDP) 
(IEEE), pp 83–92. 

[507] Anjana PS, Kumari S, Peri S, Rathor S, Somani A (2021) Optsmart: A space effcient 
optimistic concurrent execution of smart contracts. arXiv preprint arXiv:210204875 
. 

[508] Paimani K (2021) Sonicchain: A wait-free, pseudo-static approach toward concur-
rency in blockchains. arXiv preprint arXiv:210209073 . 

[509] Sheff I, Wang X, Myers AC, van Renesse R (2018) A web of blocks. arXiv preprint 
arXiv:180606978 . 

[510] Yakovenko A (2020) Sealevel - parallel processing thousands of smart contracts. 
Available at https://medium.com/solana-labs/sealevel-parallel-processing-thousan 
ds-of-smart-contracts-d814b378192. 

[511] Sasson EB, Chiesa A, Garman C, Green M, Miers I, Tromer E, Virza M (2014) 
Zerocash: Decentralized anonymous payments from bitcoin. 2014 IEEE Symposium 
on Security and Privacy (IEEE), pp 459–474. 

[512] Bünz B, Agrawal S, Zamani M, Boneh D (2020) Zether: Towards privacy in a smart 
contract world. International Conference on Financial Cryptography and Data Se-
curity (Springer), pp 423–443. 

[513] Kosba A, Miller A, Shi E, Wen Z, Papamanthou C (2016) Hawk: The blockchain 
model of cryptography and privacy-preserving smart contracts. 2016 IEEE sympo-
sium on security and privacy (SP) (IEEE), pp 839–858. 

[514] Bowe S, Chiesa A, Green M, Miers I, Mishra P, Wu H (2020) Zexe: Enabling decen-
tralized private computation. 2020 IEEE Symposium on Security and Privacy (SP) 
(IEEE), pp 947–964. 

[515] Solomon R, Almashaqbeh G (2021) smartfhe: Privacy-preserving smart contracts 
from fully homomorphic encryption. IACR Cryptol ePrint Arch :133. 

[516] Teutsch J, Reitwießner C (2019) A scalable verifcation solution for blockchains. 
arXiv preprint arXiv:190804756 . 

[517] Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, Enyeart D, 
Ferris C, Laventman G, Manevich Y, et al. (2018) Hyperledger fabric: a distributed 
operating system for permissioned blockchains. Proceedings of the thirteenth Eu-
roSys conference, pp 1–15. 

[518] Chacko JA, Mayer R, Jacobsen HA (2021) Why do my blockchain transactions fail? 
a study of hyperledger fabric (extended version). arXiv preprint arXiv:210304681 . 

[519] Guggenberger T, Sedlmeir J, Fridgen G, Luckow A (2021) An in-depth in-

306 

https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192


NIST IR 8460 ipd 
April 2023 

11066 

11067 

11068 

11069 

11070 

11071 

11072 

11073 

11074 

11075 

11076 

11077 

11078 

11079 

11080 

11081 

11082 

11083 

11084 

11085 

11086 

11087 

11088 

11089 

11090 

11091 

11092 

11093 

11094 

11095 

11096 

11097 

11098 

11099 

11100 

11101 

11102 

11103 

11104 

11105 

11106 

11107 

vestigation of performance characteristics of hyperledger fabric. arXiv preprint 
arXiv:210207731 . 

[520] Kalodner H, Goldfeder S, Chen X, Weinberg SM, Felten EW (2018) Arbitrum: Scal-
able, private smart contracts. 27th {USENIX} Security Symposium ({USENIX} Se-
curity 18), pp 1353–1370. 

[521] Wüst K, Matetic S, Egli S, Kostiainen K, Capkun S (2020) Ace: Asynchronous 
and concurrent execution of complex smart contracts. Proceedings of the 2020 ACM 
SIGSAC Conference on Computer and Communications Security, pp 587–600. 

[522] Wüst K, Diana L, Kostiainen K, Karame G, Matetic S, Capkun S (2019) Bitcon-
tracts: Adding expressive smart contracts to legacy cryptocurrencies. IACR Cryptol 
ePrint Arch :857. 

