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Abstract

Wide deployment of wireless communications plays an essential role in the vision of future
cyber-physical systems (CPSs), which includes massive transfer of automation informa-
tion. Many practical considerations of industrial CPSs affect the success of the deployment
of industrial wireless networks, and, thus, can inhibit their widespread adoption. These
considerations include multi-path propagation, network congestion, and jamming interfer-
ence. Jamming is of chief concern when wireless is used for mission critical or safety inte-
grated systems. In this paper, an experimental platform consisting of a robot arm depress-
ing a spring mechanism with a wireless force-feedback control algorithm is constructed.
The robot applies downward pressure on a spring assembly until a predetermined force is
detected and transmitted successfully to the controller under varying levels of sustained
interference. Machine learning is used to learn and predict the signal-to-interference level
of the communication link solely using position information from an independent vision
tracking system. Various supervised learning algorithms are investigated and rated accord-
ing to their performance.

Key words

industrial wireless, factory communications, cyber-physical systems, wireless networking,
robotics, machine learning, IEEE 802.11.
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1. Introduction

Industrial wireless systems (IWSs) are being deployed in various industrial environments
due to the continued requirements pressure of cyber-physical systems (CPSs). Applica-
tion domains for IWSs include flexible manufacturing, safety, process control, alerting and
monitoring [1]. The advantages of deploying wireless communications in industrial appli-
cations include ease of scale, flexibility, and lower cost compared to the wired counterpart.
Nevertheless, there are challenges in wireless deployments [2–4]. The main cause of these
challenges is the unpredictable and random nature of wireless channels. In addition, the
quality of wireless data communications is impacted by various wireless channel impair-
ments such as path loss, fading, multi-path, and interference. As a result, a careful design-
ing process of wireless communications and control networks is required to deal with these
impairments [5, 6].

One of the major challenges in designing IWSs and the underlying industrial systems is
interference detection and mitigation. Interference can result from various narrow-band or
wide-band sources including coexisting wireless systems, intentional jamming sources, and
non-communications devices such as industrial equipment and microwave ovens [7]. In-
terference can degrade the communication quality of service (QoS) significantly and hence
IWS designers consider various interference management techniques.

In this article, we investigate the impact of various machine learning regression algo-
rithms on indirect signal to interference ratio (SIR) estimation using robot position infor-
mation, where the force feedback signal is transmitted over a wireless local area network
(WLAN) deploying IEEE 802.11b/g/n [8]. We also endeavor to understand the impact of
various robot arm movement features. Specifically, the position data from a vision-based
tracking system is used to train a channel quality estimator which infers the SIR experi-
enced by both the wireless access point and the wireless station used within the testbed.
Five different robot arm movement features are extracted from the position data that is
captured by the vision system.

In this work, we apply the proposed SIR estimation approach using machine learning
in a force-seeking scenario as an example of a task that is commonly found in robotic in-
dustrial workcells. Generally, a force-seeking task is used when a robot needs continuous
feedback to be aware of the physical environment where it is doing its job assignments
such as placing a peg in a tight hole, or when a touch or collision should be detected for
another action to start [9]. The force-seeking task is deployed by many higher-level ap-
plications such as finishing, object detection, grinding, part differentiation, and precision
part fit-up [9, 10]. One of the main advantages of using the robot force-seeking capabil-
ity in various applications is reducing the number of sensors necessary on a workcell for
performing the corresponding task [10].

Furthermore, the proposed wireless interference level estimation is a general approach
that can be applied in different industrial use cases. The approach follows the idea of using
a data-driven anomaly detection and estimation approach in industrial control systems [11].
In this approach, a system model is trained for the industrial use case, while performing
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under different conditions, using a machine learning technique. A prediction or estimation
technique is then applied to estimate the system state while executing a certain task.

1.1 Motivation

The study of the impact, evaluation, and suppression of interference on industrial control
systems has been investigated in [12, 13] and the references therein. Interference level
in an industrial environment can be estimated either using the received signal strength at
various nodes of the system or performing spectrum measurements through distributed
nodes [14, 15]. Although both these approaches can achieve a good estimation result sta-
tistically, their real-time performance largely relies on the system’s capabilities of transfer-
ring data between distributed nodes and processing of data from multiple sources. In [16],
for instance, it was stated that implementing these conventional estimation approaches is
often constrained by limited hardware capabilities, both from the sensing and the process-
ing point of view. Generally, using received signal strength indicator (RSSI) or any similar
energy-based interference estimation techniques require energy sampling with low com-
plexity platforms which impairs signal detection accuracy due to several reasons. First,
the operating frequency of the on-board microcontroller caps the energy sampling rate.
More specifically, as the RSSI is typically a heavily-filtered real valued version of raw
I/Q samples, it undergoes a significant loss of information on the envelope of the acquired
signals [17].

In addition, the interference identification tasks can be rather time-consuming because
of the harmonization of the scanning and processing time per the network schedule [16].
Also, interference estimation in the discussed use case, where industrial robots use their
embedded wireless communications components, may require the collected data to be
transmitted wirelessly, which leads to more congestion to the network and the transmission
can be unreliable over wireless as well. Moreover, these conventional schemes measure the
interference level without indicating its impact on the physical processes, where in many
cases, interference may not lead to degradation in the physical process performance [18].

