
 

NIST IR 8320 

Hardware-Enabled Security: 
Enabling a Layered Approach to Platform Security for Cloud 

and Edge Computing Use Cases 

 

Michael Bartock 
Murugiah Souppaya 

Ryan Savino 
Tim Knoll 

Uttam Shetty 
Mourad Cherfaoui 

Raghu Yeluri 
Akash Malhotra 

Don Banks 
Michael Jordan 

Dimitrios Pendarakis 
J. R. Rao 

Peter Romness 
Karen Scarfone 

 

 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.IR.8320 

 

 

 

  

 
 

https://doi.org/10.6028/NIST.IR.8320
https://doi.org/10.6028/NIST.IR.8320


 

 

NIST IR 8320 

Hardware-Enabled Security: 
Enabling a Layered Approach to Platform Security for Cloud 

and Edge Computing Use Cases 
Michael Bartock 

 Murugiah Souppaya 
Computer Security Division 

Information Technology Laboratory 

Don Banks 
Arm Architecture and Technology Group 

San Jose, CA 

 

Ryan Savino 
Tim Knoll 

Uttam Shetty 
Mourad Cherfaoui 

Raghu Yeluri 
Intel Data Platforms Group 

Santa Clara, CA 
 

Michael Jordan 
Dimitrios Pendarakis 

J. R. Rao 
IBM Systems and IBM Research 

Poughkeepsie and Yorktown Heights, NY 
 

Peter Romness 
Cisco 

McLean, VA 
 

 

Akash Malhotra 
AMD Product Security and Strategy Group 

Austin, TX 
 

Karen Scarfone 
Scarfone Cybersecurity 

Clifton, VA 
 

 

 
 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.IR.8320 

 

 

May 2022 
 

 
 

U.S. Department of Commerce 
 Gina M. Raimondo, Secretary 

 
National Institute of Standards and Technology  

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology 

https://doi.org/10.6028/NIST.IR.8320
https://doi.org/10.6028/NIST.IR.8320


 

 

National Institute of Standards and Technology Interagency or Internal Report 8320 
94 pages (May 2022) 

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.IR.8320 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 
available for the purpose.  

There may be references in this publication to other publications currently under development by NIST in accordance 
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 
may be used by federal agencies even before the completion of such companion publications. Thus, until each 
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 
planning and transition purposes, federal agencies may wish to closely follow the development of these new 
publications by NIST. 

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 
https://csrc.nist.gov/publications. 

Submit comments on this publication to: hwsec@nist.gov 
National Institute of Standards and Technology 

Attn: Applied Cybersecurity Division, Information Technology Laboratory 
100 Bureau Drive (Mail Stop 2000) Gaithersburg, MD 20899-2000 

All comments are subject to release under the Freedom of Information Act (FOIA). 

  

https://doi.org/10.6028/NIST.IR.8320
https://csrc.nist.gov/publications
mailto:hwsec@nist.gov


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

ii 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
federal information systems. 

Abstract 

In today’s cloud data centers and edge computing, attack surfaces have shifted and, in some 
cases, significantly increased. At the same time, hacking has become industrialized, and most 
security control implementations are not coherent or consistent. The foundation of any data 
center or edge computing security strategy should be securing the platform on which data and 
workloads will be executed and accessed. The physical platform represents the first layer for any 
layered security approach and provides the initial protections to help ensure that higher-layer 
security controls can be trusted. This report explains hardware-enabled security techniques and 
technologies that can improve platform security and data protection for cloud data centers and 
edge computing. 

Keywords 

confidential computing; container; hardware-enabled security; hardware security module (HSM); 
secure enclave; trusted execution environment (TEE); trusted platform module (TPM); 
virtualization. 

Disclaimer 

Any mention of commercial products or reference to commercial organizations is for information 
only; it does not imply recommendation or endorsement by NIST, nor does it imply that the 
products mentioned are necessarily the best available for the purpose. 

Acknowledgments 

The authors thank everyone who contributed their time and expertise to the development of this 
report, including: 

• From AMD: David Kaplan and Kathir Nadarajah 

• From Arm: Yuval Elad, Nicholas Wood, Joanna Farley, Paul Howard, Dan Handley, 
Stuart Yoder, Erik Jacobson, and Mark Knight 

• From Cisco: Jeff Schutt, Scott Phuong, Charlie Hsu, Timothy Wilson-Johnston, and 
Justin Salerno 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

iii 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

• From IBM: Jonathan Bradbury, James Bottomley, Debapriya Chatterjee, Chris Engel, 
Ken Goldman, Guerney Hunt, Kathryn Ignaszewski, Hani Jamjoom, Elaine Palmer, 
Harmeet Singh, and Balaram Sinharoy 

• From Intel Corporation: Ravi Sahita, Alex Eydelberg, Sugumar Govindarajan, Kapil 
Sood, Jeanne Guillory, David Song, Scott Raynor, Scott Huang, Matthew Areno, Charlie 
Stark, Subomi Laditan, Kamal Natesan, Haidong Xia, Jerry Wheeler, Dhinesh 
Manoharan, and John Pennington 

• From Red Hat: Luke Hinds and Mark Bohannon for contributing content related to 
Keylime  

Audience 

The primary audiences for this report are security professionals, such as security engineers and 
architects; system administrators and other information technology (IT) professionals for cloud 
service providers; and hardware, firmware, and software developers who may be able to leverage 
hardware-enabled security techniques and technologies to improve platform security for cloud 
data centers and edge computing. 

Trademark Information  

All registered trademarks or trademarks belong to their respective organizations. 

Patent Disclosure Notice 

NOTICE: ITL has requested that holders of patent claims whose use may be required for compliance 
with the guidance or requirements of this publication disclose such patent claims to ITL. However, 
holders of patents are not obligated to respond to ITL calls for patents and ITL has not undertaken a 
patent search in order to identify which, if any, patents may apply to this publication. 

As of the date of publication and following call(s) for the identification of patent claims whose use 
may be required for compliance with the guidance or requirements of this publication, no such 
patent claims have been identified to ITL.  

No representation is made or implied by ITL that licenses are not required to avoid patent 
infringement in the use of this publication. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

iv 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Table of Contents 
1 Introduction ............................................................................................................ 1 

2 Hardware Platform Security Overview ................................................................. 3 

3 Platform Integrity Verification ............................................................................... 5 

3.1 Hardware Security Module (HSM) .................................................................. 5 

3.2 The Chain of Trust (CoT) ................................................................................ 6 

3.3 Supply Chain Protection ................................................................................. 7 

4 Software Runtime Protection Mechanisms.......................................................... 8 

4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 
(COP/JOP) Attacks ................................................................................................. 8 

4.2 Address Translation Attacks ........................................................................... 8 

4.3 Memory Safety Violations ............................................................................... 9 

4.4 Side-Channel Attacks ................................................................................... 10 

5 Data Protection and Confidential Computing .................................................... 12 

5.1 Memory Isolation ........................................................................................... 12 

5.2 Application Isolation ...................................................................................... 13 

5.3 VM Isolation .................................................................................................. 13 

5.4 Cryptographic Acceleration ........................................................................... 14 

6 Remote Attestation Services............................................................................... 15 

6.1 Platform Attestation ....................................................................................... 15 

6.2 Remote TEE Attestation ............................................................................... 17 

7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security .............. 19 

7.1 Visibility to Security Infrastructure ................................................................. 19 

7.2 Workload Placement on Trusted Platforms ................................................... 19 

7.3 Asset Tagging and Trusted Location ............................................................ 21 

7.4 Workload Confidentiality ............................................................................... 22 

7.5 Protecting Keys and Secrets ......................................................................... 24 

8 Next Steps ............................................................................................................ 26 

References ................................................................................................................... 27 

 
List of Appendices 

Appendix A— Vendor-Agnostic Technology Examples .......................................... 35 

A.1 Platform Integrity Verification ........................................................................ 35 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

v 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

A.1.1 UEFI Secure Boot (SB) ...................................................................... 35 

A.2 Keylime ......................................................................................................... 36 

Appendix B— Intel Technology Examples ................................................................ 37 

B.1 Platform Integrity Verification ........................................................................ 37 

B.1.1 The Chain of Trust (CoT) .................................................................... 37 

B.1.2 Supply Chain Protection ..................................................................... 41 

B.2 Software Runtime Protection Mechanisms ................................................... 42 

B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented 
Programming (COP/JOP) Attacks ................................................................. 42 

B.2.2 Address Translation Attacks ............................................................... 42 

B.3 Data Protection and Confidential Computing ................................................ 44 

B.3.1 Memory Isolation ................................................................................ 44 

B.3.2 Application Isolation ............................................................................ 45 

B.3.3 VM Isolation ........................................................................................ 46 

B.3.4 Cryptographic Acceleration ................................................................ 46 

B.3.5 Technology Example Summary .......................................................... 47 

B.4 Remote Attestation Services ......................................................................... 48 

B.4.1 Intel Security Libraries for the Data Center (ISecL-DC) ...................... 48 

B.4.2 Technology Summary ......................................................................... 48 

Appendix C— AMD Technology Examples ............................................................... 49 

C.1 Platform Integrity Verification ........................................................................ 49 

C.1.1 AMD Platform Secure Boot (AMD PSB) ............................................. 49 

C.2 Data Protection and Confidential Computing ................................................ 49 

C.2.1 Memory Isolation ................................................................................ 49 

C.2.2 VM Isolation ........................................................................................ 50 

Appendix D— Arm Technology Examples ................................................................ 52 

D.1 Platform Integrity Verification ........................................................................ 52 

D.1.1 Arm TrustZone Trusted Execution Environment (TEE) for Armv8-A .. 52 

D.1.2 Arm Secure Boot and the Chain of Trust (CoT) .................................. 55 

D.1.3 Platform Security Architecture (PSA) Functional APIs........................ 57 

D.1.4 Platform AbstRaction for SECurity (Parsec) ....................................... 59 

D.2 Software Runtime Protection Mechanisms ................................................... 61 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

vi 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

D.2.1 Return Oriented Programming (ROP) and Jump Oriented 
Programming (JOP) Attacks .......................................................................... 61 

D.2.2 Memory Safety Violations ................................................................... 62 

D.2.3 Arm Mitigations Against Side-Channel Attacks .................................. 64 

D.3 Data Protection and Confidential Computing ................................................ 66 

D.3.1 Arm Confidential Compute Architecture (CCA) .................................. 66 

D.3.2 Arm Cryptographic Acceleration ......................................................... 71 

Appendix E— Cisco Technology Examples ............................................................. 72 

E.1 Platform Integrity Verification ........................................................................ 72 

E.1.1 Cisco Platform Roots of Trust ............................................................. 72 

E.1.2 Cisco Chain of Trust (CoT) ................................................................. 73 

E.2 Cisco Supply Chain Protection ..................................................................... 73 

E.3 Cisco Software Runtime Protections ............................................................. 73 

E.4 Cisco Data Protection and Confidential Computing ...................................... 74 

E.5 Cisco Platform Attestation ............................................................................. 74 

E.6 Cisco Visibility to Security Infrastructure ....................................................... 74 

E.7 Cisco Workload Placement on Trusted Platforms ......................................... 74 

Appendix F— IBM Technology Examples ................................................................. 75 

F.1 Platform Integrity Verification ........................................................................ 75 

F.1.1 Hardware Security Module (HSM) ...................................................... 75 

F.1.2 IBM Chain of Trust (CoT) ................................................................... 75 

F.2 Software Runtime Protection Mechanisms ................................................... 76 

F.2.1 IBM ROP and COP/JOP Attack Defenses .......................................... 76 

F.3 Data Protection and Confidential Computing ................................................ 76 

F.3.1 IBM Memory Isolation Technology ..................................................... 76 

F.3.2 IBM Application Isolation Technology ................................................. 77 

F.3.3 IBM VM Isolation Technology ............................................................. 77 

F.3.4 IBM Cryptographic Acceleration Technology ...................................... 78 

F.4 Remote Attestation Services ......................................................................... 78 

F.4.1 IBM Platform Attestation Tooling ........................................................ 78 

F.4.2 IBM Continuous Runtime Attestation .................................................. 78 

Appendix G— Acronyms and Abbreviations ............................................................ 79 

Appendix H— Glossary .............................................................................................. 85 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

vii 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 
List of Figures 

Figure 1: Notional Example of Remote Attestation Service ........................................... 16 

Figure 2: Notional Example of TEE Attestation Flow ..................................................... 18 

Figure 3: Notional Example of Orchestrator Platform Labeling ..................................... 20 

Figure 4: Notional Example of Orchestrator Scheduling................................................ 21 

Figure 5: Notional Example of Key Brokerage .............................................................. 23 

Figure 6: Notional Example of Workload Image Encryption .......................................... 23 

Figure 7: Notional Example of Workload Decryption ..................................................... 24 

Figure 8: Firmware and Software Coverage of Existing Chain of Trust Technologies .. 40 

Figure 9: Arm Processor with TrustZone ....................................................................... 53 

Figure 10: Boot-Time and Run-Time Firmware ............................................................. 56 

Figure 11: Root World (Monitor), Realm World, and Isolation Boundaries .................... 68 

 

 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

1 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

1 Introduction 

In data centers and edge computing, there are three significant forces that impact security: (1) the 
introduction of billions of connected devices and increased adoption of the cloud have 
significantly increased attack surfaces; (2) hacking has become industrialized with sophisticated 
and evolving techniques to compromise data; and (3) solutions composed of multiple 
technologies from different vendors result in a lack of coherent and consistent implementations 
of security controls. Given these forces, the foundation for a data center or edge computing 
security strategy should have a consolidated approach to comprehensively secure entire systems, 
including hardware platforms, on which workloads and data are executed and accessed. 

In the scope of this document, the hardware platform is a server (e.g., application server, storage 
server, virtualization server) in a data center or edge compute facility. The server’s hardware 
platform, also called the server platform, represents the first part of the layered security 
approach. Hardware-enabled security—security with its basis in the hardware platform—can 
provide a stronger foundation than one offered by software or firmware, which has a larger 
attack surface and can be modified with relative ease. Hardware root of trust (RoT) can present a 
smaller attack surface if implemented with a small codebase. Existing security implementations 
can be enhanced by providing a base-layer, immutable hardware module that chains software and 
firmware verifications from the hardware all the way to the application space or specified 
security control. In that manner, existing security mechanisms can be trusted even more to 
accomplish their security goals without compromise, even when there is a lack of physical 
security or attacks originate from the software layer. 

This report explains hardware-based security techniques and technologies that can improve 
server platform security and data protection for cloud data centers and edge computing. The rest 
of this report covers the following topics: 

• Section 2 provides an overview of hardware platform security. 

• Section 3 discusses the measurement and verification of platform integrity. 

• Section 4 explores software runtime attacks and protection mechanisms. 

• Section 5 considers protecting data in use, also known as confidential computing. 

• Section 6 examines remote attestation services, which can collate platform integrity 
measurements to aid in integrity verification. 

• Section 7 describes a number of cloud use case scenarios that take advantage of 
hardware-enabled security. 

• Section 8 states the next steps for this report and how others can contribute. 

• The References section lists the cited references for this report. 

• Appendix A describes vendor-agnostic technology examples. 

• Appendices B through F describe technology examples from Intel, AMD, Arm, Cisco, 
and IBM, respectively. 

• Appendix G lists the acronyms and abbreviations used in the report. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

2 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

• Appendix H provides a glossary of selected terms used in the report. 

As technology and security capabilities evolve, NIST is continuously seeking feedback from the 
community on the content of the report and soliciting additional technology example 
contributions from other companies. 

Although this document does not address other platforms like laptops, desktops, mobile devices, 
or Internet of Things (IoT) devices, the practices in this report can be adapted to support those 
platforms and their associated use cases. 

Please send your feedback and comments to hwsec@nist.gov. 

    

mailto:hwsec@nist.gov


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

3 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

2 Hardware Platform Security Overview 

The data center threat landscape has evolved in recent years to encompass more advanced attack 
surfaces with more persistent attack mechanisms. With increased attention being applied to high-
level software security, attackers are pushing lower in the platform stack, forcing security 
administrators to address a variety of attacks that threaten the platform firmware and hardware. 
These threats can result in: 

• Unauthorized access to and potential extraction of sensitive platform or user data, 
including direct physical access to dual in-line memory modules (DIMMs) 

• Modification of platform firmware, such as that belonging to the Unified Extensible 
Firmware Interface (UEFI)/Basic Input/Output System (BIOS), Board Management 
Controller (BMC), Manageability Engine (ME), Peripheral Component Interconnect 
Express (PCIe) device, and various accelerator cards 

• Supply chain interception through the physical replacement of firmware or hardware with 
malicious versions 

• Access to data or execution of code outside of regulated geopolitical or other boundaries 

• Circumvention of software and/or firmware-based security mechanisms 

For example, LoJax, discovered in August 2018, manifests itself in UEFI malware, allowing it to 
continuously persist in the firmware layer despite operating system (OS) reinstallations, and thus 
remain invisible to standard kernel-based virus scans [1]. These attacks can be devastating to 
cloud environments because they often require server-by-server rebuilds or replacements, which 
can take weeks. Although still rare, these attacks are increasing as attackers become more 
sophisticated.  

Workloads subject to specific regulations or containing sensitive data present additional security 
challenges for multi-tenant clouds. While virtualization and containers significantly benefit 
efficiency, adaptability, and scalability, these technologies consolidate workloads onto fewer 
physical platforms and introduce the dynamic migration of workloads and data across platforms. 
Consequently, cloud adoption results in a loss of customer visibility and control over the 
platforms that host virtualized workloads and data, and introduces the usage of third-party 
infrastructure administrators. Cloud providers and cloud adopters follow a shared responsibility 
model, where each party has responsibility for different aspects of the overall implementation. 
Cloud providers can expose information related to infrastructure security and platform capability 
in order to provide their tenants with security assurances. Furthermore, cloud providers often 
have data centers that span multiple geopolitical boundaries, subjecting workload owners to 
complicated legal and regulatory compliance requirements from multiple countries. Hybrid cloud 
architectures, in particular, utilize multiple infrastructure providers, each with its own 
infrastructure configurations and management.  

Without physical control over or use of confidential computing features or visibility into 
platform configurations, conventional security best practices and regulatory requirements 
become difficult or impossible to implement. With regulatory structures like the General Data 
Protection Regulation (GDPR) introducing high-stakes fines for noncompliance, having visibility 
and control over where data may be accessed is more important than ever before. Top concerns 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

4 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

among security professionals include the protection of workloads from general security risks, the 
loss or exposure of data in the event of a data breach, and regulatory compliance. 

Existing mitigations of threats against cloud servers are often rooted in firmware or software, 
making them vulnerable to the same attack strategies. For example, if the firmware can be 
successfully exploited, the firmware-based security controls can most likely be circumvented in 
the same fashion. Hardware-enabled security techniques can help mitigate these threats by 
establishing and maintaining platform trust—an assurance in the integrity of the underlying 
platform configuration, including hardware, firmware, and software. By providing this 
assurance, security administrators can gain a level of visibility and control over where access to 
sensitive workloads and data is permitted. Platform security technologies that establish platform 
trust can provide notification or even self-correction of detected integrity failures. Platform 
configurations can automatically be reverted back to a trusted state and give the platform 
resilience against attack. 

To achieve the necessary security controls, an RoT can be leveraged as a starting point that is 
implicitly trusted. Hardware-based controls can provide a foundation for establishing platform 
integrity assurances. Combining these functions with a means of producing verifiable evidence 
that these integrity controls are in place and have been executed successfully is the basis of 
creating a trusted platform. Minimizing the footprint of this RoT translates to reducing the 
number of modules or technologies that must be implicitly trusted. This substantially reduces the 
attack surface. 

Platforms that secure their underlying firmware and configuration provide the opportunity for 
trust to be extended higher in the software stack. Verified platform firmware can, in turn, verify 
the OS boot loader, which can then verify other software components all the way up to the OS 
itself and the hypervisor or container runtime layers. The transitive trust described here is 
consistent with the concept of the chain of trust (CoT)—a method where each software module 
in a system boot process is required to measure the next module before transitioning control. 

Rooting platform integrity and trust in hardware security controls can strengthen and 
complement the extension of the CoT into the dynamic software category. There, the CoT can be 
extended even further to include data and workload protection. Hardware-based protections 
through CoT technology mechanisms can form a layered security strategy to protect data and 
workloads as they move to multi-tenant environments in a cloud data center or edge computing 
facility. 

In addition, there are other hardware platform security technologies that can protect data at rest, 
in transit, and in use by providing hardware-accelerated disk encryption or encryption-based 
memory isolation. Many of these capabilities can help mitigate threats from speculative 
execution and side-channel attacks. By using hardware to perform these tasks, the attack surface 
is mitigated, preventing direct access or modification of the required firmware. Isolating these 
encryption mechanisms to dedicated hardware can allow performance to be addressed and 
enhanced separately from other system processes as well. An example of hardware-based 
isolation is discussed later in the document.   



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

5 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

3 Platform Integrity Verification 

A key concept of trusted computing is verification of the underlying platform’s integrity. 
Platform integrity is typically comprised of two parts:  

• Cryptographic measurement of software and firmware. In this report, the term 
measurement refers to calculating a cryptographic hash of a software or firmware 
executable, configuration file, or other entity. If there is any change in an entity, a new 
measurement will result in a different hash value than the original [2]. By measuring 
software and firmware prior to execution, the integrity of the measured modules and 
configurations can be validated before the platform launches or before data or workloads 
are accessed. These measurements can also act as cryptographic proof for compliance 
audits. 

• Firmware and configuration verification. When firmware and configuration 
measurements are made, local or remote attestations can be performed to verify if the 
desired firmware is actually running and if the configurations are authorized [3]. 
Attestation can also serve as the foundation for further policy decisions that fulfill various 
cloud security use case implementations. For instance, encryption keys can be released to 
client workloads if a proof is performed that the platform is trusted and in compliance 
with policies. 

In some cases, a third part is added to platform integrity:  

• Firmware and configuration recovery. If the verification step fails (i.e., the attestations 
do not match the expected measurements), the firmware and configuration can 
automatically be recovered to a known good state, such as rolling back firmware to a 
trusted version. The process by which these techniques are implemented affects the 
overall strength of the assertion that the measured and verified components have not been 
accidentally altered or maliciously tampered. Recovery technologies allow platforms to 
maintain resiliency against firmware attacks and accidental provisioning mistakes [4]. 

There are many ways to measure platform integrity. Most technologies center around the 
aforementioned concept of the CoT. In many cases, a hardware security module is used to store 
measurement data to be attested at a later point in time. The rest of this section discusses 
hardware security modules and various CoT technology implementations. 

3.1 Hardware Security Module (HSM) 

A hardware security module (HSM) is “a physical computing device that safeguards and 
manages cryptographic keys and provides cryptographic processing” [5]. Cryptographic 
operations such as encryption, decryption, and signature generation/verification are typically 
hosted on the HSM device, and many implementations provide hardware-accelerated 
mechanisms for cryptographic operations. 

A trusted platform module (TPM) is a special type of HSM that can generate cryptographic keys 
and protect small amounts of sensitive information, such as passwords, cryptographic keys, and 
cryptographic hash measurements. [3] The TPM is a standalone device that can be integrated 
with server platforms, client devices, and other products. One of the main use cases of a TPM is 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

6 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

to store digest measurements of platform firmware and configuration during the boot process. 
Each firmware module is measured by generating a digest, which is then extended to a TPM 
platform configuration register (PCR). Multiple firmware modules can be extended to the same 
PCR, and platform-specific specifications like the Trusted Computing Group (TCG) PC Client 
Platform Firmware Profile provide guidelines for which firmware measurements are 
encompassed by each PCR [6]. 

TPMs also host functionality to generate binding and signing keys that are unique per TPM and 
stored within the TPM non-volatile random-access memory (NVRAM). The private portion of 
this key pair is decrypted inside the TPM, making it only accessible by the TPM hardware or 
firmware. This can create a unique relationship between the keys generated within a TPM and a 
platform system, restricting private key operations to the platform firmware that has ownership 
and access to the specified TPM. Binding keys are used for encryption/decryption of data, while 
signing keys are used to generate/verify cryptographic signatures. The TPM provides a random 
number generator (RNG) as a protected capability with no access control. This RNG is used in 
critical cryptographic functionality as an entropy source for nonces, key generation, and 
randomness in signatures [6]. 

There are two versions of TPMs: 1.2 and 2.0. The 2.0 version supports additional security 
features and algorithms [6]. TPMs also meet the National Institute of Standards and Technology 
(NIST) Federal Information Processing Standard (FIPS) 140 validation criteria and support 
NIST-approved cryptographic algorithms [7]. 

