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Abstract 

This work evaluates the validity of the Common Vulnerability Scoring System (CVSS) 
Version 3 “base score” equation in capturing the expert opinion of its maintainers. CVSS 
is a widely used industry standard for rating the severity of information technology vul-
nerabilities; it is based on human expert opinion across many sectors and industries. This 
study is important because the equation design has been questioned since it has features 
that are both unintuitive and unjustifed by the CVSS specifcation. If one can show that 
the equation refects CVSS expert opinion, then that study justifes the equation, and the 
security community can treat the equation as an opaque box that functions as described. 

This work shows that the CVSS base score equation closely – though not perfectly – rep-
resents the CVSS maintainers’ expert opinion. The CVSS specifcation itself provides a 
measurement of error called “acceptable deviation” (with a value of 0.5 points). This work 
measures the distance between the CVSS base scores and the closest consistent scoring sys-
tems (ones that completely conform to the recorded expert opinion). The authors calculate 
that the mean scoring distance is 0.13 points, and the maximum scoring distance is 0.40 
points. The acceptable deviation was also measured to be 0.20 points (lower than claimed 
by the specifcation). These fndings validate that the CVSS base score equation represents 
the CVSS maintainers’ domain knowledge to the extent described by these measurements. 

Keywords 

computer; Common Vulnerability Scoring System; error; expert opinion; measurement; 
measuring; metrics; network; scoring; security. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 
test methods, reference data, proof of concept implementations, and technical analyses to 
advance the development and productive use of information technology. ITL’s responsi-
bilities include the development of management, administrative, technical, and physical 
standards and guidelines for the cost-effective security and privacy of other than national 
security-related information in federal information systems. 

i 



Audience 

The audience for this document includes security professionals and scientists who seek to 
understanding the accuracy and precision of the CVSS base score equation in representing 
the CVSS maintainers’ human expert opinion. 

Patent Disclosure Notice 

NOTICE: ITL has requested that holders of patent claims whose use may be required for 
compliance with the guidance or requirements of this publication disclose such patent 
claims to ITL. However, holders of patents are not obligated to respond to ITL calls for 
patents and ITL has not undertaken a patent search in order to identify which, if any, patents 
may apply to this publication. 

As of the date of publication and following call(s) for the identifcation of patent claims 
whose use may be required for compliance with the guidance or requirements of this pub-
lication, no such patent claims have been identifed to ITL. 

No representation is made or implied by ITL that licenses are not required to avoid patent 
infringement in the use of this publication. 

ii 



NIST IR 8409 
November 2022 

Table of Contents 

Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2. Common Vulnerability Scoring System . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.1. CVSS Base Score Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.2. CVSS Base Score Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

3. Rationale for the CVSS Base Score Equations . . . . . . . . . . . . . . . . . . . . 9 

3.1. Development of the CVSS Base Score Equation . . . . . . . . . . . . . . . . 9 

3.2. Acceptable Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

4. Metrology Tools, Metrics, and Algorithms . . . . . . . . . . . . . . . . . . . . . . 11 

4.1. Knowledge Encoder Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

4.2. Knowledge Constraint Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

4.2.1. Equivalency Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

4.2.2. Magnitude Measurements . . . . . . . . . . . . . . . . . . . . . . . . 15 

4.2.3. Simplifed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

4.3. Inconsistency Metrics for Knowledge Constraint Graphs . . . . . . . . . . . 16 

4.4. Voting Unifcation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4.4.1. Analysis of Votes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

4.4.2. Priority Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

4.4.3. Unifed Graph Construction . . . . . . . . . . . . . . . . . . . . . . . 18 

4.4.4. Description of Constructed Graph . . . . . . . . . . . . . . . . . . . 19 

5. Data Collection and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

5.1. Data Set of Analyzed Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

5.2. Volunteer Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

5.3. Produced Knowledge Constraint Graphs . . . . . . . . . . . . . . . . . . . . 21 

5.4. Knowledge Constraint Graph Inconsistency Measurements . . . . . . . . . . 21 

5.4.1. Graph f00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

5.4.2. Graph 977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

5.5. Unifed Knowledge Constraint Graph . . . . . . . . . . . . . . . . . . . . . . 23 

5.6. Optimal Number of Equivalency Sets . . . . . . . . . . . . . . . . . . . . . . 23 

6. Measurement Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

iii 



6.1. Consistent Scoring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

6.1.1. Scoring System Defnition . . . . . . . . . . . . . . . . . . . . . . . . 25 

6.1.2. Consistent Scoring System Defnition . . . . . . . . . . . . . . . . . 25 

6.2. Generation of a Closest Consistent Scoring System . . . . . . . . . . . . . . 26 

6.3. Measurement Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

7. Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

7.1. Mean Scoring Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

7.2. Maximum Scoring Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

7.3. Acceptable Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

7.4. Increasing Accuracy with More Data . . . . . . . . . . . . . . . . . . . . . . 30 

8. Interpretation of Results and Related Work . . . . . . . . . . . . . . . . . . . . . . 32 

9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Appendix A. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Appendix B. Set of Evaluated CVSS vectors . . . . . . . . . . . . . . . . . . . . . . . 38 

Appendix C. Encoded Knowledge Constraint Graphs . . . . . . . . . . . . . . . . . . 41 

List of Tables 

Table 1. Metric Value Descriptions, CVSS v3 . . . . . . . . . . . . . . . . . . . . . . . 7 
Table 2. Numerical Values for Base Score Metrics, CVSS v3 . . . . . . . . . . . . . . 7 
Table 3. Qualitative Severity Rating Scale . . . . . . . . . . . . . . . . . . . . . . . . 8 
Table 4. Statistics on CVSS SIG Produced Knowledge Constraint Graphs . . . . . . 21 
Table 5. Mean Inconsistency and Opposite Inconsistency Results . . . . . . . . . . . 22 
Table 6. Vectors Initially Assigned the Highest Severity in the Unmodifed Graph f00 22 
Table 7. Vectors Initially Assigned the Lowest Severity in the Unmodifed Graph f00 22 
Table 8. Measurement Results for Mean Scoring Distance, Maximum Scoring Dis-

tance, and Acceptable Deviation . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Table 9. Top 66 Most Frequent CVSS Vectors per Mappings from NVD (higher 

frequency vectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Table 10.Top 66 Most Frequent CVSS Vectors per Mappings from NVD (lower 

frequency vectors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

List of Figures 

Fig. 1. Base, Temporal, and Environmental Scoring Progression (from [1]) . . . . 5 
Fig. 2. CVSS Base Score Metrics (from [1]) . . . . . . . . . . . . . . . . . . . . . . 6 
Fig. 3. CVSS v3 Base Score Equations (from [1]) . . . . . . . . . . . . . . . . . . . 8 

iv 



Fig. 4. CVSS Analysis Screen of the NIST Knowledge Encoder Tool . . . . . . . . 11 
Fig. 5. CVSS Comparison Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Fig. 6. Example Knowledge Constraint Graph . . . . . . . . . . . . . . . . . . . . . 14 
Fig. 7. Example Equivalency Set Star Sub-graph . . . . . . . . . . . . . . . . . . . . 15 
Fig. 8. Unifed Knowledge Constraint Graph . . . . . . . . . . . . . . . . . . . . . . 24 
Fig. 9. Equivalency Sets Produced per Number of Vectors Analyzed (legend: large 

black dots are for the unifed graph, and small colored dots are for individual 
analyst graphs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Fig. 10. Decreasing Error with an Increasing Number of Inputs . . . . . . . . . . . . 31 
Fig. 11. Raw Graphs Produced by the Knowledge Encoding Tool for the 12 CVSS 

SIG Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Fig. 12. Simplifed Graphs with Redundant Edges Removed . . . . . . . . . . . . . . 43 

v 



NIST IR 8409 
November 2022 

Author Contributions 

Below are listed the contribution types of each author using the American National Standards In-
stitute (ANSI) / National Information Standards Organization (NISO) Z39.104-2022 CRediT roles 
taxonomy. The authors are listed frst in order of decreasing number of roles and then alphabetically 
by last name. 

Peter Mell: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project 
administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, 
Writing - review & editing; 

Jonathan Spring: Conceptualization, Methodology, Formal Analysis; Writing - review & editing 

Dave Dugal: Formal analysis, Resources; 

Srividya Ananthakrishna: Formal analysis; 

Francesco Casotto: Formal analysis; 

Troy Fridley: Formal analysis; 

Christopher Ganas: Formal analysis; 

Arkadeep Kundu: Formal analysis; 

Phillip Nordwall: Formal analysis; 

Vijayamurugan Pushpanathan: Formal analysis; 

Daniel Sommerfeld: Formal analysis; 

Matt Tesauro: Formal analysis; 

Chris Turner: Formal analysis. 

vi 



NIST IR 8409 
November 2022 

Executive Summary 

The Common Vulnerability Scoring System (CVSS) Version 3 maintained by the CVSS 
Special Interest Group (SIG) is a widely used industry standard for characterizing the 
properties of information technology vulnerabilities and measuring their severity. It is 
based on human expert opinion. Vulnerability properties are characterized through a multi-
dimensional vector. The severity is primarily defned through a multi-part “base score” 
equation with 8 input metrics that is not readily amenable to human comprehension. 