To the best of our knowledge, we are the first to introduce wireless interference estima-
tion using physical process measurements. Specifically, our method introduces a localized
level of interference estimation, which depends on the performance degradation at a sin-
gle physical equipment of interest, namely in this work, a robot. Moreover, the proposed
scheme can help in the process of interference identification and estimation, which improve
interference characterization such as the scheme in [19], where estimating the wireless
network time-frequency characteristics can enable dynamic spectrum access, interference-
aware routing, or enhanced network coexistence. In this work, we introduce an approach
of estimating the SIR through monitoring its impact on the physical process in an industrial
wireless use case. In the results, we focus on comparing the proposed ML-based approach
estimated SIR values with the ground truth SIR values in order to measure the performance
gap of the approach. Other SIR estimation methods cannot obtain better estimations than
the ground truth values, and hence, we compare the performance of the ML-based approach
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to these ground truth values.

1.2 Contributions

We summarize the contributions of this paper as follows:

1. Our testbed approach demonstrates the effectiveness of ensemble-based machine
learning for physics-based interference detection in CPSs such as the manufactur-
ing workcell.

2. The superior performance of ensemble-based supervised learning algorithms for in-
terference estimation in the chosen scenario is made clear.

1.3 Organization

Our paper is organized as follows: in Section 2, the related work is discussed. In Section 3,
the use case and the testbed setup are briefly presented. In Section 4, the data processing
phases are explained. Later, the results of the machine learning approach are presented in
Section 5. In Section 6, we discuss the conclusions and future work.

2. Related Work

In the literature, two types of interference signals are considered, namely, intentional and
unintentional interference. Reliable IWSs require dealing with interference through vari-
ous approaches of assessment and mitigation. Machine learning has been widely used to
detect and estimate interference information to enhance the performance of interference
management algorithms.

2.1 Deploying WLANs in Industrial Applications

Industrial wireless networks are often utilized for the control of physical processes that
demand strict performance requirements such as high reliability, very low latency with de-
terministic guarantees [20]. Current industrial wireless technologies, such as ISA100.11a
and WirelessHART, are based on IEEE 802.15.4 and can achieve industrial system require-
ments for monitoring and supervisory applications [21]. However, the use of industrial
wireless for closed-loop control and robotics applications requires much higher data rates
and better coverage than the current IEEE 802.15.5-based wireless technologies. IEEE
802.11-based wireless networks can offer many benefits for industrial communications
while, in its current available form, faces the limitations of the lack in determinism and in-
sufficient reliability, due its randomness and contention-based nature [22]. In [22–24] and
the references therein, multiple solutions are offered for reliable and deterministic commu-
nications using IEEE 802.11-based technologies through applying changes to the physical
(PHY) and medium access control (MAC) layers. Moreover, next generation WLAN, such
as IEEE 802.11ax, is based on orthogonal frequency division multiple access (OFDMA),
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which offers a non-contention-based multiple access scheme and provides additional bene-
fits for industrial communication [25]. In this work, we deploy IEEE 802.11-based technol-
ogy to achieve the required data rate for the force feedback in the proposed robotic use case.
In this case, we use the proposed machine learning approach to estimate the interference
level, and hence, the wireless link quality and reliability are estimated.

2.2 Interference Analysis in CPSs

The interference analysis in cyber-physical systems has been considered in multiple works
for various scenarios. In [26], in-network interference mitigation techniques are discussed
for ultra-reliable low-latency wireless communications systems. The paper focused on mu-
tual interference mitigation in an industrial automation setting, where multiple transmis-
sions from controllers to actuators interfere with each other. In [27], an interference mit-
igating receiver architecture is proposed. The application scenarios are smart homes and
modern factories where dense wireless communications devices exist. Moreover, in [28],
interference cancellation of transmissions from neighboring cells in a 5G cellular network
is presented. In [29], a dedicated node is used for link quality estimation (LQE), such that
received data packets are used to identify interference without introducing additional traffic
to the network. The use of LQE estimation, spectrum analysis, and traffic troubleshooting
in IWSs to study interference impacts is demonstrated in various articles such as [30, 31].

