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Abstract 

The NIST Special Publication (SP) 800-90 series supports the generation of high-quality random 
bits for cryptographic and non-cryptographic use. The security strength of a random number 
generator depends on the unpredictability of its outputs. This unpredictability can be measured in 
terms of entropy, which the NIST SP 800-90 series measures using min-entropy. A full-entropy 
bitstring has an amount of entropy equal to its length. Full-entropy bitstrings are important for 
cryptographic applications, as these bitstrings have ideal randomness properties and may be used 
for any cryptographic purpose. Due to the difficulty of generating and testing full-entropy 
bitstrings, the SP 800-90 series assumes that a bitstring has full entropy if the amount of entropy 
per bit is at least 1 − ε, where ε is at most 2−32. This report provides a justification for the selection 
of this value of ε.  

Keywords 

entropy; min-entropy; random number generation. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance the 
development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in federal 
information systems.  
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 Introduction 

The NIST Special Publication (SP) 800-90 series [1][2][3] supports the generation of high-quality 
random bits for cryptographic and non-cryptographic use. The security strength of a random 
number generator depends on the unpredictability of its outputs. This unpredictability can be 
measured in terms of entropy, which the NIST SP 800-90 series measures using min-entropy. The 
SP 800-90 series refers to certain bitstrings as having full entropy, meaning that they have an 
amount of entropy equal to their length. Such bitstrings are important for cryptographic 
applications since they have the highest level of unpredictability and may therefore be used for 
any cryptographic purpose. The SP 800-90 series assumes that a bitstring has full entropy if the 
amount of entropy per bit is at least 1 − ε, where ε is at most 2−32. This report provides a justification 
for the selection of this value of ε. Due to the difficulty of ensuring full entropy through the analysis 
of random bit generators and sample data sequences, this is accomplished by using an alternative 
definition of full entropy and calculating the resulting entropy level when this definition is 
satisfied. 

 Problem Statement 

The SP 800-90 series uses a definition of full entropy that prescribes a numerical threshold on the 
entropy per bit (at least 1 − ε, where ε is at most 2−32). However, although this is an intuitive way 
to define full entropy, it is generally not possible to ensure sufficient entropy within this tolerance 
by analyzing a Random Bit Generator (RBG) or estimating entropy from a data sample. It is, 
therefore, necessary to use a different definition from which a practical approach to ensuring full 
entropy can be derived. The report begins by defining full entropy in terms of a hypothetical 
distinguishing game. The report then presents and proves two results following from this 
definition. First, it is shown how output satisfying this definition can be generated using a vetted 
conditioning function (see [2]) acting on data having an entropy level that meets or exceeds a 
certain value. Second, it is shown that the entropy level of output produced by such a process 
satisfies the full entropy threshold used in the SP 800-90 series, thereby demonstrating a 
connection between these two definitions. 

 Full Entropy Definition 

Full entropy will be defined as follows. Consider a distinguishing game where an adversary 
attempts to distinguish between two cases – REAL and IDEAL. Assume that the adversary is 
provided with 𝑊𝑊 𝑛𝑛-bit outputs 𝑏𝑏1,,𝑏𝑏2, … , 𝑏𝑏𝑊𝑊. In the REAL case, each output is generated by a 
cryptographic conditioning function operating on an output from a real-life entropy source. In the 
IDEAL case, the outputs are generated by an idealized randomness source that produces 
independent 𝑛𝑛-bit outputs with each output value having a probability of 2−𝑛𝑛. One of the two cases 
is chosen at random with each being equally likely. Outputs of length n bits generated in the REAL 
case are defined as having full entropy with respect to 𝑊𝑊 and 𝛿𝛿 (where 𝛿𝛿 > 0) if a computationally 
unlimited adversary cannot correctly distinguish between the REAL and IDEAL cases with 
probability higher than 1

2
+ 𝛿𝛿. 
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 Claims 

 Claim 1  

Output from a vetted conditioning function with sufficient input entropy satisfies the full 
entropy definition. 

Suppose that values for the 𝑊𝑊 and 𝛿𝛿 parameters used in the definition of full entropy are given 
and that a vetted conditioning function generates an 𝑛𝑛-bit output by processing an entropy 
sequence having min-entropy 𝐻𝐻. Then if 𝐻𝐻 ≥ 𝑛𝑛 + log2 �

𝑊𝑊
𝛿𝛿2
� − 𝑙𝑙𝑙𝑙𝑙𝑙2𝜋𝜋 − 3, the 𝑛𝑛-bit output 

satisfies the definition of full entropy with respect to 𝑊𝑊 and 𝛿𝛿. The proof of this claim is given in 
A.1. 