[523] Al-Bassam M (2019) Lazyledger: A distributed data availability ledger with client-
side smart contracts. arXiv preprint arXiv:190509274 . 

[524] McCorry P, Möser M, Shahandasti SF, Hao F (2016) Towards bitcoin payment net-
works. Australasian Conference on Information Security and Privacy (Springer), pp 
57–76. 

[525] Decker C, Russell R, Osuntokun O (2018) eltoo: A simple layer2 protocol for bit-
coin. White paper: https://blockstream com/eltoo pdf . 

[526] Poon J, Dryja T (2016) The bitcoin lightning network: Scalable off-chain instant 
payments. Available at http://lightning.network/lightning-network-paper.pdf. 

[527] Kiayias A, Litos OST (2020) A composable security treatment of the lightning net-
work. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF) (IEEE), 
pp 334–349. 

[528] Gudgeon L, Moreno-Sanchez P, Roos S, McCorry P, Gervais A (2020) Sok: Layer-
two blockchain protocols. Financial Cryptography and Data Security: 24th Inter-
national Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 
Revised Selected Papers 24 (Springer), pp 201–226. 

[529] Aumayr L, Abbaszadeh K, Maffei M (2022) Thora: Atomic and privacy-preserving 
multi-channel updates. IACR Cryptol ePrint Arch 2022:317. 

[530] Malavolta G, Moreno-Sanchez P, Schneidewind C, Kate A, Maffei M (2019) Anony-
mous multi-hop locks for blockchain scalability and interoperability. 26th Annual 
Network and Distributed System Security Symposium, NDSS 2019. 

[531] Aumayr L, Ersoy O, Erwig A, Faust S, Hostakova K, Maffei M, Moreno-Sanchez P, 
Riahi S (2020) Generalized bitcoin-compatible channels. IACR Cryptol ePrint Arch 
:476. 

[532] Dziembowski S, Eckey L, Faust S, Malinowski D (2019) Perun: Virtual payment 
hubs over cryptocurrencies. 2019 IEEE Symposium on Security and Privacy (SP) 
(IEEE), pp 106–123. 

[533] Aumayr L, Ersoy O, Erwig A, Faust S, Hostáková K, Maffei M, Moreno-Sanchez P, 
Riahi S (2020) Bitcoin-compatible virtual channels. IACR Cryptol ePrint Arch :554. 

[534] Jourenko M, Larangeira M, Tanaka K (2020) Lightweight virtual payment channels. 
International Conference on Cryptology and Network Security (Springer), pp 365– 

307 

http://lightning.network/lightning-network-paper.pdf
https://blockstream


11110

11115

11120

11125

11130

11135

11140

11145

11108 

11109 

11111 

11112 

11113 

11114 

11116 

11117 

11118 

11119 

11121 

11122 

11123 

11124 

11126 

11127 

11128 

11129 

11131 

11132 

11133 

11134 

11136 

11137 

11138 

11139 

11141 

11142 

11143 

11144 

11146 

11147 

11148 

11149 

NIST IR 8460 ipd 
April 2023 

384. 
[535] Dziembowski S, Faust S, Hostáková K (2018) General state channel networks. Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 
Security, pp 949–966. 

[536] Coleman J, Horne L, Xuanji L (2018) Counterfactual: Generalized state channels. 
Available at https://l4.ventures/papers/statechannels.pdf. 

[537] Dziembowski S, Eckey L, Faust S, Hesse J, Hostáková K (2019) Multi-party virtual 
state channels. Annual International Conference on the Theory and Applications of 
Cryptographic Techniques (Springer), pp 625–656. 

[538] Miller A, Bentov I, Bakshi S, Kumaresan R, McCorry P (2019) Sprites and state 
channels: Payment networks that go faster than lightning. International Conference 
on Financial Cryptography and Data Security (Springer), pp 508–526. 

[539] Avarikioti G, Laufenberg F, Sliwinski J, Wang Y, Wattenhofer R (2018) Towards 
secure and effcient payment channels. arXiv preprint arXiv:181112740 . 