2.3 Impacts of Jamming on CPSs

On the other hand, intended interference (i.e., jamming) can lead to service denial or
poor performance in wireless networks. In [32], a literature review is presented that in-
cludes an overview of recent research efforts on networked control systems under denial-
of-service attacks such as jamming attacks in wireless channels. One of the discussed chal-
lenges is how to achieve ultra-reliable low-latency signaling within industrial applications.
In [33], a discussion is also provided on the recent developments concerning the design of
attack-resilient control and communication protocols. Generally, a jamming attacker can
block transmission of packets by emitting strong interference signals to a wireless chan-
nel [34, 35]. Jamming attacks can target various wireless technologies and can be a major
concern for control systems, since they are easy to launch [35]. It is shown in [36] that
off-the-shelf hardware can be used for generating jamming attacks on wireless networks.
In cases of physical-layer attacks, the jammer targets a frequency band and is not required
to follow the wireless protocol where it can cause a decrease in the SIR, thus preventing the
receiver from successfully detecting transmitted packets [36]. In the case of medium access
control (MAC)-layer attacks, both the packet sender and the jammer operate on the same
channel; the jammer’s goal is to cause packet collisions. In [37], the authors evaluate the
CPS resilience to jamming attacks that disrupt wireless communications. They considered
three jamming strategies, namely, constant, random, and protocol-aware jamming. They
show, through experimental results, that various CPS control schemes can be impacted by
constant and random jamming while only time-triggered control schemes can be impacted
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by protocol-aware jamming. Moreover, the resilience of CPSs to periodic jamming sig-
nals is considered in [38]. Additionally, resilience to interference in general is considered
in [39–41].

2.4 Machine Learning for Jamming Detection

Machine learning has been used for the detection and estimation of jamming attacks.
In [42], an unsupervised machine learning algorithm based on a multi-layer auto-encoder
is used to extract the interference source spectrum features. These features are then used to
distinguish the interference sources’ types and locations without labeling measured data.
In [43], an unsupervised approach using a recurrent neural network was used to detect
anomalies in the CPS performance and identify attacked sensors. In [44], a behavior-based
machine learning intrusion detection approach is proposed to detect attacks at the physical
process layer. The results are validated through the experimental study of a real, modern
water treatment facility. In [45], the viability of machine learning methods in detecting
the new threat scenarios of command and data injection is assessed. In that work, com-
mand and control communications in a critical infrastructure setting are monitored and vet-
ted against examples of benign and malicious command traffic to identify potential attack
events. In [46], the authors assessed discriminating types of power system disturbances
through machine learning by detecting jamming attacks. They evaluated various machine
learning methods as disturbance discriminators and discuss the practical implications for
deploying machine learning systems as an enhancement to existing power system architec-
tures.

2.5 State Estimation for Industrial Control Systems

The SIR estimation can be considered as an example of the wireless network state esti-
mation, which in this case a subsystem of an industrial control system. Hence, the use
of the state estimation techniques is generally possible, however, it is hard to be imple-
mented due to the complexity of the system. As a result, a ML-based approach is pro-
posed. Two general state estimation schemes can be used for industrial control systems,
namely, model-driven and data-driven [47]. The model-driven state estimation methods
require known system information. With the development of sensor technologies and data
fusion technologies, the data-driven methods become more important for characterizing
systems that cannot be described by models [48]. However, data-driven methods can lead
to poor characterization accuracy when data is insufficient or of low quality and hence
combining both the methods in hybrid-driven state estimation methods can improve the
performance of state estimation [49]. Multiple publications discuss the state estimation of
distributed dynamic systems using data-driven methods by deploying machine learning and
artificial intelligence schemes such as [50, 51] and the references therein. Also, the use of a
data-driven state estimation method for a time-varying uncertain dynamical network can be
found in [52] where the effect of communication transmission delays is considered in the
system state estimation between adjacent nodes in the network. However, the estimation
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of the communications network state by utilizing measurement of the physical system has
not been discussed in the literature. In this work, we propose a machine learning based
approach for estimating the wireless link quality based on the robot position measurements
where we validate our approach through an experimental study.

2.6 Conclusions of Related Work

In the literature, it was shown that impact of link quality on the physical performance of
CPS cannot be fully studied by observing LQE. As a result, studying the performance of the
physical components performance, while communicating over wireless links, complements
the study of CPS performance over wireless. In this work, we deploy observations from
the physical system to estimate the interference level, and hence, the quality of the wireless
link through an experimental study.

This proposed algorithm and the obtained results can be beneficial to a wireless CPS in
different levels. Typically, interference estimation is performed through spectrum monitor-
ing systems where information can be transferred to control systems to react accordingly.
The proposed wireless channel SIR estimation approach allows the robot arm control sys-
tem to react to the estimated interference levels without the need of a probe to directly
measure the interference. On the other hand, the obtained results show an example of the
realistic wireless interference impact on the movement of a robotic system where theoreti-
cal and simulation-based studies cannot capture all aspects of practical industrial systems.

3. Robot Arm Force-Seeking Application

In this section, we discuss the testbed components, the experimental setup, and the radio
frequency (RF) environment. The robot force-seeking apparatus is shown in Figure 1.
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Fig. 1. Robot force-seeking spring system with controlled wireless channel emulation and
interference injection.

3.1 Testbed Components

The system is composed of the following components:

• Physical Process Components: The physical process is composed of a robot arm
and a spring assembly. The robot arm system has three main physical components,
namely, the robot arm, the robot controller, and the force-torque sensor (FTS). The
robot arm has 6 degrees-of-freedom and its joint motion is controlled by the robot
controller with the control signal transferred over a fieldbus cable. The robot arm is
equipped with a probe and a FTS where the probe is used to push the spring assembly
vertically and the FTS provides the robot controller with force readings on the three
Cartesian axes at a rate of 125 Hz. The FTS is connected to the controller over the
wireless network.