From the above inequality, 𝐻𝐻 − 𝑛𝑛 represents the minimum required amount by which the input 
entropy must exceed 𝑛𝑛 in order to ensure full entropy. The following table shows this minimum 
value for various values of 𝑊𝑊 and 𝛿𝛿. 

Table 1. Minimum value of additional entropy 𝑯𝑯− 𝒏𝒏 required for various values of 𝑾𝑾 and 𝜹𝜹 

 𝜹𝜹 
𝑾𝑾 2−20 2−18 2−16 2−14 2−12 2−10 2−8 

232 67.3 63.3 59.3 55.3 51.3 47.3 43.3 
240 75.3 71.3 67.3 63.3 59.3 55.3 51.3 
248 83.3 79.3 75.3 71.3 67.3 63.3 59.3 
256 91.3 87.3 83.3 79.3 75.3 71.3 67.3 

It is assumed in SP 800-90C that there is an upper bound of 264 bits on the amount of output that 
an adversary attempting a distinguishing attack can obtain. Consider the combination 𝑊𝑊 = 248 
and 𝛿𝛿 = 2−10. Given 𝑊𝑊 = 248 𝑛𝑛-bit RBG outputs, each output can be up to 216 = 65536 bits 
long without exceeding the 264 data-quantity bound. Note that  
10000 RBGs –each producing 1000 outputs per second– would require nearly a year to produce 
𝑊𝑊 = 248 outputs. According to the table above, an adversary who obtains 𝑊𝑊 = 248 𝑛𝑛-bit outputs 
has a distinguishing probability no greater than 1

2
+ 𝛿𝛿 = 1

2
+ 2−10 ≅ 0.501 when 𝐻𝐻, the 

conditioning function input min-entropy for each 𝑛𝑛-bit output, is at least 𝑛𝑛 + 63.3. This minimum 
value, rounded up to 𝑛𝑛 + 64, is used in this document and in SP 800-90C as the condition for 
satisfying the full entropy definition. 

 Claim 2 

Outputs that satisfy the definition of full entropy in Section 3 also satisfy the full entropy 
threshold in SP 800-90C. 

Suppose that 𝑊𝑊 = 248 and 𝛿𝛿 = 2−10. According to Claim 1, if the input min-entropy satisfies 𝐻𝐻 ≥
𝑛𝑛 + 64, then the conditioning function output satisfies the definition of full entropy. In this case, 
it can also be shown that the average per-bit min-entropy of the resulting 𝑛𝑛-bit output is at least 
1 − 2−32. The proof of this claim is given in A.3. It is interesting to note that if a process generates 
outputs satisfying the definition of full entropy based on the distinguishing game, the outputs also 
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satisfy the more intuitive definition in terms of an actual numerical entropy threshold. The resulting 
value 𝜀𝜀 = 2−32 is the value given in SP 800-90C as the threshold for full entropy. 

 Assumptions  

The proofs of the two claims made in this paper require some assumptions. These assumptions 
are presented and explained below. 

 Assumption 1: The Test Statistic is Normally Distributed 

The proof of Claim 1 uses a test statistic 𝑋𝑋 computed from data values generated in either the 
REAL or the IDEAL case. It will be assumed that 𝑋𝑋 is approximately normally distributed. This 
statistic is of the form 𝑋𝑋 = ∑ 𝑥𝑥𝑖𝑖𝑊𝑊

𝑖𝑖=1 , where the variables 𝑥𝑥𝑖𝑖 are independent and identically 
distributed, and depend on the observed values 𝑏𝑏𝑖𝑖. If 𝜇𝜇𝑥𝑥 and 𝜎𝜎𝑥𝑥2 are the true mean and variance of 

the individual variables 𝑥𝑥𝑖𝑖, respectively (𝜇𝜇𝑥𝑥 and 𝜎𝜎𝑥𝑥2 are derived in A.1), then  
𝑋𝑋
𝑊𝑊−𝜇𝜇𝑥𝑥

�𝜎𝜎𝑥𝑥
√𝑊𝑊� �

=
∑ 𝑥𝑥𝑖𝑖
𝑊𝑊
𝑖𝑖=1
𝑊𝑊 −𝜇𝜇𝑥𝑥

�𝜎𝜎𝑥𝑥
√𝑊𝑊� �

 

is approximately normally distributed by the Central Limit Theorem when 𝑊𝑊 is large (we assume 

𝑊𝑊 = 248). Since 𝑋𝑋 can be obtained from 
𝑋𝑋
𝑊𝑊−𝜇𝜇𝑥𝑥

�𝜎𝜎𝑥𝑥
√𝑊𝑊� �

 by a linear transformation, 𝑋𝑋 is also 

approximately normally distributed. 