[540] Khabbazian M, Nadahalli T, Wattenhofer R (2019) Outpost: A responsive 
lightweight watchtower. Proceedings of the 1st ACM Conference on Advances in 
Financial Technologies, pp 31–40. 

[541] McCorry P, Bakshi S, Bentov I, Meiklejohn S, Miller A (2019) Pisa: Arbitration 
outsourcing for state channels. Proceedings of the 1st ACM Conference on Advances 
in Financial Technologies, pp 16–30. 

[542] Avarikioti Z, Litos OST, Wattenhofer R (2020) Cerberus channels: Incentivizing 
watchtowers for bitcoin. International Conference on Financial Cryptography and 
Data Security (Springer), pp 346–366. 

[543] Mirzaei A, Sakzad A, Yu J, Steinfeld R (2021) Fppw: A fair and privacy preserving 
watchtower for bitcoin. IACR Cryptol ePrint Arch :117. 

[544] Avarikioti G, Kogias EK, Wattenhofer R (2019) Brick: Asynchronous state channels. 
arXiv preprint arXiv:190511360 . 

[545] Poon J, Buterin V (2017) Plasma: Scalable autonomous smart contracts. White paper 
:1–47. 

[546] Buterin V (2018) Minimum viable plasma. Available at https://ethresear.ch/t/minim 
al-viable-plasma/426. 

[547] Jones B, Fichter K (2018) More viable plasma. Available at https://ethresear.ch/t/m 
ore-viable-plasma/2160. 

[548] Konstantopoulos G (2019) Plasma cash: Towards more effcient plasma construc-
tions. arXiv preprint arXiv:191112095 . 

[549] Dziembowski S, Fabianski G, Faust S, Riahi S (2020) Lower bounds for off-chain 
protocols: Exploring the limits of plasma. IACR Cryptol ePrint Arch 2020:175. 

[550] Buterin V (2021) An incomplete guide to rollups. Available at https://vitalik.ca/gen 
eral/2021/01/05/rollup.html. 

[551] Leshno J, Strack P (2019) Bitcoin: An impossibility theorem for proof-of-work 
based protocols. Available at SSRN: https://ssrncom/abstract=3487355 . 

[552] Chen X, Papadimitriou C, Roughgarden T (2019) An axiomatic approach to block 

308 

https://l4.ventures/papers/statechannels.pdf
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/more-viable-plasma/2160
https://ethresear.ch/t/more-viable-plasma/2160
https://ethresear.ch/t/more-viable-plasma/2160
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://ssrncom/abstract=3487355


11150

11155

11160

11165

11170

11175

11180

11185

11190

11151 

11152 

11153 

11154 

11156 

11157 

11158 

11159 

11161 

11162 

11163 

11164 

11166 

11167 

11168 

11169 

11171 

11172 

11173 

11174 

11176 

11177 

11178 

11179 

11181 

11182 

11183 

11184 

11186 

11187 

11188 

11189 

11191 

NIST IR 8460 ipd 
April 2023 

rewards. Proceedings of the 1st ACM Conference on Advances in Financial Tech-
nologies, pp 124–131. 

[553] Siddiqui S, Vanahalli G, Gujar S (2020) Bitcoinf: Achieving fairness for bitcoin 
in transaction fee only model. Proceedings of the 19th International Conference on 
Autonomous Agents and MultiAgent Systems, pp 2008–2010. 

[554] Babaioff M, Dobzinski S, Oren S, Zohar A (2012) On bitcoin and red balloons. 
Proceedings of the 13th ACM conference on electronic commerce, pp 56–73. 

[555] Houy N (2014) The economics of bitcoin transaction fees. GATE WP 1407. 
[556] Carlsten M, Kalodner H, Weinberg SM, Narayanan A (2016) On the instability of 

bitcoin without the block reward. Proceedings of the 2016 ACM SIGSAC Conference 
on Computer and Communications Security, pp 154–167. 

[557] Tsabary I, Eyal I (2018) The gap game. Proceedings of the 2018 ACM SIGSAC 
conference on Computer and Communications Security, pp 713–728. 