• Wireless Networking Devices: The FTS readings to the robot controller are trans-
ferred over a wireless 802.11b/g/n network. The FTS compute box has an Ethernet
interface which is connected to an Ethernet-to-WiFi adapter. On the other side, the
wireless access point (AP) is connected directly to the Ethernet interface of the robot
controller.
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• Channel Emulator: In order to have precise control over the RF environment, a chan-
nel emulator is deployed between the wireless adapter and the AP. We deployed a
radio frequency channel emulator capable of replicating the multipath and path loss
environment for a mesh network of up to 8 physical nodes and 56 virtual links be-
tween those nodes. The channel emulator was RFnest D508, and the corresponding
software was RFview [53]. The channel emulator supports an instantaneous band-
width of 250 MHz (4 ns tap spacing) with an effective dynamic range of 73 dB,
which includes all analog and digital realization impacts. The emulator is controlled
by a nearby computer, which loads the path loss model and channel impulse response
for each communications link. In this work, we used it to obtain various interference
levels at different nodes, as discussed in the results section.

• Jammer: A vector signal generator is deployed to inject a white Gaussian noise
(WGN) interference signal for the testbed. Interference level is controlled by the
RF channel emulator to produce precise SIR levels.

• Vision Tracking System: The tracking system is deployed to obtain the accurate
ground-truth positions of the robot arm during the experiments at a frame rate of 120
frames per second.

The used wireless protocol between the FTS to the robot controller is IEEE 802.11b/g/n.
The traffic to the wireless node is generated by a proprietary application layer protocol
over a transmission control protocol (TCP) connection. We found using Wireshark that
the data stream includes packets that contains the sensing information of payload lengths
ranging from 4 to 28 Bytes at a rate of 125 Hz at the application layer. The packets are
transmitted with no acknowledgement (ACK) required to keep the real-time connection.
We kept the remaining wired communication links between other components as shown
in Figure 1. However, the proposed approach is not impacted by the used protocols since
the ML model is being trained using various interference power levels while deploying
the same exact communication protocols between different components. Specifically, the
proposed approach can estimate the interference power level based on its impact on the
physical process and hence the best performance of the proposed approach is achieved in
the range of interference power where the physical performance is degraded. However,
it cannot achieve the same performance while the interference power is low that it does
not impact the physical process or high that it totally stops the process. These ranges
for a specific use case are fully dependent on the communications protocols at various
layers. Moreover, the approach performance also can be impacted by the communications
protocols on different layers based on their interference resistance and error correction
properties. As a result, in a specific use case, we train the model by the performance
against various SIR values and hence the trained regression model is used for estimating
the operational SIR values while the testbed is performing.

Moreover, interference estimation using data from industrial wireless robots, in general,
may require the collected data to be transmitted wirelessly, which leads to more congestion
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to the network and the transmission can be unreliable over wireless as well. Moreover,
the use of independent remote monitoring system allows the wireless health information of
distributed nodes to be evaluated, enabling improved applicability of the proposed approach
in future. As a result, the idea of robot position tracking using an accurate vision tracking
system is proposed. In order to collect accurate position information, we deployed a vision
tracking system. We deployed the OptiTrack V120 Trio with three cameras, frame rate of
120 frames per second, and 640 x 480 resolution per camera [54]. The tracking system is
connected to a computer for data acquisition and processing at which the real-time position
information is tracked and stored. We used the supervisory computer for controlling the
vision system in order to synchronize the beginning of tracking data acquisition to the
force-seeking experiment start. We have found that the vision tracking error is less than or
equal 0.2 mm.

3.2 Experimental Setup

The universal robot UR-3 is programmed to apply force on the spring assembly in a vertical
direction as shown in Figure 1. The robot controller receives the periodic force readings
from the FTS. Once the applied force reaches a predefined threshold, Fth, the robot arm
moves back to the home position and starts a new force-seeking cycle.

The robot arm movement is impacted by the received FTS readings in two ways: i) it
does not start the the force-seeking cycle until the robot controller zeros the FTS, and ii) the
robot arm keeps descending until its force threshold is reached. The controller will continue
to move the arm beyond the target force threshold if FTS reports are missed. Similarly, if
no FTS reports are received during a period of the time, then the arm motion is interrupted.

3.3 RF Scenario

The channel emulator is used to set up the wireless environment among the three wireless
nodes in the system, namely, the wireless adapter at the FTS, the wireless AP, and the
jammer. In this work, we study the SIR at both the wireless adapter and the wireless
AP. We denote the jammer received power at the AP and the adapter by PJ-AP and PJ-AD,
respectively. We also denote the adapter received power at the AP by PAD-AP and the
received power at the wireless adapter of the AP transmission by PAP-AD. These power
values are defined in dBm. Hence, we can formulate the SIR values in dB at the AP and
the wireless adapter, respectively, as follows:

SIRAP = PAD-AP −PJ-AP, (1)

SIRAD = PAP-AD −PJ-AD. (2)

4. Data Analysis

In this section, we present the collected data format and all the data processing steps per-
formed in this experimental study. The data collection is performed using the vision track-
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ing system. The data are processed using Matlab for feature extraction where these features
are used in SIR estimation. Afterwards, the Sci-kit Learn library [55] over Python is used
to train various types of regressors and estimate SIR levels given the extracted features.