 Assumption 2: The Conditioning Function Output Probabilities are Random 
Variables 

The discussion of full entropy in this paper is in the context of the SP 800-90 series, where bit 
sequences having full entropy are to be generated by processing entropy source output sequences 
(that generally do not have full entropy) with a vetted conditioning function or a Deterministic 
Random Bit Generator (DRBG). The assumption below is made in that context. 

Suppose that a conditioning function generates an 𝑛𝑛-bit output by processing a sequence from an 
entropy source. Consider the probability 𝑝𝑝𝑗𝑗 for the 𝑗𝑗𝑡𝑡ℎ possible output value from the conditioning 
function. These probabilities are determined by the interaction between the specific conditioning 
function used and the space of possible inputs to that function. In the distinguishing game used in 
the full entropy definition, the adversary has complete knowledge of the conditioning function and 
its input space, and—being computationally unlimited—can determine the probabilities 𝑝𝑝𝑗𝑗. For 
the purposes of this paper, determining the values of these probabilities is infeasible. However, it 
is useful to consider the 𝑝𝑝𝑗𝑗 as random variables rather than fixed values and use statistics associated 
with these random variables to find the probability distribution of the test statistic 𝑋𝑋. This can be 
justified as follows. Consider the application of the conditioning function to the input space of 
entropy source sequences to obtain the conditioning function output. The resulting mapping 
depends on both the selected input domain and the details of the conditioning function. The domain 
of this function is determined by the characteristics of the entropy source and the length of the 
entropy source sequences that are input to the conditioning function. These details effectively 
select from a large number of possible domains for the function. A consequence of the 
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cryptographic properties of conditioning functions used in RBGs is that there is no simple pattern 
in the mapping from elements of the domain to elements of the range of the function, and there is 
no discernible bias in the assignment of outputs to inputs. Therefore, although the conditioning 
function is deterministic, this report will assume that it is effectively a mapping that assigns an 𝑛𝑛-
bit output to each value in the domain with a uniform distribution so that each possible output 
value has a probability of 2−𝑛𝑛 of being the output value assigned to a given input value. (Note that 
multiple input values can be assigned a given output value.) Under this assumption, since 
probability 𝑝𝑝𝑗𝑗 is the sum of the probabilities of the inputs mapped to the jth output value, the 
probability 𝑝𝑝𝑗𝑗 can be treated as a random variable. 

 Assumption 3: The Conditioning Function Output Probabilities are 
Normally Distributed 

Consider that 𝑝𝑝𝑗𝑗 is treated as a random variable as explained in Assumption 2. Suppose that there 
are 𝑀𝑀 possible inputs to the conditioning function, with probabilities {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑀𝑀}. (Note that no 
assumptions will be made on the input probability distribution.) The output probability 𝑝𝑝𝑗𝑗 can then 
be written as 𝑝𝑝𝑗𝑗 = ∑ 𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗𝑀𝑀

𝑖𝑖=1 , where 𝐼𝐼𝑖𝑖,𝑗𝑗 = 1 if the conditioning function maps the ith input to the 
jth output, and 𝐼𝐼𝑖𝑖,𝑗𝑗 = 0 otherwise. Under Assumption 2, the assignment of inputs to outputs is done 
independently for each input, so for each value of 𝑗𝑗, the variables 𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗 are independent. The value 
of 𝑀𝑀 is dependent on the characteristics of the entropy source outputs and the bit length of the 
conditioning function input. However, it is reasonable to assume that 𝑀𝑀 is at least 2𝑛𝑛, the number 
of possible conditioning function outputs (it would be difficult to achieve a level of output entropy 
near 𝑛𝑛 otherwise). Given the above statements, 𝑝𝑝𝑗𝑗 is of a similar form to that of 𝑋𝑋 in Assumption 
1 and, according to a version of the Central Limit Theorem applying to independent random 
variables not having the same distribution, can be assumed to be approximately normally 
distributed. 
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Appendix A. Proofs 

A.1. Proof of Claim 1 

Suppose that random output is generated by processing a quantity of entropy data using a 
conditioning function. The claim is that given values of 𝑊𝑊and 𝛿𝛿, it is possible to find a threshold 
such that if the min-entropy of the input to the conditioning function meets or exceeds that 
threshold, the conditioning function output will satisfy the definition of full entropy. 

Let 𝐵𝐵 = {𝑏𝑏1,,𝑏𝑏2, … , 𝑏𝑏𝑊𝑊} be the set of observed 𝑛𝑛-bit outputs, 𝑝𝑝𝑗𝑗 be the probability of the jth possible 
output from the conditioning function applied to the specified quantity of entropy data, and 𝑝𝑝𝑏𝑏𝑖𝑖 be 
the probability of the ith observed output in the REAL case. Note that each 𝑝𝑝𝑏𝑏𝑖𝑖 corresponds to some 
𝑝𝑝𝑗𝑗. 