3.2 The Chain of Trust (CoT) 

The chain of trust (CoT) is a method for maintaining valid trust boundaries by applying a 
principle of transitive trust. Each firmware module in the system boot process is required to 
measure the next module before transitioning control. Once a firmware module measurement is 
made, it is recommended to immediately extend the measurement value to a root of trust for 
storage, such as an HSM register, for attestation at a later point in time [6]. The CoT can be 
extended further into the application domain, allowing for files, directories, devices, peripherals, 
etc. to be measured and attested.  

Every CoT starts with an RoT module. It can be composed of different hardware and firmware 
components. For several platform integrity technologies, the RoT core firmware module is 
rooted in immutable read-only memory (ROM) code. However, not all technologies define their 
RoTs in this manner [6]. The RoT is typically separated into components that verify and 
measure. The core RoT for verification (CRTV) is responsible for verifying the first component 
before control is passed to it. The core RoT for measurement (CRTM) is the first component that 
is executed in the CoT and extends the first measurement to the TPM. The CRTM can be divided 
into a static portion (SCRTM) and dynamic portion (DCRTM). The SCRTM is composed of 
elements that measure firmware at system boot time, creating an unchanging set of 
measurements that will remain consistent across reboots except for volatile attributes like date 
and time. The DCRTM allows a CoT to be established without rebooting the system, permitting 
the RoT for measurement to be reestablished dynamically. 

An RoT that is built with hardware protections will be more difficult to change, while an RoT 
that is built solely in firmware can be flashed and modified. An immutable hardware RoT 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

7 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

possesses the risk of not being able to be patched. The goal should be to keep the RoT as small 
as possible. In the context of this publication, firmware is a specific class of computer software 
that provides the low-level control for a device’s specific hardware. 

Various platform integrity technologies build their own CoTs. Please refer to the following 
technology examples in the appendices for more information: 

• UEFI Secure Boot (SB) 

• Intel Trusted Execution Technology (TXT) 

• Intel Boot Guard 

• Intel Platform Firmware Resilience (PFR) 

• Intel Technology Example Summary 

• AMD Platform Secure Boot (AMD PSB)  

• Arm TrustZone Trusted Execution Environment (TEE) for Armv8-A 

• Arm Secure Boot and the Chain of Trust (CoT) 

• Cisco Platform Roots of Trust 

• IBM Chain of Trust (CoT) 

3.3 Supply Chain Protection 

Organizations are increasingly at risk of supply chain compromise, whether intentional or 
unintentional. Managing cyber supply chain risks requires, in part, ensuring the integrity, quality, 
and resilience of the supply chain, its products, and its services. Cyber supply chain risks may 
include counterfeiting, unauthorized production, tampering, theft, and insertion of malicious or 
otherwise unexpected software and hardware, as well as poor manufacturing and development 
practices in the cyber supply chain [8] [9] [10]. 

Special technologies have been developed to help ascertain the authenticity and integrity of 
platform hardware, including its firmware and configuration. These technologies help ensure that 
platforms are not tampered with or altered from the time that they are assembled at the 
manufacturer site to the time that they arrive at a customer data center ready for installation. 
Verification of these platform attributes is one aspect of securing the supply chain.1 Some 
technologies include an additional feature for locking the boot process or access to these 
platforms until a secret is provided that only the customer and manufacturer know. 

Please refer to the following technology examples in the appendices for more information: 

• Intel Transparent Supply Chain (TSC) 

• Intel PFR with Protection in Transit (PIT) 

• Cisco Supply Chain Protection   
 

1  For more information on supply chain security, see the National Cybersecurity Center of Excellence (NCCoE) Supply Chain 
Assurance project page at https://www.nccoe.nist.gov/supply-chain-assurance.  

https://www.nccoe.nist.gov/supply-chain-assurance


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

8 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

4 Software Runtime Protection Mechanisms 

This section describes various software runtime attacks and protection mechanisms. 

4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 
(COP/JOP) Attacks 

ROP attacks focus on utilizing buffer overflows and targeted memory overwrites of return 
addresses in the stack. Attackers redirect return flows by corrupting addresses on the data stack 
to be locations in already-executable code. These small selected sequences of code called 
gadgets result in malicious modifications to the system or the invocation of normally 
unauthorized operations. A common example is a call to the shell executable within the system 
interface [11]. 

COP/JOP attacks are similar to ROP attacks, relying on gadget building blocks. They target 
indirect jump instructions at the end of a gadget, many of which are intentionally emitted by the 
compiler. However, a jump gadget performs a one-directional control flow transfer to its target, 
as opposed to ROP, where gadgets return control back to the stack. This can make it difficult for 
attackers to regain control after executing their gadgets, but solutions to this problem, such as the 
one presented in [11], are beginning to appear. 

Applications can utilize a parallel stack, known as the shadow stack, to help mitigate software 
attacks that attempt to modify the control flow. Utilizing special hardware, the shadow stack is 
used to store a copy of return addresses; the address is checked against the normal program stack 
on return operations. If the content differs, an exception is generated, which can help prevent 
malicious code from gaining control of the system with techniques such as ROP. In this way, 
shadow stack hardware can help mitigate some of the most common and exploitable types of 
software bugs. 
Several defenses and preventative measures have been developed within industry to 
accommodate ROP and COP/JOP attacks, including: 

• Intel Control-Flow Enforcement Technology (Intel CET) 

• Arm Pointer Authentication Code (PAC) 

• Arm Branch Target Identification (BTI) 

• IBM ROP and COP/JOP Attack Defenses 

4.2 Address Translation Attacks 

Commodity OSs rely on virtual memory protection models enabled via paging enforced by the 
processor memory management unit (MMU). OSs isolate process and kernel memory using page 
tables managed by systems software, with access permissions such as user/supervisor and 
read/write/execute (RWX). Process and kernel memory accesses are via virtual addresses that are 
mapped to physical memory addresses via address translation structures. These structures used 
for address translation are critical to enforcing the isolation model. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

9 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Modern OSs are single address space kernels (as opposed to micro-kernels), which provide good 
performance but have a large attack surface. A vulnerability in the kernel or driver can be 
leveraged to escalate privileges of a malicious process. Kernel read/write (RW) primitives can be 
leveraged with Write-What-Where vulnerabilities exploited from flaws discovered in kernel code 
and/or drivers. 

Heuristic defense mechanisms such as Page Table randomization can be bypassed with 
information leaks achieved via malicious RW primitives. Such information leaks are performed 
by chaining together a set of system calls (syscalls). For example, one syscall can allocate RWX 
pool memory, and a second can exploit an arbitrary memory write to overwrite the address 
translation structures. Two types of attacks can utilize this methodology for nefarious purposes. 
First, an attacker can redirect a virtual address in use to attacker-controlled contents (many times 
set up in user-space memory). Second, an attacker can create a malicious alias mapping that 
references desired physical memory with attacker-chosen permissions (e.g., RW access to a page 
via an alias mapping that was originally read-only). It is important for address translation 
protection mechanisms to block both of these types of attacks. 

In addition to protecting the integrity of address translation structures, processors can also detect 
and block any execution or data access setup by lower-privilege code from a higher-privilege 
access. These protections establish boundaries, requiring code to execute with only the necessary 
permissions and forcing elevated permission requests when needed. 

Several defenses and preventative measures have been developed within industry to 
accommodate address translation attacks, including the following: 

• Intel Hypervisor Managed Linear Address Translation (HLAT) 

• Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 
Prevention (SMAP) 

• AMD Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 
Prevention (SMAP) 

4.3 Memory Safety Violations 

Approximately 70 percent of the vulnerabilities addressed through security updates each year are 
memory safety issues [12]. They are especially common in programs written in languages such 
as C and C++ that expose pointers. These code bugs can be exploited by attackers to reveal data, 
including keys and other secrets. There are both temporal and spatial memory safety violations. 
Some common examples of both types are as follows: 

• use-after-free: a program continues to use allocated memory after releasing it (temporal) 

• use-out-of-scope: a program uses memory from another program scope not within its 
current scope (temporal) 

• use-before-initialization: a program accesses memory that has been allocated but not yet 
initialized (temporal) 

• bounds violations, buffer overflow: a program accesses memory beyond the bounds of 
an allocated buffer/data structure (spatial) 

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

10 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Hardware-based technologies have been introduced or are being developed in the industry to 
address memory safety violations. Both require companion software support.  

The first, memory tagging (also known as coloring, versioning, or tainting) is discussed in [13] 
and [14]. It is a probabilistic lock-and-key approach to detecting memory violation bugs. With a 
tag size of 4, the probability of detecting a bug is 94 percent; with a tag size of 8, the probability 
is 99.6 percent. Memory tagging is expected to be generally applicable to 64-bit software written 
in C and C++. Use in mixed-language environments, e.g., C/C++ code and interacting with just-
in-time (JIT) compiled or interpreted languages, is also expected to benefit. Applicability to 
software in other languages will vary. Since memory tagging imposes no changes to standard 
C/C++ application binary interfaces (ABIs), incremental deployment is possible. 

The second is capability-based hardware systems, which enable software to efficiently 
implement fine-grained memory protection and scalable software compartmentalization by 
providing strong, non-probabilistic, efficient mechanisms to support the principles of least 
privilege and intentional use in the execution of software at multiple levels of abstraction, 
preventing and mitigating memory safety vulnerabilities. 

Hardware capability technology combines references to memory locations—pointers—with 
limits on how the references can be used. These limits relate to both the address ranges and the 
functionality that the references can be used to access. This combined information is called a 
capability. It is constructed so that it cannot be forged by software. Replacing pointers with 
capabilities in a program vastly improves memory safety.  

The benefit of hardware capability technology goes beyond memory safety. This is because 
capabilities can be used as a building block for more fine-grained compartmentalization of 
software. This could result in inherently more robust software that is resistant to attack. A 
powerful feature of compartmentalization is that even if one compartment is compromised by an 
attacker, the attacker cannot break out of the compartment to access any other information or to 
take overall control of the computing system. 

In addition to changes to hardware, capability-based security requires re-architecting how code is 
designed. Code must be written and compiled in a different way to take advantage of the novel 
hardware features and to achieve a more secure result. 

Several defenses and preventative measures have been developed within industry to 
accommodate memory safety violations, including the following: 

• Arm Privileged Access Never (PAN) 

• Arm User (EL0) Execute Never (UXN) and Privileged (EL1/EL2) Execute Never (PXN) 

• Arm Memory Tagging Extension (MTE) 

• Arm Hardware Enforced Capability-Based Architecture (Morello and CHERI) 

4.4 Side-Channel Attacks 

The vulnerability underlying cache timing side-channel attacks is that the pattern of allocations 
into the cache of a central processing unit (CPU), and, in particular, which cache sets have been 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

11 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

used for the allocation, can be determined by measuring the time taken to access entries that 
were previously in the cache or to access entries that have been allocated. This may leak 
information about the pattern of cache allocations that could be read by other, less privileged 
software. 

The new feature of speculation-based cache timing side-channels is their use of speculative 
memory reads. Speculative memory reads are common in high-performance CPUs. By 
performing speculative memory reads to cacheable locations beyond an architecturally 
unresolved branch (or other change in program flow), the result of those reads can themselves be 
used to form the addresses of further speculative memory reads. These speculative reads cause 
allocations of entries into the cache whose addresses are indicative of the values of the first 
speculative read. This becomes an exploitable side-channel if untrusted code is able to control 
the speculation in such a way that it causes a first speculative read of a location that would not 
otherwise be accessible to that untrusted code. The effects of the second speculative allocation 
within the caches can be measured by that untrusted code. 

Processor designs have evolved to meet these threats by adding additional instructions along 
with firmware and software support to mitigate this class of attack. Defenses and preventative 
measures developed within industry to accommodate side-channel attacks include the following: 

• Arm Mitigations Against Side-Channel Attacks 

 

    



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

12 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

5 Data Protection and Confidential Computing 

With the increase in adoption of customer-based cloud services, virtualization has become a 
necessity in cloud data center infrastructure. Virtualization simulates hardware for multiple cloud 
workloads. Each workload is isolated from others so that it has access to only its own resources, 
and each workload can be completely encapsulated for portability [15] [16]. Conventional virtual 
machines (VMs) have an isolated kernel space running all aspects of a workload alongside the 
kernel. Today, the virtualized environment has been extended to include containers and full-
featured workload orchestration engines. Containers offer application portability by sharing an 
underlying kernel, which drastically reduces workload-consumed resources and increases 
performance.  

While containers can provide a level of convenience, vulnerabilities in the kernel space and 
shared layers can be susceptible to widespread exploitation, making security for the underlying 
platform even more important. With the need for additional protection in the virtualized 
workspace, an emphasis has been placed on encrypting data both at rest and while in use. At-rest 
encryption provides protection for data on disk. This typically refers to an unmounted data store 
and protects against threats such as the physical removal of a disk drive. Protecting and securing 
cloud data while in use, also referred to as confidential computing, utilizes hardware-enabled 
features to isolate and process encrypted data in memory so that the data is at less risk of 
exposure and compromise from concurrent workloads or the underlying system and platform 
[17]. This section describes technologies that can be leveraged for providing confidential 
computing for cloud and edge. 

A trusted execution environment (TEE) is an area or enclave protected by a system processor. 
Sensitive secrets like cryptographic keys, authentication strings, or data with intellectual property 
and privacy concerns can be preserved within a TEE, and operations involving these secrets can 
be performed within the TEE, thereby eliminating the need to extract the secrets outside of the 
TEE. A TEE also helps ensure that operations performed within it and the associated data cannot 
be viewed from outside, not even by privileged software or debuggers. Communication with the 
TEE is designed to only be possible through designated interfaces, and it is the responsibility of 
the TEE designer/developer to define these interfaces appropriately. A good TEE interface limits 
access to the bare minimum required to perform the task. 

5.1 Memory Isolation 

There are many technologies that provide data protection via encryption. Most of these solutions 
focus on protecting the respective data while at rest and do not cover the fact that the data is 
decrypted and vulnerable while in use. Applications running in memory share the same platform 
hardware and can be susceptible to attacks either from other workloads running on the same 
hardware or from compromised cloud administrators. There is a strong desire to secure 
intellectual property and ensure that private data is encrypted and not accessible at any point in 
time, particularly in cloud data centers and edge computing facilities. Various hardware 
technologies have been developed to encrypt content running in platform memory. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

13 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Please refer to the following technology examples in the appendices for more information: 

• Intel TME and Multi-Key Total Memory Encryption (Intel MKTME) 

• AMD Secure Memory Encryption (SME)/Transparent Secure Memory Encryption 
(TSME)  

• Arm Realm Memory Isolation and Protection 

• Arm External Memory (DRAM) Encryption and Integrity with CCA 

• IBM Memory Isolation Technology 

5.2 Application Isolation 

Application isolation utilizes a TEE to help protect the memory reserved for an individual 
application. The trust boundary associated with the application is restricted to only the CPU. 
Future generations of these techniques will allow entire applications to be isolated in their own 
enclaves rather than only protecting specific operations or memory. By using separate 
application enclaves with unique per-application keys, sensitive applications can be protected 
against data exposure, even to malicious insiders with access to the underlying platform. 
Implementations of application isolation will typically involve customer application developers 
integrating a toolkit within the application layer, and it is the developers’ responsibility to ensure 
secure TEE design. 

Please refer to the following technology examples in the appendices for more information: 

• Intel Software Guard Extensions (SGX) 

• Arm Confidential Compute Architecture (CCA) 

• Arm TrustZone Trusted Execution Environment (TEE) for Armv8-A 

• Arm Realm Memory Isolation and Protection 

• IBM Application Isolation Technology 

5.3 VM Isolation 

As new memory and execution isolation technologies become available, it is more feasible to 
isolate entire VMs. VMs already enjoy a degree of isolation due to technologies like hardware-
assisted virtualization, but the memory of each VM remains unencrypted. Some existing memory 
isolation technologies require implicit trust of the virtual machine manager (VMM). Isolation 
technologies in future platform generations will remove the VMM from the trust boundary and 
allow full encryption of VM memory with per-VM unique keys, protecting the VMs from not 
only malicious software running on the hypervisor host but also rogue firmware. 

VM isolation can be used to help protect workloads in multi-tenant environments like public and 
hybrid clouds. Isolating entire VMs translates to protection against malicious insiders at the 
cloud provider, or malware exposure and data leakage to other tenants with workloads running 
on the same platform. Many modern cloud deployments use VMs as container worker nodes. 
This provides a highly consistent and scalable way to deploy containers regardless of the 
underlying physical platforms. With full VM isolation, the virtual workers hosting container 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

14 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

workloads can be effectively isolated without impacting the benefits of abstracting the container 
from the underlying platform. 

Please refer to the following technology examples in the appendices for more information: 

• Intel Trust Domain Extensions (Intel TDX) 

• AMD Secure Encrypted Virtualization (SEV) 

• Arm Confidential Compute Architecture (CCA) 

• IBM VM Isolation Technology 

5.4 Cryptographic Acceleration 

Encryption is quickly becoming more widespread in data center applications as industry adopts 
more standards and guidelines regarding the sensitivity of customer data and intellectual 
property. Because cryptographic operations can drain system performance and consume large 
amounts of compute resources, the industry has adopted specialized hardware interfaces called 
cryptographic accelerators, which offload cryptographic tasks from the main processing unit 
onto a separate coprocessor chip. Cryptographic accelerators often come in the form of pluggable 
peripheral adapter cards. 

Please refer to the following technology examples in the appendices or technology vendor 
websites for more information: 

• Intel Advanced Encryption Standard New Instructions (AES-NI) 

• Intel QuickAssist Technology (QAT) with Intel Key Protection Technology (KPT) 

• AMD Advanced Encryption Standard 

• Arm Cryptographic Acceleration 

• IBM Cryptographic Acceleration Technology  

    

http://developer.amd.com/wordpress/media/2012/10/26568_APM_v41.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

15 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

6 Remote Attestation Services 

Measuring a server’s firmware/configuration and extending these measurements to a root of trust 
for storage and reporting can help keep track of which firmware is running on a platform. Some 
platform integrity technologies can even perform local attestation and enforcement of firmware 
and configuration on a server. However, data centers are usually made up of thousands of 
servers, and manually keeping track of them and their respective firmware is an overwhelming 
task for an operator. A remote service can address this by collating server information and 
measurement details. Cryptographic signatures can be used to ensure the integrity of transferred 
measurement data. Furthermore, the remote service can be used to define allowlist policies, 
specifying which firmware versions and event measurements are acceptable for servers in a 
particular data center environment. This service would verify or attest each server’s collected 
data against these policies, feeding the results into a policy orchestrator to report, alert, or 
enforce rules based on the events.  

A remote attestation service can provide additional benefits besides verifying server firmware. 
Specifying allowlist policies for specific firmware versions can allow data center administrators 
to easily invalidate old versions and roll out new upgrades. In some cases, certain hardware 
technologies and associated capabilities on platforms can be discoverable by their specific event 
log measurements recorded in an HSM. The information tracked in this remote attestation 
service can even be exposed through the data center administration layer directly to the 
enterprise user. This would give endpoint customers hardware visibility and the ability to specify 
firmware requirements or require platform features for the hardware on which their services are 
running. 

The key advantage to remote attestation is the enforcement of compliance across all hardware 
systems in a data center. The ability to verify against a collective allowlist as opposed to a local 
system enforcing a supply chain policy provides operators more flexibility and control in a 
cryptographically secured manner. These enforcement mechanisms can even be combined to 
provide stronger security policies. 

6.1 Platform Attestation 

Figure 1 shows a remote attestation service (AS) collecting platform configurations and integrity 
measurements from data center servers at a cloud service provider (CSP) via a trust agent service 
running on the platform servers. A cloud operator is responsible for defining allowlisted trust 
policies. These policies should include information and expected measurements for desired 
platform CoT technologies. The collected host data is compared and verified against the policies, 
and a report is generated to record the relevant trust information in the AS database. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

16 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 
Figure 1: Notional Example of Remote Attestation Service 

Platform attestation can be extended to include application integrity or the measurement and 
verification of the hypervisor container runtime interface (CRI) and applications installed on 
bare-metal servers. During boot time, an application agent on the server can measure operator-
specified files and directories that pertain to particular applications. An allowlist trust policy can 
be defined to include these expected measurements, and this policy can be included in the overall 
trust assessment of the platform in the remote AS. By extending measurements to a platform 
TPM, applications running on the bare-metal server can be added to the CoT. The components of 
the trust agent and application agent can be added to the policy and measured alongside other 
applications to ensure that the core feature elements are not tampered with. For example, a 
typical Linux implementation of the application agent could run inside initrd, and measurements 
made on the filesystem could be extended to the platform TPM. 

An additional feature commonly associated with platform trust is the concept of asset tagging. 
Asset tags are simple key value attributes that are associated with a platform like location, 
company name, division, or department. These key value attributes are tracked and recorded in a 
central remote service, such as the AS, and can be provisioned directly to a server through the 
trust agent. The trust agent can then secure these attribute associations with the host platform by 
writing hash measurement data for the asset tag information to a hardware security chip, such as 
the platform TPM NVRAM. The asset tag hash is then retrieved by the AS as part of the TPM 
quote and included in the platform trust report evaluation. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

17 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Please refer to the following technology examples in the appendices for more information: 

• Intel Security Libraries for the Data Center (ISecL-DC) 

• Remote Attestation Service - Project Veraison (VERificAtIon of atteStatiON) 

• IBM Platform Attestation Tooling 

6.2 Remote TEE Attestation 

There are instances when the high assurance that the output of the processing in a TEE can be 
trusted should be conveyed to a relying party. This is achieved thanks to a TEE attestation flow. 
Remote TEE attestation involves the generation of a verifiable cryptographic evidence by the 
TEE. The evidence is then sent to a relying party, which can validate the signature of the 
evidence. If the signature is valid, the relying party concludes that the remote code is running in 
a genuine TEE. 

An evidence usually contains the measurement of the TEE, as well as data related to the 
authenticity of the TEE and the compliant version of it. The measurement is a digest of the 
content of the TEE (e.g., code and static data). The measurement obtained at build time is 
typically known to the relying party and is compared against a measurement contained in the 
evidence that is actively taken during runtime. This allows the relying party to determine that the 
remote code has not been tampered with. An evidence may also contain the enclave’s developer 
signature and platform trusted computing base (TCB) information. 

The evidence may also contain the public key part of a key pair generated inside the TEE or a 
secure hash of the public key if there is a limitation on the size of the evidence. In the latter case, 
the public key must be communicated along with the evidence. The public key allows the relying 
party to wrap secrets that it wants to send to the TEE. This capability allows the relying party to 
provision secrets directly to the TEE without needing to trust any other software running on the 
server. 

Figure 2 shows an example TEE attestation flow. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

18 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 

Figure 2: Notional Example of TEE Attestation Flow 

Please refer to the following technology example in the appendices for more information: 

• Arm Secure Boot and the Chain of Trust (CoT) 

• IBM Continuous Runtime Attestation 

 

    



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

19 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security 

This section describes a number of cloud use case scenarios that take advantage of the hardware-
enabled security capability and trust attestation capability integrated with an operator 
orchestration tool to support various security and compliance objectives. 

7.1 Visibility to Security Infrastructure 

A typical attestation includes validation of the integrity of platform firmware measurements. 
These measurements are unique to a specific BIOS/UEFI version, meaning that the attestation 
report provides visibility into the specific firmware version currently in use, in addition to the 
integrity of that firmware. Attestation can also include hardware configuration and feature 
support information, both by attesting feature support directly and by resulting in different 
measurements based on which platform integrity technologies are used. 

Cryptographically verifiable reports of platform integrity and security configuration details (e.g., 
BIOS/UEFI versions, location information, application versions) are extremely useful for 
compliance auditing. These attestation reports for the physical platform, or VM/processes in the 
case of confidential computing, can be paired with workload launch or key release policies, 
providing traceability to confirm that data and workloads have only been accessed on compliant 
hardware in compliant configurations with required security technologies enabled. 

7.2 Workload Placement on Trusted Platforms 

Platform information and verified firmware/configuration measurements retained within an 
attestation service can be used for policy enforcement in countless use cases. One example is 
orchestration scheduling. Cloud orchestrators, such as Kubernetes and OpenStack, provide the 
ability to label server nodes in their database with key value attributes. The attestation service 
can publish trust and informational attributes to orchestrator databases for use in workload 
scheduling decisions. Figure 3 illustrates this. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

20 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 

Figure 3: Notional Example of Orchestrator Platform Labeling 

In OpenStack, this can be accomplished by labeling nodes using custom traits. Workload images 
can be uploaded to an image store containing metadata that specifies required trait values to be 
associated with the node that is selected by the scheduling engine. In Kubernetes, nodes can be 
labeled in etcd via node selector or node affinity. Custom resource definitions (CRDs) can be 
written and plugged into Kubernetes to receive label values from the attestation service and 
associate them with nodes in the etcd. When a deployment or container is launched, node 
selector or node affinity attributes can be included in the configuration yaml to instruct 
Kubernetes to only select nodes that have the specified labels. Other orchestrator engines and 
flavors can be modified to accommodate a similar use case. Figure 4 illustrates how an 
orchestrator can be configured to only launch workloads on trusted platforms or platforms with 
specified asset tag attributes. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

21 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 

Figure 4: Notional Example of Orchestrator Scheduling 

7.3 Asset Tagging and Trusted Location 

Trusted geolocation is a specific implementation of the aforementioned trusted asset tag feature 
used with platform attestation. Key attribute values specifying location information are used as 
asset tags and provisioned to server hardware, such as the TPM. In this way, location information 
can be included in platform attestation reports and therefore consumed by cloud orchestrators, 
infrastructure management applications, policy engines, and other entities [18]. Orchestration 
using asset tags can be used to segregate workloads and data access in a wide variety of 
scenarios. Geolocation can be an important attribute to consider with hybrid cloud environments 
subject to regulatory controls like GDPR, for example. Violating these constraints by allowing 
access to data outside of specific geopolitical boundaries can trigger substantial penalties. 