4.1 Collected Data

The robot arm moves vertically to push the spring assembly. We denote the position of
the robot arm probe by Zd which is a function of time t. The time series is denoted by
Zd(t) where an example of one robot arm movement cycle is shown in Figure 2. The time
series data are collected continuously using the vision tracking system for a period T . Each
collected time series is labeled by the corresponding SIR values at the wireless AP and
adapter, SIRAP and SIRAD, respectively.

Fig. 2. Sample time series of probe position in mm

4.2 Feature Extraction

The use of time series features in machine learning is a more practical approach since it is
less computationally expensive than using the time series samples. The robot arm repeats
the force-seeking cycles and therefore we slice the time series data into cycles. Each cycle
starts as the probe reaches the home position which is denoted by ZH. The data of time
series of length T are split into N cycles such that the nth cycle occurs between Tn−1 and
Tn, where T0 equals 0. In each of these force-seeking cycles, the various time intervals of
robot arm actions and the vertical movement range are selected to be studied.

The first obtained feature is the length of the robot arm movement range in mm, which
is denoted by Z̃d. This feature is impacted by wireless communications such that the probe
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can go further down if the force level reached the threshold while the FTS information is
delayed or lost. In the nth cycle, the value of Z̃d is defined as follows

Z̃d = ZH − min
t∈[Tn−1,Tn]

Zd(t). (3)

As an example, shown in Figure2, let ZH equal -64 mm which means that the probe
starts at a point 6.4 cm below the reference point that is at z=0. The probe in the nth cycle
between the times Tn−1 and Tn should move downwards until the force reading in the z-axis
is larger than Fth, and hence, the robot stops and starts moving in the upward direction. Let
the value at which the robot stops equal -78 mm. The value of Zd(t) through this specific
cycle is the one shown in Figure 2 as a function of time. As a result, the value of min
Zd(t) in (3) equals -78 mm and the value of Z̃d equals 14 mm. This value of Z̃d changes
depending on the communications delay, for which the robot receives the force value to
stop its downward movement and pivot to the upward movement. The values of Z̃d over
time are collected to represent the robot arm movement ranges in various cycles, which
depends on the communications quality within these cycles.

The rest of the extracted features are defined to be the various time intervals spent by
the robot arm moving in a certain movement range. In order to define these features, we set
a threshold Zth at which the robot arm probe reaches a force level Fth, e.g., Zth is the ideal
deflection position with no communications impairments. We start by defining various
points in the cycle where the robot arm changes its taken action. The points are shown in
Figure 3. Point a is the cycle beginning point, point b is the point at which the probe begins
to descend, point c is the point at which the probe reaches Zth while descending, point d is
the point at which the probe reaches Zth while ascending after being below Zth, and point e
is the cycle end point which is exactly point a of the following cycle.

Fig. 3. Feature extraction model

The total cycle time, ∆tae, is a considered feature where a higher interference level is
expected to increase the total cycle time. In the nth cycle, the value of ∆tae is defined as
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follows
∆tae = Tn −Tn−1. (4)

The time spent at the home position , ∆tab, is also considered where the robot arm
controller communicates wirelessly with the FTS to zero it before the descent. In the nth
cycle, the value of ∆tab is defined as follows

∆tab = min
t∈[Tn−1,Tn],Zd(t)<ZH

t −Tn−1. (5)

The dwell time, while Fth is reached, is denoted by ∆tcd. In order to evaluate the value
of ∆tcd in the nth cycle, we start by calculating

tc = min
t∈[Tn−1,Tn],Zd(t)≤Zth

t, (6)

and then the value of ∆tcd is defined as

∆tcd = min
t∈[tc,Tn],Zd(t)>Zth

t − tc. (7)

The descend time, ∆tbc, is the last feature to include all the independent time intervals
within a single cycle. In the nth cycle, the value of ∆tab is defined as follows

∆tbc = tc − min
t∈[Tn−1,Tn],Zd(t)<ZH

t. (8)

In conclusion, we consider five features in this study, namely, Z̃d, ∆tae, ∆tab, ∆tbc, and
∆tcd.

4.3 SIR Estimation

In this work, the SIR estimation problem using the extracted features is considered a
machine-learning regression problem. It is a supervised learning problem where the output
is an estimated SIR value, and the input is a features vector composed of the robot arm
movement features of M cycles. Using a single cycle to estimate the SIR value cannot be
accurate, and, hence, we allow the regression algorithm to consider M cycles, such that the
input vector length is 5M. Although increasing M should lead to a better SIR estimation
result, it also leads to a higher computation cost for the regression algorithm.

The training for each regression model is performed by considering a fixed number of
cycles at each SIR labeled data set. We denote the size of the training set for each SIR
level by T . In the regression algorithm, a segment size of M cycles is used to collect the
discussed features. In results, we compare various regression algorithms and the impact
of their hyper parameters on the performance of the regression problem to obtain the SIR
value directly from the physical robot arm movement tracking.