Now consider the likelihood ratio 𝑃𝑃𝑃𝑃[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝐵𝐵]
𝑃𝑃𝑃𝑃[𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅|𝐵𝐵]. Clearly, the adversary will conclude that 𝐵𝐵 was 

produced by the REAL case if this likelihood ratio is greater than one and by the IDEAL case 
otherwise (there would be no reason to guess the less likely case). Since the REAL and IDEAL 
cases are equally likely, this likelihood ratio can be rewritten as 𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]

𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL] using Bayes Theorem. 
For ease of computation, compute the base-2 log of the likelihood ratio and denote the resulting 
statistic as 𝑋𝑋. The adversary will conclude that 𝐵𝐵 was produced by the REAL case if 𝑋𝑋 > 0 and 
by the IDEAL case otherwise. Then the following is true: 

𝑋𝑋 = log2 �
𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]
𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL]� 

= log2(𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]) − log2(𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL]) 

= log2 ��𝑝𝑝𝑏𝑏𝑖𝑖

𝑊𝑊

𝑖𝑖=1

� − log2(2−𝑛𝑛𝑊𝑊) 

= ��𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖�
𝑊𝑊

𝑖𝑖=1

 

The statistic 𝑋𝑋 is a random variable that depends on the set 𝐵𝐵 of observed 𝑛𝑛-bit outputs 𝑏𝑏𝑖𝑖 and the 
probabilities 𝑝𝑝𝑏𝑏𝑖𝑖 of those outputs in the REAL case. To assess the adversary’s distinguishing 
success probability, the probability distribution of 𝑋𝑋 in both the REAL and IDEAL cases is 
required. Note that 𝑋𝑋 is the sum of 𝑊𝑊 individual random variables 𝑥𝑥𝑖𝑖 = 𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖. These 
variables, being determined by the generation of independent outputs 𝑏𝑏𝑖𝑖, are independent and 
identically distributed. (In the IDEAL case, this is clearly true. In the REAL case, it follows from 
the assumed properties of the conditioning function.) As noted in Assumption 1, it is assumed that 
𝑋𝑋 is approximately normally distributed. 

Consider that 𝑝𝑝𝑗𝑗 is treated as a random variable as explained in Assumption 2. Then 𝐸𝐸�𝑝𝑝𝑗𝑗� =
∑ 𝑞𝑞𝑖𝑖𝐸𝐸�𝐼𝐼𝑖𝑖,𝑗𝑗�𝑀𝑀
𝑖𝑖=1 = ∑ 2−𝑛𝑛𝑞𝑞𝑖𝑖𝑀𝑀

𝑖𝑖=1 = 2−𝑛𝑛. Similarly, 



NIST IR 8427  Discussion on the Full Entropy Assumption  
April 2023  of the SP 800-90 Series 
 

7 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑗𝑗� = �𝑉𝑉𝑉𝑉𝑉𝑉�𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗�
𝑀𝑀

𝑖𝑖=1

 

= ��𝐸𝐸 ��𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗�
2
� − �𝐸𝐸�𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗��

2
�

𝑀𝑀

𝑖𝑖=1

 

= �(2−𝑛𝑛𝑞𝑞𝑖𝑖2 − 2−2𝑛𝑛𝑞𝑞𝑖𝑖2)
𝑀𝑀

𝑖𝑖=1

 

= (2−𝑛𝑛 − 2−2𝑛𝑛)�𝑞𝑞𝑖𝑖2
𝑀𝑀

𝑖𝑖=1

 

Now write 𝑝𝑝𝑗𝑗 as 𝑝𝑝𝑗𝑗 = 2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�. Then 𝜃𝜃𝑗𝑗 = 2𝑛𝑛𝑝𝑝𝑗𝑗 − 1, so 𝐸𝐸�𝜃𝜃𝑗𝑗� = 2𝑛𝑛𝐸𝐸�𝑝𝑝𝑗𝑗� − 1 = 0 and 
𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� = 22𝑛𝑛𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑗𝑗� = (2𝑛𝑛 − 1)∑ 𝑞𝑞𝑖𝑖2𝑀𝑀

𝑖𝑖=1 . Since the input collision entropy 𝐻𝐻2 =
−log2 ∑ 𝑞𝑞𝑖𝑖2𝑀𝑀

𝑖𝑖=1 , 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� = (2𝑛𝑛 − 1)2−𝐻𝐻2. Note that since 𝑝𝑝𝑗𝑗 is assumed to be normally distributed 
as explained in Assumption 3, 𝜃𝜃𝑗𝑗 = 2𝑛𝑛𝑝𝑝𝑗𝑗 − 1 is also normally distributed. 