In addition to location, the same principle can apply to other sorts of tag information. For 
example, some servers might be tagged as appropriate for storing health information subject to 
Health Insurance Portability and Accountability Act (HIPAA) compliance. Data and workloads 
requiring this level of compliance should only be accessed on platforms configured to meet those 
compliance requirements. Other servers may be used to store or process information and 
workloads not subject to HIPAA requirements. Asset tags can be used to flag which servers are 
appropriate for which workloads beyond a simple statement of the integrity of those platforms. 
The attestation mechanisms help ensure that the asset tag information is genuine, preventing easy 
subversion. 

Outside of specific regulatory requirements, an organization may wish to segregate workloads by 
department. For example, human resources and finance information could be restricted to 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

22 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

platforms with different security profiles, and big data workloads could be required to run on 
platforms tagged for performance capabilities. For cloud orchestration platforms that do not 
natively support discovery or scheduling of workloads based on specific platform features, asset 
tags can provide a mechanism for seamlessly adding such a capability. For example, workloads 
that require Intel SGX can be orchestrated to only run on platforms that support the SGX 
platform feature, even if the cloud platform does not natively discover support for SGX. The 
open-ended user-configurable asset tag functionality allows virtually any level of subdivision of 
resources for business, security, or regulatory needs. 

7.4 Workload Confidentiality 

Customers who place their workloads in the cloud or the edge accept that their workloads are 
secured by their service providers, typically without insight or knowledge as to what security 
mechanisms are in place. The ability for end users to encrypt their workload images can provide 
at-rest cryptographic isolation to protect customer data and intellectual property. Key control is 
integral to the workload encryption process. While it is preferable to transition key storage, 
management, and ownership to the endpoint customer, an appropriate key release policy must be 
defined that includes a guarantee from the service provider that the utilized hardware platform 
and firmware are secure and uncompromised. 

There are several key management solutions (KMSs) in production that provide services to 
create and store keys. Many of these are compliant with the industry-standardized Key 
Management Interoperability Protocol (KMIP) or Public Key Cryptography Standards (PKCS) 
#11 over a network connection and can be deployed within customer enterprises. The concept is 
to provide a thin layer on top of the KMS called a key broker, as illustrated in Figure 5, that 
applies and evaluates policies to requests that come into the KMS. Supported requests to the key 
broker include key creation, key release policy association, and key request by evaluating 
associated policies. The key release policy can be any arbitrary set of rules that must be fulfilled 
before a key is released. The policy for key release is open-ended and meant to be easily 
extendible, but for the purpose of this discussion, a policy associated with platform trust is 
assumed. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

23 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 

Figure 5: Notional Example of Key Brokerage 

Once the key policy has been determined, a KMS-created and managed key can be used to 
encrypt a workload image, as shown in Figure 6. The enterprise user may then upload the 
encrypted image to a CSP orchestrator image store or registry. 

 

Figure 6: Notional Example of Workload Image Encryption 

The key retrieval and decryption process is the most complex piece of the workload 
confidentiality story, as Figure 7 shows. It relies on a secure key transfer between the enterprise 
and CSP with an appropriate key release policy managed by the key broker. The key is released 
to the workload server to decrypt the encrypted workload and launch it. The policy for key 
release discussed here is based on platform trust and the valid proof thereof. The policy can also 
dictate a requirement to wrap the key using a public wrapping key, with the private portion of the 
wrapping key only known to the hardware platform within the CSP.  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

24 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

  

Figure 7: Notional Example of Workload Decryption 

When the runtime node service receives the launch request, it can detect that the image is 
encrypted and make a request to retrieve the decryption key. This request can be passed through 
an attestation service so that an internal trust evaluation for the platform can be performed. The 
key request is forwarded to the key broker with proof that the platform has been attested. The 
key broker can then verify the attested platform report and release the key back to the CSP and 
node runtime services. At that time the node runtime can decrypt the image and proceed with the 
normal workload orchestration. The disk encryption kernel subsystem can provide at-rest 
encryption for the workload on the platform.  

7.5 Protecting Keys and Secrets 

Cryptographic keys are high-value assets in workloads, especially in environments where the 
owner of the keys is not in complete control of the infrastructure, such as public clouds, edge 
computing, and network functions virtualization (NFV) deployments. In these environments, 
keys are typically provisioned on disk as flat files or entries in configuration files. At runtime, 
workloads read the keys into random access memory (RAM) and use them to perform 
cryptographic operations like data signing, encryption/decryption, or Transport Layer Security 
(TLS) termination. 

Keys on disk and in RAM are exposed to conventional attacks like privilege escalation, remote 
code execution, and input buffer mismanagement. Keys can also be stolen by malicious 
administrators or be disclosed because of operational errors. For example, an improperly 
protected VM snapshot can be used by a malicious agent to extract keys. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

25 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

An HSM can be attached to a server and used by workloads to store keys and perform 
cryptographic operations. This results in keys being protected at rest and in use. In this model, 
keys are never stored on disk or loaded into RAM. If attaching an HSM to a server is not an 
option, or if keys are needed in many servers at the same time, an alternative option is to use a 
network HSM. Workloads send the payload that needs cryptographic processing over a network 
connection to the network HSM, which then performs the cryptographic operations locally, 
typically in an attached HSM. 

An HSM option is not feasible in some environments. Workload owners may not have access to 
a cloud or edge environment in order to attach their HSM to a hardware server. Network HSMs 
can suffer from network latency, and some workloads require an optimized response time. 
Additionally, network HSMs are often provided as a service by the cloud, edge, or NFV 
providers and are billed by the number of transactions. Cost is often a deciding factor for using a 
provider network HSM. 

    



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

26 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

8 Next Steps 

NIST is seeking feedback from the community on the content of the report and soliciting 
additional technology example contributions from other companies. The report is intended to be 
a living document that will be frequently updated to reflect advances in technology and the 
availability of commercial implementations and solutions. This can help raise the bar on platform 
security and evolve the use cases.  

Please send your feedback and comments on this report to hwsec@nist.gov. 

NIST is also working on other publications on hardware-enabled security as part of the NCCoE 
Trusted Cloud project. More information on the project and links to the other publications are 
available at https://www.nccoe.nist.gov/projects/trusted-cloud-vmware-hybrid-cloud-iaas-
environments.  

  

mailto:hwsec@nist.gov
https://www.nccoe.nist.gov/projects/trusted-cloud-vmware-hybrid-cloud-iaas-environments
https://www.nccoe.nist.gov/projects/trusted-cloud-vmware-hybrid-cloud-iaas-environments


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

27 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

References 

[1] Barrett B (2018) Russia’s Elite Hackers Have a Clever New Trick That’s Very Hard to 
Fix, Wired. Available at https://www.wired.com/story/fancy-bear-hackers-uefi-rootkit 

[2] Intel Corporation (2021) Intel® Trusted Execution Technology (Intel® TXT) – 
Software Development Guide – Measured Launched Environment Developer’s Guide, 
Revision 017. Available at https://www.intel.com/content/www/us/en/software-
developers/intel-txt-software-development-guide.html 

[3] Regenscheid AR (2014) BIOS Protection Guidelines for Servers. (National Institute of 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
147B. https://doi.org/10.6028/NIST.SP.800-147B  

[4] Regenscheid AR (2018) Platform Firmware Resiliency Guidelines. (National Institute 
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 
800-193. https://doi.org/10.6028/NIST.SP.800-193  

[5] Barker EB, Barker WC (2019) Recommendation for Key Management: Part 2 – Best 
Practices for Key Management Organizations. (National Institute of Standards and 
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-57 Part 2, Rev. 
1. https://doi.org/10.6028/NIST.SP.800-57pt2r1  

[6] Trusted Computing Group (2019) Trusted Platform Module Library Specification, 
Family “2.0”. Available at https://trustedcomputinggroup.org/work-groups/trusted-
platform-module/  

[7] National Institute of Standards and Technology (2001) Security Requirements for 
Cryptographic Modules. (U.S. Department of Commerce, Washington, DC), Federal 
Information Processing Standards Publication (FIPS) 140-2, Change Notice 2 
December 03, 2002. https://doi.org/10.6028/NIST.FIPS.140-2   

[8] Diamond T, Grayson N, Paulsen C, Polk T, Regenscheid A, Souppaya M, Brown C 
(2020) Validating the Integrity of Computing Devices: Supply Chain Assurance. 
(National Institute of Standards and Technology, Gaithersburg, MD). Available at  
https://www.nccoe.nist.gov/supply-chain-assurance    

[9] Boyens JM, Paulsen C, Moorthy R, Bartol N (2015) Supply Chain Risk Management 
Practices for Federal Information Systems and Organizations. (National Institute of 
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
161. https://doi.org/10.6028/NIST.SP.800-161  

[10] National Institute of Standards and Technology (2022) Cybersecurity Supply Chain 
Risk Management. Available at https://csrc.nist.gov/Projects/cyber-supply-chain-risk-
management    

https://www.wired.com/story/fancy-bear-hackers-uefi-rootkit
https://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://doi.org/10.6028/NIST.SP.800-147B
https://doi.org/10.6028/NIST.SP.800-193
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://doi.org/10.6028/NIST.FIPS.140-2
https://www.nccoe.nist.gov/supply-chain-assurance
https://doi.org/10.6028/NIST.SP.800-161
https://csrc.nist.gov/Projects/cyber-supply-chain-risk-management
https://csrc.nist.gov/Projects/cyber-supply-chain-risk-management


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

28 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

[11] Bletsch T, Jiang X, Freeh V, Liang Z (2011) Jump-Oriented Programming: A New 
Class of Code-Reuse Attack. Available at 
https://www.comp.nus.edu.sg/~liangzk/papers/asiaccs11.pdf 

[12] Arm (2022) Trusted Firmware-A Project. Available at  
https://www.trustedfirmware.org/projects/tf-a/   

[13] Arm (2022) Morello. Available at https://developer.arm.com/architectures/cpu-
architecture/a-profile/morello  

[14] Arm (2022) Arm Morello System Development Platform Technical Reference Manual. 
Available at https://developer.arm.com/documentation/102278/latest  

[15] Scarfone KA, Souppaya MP, Hoffman P (2011) Guide to Security for Full 
Virtualization Technologies. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Special Publication (SP) 800-125. 
https://doi.org/10.6028/NIST.SP.800-125  

[16] Intel Corporation (2022) Intel® Virtualization Technology (Intel® VT). Available at 
https://www.intel.com/content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html 

[17] Linux Foundation (2022) What is the Confidential Computing Consortium? Available 
at https://confidentialcomputing.io 

[18] Bartock MJ, Souppaya MP, Yeluri R, Shetty U, Greene J, Orrin S, Prafullchandra H, 
McLeese J, Scarfone KA (2015) Trusted Geolocation in the Cloud: Proof of Concept 
Implementation. (National Institute of Standards and Technology, Gaithersburg, MD), 
NIST Interagency or Internal Report (IR) 7904. https://doi.org/10.6028/NIST.IR.7904  

[19] Debian Wiki (2022) Secure Boot. Available at https://wiki.debian.org/SecureBoot 

[20] Wilkins R, Richardson B (2013) UEFI Secure Boot in Modern Computer Security 
Solutions (Unified Extensible Firmware Interface Forum). Available at 
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer
_Security_Solutions_2013.pdf 

[21] RedHat (2021) README (for shim). Available at https://github.com/rhboot/shim 

[22] Intel Corporation (2018) Intel® Trusted Execution Technology (Intel® TXT) 
Overview. Available at 
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.ht
ml 

[23] Futral W, Greene J (2013) Intel® Trusted Execution Technology for Server Platforms 
(Apress, Berkeley, CA). Available at https://link.springer.com/book/10.1007/978-1-
4302-6149-0  

https://www.comp.nus.edu.sg/%7Eliangzk/papers/asiaccs11.pdf
https://www.trustedfirmware.org/projects/tf-a/
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/documentation/102278/latest
https://doi.org/10.6028/NIST.SP.800-125
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://confidentialcomputing.io/
https://doi.org/10.6028/NIST.IR.7904
https://wiki.debian.org/SecureBoot
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://github.com/rhboot/shim
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.html
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.html
https://link.springer.com/book/10.1007/978-1-4302-6149-0
https://link.springer.com/book/10.1007/978-1-4302-6149-0


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

29 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

[24] Linux Kernel Organization (2022) Intel® TXT Overview. Available at 
https://www.kernel.org/doc/Documentation/intel_txt.txt 

[25] Intel Corporation (2022) Transparent Supply Chain. Available at 
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-
chain.html 

[26] Intel Corporation (2020) Intel Highlights Latest Security Investments at RSA 2020. 
Available at https://newsroom.intel.com/news-releases/intel-highlights-latest-security-
investments-rsa-2020/ 

[27] Department of Defense (2018) Subpart 246.870, Contractors’ Counterfeit Electronic 
Part Detection and Avoidance Systems, Defense Federal Acquisition Regulation 
Supplement. Available at 
https://www.acq.osd.mil/dpap/dars/dfars/html/current/246_8.htm#246.870-2 

[28] Intel Corporation (2021) Intel 64 and IA-32 Architectures Software Developer’s 
Manual Volume 1: Basic Architecture. Available at  
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-
architectures-software-developers-manual-volume-1-basic-architecture.html   

[29] Nichols S (2020) RIP ROP, COP, JOP? Intel to bring anti-exploit tech to market in 
this year’s Tiger Lake chip family. (The Register, San Francisco, CA). Available at 
https://www.theregister.com/2020/06/15/intel_cet_tiger_lake 

[30] Patel BV (2020) A Technical Look at Intel’s Control-flow Enforcement Technology. 
(Intel Fellow Client Computing Group, Intel Corporation). Available at  
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-
flow-enforcement-technology.html 

[31] Patel BV (2016) Intel Releases New Technology Specifications to Protect Against 
ROP attacks. (Intel Corporation). 

[32] Shanbhogue V, Gupta D, Sahita R (2019) Security Analysis of Processor Instruction 
Set Architecture for Enforcing Control-Flow Integrity. (Hardware and Architectural 
Support for Security and Privacy ’19: Proceedings of the 8th International Workshop 
on Hardware and Architectural Support for Security and Privacy). 
https://doi.org/10.1145/3337167.3337175   

[33] Intel Corporation (2021) Intel Architecture Instruction Set Extensions and Future 
Features Programming Reference. Available at 
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-
instruction-set-extensions-programming-reference.html 

[34] Intel Corporation (2018) Intel Security Features and Technologies Related to 
Transient Execution Attacks. Available at  

https://www.kernel.org/doc/Documentation/intel_txt.txt
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-chain.html
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-chain.html
https://newsroom.intel.com/news-releases/intel-highlights-latest-security-investments-rsa-2020/
https://newsroom.intel.com/news-releases/intel-highlights-latest-security-investments-rsa-2020/
https://www.acq.osd.mil/dpap/dars/dfars/html/current/246_8.htm#246.870-2
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://www.theregister.com/2020/06/15/intel_cet_tiger_lake
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-flow-enforcement-technology.html
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-flow-enforcement-technology.html
https://doi.org/10.1145/3337167.3337175
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

30 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

https://software.intel.com/content/www/us/en/develop/articles/software-security-
guidance/best-practices/related-intel-security-features-technologies.html  

[35] Anvin HP (2012) Description x86: Supervisor Mode Access Prevention. Available at 
https://lwn.net/Articles/517251/ 

[36] Corbet J (2012) Supervisor Mode Access Prevention. Available at 
https://lwn.net/Articles/517475/ 

[37] Intel Corporation (2022) Strengthen Enclave Trust with Attestation. Available at 
https://www.intel.com/content/www/us/en/developer/tools/software-guard-
extensions/attestation-services.html  

[38] European Telecommunications Standards Institute (2022) Network Functions 
Virtualisation (NFV). Available at https://www.etsi.org/technologies/nfv  

[39] Intel Corporation (2020) Intel® Trust Domain Extensions. Available at 
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-
whitepaper-v4.pdf  

[40] Intel Corporation (2022) Intel AES New Instructions (Intel AES-NI). Available at 
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-
encryption-standard-aes/data-protection-aes-general-technology.html  

[41] Intel Corporation (2012) Flexible Workload Acceleration on Intel Architecture Lowers 
Equipment Cost. Available at 
https://www.intel.fr/content/dam/www/public/us/en/documents/white-
papers/communications-quick-assist-paper.pdf 

[42] Tadepalli, H (2017) Intel QuickAssist Technology with Intel Key Protection 
Technology in Intel Server Platforms Based on Intel Xeon Processor Scalable Family. 
(Intel Corporation). 

[43] Intel Corporation (2022) Intel® Security Libraries for Datacenter (Intel® SecL-DC). 
Available at https://intel-secl.github.io/docs/4.2/  

[44] Kaplan D, Powell J, Woller T (2016) AMD Memory Encryption. (Advanced Micro 
Devices, Inc.). Available at 
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_W
hitepaper_v7-Public.pdf 

[45] Kaplan D (2017) Protecting VM Register State with SEV-ES. (Advanced Micro 
Devices, Inc.). Available at 
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20Stat
e%20with%20SEV-ES.pdf  

[46] Advanced Micro Devices, Inc. (2020) AMD SEV-SNP: Strengthening VM Isolation 
with Integrity Protection and More. Available at 

https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/best-practices/related-intel-security-features-technologies.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/best-practices/related-intel-security-features-technologies.html
https://lwn.net/Articles/517251/
https://lwn.net/Articles/517475/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.etsi.org/technologies/nfv
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/communications-quick-assist-paper.pdf
https://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/communications-quick-assist-paper.pdf
https://intel-secl.github.io/docs/4.2/
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

31 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf  

[47] Arm (2022) Arm Architecture Reference Manual for A-profile architecture. Available 
at https://developer.arm.com/documentation/ddi0487/latest 

[48] Arm (2020) Trusted Base System Architecture for Armv8-A. Available at  
https://developer.arm.com/documentation/den0021/f/?lang=en  

[49] Arm (2022) TrustZone for AArch64. Available at 
https://developer.arm.com/documentation/102418/0100/What-is-TrustZone-?lang=en 

[50] Parsec Project (2022) Parsec. Available at https://github.com/parallaxsecond/parsec  

[51] Parsec Project (2019) Authenticators. Available at 
https://parallaxsecond.github.io/parsec-book/parsec_service/authenticators.html  

[52] SPIFFE (2022) SPIFFE Verifiable Identity Document (SVID). Available at  
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-verifiable-identity-
document-svid 

[53] SPIFFE (2022) SPIRE Concepts. Available at https://spiffe.io/docs/latest/spire-
about/spire-concepts/  

[54] SPIFFE (2022) SPIFFE Workload API. Available at https://spiffe.io/docs/latest/spiffe-
about/spiffe-concepts/#spiffe-workload-api  

[55] Arm (2021) Base System Architecture – Architecture Compliance Suite. Available at 
https://github.com/ARM-software/bsa-acs  

[56] Ubuntu (2021) Firmware Test Suite (fwts). Available at 
https://wiki.ubuntu.com/FirmwareTestSuite/Reference  

[57] Kerrisk M (2021) Unix sockets peer credential checks. Available at 
https://man7.org/linux/man-pages/man2/getsockopt.2.html  

[58] Serebryany K, Stepanov E, Shlyapnikov A, Tsyrklevich V, Vyukov D (2018) Memory 
Tagging and how it improves C/C++ memory safety, Google. Available at 
https://arxiv.org/ftp/arxiv/papers/1802/1802.09517.pdf  

[59] Serebryany K (2019) ARM Memory Tagging Extension and How It Improves C/C++ 
Memory Safety. Available at 
https://www.usenix.org/system/files/login/articles/login_summer19_03_serebryany.pd
f  

[60] Watson RNM et al. (2020) Capability Hardware Enhanced RISC Instructions: CHERI 
Instruction-Set Architecture (Version 8). University of Cambridge Computer 

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/den0021/f/?lang=en
https://developer.arm.com/documentation/102418/0100/What-is-TrustZone-?lang=en
https://github.com/parallaxsecond/parsec
https://parallaxsecond.github.io/parsec-book/parsec_service/authenticators.html
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-verifiable-identity-document-svid
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-verifiable-identity-document-svid
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-workload-api
https://spiffe.io/docs/latest/spiffe-about/spiffe-concepts/#spiffe-workload-api
https://github.com/ARM-software/bsa-acs
https://wiki.ubuntu.com/FirmwareTestSuite/Reference
https://man7.org/linux/man-pages/man2/getsockopt.2.html
https://arxiv.org/ftp/arxiv/papers/1802/1802.09517.pdf
https://www.usenix.org/system/files/login/articles/login_summer19_03_serebryany.pdf
https://www.usenix.org/system/files/login/articles/login_summer19_03_serebryany.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

32 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Laboratory, Technical Report Number 951. Available at 
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf  

[61] Arm (2022) Arm Architecture Reference Manual Supplement – Morello for A-profile 
Architecture. Available at https://developer.arm.com/documentation/ddi0606/latest  

[62] Arm (2020) Cache Speculation Side-channels, Version 2.5. Available at 
https://developer.arm.com/documentation/102816/0205/  

[63] Arm (2020) Straight-line Speculation, Version 1.0. Available at 
https://developer.arm.com/documentation/102825/0100/  

[64] Arm (2021) Arm v8.5-A/v9 CPU updates, Version 1.5. Available at 
https://developer.arm.com/documentation/102822/0105/   

[65] Arm (2022) Introducing Arm Confidential Compute Architecture Version 2. Available 
at  https://developer.arm.com/documentation/den0125/latest  

[66] Arm (2021) The Realm Management Extension (RME), for Armv9-A. Available at 
https://developer.arm.com/documentation/ddi0615/aa  

[67] Arm (2021) Arm Realm Management Extension (RME) System Architecture. 
Available at https://developer.arm.com/documentation/den0129/aa  

[68] Lundblade L, Mandyam G, O’Donoghue J (2022) The Entity Attestation Token 
(EAT). (Internet Engineering Task Force, RATS Working Group), IETF Internet-
Draft draft-ietf-rats-eat-12. https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat  

[69] Trusted Computing Group (2018) Implicit Identity Based Device Attestation, Version 
1.0. Available at https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-
Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf  

[70] Dyer JG, Lindemann M, Perez R, Sailer R, van Doorn L, Smith SW (2001) “Building 
the IBM 4758 secure coprocessor,” in Computer, vol. 34, no. 10, pp. 57-66, Oct. 2001.  
https://ieeexplore.ieee.org/document/955100  

[71] IBM (2022) IBM Cloud Hyper Protect Crypto Services. Available at 
https://www.ibm.com/cloud/hyper-protect-crypto  

[72] Trusted Computing Group (2019) TPM 2.0 Library. Available at 
https://trustedcomputinggroup.org/resource/tpm-library-specification/  

[73] Trusted Computing Group (2019) Trusted Platform Module Library Part 1: 
Architecture. Available at https://trustedcomputinggroup.org/wp-
content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf  

[74] Engel C (2020) “POWER9 Introduces Secure Boot to PowerVM,” IBM Power 
Systems Community. Available at 

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://developer.arm.com/documentation/ddi0606/latest
https://developer.arm.com/documentation/102816/0205/
https://developer.arm.com/documentation/102825/0100/
https://developer.arm.com/documentation/102822/0105/
https://developer.arm.com/documentation/den0125/latest
https://developer.arm.com/documentation/ddi0615/aa
https://developer.arm.com/documentation/den0129/aa
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Arch-Implicit-Identity-Based-Device-Attestation-v1-rev93.pdf
https://ieeexplore.ieee.org/document/955100
https://www.ibm.com/cloud/hyper-protect-crypto
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

33 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

https://community.ibm.com/community/user/power/blogs/chris-
engel1/2020/06/17/power9-introduces-secure-boot-to-powervm  

[75] Heller D, Sastry N (2019) OpenPower Secure and Trusted Boot, Part 2: Protecting 
System Firmware with OpenPOWER Secure Boot, IBM. Available at   
https://developer.ibm.com/articles/protect-system-firmware-openpower/  

[76] IBM (2019) z/Architecture Principles of Operation, Thirteenth Edition. Available at 
http://publibfp.dhe.ibm.com/epubs/pdf/a227832c.pdf  

[77] Security Target for PR/SM for IBM z14 and IBM LinuxONE Systems, Version: 16.12 
Revision: 1, Status: RELEASE, Last Update: 2018-06-20. (A newer version of this 
reference is available at https://commoncriteriaportal.org/files/epfiles/1133b_pdf.pdf.)  