To develop the equation, CVSS SIG members frst described a set of real vulnerabilities 
using CVSS vectors and assigned them one of fve severity levels. This created a partial 
lookup table mapping vectors to severity levels. They then defned a target score range for 
each severity level and created an equation to attempt to map each vector to a score within 
the specifed score range. Finally, they reviewed the equation’s scoring of vectors that were 
not included in the partial lookup table to evaluate the effectiveness of the equation on 
the full set of possible vectors. Since the equation could not perfectly map vectors to score 
ranges, the CVSS Version 3.1 specifcation provides a measurement of error (an ‘acceptable 
deviation’ of 0.5 points). However, suffcient information is not provided to reproduce the 
experiment. 

This work measures the degree to which the CVSS base score equation refects CVSS 
SIG expert domain knowledge while providing a reproducible justifcation for the mea-
surements. It starts not from a set of real vulnerabilities, as the CVSS SIG did, but from a 
set of 66 vulnerability types (i.e., CVSS vectors) that represent 90 % of the vulnerabilities 
published by the U.S. National Vulnerability Database. CVSS SIG experts evaluate these 
vulnerability types and encode their knowledge as constraint graphs; sets of graphs are then 
unifed using a voting algorithm. These unifed graphs represent sets of consistent scoring 
systems (mappings of vectors to scores). The consistent scoring system closest to the CVSS 
Version 3.1 scores was found, and the distance between the scores and the closest consistent 
scoring system scores was measured. These measurements represent the degree to which 
the CVSS v3.1 base score equation represents the CVSS SIG expert domain knowledge. 

Using this approach, the mean and maximum distance of the CVSS v3.1 scores compared 
to the closest consistent scoring system scores were measured, and the acceptable deviation 
was recalculated. Unlike acceptable deviation, the new distance metrics measure the score 
values themselves separate from the severity levels. Using all 12 CVSS SIG inputs, the 
mean scoring distance is 0.13 points, the maximum scoring distance is 0.40 points, and the 
acceptable deviation is 0.20 points. Sets of 11 out of 12 of the inputs were used to calculate 
precision measurements (i.e., standard deviation). 

These fndings validate that the CVSS base score equation functions as described (to the 
extent described by these measurements), and it represents the encoded CVSS SIG domain 
knowledge. The measurements support the equation as defned. The security community 
may use it as an opaque box without understanding the internal functionality. 

1 
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1. Introduction 

This work evaluates the validity of the Common Vulnerability Scoring System (CVSS) Ver-
sion 3 (v3) “base score” equation in capturing the expert opinion of its maintainers. CVSS 
is managed under the auspices of the global Forum of Incident Response and Security 
Teams (FIRST) and is maintained by the CVSS Special Interest Group (SIG). It is the most 
widely adopted industry standard for characterizing the properties of information technol-
ogy vulnerabilities and measuring their severity, and it is based on human expert opinion. 
Vulnerability properties are characterized through a multi-dimensional vector. The severity 
is primarily defned through a multi-part base score equation with 8 input metrics that is 
not readily amenable to human comprehension. It combines sub-equations that measure 
vulnerability impact with others measuring the degree of exploitability. To understand why 
the equation is complex and not human readable, one must understand how it was created. 
Understanding its specifc objective is also necessary to measure the degree to which it 
meets that objective. 

To develop the CVSS v3 base score equation, CVSS SIG members frst described a set of 
real vulnerabilities using CVSS vectors and assigned them one of fve severity levels: Low, 
MedLow, MedHigh, High, and Critical. This created a partial lookup table that mapped 
vectors to severity levels; it is partial because only a small number of the 2592 possible 
vectors were mapped. The CVSS SIG members then defned a target score range for each 
severity level and created an equation to attempt to map each vector to a score within the 
specifed score range. Finally, they selectively reviewed the equation’s scoring of vectors 
not included in the partial lookup table to review the effectiveness of the equation on the full 
set of possible vectors. The assumption behind this approach is that an equation developed 
to accurately map a subset of the vectors would reasonably map the rest of the vectors. The 
assumption was deemed to hold, as verifed by CVSS SIG testing. However, the equation 
could not always map vectors to the specifed score ranges. For this reason, the CVSS 
v3 specifcation provided a measurement of error called “acceptable deviation” (measured 
to be 0.5 points), which measures the maximum deviation of a vector’s score from its 
target score range. However, the underlying data that would enable one to reproduce the 
experiment are not provided. 

This work measures the degree to which the v3 base score equation refects the CVSS SIG 
expert domain knowledge while providing a reproducible justifcation for the measure-
ments. It starts not from a set of real vulnerabilities, as the CVSS SIG did, but from a set of 
66 vulnerability types (i.e., CVSS vectors) that represent 90 % of the vulnerabilities pub-
lished by the U.S. National Vulnerability Database. CVSS SIG experts then evaluate these 
vulnerability types and encode their knowledge as constraint graphs. CVSS SIG members 
who self-identifed as vulnerability experts were used because the equation is designed to 
refect their expert opinion. Twelve separate evaluations of the 66 vectors were received in 
the form of constraint graphs. The 12 graphs were then unifed using a voting algorithm 
to create a single set of constraints representing CVSS SIG domain knowledge. This uni-

2 
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fed constraint graph represents a set of consistent scoring systems (mappings of vectors to 
scores). For each of these metrics, the consistent scoring system closest to the CVSS v3 
scores was found, and the distance between the scores and the closest consistent scoring 
system was measured. These measurements represent the degree to which the CVSS SIG 
expert domain knowledge is represented by the base score equation. 

Using this approach, the mean and maximum distance of the CVSS v3 scores compared to 
the closest consistent scoring system scores were measured, and the acceptable deviation 
was recalculated. Unlike acceptable deviation, the new distance metrics measure the score 
values themselves separate from the severity levels. Using all 12 CVSS SIG inputs, the 
mean scoring distance is 0.13 points, and the maximum scoring distance is 0.40 points. 
The acceptable deviation is 0.20 points (i.e., maximum distance from a severity boundary). 
Sets of 11 out of 12 of the inputs were also used to calculate the precision of these mea-
surements (i.e., standard deviation). The v3 base score equation was found to have a mean 
scoring distance of 0.13 points with a standard deviation of 0.02 points and a maximum 
scoring distance of 0.52 points with a standard deviation of 0.15. If one assumes a “nor-
mal” Gaussian distribution, there is then a 95 % chance that the mean scoring distance is 
between 0.11 and 0.15 points and that the maximum scoring distance is within 0.32 and 
0.82 points. 

This study is important because the CVSS v3 base score equation design has been ques-
tioned since it has features that are both non-intuitive and not justifed by the CVSS speci-
fcation. By showing the degree to which the equation refects the CVSS SIG maintainers’ 
expert opinion, the degree to which the equation meets its objective is measured. These 
fndings validate that the CVSS base score equation functions as described (to the extent 
described by the distance measurements). The measurements support the equation as de-
fned. The security community may use it as an opaque box without understanding the 
internal functionality. 

Note that the base score refects the severity of a vulnerability detached from any particular 
deployment context. CVSS also provides “temporal” and “environmental” equations that 
address the changing severity of a vulnerability over time and a vulnerability’s severity in 
the context of a deployed system. While important to CVSS, evaluations of the temporal 
and environmental scoring equations were not within the scope of this research. 

The rest of this publication is organized as follows. Section 2 provides the background on 
CVSS, including details on its base score metrics and equation. Section 3 then describes 
the rationale for the equation, how it was developed, and the measurement of error provided 
within the CVSS v3 specifcation. Section 4 pivots to the authors’ research by describing 
the tools, metrics, and algorithms used for this study. This includes the tool for collecting 
and encoding CVSS domain knowledge, an explanation of knowledge constraint graphs, 
and the voting algorithm for unifying multiple graphs. Section 5 focuses on data collection 
and processing by describing the set of analyzed CVSS vectors, the participants included 
in the study, the produced knowledge constraint graphs, and the unifed knowledge con-

3 
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straint graph. Section 6 describes the measurement approach, defnes “consistent scoring 
systems”, and describes heuristics for identifying the closest consistent scoring system. 
These two concepts are then used to elaborate the measurement methodology to measure 
the distance between CVSS scores and the closest consistent scoring system. Section 7 
presents the results with measurements of mean distance, maximum distance, and accept-
able deviation. Section 8 interprets these results and relates them to the fndings of other 
research. Section 9 is the conclusion. 

4 
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2. Common Vulnerability Scoring System

In 2003, the United States National Infrastructure Advisory Council (NIAC) [2] commis-
sioned a working group of industry and academia security experts to design a vulnerability 
scoring system. The goal was to create an open, comprehensive, interoperable, fexible, 
and simple approach to promoting a common understanding of vulnerability severity. The 
resulting Common Vulnerability Scoring System (CVSS) was presented in a NIAC report 
in 2004 [3]. In 2005, CVSS was transitioned to the Global Forum of Incident Response 
and Security Teams (FIRST) [4] for its ongoing development and maintenance. FIRST 
released the CVSS Version 1.0 specifcation [5] in 2005, Version 2.0 [6] in 2007, and 
Version 3.0 [7] in 2015. The current Version 3.1 [1] was released in 2019 and is the one 
evaluated in this publication. 