We compare various regression approaches using two performance criteria, namely, the
mean squared error (MSE) and the R-squared variance score [56]. The MSE is correspond-
ing to the expected value of the squared error in the SIR value. The R-squared variance
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score indicates the percentage of the variance in the dependent variable that the indepen-
dent variables explain collectively. The version of R-squared in the Sci-kit Learn library
measures the strength of the relationship between the model and the dependent variable on
a convenient -1 to 1 scale. The best possible outcome is 1 when predicted values capture
the variance of the independent variable. It takes a value of 0 when the predicted value is
constant and negative values when the regression model cannot follow the trend of the data.

5. Results

In this study, IEEE 802.11b/g/n was deployed for wireless data transfer between the FTS
wireless adapter and the AP [8]. We evaluate the SIR values at both wireless nodes while
varying the jamming interference power such that SIRAP takes the values -10, -9, -8, -7 dB
while SIRAD takes the values 1, 2, 3 dB. Except otherwise mentioned, we set M = 50 and
T = 200.

5.1 Machine Learning Algorithm Comparison

In this subsection, various regression approaches are compared using two performance cri-
teria, namely, the MSE and the R-squared variance score [56]. We present the performance
for different values of M. The compared algorithms are the random forest, gradient boost-
ing, extreme gradient boosting (XGBM), decision tree, support vector machine (SVM),
k-nearest neighbor (KNN), kernel ridge, and linear ridge [55, 57].

In Table 1, the ensemble-based algorithms, which are the random forest, gradient boost-
ing, and XGBM, perform better than the rest of the algorithms. This happens because the
ensemble-based algorithms learn from the training data without having an initial model to
fit, thus allowing for capturing the randomness impacts on the collected data. Moreover,
the XGBM gives slightly better performance than the random forest and gradient boosting
algorithms, except at M = 1. The XGBM performs gradient boosting over random set of
trees, and hence, has superior performance.

Table 1. MSE values of various regression algorithms for SIRAP

M = 1 M = 10 M = 30 M = 50 M = 100
Random Forest 0.61 0.54 0.49 0.48 0.46
Gradient Boosting 0.56 0.55 0.47 0.45 0.44
XGBM 0.62 0.53 0.45 0.43 0.41
Decission Tree 1.07 0.99 0.87 0.91 0.97
SVM 0.92 0.99 0.98 0.97 0.96
KNN 0.73 0.74 0.73 0.74 0.77
Kernel Ridge 0.97 0.73 0.71 0.71 0.71
Linear Ridge 0.7 0.7 0.7 0.71 0.71

The KNN and SVM algorithms performance does not improve against M. The main
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reason is that both algorithms perform regression based on distance [58], and hence, are
impacted by the ranges of features used. The higher values features are the ones that impact
the performance of these algorithms the most. In our case, the features with the highest
ranges are the total cycle time and the descent distance, which are found to be the ones
with the least impact on the results, as shown later in Figure 9.

We also find that it has superior variance score in Table 2. Generally, Table 2 shows
similar trends as Table 1 for various algorithms where ensemble-based algorithms have the
best performance, and their performance is enhanced by increasing the segment size M of
the measured data.

Table 2. Variance score values of various regression algorithms for SIRAP

M = 1 M = 10 M = 30 M = 50 M = 100
Random Forest 0.15 0.2 0.3 0.35 0.35
Gradient Boosting 0.02 0.2 0.34 0.37 0.42
XGBM 0.12 0.25 0.36 0.4 0.43
Decission Tree -0.57 -0.44 -0.36 -0.3 -0.22
SVM -0.34 -0.38 -0.37 -0.37 -0.32
KNN -0.05 -0.02 -0.02 -0.08 -0.04
Kernel Ridge -0.48 -0.05 0 0 0
Linear Ridge 0.01 0.01 0 -0.01 0

5.2 Tuning the Random Forest and Gradient Boosting Regressors

In this subsection, we study the impacts of the number of estimators and the depth for
gradient boosting and random forest algorithms. The XGBM parameters are optimized
automatically when the function is called to be executed. We show the MSE performance
results for SIRAP while the same trend holds for SIRAD as well.

For the random forest algorithm, we show in Table 3 that the tree depth has more impact
on the performance than the number of the estimators (# est.). However, increasing the
depth improves the performance until the value of 5, where increasing the depth causes
slight improvements.

Table 3. MSE of Random Forrest regression parameters for SIRAP

Depth# est. 100 200 300 400 500 600
1 0.64 0.64 0.64 0.63 0.63 0.63
3 0.53 0.53 0.53 0.53 0.53 0.52
5 0.5 0.5 0.5 0.48 0.48 0.48
7 0.49 0.49 0.48 0.48 0.48 0.48
9 0.48 0.48 0.47 0.47 0.47 0.47

For gradient boosting, we show in Table 4 that a similar trend as a random forest exists
where depth has a larger impact on the performance than the number of the estimators.
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However, increasing the depth more than 7 causes the MSE performance to degrade signif-
icantly.