[78] IBM (2022) IBM Hyper Protect Virtual Servers. Available at 
https://www.ibm.com/products/hyper-protect-virtual-servers   

[79] OpenPOWER Foundation (2021) How to build and run Secure VM using Ultravisor 
on an OpenPOWER machine. Available at https://github.com/open-
power/ultravisor/wiki/How-to-build-and-run-Secure-VM-using-Ultravisor-on-a-
OpenPOWER-machine  

[80] OpenPOWER Foundation (2021) Ultravisor. Available at https://github.com/open-
power/ultravisor  

[81] Joseph EK (2020) Technical Overview of Secure Execution for Linux on IBM Z, IBM. 
Available at https://developer.ibm.com/blogs/technical-overview-of-secure-execution-
for-linux-on-ibm-z/  

[82] IBM (2006) Secure Blue - Secure CPU Technology. Available at 
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904  

[83] Williams P, Boivie R (2011) “Secure Blue++: CPU Support for Secure Executables,” 
Trust 2011, 4th International Conference on Trusted Computing, June 22-24, 2011, 
Pittsburgh, Pennsylvania. 

[84] Boivie R, Williams P (2011) “SecureBlue++: CPU Support for Secure Execution,” 
2nd Annual NSA Trusted Computing Conference, September 20-22, 2011, Orlando, 
Florida.  

[85] IBM (2019) “IBM 4767-002 PCIe Cryptographic Coprocessor (HSM).” Available at 
https://public.dhe.ibm.com/security/cryptocards/pciecc2/docs/4767_PCIe_Data_Sheet.
pdf  

[86] IBM (2021) “IBM CEX7S / 4769 PCIe Cryptographic Coprocessor (HSM).” 
Available at 
https://public.dhe.ibm.com/security/cryptocards/pciecc4/docs/4769_Data_Sheet.pdf  

https://community.ibm.com/community/user/power/blogs/chris-engel1/2020/06/17/power9-introduces-secure-boot-to-powervm
https://community.ibm.com/community/user/power/blogs/chris-engel1/2020/06/17/power9-introduces-secure-boot-to-powervm
https://developer.ibm.com/articles/protect-system-firmware-openpower/
http://publibfp.dhe.ibm.com/epubs/pdf/a227832c.pdf
https://commoncriteriaportal.org/files/epfiles/1133b_pdf.pdf
https://www.ibm.com/products/hyper-protect-virtual-servers
https://github.com/open-power/ultravisor/wiki/How-to-build-and-run-Secure-VM-using-Ultravisor-on-a-OpenPOWER-machine
https://github.com/open-power/ultravisor/wiki/How-to-build-and-run-Secure-VM-using-Ultravisor-on-a-OpenPOWER-machine
https://github.com/open-power/ultravisor/wiki/How-to-build-and-run-Secure-VM-using-Ultravisor-on-a-OpenPOWER-machine
https://github.com/open-power/ultravisor
https://github.com/open-power/ultravisor
https://developer.ibm.com/blogs/technical-overview-of-secure-execution-for-linux-on-ibm-z/
https://developer.ibm.com/blogs/technical-overview-of-secure-execution-for-linux-on-ibm-z/
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904
https://public.dhe.ibm.com/security/cryptocards/pciecc2/docs/4767_PCIe_Data_Sheet.pdf
https://public.dhe.ibm.com/security/cryptocards/pciecc2/docs/4767_PCIe_Data_Sheet.pdf
https://public.dhe.ibm.com/security/cryptocards/pciecc4/docs/4769_Data_Sheet.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

34 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

 

 

 

[87] IBM (2022) CEX7S / 4769 Overview: IBM Systems cryptographic hardware products. 
Available at https://www.ibm.com/security/cryptocards/pciecc4/overview  

[88] IBM (2021) Protected-key CPACF. Available at  
https://www.ibm.com/docs/en/zos/2.3.0?topic=management-protected-key-cpacf 

[89] IBM TPM Attestation Client Server. Available at   
https://sourceforge.net/projects/ibmtpm20acs/files/AttestProv.doc/download?use_mirr
or=phoenixnap  

[90] Integrity Measurement Architecture (IMA). Available at 
https://sourceforge.net/p/linux-ima/wiki/Home/  

[91] Sailer R, Zhang X, Jaeger T, van Doorn L (2004) “Design and Implementation of a 
TCG-Based Integrity Measurement Architecture.” Proceedings of the 13th USENIX 
Security Symposium, USENIX Association, Berkeley, CA, pp. 223-38. Available at 
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_paper
s/sailer/sailer_html/index.html  

https://www.ibm.com/security/cryptocards/pciecc4/overview
https://www.ibm.com/docs/en/zos/2.3.0?topic=management-protected-key-cpacf
https://sourceforge.net/projects/ibmtpm20acs/files/AttestProv.doc/download?use_mirror=phoenixnap
https://sourceforge.net/projects/ibmtpm20acs/files/AttestProv.doc/download?use_mirror=phoenixnap
https://sourceforge.net/p/linux-ima/wiki/Home/
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/sailer/sailer_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/sailer/sailer_html/index.html


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

35 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix A—Vendor-Agnostic Technology Examples  

This section describes vendor-agnostic technology examples that map back to the key concepts 
described in the various sections of the document. 

A.1 Platform Integrity Verification 

A.1.1 UEFI Secure Boot (SB) 

“UEFI Secure Boot (SB) is a verification mechanism for ensuring that code launched by a 
computer’s UEFI firmware is trusted” [19]. SB prevents malware from taking “advantage of 
several pre-boot attack points, including the system-embedded firmware itself, as well as the 
interval between the firmware initiation and the loading of the operating system” [20].  

The basic idea behind SB is to sign executables using a public-key cryptography scheme. The 
public part of a platform key (PK) can be stored in the firmware for use as a root key. Additional 
key exchange keys (KEKs) can also have their public portion stored in the firmware in what is 
called the signature database. This database contains public keys that can be used to verify 
different components that might be used by UEFI (e.g., drivers), as well as bootloaders and OSs 
that are loaded from external sources (e.g., disks, USB devices, network). The signature database 
can also contain forbidden signatures, which correspond to a revocation list of previously valid 
keys. The signature database is meant to contain the current list of authorized and forbidden keys 
as determined by the UEFI organization. The signature on an executable is verified against the 
signature database before the executable can be launched, and any attempt to execute an 
untrusted program will be prevented [19][20].  

Before a PK is loaded into the firmware, UEFI is considered to be in setup mode, which allows 
anyone to write a PK or KEK to the firmware. Writing the PK switches the firmware into user 
mode. Once in user mode, PKs and KEKs can only be written if they are signed using the private 
portion of the PK. Essentially, the PK is meant to authenticate the platform owner, while the 
KEKs are used to authenticate other components of the distribution (distro), like OSs [20]. 

Shim is a simple software package that is designed to work as a first-stage bootloader on UEFI 
systems. It is a common piece of code that is considered safe, well-understood, and audited so 
that it can be trusted and signed using PKs. This means that firmware certificate authority (CA) 
providers only have to worry about signing shim and not all of the other programs that vendors 
might want to support [19]. Shim then becomes the RoT for all the other distro-provided UEFI 
programs. It embeds a distro-specific CA key that is itself used to sign additional programs (e.g., 
Linux, GRUB, fwupdate). This allows for a clean delegation of trust; the distros are then 
responsible for signing the rest of their packages. Ideally, shim will not need to be updated often, 
which should reduce the workload on the central auditing and CA teams [19]. 

A key part of the shim design is to allow users to control their own systems. The distro CA key is 
built into the shim binary itself, but there is also an extra database of keys that can be managed 
by the user—the so-called Machine Owner Key (MOK). Keys can be added and removed in the 
MOK list by the user, entirely separate from the distro CA key. The mokutil utility can be used 
to help manage the keys from Linux OS, but changes to the MOK keys may only be confirmed 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

36 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

directly from the console at boot time. This helps remove the risk of OS malware potentially 
enrolling new keys and therefore bypassing SB [19].  

On systems with a TPM chip enabled and supported by the system firmware, shim will extend 
various PCRs with the digests of the targets it is loading [21]. Certificate hashes are also 
extended to the TPM, including system, vendor, MOK, and shim denylisted and allowlisted 
certificate digests.  

A.2 Keylime 

“Keylime is an open source project hosted by the Cloud Native Computing Foundation (CNCF), 
a vendor-neutral forum with more than 145 user organizations using cloud native technologies to 
build their products and services around many of the open source projects, including, for 
example, Kubernetes. Keylime provides a highly scalable remote boot attestation and runtime 
integrity measurement solution. Keylime enables users to monitor remote nodes using a 
hardware based cryptographic root of trust. 

Keylime was originally born out of the security research team in MIT's Lincoln Laboratory. 

Keylime provides an end-to-end solution for bootstrapping hardware-rooted cryptographic trust 
for remote machines, the provisioning of encrypted payloads, and run-time system integrity 
monitoring. It also provides a flexible framework for the remote attestation using a TPM-based 
hardware root of trust. Users can create their own customized actions that will trigger when a 
machine fails its attested measurements. 

Keylime’s goal is to make TPM technology easily accessible to developers and users alike, 
without the need for a deep understanding of the lower levels of a TPM’s operations. Amongst 
many scenarios, it is well suited to tenants who need to remotely attest machines not under their 
own full control (such as a customer of hybrid cloud or a remote edge/IoT device in an insecure 
physical tamper-prone location). 

Keylime can be used to monitor an entire fleet of OpenShift worker nodes and take immediate 
action if any node is compromised. It measures trusted boot of machines and run-time integrity 
using the Linux Kernels Integrity Measurement Architecture.” 

 

 

https://keylime.dev/
https://www.cncf.io/


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

37 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix B—Intel Technology Examples  

This section describes a number of Intel technology examples that map back to the key concepts 
described in the various sections of the document. 

B.1 Platform Integrity Verification 

B.1.1 The Chain of Trust (CoT) 

B.1.1.1 Intel Trusted Execution Technology (TXT) 

Intel Trusted Execution Technology (TXT) in conjunction with a TPM provides a hardware RoT 
available on Intel server and client platforms that enables “security capabilities such as measured 
launch and protected execution” [22]. TXT utilizes authenticated code modules (ACMs) that 
measure various pieces of the CoT during boot time and extend them to the platform TPM 
[2][22]. TXT’s ACMs are chipset-specific signed binaries that are called to perform functions 
required to enable the TXT environment. An ACM is loaded into and executed from within the 
CPU cache in an area referred to as the authenticated code RAM (AC RAM). CPU microcode, 
which acts as the core root of trust for measurement (CRTM), authenticates the ACM by 
verifying its included digital signature against a manufacturer public key with its digest hard-
coded within the chipset. The ACM code, loaded into protected memory inside the processor, 
performs various tests and verifications of chipset and processor configurations.  

The ACMs needed to initialize the TXT environment are the BIOS and the Secure Initialization 
(SINIT) ACMs. Both are typically provided within the platform BIOS image. The Secure 
Initialization Authenticated Code Module (SINIT ACM) can be provisioned on disk as well 
[2][23]. The BIOS ACM is responsible for measuring the BIOS firmware to the TPM and 
performs additional BIOS-based security operations. The latest version of TXT converged with 
Intel Boot Guard Technology labels this ACM as the Startup ACM to differentiate it from the 
legacy BIOS ACM. The SINIT ACM is used to measure the system software or OS to the TPM, 
and it “initializes the platform so the OS can enter the secure mode of operation” [23]. 

When the BIOS startup procedures have completed, control is transitioned to the OS loader. In a 
TXT-enabled system, the OS loader is instructed to load a special module called Trusted Boot 
before loading the first kernel module [23]. Trusted Boot (tboot) is an open-source, pre-
kernel/virtual machine manager (VMM) module that integrates with TXT to perform a measured 
launch of an OS kernel/VMM. The tboot design typically has two parts: a preamble and the 
trusted core. The tboot preamble is most commonly executed by the OS loader but can be loaded 
at OS runtime. The tboot preamble is responsible for preparing SINIT input parameters and is 
untrusted by default. It executes the processor instruction that passes control to the CPU 
microcode. The microcode loads the SINIT into AC RAM, authenticates it, measures SINIT to 
the TPM, and passes control to it. SINIT verifies the platform configuration and enforces any 
present Launch Control Policies, measuring them and tboot trusted core to the TPM. The tboot 
trusted core takes control and continues the CoT, measuring the OS kernel and additional 
modules (like initrd) before passing control to the OS [24]. 

Intel TXT includes a policy engine feature that provides the capability to specify known good 
platform configurations. These Launch Control Policies (LCPs) dictate which system software is 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

38 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

permitted to perform a secure launch. LCPs can enforce specific platform configurations and 
tboot trusted core versions required to launch a system environment [23]. 

B.1.1.2 Intel Boot Guard 

Intel Boot Guard provides a hardware RoT for authenticating the BIOS. An original equipment 
manufacturer (OEM) enables Boot Guard authentication on the server manufacturing line by 
permanently fusing a policy and OEM-owned public key into the silicon. When an Intel 
processor identifies that Boot Guard has been enabled on the platform, it authenticates and 
launches an ACM. The ACM loads the initial BIOS or Initial Boot Block (IBB) into the 
processor cache, authenticates it using the fused OEM public key, and measures it into the TPM. 

If the IBB authenticates properly, it verifies the remaining BIOS firmware, loads it into memory, 
and transfers execution control. The IBB is restricted to this limited functionality, which allows it 
to have a small enough size to fit in the on-die cache memory of Intel silicon. If the Boot Guard 
authentication fails, the system is forced to shut down. When the Boot Guard execution 
completes, the CoT can continue for other components by means of SB. TXT can be used in 
conjunction with these technologies to provide a dynamic trusted launch of the OS kernel and 
software. 

Because Boot Guard is rooted in permanent silicon fuses and authenticates the initial BIOS from 
the processor cache, it provides resistance from certain classes of physical attacks. Boot Guard 
also uses fuses to provide permanent revocation of compromised ACMs, BIOS images, and input 
polices. 

B.1.1.3 Intel Platform Firmware Resilience (PFR) 

Intel Platform Firmware Resilience (PFR) technology is a platform-level solution that creates an 
open platform RoT based on a programmable logic device. It is designed to provide firmware 
resiliency (in accordance with NIST SP 800-193 [4]) and comprehensive protection for various 
platform firmware components, including BIOS, Server Platform Services Firmware (SPS FW), 
and BMCs. PFR provides the platform owner with a minimal trusted compute base (TCB) under 
full platform-owner control. This TCB provides cryptographic authentication and automatic 
recovery of platform firmware to help guarantee correct platform operation and to return to a 
known good state in case of a malicious attack or an operator error such as a failed update. 

NIST SP 800-193 [4] outlines three guiding principles to support the resiliency of platforms 
against potentially destructive attacks:  

• Protection: Mechanisms for ensuring that platform firmware code and critical data 
remain in a state of integrity and are protected from corruption, such as the process for 
ensuring the authenticity and integrity of firmware updates 

• Detection: Mechanisms for detecting when platform firmware code and critical data have 
been corrupted 

• Recovery: Mechanisms for restoring platform firmware code and critical data to a state 
of integrity in the event that any such firmware code or critical data is detected to have 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

39 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

been corrupted or when forced to recover through an authorized mechanism. Recovery is 
limited to the ability to recover firmware code and critical data. 

In addition, NIST SP 800-193 [4] provides guidance on meeting those requirements via three 
main functions of a Platform Root of Trust:  

• Root of Trust for Update, which is responsible for authenticating firmware updates and 
critical data changes to support platform protection capabilities; this includes signature 
verification of firmware updates as well as rollback protections during update.  

• Root of Trust for Detection, which is responsible for firmware and critical data 
corruption detection capabilities. 

• Root of Trust for Recovery, which is responsible for recovery of firmware and critical 
data when corruption is detected or when instructed by an administrator. 

PFR is designed to support NIST guidelines and create a resilient platform that is able to self-
recover upon detection of attack or firmware corruption. This includes verification of all 
platform firmware and configuration at platform power-on time, active protection of platform 
non-volatile memory at runtime, and active protection of the Serial Peripheral Interface (SPI 
flash) and system management bus (SMBus). PFR functionality also incorporates monitoring the 
platform component’s boot progress and providing automatic firmware recovery to a known 
good state upon detection of firmware or configuration corruption. PFR achieves this goal by 
utilizing a Field-Programmable Gate Array (FPGA) to establish an RoT. 

PFR technology defines a special pre-boot mode (T-1) where only the PFR FPGA is active. Intel 
Xeon processors and other devices that could potentially interfere with the boot process, such as 
the Platform Controller Hub (PCH)/Manageability Engine (ME) and BMC, are not powered. 
Boot-critical firmware, like the BIOS, ME, and BMC, is cryptographically verified during T-1 
mode. In case of corruption, a recovery event is triggered, and the corrupted firmware in the 
active regions of the SPI flash is erased and restored with a known-good recovery copy. Once 
successful, the system proceeds to boot in a normal mode, leveraging Boot Guard for static RoT 
coverage. 

The PFR FPGA RoT leverages a key hierarchy to authenticate data structures residing in SPI 
flash. The key hierarchy is based on a provisioned Root Key (RK) stored in the NVRAM of the 
FPGA RoT and a Code Signing Key (CSK) structure, which is endorsed by the RK, stored in the 
SPI flash, and used for the signing of lower-level data structures. The PFR FPGA uses this CSK 
to verify the digital signature of the Platform Firmware Manifest, which describes the expected 
measurements of the platform firmware. The PFR FPGA RoT verifies those measurements 
before allowing the system to boot. When a recovery is needed, either because measurements do 
not match the expected value or because a hang is detected during system bootup, the PFR 
FPGA RoT uses a recovery image to recover the firmware. The recovery image and any update 
images are stored in a compressed capsule format and verified using a digital signature. 

Each platform firmware storage is divided into three major sections: Active, Recovery, and 
Staging. The Recovery regions, as well as the static parts of the Active regions, are write-
protected from other platform components by the PFR FPGA RoT. The Staging region is open to 
the other platform components for writing in order to provide an area to place digitally signed 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

40 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

and compressed update capsules, which are then verified by the PFR FPGA RoT before being 
committed to the Active or Recovery regions. The Recovery copy can be updated in T-1 mode 
once the PFR FPGA has verified the digital signature of the update capsule and confirmed that 
the recovery image candidate is bootable. 

B.1.1.4 Intel Technology Example Summary 

There are several technologies that provide different levels of platform integrity and trust. 
Individual technologies do not provide a complete CoT. When used in combination, they can 
provide comprehensive coverage all the way up to the OS and VMM layer. Figure 8 outlines the 
firmware and software coverage of each existing CoT technology example. 

 

Figure 8: Firmware and Software Coverage of Existing Chain of Trust Technologies 

Figure 8 identifies the components of each technology that make up the RoT in their own 
respective chains and also shows a rough outline of the firmware and software coverage of each 
technology. 

Because many technologies are available, it can be difficult to decide on the correct combination 
for deployment. Figure 8 illustrates the possible combinations of technologies that extend 
measurements to a TPM for platform integrity attestation. Note that each combination includes at 
least one hardware technology to ensure an RoT implementation. A complementary option for 
extending the CoT up through the OS can also be provided. Including only the hardware 
technologies would break the CoT by supplying integrity measurements for only pre-OS 
firmware. Using only SB will use firmware as the RoT that does not have hardware security 
protections and is much more susceptible to attack. By enabling both parts, the CoT can be 
extended from a hardware RoT into the OS and beyond. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

41 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

These combinations will help ensure that appropriate measurements are extended to a TPM for 
integrity attestation and can prevent a server from booting if specific security modules are 
compromised. The attestation mechanisms provided by these technologies give cryptographic 
proof of the integrity of measured components, which can be used to provide visibility into 
platform security configurations and prove integrity. Note the combination of UEFI SB with 
TXT in Figure 8. This combination provides the UEFI SB signature verification capability on top 
of the tboot integrity measurement in the OS/VMM layer. 

In addition to attestation, PFR provides verification of platform firmware and automatic recovery 
of compromised firmware to known good versions. PFR works with any combination of CoT 
technologies, providing a defense and resilience against firmware attack vectors. Combining a 
hardware-based firmware resilience technology like PFR with a hardware-based CoT 
configuration is part of a layered security strategy. 

B.1.2 Supply Chain Protection 

B.1.2.1 Intel Transparent Supply Chain (TSC) 

“Intel Transparent Supply Chain (TSC) is a set of policies and procedures implemented at ODM 
factories that enable end-users to validate where and when every component of a platform was 
manufactured” [25]. “Intel TSC tools allow platform manufacturers to bind platform information 
and measurements using [a TPM]. This allows customers to gain traceability and accountability 
for platforms with component-level reporting” [26].  

Intel TSC provides the following key features [25]: 

• Digitally signed statement of conformance for every platform 

• Platform certificates linked to a discrete TPM, providing system-level traceability 

• Component-level traceability via a direct platform data file that contains integrated 
components, including a processor, storage, memory, and add-in cards 

• Auto Verify tool that compares the snapshot of the direct platform data taken during 
manufacturing with a snapshot of the platform components taken at first boot 

• Firmware load verification 

• Conformity with Defense Federal Acquisition Regulation Supplement (DFARS) 
246.870-2 [27] 

B.1.2.2 Intel PFR with Protection in Transit (PIT) 

In addition to the platform protection, detection, and recovery features, PFR also offers 
protection in transit (PIT) or supply chain protection. Platform lockdown requires that a 
password be present in the PFR FPGA as well as a radio frequency (RF) component. The 
password is removed before platform shipment and must be replaced before the platform will be 
allowed to power up. With platform firmware sealing, the PFR FPGA computes hashes of 
platform firmware in the PCH and BMC attached flash devices, including static and dynamic 
regions, and stores them in an NVRAM space before shipment. Upon delivery, the PFR FPGA 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

42 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

will recompute the hashes and report any mismatches to ensure that the firmware has not been 
tampered with during system transit. 

B.2 Software Runtime Protection Mechanisms 

B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 
(COP/JOP) Attacks 

B.2.1.1 Intel Control-Flow Enforcement Technology (Intel CET) 

Intel CET is an instruction set extension to implement control flow integrity and defend against 
ROP and COP/JOP style subversion attacks. ROP and similarly COP/JOP have been the 
prevalent attack methodology for stealth exploit writers targeting vulnerabilities in programs. 
[28] 

Intel CET prevents this class of exploits by providing the following capabilities: 

• Shadow stack – return address protection to defend against ROP 

• Indirect branch tracking – free branch protection to defend against COP/JOP 

“CET introduces a shadow stack system to detect and thwart the stack manipulation required by 
ROP” [29]. This second stack is used exclusively for control transfer operations and is designed 
to be protected from application code memory accesses while keeping track of CPU stored 
copies of the return addresses [30]. “When CET is enabled, a CALL instruction pushes the return 
address into a shadow stack in addition to its normal behavior of pushing return address into the 
normal stack (no changes to traditional stack operation). The return instructions (e.g. RET) pops 
return address from both shadow and traditional stacks, and only transfers control to the popped 
address if return addresses from both stacks match. […] The page table protections for shadow 
stack are also designed to protect the integrity of the shadow stack by preventing unintended or 
malicious switching of shadow stack and/or overflow and underflow of shadow stack.” [31] 

“CET also adds an indirect branch tracking capability to provide software the ability to restrict 
COP/JOP attacks.” [30] This ENDBRANCH instruction is a new addition to Intel Instruction Set 
Architecture (ISA). It marks legal targets for an indirect branch or jump, forcing the CPU to 
generate an exception for unintended or malicious operations [31]. 

“Intel has been actively collaborating with Microsoft and other industry partners to address 
control-flow hijacking by using Intel’s CET technology to augment the previous software-only 
control-flow integrity solutions. Intel’s CET, when used properly by software, is a big step in 
helping to prevent exploits from hijacking the control-flow transfer instructions.” [31] A security 
analysis of Intel CET is published in [32]. 

B.2.2 Address Translation Attacks 

B.2.2.1 Intel Hypervisor Managed Linear Address Translation (HLAT) 

Hypervisor managed linear address translation (HLAT) is a capability to enable Intel 
Virtualization Technology (Intel VT-x)-based security monitors to enforce runtime protection 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

43 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

and integrity assertions on OS-managed page tables. This helps protect kernel assets, as well as 
in-band security agents and agent-monitored assets from OS page-table attacks. 