CVSS contains three metric groups: base, temporal, and environmental. The base metrics 
defne the intrinsic severity of a vulnerability in general for the worldwide computing in-
frastructure. The temporal metrics evaluate the severity of a vulnerability over time, and 
the environmental metrics measure the severity of a vulnerability relative to a particular 
computing environment. The score produced by a metric group may be fed as input into 
another, as shown in Figure 1. 

The output of the scoring is a single score (from the base metrics and, optionally, the 
temporal and environmental) and a vector string that lists the specifc input metric values 
that produced the score. The vector strings use acronyms to represent the input metrics and 
their assigned metric values; the base score vector string acronyms are listed in Appendix 
A. 

The scope of this research is the base metric scoring – specifcally, the equation used to 
calculate the v3 base scores. This covers both v3.0 and v3.1 as the base score equation is 
identical for both. Temporal and environmental scoring are not discussed. 

Fig. 1. Base, Temporal, and Environmental Scoring Progression (from [1]) 

5 
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2.1. CVSS Base Score Metrics 

The CVSS base score for a vulnerability is calculated from the eight inputs shown in Figure 
2. Four of them – attack vector (AV), attack complexity (AC), privileges required (PR), and 
user interaction (UI) – are labeled “exploitability metrics”. These represent characteristics 
of the vulnerable object that refect its ease of exploitability relative to the vulnerability 
being scored. Three of them – confdentiality (C), integrity (I), and availability (A) – are 
labeled “impact metrics”. These represent the degree to which an impacted component 
may suffer due to a successful exploit of the vulnerability. The scope metric (S) evaluates 
whether successful exploitation of the vulnerability enables the attacker to cross a security 
or trust boundary when impacting components. 

Fig. 2. CVSS Base Score Metrics (from [1]) 

Each of the eight metrics can be assigned one of a set of metric values. The metric values 
for each of the 8 metrics are shown in Table 1 along with a short description. These are 
more thoroughly defned in [1]. 

2.2. CVSS Base Score Equations 

The CVSS v3 base score for a vulnerability is calculated by determining the qualitative 
metric value for each of the eight metrics, converting those qualitative values to numbers 
using the mapping in Table 2, and then inputting the eight numbers into the base score 
equation. Several online CVSS v3 calculators (e.g., [8] and [9]) are available to try out 
CVSS scoring. 
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Table 1. Metric Value Descriptions, CVSS v3 

CVSS Metric Metric Value Short Description 
Attack Vector Network Remotely exploitable 

Adjacent Local network exploitable 
Local Non-network attack on local host 

(e.g., through read, write, or execute capabilities) 
Physical Attack requires physical presence 

Attack Complexity Low Attack can be launched at will 
High Attack requires preparation and/or additional knowledge 

to be successful 
Privileges Required None Attacker does not need prior privileges to launch the attack 

Low Attacker must already have user-level privileges 
High Attacker must already have admin-level privileges 

User Interaction None No user interaction is required 
Required User interaction is required 

Scope Unchanged Attack can only affect resources within 
the security authority of the vulnerable component 

Changed Attack can affect resources outside of 
the security authority of the vulnerable component 

Impact Metrics (CIA) High Total loss 
Low Some loss 
None No loss 

Table 2. Numerical Values for Base Score Metrics, CVSS v3 

CVSS Metric Metric Value Numerical Value 
Attack Vector Network 0.85 

Adjacent 
Local 

0.62 
0.55 

Attack Complexity 

Privileges Required 

User Interaction 

Physical 
Low 
High 
None 
Low 
High 
None 

0.2 
0.77 
0.44 
0.85 
0.62 (or 0.68 if Scope is changed) 
0.27 (or 0.5 if Scope is changed) 
0.85 

Impact Metrics (CIA) 
Required 
High 
Low 

0.62 
0.56 
0.22 

None 0 
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Table 3. Qualitative Severity Rating Scale 

Rating CVSS Score 
None 0.0 
Low 0.1 - 3.9 

Medium 4.0 - 6.9 
High 7.0 - 8.9 

Critical 9.0 - 10.0 

The v3 base score equations are shown in Figure 3. Note that the base score is constructed 
from two sub-scores – impact and exploitability – that each respectively take the numerical 
values for the impact and exploitability metrics as input. Scope is a modifer at the base 
score level (it does not appear in the sub-scores). 

Fig. 3. CVSS v3 Base Score Equations (from [1]) 

The base score equations produce a score between 0.0 to 10.0. This range is historical, dates 
back to Version 1, and has been kept for consistency. The qualitative severity rating scale 
shown in Table 3 maps score ranges to qualitative labels and aids users in understanding 
the signifcance of a particular score. This mapping is more than just a user aid as it was 
used in the development of the equations (see Section 3.1). 
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3. Rationale for the CVSS Base Score Equations 

Readers may fnd it challenging to understand the CVSS v3 base score equations in Figure 
3, and the CVSS specifcation gives no explicit rationale for why they have this particular 
form. There is no explanation for why the constants and coeffcients have those particular 
values, why the eight input variables have the numerical values specifed in Table 2, or why 
there is a term raised to the 15th power. 

The fact that the form of the v3 equations is not explained (or may not have an explanation) 
does not invalidate them, but it does make validation an important task. Technology has 
often been engineered to work without knowing exactly why it works [10]. The equations 
can, therefore, be viewed as an opaque box – a machine – that produces an output given an 
input. 

In order to test the consistency of the v3 base score equations, it is necessary to perform 
experiments to determine if the opaque box (i.e., the equations) produces the desired output 
given a specifc set of inputs. To do that, one needs to understand how the equations were 
developed and what the expected outputs are. 

3.1. Development of the CVSS Base Score Equation 

Between 2014 and 2015, the CVSS SIG leveraged human expert opinion to develop the 
CVSS v3 equations, as discussed in [1]. To create the equation, the SIG frst identifed a 
set of real vulnerabilities, and the properties of each vulnerability were evaluated to create 
an associated CVSS vector. CVSS SIG members then used expert knowledge to label each 
vector (representing a real vulnerability) with its severity: Low, MedLow, MedHigh, High, 
and Critical. The target score ranges from the Qualitative Severity Rating Scale provided 
in Table 3 were also leveraged. This defned a desired score range for each labeling of 
severity (e.g., “High” had a defned score range of 7.0 to 8.9). This labeling then defned 
a partial lookup table that mapped a subset of possible CVSS vectors to a target range of 
scores. Next, the SIG hired a contractor team of mathematicians to develop an equation to 
assign a score to each CVSS vector. Each score was to fall within the target score range 
with an acceptable deviation (see Section 3.2). Note that the contractors were given vectors 
mapped to fve severity levels (i.e., Low, MedLow, MedHigh, High, and Critical) but only 
four non-zero target score ranges (i.e., Low, Medium, High, and Critical). To address this 
difference, the contractor team was given the discretion to best ft the MedLow vectors in 
either the Low or Medium bin and to place the MedHigh vectors in either the Medium or 
High bin. 

The intuition behind this approach was that the produced v3 base score equation would 
appropriately score the rest of the vectors (having been essentially trained with the set 
of hand-evaluated vectors). After the equation was developed, extensive testing was per-
formed to validate this assumption for a subset of the vectors that were not in the partial 
lookup table. 
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3.2. Acceptable Deviation 

Unfortunately, the contractor team was unable to formulate a v3 base score equation that 
strictly met the mapping requirements. Thus, it was necessary to develop a metric to mea-
sure such discrepancies, leading to the development of the metric “acceptable deviation”. 
Acceptable deviation measures the worst case in which a hand-rated input vector deviates 
from its required scoring range. More precisely, it is the absolute value of the maximum 
difference between a hand-rated vector’s score generated from the base score equation and 
the closest score within its required score range. Note that it does NOT mean that the scores 
are accurate within a range of +/- the acceptable deviation. For example, the acceptable de-
viation is 0 for a vector labeled as High with a score of 7.1. This is because 7.1 is within the 
score range for High of 7.0 - 8.9, per Table 3. The acceptable deviation is 0.4 for a vector 
labeled as High with a score of 9.3 because its score is 0.4 points higher than the top of the 
specifed range for High. 
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4. Metrology Tools, Metrics, and Algorithms 

This section discusses the tools, metrics, and algorithms developed to support measure-
ments of the CVSS v3 base score equation. Section 4.1 presents the NIST Knowledge 
Encoder tool, which ingests and encodes human expert opinion as knowledge constraint 
graphs. Section 4.2 explains the idea of a knowledge constraint graph, and Section 4.3 
discusses a metric to measure the level of inconsistency between multiple graphs encoded 
from different experts. Lastly, Section 4.4 presents the voting algorithm for unifying multi-
ple graphs into a single unifed graph. The tool, knowledge constraint graphs, inconsistency 
metrics, and voting unifcation algorithm will be used to collect and process the CVSS hu-
man expert domain knowledge discussed in Section 5. This technology is based on research 
done in [11]. 