The mean and variance of 𝑋𝑋 depend on whether the source is REAL or IDEAL. Let 𝜇𝜇𝑅𝑅 =
𝐸𝐸[𝑥𝑥𝑖𝑖|𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅], 𝜇𝜇𝐼𝐼 = 𝐸𝐸[𝑥𝑥𝑖𝑖|IDEAL], 𝜎𝜎𝑅𝑅2 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|REAL], and 𝜎𝜎𝐼𝐼2 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|IDEAL]. 

Now derive 𝜇𝜇𝑅𝑅, 𝜇𝜇𝐼𝐼, 𝜎𝜎𝑅𝑅2, and 𝜎𝜎𝐼𝐼2. Each of these values is computed by summing over the relevant 
expression using 2−𝑛𝑛 or 𝑝𝑝𝑗𝑗 as the probability weighting factors for the IDEAL and REAL cases, 
respectively. Thus, 

𝐸𝐸[𝑥𝑥𝑖𝑖|𝐼𝐼𝐼𝐼𝐸𝐸𝑉𝑉𝑅𝑅] = 𝐸𝐸�𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖|IDEAL� 

= ��𝑛𝑛 + log2𝑝𝑝𝑗𝑗�2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

 

= ��𝑛𝑛 +
ln �2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗��

ln2
� 2−𝑛𝑛

2𝑛𝑛

𝑗𝑗=1

 

=  �
ln�1 + 𝜃𝜃𝑗𝑗�

ln2
2−𝑛𝑛

2𝑛𝑛

𝑗𝑗=1

 

The Taylor series for ln�1 + 𝜃𝜃𝑗𝑗� is 𝜃𝜃𝑗𝑗 −
𝜃𝜃𝑗𝑗

2

2
+ 𝜃𝜃𝑗𝑗

3

3
− 𝜃𝜃𝑗𝑗

4

4
+ ⋯. It is shown in A.2 that for cases of 

interest, �𝜃𝜃𝑗𝑗� is on the order of 10−8 or smaller. For such values of 𝜃𝜃𝑗𝑗 , ln�1 + 𝜃𝜃𝑗𝑗� ≅ 𝜃𝜃𝑗𝑗 −
𝜃𝜃𝑗𝑗

2

2
, and 

omitting the terms beyond 𝜃𝜃𝑗𝑗2 results in a relative error in ln�1 + 𝜃𝜃𝑗𝑗� on the order of 10−16. The 
sum above is therefore approximately 

�
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln2
2−𝑛𝑛

2𝑛𝑛

𝑗𝑗=1

=
1

ln2
∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
−

1
2ln2

∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
. 
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The first sum in this expression is zero, by the definition of 𝜃𝜃𝑗𝑗 . To evaluate the second sum, note 
that the sum is computed over the 2𝑛𝑛 values of 𝜃𝜃𝑗𝑗 . Each of these 2𝑛𝑛 values can be considered as a 
specific value of the corresponding random variable. Since these random variables have the same 
distribution, the 2𝑛𝑛 values can also be treated as a sample of size 2𝑛𝑛 from any one of these random 

variables. By definition, 𝑉𝑉𝑉𝑉𝑉𝑉[𝜃𝜃𝑗𝑗] = 𝐸𝐸[𝜃𝜃𝑗𝑗2] − 𝐸𝐸[𝜃𝜃𝑗𝑗]2. The term 
∑ 𝜃𝜃𝑗𝑗

22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
 is the sample mean of 𝜃𝜃𝑗𝑗2 

and is, therefore, approximately 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸[𝜃𝜃𝑗𝑗]2. Substituting the values of 𝐸𝐸�𝜃𝜃𝑗𝑗� and 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� 
found above, the following is obtained: 

𝐸𝐸[𝑥𝑥𝑖𝑖|IDEAL] ≅ −
1

2 ln 2
�𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸�𝜃𝜃𝑗𝑗�

2
� 

= −
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2 

The derivation of 𝐸𝐸[𝑥𝑥𝑖𝑖|REAL] is similar and is as follows (again omitting powers of 𝜃𝜃𝑗𝑗  beyond 
𝜃𝜃𝑗𝑗2). 

𝐸𝐸[𝑥𝑥𝑖𝑖|REAL] = 𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |REAL� 

= ��𝑛𝑛 + log2 𝑝𝑝𝑗𝑗�𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 

= ��𝑛𝑛 +
ln �2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗��

ln 2
�𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 

= �
ln�1 + 𝜃𝜃𝑗𝑗�

ln 2
𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 

= �
ln�1 + 𝜃𝜃𝑗𝑗�

ln 2
2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�

2𝑛𝑛

𝑗𝑗=1

 

≅�
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2
2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�

2𝑛𝑛

𝑗𝑗=1

 