“[HLAT] is intended to be used by a Hypervisor/Virtual Machine Monitor (VMM) to enforce 
guest linear translation (to guest physical mappings). When combined with the existing Extended 
Page Table (EPT) capability, HLAT enables the VMM to ensure the integrity of combined guest 
linear translation (mappings and permissions) cached by the processor TLB, via a reduced 
software TCB managed by the VMM.” [33] In this fashion, the VMM-enforced guest 
translations are more protected from alterations by untrusted system software adversaries. [33] 

“This feature is intended to augment the security functionality for a type of Virtual Machine 
Monitor (VMM) that may use legacy EPT read/write/execute (XWR) permission bits (bits 2:0 of 
the EPTE) as well as the new user-execute (XU) access bit (bit 10 of the EPTE) to ensure the 
integrity of code/data resident in guest physical memory assigned to the guest OS. EPT 
permissions are also used in these VMMs to isolate memory; for example, to host a Secure 
Kernel (SK) that can manage security properties for the general purpose kernel (GPK). For such 
usages, it is important that the VMM ensure that the guest linear address mappings which are 
used by the General Purpose Kernel to refer to the EPT monitored guest physical pages are 
access-controlled as well.” [33] 

“VMMs could enforce the integrity of these specific guest linear to guest physical mappings 
(paging structures) by using legacy EPT permissions to mark the guest physical memory 
containing the relevant guest paging structures as read-only. The intent of marking these guest 
paging structures as read-only is to ensure an invalid mapping is not created by guest software. 
However, such page-table edit control techniques are known to cause very high overheads due to 
the requirement that the VMM must monitor all paging contexts created by the (Guest) operating 
system. HLAT enables a VMM to enforce the integrity of guest linear mappings without this 
high overhead.” [33] 

HLAT utilizes a processor mechanism that implements an alternate Intel Itanium architecture 
(IA) paging structure managed in guest physical memory by a Secure Kernel. This paging 
structure contains guest linear to guest physical translations that the VMM/Secure Kernel wants 
to enforce. 

Additionally, to accommodate legacy page-table monitoring approaches, HLAT defines two new 
EPT control bits in EPT leaf entries. A “Paging-Write” control bit specifies which guest physical 
pages hold HLAT or legacy IA paging structures. This allows the processor to use the Paging-
Write as permission to perform A/D bit writes, instead of the software W permission in the 
EPTE. A “Verify Paging-Write” control bit specifies which guest physical pages should only be 
referenced via translation (guest) paging structures marked as Paging-writable under EPT [33]. 

B.2.2.2 Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode 
Access Prevention (SMAP) 

Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access Prevention 
(SMAP) are opt-in capabilities that can be used by systems software (such as the kernel) to 
harden the privilege separation between user-mode and kernel-mode. These capabilities further 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

44 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

enforce the user/supervisor properties specified via address translation mechanisms by mitigating 
malicious code execution or malicious use of data setup by processes executing in user-mode. 

Intel OS Guard, also known as SMEP, helps prevent execution out of untrusted application 
memory while operating at a more privileged (supervisor) level. “[When] enabled, the operating 
system will not be allowed to directly execute application code, even speculatively. This makes 
branch target injection attacks on the OS substantially more difficult by forcing the attacker to 
find gadgets within the OS code. It is also more difficult for an application to train OS code to 
jump to an OS gadget. All major operating systems enable SMEP support by default.” [34] 

SMAP is a security feature that helps prevent unauthorized kernel consumption of data 
accessible to user space [35]. An enabling SMAP bit in the CR4 control register will cause a 
page fault to be triggered when there is any attempt to access user-space memory while running 
in a privileged mode. When access to user space memory is needed by the kernel, a separate AC 
flag is toggled to allow the required access [36]. “Two new instructions (STAC and CLAC) are 
provided to manipulate that flag relatively quickly.” When the AC flag is set in protection mode 
under normal operating circumstances, SMAP blocks a whole class of exploits where the kernel 
is fooled into reading from (or writing to) user-space memory by mistake. SMAP also allows for 
the early discovery of kernel bugs where developers dereference user space pointers directly 
from the kernel [36]. 

B.3 Data Protection and Confidential Computing 

B.3.1 Memory Isolation 

B.3.1.1 Intel TME and Intel Multi-Key TME (Intel MKTME) 

Intel Total Memory Encryption (Intel TME) provides the capability to encrypt the entire physical 
memory of a system. This capability is typically enabled in the very early stages of the boot 
process with a small change to the BIOS. Once this change is configured and locked, all data on 
the external memory buses of a CPU and any additional DIMMs will be encrypted using 128-bit 
keys utilizing the NIST standard AES-XTS algorithm. The encryption key used for Intel TME 
uses a hardware RNG implemented in the Intel CPU, and the keys are not accessible by software 
or by using external interfaces to the CPU. The architecture is flexible and will support 
additional memory protection schemes in the future. Intel TME is intended to support 
unmodified existing system and application software. The overall performance impact of TME is 
likely to be relatively small and highly dependent on workload. 

Intel Multi-Key Total Memory Encryption (Intel MKTME) builds on Intel TME and adds 
support for multiple encryption keys. The CPU implementation supports a fixed number of 
encryption keys, and software can configure a CPU to use a subset of available keys. Software 
manages the use of keys and can use each of the available keys for encrypting any page of the 
memory. Thus, Intel MKTME allows page granular encryption of memory. By default, Intel 
MKTME uses the Intel TME encryption key unless explicitly specified by software.  

In addition to supporting a CPU-generated ephemeral key (not accessible by software or by using 
external interfaces to a CPU), Intel MKTME also supports software-provided keys. Software-
provided keys are particularly useful when used with nonvolatile memory, when combined with 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

45 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

attestation mechanisms or used with key provisioning services. An OS may be enabled to take 
additional advantage of the Intel MKTME capability, both in native and virtualized 
environments. When properly enabled, Intel MKTME is available to each guest OS in a 
virtualized environment, and the guest OS can take advantage of Intel MKTME in the same ways 
as a native OS. 

B.3.2 Application Isolation 

B.3.2.1 Intel Software Guard Extensions (SGX) 

Intel Software Guard Extensions (SGX) is a set of instructions that increases the security of 
application code and data. Developers can partition security-sensitive code and data into an SGX 
enclave, which is executed in a CPU protected region. The developer creates and runs SGX 
enclaves on server platforms where only the CPU is trusted to provide attestations and protected 
execution environments for enclave code and data. SGX also provides an enclave remote 
attestation mechanism. This mechanism allows a remote provider to verify the following [37]: 

1. The enclave is running on a real Intel processor inside an SGX enclave. 
2. The platform is running at the latest security level (also referred to as the TCB version). 
3. The enclave’s identity is as claimed. 
4. The enclave has not been tampered with. 

Once all of this is verified, the remote attester can then provision secrets into the enclave. SGX 
enclave usage is reserved for Ring-3 applications and cannot be used by an OS or BIOS 
driver/module. 

SGX removes the privileged software (e.g., OS, VMM, System Management Mode devices) and 
unprivileged software (e.g., Ring-3 applications, VMs, containers) from the trust boundary of the 
code running inside the enclave, enhancing security of sensitive application code and data. An 
SGX enclave trusts the CPU for execution and memory protections. SGX encrypts memory to 
help protect against memory bus snooping and cold boot attacks for enclave code and data in 
host Dynamic Random Access Memory (DRAM). SGX includes ISA instructions that can be 
used to handle Enclave Page Cache page management for creating and initializing enclaves. 

SGX relies on the system UEFI BIOS and OS for initial provisioning, resource allocation, and 
management. However, once an SGX enclave starts execution, it is running in a 
cryptographically isolated environment separate from the OS and BIOS. 

SGX can allow any application (whole or part of) to run inside an enclave and puts application 
developers in control of their own application security. However, it is recommended that 
developers keep the SGX code base small, validate the entire system (including software side 
channel resistance), and follow other secure software development guidelines. 

SGX enclaves can be used for applications ranging from protecting private keys and managing 
security credentials to providing security services. In addition, industry security standards, like 
European Telecommunications Standards Institute (ETSI) Network Functions Virtualization 
(NFV) Security (ETSI NFV SEC) [38], have defined and published requirements for Hardware 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

46 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Mediated Execution Enclaves (HMEEs) for the purposes of NFV, 5G, and edge security. SGX is 
an HMEE.  

B.3.3 VM Isolation 

B.3.3.1 Intel Trust Domain Extensions (Intel TDX) 

Intel Trust Domain Extensions (Intel TDX) introduces new architectural elements to deploy 
hardware-isolated VMs called trust domains (TDs). Intel TDX is designed to isolate VMs from 
the VMM/hypervisor and any non-TD software on the platform to protect TDs from a broad 
range of software. TDX is built using a combination of Virtual Machine Extensions, (VMX) ISA 
extensions, MKTME technology, and a CPU-attested software module called the TDX-SEAM 
module. TDX isolates VMs from many hardware threats and most software-based threats, 
including from the VMM and other CSP software. TDX helps give the cloud tenant control of its 
own data security and intellectual property protection. TDX does this while maintaining the CSP 
role of managing resources and cloud platform integrity. 

The TDX solution provides the following capabilities to TDs to address the security challenges:  

• Memory and CPU state confidentiality and integrity to help keep the sensitive IP and 
workload data secure from most software-based attacks and many hardware-based 
attacks. The workload now has a tool that supports excluding the firmware, software, 
devices, and operators of the cloud platform from the TCB. The workloads can use this 
tool to foster more secure access to CPU instructions and other CPU features. The 
workload can have this ability irrespective of the cloud infrastructure used to deploy the 
workload. 

• Remote attestation enables a relying party (either the owner of the workload or a user of 
the services provided by the workload) to establish that the workload is running on a 
TDX-enabled platform located within a TD prior to providing that workload data. 
Remote attestation aims to allow the owners and customers of the service to digitally 
determine the version of the TCB they are relying on to help secure their data. The VMM 
remains the platform resource manager, and TDs should not cause denial of service to the 
VMM. Defending TDs against denial of service by the VMM is not a goal. 

TDX also augments defense of the TD against limited forms of attacks that use physical access 
to the platform memory, such as offline, DRAM analysis (example: cold-boot attacks), and 
active attacks of DRAM interfaces, including capturing, modifying, relocating, splicing, and 
aliasing memory contents [39]. The VMM continues to be the resource manager, and TDs do not 
have privileges to deny service to the VMM. 

B.3.4 Cryptographic Acceleration 

B.3.4.1 Intel Advanced Encryption Standard New Instructions (Intel AES-NI) 

Intel AES New Instructions (Intel AES-NI) is an encryption instruction set that improves 
hardware performance of the Advanced Encryption Standard (AES) algorithm and accelerates 
data encryption. Intel AES-NI consists of seven new instructions that accelerate encryption and 
decryption and improve key generation and matrix manipulation, all while aiding in carry-less 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

47 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

multiplication. This minimizes application performance concerns inherent in conventional 
cryptographic processing and helps provide enhanced security by addressing side channel attacks 
on AES associated with conventional software methods of table lookups [40]. 

AES is the most widely used standard for protecting network traffic, personal data, and corporate 
IT infrastructures. By implementing certain intensive sub-steps of the AES algorithm into the 
hardware, Intel AES-NI strengthens and accelerates execution of the AES application [40]. 

B.3.4.2 Intel QuickAssist Technology (QAT) with Intel Key Protection Technology 
(KPT) 

Intel QuickAssist Technology (QAT) is a high-performance hardware accelerator for performing 
cryptographic, security, and compression operations. Applications like VMs, containers, and 
Function as a Service call Intel QAT using industry-standard OpenSSL, TLS, and Internet 
Protocol Security (IPsec) interfaces to offload symmetric and asymmetric cryptographic 
operations. Cloud, multi-tenancy, NFV, edge, and 5G infrastructures and applications are best 
suited for QAT for all types of workloads, including software-defined networks, content delivery 
networks, media, and storage [41]. 

Intel Key Protection Technology (KPT) helps enable customers to secure their keys to be used 
with QAT through a bring-your-own-key paradigm. KPT allows customers to deliver their own 
cryptographic keys to the QAT device in the target platform where their workload is running. 
KPT-protected keys are never in the clear in host DRAM or in transit. The customers encrypt 
their workload key (e.g., RSA private key for Nginx) using KPT inside their HSMs. This 
encrypted workload key is delivered to the target QAT platform, where it is decrypted 
immediately prior to use. KPT provides key protection at rest, in transit, and while in use [42]. 

B.3.5 Technology Example Summary 

Cloud infrastructure creates improvements in the efficiency, agility, and scalability of data center 
workloads by abstracting hardware from the application layer. This introduces new security 
concerns as workloads become multi-tenant, attack surfaces become shared, and infrastructure 
administrators from the cloud operator gain access to underlying platforms. Isolation techniques 
provide answers to these concerns by adding protection to VMs, applications, and data during 
execution, and they represent a crucial layer of a layered security approach for data center 
security architecture. 

Various isolation techniques exist and can be leveraged for different security needs. Full memory 
isolation defends a platform against physical memory extraction techniques, while the same 
technology extended with multiple keys allows individual VMs or platform tenants to have 
uniquely encrypted memory. Future generations of these technologies will allow full memory 
isolation of VMs, protecting them against malicious infrastructure insiders, multi-tenant 
malware, and more. Application isolation techniques allow individual applications to create 
isolated enclaves that require implicit trust in the platform CPU and nothing else and that have 
the ability to provide proof of the enclave to other applications before data is sent. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

48 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

B.4 Remote Attestation Services 

B.4.1 Intel Security Libraries for the Data Center (ISecL-DC) 

ISecL-DC is an open-source remote attestation implementation of a set of building blocks that 
utilize Intel Security features to discover, attest, and enable critical foundation security and 
confidential computing use-cases. This middleware technology provides a consistent set of 
application programming interfaces (APIs) for easy integration with cloud management software 
and security monitoring and enforcement tools. ISecL-DC applies the remote attestation 
fundamentals described in this section and standard specifications to maintain a platform data 
collection service and an efficient verification engine to perform comprehensive trust 
evaluations. These trust evaluations can be used to govern different trust and security policies 
applied to any given workload, as referenced in the workload scheduling use case in Section 7.2. 
In future generations, the product will be extended to include TEE attestation to provide 
assurance and validity of the TEE to enable confidential computing [43]. 

B.4.2 Technology Summary 

Platform attestation provides auditable foundational reports for server firmware and software 
integrity and can be extended to include the location of other asset tag information stored in a 
TPM, as well as integrity verification for applications installed on the server. These reports 
provide visibility into platform security configurations and can be used to control access to data 
and workloads. Platform attestation is performed on a per-server basis and typically consumed 
by cloud orchestration or a wide variety of infrastructure management platforms. 

TEE attestation provides a mechanism by which a user or application can validate that a genuine 
TEE enclave with an acceptable TCB is actually being used before releasing secrets or code to 
the TEE. Formation of a TEE enclave is performed at the application level, and TEE attestations 
are typically consumed by a user or application requiring evidence of enclave security before 
passing secrets. 

These different attestation techniques serve complementary purposes in a cloud deployment in 
the data center or at the edge computing facility. 

 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

49 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix C—AMD Technology Examples  

This section describes a number of AMD technology examples that map back to the key 
concepts described in the various sections of the document. 

C.1 Platform Integrity Verification 

C.1.1 AMD Platform Secure Boot (AMD PSB)  

AMD Platform Secure Boot (AMD PSB) provides a hardware RoT to authenticate the initial 
Platform BIOS code during the boot process of the server. Manufacturers of server systems, like 
OEMs or original device manufacturers (ODMs), enable the functionality of AMD PSB in their 
manufacturing flow by permanently fusing policy into the silicon. 

The OEM or ODM’s final BIOS image contains the AMD public key and the OEM BIOS-
signing public key (signed with the AMD private key). When a system powers on, the AMD 
Security Processor (ASP) starts executing the immutable on-chip Boot ROM. It authenticates 
and loads multi-stage ASP Boot Loaders from SPI/Low Pin Count Flash into its internal 
memory, which initializes the silicon and the system memory.  

Once the system memory is initialized, the ASP Boot Loaders load and authenticate the OEM 
BIOS-signing public key, followed by authenticating the initial BIOS code. Once the verification 
is successful, ASP releases the x86 core to execute authenticated initial BIOS code. The BIOS 
can continue CoT for other components by means of SB. If PSB authentication fails, the system 
is forced to shut down. 

AMD PSB supports revocation and rollback protection of BIOS images through the OEM BIOS-
signing key revision ID and rollback protection. 

C.2 Data Protection and Confidential Computing 

C.2.1 Memory Isolation 

C.2.1.1 AMD Secure Memory Encryption (SME)/Transparent Secure Memory 
Encryption (TSME) 

AMD Secure Memory Encryption (SME) is a memory-encryption technology from AMD which 
helps protect data in DRAM by encrypting system memory content [44]. When enabled, memory 
content is encrypted via dedicated hardware in the on-die memory controllers. Each controller 
includes a high-performance AES engine that encrypts data when it is written to DRAM and 
decrypts it when read. The encryption of data is done with an encryption key in a mode that 
utilizes an additional physical address-based tweak to protect against ciphertext block move 
attacks.  

The encryption key used by the AES engine with SME is randomly generated on each system 
reset and is not visible to any software running on the CPU cores. This key is managed entirely 
by the AMD Secure Processor that functions as a dedicated security subsystem integrated within 
the AMD System-on-Chip (SOC). The key is generated using the onboard NIST SP 800-90 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

50 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

compliant hardware RNG and is stored in dedicated hardware registers where it is never exposed 
outside the SOC in the clear. 

Two modes of memory encryption are supported for various use cases. The simplest mode is 
Transparent Secure Memory Encryption (TSME), which is a BIOS option and enables memory 
encryption automatically on all memory accesses. TSME works in the background and requires 
no software interaction. Another supported mode is the OS-managed Secure Memory Encryption 
(SME) mode in which individual pages of memory may be marked for encryption via CPU page 
tables. SME provides additional flexibility if only a subset of memory needs to be encrypted but 
does require appropriate software support. 

Encrypted memory provides strong protection against cold boot, DRAM interface snooping, and 
similar types of attacks. 

C.2.2 VM Isolation 

C.2.2.1 AMD Secure Encrypted Virtualization (SEV)  

The AMD Secure Encrypted Virtualization (SEV) feature is designed to isolate VMs from the 
hypervisor. When SEV is enabled, individual VMs are encrypted with an AES encryption key. 
When a component such as the hypervisor attempts to read memory inside a guest, it is only able 
to see the data in its encrypted form. This provides strong cryptographic isolation between the 
VMs, as well as between the VMs and the hypervisor.    

To protect SEV-enabled guests, the SEV firmware assists in the enforcement of three main 
security properties: authenticity of the platform, attestation of a launched guest, and 
confidentiality of the guest’s data. 

Authenticating the platform prevents malicious software or a rogue device from masquerading as 
a legitimate platform. The authenticity of the platform is proven with its identity key. This key is 
signed by AMD to demonstrate that the platform is an authentic AMD platform with SEV 
capabilities. 

Attestation of the guest launch proves to guest owners that their guests securely launched with 
SEV enabled. A signature of various components of the SEV-related guest state, including initial 
contents of memory, is provided by the firmware to the guest owner to verify that the guest is in 
the expected state. With this attestation, a guest owner can ensure that the hypervisor did not 
interfere with the initialization of SEV before transmitting confidential information to the guest.  

Confidentiality of the guest is accomplished by encrypting memory with a memory encryption 
key that only the SEV firmware knows. The SEV management interface does not allow the 
memory encryption key or any other secret SEV state to be exported outside of the firmware 
without properly authenticating.  

AMD SEV has two additional modes:  

• SEV With Encrypted State (SEV-ES): This mode encrypts and protects VM registers 
from being read or modified by a malicious hypervisor or VM [45].  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

51 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

• SEV with Secure Nested Paging (SEV-SNP): This mode adds strong memory integrity 
protection to help prevent malicious hypervisor-based attacks like data replay and 
memory remapping. [46] 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

52 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix D—Arm Technology Examples 

This section describes a number of Arm technology examples that map back to the key concepts 
described in the various sections of the document. 

D.1 Platform Integrity Verification 

In order to understand the Secure Boot environment, the Security states and Exception Levels 
implemented by TrustZone must first be understood. The following sections describe the 
technologies available for A-profile Arm processors.2 [47] [48] 

D.1.1 Arm TrustZone Trusted Execution Environment (TEE) for Armv8-A  

D.1.1.1 The Normal (Non-Secure) World and Secure World 

TrustZone [49] provides two execution environments built into the processor with system-wide 
hardware enforced isolation between them. There are two Security states: secure and non-secure. 
They map to the Secure world (SW) and the Normal world (NW, also sometimes referred to as 
the Non-Secure world), respectively. Each processor implements both worlds but can execute in 
only one world at any given time, independently of which world each of the other processors in a 
multi-processor implementation is executing. For example, core0 might be executing in the NW, 
while core1 is executing in the SW, core2 is executing in the NW, etc., all concurrently. The SW 
and NW concept extends beyond the processor to include memory, software, bus transactions, 
interrupts, and peripherals within an SoC. 

The NW runs a Rich Execution Environment (REE), which typically includes a large number of 
applications, a complex OS (e.g., Linux), and often a hypervisor. The REE presents a broad 
attack surface. The SW provides a TEE, which runs a smaller and simpler software stack than the 
REE. The TEE may include several trusted services, a lightweight kernel, and, if the processor 
supports Secure Exception Level 2 (SEL2, explained in Appendix D.1.1.2), a simple hypervisor. 
The TEE has a much smaller attack surface and does not run arbitrary code, making it much less 
vulnerable to attack compared to the REE. Also, the SELs provide additional protection within 
the TEE. 

As shown in Figure 9, there is a hardware-enforced isolation boundary between the NW and the 
SW. For A-class processors, the NW requests a secure service from the SW by issuing a Secure 
Monitor Call (SMC) to effect the transition from the NW to the SW and back via the Secure 
Monitor, which runs in the SW at the highest exception level, EL3. The Secure Monitor hands 
the information to the Secure Partition Manager (SPM) executing at SEL2, which invokes the 
secure service in a Trusted Application (TA) running in a Secure Partition (SP). 

The SW and NW address spaces can be split into several regions. Each region is specified as 
secure or non-secure. The registers to control the address space partitioning are limited to SW 
access only, ensuring that only the SW software can partition memory. The SW and NW 

 

2  This description also applies to the recently announced Armv9-A Architecture. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

53 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

memory partitioning is not expected to change dynamically at runtime because it is only 
configured once during system boot,3 which always takes place in the secure state. 

 

Figure 9: Arm Processor with TrustZone 

The architecture provides two physical address spaces (PAS): secure (SW) and non-secure 
(NW). While in non-secure state, virtual addresses always translate to non-secure physical 
addresses. Software in non-secure state can only access non-secure resources. In secure state, 
firmware running at Exception Level 3 (EL3) and SEL2 can access both the secure and non-
secure physical address spaces. SEL0 and SEL1 may access a non-secure physical address if it 
has been mapped to the corresponding page table entry by SEL2 for an SP. When executing in 
the SW, code is never fetched or executed from the NW address space. 

Input/output (I/O) devices can be assigned to the SW or the NW. Memory-mapped devices 
follow the same access rules as described for memory accesses. 

D.1.1.2 Exception Levels 

In the NW, there are three Exception Levels (ELs): 

• EL0 is the EL where applications execute in the NW. They have visibility to their 
application address space created by the OS running at EL1. EL0 is the least privileged 
EL. 

• EL1 is the EL at which the OS executes. The OS manages the application address spaces 
that it creates at EL0 and owns all of the memory assigned to it. The OS may be a bare-
metal OS, which runs on the hardware directly, or it may be located in a VM created by a 
hypervisor. 

 

3  Before CCA is introduced, TF-A does not define dynamic memory transfer between the two worlds. CCA does support this 
operation (see Appendix D.3). 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

54 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

• EL2 is the EL at which the hypervisor executes. It owns and manages the NW memory, 
and it manages the VMs. A VM is composed of an OS running at EL1 and the 
applications it creates that run at EL0. The VM may also have non-secure devices 
assigned to it. 

Higher ELs (i.e., with a larger EL number) have the privilege to access registers that control 
lower ELs. In the general operation of the system, the privileged ELs will usually control their 
own configuration. However, more privileged ELs will sometimes access registers associated 
with lower ELs to, for example, read and write the register set as part of a save-and-restore 
operation during a context switch or power management operation. EL1 and EL0 share the same 
MMU configuration, and control is restricted to privileged code running at EL1. 

The NW ELs, EL0 through EL2, are mirrored in the SW and serve similar purposes: 

• SEL0 is the SEL where TAs execute in the SW. They provide secure services to the NW 
(e.g., Platform Security Architecture [PSA] crypto services, Digital Rights Management, 
a firmware TPM, a secure interface to a shared hardware device such as a discrete TPM 
or an HSM). TAs have visibility to their application address space created by the Trusted 
Operating System (TOS), e.g., OP-TEE, at their inception. One SEL0 TA cannot access 
any other SEL0 TA memory unless the memory is specifically mapped as shared by the 
SEL1 TOS. SEL0 is the least privileged SEL in the SW. 