4.1. Knowledge Encoder Tool 

Fig. 4. CVSS Analysis Screen of the NIST Knowledge Encoder Tool 

The NIST Knowledge Encoder tool was developed to encode the volunteers’ domain knowl-
edge. It is a Python program with a Tkinter graphical user interface (GUI). It uses the Net-
workX Python package as a graph database in which to encode the extracted knowledge. 
An image of the main CVSS analysis screen is shown in Figure 4. Each participant of the 
study was provided with a copy of the tool source code, which they executed locally. The 
tool recorded their domain knowledge and then output the encoded knowledge as a graph. 
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Fig. 5. CVSS Comparison Interface 

The tool uses the interface shown in Figure 5 to iteratively present pairs of red and blue 
CVSS vectors to the user for comparison. The boxes in red represent the metric values 
for the red vector, while the boxes in blue represent the metric values for the blue vector. 
The boxes in purple represent the metric values that apply to both the red and blue vectors. 
The metric value boxes for each of the eight metrics are arranged in order of decreasing 
severity to aid visual analysis. The user evaluates the metric values for the two vectors 
and then presses a button at the bottom of the interface to indicate the relationship of the 
red to the blue vector. They can specify <<(much less than), <(less than), = (equal to), 
>(greater than), and >>(much greater than). The red vectors are drawn from a pool of not 
yet processed input vectors, and the most frequently occurring within the Common Vulner-
abilities and Exposures (CVEs) are chosen frst (see Tables 9 and 10). Each blue vector is 
an already processed vector that represents 0 or more other vectors of equal severity. 
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Figures 4 and 5 show the four most popular CVSS vectors, per Tables 9 and 10 in Appendix 
B. In Figure 4, the red vector is CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N, while 
the blue vector is CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H. Both share the same 
metric values for the frst three metrics, making those metric value boxes purple in the 
fgure. In Figure 5, the red vector is CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H, 
while the blue vector is CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H. Unlike in the 
previous example, these two vectors differ in their “Attack Vector” metric value. Thus, for 
the red vector, the box ”Local (AV:L)” is highlighted red, while for the blue vector, the box 
”Network (AV:N)” is highlighted in blue. However, these two vectors also share fve metric 
values, which results in the fve boxes being highlighted purple. 

In the background, the tool performs a modifed binary insertion sort. The tool uses the 
traditional algorithm with the following modifcations: 

• The human makes the comparison decisions that are normally done by the computer. 

• The human can declare a vector being sorted as equal to a set of already ordered 
vectors. 

• The human defnes the distance between compared vectors (e.g., greater than and 
much greater than). 

These modifcations result in an output that groups vectors into multiple sets where all 
members of a set are defned to have equal severity. It then totally orders these sets and 
provides distance constraints between each set. This output is recorded as a knowledge 
constraint graph. 

4.2. Knowledge Constraint Graphs 

A knowledge constraint graph is a dot and line graph representation that orders a set of vec-
tors and defnes distance constraints between the vectors. Each node in the graph represents 
a vector, and each labeled edge in the graph provides ordering and distance constraints for 
the connected nodes. The graphs are directed acyclic graphs (DAG). 

Edges represent the distance constraints between nodes. Edges with a label of 0 represent 
equality (and are shown visually using light blue edges). Edges that represent greater than 
(or ‘>’) have a label of 1 (and are shown visually using green edges). Edges that represent 
much greater than (or ‘>>’) have a label of 2 (and are shown visually using black edges). 
Note that less-than and much-less-than edges are not added because they are represented 
by changing the direction of the edge. 

Figure 6a shows an example knowledge constraint graph with 66 nodes and 166 edges that 
was produced from the encoding of human expert knowledge using the tool. 
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(a) Raw Graph 70a 

(b) Simplifed Graph 70a 

Fig. 6. Example Knowledge Constraint Graph 
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Fig. 7. Example Equivalency Set Star Sub-graph 

4.2.1. Equivalency Sets 

An important concept for constraint graphs is an equivalency set, which is a set of nodes 
that are defned to have equal signifcance (i.e., they should have the same CVSS score). 
They are represented as star sub-graphs; an example is shown in Figure 7. The parent node 
(the center of the star sub-graph) is the node in the equivalency set whose vector has the 
greatest frequency among a defned set of CVEs (see Tables 9 and 10). This node is called 
the “representative” node. 

In a knowledge constraint graph, the representative nodes are displayed as black nodes. 
Other vectors that participate in equivalency sets are displayed as yellow nodes. Light 
blue edges represent equality and connect parent representative nodes to their children. 
Yellow nodes always have exactly one parent (through a light blue equality edge) as they 
can participate in only one equivalency set. Black nodes with no yellow node children 
represent equivalency sets of size 1. 

4.2.2. Magnitude Measurements 

Another important concept for constraint graphs is measuring the “magnitude” of the dis-
tance between nodes. If two nodes are connected by an edge, the label on the edge defnes 
the magnitude. Thus, an edge x → y with a label of 0 indicates that x is equal to y (x = y) in 
severity. An edge x → y with a label of 1 indicates that x is greater than y (x > y) in severity. 
An edge x → y with a label of 2 indicates that x is much greater than y (x >> y) in severity. 

If two nodes x and y are not directly connected by an edge, then the magnitude is defned 
as the maximum magnitude of all edges on all paths between x and y. If there is no path 
between x and y, then the magnitude is undefned. 

4.2.3. Simplifed Graphs 

Figure 6b is a simplifed version of Figure 6a. All out-edges from the yellow nodes were 
changed to originate from their parent representative black node (found by traversing the 
one-per-node light blue edge backward to fnd the parent). All in-edges coming into yellow 
nodes were changed to make their destination be their black node representative parent. 
Given that each parent black node represents an equivalency set where the black node is 
equal in signifcance to all of its child yellow nodes, this simplifcation does not change the 
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logic represented by the graph. Lastly, all redundant edges were removed. If an existing 
path could represent the logic conveyed by a single edge, then the edge was removed. 

In Figure 6b, there is a single longest path that connects all of the equivalency sets by their 
representative black nodes. This feature is guaranteed to exist by the construction of the 
graphs. The frst node on this path is the most signifcant vector (the one that should have 
the highest score). It is depicted in the upper right in all of the visualizations. Likewise, the 
least signifcant node is always on the upper left. Each black edge is a shortcut for a longer 
path of green edges. This indicates that a path of ‘>’ relationships may result in a ‘>>’ 
relationship (which is intuitive). 

4.3. Inconsistency Metrics for Knowledge Constraint Graphs 

When multiple human experts use the tool, the produced constraint graphs can be evaluated 
to determine their level of inconsistency with each other. The purpose of performing such 
measurements is to identify possible outliers that might indicate either 1) an inexperienced 
participant who should not have participated in the study or 2) a valid but very divergent 
view on vector severity. 

To measure inconsistencies, all pairs of produced graphs were compared with a pairwise 
approach. For each pair of graphs, the encoded relationships for all pairs of vectors were 
evaluated. In doing this, only the direction of the relationships was evaluated – not their 
magnitudes. Thus, greater than and much greater than were treated equally. If the graphs 
agreed on the relationship for a pair of vectors, that pair was marked as “consistent”. If 
the graphs disagreed on the relationship for a pair of vectors, that pair was marked as 
“inconsistent”. If a pair of graphs disagreed on the direction of an inequality (i.e., one said 
greater than and the other said less than), then that vector pair relationship was marked as 
“opposite inconsistent” (a more severe form). 

For each pair of graphs, the number of inconsistent and opposite inconsistent relationships 
was obtained (note that the set of opposite inconsistent pairs is a subset of the inconsistent 
pairs). Dividing those numbers by the total number of relationships results in ratios for 
each metric. This gave inconsistent and opposite inconsistent ratios for each pair of graphs. 
From this, the mean inconsistent and opposite inconsistent ratios for each graph could 
then be computed by taking the mean of the measurements in which a particular graph 
participated (since each measurement is for a pair of graphs). 

4.4. Voting Unifcation Algorithm 

This section discusses the algorithm for taking multiple knowledge representation graphs 
as input and unifying them into a single graph that represents a consensus of the inputs. 
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4.4.1. Analysis of Votes 

The voting algorithm will evaluate all ordered pairs (x,y) where the node number of x is 
less than y. Thus, for every pair (x,y), (y,x) is excluded because that would be redundant. 
For each pair, votes will be tallied using a simple array [a,b,c] to represent the number of 
input graphs for which x < y (represented by a in the array), x = y (represented by b in the 
array), and x > y (represented by c in the array). At this stage of the analysis, >> is treated 
the same as >, and << is treated the same as < (only the direction needs to be known, not 
the magnitude). 