≅
1

ln 2
∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
+

1
2 ln 2

∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
 

≅
1

2 ln 2
�𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸�𝜃𝜃𝑗𝑗�

2
� 

=
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2 

Reusing portions of these calculations, the variance of 𝑥𝑥𝑖𝑖 in the IDEAL case is obtained as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|IDEAL] = 𝐸𝐸 ��𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖�
2

|IDEAL� −  𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |IDEAL�
2
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≅��
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2
�

2

2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

− �−
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2�

2

 

≅
1

(ln 2)2
∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
− �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 − �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 �1 −

1
4

(2𝑛𝑛 − 1)2−𝐻𝐻2� 

Similarly, the variance of 𝑥𝑥𝑖𝑖 in the REAL case is obtained as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|REAL] = 𝐸𝐸 ��𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖�
2

|REAL� −  𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |REAL�
2
 

≅��
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2
�

2

2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

�1 + 𝜃𝜃𝑗𝑗� − �
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2�

2

 

≅
1

(ln 2)2
∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
− �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 − �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 �1 −

1
4

(2𝑛𝑛 − 1)2−𝐻𝐻2� 

Note that for typical values of 𝑛𝑛, 𝜇𝜇𝐼𝐼 and 𝜇𝜇𝑅𝑅 are closely approximated as − 1
2 ln 2

2𝑛𝑛−𝐻𝐻2 and 
1

2 ln 2
2𝑛𝑛−𝐻𝐻2, respectively. Also, assuming that 𝐻𝐻2 will need to exceed 𝑛𝑛 by at least a moderate 

amount in order to satisfy the definition of full entropy, 𝜎𝜎𝐼𝐼2 = 𝜎𝜎𝑅𝑅2 can be closely approximated as 
𝜎𝜎2 = 1

(ln 2)2 2𝑛𝑛−𝐻𝐻2. The statistic 𝑋𝑋 is therefore approximately normally distributed with means and 
variance as follows: 

𝐸𝐸[𝑋𝑋|REAL] = −𝐸𝐸[𝑋𝑋|IDEAL] = −𝑊𝑊𝜇𝜇𝐼𝐼 ≅
𝑊𝑊

2 ln 2
2𝑛𝑛−𝐻𝐻2 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋|REAL] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋|IDEAL] = 𝑊𝑊𝜎𝜎2 ≅
𝑊𝑊

(ln 2)2 2𝑛𝑛−𝐻𝐻2 

Now consider the probability that the adversary correctly determines whether the REAL or IDEAL 
case produced the observed sample 𝐵𝐵. This probability is as follows: 

𝑃𝑃𝑃𝑃[Correct] = 𝑃𝑃𝑃𝑃[IDEAL]𝑃𝑃𝑃𝑃[Correct|IDEAL] + 𝑃𝑃𝑃𝑃[REAL]𝑃𝑃𝑃𝑃[Correct|REAL] 

=
1
2
𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] +

1
2
𝑃𝑃𝑃𝑃[𝑋𝑋 > 0|REAL] 
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Note that because of the symmetry resulting from 𝑋𝑋 having a normal distribution with variance 
𝑊𝑊𝜎𝜎2 in both the REAL and IDEAL cases and expected values that are negatives of each other in 
these two cases, 𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] = 𝑃𝑃𝑃𝑃[𝑋𝑋 > 0|REAL], which gives the following: 

𝑃𝑃𝑃𝑃[Correct] = 𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] 

= 𝑃𝑃𝑃𝑃 �
𝑋𝑋 −𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

<
0 −𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

|IDEAL� 

Since in the IDEAL case, 𝑋𝑋 is normally distributed with mean 𝑊𝑊𝜇𝜇𝐼𝐼 and variance 𝑊𝑊𝜎𝜎2, the value 
𝑧𝑧 = 𝑋𝑋−𝑊𝑊𝜇𝜇𝐼𝐼

√𝑊𝑊𝜎𝜎2
 is a standard normal random variable, so this probability is 𝐹𝐹 �−𝑊𝑊𝜇𝜇𝐼𝐼

√𝑊𝑊𝜎𝜎2
�, where 𝐹𝐹 is the 

cumulative distribution function of the standard normal distribution. 𝐹𝐹(𝑥𝑥) ≤ 1
2

+ 1
2
�1 − 𝑒𝑒−2𝑥𝑥2 𝜋𝜋⁄  

when 𝑥𝑥 > 0 (see Section 26.2.24 of [4]). Thus, 𝑃𝑃𝑃𝑃[Correct] = 𝐹𝐹 �−𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

� ≤ 1
2

+ 𝛿𝛿 if the following 
inequality is satisfied: 

1
2

+
1
2
�1 − 𝑒𝑒

−2�−𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

�
2
𝜋𝜋�
≤

1
2

+ 𝛿𝛿 

From the derivations above, −𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