[558] Gong T, Minaei M, Sun W, Kate A (2020) Undercutting bitcoin is not proftable. 
arXiv preprint arXiv:200711480 . 

[559] Daian P, Goldfeder S, Kell T, Li Y, Zhao X, Bentov I, Breidenbach L, Juels A (2019) 
Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in 
decentralized exchanges. arXiv preprint arXiv:190405234 . 

[560] Eskandari S, Moosavi S, Clark J (2019) Sok: Transparent dishonesty: front-running 
attacks on blockchain. International Conference on Financial Cryptography and 
Data Security (Springer), pp 170–189. 

[561] Torres CF, Camino R, State R (2021) Frontrunner jones and the raiders of the 
dark forest: An empirical study of frontrunning on the ethereum blockchain. arXiv 
preprint arXiv:210203347 . 

[562] Qin K, Zhou L, Gervais A (2021) Quantifying blockchain extractable value: How 
dark is the forest? arXiv preprint arXiv:210105511 . 

[563] Zhou L, Qin K, Cully A, Livshits B, Gervais A (2021) On the just-in-time discovery 
of proft-generating transactions in def protocols. arXiv preprint arXiv:210302228 . 

[564] Kelkar M, Deb S, Kannan S (2021) Order-fair consensus in the permissionless set-
ting. IACR Cryptol ePrint Arch :139. 

[565] Doweck Y, Eyal I (2020) Multi-party timed commitments. arXiv preprint 
arXiv:200504883 . 

[566] Yang R, Murray T, Rimba P, Parampalli U (2019) Empirically analyzing ethereum’s 
gas mechanism. 2019 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW) (IEEE), pp 310–319. 

[567] Perez D, Livshits B (2019) Broken metre: Attacking resource metering in evm. arXiv 
preprint arXiv:190907220 . 

[568] Baird K, Jeong S, Kim Y, Burgstaller B, Scholz B (2019) The economics of smart 
contracts. arXiv preprint arXiv:191011143 . 

[569] Buterin V (2016) Eip 150. Available at https://github.com/ethereum/EIPs/blob/mast 
er/EIPS/eip-150.md. 

[570] Holst Swende M, Szilagyi P (2021) Dodging a bullet: Ethereum state problems. 

309 

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md


NIST IR 8460 ipd 
April 2023 

11192 

11193 

11194 

11195 

11196 

11197 

11198 

11199 

11200 

11201 

11202 

11203 

11204 

11205 

11206 

11207 

11208 

11209 

11210 

11211 

11212 

11213 

11214 

11215 

11216 

11217 

11218 

11219 

11220 

11221 

11222 

11223 

11224 

11225 

11226 

11227 

11228 

11229 

11230 

11231 

11232 

11233 

Accessed on May 24, 2021. Available at https://blog.ethereum.org/2021/05/18/eth 
_state_problems/. 

[571] Lerner SD (2013) New bitcoin vulnerability: A transaction that takes at least 3 min-
utes to be verifed by a peer. Available at https://bitcointalk.org/?topic=140078. 

[572] maaku (2015) alternatives-to-block-size-as-aggregate-resource-limits. Available at 
https://diyhpl.us/wiki/transcripts/scalingbitcoin/alternatives-to-block-size-as-aggre 
gate-resource-limits/. 

[573] Luu L, Teutsch J, Kulkarni R, Saxena P (2015) Demystifying incentives in the con-
sensus computer. Proceedings of the 22nd ACM SIGSAC Conference on Computer 
and Communications Security, pp 706–719. 

[574] Pontiveros BBF, Torres CF, et al. (2019) Sluggish mining: Profting from the veri-
fer’s dilemma. International Conference on Financial Cryptography and Data Se-
curity (Springer), pp 67–81. 

[575] Alharby M, Lunardi RC, Aldweesh A, van Moorsel A (2020) Data-driven model-
based analysis of the ethereum verifer’s dilemma. arXiv preprint arXiv:200412768 
. 