A transformation is then made to more accurately represent the x = y votes. To see the 
need for this, consider the following example. A pair (x,y) may have a set of votes [4,2,4] 
(4 less-than votes, 2 equal votes, and 4 greater-than votes). This should result in a decision 
for equal even though equal has the lowest number of votes. Each of the two votes that 
confict (one greater than and one less than) is interpreted as a vote for equal. Since the 
experts cannot agree, the vectors are likely so close in signifcance that they should be 
marked as equal. To make this adjustment, pairs of opposing votes – one less than and one 
greater than – are converted into a single vote for equal because that changes the difference 
between the less-than votes and equal votes by 1 and between the greater-than votes and 
the equal votes by 1. The transformation may be applied multiple times. In this example, 
[4,2,4] is transformed into [0,6,0] by applying the transformation four times. Consider 
another example where the transformation is applied to a vector pair with a set of votes 
[2,1,3], which will also result in a decision for equal. The instances of both greater-than 
and less-than votes get transformed into equal votes that result in a fnal transformed vote 
tally of [0,3,1]. If there is a tie in the fnal set of transformed votes (e.g., [0,3,3]), the 
non-equal one is awarded the decision (either less than or greater than). These transformed 
vectors along with the ones that did not require any transformation are then fed into the 
prioritization stage of the algorithm. 

4.4.2. Priority Ordering 

The algorithm next orders all pairs of vectors by priority order (to be defned by three 
sorting approaches) such that the frst pairs are those for which there is the most confdence 
in the experts’ opinion, and the last pairs are those for which there is the least confdence. 

The pairs are sorted frst in descending order by the maximum number of votes received for 
the winning category (i.e., less than, equal, or greater than). For example, for a pair with 
votes [0,6,2], the maximum number of votes is 6 (for equal, in this case). The intuition 
is that if a pair has a higher number of maximum votes, then its decision is stronger (i.e., 
supported by more human experts) than a pair with a lower maximum number of votes. 
Thus, [6,4,0] is stronger than [0,5,5]. 

The authors considered applying this sort using the vector values prior to the equality trans-
formation of conficting votes (presented in Section 4.4.1). They decided against that ap-
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proach because conficting votes for > and < are not a sign of human certainty. This de-
cision has a byproduct of increasing the certainty measurement for = votes, but this effect 
is limited (capped at half of the total number of possible votes) because a pair of opposing 
votes gets transformed into a single = vote in the transformation. 

For pairs with the same maximum value, there is a secondary sort in ascending order by the 
number of opposite votes in the original voting (prior to the transformation). The intuition 
is that pairs that have few opposite votes (votes for both less than and greater than) are 
considered to be supported more strongly by the experts than pairs with many opposite 
votes. 

Finally, for pairs that have values that tie in both the frst and secondary sort, there is a 
third sort added to guarantee a total ordering of the pairs. It gives priority to processing 
vector pairs that are most often seen in the wild. More specifcally, each vector pair is 
sorted in descending order by the frequency of the vector in the pair that most frequently 
occurs within CVE in the National Vulnerability Database (NVD). Note that this third sort 
is rarely used and is not strictly necessary, but it conveniently removes non-determinism so 
that the algorithm will always produce exactly the same answer. 

4.4.3. Unifed Graph Construction 

The unifed knowledge constraint graph is constructed by iterating over the pairs in priority 
order and attempting to add edges based on the pair voting information. The unifed graph 
is initially empty, and nodes and edges are added as the algorithm evaluates each pair. 
Occasionally, the addition of an edge will violate the directed acyclic nature of the graph 
by creating a cycle. Those edges are not added. Rather, they represent lower priority (less 
certain) relationships that contradict higher priority (more certain) relationships. Cycles 
are not allowed because they would represent logical inconsistencies (e.g., x > y > z > x). 

For each pair (x,y), the algorithm attempts to add an edge to the initially empty unifed 
constraint graph based on the maximum vote calculation (i.e., for less than, equal, or greater 
than). If x = y, it adds an edge x → y with the label 0 (to represent equality). If x > y, one 
determines the magnitude of the relationship (see above) and adds an edge x → y with 
a label of 1 for greater than and 2 for much greater than. If x < y, one determines the 
magnitude of the relationship (see above) and adds an edge y → x (note the reversal of the 
order of x and y) with a label of 1 for greater than and 2 for much greater than. 

In some circumstances the graph construction algorithm may rearrange edges in order to 
simplify the graph, but the encoded logic is always preserved. For example, if a set of vec-
tors are all equal, the algorithm will form a star sub-graph of edges that represent equality 
as opposed to creating a path of edges that represent equality. This is for simplicity of the 
visualization, but it also helps in writing the graph algorithms that assume certain graph 
structures. 
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4.4.4. Description of Constructed Graph 

Constructed unifed graphs have the same form as simplifed raw graphs. In other words, 
they look the same (see Figure 6b as an example). A constructed unifed graph usually 
totally orders the input vectors but is not guaranteed to do so, especially in the presence of 
contradictory or inconsistent expert opinion. However, the unifed graph will have a longest 
path of edges labeled with either 1 or 2 (greater than or much greater than). Each node on 
this longest path will represent an equivalency set – a set of nodes that were defned to be 
of equal signifcance. To represent the equivalency sets, each node on the longest path is at 
the center of a star sub-graph constructed with edges labeled 0, where each child node is 
equal to the representative parent (the center of the star). If a node on the longest path is 
not equal with any other node, its star graph will be size 1 (containing just itself). 
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5. Data Collection and Processing 

This section discusses how human expert opinion was collected and processed in order to 
create unifed knowledge constraint graphs. Sub-section 5.1 discusses the dataset of ana-
lyzed vectors while Sub-section 5.2 describes the pool of volunteer analysts. Sub-section 
5.3 presents the produced individual analyst knowledge constraint graphs. Sub-section 
5.4 provides the measurements of inconsistency taken on analyst data. Sub-section 5.5 
presents the unifed knowledge constraint graph built from all analyst data. Sub-section 5.6 
concludes the section by discussing how the number of equivalency sets identifed in the 
unifed graph does not represent the discovery of some optimal number. 

While this section focuses on the unifed knowledge constraint graph using all inputs, many 
such unifed graphs will be created using differing subsets of the input data for statistical 
reasons (i.e., differing subsets of input knowledge constraint graphs). 

5.1. Data Set of Analyzed Vectors 

For this research, human experts were asked to analyze 66 of the 2496 CVSS v3 vectors 
that had a non-zero impact (2.64 % of them). Note that there are 2592 vectors in total, 
but only 2496 have a score other than 0.0. The vectors chosen were those that the NVD 
mapped the CVE vulnerabilities to most frequently using the NVD CVSS data available on 
2021-01-08. This set of 66 vectors covered 90 % of the CVEs. The 66 vectors chosen are 
shown in Appendix B in Tables 9 and 10, along with their respective frequencies. 

5.2. Volunteer Participants 

The CVSS v3 equations were designed to represent human expert knowledge – in par-
ticular, CVSS SIG knowledge. Thus, to measure how well the equations refect current 
CVSS SIG domain knowledge, the domain knowledge of a group of 12 volunteers from 
the CVSS SIG membership of 2021 was leveraged. The 12 volunteers are the domain ex-
pert co-authors as well as the second author. The frst author was the principle investigator. 

To support this research, the CVSS SIG domain experts each represented their domain 
knowledge of computer vulnerability types as a mathematical graph structure. In doing 
so, the domain experts compared vulnerabilities using the CVSS philosophy of evaluating 
a vulnerability’s general severity apart from any particular installation environment. This 
was an attempt to mitigate the possibility that the domain experts would be infuenced by 
their particular security domain or specialty. Additionally, the volunteers were instructed 
to compare vulnerabilities based on their own personal expert opinions (not based on the 
existing CVSS scoring). This was an attempt to eliminate bias based on the expert’s knowl-
edge of the CVSS scores for certain vectors and/or use of CVSS calculators. 
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Table 4. Statistics on CVSS SIG Produced Knowledge Constraint Graphs 

Graph Nodes Raw Graph Simplifed Graph Analysis Time 
Edges Edges (hrs) 

02c 66 194 67 3.8 
3d6 66 242 72 6.3 
5fd 66 236 69 1.9 
6e5 66 256 69 5.5 
70a 66 166 72 2.1 
88d 66 228 70 8.1 
908 66 247 72 1.4 
977 66 142 67 0.7 
98a 66 284 68 6.5 
d3d 66 186 69 1.7 
f00 66 187 70 1.5 
f59 66 224 69 2.5 
Overall Mean 66 216 69.5 3.5 

The human studies portion of this research was conducted with the approval of the NIST 
Research Protections offce under the study entitled “Metrics Generation with the NIST 
Human Knowledge Encoder Toolkit” (Study #: ITL-2020-0227). 

5.3. Produced Knowledge Constraint Graphs 

The 12 domain experts each produced a knowledge constraint graph that represented their 
CVSS domain knowledge using the NIST Knowledge Encoder tool. These graphs are 
provided in Appendix C. Table 11 contains the raw graphs, and Table 12 contains the 
corresponding simplifed graphs in which the redundant edges have been removed. 

The mean creation time for the set of graphs was 3.5 hours with a minimum of 0.7 and 
a maximum of 8.1. There are 66 nodes for all graphs because 66 vectors were analyzed. 
The number of edges varies because the humans ordered the nodes differently as they made 
decisions for the human-directed binary search algorithm. The mean number of edges for 
the raw graphs is 216 with a minimum of 142 and a maximum of 284. The mean number 
of edges for the simplifed graphs is 69.5 with a minimum of 67 and a maximum of 72. The 
statistics for each graph are provided in Table 4. 