= 1
2√𝑊𝑊 ∙ 2

𝑛𝑛−𝐻𝐻2
2 , giving the following sequence of inequalities: 

1
2
�1 − 𝑒𝑒−2�

1
4𝑊𝑊∙2𝑛𝑛−𝐻𝐻2� 𝜋𝜋� ≤ 𝛿𝛿 

1 − 𝑒𝑒−
1
2𝑊𝑊∙2𝑛𝑛−𝐻𝐻2 𝜋𝜋� ≤ 4𝛿𝛿2 

1 − 4𝛿𝛿2 ≤ 𝑒𝑒−
1
2𝑊𝑊∙2𝑛𝑛−𝐻𝐻2 𝜋𝜋�  

ln(1 − 4𝛿𝛿2) ≤ −
1
2
𝑊𝑊 ∙ 2𝑛𝑛−𝐻𝐻2 𝜋𝜋�  

−2𝜋𝜋 ln(1 − 4𝛿𝛿2) ≥ 𝑊𝑊 ∙ 2𝑛𝑛−𝐻𝐻2 

log2(2𝜋𝜋) + log2(− ln(1 − 4𝛿𝛿2)) ≥ log2 𝑊𝑊 + 𝑛𝑛 − 𝐻𝐻2 

𝐻𝐻2 ≥ 𝑛𝑛 + log2 𝑊𝑊 − log2(2𝜋𝜋) − log2(− ln(1 − 4𝛿𝛿2)) 

Since 4𝛿𝛿2 ≅ 0 when 𝛿𝛿 ≅ 0, − ln(1 − 4𝛿𝛿2) is closely approximated by 4𝛿𝛿2, so the inequality can 
be written as: 

𝐻𝐻2 ≥ 𝑛𝑛 + log2 �
𝑊𝑊
𝛿𝛿2
� − 𝑙𝑙𝑙𝑙𝑙𝑙2𝜋𝜋 − 3 

This derivation has shown that if the above inequality is satisfied by a sufficiently high value of 
𝐻𝐻2, then the distinguishing probability 𝑃𝑃𝑃𝑃[Correct] ≤ 1

2
+ 𝛿𝛿. Now note that min-entropy 𝐻𝐻 is a 
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lower bound on collision-entropy 𝐻𝐻2 and consider the following inequality where collision-
entropy 𝐻𝐻2 is replaced with min-entropy 𝐻𝐻: 

𝐻𝐻 ≥ 𝑛𝑛 + log2 �
𝑊𝑊
𝛿𝛿2
� − 𝑙𝑙𝑙𝑙𝑙𝑙2𝜋𝜋 − 3 

If this inequality is satisfied by a sufficiently high value of min-entropy 𝐻𝐻, then the previous 
inequality involving collision-entropy 𝐻𝐻2 is also satisfied, and 𝑃𝑃𝑃𝑃[Correct] ≤ 1

2
+ 𝛿𝛿. 

Q.E.D. 

A.2. Justification of the Claim on Higher Powers of 𝜽𝜽𝒋𝒋 

In the proof of Claim 1, sums of the powers of 𝜃𝜃𝑗𝑗  higher than 𝜃𝜃𝑗𝑗2 were omitted. This does not affect 
the validity of the conclusion if 𝜃𝜃𝑗𝑗 is sufficiently near zero. This is established as follows. Recall 
that there are 2𝑛𝑛 values of 𝜃𝜃𝑗𝑗 , each of which is approximately normally distributed with mean zero 
and variance approximately 2𝑛𝑛−𝐻𝐻2. Consider the largest 𝜃𝜃𝑗𝑗: 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝜃𝜃𝑗𝑗�. 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 is 𝑧𝑧 = 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥

2
𝑛𝑛−𝐻𝐻2
2

 

standard deviations away from zero (which was shown in A.1 to be the mean of 𝜃𝜃𝑗𝑗). The value of 
𝑧𝑧 is expected to be such that in a collection of 2𝑛𝑛 standard normal random variates, approximately 
one of the variates is greater than or equal to this value of 𝑧𝑧. If 𝑓𝑓(𝑧𝑧) and 𝐹𝐹(𝑧𝑧) are the density 
function and the cumulative distribution function of the standard normal distribution, respectively, 
then for large 𝑧𝑧, 1 − 𝐹𝐹(𝑧𝑧) ≅ 𝑓𝑓(𝑧𝑧)

𝑧𝑧
 (see Section 26.2.12 of [4]). The desired value of 𝑧𝑧, therefore, 

gives (1 − 𝐹𝐹(𝑧𝑧))2𝑛𝑛 ≅ 1, which leads to 2𝑛𝑛

𝑧𝑧√2𝜋𝜋
𝑒𝑒−

𝑧𝑧2

2 = 1, or 𝑧𝑧2 + 2 ln 𝑧𝑧 = 2𝑛𝑛 ln 2 − ln(2𝜋𝜋). Since 
𝑧𝑧2 dominates the left side of this equation for moderately large values of 𝑧𝑧, the desired value of 𝑧𝑧 
is approximately �2𝑛𝑛 ln 2 − ln (2𝜋𝜋). The value of 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 is then expected to be approximately 