[576] Das S, Awathare N, Ren L, Ribeiro VJ, Bellur U (2020) Better late than 
never; scaling computations in blockchain by delaying execution. arXiv preprint 
arXiv:200511791 . 

[577] Amoussou-Guenou Y, Biais B, Potop-Butucaru M, Tucci-Piergiovanni S 
(2019) Rationals vs byzantines in consensus-based blockchains. arXiv preprint 
arXiv:190207895 . 

[578] Amoussou-Guenou Y, Biais B, Potop-Butucaru M, Tucci-Piergiovanni S (2020) Ra-
tional Behavior in Committee-Based Blockchains. Ph.D. thesis. CEA List; LIP6, 
Sorbonne Université, CNRS, UMR 7606; HEC Paris, . 

[579] Lavi R, Sattath O, Zohar A (2019) Redesigning bitcoin’s fee market. The World Wide 
Web Conference, pp 2950–2956. 

[580] Basu S, Easley D, O’Hara M, Sirer E (2019) Towards a functional fee market for 
cryptocurrencies. Available at SSRN 3318327 . 

[581] Buterin V (2018) Blockchain resource pricing. Available at https://ethresear.ch/t/dra 
ft-position-paper-on-resource-pricing/2838. 

[582] Buterin V, Connor E, Dudley R, Slipper M, Norden I (2019) Fee market change for 
eth 1.0 chain. Available at https://github.com/ethereum/EIPs/blob/master/EIPS/ei 
p-1559.md. 

[583] Roughgarden T (2020) Transaction fee mechanism design for the ethereum 
blockchain: An economic analysis of eip-1559. arXiv preprint arXiv:201200854 
. 

[584] Leonardos S, Monnot B, Reijsbergen D, Skoulakis S, Piliouras G (2021) Dynamical 
analysis of the eip-1559 ethereum fee market. arXiv preprint arXiv:210210567 . 

[585] Ferreira MV, Moroz DJ, Parkes DC, Stern M (2021) Dynamic posted-price mech-
anisms for the blockchain transaction-fee market. arXiv preprint arXiv:210314144 
. 

310 

https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://blog.ethereum.org/2021/05/18/eth_state_problems/
https://bitcointalk.org/?topic=140078
https://diyhpl.us/wiki/transcripts/scalingbitcoin/alternatives-to-block-size-as-aggregate-resource-limits/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/alternatives-to-block-size-as-aggregate-resource-limits/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/alternatives-to-block-size-as-aggregate-resource-limits/
https://ethresear.ch/t/draft-position-paper-on-resource-pricing/2838
https://ethresear.ch/t/draft-position-paper-on-resource-pricing/2838
https://ethresear.ch/t/draft-position-paper-on-resource-pricing/2838
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

	Executive Summary
	Purpose and Scope
	Notes on Terminology
	Document Structure

	Introducing the Problems
	The Byzantine Generals Problem
	Broadcast Problems and Byzantine Agreement
	State Machine Replication (SMR)
	The Adversary
	Timing Assumptions
	Permissioned vs. Permissionless

	System Components
	Data Structures for Distributed Ledgers
	Sybil-Resistance Mechanism
	Leader Election and Committee Selection
	Fork-Choice or Chain Selection Rules
	Networking
	Incentive Mechanism
	Cryptographic Primitives
	State Machine
	UTXO vs. Account Model
	Changing the Rules


	Scaling and "Decentralization"
	A Note on Decentralization
	Full Nodes and Light Clients
	Scalability Challenges and Block Sizes

	Practical Byzantine Fault Tolerance (PBFT)
	PBFT View Change
	PBFT Security
	Zyzzyva and Speculative Execution
	A Permissioned DAG: Blockmania

	Modern High-Performance Blockchains
	Streamlined Blockchains
	PiLi and PaLa
	HotStuff
	Sync HotStuff

	Further Optimizing Latency

	Asynchronous BFT
	HoneyBadgerBFT
	Mostéfaoui et al.'s Asynchronous Binary Agreement Protocol
	Reducing HoneyBadgerBFT's latency with BEAT
	Improving ACS Performance with Dumbo