5.4. Knowledge Constraint Graph Inconsistency Measurements 

The inconsistency and opposite inconsistency of the 12 knowledge constraint graphs were 
analyzed. These metrics were defned in Section 4.3. The results are shown in Table 5. The 
overall mean inconsistency was 22.5 %, and the opposite inconsistency was 14.4 %. Thus, 
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Table 5. Mean Inconsistency and Opposite Inconsistency Results 

Graph Mean Inconsistency Mean Opposite Inconsistency 
Percent Percent 

02c 20.8 11.5 
3d6 17.1 10.3 
5fd 20.8 13.8 
6e5 19.1 13.0 
70a 25.1 13.5 
88d 20.7 13.8 
908 20.9 14.2 
977 35.2 22.7 
98a 21.1 14.7 
d3d 25.2 16.2 
f00 25.8 17.5 
f59 19.7 11.2 
Overall Mean 22.5 14.4 

Table 6. Vectors Initially Assigned the Highest Severity in the Unmodifed Graph f00 

CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 
CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:L/A:N 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 

the human experts were in general agreement, although there were certainly differences for 
certain pairs of vectors. 

5.4.1. Graph f00 

Graph f00 (Figure 11k) was an extreme outlier that was discovered to have a signifcant 
but correctable error. Its initial mean inconsistency was 82.1 % and opposite inconsistency 
was 73.8 %. Upon inspection, it was discovered that the analyst creating f00 with the tool 
did all of their ratings backwards. To fx this, the edges in their graph were simply reversed 
(and checked with the participant). The resulting mean inconsistency metric then dropped 
to 25.8 % and opposite inconsistency to 17.5 %. The opposite ratings became obvious by 
looking at the vectors that they rated as most severe and those that they rated as least severe 
(see Tables 6 and 7. 

Table 7. Vectors Initially Assigned the Lowest Severity in the Unmodifed Graph f00 

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 
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5.4.2. Graph 977 

After fxing graph f00, graph 977 (Figure 11h) was the most signifcant outlier. Its mean 
inconsistency and opposite inconsistency was 35.2 % and 22.7 % – the greatest among 
the graphs (see Table 5). While these ratios were not as excessively high as the original 
graph f00, they – combined with the fact that the participant spent only 43 minutes on the 
analysis – induced concerns about data quality (the mean analysis time for all analysts was 
3.5 hours). To address this, the participant offered to perform their analysis again and with 
greater care. The analyst spent 48 minutes the second time and produced graph 382 (not 
shown). Supporting the validity of the original graph 977, graph 382 had mean inconsis-
tency metrics that were very similar to 977 (32.7 % and 21.2 %). However, graphs 977 
and 382 were inconsistent between themselves (27.9 % inconsistent and 13.3 % opposite 
inconsistent). 

Uncertain of how to proceed with this, a complete set of evaluation metrics was run three 
times, and the fnal overall results were compared (using all analyst input). For the three 
trials, graph 977 was used frst, followed by graph 382, and then a graph was generated 
by unifying graphs 977 and 382 using the voting algorithm. Fortunately, the fnal results 
varied little for the three trials (the variation in the primary measurement statistics were 
at most .04). This is attributed to the voting algorithm smoothing out discrepancies since 
there were a total of 12 graphs voting. Since it did not matter which of the three graphs 
was used and to avoid any possible perception of inappropriately manipulating the input 
data, the originally submitted graph 977 was used in the experiments. Graph 382 and the 
generated unifed graph (that had combined graphs 977 and 382) were discarded. 

5.5. Unifed Knowledge Constraint Graph 

The 12 CVSS SIG knowledge constraint graphs created using the tool from Section 4.1 
were combined into a single unifed constraint graph using the voting algorithm from Sec-
tion 4.4. This unifed graph is shown in Figure 8. It has 66 nodes, each refecting the 66 
analyzed vectors. It has 71 edges that order the equivalency sets, defne members within 
equivalency sets, and provide distance constraints. There are 16 equivalency sets; the small-
est is 1 vector, and the largest is 12 vectors. The longest path is 16, which traverses the 
representative nodes for each equivalency set. The 7 black edges represent much-greater-
than relationships; the 14 green edges represent greater-than relationships; and the 50 light 
blue edges represent equality. While not guaranteed by the voting algorithm, this graph 
totally ordered the equivalency sets. In creating this graph, 130 of the 2145 proposed edges 
(6.1 %) were discarded due to lower confdence relationships that contradicted previously 
added higher confdence relationships. This is explained in Section 4.4.3. 

5.6. Optimal Number of Equivalency Sets 

The 16 equivalency sets in the unifed graph do not indicate the discovery of some optimal 
number of equivalency sets for CVSS. Rather, the number of equivalency sets grows with 
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Fig. 8. Unifed Knowledge Constraint Graph 

the number of vectors analyzed. It might plateau at some optimal number, but this research 
effort does not have suffcient data to evaluate that. What it can show is that for up to 
66 vectors, an increasing number of vectors analyzed results in an increasing number of 
equivalency sets generated. This can be seen in Figure 9. The small dots of different 
colors represent the individual knowledge constraint graphs created from the tool from 
each human expert with a specifc number of input vectors. The lines of small dots higher 
up show analysts who rarely used the equal button. The larger black dots toward the bottom 
represent the unifed knowledge constraint graphs generated using all input graphs and an 
increasing number of input vectors (from 1 to 66). For comparison with CVSS v3, note 
that CVSS was designed using just fve equivalency sets (i.e., the qualitative severity levels: 
None, Low, Medium, High, and Critical). 
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Fig. 9. Equivalency Sets Produced per Number of Vectors Analyzed (legend: large black dots 
are for the unifed graph, and small colored dots are for individual analyst graphs) 

6. Measurement Approach 

This section discusses a general metric-agnostic approach to measuring the inconsistencies 
between the scores in CVSS v3 relative to the encoded CVSS SIG domain knowledge. This 
approach will be applied to three different metrics and the results provided in Section 7. 

6.1. Consistent Scoring Systems 

This subsection defnes the terms “scoring system” and “consistent scoring system”. 

6.1.1. Scoring System Defnition 

For the purposes of this work, a scoring system is defned as a mapping of vectors to scores. 
Given any CVSS vector, a scoring system produces a score for that vector. CVSS v3 is an 
important example of one of many possible scoring systems. 

6.1.2. Consistent Scoring System Defnition 

This work defnes a consistent scoring system as one that conforms to a particular knowl-
edge constraint graph. Scoring systems may or may not be consistent with a constraint 
graph. For a scoring system to be consistent with a graph, the scores assigned to each vec-
tor must satisfy the constraints defned by the edges in the graph (both the direction and 
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magnitude of the edges in a path between vectors). Each edge defnes a direction between 
two vectors x and y and a relationship (>, >>, or =). 

If an edge x → y is labeled >, then the scoring system must map x to a score that is greater 
than y. If an edge x → y is labeled with >> (much greater than), then the value of x must 
be greater than the value of y by some constant associated with the graph. If an edge x → y 
is labeled with =, then the scoring system must map x and y to the same score. Note that 
the label < never appears on an edge because it is not necessary; the direction of the edge 
represents the direction of the inequality. 

If there is no direct edge between vectors x and y in a constraint graph, the relationship is 
the greatest from the set of relationships on the path of edges between x and y. For example, 
if there is a path of four edges from x to y with relationships >, >, >>, and =, then the 
defned relationship from x to y will be >> (the greatest on the path). If there is no path 
from x to y, then the relationship is undefned (this does not happen in this study as all 
graphs are totally ordered). 

6.2. Generation of a Closest Consistent Scoring System 

To generate a consistent scoring system for a particular graph, a greedy algorithm was 
developed. The algorithm takes a constraint graph and the CVSS v3 scores for the 66 
analyzed vectors as input. It iteratively operates on individual equivalency sets (i.e., sets 
of nodes required by the constraint graph to have equal values) in order of decreasing size. 
Thus, for the unifed constraint graph representing all 12 expert inputs (see Figure 8), it 
operates on the following 16 equivalency sets of varying sizes (in descending order): 12, 
10, 8, 8, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1. For each equivalency set, it calculates the mapped 
score for the vectors in the set to be the median of the CVSS v3 scores for those vectors. If 
the computed value is higher than the maximum allowed per the constraint graph given the 
scores already assigned for the vectors in the graph, the computed value is reduced to the 
nearest value that is consistent with the graph. An analogous operation increases scores that 
are below the minimum allowed value. The output of the algorithm is a scoring system – 
an assignment of each vector with a score that is consistent with the input constraint graph. 

The greedy algorithm is designed to minimize the mean distance between the chosen score 
and the CVSS v3 scores for vectors within an equivalency set. Unintuitively, it uses the 
median (not mean) of a set of CVSS v3 scores because the median can be proven to mini-
mize the sum of the differences (i.e., using the median in the algorithm minimizes the mean 
of the sum of scoring differences) [12]. 