• SEL1 is the SEL at which the TOS executes, shown in an SP in Figure 9. The TOS 
manages the application address spaces and owns all of the memory assigned to the SP. 
Alternatively, vendor-provided platform firmware may execute in its own SP at SEL1; 
this is referred to as a bare-metal SP. Each SP represents a separate security domain 
within the SW and is essentially the SW equivalent of an NW VM. 

• SEL2 is the EL at which the SPM executes. It is a simple hypervisor and manages the 
SPs and their address spaces. It routes messages to and from the SPs. The separation of 
address spaces also allows moving manufacturer-provided platform firmware that, in the 
previous implementation without SEL2 ran at EL3, to an isolated SP running at SEL1 
(shown in Figure 9). 

EL3 is a special EL [49]. EL3 always executes in the SW. It manages the transition between 
worlds, and it runs the firmware that provides the Secure Monitor services, including: 

• Initial boot (BL2) execution 

• SMC intercept and dispatcher, which handles incoming SMCs and routes them 

• Maintains the non-secure to secure isolation and memory 

• Power State Coordination Interface – low-level power management 

• System Control and Management Interface – OS-independent software interfaces used in 
system management 

• Reliability, availability, and serviceability error delivery 

• Software Delegated Exception Interface – provides a high-priority event delivery 
mechanism, which has higher priority than interrupts that target OSs and hypervisors 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

55 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Trusted Firmware provides firmware support for dealing with Arm System Intellectual Property 
(IP), like interconnects. Silicon Providers (SiPs) provide firmware support to handle custom or 
third-party IP. This includes SoC-specific power management. 

See Appendix D.3.1 for the extensions added to this architecture by CCA. 

D.1.1.3 Trusted Applications and Secure Services 

TAs in SPs are intended to run only for short periods of time so as not to block the NW from 
executing for long on a given processor. The SW is not intended to run general-purpose 
applications, but rather secure services like those previously described for SEL1. For the most 
part, these secure services are expected to be global services offered to the NW apps and to live 
for the life of the boot. However, their use may be restricted to specific NW applications by 
implementing an authentication mechanism in the SW to ensure that the NW requester is 
authorized to use the service. 

Scheduling of the SW is on a per-processor basis and is implemented via a secure interrupt 
handled by the Secure Monitor at EL3. Explicit calls for services such as Platform Management 
Communications Infrastructure, for example, are typically blocking on that processor; control 
will only be returned to the Non-Secure state when the requested operation is complete. 
However, these calls tend to be short and infrequent. SMC calls for secure services from a TA 
are scheduled by the host OS/hypervisor. Most secure service requests will be short. However, if 
the TA needs to run for an extended period, the SMC Calling Convention allows the TA to return 
control to the NW, where the host OS (e.g., Linux) can reschedule the SW by reissuing the SMC 
at a convenient time. The SW will pick up where it was. This cooperative scheduling approach 
allows the NW to control scheduling as needed. 

D.1.1.4 Debugging, Tracing, and Profiling 

Arm systems include extensive features to support debugging, tracing, and profiling. The SoC 
needs to be configured properly to ensure that these features cannot be used to compromise the 
security of the system. Different developers are trusted to debug different parts of the system 
during different stages of its security lifecycle. Rate signals to control use of the features in 
Secure state and Non-Secure state are available to address these requirements. 

D.1.2 Arm Secure Boot and the Chain of Trust (CoT)  

The boot firmware can only be trusted if all the software components that run in the boot flow 
are trusted. This is referred to as the Chain of Trust. Trusted Firmware-A4 (TF-A) [12]  
implements boot firmware that loads, authenticates, and verifies each load of boot code before 
transferring control to it. Verification ensures the integrity of the boot firmware and critical data 

 

4  TF-A provides a reference implementation of secure world software. It is an open governance community project hosted by 
Linaro. Support for A-Profile Arm processors (Cortex and Neoverse) is currently available as open source at 
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/. Functionality focuses on trusted boot and a small, trusted 
runtime (EL3 code). 

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

56 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

by detecting that it has not been corrupted or modified in any way and is authentic. In this way, 
the boot firmware establishes a complete cascading CoT. 

On Arm, Secure Boot5 takes place within the SW provided by the Arm Processor Element (PE) 
TrustZone implementation (see Appendix D.3.1.3). When a power-on/reset processor event 
occurs, the system begins to execute the boot ROM6 code at EL3 on the boot core.7 The 
immutable ROM provides the hardware RoT for the processor complex and is implicitly trusted. 

 

Figure 10: Boot-Time and Run-Time Firmware 

During manufacture, the SiP and the OEM or ODM provide the ROM code (BL1 in Figure 10) 
and the first mutable load of boot code (BL2). The boot ROM code is typically small and simple. 
Its main function is to load the second-stage boot code (BL2), the first mutable boot code, from 
the non-volatile firmware storage device, typically flash, and verify it using the immutable root 
of trust public key provisioned at manufacture. The specific public key algorithm used for 
authentication is defined by the implementation. This process ensures first instruction integrity. 
If BL2 passes verification, BL1 transfers control to it. BL2 then performs some system 
initialization of the platform, like setting up the memory controller for off-chip DRAM, for 
example. BL2 then loads and cryptographically verifies all subsequent loads of boot, including 
the EL3 Boot and Runtime firmware (BL3-1); the SEL2, SEL1, and SEL0 firmware (BL3-2); 
and the first non-secure load of boot (BL3-3 – e.g., UEFI, U-Boot), which executes at EL2 when 
it receives control. BL2 uses Key and Content self-signed X.509 certificates to verify the BL3-x 
loads. BL3-3 is the end of the boot chain and represents the boot CoT. 

 

5  In this section, references to “Secure Boot” include Verified Boot, where each boot code module is authenticated after 
loading it from the boot media, typically flash, to make sure that it has not been modified or corrupted, before transferring 
control to it, and Measured Boot, where each boot code module is measured using a hash function over the code and 
configuration data and is extended into a PCR. Verified boot and measured boot are complementary. UEFI Secure Boot, 
which continues the verification and measurement, is also included in the SRTM for Arm systems. 

6  Boot ROMs are typically implemented as either mask ROM, or by embedded flash with hardware support to ensure that it 
cannot be altered once programmed. The design of the immutable first load of boot is not restricted to specific 
implementations. Only the architectural requirement that it is immutable must be met. 

7  The other cores are held in reset until boot completes. This serialization avoids any security vulnerabilities that would be 
created due to concurrent execution of boot code on multiple processors. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

57 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

The boot process can optionally measure all the boot firmware up to and including BL3-3. BL3-
3, when it executes, can also provide measurements for firmware it loads (e.g., runtime drivers). 
This is an optional feature. The process described above is changed so that the boot firmware is 
loaded, verified, then measured before transferring control. For Arm, the measurements are 
extended into PCRs: PCR0 (all signed firmware and data) and PCR1 (all critical configuration 
data – e.g., debug port settings). The PCR implementation is platform-defined and is hidden by a 
firmware API that provides only read and extend operations. The PCR implementation need only 
guarantee that the architectural behavior and security of measurement PCRs are adhered to. For 
example, the PCRs may be implemented on-chip in a protected memory location or in a 
firmware TPM implementation, or in an external device like a discrete TPM or a Secure 
Element. PCR0 and PCR1 are cleared to zero at reset. 

The boot measurements can be used to attest to the firmware that was booted on the system. An 
attestation key, also known as an endorsement key (EK), cryptographically proves the device 
identity, and therefore trustworthiness, to external entities. A device attestation key can be used 
by many different attestation schemes (e.g., the Fast Identity Online [FIDO] Alliance, the TCG 
TPM, Platform Security Architecture [PSA], and CCA). A remote verifier can be used to 
compare the attested measurement against a list of known “good” measurements in order to 
decide whether the system is in a valid secure state. Policy can then be used to decide what 
action to take if the comparison fails. 

A monotonically incremented counter is supported to prevent rollback of firmware, including 
configuration data, to a previous version since that previous version of firmware may have 
exploitable vulnerabilities. However, rollback for recovery purposes can be permitted if 
authorized. 

D.1.3 Platform Security Architecture (PSA) Functional APIs 

The PSA Functional APIs define the foundations from which security services are built, allowing 
devices to be secure-by-design. The three APIs (cryptography, storage, and attestation) provide a 
consistent developer experience for system software and application developers, enabling 
interoperability across different hardware implementations of the RoT. 

D.1.3.1 The PSA Cryptographic API (Crypto API) 

The PSA Crypto API provides a portable interface to cryptographic operations on a wide range 
of hardware. The interface provides access to the low-level primitives used in modern 
cryptography. It does not require that the user has access to the key material; instead, it uses 
opaque key identifiers. It defines an interface for cryptographic services, including cryptography 
primitives and a key storage functionality. The interface is designed to be both scalable and 
modular, allowing devices to only implement what they need.  

Implementations can isolate the crypto processor from the calling application, and can isolate 
multiple calling applications, one from another. The implementation can be separated into a front 
end and a back end. In an isolated implementation, the back end is located in an isolated 
environment, which is protected from the front end. Various technologies can provide protection, 
for example: 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

58 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

• OS process isolation 

• Partition isolation, either with a VM or TEE environment like TrustZone 

• Physically separate hardware devices 

A low-level cryptographic interface is defined, where the caller explicitly chooses which 
algorithm and security parameters they want to use. All cryptographic functionality operates 
according to the algorithm specified by the caller. Generic higher-level interfaces, where the 
implementation chooses the best algorithm for a purpose, are not specified. However, higher-
level libraries can be built on top of the PSA Crypto API. 

Some intended use cases for the PSA Crypto API are: 

• TLS 

• Secure storage encryption 

• Network credentials (e.g., X.509) 

• Device pairing (e.g., Near Field Communication [NFC] token pairing or Bluetooth key 
agreement protocols) 

• Verified boot (firmware integrity and authentication) 

• Attestation (the primitives provided are suitable for attestation use cases) 

• Factory provisioning (these APIs can be used to generate device unique identity keys for 
population at the factory) 

Interfaces for the following types of symmetric cryptographic operation are provided: 

• Message digests, commonly known as hash functions 

• Message authentication codes (MACs) 

• Symmetric ciphers 

• Authenticated encryption with associated data (AEAD) 

Both a pair of single-part functions (e.g., encrypt, decrypt) and a series of functions that permit 
multi-part operations are defined for each type of symmetric cryptographic operation (e.g., 
allocate, initialize, setup, update, and finish). 

D.1.3.2 The PSA Storage API 

The PSA Storage APIs provide key/value storage interfaces for use with device-protected 
storage. They describe the interface for the storage provided by the PSA RoT (the PSA Internal 
Trusted Storage [ITS] API), as well as an interface for external protected storage (the PSA 
Protected Storage [PS] API). Two use cases are covered: secure storage for device secret data 
(ITS), and protection for data-at-rest (PS). ITS is a more specialized API and is intended to 
provide data integrity and/or privacy. For example, a device identity key requires both 
confidentiality and integrity, whereas a public key is public data requiring integrity but not 
privacy. PS is the general-purpose API that will be used most often and is intended to protect 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

59 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

larger data sets against physical attacks. It provides the ability to store data on external flash, 
with a promise of data-at-rest protection, including device-bound encryption, integrity, and 
replay protection. It is possible to select the appropriate protection level, e.g., encryption only, or 
integrity only, or all three, depending on the threat model of the device and the nature of its 
deployment. 

Consistent APIs for accessing storage allow software to be written in a platform-independent 
manner, improving portability across PSA-supported platforms. 

D.1.3.3 The PSA Attestation API 

The PSA Attestation API is a standard interface provided by the PSA RoT, which is defined in 
the PSA Security Model. The API can be used either to directly sign data or to bootstrap trust in 
other attestation schemes. PSA provides a framework and the minimal generic security features 
allowing OEM and service providers to integrate various attestation schemes on top of the PSA 
RoT. The PSA RoT reports information (claims) that can be used to determine the exact 
implementation of the PSA RoT and its security state. If the PSA RoT loads other components, it 
also includes information about them. Other components outside of the PSA RoT can add 
information to the report by calling the provided API, which will include and sign the additional 
information. The PSA RoT signs attestation reports using the initial attestation key. 

Each device instance contains a protected attestation key that can be used to prove that it is a 
particular certified implementation. The attestation identity can be verified in an attestation 
process and checked against certification information. At the end of the process the verifier can 
establish a secure connection to the attested endpoint and deliver credentials. The combination of 
a hardware entity and the software installed on that entity can be certified to conform to some 
published security level. A party may want to check the received list of claims against a database 
of known measurements for each component in order to decide which level of trust should be 
applied. 

Initial attestation requires three services:  

• Enrollment verification service, enforcing policy as part of service enrollment of the 
device  

• Production verification service (OEM), providing the production state of an attestation 
identity  

• Certification verification service (third party), verifying that all attested components are 
up to date, signed correctly, and certified to work together  

The API must be provided by the implementation. 

D.1.4 Platform AbstRaction for SECurity (Parsec) 

Parsec [50] is the Platform AbstRaction for SECurity, an open-source initiative to provide a 
common API to secure services in a platform-agnostic way. It provides a micro-service that 
maps easy-to-consume security APIs, in the language of choice, to security primitives found in 
various different hardware implementations. It is part of the CNCF sandbox. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

60 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Parsec aims to define a software standard for interacting with secure object storage and 
cryptography services, creating a common way to interface with functions that have traditionally 
been accessed by more specialized APIs. Parsec provides an ecosystem of libraries in a variety of 
programming languages. Each library is designed to be simple to consume. This ecosystem 
makes secure facilities available to developers across a broad range of use cases in infrastructure 
computing, edge computing, and IoT. 

Computing platforms have evolved to offer a range of facilities for secure storage and secure 
operations. There are hardware-backed facilities such as the HSM and TPM, there are firmware 
services running in TEEs, and there are also cloud-based Parsec services. Security facilities may 
be provided purely in software, where they are protected by mechanisms provided in the OS. 
Parsec is built on PSA. The core component of Parsec is the Parsec security service. It is a 
background process that runs on the host platform and provides connectivity with the secure 
facilities of that host and exposes the wire protocol based on PSA Functional APIs. 

The Parsec service listens on a suitable transport medium. The transport technology is one of 
Parsec’s many pluggable components, and no single transport is mandated. Choice of transport is 
dependent on the OS and the deployment. On Linux-based systems where the client applications 
are running in containers (isolation with a shared kernel), the transport can be based on Unix 
sockets. Client applications make connections with the service by posting API requests to the 
transport endpoint. This is usually done via a client library that hides the details of both the wire 
protocol and the transport. 

A single instance of the Parsec service executes on each physical host. In virtualized 
environments, the Parsec service may reside on a specially assigned guest, or potentially within 
the hypervisor. Another option is running Parsec on each individual guest, with back-end support 
running in a TEE/Secure Enclave. The Parsec service does not support remote client 
applications; each physical host or node must have its own instance of the service. However, it is 
possible for the service to initiate outbound remote calls of other services, such as cloud-hosted 
HSM services.  

The Parsec service is also responsible for brokering access to the underlying security facilities 
amongst the multiple client applications in a multi-tenant environment. Parsec is able to support 
multi-tenant scenarios by making use of a client identity, which is a string or token that each 
client application passes to the Parsec service with every API call. Parsec does not mandate any 
particular format or semantics for these client identity strings. They can be passed opaquely to 
the service as octet sequences using the wire protocol. The only requirement on a client identity 
string is that it must be verifiable by the Parsec service in some way. The component that offers 
this verification is known as an identity provider.  

The identity provider is not part of Parsec. It can be another component or service, residing either 
locally or remote. It could be a container orchestrator or other runtime management service, or 
even a function of the OS. It is expected that the Parsec service can establish trust with the 
identity provider via some suitable means. Parsec offers a pluggable mechanism for 
communicating with different identity providers. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

61 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Examples of client identity management include the following: 

• The client identity can simply be an OS entity such as the process identifier, user 
identifier, or group identifier of the client application’s process. When Unix sockets are 
used for the wire protocol transport, Parsec can verify the identity by making system calls 
to perform a peer credential check [51]. In this case, the identity provider is effectively 
the OS kernel. 

• The client identity can be a Secure Production Identity Framework for Everyone 
(SPIFFE) Verifiable Identity Document (SVID) [52]. In this case, the identity provider 
would be a SPIFFE runtime component such as a local SPIFFE Runtime Environment 
(SPIRE) service [53], with which the Parsec service communicates using the SPIFFE 
Workload API [54]. 

Other methods of verification are possible. However the client identity is verified, Parsec will 
use the resulting identity string as a namespace for all keys and other stored assets. The Parsec 
service will ensure that each client application is only given visibility and access over its own 
namespace. 

Parsec meets the need for a new platform abstraction that offers a common palette of security 
primitives via a software interface that is both agnostic with respect to the underlying hardware 
capabilities, and also capable of supporting multiple client applications on the same host, 
whether those be within containers or VMs. 

For more information, see also [55] [56] [57]. 

D.2 Software Runtime Protection Mechanisms 

D.2.1 Return Oriented Programming (ROP) and Jump Oriented Programming (JOP) 
Attacks  

D.2.1.1 Arm Pointer Authentication Code (PAC) 

Attacks frequently attempt to subvert software control flow. PAC [48] is a feature introduced to 
block these types of attacks. It adds functionality that supports address authentication of the 
contents of a register before that register is used as the target of an indirect branch, or as a load. 
PAC is a strong defense against ROP attacks, which attempt to make a function return to the 
wrong location.  

With PAC, hardware ensures that the return is made to the correct location by preserving the 
original pointer value. The upper bits of a 64-bit pointer are used to store the PAC, which is a 
cryptographic signature on the pointer value and some additional specified context. Special 
instructions have been introduced to add a PAC to a pointer, verify an authenticated pointer’s 
PAC, and restore the original pointer value. The authentication operation regenerates the PAC 
and compares it with the value that is stored in the pointer. If authentication succeeds, a pointer 
without the PAC is returned. If authentication fails, an invalid pointer is returned. An exception 
is raised if the pointer is subsequently used. This gives the system a way to make 
cryptographically strong guarantees about the likelihood that certain pointers have been 
tampered with by attackers. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

62 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

D.2.1.2 Arm Branch Target Identification (BTI) 

Once an attacker has found a vulnerability to exploit, their next aim is to execute code to gain 
control of the machine they have accessed. Techniques used to modify the control flow include 
ROP and JOP attacks. These techniques find small sections (called gadgets) of vulnerable 
programs that can be chained together to achieve the attacker’s goal.  

Systems supporting Branch Target Identification (BTI) [48] can enforce that indirect branches 
only target code locations that start with one of the accepted BTI instructions. Pages can be 
marked as containing BTI instructions. Indirect branches can only branch to locations identified 
as having BTI instructions, which reduces the ability of an attacker to execute arbitrary code. 
The BTI feature works together with PAC to significantly reduce the number of gadgets 
available to an attacker. 

D.2.2 Memory Safety Violations  

D.2.2.1 Arm Privileged Access Never (PAN) 

PAN helps to prevent an OS kernel or a hypervisor from being exploited to erroneously access 
memory allocated to a user-mode application (EL0). If PAN is enabled, any attempt by the 
kernel or hypervisor to access a page controlled by a user-mode attacker will be prevented. The 
access will result in a permission fault and will not result in the data or instruction being cached. 

Sometimes the OS or hypervisor does need to access unprivileged regions, for example, to write 
to a buffer owned by an application. To support this, the instruction set provides unprivileged 
loads and stores that are not blocked by PAN (LDTR and STTR). They are checked against EL0 
permission checking even when executed by the OS at EL1 or EL2. While application code 
needs to be executable in user space (EL0), it should never be executed with kernel permissions 
(EL1/EL2), so PAN controls these accesses. 

D.2.2.2 Arm User (EL0) Execute Never (UXN) and Privileged (EL1/EL2) Execute 
Never (PXN) 

User (EL0) Execute Never (UXN) and Privileged (EL1/EL2) Execute Never (PXN) provide 
protection against “stack smashing” attacks where malicious software attempts to write new 
opcodes into memory and then attempts to execute the newly modified memory. Typically this 
attack is targeted at stack memory. These execute permissions are stored in the page table 
entries. Any attempt to branch to an address within a marked page triggers a permission fault. 
The translation table attributes and write controls can block execution from any location that the 
malicious code could write to. 

D.2.2.3 Arm Memory Tagging Extension (MTE) 

Memory tagging enables developers to identify spatial and temporal memory safety violations in 
their programs (e.g., use-after-free, use-out-of-scope, use-before-initialization, bounds 
violations). MTE [48] [58] [59] is designed to quickly detect memory safety violations and 
provide robustness against attacks that are attempting to subvert code. MTE is a lightweight, 
probabilistic version of a lock and key system where one of a limited set of lock values can be 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

63 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

associated with the memory locations forming part of an allocation, and the equivalent key is 
stored in unused high bits of addresses used as references to that allocation. On each use of a 
reference, the key is checked to make sure that it matches the lock before an access is made. If 
the key matches the lock, the memory access is permitted; otherwise, the invalid access can 
either be recorded for later reference (and execution is allowed to continue) or be faulted (and 
execution is halted). On freeing an allocation, the lock value associated with each location is 
changed to one of the other lock values so further uses of the reference have a reasonable 
probability of failure. Hard-to-catch memory safety errors can be detected and eliminated more 
easily, which aids reliability and improves product security. 

MTE provides architectural support for run-time, always-on detection of various classes of 
memory errors and can aid with debugging to eliminate vulnerabilities before they can be 
exploited. MTE implements support for storage access and checking of the lock values in 
hardware. Software selects and sets the values on allocation and deallocation.  

Instructions are added for use by general-purpose software to set Logical Address Tags, 
manipulate Logical Address Tags, store Allocation Tags to memory, and load Allocation Tags 
from memory. Additional instructions are added for use by system software and external debug 
agents to efficiently transfer Allocation Tags to and from memory. The extension is expected to 
be generally applicable to 64-bit software written in C and C++ that does not use the Logical 
Address Tag bits for other purposes. Use in mixed language environments, e.g., C/C++ code 
interacting with JIT) compiled or interpreted languages is also expected to benefit. Applicability 
to software in other languages will vary. Since MTE imposes no changes to standard C/C++ 
application binary interfaces (ABIs), incremental deployment across and within ELs is possible. 

MTE and PAC can both be enabled at the same time. 

D.2.2.4 Arm Hardware Enforced Capability-Based Architecture (Morello and 
CHERI) 

Arm and the University of Cambridge are collaborating in the development of the Capability 
Hardware Enhanced RISC Instructions (CHERI) architecture that provides a capability approach 
to memory safety [60]. Arm has developed a prototype architecture, Morello [13] [14] [61], that 
adapts the hardware concepts of CHERI. Morello is a research program led by Arm in 
association with partners and funded by UK Research and Innovation (UKRI) as part of the UK 
government Digital Security by Design (DSbD) program. This new approach to cybersecurity 
requires a significant change in how the hardware architecture is designed, as well as how the 
software running on devices that support the CHERI capability architecture is programmed to 
take advantage of the new features. 

The Morello architecture aims to improve the robustness and security of systems through two 
design goals: fine-grained memory protection leading to increased memory safety, and scalable 
compartmentalization. To achieve these goals, the Morello architecture introduces the principles 
defined by CHERI, including the principles of least privilege and intentional use. The Morello 
architecture is backwards compatible with, and complementary to, the existing Armv8-A 
architecture. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

64 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

The CHERI CPU architecture adds 128-bit “capabilities” plus a memory tag bit. The capability 
contains the address, bounds information, permission information, and an object type. The 
memory tag bit is metadata that distinguishes a capability from normal data and prevents 
“forging” of a capability. A capability can be used in place of a normal pointer in some or all 
situations. Simply replacing all pointers with capabilities gives scope for strong spatial memory 
protection. Loads and stores using capabilities as addresses are checked to be within the 
capability address range and matching the supplied permissions. Bounds cannot be arbitrarily 
increased, permissions cannot be relaxed, and the tag cannot be changed. 

Three example use cases are: 

• Kernel access control: Due to tagged memory and constrained manipulation of 
capability segment descriptors, a process cannot create a capability segment descriptor 
that describes memory for which it does not already possess a descriptor. 

• Sandboxing: Capabilities can also be used for sandboxing a process into sub-address 
spaces, essentially allowing a process to have its own memory protection policy for 
program portions. 

• Pointer safety: Capabilities can also be used for pointer safety using automated bounds 
checking. 