	An Asynchronous Permissioned DAG: Hashgraph

	Miscellaneous Permissioned BFT
	Fairly Ordering Transactions
	Accountability Against Malicious Replicas
	Specially Designated Roles for Replicas
	Deterministic Longest Chain Protocols
	Flexible BFT
	View Change Algorithms

	Localizing Trust Over Incomplete Networks With Open Membership
	Stellar
	FBAS Background
	Stellar Consensus Protocol (SCP)
	SCP Security

	Ripple
	Cobalt
	Background
	Broadcast in Incomplete Networks


	Proof of Work: The Basics
	Proof of Work and Sybil Resistance
	Mining Pools
	Hardware: ASICs and ASIC Resistance
	Mining Centralization in Practice

	Difficulty Adjustment Algorithms
	Attacks Against Mining Pools: Pool-Hopping and Block Withholding
	Selfish Mining

	Nakamoto Consensus
	Theory of Nakamoto Consensus
	Nakamoto Consensus With Chains of Variable Difficulty
	Additional Analyses of Nakamoto Consensus

	Violating the Nakamoto Consensus Security Assumptions
	Network Delay and Block Propagation
	Majority Hash Rate Attacks (51% Attacks)
	Hash Function Collisions

	(More) Attacks Against Nakamoto Consensus

	More Proof-of-Work Protocols
	Nakamoto Consensus Protocol Adjustments
	Weak Blocks and Pre-Consensus
	Bitcoin-NG
	Tie-Breaking Schemes
	DECOR+
	Publish or Perish
	NC-Max

	Greedy Heaviest-Observed Sub-Tree (GHOST)
	FruitChains
	Parallel Chain Approaches
	Prism

	Proof-of-Work DAGs
	Inclusive Blockchains and Conflux
	SPECTRE and Phantom
	Tangle
	Meshcash

	Proof of Work for Committee Selection
	Hybrid Consensus
	Solida


	Proof of Stake: The Basics
	Early Attempts at Proof of Stake
	Nothing-at-Stake and Costless Simulation
	Long-Range Attacks, Posterior Corruption, and Weak Subjectivity
	Leader Election, Anonymity, and Security Against Adaptive Adversaries

	Leader Predictability and Security
	Wealth Concentration, Block Rewards, and Centralization

	Proof-of-Stake Protocols
	Chain-Based Proof of Stake
	Chains of Activity
	Snow White
	Ouroboros Family: Praos and Genesis
	DFINITY

	Ethereum 2.0
	DAG-based Proof of Stake
	Fantômette
	Avalanche
	Parallel Chains

	BFT-Based Proof of Stake
	Tendermint
	Algorand


	Hybrid and Alternative Sybil-Resistance Mechanisms
	Proof of Space
	Spacemint
	Chia

	Proof of Activity
	Checkpoints and Finality Gadgets
	Ad Hoc Finality Layers and Reorg Protection
	Casper the Friendly Finality Gadget (FFG)
	More Finality Gadgets and Checkpointing Protocols


	Sharding
	Intra-Shard Consensus
	Identity Registration, Committee (Re)configuration, and Epoch Randomness
	Cross-Shard Transaction Processing
	A Different Approach: Monoxide
	Fraud Proofs and Data Availability

	Interoperability
	Cross-Chain Communication, Fair Exchange, and Atomic Swaps
	Bootstrapping Methods: Merged Mining and Proof of Burn
	Sidechains, Relays, and Asset Transfer
	Permissionless Sidechains


	Networking
	Networking for Permissionless Systems
	Peer Discovery
	Neighbor Selection
	Communication Strategy


	State Machines
	Virtual Machine Design
	Concurrency in Smart Contracts
	Zero-Knowledge Proofs and Verifiable Computation
	Delegating Execution

	Layer 2 Protocols
	Payment and State Channels
	Plasma and Rollups


	Incentives
	Block Rewards: Subsidies and Transaction Fees
	The Mining Gap and (the Absence of a) Block Subsidy

	State Machines, Incentives, and Security
	Alternative Transaction Fee Protocols

	References