The code also uses another heuristic that minimizes the maximum distance between the 
chosen score and the CVSS v3 scores for vectors within an equivalency set. For this, 
instead of choosing the median value for the set of CVSS v3 scores in an equivalency set, 
it chooses the mean of the maximum and minimum value. This reduces the maximum 
distance because it minimizes the distance to the greatest outliers. 

26 



NIST IR 8409 
November 2022 

In generating a closest consistent scoring system, the heuristic that will provide the best 
results given the metric currently being measured is used. This decision is discussed more 
in Section 6.3 and Section 7. 

6.3. Measurement Methodology 

Given some measurement metric (three are evaluated in Section 7), all 12 input constraint 
graphs are taken from the 12 CVSS SIG domain experts and used to create a unifed knowl-
edge constraint graph. With this graph, a closest consistent scoring system using the algo-
rithm described in Section 6.2 is generated. That closest consistent scoring system is then 
used as input to the measurement metric along with the CVSS v3 scores in order to calcu-
late the result. 

The heuristic chosen will be the one that minimizes the metric being evaluated. A large 
number of consistent scoring systems usually exist, and we want to fnd the one (using 
whatever methodology) that is closest to CVSS v3 for the particular metric being measured. 
One could use any consistent scoring system, but such a measurement would be an upper 
bound that could be lowered by fnding a closer consistent scoring system. 

A source of error in performing measurements this way is the possibility that the particular 
unifed knowledge constraint graph used just happens to allow for a scoring system close to 
CVSS v3. It could be possible that a slightly different set of inputs into the voting algorithm 
could have resulted in a worse measurement. Since it is not possible to obtain multiple sets 
of 12 inputs to test this for each metric, this issue is addressed by performing additional 
measurements using all combinations of 11 of the 12 inputs to create 12 unifed knowledge 
constraint graphs. Each metric is then independently evaluated on all 12 unifed graphs. 
From these 12 measurements, a mean result and standard deviation can be calculated. This 
gives the ability to calculate the precision of the measurements. 
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7. Measurement Results 

This section measures the inconsistency of the CVSS v3 base score equation relative to 
the encoded CVSS SIG domain knowledge. The approach presented in Section 6 is used 
to perform three measurements: mean scoring distance, maximum scoring distance, and 
acceptable deviation. Table 8 contains all measurement results. These results are explained 
in Sections 7.1, 7.2, and 7.3. Section 8 interprets these results. 

Table 8 provides the results for both heuristics presented in Section 6.2 for all three eval-
uated metrics. As discussed in Section 6.3, the “Mean” heuristic compares the CVSS v3 
scoring system with the consistent scoring system whose scores minimize the mean differ-
ences between the scores of the two systems. The “Max” heuristic compares the CVSS v3 
scoring system with the consistent scoring system whose scores minimize the maximum 
differences between the scores of the two systems. Both approaches provide upper bound 
measurements, so either could have been chosen for this work. Both are presented because 
the bounds for the three metrics can be slightly optimized by optimizing the mean scoring 
distance for the mean scoring distance measurement and optimizing the maximum scoring 
distance for the maximum scoring distance and acceptable deviation measurements. These 
optimized results are shown in bold in Table 8 and came from comparing CVSS v3 with 
two different consistent scoring systems (two that were closer to CVSS in different ways). 
While the authors defend this approach as being correct, this may cause discomfort with 
some readers due to the complexities involved; these are not simple measurements despite 
their surface simplicity. Readers who are uncomfortable with this measurement approach 
should simply use the results for the heuristic that minimizes the maximum scoring distance 
(labeled “Max”). Doing so compares CVSS v3 with a single consistent scoring system and 
provides a usable upper bound very close to what is achieved with this approach. Roughly 
the same results are obtained, and the same conclusions are drawn using either metrology 
approach. 

7.1. Mean Scoring Distance 

Mean scoring distance measures how far off each CVSS v3 score is from the closest score 
consistent with the encoded domain knowledge. More precisely, for each vector evaluated 
by the CVSS SIG analysts, calculate the absolute value of the difference between the CVSS 
v3 score and the score assigned by the closest consistent scoring system (using the heuristic 
to minimize mean distance). The mean scoring distance is the mean of these values. 

Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain knowl-
edge graphs as input), CVSS v3 was found to have a mean distance of 0.13. Performing 
the calculation on a set of 12 knowledge constraint graphs, each formed from 11 of the 12 
input graphs, CVSS v3 has a mean distance of 0.13 points with a standard deviation of 0.02 
points. If one assumes a “normal” Gaussian distribution, there is a 95 % chance that the 
actual distance is between 0.11 and 0.15 points. 
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Table 8. Measurement Results for Mean Scoring Distance, Maximum Scoring Distance, and 
Acceptable Deviation 

Metric Heuristic # Inputs # Trials Result Std Dev 
Mean scoring distance Mean 11 12 0.13 0.02 
Mean scoring distance Mean 12 1 0.13 0 
Mean scoring distance Max 11 12 0.18 0.02 
Mean scoring distance Max 12 1 0.17 0 
Max scoring distance Mean 11 12 0.70 0 
Max scoring distance Mean 12 1 0.70 0 
Max scoring distance Max 11 12 0.52 0.15 
Max scoring distance Max 12 1 0.40 0 
Acceptable deviation Mean 11 12 0.18 0.06 
Acceptable deviation Mean 12 1 0.20 0 
Acceptable deviation Max 11 12 0.17 0.06 
Acceptable deviation Max 12 1 0.20 0 

7.2. Maximum Scoring Distance 

Maximum scoring distance measures the maximum distance that any CVSS v3 score is 
from its closest score consistent with the encoded domain knowledge. More precisely, 
for each vector evaluated by the CVSS SIG analysts, calculate the absolute value of the 
difference between the CVSS v3 score and the score assigned by the closest consistent 
scoring system (using the heuristic to minimize maximum distance). The maximum scoring 
distance is the maximum of these values. 

Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain knowl-
edge graphs as input), CVSS v3 was found to have a maximum distance of 0.40. Perform-
ing the calculation on a set of 12 knowledge constraint graphs, each formed from 11 of the 
12 input graphs, CVSS v3 has a maximum distance of 0.52 points with a standard deviation 
of 0.15 points. If one assumes a “normal” Gaussian distribution, there is a 95 % chance 
that the actual distance is between 0.32 and 0.82 points. 

7.3. Acceptable Deviation 

The CVSS Version 3.1 specifcation contains a measurement of scoring error called accept-
able deviation, which is defned in Section 3.2. It asserts that the acceptable deviation for 
the CVSS v3 scoring system is 0.5 points (maximum distance from a severity boundary). 
As with the previous two measurements, the method in Section 6.3 was used to measure 
it. It required not just a mapping of vectors to scores but also of scores to bins using the 
mapping from the CVSS v3.1 specifcation (shown in Table 3). To obtain the measurement 
for each vector evaluated by the CVSS SIG analysts, the deviation was calculated as the 
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distance that a CVSS v3 score is from its vector’s specifed bin. The acceptable deviation 
is the maximum of these deviations. 

Using the unifed knowledge constraint graph (i.e., using all 12 CVSS SIG domain knowl-
edge graphs as input) and the heuristic to minimize maximum distance (in this case, both 
heuristics worked equally well), CVSS v3 was found to have an acceptable deviation of 
0.20 points (i.e., distance from a severity-level boundary). 

In doing this calculation, any vector whose scores (for both the generated consistent scoring 
system and the CVSS v3 scoring system) map to the same bin have no deviation associ-
ated with them. Of the 66 vectors, 65 had no deviation. This means that, according to the 
encoded domain knowledge, they were assigned scores that mapped the vector to the cor-
rect bin. The one vector with a deviation was AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H. 
Its closest consistent scoring system score was 7.2, which mapped it to the “High” bin 
(per Table 3). The CVSS v3 score is 6.8, which is in the “Medium” bin. Since the 
score range for “High” is 7.0-8.9, the CVSS v3 score is a 0.2 distance from the “High” 
bin, resulting in a deviation of 0.2 points. Therefore, the CVSS v3 scoring of vector 
AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H was responsible for the acceptable deviation of 
0.2 points, which would have otherwise been 0. 

Next, using the 12 knowledge constraint graphs, each formed from 11 of the 12 input 
graphs, CVSS v3 was calculated to have an acceptable deviation of 0.17 points with a 
standard deviation of 0.06 points. If one assumes a “normal” Gaussian distribution, there 
is a 95 % chance that the actual acceptable deviation is between 0.05 and 0.29 points. 

7.4. Increasing Accuracy with More Data 

In performing these three measurements, it was empirically discovered that greater accu-
racy is achieved through having a greater number of expert participants inputting data into 
the voting algorithm. This can be seen in Figure 10. To create this fgure, x experiments 
were performed using all combinations of the available inputs for each x-axis value 12 com-
bination. Thus, for the x-axis value of 5, 792 experiments were performed (12 combination 
5). 