Table 4. MSE of Gradient Boosting regression parameters for SIRAP

Depth# est. 100 200 300 400 500 600
1 0.48 0.47 0.46 0.46 0.45 0.46
3 0.47 0.47 0.47 0.47 0.46 0.47
5 0.48 0.47 0.47 0.47 0.47 0.47
7 0.48 0.48 0.48 0.48 0.46 0.49
9 0.58 0.51 0.5 0.5 0.57 0.58

5.3 Impact of Data Segment Size M

In this subsection, we study the performance of the ensemble-based algorithms against
the segment size M. Generally, increasing the value of M increases the acquisition time
of measurement data used for decision making and lowers the spread of predicted values
around the correct value for various SIR values. In this paper, we study the impact of
the three optimized algorithms employing the MSE and the variance score as performance
metrics.

In Figure 4, we present the performance of the random forest, gradient boosting, XGBM,
and the linear ridge regressors. The linear ridge is used as a simple model-based regressor,
which practically cannot be used for prediction while it is used for comparison. In this fig-
ure, increasing the value of M enhances the performance of the ensemble-based algorithms
significantly. Generally, the prediction accuracy increases when multiple measurement cy-
cles are deployed in decision making with diminishing improvement as M increases.
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Fig. 4. The mean squared error performance for SIRAP of various algorithms against M.

In Figure 5, we present the variance score for SIRAP where a similar trend is found. The
ensemble-based algorithms can achieve a variance score above 0.35 when M is larger than
50.
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Fig. 5. The variance score performance for SIRAP of various algorithms against M.

In Figure 6, we present the MSE performance of SIRAD for the random forest, gradient
boosting, XGBM, and the linear ridge regressors when the wireless adapter is impacted by
the jamming signal. In this figure, the impact of the segment size is studied where the per-
formance levels of the ensemble-based algorithms improve by increasing the value of M for
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M ≤ 50, after which the improvement diminishes. The prediction accuracy increases when
multiple measurement cycles are deployed in decision making and no further improvement
happens when correlation between samples is lost. Comparing Figure 6 to Figure 4, the
MSE values for SIRAD are lower than those for SIRAP because the range of the predicted
SIR values is smaller.
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Fig. 6. The mean squared error performance for SIRAD of various algorithms against M.

In this experimental study, we allowed the interference power to be fixed over a long
period of time to allow us to study the impact of the segment size, M, on the performance.
In real conditions, the impact time of a specific interference power level varies where the
interference duration depends on the duty cycle of interference source. Hence, in this work,
we have shown the results of the proposed approach over various window sizes starting by
M = 1 to M = 100. Although the best performance of the approach is achieved for larger
values of M, as expected, the results show how the approach performs in smaller values
of M, which can be beneficial in some more realistic scenarios where interference power
is fixed over a short period of time. Moreover, the study of the problem of estimating
time-varying interference impact is another problem which includes detecting both the in-
terference power level and its temporal characteristics which can benefit from the current
approach but not a direct extension of it.

5.4 Impact of Training Sequence Length T

In this subsection, we briefly discuss the impact of the training length on the performance
of various algorithms. The parameter T is the length of the training sequence where each
element contains M of the force seeking cycles. In the following figures, we show the MSE
performance curves against T for M = 30 and 100.
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In Figure 7, increasing the training size T can improve the prediction performance
significantly. Gradient boosting and XGBM have higher improvement rates with T than
the random forest algorithm.
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Fig. 7. The mean squared error performance for SIRAP of various algorithms against T .

5.5 Impact of Individual Features

In this subsection, we study the impact of the individual features on the performance of the
ensemble-based machine learning algorithms. Understanding the importance of each fea-
ture on the prediction algorithms is essential in selection of features and hence reducing the
required processing power for an algorithm. We show the results for the XGBM algorithm
for brevity and the similarities in behavior of various ensemble-based algorithms perfor-
mance. In Figure 8 and 9, we refer to ∆tab, ∆tbc, Z̃d, ∆tcd, and ∆tae by “t high”, “t plunge”,
“Descent Distance”, “t bottom”, and “Total Cycle”, respectively.
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Fig. 8. The mean squared error performance for SIRAP of XGBM algorithm against M including
individual features impact.
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Fig. 9. The variance score performance for SIRAP of XGBM algorithm against M including
individual features impact.

The feature ∆tab is the one that is most impacted by the SIR value where the perfor-
mance using all features can be almost entirely predicted by the performance using only
∆tab. This result can be explained by knowing that in the robot arm force seeking program,
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the FTS has to be zeroed before resuming the loop, and hence, there is a direct impact of
the wireless transmissions on the value ∆tab. On the other hand, the feature ∆tbc is the least
impacted by the SIR value. This feature is defined as the reflection time of the robot arm to
reverse its direction, and hence, it is minimally impacted by the SIR value. The rest of the
features are impacted by the SIR to a certain level. Generally, adding an unnecessary fea-
ture can degrade the performance. As a result, in this work, we concluded that using ∆tab
can substitute for all the five features to get the same MSE and variance score performance
with much less processing.