The Morello System Development Platform (SDP) is a prototype demonstrator board that 
contains a Morello SoC. The SDP serves as the DSbD technology platform prototype for the 
Morello architecture. Capabilities are introduced to the Arm v8-A architecture profile as an 
extension of the Arm v8 AArch64 state, with the principles proposed in version 8 of the CHERI 
ISA [60], to provide hardware support for fine-grained protection and building blocks for secure, 
scalable compartmentalization.  

A pre-silicon Fixed Virtual Platform (FVP) System Model of Morello is available now. It 
enables the development of software without the requirement for the prototype hardware. Arm 
FVP models use binary translation technology to deliver fast simulations of the Arm-based 
system. The Morello FVP provides a functionally accurate model of the Morello SoC IP 
implementation. The FVP enables industry and academic partners to test the new capability-
based prototype architecture in real-world use cases. The Arm Development Studio: Morello 
Edition supports the Morello FVP, which includes software models of the Rainier cores. The 
Morello SDP board is closely based on the Arm® Neoverse™ N1 System Development Platform 
board. Specifications, models, and Morello demonstrator boards are available. 

D.2.3 Arm Mitigations Against Side-Channel Attacks  

It is possible for attackers to exploit undesirable side-effects of out-of-order execution and 
speculative execution in modern processors to breach the separation between OS and processes 
and between processes in order to steal data. Physical access to the system is often not needed in 
order to mount an attack. An attacker can potentially breach typical process and privilege 
separation by using specially crafted software to gather sensitive information from other software 
that is running on the same system.  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

65 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Arm has implemented a number of mitigations against side-channel attacks. At this time, four 
variant mechanisms have been identified, each potentially using the speculation of a processor to 
influence which cache entries have been allocated in a way to extract some information that 
would not otherwise be accessible to software. There are barrier instructions added that allow 
mitigation of Spectre and Meltdown variants 1 (CVE-2017-5753), 2 (CVE-2017-5715), 3 (CVE-
2017-5754), and 3a (CVE-2018-3640), as well as memory disambiguation control to mitigate 
variant 4 (CVE-2018-3639). See [48] [62] [63] [64] for a more complete description. 

D.2.3.1 Speculation Barriers 

A new barrier, a Speculation Barrier, is added to the architecture to control memory speculation. 
Until the barrier completes, the execution of any instruction appearing later in the program order 
than the barrier cannot be performed speculatively, to the extent that such speculation can be 
observed through side-channels as a result of control flow speculation or data value speculation, 
but can be speculatively executed as a result of predicting that a potentially exception-generating 
instruction has not generated an exception. In particular, it cannot cause a speculative allocation 
into any caching structure where the allocation of that entry could be indicative of any data value 
present in memory or in the registers. The instruction can complete once it is known not to be 
speculative, and all data values generated by instructions appearing in program order before the 
Speculation Barrier have their predicted values confirmed. 

D.2.3.2 Predictor Invalidates 

For all execution prediction resources that predict addresses or register values, the architecture 
requires that the speculative execution at one hardware-defined context is separated in a hard-to-
determine manner from the predictions trained in a different hardware-defined context. For the 
purpose of this definition, the hardware-defined context is determined by the following: 

• The EL 

• The Security state 

• When executing at EL1, the Virtual Machine IDentifier (VMID) 

• When executing at EL0, the Address Space IDentifier (ASID) and the VMID 

D.2.3.3 Synchronization Barriers 

The Arm architecture is a weakly-ordered memory architecture that supports out-of-order 
completion. Memory barrier is the general term applied to an instruction, or sequence of 
instructions, that forces synchronization events by a PE with respect to retiring Load/Store 
instructions. The memory barriers defined by the Armv8 architecture provide a range of 
functionality, including ordering and completion of load/store instructions, and context 
synchronization. The new instructions provide a synchronization barrier for instructions, data, 
trace, error, and profiling. 

D.2.3.4 Arm Trusted Firmware (TF-A) and Linux 

Arm has contributed updates to the open-source Trusted Firmware (TF-A) project [12] and has 
developed Linux kernel and Android patches that take advantage of those implemented updates. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

66 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Patches have been upstreamed for both AArch64 and AArch32. Mitigations for Variant 1, 2, 3, 
and 4 are available for both AArch64 and AArch32. Trusted Firmware has implemented a new 
SMC call to support some of these mitigations. The software mitigations described in the Cache 
Speculation Side-channels paper [62] should be deployed where protection against malicious 
applications is required by the threat model. Arm introduced processor features in Armv8.5-A 
[47], which can be implemented from Armv8.0, that provide resilience to this type of attack. 

D.2.3.5 Timing Insensitive DP Instructions 

A new option can be set to ensure Data Independent Timing for most classes of the data 
processing instructions – i.e., the time taken for instructions is independent of the values of the 
data supplied in any of their registers. In addition, the response of these instructions to 
asynchronous exceptions does not vary based on the values supplied in any of their registers. 
This includes the following: 

• All cryptographic instructions 

• The set of instructions that use the General Purpose Register File 

• The set of instructions that use the Single Instruction, Multiple Data (SIMD) & Floating 
Point Register File 

• All loads and stores are timing-insensitive to the value being loaded or stored 

This prevents an attacker from inferring anything about the data being processed by an 
instruction or a set of instructions. 

D.3 Data Protection and Confidential Computing 

D.3.1 Arm Confidential Compute Architecture (CCA) 

Arm’s Confidential Compute Architecture (CCA) [65] establishes a Protected Execution 
Environment architecture that provides mechanisms that can be used to construct an environment 
where privilege does not imply any right of access. CCA isolates the execution environments 
from each other irrespective of privilege level. This separation of policies has many in-depth 
consequences for architecture, trust relationships, and contracts. 

Arm CCA protects data in use by performing computation within a hardware-backed and 
remotely verifiable secure environment. It shields code, data, and execution from observation 
and modification by other software and hardware agents. With CCA, the owner of a Protected 
Execution Environment does not need to trust other co-hosted software or privileged hardware 
agents, such as direct memory access masters. The mechanisms providing the Protected 
Execution Environment are directly measured and reported using attestation to determine their 
trustworthiness. 

D.3.1.1 Arm Realms 

CCA provides architecture support for dynamically created entities called Realms. A Realm [66] 
[67] contains both user (EL0) and kernel space (EL1) code and data. The higher-privileged entity 
that manages Realm resources is the NW hypervisor. Realm tenants do not need to trust either 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

67 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

the hypervisor or existing SW code. Realms are protected from each other; a Realm does not 
need to trust other Realms. 

The CCA RoT enforces authenticity of the CCA platform by attesting to the boot state and 
security state of a Realm, the authenticity of the Realm content through verification and 
measurement, and the confidentiality of the guest data through Physical Address Space (PAS) 
protection and encryption. 

Realm world is a world separate from both the NW and the SW which already exist in 
TrustZone. Realm world is designed for the exclusive use of Realms. A Realm protects the 
information within it from other system entities. Higher-privileged software retains responsibility 
for allocating and managing the resources utilized by Realms but cannot access their contents. 
Higher-privileged software also retains responsibility for scheduling within its Realms, but 
cannot otherwise control or directly observe their execution flow. 

Specifically, CCA provides: 

• Additional memory access control, orthogonal to the existing controls enforced using 
translation tables 

• Execution state protection 

• Trustworthy measurement (attestation) of the initial state 

• A guarantee that the system configuration (for example, whether external debug is 
permitted) does not change during the lifetime of the Realm (immutability) 

Realm data remains confidential even after Realm destruction or system reset.  

Realms are explicitly designed to be created and destroyed on demand. A Non-secure hypervisor 
can create a new Realm at any time, much like it can create a new VM at any time. The 
hypervisor can add pages to a Realm or remove pages from a Realm at any time, much in the 
same way it manages the pages of other VMs. This contrasts with TrustZone architecture, which 
is not designed to support dynamic creation of Protected Execution Environments. 

Realms are designed to support complex memory management schemes in existing OSs and 
hypervisors with minimally invasive changes. As a result, an architected mechanism is required 
to control access to memory used for the implementation of Realms. Control of accessibility of 
memory from a given world must be fine-grained (at 4K page granularity) and dynamic. All 
physical memory in a CCA system is divided into Granules. Every Granule has a set of 
properties that defines the constraints under which the corresponding addresses can be accessed. 
Violation of these constraints results in a fault. 

D.3.1.2 Arm Realm Management Extension (RME) 

The Realm Manager is responsible for managing Realms. A Realm is a VM consisting of an OS 
kernel (running at EL1) and a set of applications (executing at EL0). In addition to the two 
security states supported by TrustZone (Secure state and Non-secure state), CCA introduces two 
additional Security states supported by the Realm Management Extension (RME): Realm state 
and Root state. With RME, EL3 moves out of Secure state and into its own security state – Root 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

68 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

state. RME provides isolation of EL3 from all other security states. Realm, Non-secure, and 
Secure states need to trust EL3. Secure and Realm state can be mutually distrusting because 
Secure state is hardware-isolated from both Non-secure state and Realm states, while Realm state 
is hardware-isolated from both the Non-secure and Secure states. All other security states contain 
EL2, EL1, and EL0 in both the Realm world and the NW. Figure 11 shows the addition of Realm 
world to the NW and the SW. 

The Monitor security domain executes runtime firmware that manages security state switching 
and the assignment of resources among security states. Backwards compatibility is maintained 
with existing TrustZone use cases by retaining the Secure state. However, these existing use 
cases can take advantage of new RME features such as dynamic memory assignment. 

 

Figure 11: Root World (Monitor), Realm World, and Isolation Boundaries 

CCA attestation allows a user of a service provided by a Realm – a reliant party – to determine 
the trustworthiness of the Realm and of the implementation of the CCA. The reliant party may be 
local or remote. 

Dynamic TrustZone uses RME to provide an architected mechanism to assign pages of memory 
between the Non-Secure and Secure address spaces, at run time. Part of CCA, the RME in 
Armv9-A enables pages of memory to be dynamically transitioned from the NW to the SW and 
back again. Building on RME, CCA provides the following additional features that enhance a 
dynamic TrustZone solution: 

• Firmware partitioning and isolation of the EL3 monitor, used to provide a stronger RoT 
and attestation services 

• Encryption of all data in Secure assigned DRAM through the Memory Protection Engine 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

69 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

D.3.1.3 Arm Realm Memory Isolation and Protection 

As shown in Figure 11, TrustZone provides two security states each associated with its own 
PAS: the Secure PAS and the Non-secure PAS. RME extends this with two additional PASes: 
the Realm PAS and the Root PAS. They provide isolation guarantees for data belonging to each 
PAS. Each PAS has its own address translation regime. Device access to memory is subject to 
RME PAS isolation guarantees. 

D.3.1.4 Arm External Memory (DRAM) Encryption and Integrity with CCA 

Many Realm and CCA assets are held in external memory. Memory encryption with CCA is 
designed to provide additional isolation, and privacy among the Realm, Root, and SWs and 
within the Realm PAS. With CCA, memory is uniquely encrypted per world and location using a 
separate encryption context for each PAS (Realm, Root, Secure) using a different address tweak 
for each encryption data block to provide spatial isolation. Memory encryption is randomly re-
seeded at boot time to make all existing encrypted memory contents undecipherable following 
system reset. 

Data is encrypted by hardware before being written to external memory or to any shared cache 
that resides past the point of physical alias. 

CCA protects against a number of different types of memory attacks, including: 

• Direct memory access: An unauthorized agent on the same system attempts to directly 
access the contents of memory allocated to a different world, or to a Realm.  

• Probing: An attacker attempts to physically access the contents of memory allocated to a 
world or a Realm—for example, using hardware probes or recording devices such as 
Non-Volatile Dual In-Line Memory Modules (NVDIMMs).  

• Leakage: An attacker gains access to the contents of memory allocated to a world or a 
Realm, for example through misconfigurations or errors in the implementation of the 
CCA platform.  

D.3.1.5 Arm CCA Firmware Boot 

CCA root world firmware is booted before the firmware described for the SW in Appendix 
D.3.1.4. It starts with immutable initial boot code that may be in an on-chip ROM or locked on-
chip storage. On a secured system, the immutable initial boot code is inherently trusted and is not 
verified or measured. It is considered a part of the CCA hardware security domain and identified 
by the CCA platform attestation ID. Any updatable CCA firmware, including Realm 
management security domain firmware, is both verified and measured and is reported in a CCA 
platform attestation. 

Realms are measured by Realm management security domain firmware at Realm creation and 
reported in a Realm attestation bound to the current CCA platform attestation.  

The SW boot chain may be started by Monitor firmware. The NW boot chain is started by the 
SW when it instantiates the boot loader (e.g., UEFI) in the NW. They continue independently 
from CCA.  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

70 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

The CCA Hardware Enforced Security (HES) is hosted on a trusted subsystem and implements 
core CCA security services such as: 

• The CCA platform boot state 

• CCA platform attestation services 

• CCA Root parameters 

• The CCA system security lifecycle 

• CCA security provisioning 

• Collating the CCA hardware boot state 

CCA firmware includes: 

• On the HES device: 
o HES firmware 
o Trusted subsystem firmware for the HES host 

• On the Application Processor (PE) host: 
o Application PE firmware for the Monitor security domain and the Realm 

Management security domain 
o Trusted subsystem firmware for all other trusted subsystems within the CCA 

system security domain 

D.3.1.6 Arm RME and Debug, Trace, Profiling, and Performance Monitoring 
Protection 

Arm systems include extensive features to support debugging, tracing, and profiling. The RME 
provides controls that can limit which parts of the system can be debugged. Signals to enable 
different debug, trace, and profiling features are provided that help to manage the features. 
External debug signals are typically connected to fuses or an authentication module where debug 
for each state can be enabled or disabled, one for each of the four signals. These are usually 
managed and disabled depending on the current lifecycle state of the device. External access to 
Performance Monitoring Units is regulated by the RME. 

Hardware registers control when self-hosted Debug Trace, Profiling, and Performance 
Monitoring are context-switched when switching between security states or Realms. 

D.3.1.7 Remote Attestation Service - Project Veraison (VERificAtIon of 
atteStatiON) 

This open software initiative is creating software that can be used to build device attestation 
verification services that can support many architectures. To support the Arm CCA, 
contributions to the Veraison project will develop plug-ins that implement the Arm CCA 
attestation model. Veraison supports verification (has reference implementations for Entity 
Attestation Token [68], EAT PSA Profile, and Device Identifier Composition Engine [69]) and 
provisioning (an API to allow provisioning of Reference Values/Endorsements from supply 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

71 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

chain, object revocation, multi-tenancy data separation, as well as an audit trail). It is intended as 
a reference deployment that can be either self-hosted or platform-as-a-service hosted. 

D.3.2 Arm Cryptographic Acceleration 

D.3.2.1 Cryptography Extensions 

The ARMv8A Cryptography Extensions [47] have added 32 new Advanced SIMD instructions 
that operate on the vector register file. They can be used to accelerate the cryptographic 
algorithms listed here: 

• Secure Hash Algorithm 1 (SHA1), SHA256, and AES: these instructions are added to 
both the A32 and A64 instruction sets 

• SHA512, SHA3, SM3, and SM4: these instructions are added to the A64 instruction set 
only 

They provide three to ten times better software encryption performance. They are useful for 
small granule decryption and encryption that is too small to efficiently offload to an external 
hardware accelerator. 

D.3.2.2 True Random Number Generation (TRNG) 

A True Random Number Generator (TRNG) provides entropy in the form of random numbers 
from the sampled output of an unpredictable physical process rather than by means of an 
algorithm (a Deterministic Random Bit Generator [DRBG]). The main application for truly 
random numbers is in cryptography, where they are used to generate random cryptographic keys 
(e.g., Elliptic Curve Digital Signature Algorithm [ECDSA] key pairs, seed, and nonce; 
symmetric MAC keys) to store and transmit data securely (e.g., encryption protocols such as 
TLS). Keys generated using a TRNG are unpredictable and therefore are highly resistant to 
guessing attacks based on understanding an algorithmic implementation. 

Two new random number instructions, RNDR and RNDRRS, have been added [47]. They return 
a 64-bit random number into a general-purpose register. A read to the RNDRRS register will 
cause a reseeding of the random number before the new random number is generated and 
returned. 

The DRBG produces random numbers from a cryptographically secure algorithm and is seeded 
from the TRNG. The TRNG conforms to several standards, including NIST SP 800-90B, NIST 
SP 800-22, FIPS 140-2, and British Standards Institution (BSI) AIS-31. The DRBG algorithm 
conforms to the NIST SP 800-90A Rev 1 standard. The entire random number generation 
conforms to the NIST SP 800-90C standard. 

 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

72 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix E—Cisco Technology Examples 

This section describes a number of Cisco technology examples that map back to the key concepts 
described in the various sections of the document. Examples provided are focused on Cisco’s 
Unified Computing System (UCS), an open server that includes x86 processors from other 
vendors listed in the appendices and enables users to overlay additional technologies called out 
in this document. 

E.1 Platform Integrity Verification 

E.1.1 Cisco Platform Roots of Trust 

To ensure the highest possible degree of integrity, Cisco computing platforms use a defense-in-
depth methodology to design a platform that prevents both common and sophisticated attacks by 
employing technology rooted in various hardware components. Commonly referred to as 
hardware security modules in this report, there are two Platform Roots of Trust (PRoT) on Cisco 
UCS products. The Cisco Integrated Management Controller is the PRoT on Cisco Servers, and 
Cisco’s Chassis Management Controller (CMC) is the PRoT for Cisco IO Module, Cisco 
Intelligent Fabric Manager, and the chassis mainframe. 

Both PRoTs on Cisco computing platforms implement hardware-anchored RoT for firmware 
integrity and authenticity. They are anchored in immutable memory (e.g., ROM), in an 
embedded SoC or anchored to another hardware chip. 

Cisco extends platform integrity to include platform authenticity, rooted in either Cisco’s Trust 
Anchor Module such as the discrete Anti-Counterfeit Technology 2 or an exclusive TPM for 
platform-level-only usage. This proprietary, tamper-resistant chip is found in many Cisco 
products and features nonvolatile secure storage, Secure Unique Device Identifier, and 
cryptographic services, including random number generation, secure storage, key management, 
and cryptographic services to the running OS and applications. Platform authenticity ensures that 
the platform is not counterfeit and enables proper manufacturing provisioning of critical security 
parameters. 

Cisco’s platform integrity capabilities also deter certain physical attacks. For critical signals, 
Cisco server Printed Circuit Boards (PCBs) are fabricated such that these signals are routed in 
intermediate PCB layers instead of being accessible on the top or bottom layers of the board 
where easy probing and modification to electrical integrity can occur. Additionally, Cisco uses a 
pin-side-down packaging design (e.g., ball grid array) for solder-down components to prevent 
easy electrical manipulation of these pins. 

Because servers typically contain interchangeable components, sub-assemblies, parts, or devices, 
Cisco computing platforms provide authentication for Security Protocol and Data Model 
(SPDM) enabled devices (e.g., a storage controller) or other Cisco Field Replacement Units 
(FRU) (e.g., Cisco’s Virtual Interface Card). SPDM is the standard for securing communications 
with and authenticating devices within a platform. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

73 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

E.1.2 Cisco Chain of Trust (CoT) 

Cisco’s holistic approach to platform integrity focuses on protecting the platform as it operates. 
Firmware integrity and authenticity (commonly known as secure boot or a CoT) start at a 
hardware-anchored RoT. Firmware integrity is crucial because firmware either controls a 
particular device (e.g., a network controller) or various devices and operations on the platform, 
such as in Cisco’s Integrated Management Controller and CMC.  

Cisco’s PRoT establishes a chain-of-trust from hardware to firmware to software integrity by 
ensuring that the initial boot of the host CPUs have additional protections. Cisco servers’ PRoTs 
do an additional verification of BIOS code and check the integrity of the PCB by matching 
expected values to actual values. This provides extra protection against specific single 
component swap attacks. All of Cisco’s platform components implement secure boot and a CoT. 
More information can be found here. 

E.2 Cisco Supply Chain Protection 

Cisco’s comprehensive program to manage supply chain risks and provide protection to 
customers is highlighted in Best Practices In Cyber Supply Chain Risk Management. This supply 
chain protection program includes processes for Cisco to validate the authenticity and integrity 
of platform hardware when installing Cisco critical security parameters on Cisco PRoTs. These 
security parameters are rooted in the PRoT, establishing a secure identity from which the CoT 
can be authenticated. 

E.3 Cisco Software Runtime Protections  

Modern platforms contain many intelligent devices that run some form of code. While this code 
is not considered hardware, it plays a major role in affecting the overall integrity of a platform 
and is critical to ensuring the platform performs at the highest level of security posture. Whether 
it is FPGA code where configuration is passed into a voltage regulator or complex software that 
runs on the PRoT, Cisco employs additional integrity checks to ensure the code or critical 
security parameters are not maliciously modified.  

Cisco’s PRoT firmware architecture utilizes many hardware-level security features appropriate 
for the constraints and the security requirements of the design. For example, Cisco ensures code 
pages and data pages are isolated so code cannot run from data pages. Application pages are 
randomized through address space layout randomization (ASLR). As described above, firmware 
employs hardware anchors for securing secret or sensitive data at rest, in transit, and in 
operation. On some platforms, ROM code is utilized to ensure firmware authenticity throughout 
the boot process. For critical applications and products, Cisco utilizes a third-party agency or an 
internal security agency whose specialty is analyzing source code for security-related issues with 
an attacker's mindset. Cisco firmware also seeks FIPS certification and Common Criteria 
certification to further ensure a certain level of security posture for the user. 

Once a component fully boots and its firmware is operational, runtime firmware integrity is 
another important aspect of overall platform integrity and supply chain protection. Firmware 
components and their contents are controlled and vetted. Open source or purchased software 
components are analyzed internally before integrating them. The analysis includes looking for 

https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/trustworthy-technologies-datasheet.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cyber-supply-chain-risk-management.pdf


NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

74 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

system() calls common in C or equivalent languages to ensure there aren’t malicious command-
line injections, ensuring the code provides input sanitization, verifying the code passes static 
analysis, and resolving any errors and warnings from static analysis appropriately. Internally, 
Cisco ensures that build infrastructure and development servers meet stringent hardening 
requirements and safeguard the flow of software from the very early stages of development to an 
official release for users, a process that prevents malicious code injections in the software supply 
chain. Employed methods include additional integrity checks for code at rest. This process is 
constantly reviewed and improved. Cisco’s PRoT for certain platforms and FRUs expose 
firmware measurements to end users to verify the state of that component. Additionally, Cisco’s 
PRoTs have internal processes that self-monitor critical resources or critical security parameters 
to ensure that they have not been tampered with. 

E.4 Cisco Data Protection and Confidential Computing 

Another aspect of firmware integrity at runtime is data consumption and data processing. Cisco’s 
PRoT utilizes hardware-anchored secure storage to provide data at rest protection. These 
protections are enabled through hardware cryptographic trust anchors, similar to Trusted 
Execution Environments (TEE), that securely store secrets such as encryption keys and protect 
against certain side channel attacks such as physical attacks using radio frequency (RF) 
techniques. Data processing over the network is secured using standard security protocols such 
as TLS with identities rooted back to a Cisco Trust Anchor Module. 

E.5 Cisco Platform Attestation 

A Cisco PRoT continuously monitors the components of the system to detect degraded integrity.  
It can alert or take corrective action, up to and including lockdown mode, which prevents usage 
until the issue is remediated. A Cisco PRoT offers alerts or notification through numerous 
protocols: Simple Network Management Protocol, Simple Mail Transfer Protocol, syslog 
forwarding, Redfish, and Cisco’s xAPI. The PRoT monitors other components on the platform 
and, depending on their status and their role, it may take corrective actions or alert the user. If the 
integrity degradation is severe enough, it goes into lockdown mode and prevents continued usage 
until the issue is remediated. 

E.6 Cisco Visibility to Security Infrastructure 

The Cisco UCS platform provides cryptographically verifiable reports of platform integrity and 
security details, including BIOS measurements for the PRoT. 

E.7 Cisco Workload Placement on Trusted Platforms  

Cisco Intersight is a cloud-based or on-premises management solution that checks the UCS 
platform hardware for authenticity via the Cisco PRoT before allowing it to be claimed or 
managed by the Intersight management solution. 

 

 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

75 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix F—IBM Technology Examples 

This section describes a number of IBM technology examples that map back to the key concepts 
described in previous sections of this document. 

F.1 Platform Integrity Verification   

F.1.1 Hardware Security Module (HSM)  

HSMs include cryptographic co-processors that additionally provide very strong tamper-
detection, prevention, and response capabilities against physical attacks, such as the IBM 4758 
and its successors. IBM HSMs are available as features of IBM Z, LinuxONE, and IBM POWER 
Systems [70]. HSMs offer additional layers of protection in cloud deployment use cases [71].  

F.1.2 IBM Chain of Trust (CoT)  

IBM Z and IBM POWER Systems are equipped with a hardware RoT to enable key security 
capabilities, including trusted boot and enhanced data confidentiality.  