2
𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋). For any of the typical values of 𝑛𝑛 and a value of 𝐻𝐻2 given by the lower 

bound established in Claim 1, 𝐻𝐻2 ≥ 𝑛𝑛 + 64, so 2
𝑛𝑛−𝐻𝐻2
2 ≤ 2−32, and it can be calculated that 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 

is a positive value that is likely to be less than 10−8. A similar argument leads to 𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛 being 
approximately −𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥, so it is expected that �𝜃𝜃𝑗𝑗� ≤ 10−8 for all 𝑗𝑗. Therefore, it is safe to omit 
powers of 𝜃𝜃𝑗𝑗  higher than 𝜃𝜃𝑗𝑗2, since it is shown in A.1 that doing so has a negligible effect. 

A.3. Proof of Claim 2 

It is shown in A.2 that 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 ≅ 2
𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋), which implies that the corresponding 

value 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝑝𝑝𝑗𝑗� is approximately 2−𝑛𝑛 �1 + 2
𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�. If the min-entropy 

of the input to the conditioning function is 𝐻𝐻, then 𝐻𝐻2 ≥ 𝐻𝐻, so 

𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 2−𝑛𝑛 �1 + 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�. 

The min-entropy corresponding to this value of 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 is: 
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−log2𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≥ 𝑛𝑛 − log2 �1 + 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)� 

= 𝑛𝑛 −
𝑙𝑙𝑛𝑛 �1 + 2

𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�

𝑙𝑙𝑛𝑛2
 

Since H ≥ n + 64, 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋) is a very small positive number, so 𝑙𝑙𝑛𝑛 �1 +

2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)� ≅ 2

𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋), giving 

−log2𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≥ 𝑛𝑛 −
2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)

ln2
 

Dividing this value by 𝑛𝑛 gives an average per-bit min-entropy of at least 

1 −
2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)

𝑛𝑛𝑙𝑙𝑛𝑛2
 

When 𝐻𝐻 ≥ 𝑛𝑛 + 64, a per-bit min-entropy of at least 1 − 2−32𝑐𝑐 is obtained, where 0 < 𝑐𝑐 < 1 for 
all the values of 𝑛𝑛 of interest. Therefore, when 𝐻𝐻 ≥ 𝑛𝑛 + 64, the average per-bit min-entropy of 
the 𝑛𝑛-bit conditioning function output is at least 1 − 2−32. Q.E.D. 
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Appendix B. List of Symbols, Abbreviations, and Acronyms 
DRBG 
Deterministic Random Bit Generator 

NIST 
National Institute of Standards and Technology 

RBG 
Random Bit Generator 

SP 
(NIST) Special Publication 

ε 
A positive constant that is assumed to be no greater than 2−32 

E(X) 
The expected value of the random variable X 

log2(x) 
Base-2 logarithm of x 

ln(x) 
Natural logarithm of x 

Var(x) 
Variance of random variable x 
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Appendix C. Glossary 

adversary 
A malicious entity whose goal is to determine, to guess, or to influence the output of an RBG. 

bitstring 
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit. 

conditioning function  
A deterministic function used to reduce bias and/or improve the entropy per bit. 

cryptographic boundary 
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical 
bounds of a cryptographic module and contains all of the hardware, software, and/or firmware 
components of a cryptographic module. 

entropy 
A measure of the randomness or uncertainty of a random variable. 

entropy source 
The combination of a noise source, health tests, and optional conditioning component that produce 
bitstrings containing entropy. 

full-entropy bitstring 
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This publication 
proves that a bitstring satisfying a certain definition of full entropy has an entropy rate of at least 
1 − ε, where ε is at most 2−32. 

ideal randomness source 
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is 
unpredictable and unbiased, with a value that is independent of the values of the other bits in the 
sequence. Prior to an observation of the sequence, the value of each bit is equally likely to be 0 or 
1, and the probability that a particular bit will have a particular value is unaffected by knowledge 
of the values of any or all of the other bits. An ideal random sequence of n bits contains n bits of 
entropy. 

likelihood ratio test 
A statistical test aimed at distinguishing between two competing models that could have produced 
an observed event based on a comparison of the likelihoods of the observed event, given the two 
models. 

min-entropy 
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is 
(−log2 max pi) for a discrete distribution having probabilities p1, ..., pk. Min-entropy is often used 
as a measure of the unpredictability of a random variable. 
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