5.6 Complexity of the Proposed Algorithm

The results of this work show that ensemble-based approaches are suitable for estimating
the SIR of the wireless link used by the force-seeking use case. The proposed ensemble-
based techniques mainly depend on the use of decision and gradient trees for solving the
machine learning regression problem. Each of the techniques deploys the training data by
generating a large number of data trees. However, the construction process of the trees
is different for different techniques. The average asymptotic training complexity of all of
them is O(Kdn log(n)), where K is the number of the trees (# est. in the results), d is
the maximum depth of the trees, and n is the number of data points in the training data
sets [59, 60]. Although, their training complexity is similar, the random forest complex-
ity may be reduced when parallelization of the trees is utilized [60]. Also, XGBM can
achieve better performance than Gradient boosting, because of the automatic optimization
of the hyper parameters and the lower complexity achieved in the case of the missed data
entries [59]. The average asymptotic complexity for the prediction using all the schemes is
O(Kd) [60]. Similarly, this can be lowered when using random forest penalization. Note
that, tree boosting algorithms are not able to be computed in parallel as their algorithms
run sequentially for each gradient tree to boost the performance of the subsequent tree.

5.7 Discussion and Future Direction

This work represents a building block for the use of physical process performance data to
estimate the state of the wireless networks. In [61], CPSs require the monitoring of network
health information in a real-time and continuous manner in order to maintain the appropri-
ate performance. However, as CPSs become more complicated and faults are increasingly
diverse, the traditional methods for CPS anomaly detection and network performance esti-
mation become less effective [62]. This motivated the use of ML-based approaches that do
not rely on domain-specific knowledge [62, 63]. These ML-based approaches have been
widely used in CPS anomaly detection related to various types of attacks [62]. However,
we propose to use a similar approach in wireless network health monitoring based on the
measured physical performance quantities, such as the robot arm position in this case. This
work proposed a prototype of the ML-based approach in a simple use case to better under-
stand the process.
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The main direction of future work is to deploy this idea to complement the existing
wireless networks performance measurements system in order to standardize a framework
for assessment of the impact of wireless network impairments on industrial IoT systems.
Future directions include applying machine learning approaches, e.g., neural networks, to
larger, more complex systems with higher degrees of freedom. These machine learning
techniques can be used to model the industrial process such that wireless interference de-
tection and estimation can be achieved through their impact on various equipment of the
physical industrial process. Another research direction is developing the real-time deploy-
ment of the machine learning based algorithms and integrating them with current artificial
intelligence capabilities in industrial IoT systems. The real-time version of the proposed
approach can help the manufacturing community through integration of wireless link qual-
ity detection with automation controllers.

6. Conclusion

An experimental study was presented for a feedback control system where a wireless com-
munications link was used for force feedback to a robot controller. It was demonstrated that
the reliability of the wireless communication system directly impacted the performance of
the physical system. A machine learning system was then trained to predict the SIR level
by observing the probe position. Metrics of mean squared error and the R-squared variance
score were used to ascertain the effectiveness of the predictor. Based on the experiment re-
sults presented in this paper, ensemble-based algorithms were demonstrated to have clear,
superior performance over other regression algorithms.
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[30] Baccour N, Koubâa A, Mottola L, Zúñiga MA, Youssef H, Boano CA, Alves M
(2012) Radio link quality estimation in wireless sensor networks. ACM Transactions
on Sensor Networks 8(4):1–33. https://doi.org/10.1145/2240116.2240123. Available
at http://dl.acm.org/citation.cfm?doid=2240116.2240123

[31] Koepke GH, Young WF, Ladbury JM, Coder JB (2015) Interference and Coexistence
of Wireless Systems in Critical Infrastructure (National Institute of Standards and
Technology, Gaithersburg, MD), https://doi.org/10.6028/NIST.TN.1885. Available at
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1885.pdf

[32] Ahmadi A, Moradi M, Cherifi C, Cheutet V, Ouzrout Y (2018) Wireless connectiv-
ity of cps for smart manufacturing: A survey. 2018 12th International Conference
on Software, Knowledge, Information Management Applications (SKIMA), , pp 1–8.
https://doi.org/10.1109/SKIMA.2018.8631535

[33] Cetinkaya A, Ishii H, Hayakawa T (2019) An overview on denial-of-service at-
tacks in control systems: Attack models and security analyses. Entropy 21(2):210.
https://doi.org/10.3390/e21020210. Available at http://dx.doi.org/10.3390/e21020210

[34] Wenyuan Xu, Ke Ma, Trappe W, Yanyong Zhang (2006) Jamming sensor net-
works: attack and defense strategies. IEEE Network 20(3):41–47. https://doi.org/
10.1109/MNET.2006.1637931

[35] Pelechrinis K, Iliofotou M, Krishnamurthy SV (2011) Denial of service attacks in
wireless networks: The case of jammers. IEEE Communications Surveys Tutorials
13(2):245–257. https://doi.org/10.1109/SURV.2011.041110.00022

[36] Fragkiadakis A, Askoxylakis I, Chatziadam P (2014) Denial-of-service attacks in
wireless networks using off-the-shelf hardware. Distributed, Ambient, and Perva-
sive Interactions, eds Streitz N, Markopoulos P (Springer International Publishing,
Cham), , pp 427–438.
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