TPM is a special type of HSM. POWER9 servers include a TPM 2.0. The TPM 2.0 specification 
can be found at the TCG webpage [72][73].  

POWER 9 Enterprise Systems implement hardware and firmware enhancements to make them 
even more secure for hybrid cloud deployments. One enhancement is a Secure Initial Program 
Load (IPL) Process or Secure Boot that only allows platform manufacturer-signed Hostboot and 
POWER Hypervisor related firmware, up through and including Partition Firmware, to run on 
the system. Another enhancement is a framework to support remote attestation of the system 
firmware stack through a hardware TPM. 

Secure Boot implements a processor-based chain of trust based in the POWER9 processor 
hardware and enabled by the POWER9 firmware stack. Secure Boot provides for a trusted 
firmware base to enhance confidentiality and integrity of customer data in a virtualized 
environment. POWER9 Trusted Boot provides for measurements of system configuration and 
initial program load (IPL) path code, which can be used later as proof to a third party via 
attestation of the system’s initial IPL path configuration. In order to create a CRTM, a Secure 
Boot flow is used, which adds cryptographic checks to each phase of the IPL process until 
communications with the TPM are established. This flow aims to assert the integrity of all 
firmware that is to be executed on the core processors, thereby preventing any unauthorized or 
maliciously modified firmware from running. A firmware component verification failure will 
prevent the IPL from completing if the component is deemed critical for system functionality. If 
the component is not a core critical function, the failed image will not be executed, the IPL will 
be allowed to complete, and appropriate notifications will be presented.  

Details of IBM POWER Systems’ secure and trusted boot implementation can be found in 
[74][75]. Details of the IBM Z and LinuxONE secure boot implementation can be found in [76].  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

76 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

F.2 Software Runtime Protection Mechanisms   

F.2.1 IBM ROP and COP/JOP Attack Defenses 

The POWER platform added four instructions (hashst, hashchk, hashstp, hashchkp) to handle 
ROP in the Power ISA 3.1B starting in the Power10 processor. 

F.3 Data Protection and Confidential Computing  

In current computing environments, applications rely on system software for providing services, 
such as managing access to the computing system’s resources. System software (at the 
minimum) includes an OS but may also include a hypervisor. Conventionally, system software 
must be trusted because it has complete control over applications and their data. The OS or the 
hypervisor can access or modify the data of any application, or potentially tamper with any 
security features implemented by the application without being detected. Consequently, the 
underlying software must be part of the Trusted Computing Base (TCB).  

In shared environments, customers are forced to trust that the entities that develop, configure, 
deploy, and control the system software are not malicious. Customers must also trust that the 
systems software is invulnerable to attacks that escalate privilege and compromise the 
confidentiality and integrity of the customers’ applications. This broad trust requirement is often 
difficult to justify and poses a significant risk, especially for customers who adopt public cloud 
services. IBM has led efforts across the industry to address such concerns by reducing the size of 
the TCB and introducing technologies that make customer data inaccessible to system and cloud 
administrators.   

F.3.1 IBM Memory Isolation Technology 

While confidential computing (see VM isolation below for examples) and encrypting content in 
memory are effective security technologies for achieving memory isolation, using these 
technologies in combination with other isolation technologies can provide a robust multi-layered 
protection scheme.  

One example of such an isolation technology is IBM Z Processor Resource/System Manager 
(PR/SM). PR/SM is a type 1 hypervisor integrated with all IBM Z models that transforms 
physical resources into virtual resources so that many logical partitions (LPARs) can share the 
same physical resources. It provides the ability to divide physical system resources (dedicated or 
shared) into isolated logical partitions. Each logical partition operates like an independent system 
running its own operating environment. PR/SM enables each logical partition to have dedicated 
or shared processors and I/O, and dedicated memory (which you can dynamically reconfigure as 
needed). PR/SM provides the security administrator the ability to define a completely secure 
system configuration. When the system is defined in such a manner, total separation of the 
logical partitions is achieved, thereby preventing a partition from gaining any knowledge of 
another partition’s operation. This isolation technology is evaluated at Common Criteria 
Evaluation Assurance Level (EAL) 5+ [77].  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

77 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

F.3.2 IBM Application Isolation Technology 

IBM Hyper Protect Virtual Servers are a new technology based on IBM Secure Service 
Containers to protect workloads on IBM Z and LinuxONE throughout the application lifecycle. 
The IBM Secure Service Container (SSC) is a container runtime technology enabling you to 
quickly and securely deploy software appliances on servers. An appliance is an integration of 
OS, middleware, and software components that work autonomously and provide core services 
and infrastructures that focus on consumability and security.  

The goal of SSC technology is to provide a run-time environment to workloads, including access 
to network, storage, and crypto adapters. The primary goal is to protect any data created by the 
workload and only give a specific workload instance access to its data. That means even a 
second workload of the same type never gets access to any data created by another instance. SSC 
only runs inside of an SSC-type logical partition. Firmware disables memory access for SSC-
type logical partitions, and a special bootload/bootchain ensures that only signed SSC-based 
appliances can be started in such a partition. There is no SSH access into a hosting appliance, 
and activities can only be triggered through well-defined and tested APIs, always with the claim 
in mind, that only a workload has access to its data.  

Details of IBM Hyper Protect Virtual Servers can be found here [78].  

F.3.3 IBM VM Isolation Technology 

Both IBM POWER Protected Execution Facility (PEF) and IBM Secure Execution for Linux 
(IBM Z and LinuxONE) are examples of TEEs providing VM/memory isolation. IBM POWER 
PEF enables support for secure virtual machines (SVMs) on IBM Power Systems. PEF protects 
SVMs from other software while the SVMs are at rest, in transit, and while running. SVMs are 
supported by a new mode in the IBM Power Architecture called Ultravisor mode that has higher 
privilege than the hypervisor mode. An SVM can run only on systems that support PEF and are 
verified by the customer who created the SVM. Each system that supports PEF has a 
public/private key pair where the private key is known only to the system (not exposed to the 
owner of the system). More details about PEF can be found at [78]. Instructions for how to set up 
the PEF-enabled software stack can be found at [79]. The PEF/Ultravisor code is available as 
open source at [80].  

IBM Secure Execution for Linux is a hardware-based security technology that is built into the 
IBM z15T and LinuxONE III generation systems. It is designed to provide scalable isolation for 
individual workloads to help protect them from not only external attacks but also insider threats.   
Secure Execution provides isolation between a kernel-based VM (KVM) hypervisor host and 
guests in virtual environments. This level of vertical isolation is designed to remove the ability 
for administrators to have total visibility into the sensitive workloads being hosted on VMs and 
individual containers. Secure Execution provides hardened access restrictions to protect 
intellectual property and proprietary secrets while allowing administrators to manage and deploy 
workloads as black boxes and continue normal job functions. Secure Execution also helps 
enterprises provide isolation between individual multi-tenant workloads running on a shared 
logical partition. Details of IBM Secure Execution for Linux can be found in [81]. 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

78 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

IBM POWER PEF and IBM Secure Execution for Linux leveraged several key innovations led 
by IBM Research towards trusted execution such as SecureBlue [82] and SecureBlue++ 
[83][84], which laid the foundations of secure application isolation.  

F.3.4 IBM Cryptographic Acceleration Technology 

IBM Z, LinuxONE, and IBM Power offer integrated PCIe-attached HSMs. Examples include 
IBM 4767 offered as IBM Z and LinuxONE feature CryptoExpress5s, IBM Power Systems 
features EJ32 and EJ33 and IBM 4769 offered as IBM Z and LinuxONE feature 
CryptoExpress7s and soon to be offered in IBM Power Systems [85][86].   

On IBM Z and LinuxONE, the CryptoExpress features provide the flexibility to support different 
types of workloads and may be configured as a cryptographic accelerator, an IBM Common 
Cryptographic Architecture cryptographic coprocessor, or an IBM Enterprise Public Key 
Cryptography Standards (PKCS) #11 (EP11) cryptographic coprocessor [87].   

IBM Z and LinuxONE also provide the CP Assist for Cryptographic Functions (CPACF) for 
high-performance on-core cryptographic acceleration for symmetric and asymmetric 
cryptographic operations. In conjunction with the IBM CryptoExpress adapter, keys that reside 
in the HSM may be exported in an encrypted fashion and used by CPACF so that the key is 
never in the clear in hypervisor, OS, or application memory [88].  

F.4 Remote Attestation Services  

F.4.1 IBM Platform Attestation Tooling  

The IBM TPM Attestation Client Server Framework from IBM Research is open-source tooling 
to perform platform attestation [89].  

F.4.2 IBM Continuous Runtime Attestation  

Continuous monitoring of an application agent is enabled by extending measurements 
throughout its runtime, not just at startup. For example, when enabled, the Integrity 
Measurement Architecture (IMA) in the Linux kernel will continuously extend runtime 
measurements [90]. These measurements can be attested periodically to a verification service, 
which not only checks for unexpected changes to the application agent but also monitors its 
dynamic behavior [91].  

 

 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

79 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix G—Acronyms and Abbreviations 

Selected acronyms and abbreviations used in this paper are defined below. 

ABI Application Binary Interface 
AC RAM Authenticated Code Random Access Memory 
ACM Authenticated Code Module 
AEAD Authenticated Encryption with Associated Data 
AES Advanced Encryption Standard 
AMD PSB AMD Platform Secure Boot 
API Application Programming Interface 
AS Attestation Service 
ASID Address Space IDentifier 
ASLR Address Space Layout Randomization 
ASP AMD Security Processor 
BIOS Basic Input/Output System 
BMC Board Management Controller 
BSI British Standards Institution 
BTI Branch Target Identification 
CA Certificate Authority 
CCA (Arm) Confidential Compute Architecture 
CHERI Capability Hardware Enhanced RISC Instructions 
CMC (Cisco) Chassis Management Controller 
CNCF Cloud Native Computing Foundation 
COP Call Oriented Programming 
CoT Chain of Trust 
CPACF CP Assist for Cryptographic Functions 
CPU Central Processing Unit 
CRD Custom Resource Definition 
CRI Container Runtime Interface 
CRTM Core Root of Trust for Measurement 
CRTV Core Root of Trust for Verification 
CSK Code Signing Key 
CSP Cloud Service Provider 
DCRTM Dynamic Core Root of Trust for Measurement 
DFARS Defense Federal Acquisition Regulation Supplement 
DICE Device Identifier Composition Engine 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

80 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

DIMM Dual In-Line Memory Module 
DRAM Dynamic Random-Access Memory 
DRBG Deterministic Random Bit Generator 
DSbD Digital Security by Design 
EAL Evaluation Assurance Level 
EAT Entity Attestation Token 
ECDSA Elliptic Curve Digital Signature Algorithm 
EL Exception Level 
EPT Extended Page Table 
ETSI European Telecommunications Standards Institute 
ETSI NFV 
SEC 

European Telecommunications Standards Institute Network Functions 
Virtualization Security 

FIDO Fast Identity Online (Alliance) 
FIPS Federal Information Processing Standard 
FOIA Freedom of Information Act 
FPGA Field Programmable Gate Array 
FRU Field Replacement Unit 
FVP Fixed Virtual Platform 
GDPR General Data Protection Regulation 
HES Hardware Enforced Security 
HIPAA Health Insurance Portability and Accountability Act 
HLAT Hypervisor Managed Linear Address Translation 
HMEE Hardware Mediated Execution Enclave 
HSM Hardware Security Module 
I/O Input/Output 
IA Intel Itanium Architecture 
IBB Initial Boot Block 
IMA Integrity Measurement Architecture 
Intel AES-NI Intel Advanced Encryption Standard New Instructions 
Intel CET Intel Control-Flow Enforcement Technology 
Intel 
MKTME 

Intel Multi-Key Total Memory Encryption 

Intel TDX Intel Trust Domain Extensions 
Intel TME Intel Total Memory Encryption 
Intel TSC Intel Transparent Supply Chain 
Intel VT-x Intel Virtualization Technology 
IoT Internet of Things 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

81 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

IPL Initial Program Load 
IPsec Internet Protocol Security 
IR NIST Interagency or Internal Report 
ISA Instruction Set Architecture 
ISecL-DC Intel Security Libraries for the Data Center 
IT Information Technology 
ITL Information Technology Laboratory 
ITS Internal Trusted Storage (API) 
JIT Just-in-Time 
JOP Jump Oriented Programming 
KEK Key Exchange Key 
KMIP Key Management Interoperability Protocol 
KMS Key Management Service 
KPT Key Protection Technology 
KVM Kernel-Based Virtual Machine 
LCP Launch Control Policy 
LPAR Logical Partition 
MAC Message Authentication Code 
ME Manageability Engine 
MMU Memory Management Unit 
MOK Machine Owner Key 
MTE Memory Tagging Extension 
NCCoE National Cybersecurity Center of Excellence 
NFC Near Field Communication 
NFV Network Functions Virtualization 
NIST National Institute of Standards and Technology 
NVDIMM Non-Volatile Dual In-Line Memory Module 
NVRAM Non-Volatile Random-Access Memory 
NW Normal World, Non-Secure World 
ODM Original Device Manufacturer 
OEM Original Equipment Manufacturer 
OS Operating System 
PAC Pointer Authentication Code 
PAN Privileged Access Never 
Parsec Platform AbstRaction for SECurity 
PAS Physical Address Space 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

82 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

PCB Printed Circuit Board 
PCH Platform Controller Hub 
PCIe Peripheral Component Interconnect Express 
PCR Platform Configuration Register 
PE Processor Element 
PEF (IBM POWER) Protected Execution Facility 
PFR Platform Firmware Resilience 
PIT Protection in Transit 
PK Platform Key 
PKCS Public Key Cryptography Standards 
PR/SM (IBM Z) Processor Resource/System Manager 
PRoT Platform Root of Trust 
PS Protected Storage (API) 
PSA Platform Security Architecture 
PXN Privileged Execute Never 
QAT QuickAssist Technology 
RAM Random Access Memory 
REE Rich Execution Environment 
RF Radio Frequency 
RK Root Key 
RME Realm Management Extension 
RNG Random Number Generator 
ROM Read-Only Memory 
ROP Return Oriented Programming 
RoT Root of Trust 
RTU Root of Trust for Update 
RW Read/Write 
RWX Read/Write/Execute 
SB UEFI Secure Boot 
SCRTM Static Core Root of Trust for Measurement 
SDEI Software Delegated Exception Interface 
SDP (Morello) System Development Platform 
SEL Secure Exception Level 
SEV Secured Encrypted Virtualization 
SEV-ES Secured Encrypted Virtualization with Encrypted State 
SEV-SNP Secured Encrypted Virtualization with Secured Nested Paging 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

83 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

SGX Software Guard Extensions 
SHA Secure Hash Algorithm 
SIMD Single Instruction, Multiple Data 
SINIT ACM Secure Initialization Authenticated Code Module 
SiP Silicon Provider 
SK Secure Kernel 
SMAP Supervisor Mode Access Prevention 
SMBus System Management Bus 
SMC Secure Monitor Call 
SME Secure Memory Encryption 
SMEP Supervisor Mode Execution Prevention 
SMM System Management Mode 
SoC System-on-Chip 
SP Special Publication, Secure Partition 
SPDM Security Protocol and Data Model 
SPI Serial Peripheral Interface 
SPIFFE Secure Production Identity Framework for Everyone 
SPIRE SPIFFE Runtime Environment 
SPM Secure Partition Manager 
SPS FW Server Platform Services Firmware 
SSC (IBM) Secure Service Container 
SVID SPIFFE Verifiable Identity Document 
SVM Secure Virtual Machine 
SW Secure World 
TA Trusted Application 
TCB Trusted Compute Base, Trusted Computing Base 
TCG Trusted Computing Group 
TD Trust Domain 
TEE Trusted Execution Environment 
TF-A Trusted Firmware-A 
TLS Transport Layer Security 
TOS Trusted Operating System 
TPM Trusted Platform Module 
TRNG True Random Number Generator 
TSME Transparent Memory Encryption 
TXT Trusted Execution Technology 



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

84 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

UCS (Cisco) Unified Computing System 
UEFI Unified Extensible Firmware Interface 
UKRI UK Research and Innovation 
USB Universal Serial Bus 
UXN User Execute Never 
Veraison VERificAtIon of atteStatiON 
VM Virtual Machine 
VMID Virtual Machine IDentifier 
VMM Virtual Machine Manager, Virtual Machine Monitor 
VMX Virtual Machine Extensions 
XTS xor-encrypt-xor (XEX) Based Tweaked-Codebook Mode with Ciphertext 

Stealing 
  



NIST IR 8320 HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

85 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8320 

 

Appendix H—Glossary 

Asset Tag  Simple key value attributes that are associated with a 
platform (e.g., location, company name, division, or 
department). 

Chain of Trust (CoT)  A method for maintaining valid trust boundaries by 
applying a principle of transitive trust, where each 
software module in a system boot process is required 
to measure the next module before transitioning 
control. 

Confidential Computing Hardware-enabled features that isolate and process 
encrypted data in memory so that the data is at less 
risk of exposure and compromise from concurrent 
workloads or the underlying system and platform. 

Cryptographic Accelerator A specialized separate coprocessor chip from the 
main processing unit where cryptographic tasks are 
offloaded to for performance benefits. 

Hardware-Enabled Security Security with its basis in the hardware platform. 
Platform Trust An assurance in the integrity of the underlying 

platform configuration, including hardware, 
firmware, and software. 

Root of Trust (RoT) A starting point that is implicitly trusted. 
Shadow Stack A parallel hardware stack that applications can utilize 

to store a copy of return addresses that are checked 
against the normal program stack on return 
operations. 

Trusted Execution Environment (TEE) An area or enclave protected by a system processor. 


	NIST IR 8320, Hardware-Enabled Security: Enabling a Layered Approach to Platform Security for Cloud and Edge Computing Edge Cases
	1 Introduction
	2 Hardware Platform Security Overview
	3 Platform Integrity Verification
	3.1 Hardware Security Module (HSM)
	3.2 The Chain of Trust (CoT)
	3.3 Supply Chain Protection

	4 Software Runtime Protection Mechanisms
	4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming (COP/JOP) Attacks
	4.2 Address Translation Attacks
	4.3 Memory Safety Violations
	4.4 Side-Channel Attacks

	5 Data Protection and Confidential Computing
	5.1 Memory Isolation
	5.2 Application Isolation
	5.3 VM Isolation
	5.4 Cryptographic Acceleration

	6 Remote Attestation Services
	6.1 Platform Attestation
	6.2 Remote TEE Attestation

	7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security
	7.1 Visibility to Security Infrastructure
	7.2 Workload Placement on Trusted Platforms
	7.3 Asset Tagging and Trusted Location
	7.4 Workload Confidentiality
	7.5 Protecting Keys and Secrets

	8 Next Steps
	References
	Appendix A— Vendor-Agnostic Technology Examples
	A.1 Platform Integrity Verification
	A.1.1 UEFI Secure Boot (SB)

	A.2 Keylime

	Appendix B— Intel Technology Examples
	B.1 Platform Integrity Verification
	B.1.1 The Chain of Trust (CoT)
	B.1.1.1 Intel Trusted Execution Technology (TXT)
	B.1.1.2 Intel Boot Guard
	B.1.1.3 Intel Platform Firmware Resilience (PFR)
	B.1.1.4 Intel Technology Example Summary

	B.1.2 Supply Chain Protection
	B.1.2.1 Intel Transparent Supply Chain (TSC)
	B.1.2.2 Intel PFR with Protection in Transit (PIT)


	B.2 Software Runtime Protection Mechanisms
	B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming (COP/JOP) Attacks
	B.2.1.1 Intel Control-Flow Enforcement Technology (Intel CET)

	B.2.2 Address Translation Attacks
	B.2.2.1 Intel Hypervisor Managed Linear Address Translation (HLAT)
	B.2.2.2 Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access Prevention (SMAP)


	B.3 Data Protection and Confidential Computing
	B.3.1 Memory Isolation
	B.3.1.1 Intel TME and Intel Multi-Key TME (Intel MKTME)

	B.3.2 Application Isolation
	B.3.2.1 Intel Software Guard Extensions (SGX)

	B.3.3 VM Isolation
	B.3.3.1 Intel Trust Domain Extensions (Intel TDX)

	B.3.4 Cryptographic Acceleration
	B.3.4.1 Intel Advanced Encryption Standard New Instructions (Intel AES-NI)
	B.3.4.2 Intel QuickAssist Technology (QAT) with Intel Key Protection Technology (KPT)

	B.3.5 Technology Example Summary

	B.4 Remote Attestation Services
	B.4.1 Intel Security Libraries for the Data Center (ISecL-DC)
	B.4.2 Technology Summary


	Appendix C— AMD Technology Examples
	C.1 Platform Integrity Verification
	C.1.1 AMD Platform Secure Boot (AMD PSB)

	C.2 Data Protection and Confidential Computing
	C.2.1 Memory Isolation
	C.2.1.1 AMD Secure Memory Encryption (SME)/Transparent Secure Memory Encryption (TSME)

	C.2.2 VM Isolation
	C.2.2.1 AMD Secure Encrypted Virtualization (SEV)



	Appendix D— Arm Technology Examples
	D.1 Platform Integrity Verification
	D.1.1 Arm TrustZone Trusted Execution Environment (TEE) for Armv8-A
	D.1.1.1 The Normal (Non-Secure) World and Secure World
	D.1.1.2 Exception Levels
	D.1.1.3 Trusted Applications and Secure Services
	D.1.1.4 Debugging, Tracing, and Profiling

	D.1.2 Arm Secure Boot and the Chain of Trust (CoT)
	D.1.3 Platform Security Architecture (PSA) Functional APIs
	D.1.3.1 The PSA Cryptographic API (Crypto API)
	D.1.3.2 The PSA Storage API
	D.1.3.3 The PSA Attestation API

	D.1.4 Platform AbstRaction for SECurity (Parsec)

	D.2 Software Runtime Protection Mechanisms
	D.2.1 Return Oriented Programming (ROP) and Jump Oriented Programming (JOP) Attacks
	D.2.1.1 Arm Pointer Authentication Code (PAC)
	D.2.1.2 Arm Branch Target Identification (BTI)

	D.2.2 Memory Safety Violations
	D.2.2.1 Arm Privileged Access Never (PAN)
	D.2.2.2 Arm User (EL0) Execute Never (UXN) and Privileged (EL1/EL2) Execute Never (PXN)
	D.2.2.3 Arm Memory Tagging Extension (MTE)
	D.2.2.4 Arm Hardware Enforced Capability-Based Architecture (Morello and CHERI)

	D.2.3 Arm Mitigations Against Side-Channel Attacks
	D.2.3.1 Speculation Barriers
	D.2.3.2 Predictor Invalidates
	D.2.3.3 Synchronization Barriers
	D.2.3.4 Arm Trusted Firmware (TF-A) and Linux
	D.2.3.5 Timing Insensitive DP Instructions


	D.3 Data Protection and Confidential Computing
	D.3.1 Arm Confidential Compute Architecture (CCA)
	D.3.1.1 Arm Realms
	D.3.1.2 Arm Realm Management Extension (RME)
	D.3.1.3 Arm Realm Memory Isolation and Protection
	D.3.1.4 Arm External Memory (DRAM) Encryption and Integrity with CCA
	D.3.1.5 Arm CCA Firmware Boot
	D.3.1.6 Arm RME and Debug, Trace, Profiling, and Performance Monitoring Protection
	D.3.1.7 Remote Attestation Service - Project Veraison (VERificAtIon of atteStatiON)

	D.3.2 Arm Cryptographic Acceleration
	D.3.2.1 Cryptography Extensions
	D.3.2.2 True Random Number Generation (TRNG)



	Appendix E— Cisco Technology Examples
	E.1 Platform Integrity Verification
	E.1.1 Cisco Platform Roots of Trust
	E.1.2 Cisco Chain of Trust (CoT)

	E.2 Cisco Supply Chain Protection
	E.3 Cisco Software Runtime Protections
	E.4 Cisco Data Protection and Confidential Computing
	E.5 Cisco Platform Attestation
	E.6 Cisco Visibility to Security Infrastructure
	E.7 Cisco Workload Placement on Trusted Platforms

	Appendix F— IBM Technology Examples
	F.1 Platform Integrity Verification
	F.1.1 Hardware Security Module (HSM)
	F.1.2 IBM Chain of Trust (CoT)

	F.2 Software Runtime Protection Mechanisms
	F.2.1 IBM ROP and COP/JOP Attack Defenses

	F.3 Data Protection and Confidential Computing
	F.3.1 IBM Memory Isolation Technology
	F.3.2 IBM Application Isolation Technology
	F.3.3 IBM VM Isolation Technology
	F.3.4 IBM Cryptographic Acceleration Technology

	F.4 Remote Attestation Services
	F.4.1 IBM Platform Attestation Tooling
	F.4.2 IBM Continuous Runtime Attestation


	Appendix G— Acronyms and Abbreviations
	Appendix H— Glossary