The measured mean metrics tend lower as the number of inputs into the unifed constraint 
graphs used to perform the measurements increases. This follows “wisdom of the crowds” 
research that shows that human error in making group decisions often decreases when 
using a larger set of humans [13] [14]. More analysts should then produce more accurate 
results, enabling the voting algorithm to better eliminate rating mistakes made by particular 
individuals. 

The curves eventually level off, indicating a diminishing beneft to using additional ana-
lysts. This makes sense because even if all human error is eliminated in performing the 
measurement, what will remain is the actual measurement of the CVSS v3 scoring system. 
From the fgure, it appears that the y-axis plateau values for both the mean mean-distance 
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Fig. 10. Decreasing Error with an Increasing Number of Inputs 

and mean acceptable deviation were achieved as the curves end in an almost a horizontal 
line. For the mean max-distance, additional analysts would likely lower the measurement 
of distance somewhat. Unfortunately, additional qualifed CVSS SIG analysts could not be 
obtained. 
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8. Interpretation of Results and Related Work 

A variety of related works have explored perceived faws in CVSS and recommended im-
provements. A subset of these enumerated faws relate to the v3 base score equation itself. 
The results here address many of these concerns. 

One of the best listings of perceived faws in CVSS is [15], which also contains suggestions 
that could be used to improve and/or revise CVSS or to create alternate scoring systems. 
One concern is that the metric values in CVSS v3 are ordinals (ordered categories), but they 
are converted into ratio data (allowing numerical differences with a zero value) within the 
v3 base score equation. The CVSS specifcation provides no justifcation for the assigning 
of numerical values to these ordinal values (e.g., Attack Vector Adjacent = 0.62). It also 
provides no justifcation for how the particular numerical values were chosen. By assign-
ing numbers, difference relationships are established not only between ordinal values of a 
particular CVSS metric (e.g., privileges required) but between ordinal values of different 
unrelated metrics (e.g., confdentiality and attack complexity). Additionally, [15] points 
out that it provides no justifcation for the equation that then takes these numerical values 
as input. Although not mentioned in [15], many have questioned the complexity of the 
equation and why, for example, it has a term raised to the 15th power. Combining these 
concerns, [15] points out that the CVSS specifcation makes claims like “faster + fastest 
= 6” for which there is no empirical or theoretical justifcation. In summary, [15] says 
that the CVSS specifcation provides “little transparency on the formula creation process”. 
Other critiques of CVSS that express concern about the equations include [16], [17], [18], 
[19], [20], [21], and [22]. 

The authors agree that such math is invalid in most cases. The formula creation process was 
opaque; the specifc form of the v3 base score equation is not justifed; and the equation is 
not human understandable. The improvement proposals in [15] and in the other critiques 
represent laudable goals. This said, the unjustifed ratio math is acceptable if the use of 
the CVSS v3 scores is limited to creating an ordinal ranking of the vectors. This works 
in most cases as IT security organizations want to know how a particular vector ranks in 
severity compared to other vectors. The equation then becomes a black box that does not 
need to be justifed or explainable. It simply needs to be tested to make sure that it produces 
the desired output ordinal rankings. This should not discourage its use as many effective 
computations are opaque boxes. 

If one takes a step back to ask whether the v3 base score equation does what it claims to 
do, this research demonstrates that it does capture expert opinion within the “acceptable 
deviation” stated by the specifcation (measured at .2 versus the .5 advertised in the speci-
fcation). However, the authors note that the acceptable deviation metric is not ideal due to 
its unintuitive defnition and its focus on the optional binning from Table 3. For this reason, 
the metrics of mean and maximum scoring distance were added. The results for these two 
metrics enable a better understanding of the accuracy of the CVSS scores in representing 
CVSS expert domain knowledge. As shown in the results from Table 8, CVSS v3 has a 
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mean scoring distance of .13 and a maximum scoring distance of .4 using the full input 
dataset. The CVSS v3 scores are very close to a set of scores completely consistent with 
the encoded human expert opinion (at least relative to the expected differences represented 
by the acceptable deviation of 0.5 in the specifcation). 

While the CVSS v3 equation represents the CVSS SIG expert domain knowledge very 
closely, it still does not represent it perfectly. The reason for this is the use of the generated 
equation. As stated previously, the goal of the equation is to approximate a partial lookup 
table. It achieves this goal to a measurable level for the set of 66 analyzed vectors (as 
seen by the measurements of mean and maximum scoring distance). One might ask why 
CVSS does not simply use a lookup table instead of a confusing equation. The answer 
is that the equation enables the scoring of all CVSS vectors, not just the ones that were 
human-evaluated. The equation strives to project CVSS SIG domain knowledge from a 
small, analyzed set to the complete set. This said, the accuracy of this projection to the 
applicable 2430 non-analyzed vectors has not been formally evaluated either in the CVSS 
v3 specifcation nor in this work. 
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9. Conclusion 

This work evaluated the CVSS v3 base score equation and determined that its scores con-
form to the acceptable deviation stated in the specifcation relative to the encoded CVSS 
SIG domain knowledge. Furthermore, the authors added the metrics of mean and maximum 
scoring distance to fnd that the scores themselves (apart from any binning) are very close 
to a set of scores completely consistent with the encoded human expert opinion. The base 
score equation effectively refects CVSS SIG human expert opinion (to the extent shown 
by these measurements). 
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Appendix A. Acronyms 

Selected acronyms and abbreviations used in this paper are defned below. 

AI Artifcial Intelligence 
CERT/CC Computer Emergency Response Team Coordination Center 
CVE Common Vulnerabilities and Exposures 
CVSS Common Vulnerability Scoring System 
DAG Directed Acyclic Graph 
FIRST Forum for Incident Response and Security Teams 
GUI Graphical User Interface 
NIST National Institute of Standards and Technology 
IR Interagency or Internal Report 
NVD National Vulnerability Database 
SIG Special Interest Group 
US United States 

CVSS base score vector string metrics and associated metric values: 
(e.g., AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H): 

AV (Attack Vector) (N: Network, A: Adjacent, L: Local, P: Physical) 
AC (Attack Complexity) (L: Low, H: High) 
PR (Privileges Required) (N: None, L: Low, H: High) 
UI (User Interaction) (N: None, R: Required) 
S (Scope) (U: Unchanged, C: Changed) 
C (Confdentiality) (H: High, L: Low, N: None) 
I (Integrity) (H: High, L: Low, N: None) 
A (Availability) (H: High, L: Low, N: None) 
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Appendix B. Set of Evaluated CVSS vectors 

On January 8, 2021, NVD contained 73446 CVEs scored with CVSS version 3.1. The 66 
most frequent CVSS vectors for these CVEs covers 90 % of them. These top 66 CVSS 
vectors are listed in Tables 9 and 10 using the CVSS Vector String format [1] along with 
their respective frequency counts. Appendix A contains expansions for the vector string 
acronyms. 
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Table 9. Top 66 Most Frequent CVSS Vectors per Mappings from NVD (higher frequency 
vectors) 

CVSS Vector CVE Frequency 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 9979 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N 5572 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 4434 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 4378 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 3978 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 3834 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 3228 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 2847 
CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N 2501 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N 1626 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N 1375 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 1371 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 1243 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 1119 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N 1000 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 966 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H 895 
CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:L/A:N 877 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H 770 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N 763 
CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H 748 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N 700 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N 606 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N 567 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H 553 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N 549 
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 497 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 440 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N 432 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N 407 
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H 370 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:L/A:N 358 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N 335 
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Table 10. Top 66 Most Frequent CVSS Vectors per Mappings from NVD (lower frequency 
vectors) 

CVSS Vector CVE Frequency 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H 334 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H 307 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N 295 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L 290 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N 288 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 286 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N 285 
CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H 268 
CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 251 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N 249 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H 228 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N 215 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N 214 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L 205 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 194 
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 188 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N 184 
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 179 
CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H 163 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H 162 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N 156 
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H 151 
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N 147 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N 143 
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N 140 
CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H 138 
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N 132 
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N 128 
CVSS:3.1/AV:A/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H 125 
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H 124 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H 118 
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N 112 
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 110 
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Appendix C. Encoded Knowledge Constraint Graphs 

This appendix provides the graphs produced by the 12 CVSS SIG experts using the NIST 
Knowledge Encoding Tool. Figure 11 provides the raw graphs created by the tool. Figure 
12 provides the simplifed graphs in which the redundant edges have been removed. Addi-
tionally, all edges have been updated to originate from and terminate to the representative 
nodes (the ones with the greatest frequency) for each equivalency set. This does not change 
the logic represented by the graph. 
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(a) 02c (b) 3d6 (c) 5fd 

(d) 6e5 (e) 70a (f) 88d 

(g) 908 (h) 977 (i) 98a 

(j) d3d (k) f00 (l) f59 

Fig. 11. Raw Graphs Produced by the Knowledge Encoding Tool for the 12 CVSS SIG Experts 
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(a) 02c (b) 3d6 (c) 5fd 

(d) 6e5 (e) 70a (f) 88d 

(g) 908 (h) 977 (i) 98a 

(j) d3d (k) f00 (l) f59 

Fig. 12. Simplifed Graphs with Redundant Edges Removed 
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