
 NIST Internal Report1

NIST IR 8214B ipd2

Notes on Threshold EdDSA/Schnorr Signatures3

Luís T. A. N. Brandão4

Michael Davidson5

This publication is available free of charge from:6

https://doi.org/10.6028/NIST.IR.8214B.ipd7

8

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.IR.8214B.ipd
https://doi.org/10.6028/NIST.IR.8214B.ipd

NIST Internal Report9

NIST IR 8214B ipd10

Notes on Threshold EdDSA/Schnorr Signatures11

12

Luís T. A. N. Brandão13

Strativia14

Michael Davidson15

Computer Security Division16

Information Technology Laboratory17

This publication is available free of charge from:18

https://doi.org/10.6028/NIST.IR.8214B.ipd19

August 202220

21

U.S. Department of Commerce22
Gina M. Raimondo, Secretary23

National Institute of Standards and Technology24
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology25

https://doi.org/10.6028/NIST.IR.8214B.ipd

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 26
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 27
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 28
materials, or equipment are necessarily the best available for the purpose.29

There may be references in this publication to other publications currently under development by NIST 30
in accordance with its assigned statutory responsibilities. The information in this publication, including 31
concepts and methodologies, may be used by federal agencies even before the completion of such companion 32
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, 33
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely 34
follow the development of these new publications by NIST.35

Organizations are encouraged to review all draft publications during public comment periods and provide 36
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 37
https://csrc.nist.gov/publications. 38

NIST Technical Series Policies39

Copyright, Fair Use, and Licensing Statements40
NIST Technical Series Publication Identifier Syntax41

Publication History42

This version is the initial public draft (ipd).43

How to cite this NIST Technical Series Publication44

Luís T. A. N. Brandão, Michael Davidson (2022). Notes on Threshold EdDSA/Schnorr Signatures. (National 45
Institute of Standards and Technology, Gaithersburg, MD) NIST IR 8214B ipd.46
https://doi.org/10.6028/NIST.IR.8214B.ipd47

NIST Author ORCID iDs48

Luís T. A. N. Brandão: 0000-0002-4501-089X49
Michael Davidson: 0000-0002-4862-569750

Contact Information51

nistir-8214B-comments@nist.gov52

Public Comment Period53

August 12, 2022 – October 24, 202254

Submit Comments55

Only via email: nistir-8214B-comments@nist.gov56

All comments are subject to release under the Freedom of Information Act (FOIA).57

https://csrc.nist.gov/publications
https://orcid.org/0000-0002-4501-089X
https://orcid.org/0000-0002-4862-5697

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Reports on Computer Systems Technology58

The Information Technology Laboratory (ITL) at the National Institute of Standards and 59

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 60

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 61

test methods, reference data, proof of concept implementations, and technical analyses to 62

advance the development and productive use of information technology. ITL’s responsi-63

bilities include the development of management, administrative, technical, and physical 64

standards and guidelines for the cost-effective security and privacy of other than national 65

security-related information in federal information systems.66

Abstract67

This report considers threshold signature schemes interchangeable with respect to the verifica-68

tion mechanism of the Edwards-Curve Digital Signature Algorithm (EdDSA). Historically, 69

EdDSA is known as a variant of Schnorr signatures, which are well-studied and suitable for 70

efficient thresholdization, i.e., for being computed when the private signing key is secret-sha-71

red across multiple parties. In the threshold setting, signatures remain unforgeable even if up 72

to some threshold number of the cosigners become compromised. The report analyzes the 73

conventional (non-threshold) EdDSA specification from Draft FIPS 186-5, reviews important 74

security properties, with an emphasis on strong unforgeability, and distinguishes various 75

approaches for corresponding threshold schemes. Notably, while providing better security 76

assurances, threshold signatures can be used as drop-in replacement for conventionally pro-77

duced signatures, without changing legacy code for verification of authenticity. The report 78

identifies various challenges and questions that would benefit from more attention, are of 79

interest for future guidance and recommendations, and may be applicable beyond EdDSA.80

Keywords81

Digital signatures; EdDSA; secure multi-party computation; Schnorr; threshold cryptogra-82

phy; threshold schemes.83

i

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Preface84

This document is intended for: technicians engaged in the development of recommendations 85

for threshold signature schemes; cryptography experts interested in providing constructive 86

technical feedback, or in collaborating in the development of open reference material; and all 87

those, including from academia, industry, government and the public in general, interested 88

in future recommendations about threshold signatures.89

The reference threshold approaches identified in this document are representative examples 90

not to be construed as preferences. See NISTIR 8214A for previous context of the NIST 91

Multi-Party Threshold Cryptography project. Feedback is welcome from the community. 92

Acknowledgments93

The first author performed this work as a Foreign Guest Researcher (non-employee) at NIST, 94

while under contract with Strativia. The authors thank Lily Chen, Dustin Moody and René 95

Peralta for their feedback.96

ii

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Call for Patent Claims97

This public review includes a call for information on essential patent claims (claims whose 98

use would be required for compliance with the guidance or requirements in this Information 99

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may 100

be directly stated in this ITL Publication or by reference to another publication. This call 101

also includes disclosure, where known, of the existence of pending U.S. or foreign patent 102

applications relating to this ITL draft publication and of any relevant unexpired U.S. or 103

foreign patents.104

ITL may require from the patent holder, or a party authorized to make assurances on its 105

behalf, in written or electronic form, either:106

a) assurance in the form of a general disclaimer to the effect that such party does not 107

hold and does not currently intend holding any essential patent claim(s); or108

b) assurance that a license to such essential patent claim(s) will be made available to ap-109

plicants desiring to utilize the license for the purpose of complying with the guidance 110

or requirements in this ITL draft publication either:111

i) under reasonable terms and conditions that are demonstrably free of any unfair 112

discrimination; or113

ii) without compensation and under reasonable terms and conditions that are demon-114

strably free of any unfair discrimination.115

Such assurance shall indicate that the patent holder (or third party authorized to make 116

assurances on its behalf) will include in any documents transferring ownership of patents 117

subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 118

are binding on the transferee, and that the transferee will similarly include appropriate 119

provisions in the event of future transfers with the goal of binding each successor-in-interest.120

The assurance shall also indicate that it is intended to be binding on successors-in-interest 121

regardless of whether such provisions are included in the relevant transfer documents.122

Such statements should be addressed to: nistir-8214B-comments@nist.gov123

iii

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Table of Contents124

Executive Summary . 1125

1. Introduction . 3126

2. Notation . 5127

2.1. Acronyms . 5128

2.2. Abbreviations . 6129

2.3. Symbols . 6130

2.3.1. Symbols useful for the conventional setting 6131

2.3.2. Symbols specific to the threshold setting 8132

2.3.3. On the use of square brackets [] 8133

3. The conventional EdDSA and Schnorr schemes 9134

3.1. Schemes interchangeable w.r.t. EdDSA verification 10135

3.2. Detailed EdDSA procedures . 12136

3.2.1. Keygen . 12137

3.2.2. Sign . 13138

3.2.3. Verify . 14139

3.3. Strong unforgeability . 15140

3.4. Binding and non-repudiation . 16141

3.4.1. Binding . 17142

3.4.2. Non-repudiation . 17143

3.5. Nonce implementation issues . 18144

3.5.1. Nonce reuse . 19145

3.5.2. Partial knowledge of random nonce 19146

3.5.3. Side-channel and fault injection attacks against deterministic nonce . 20147

3.5.4. Hybrid nonce generation — combined randomness and determinism 20148

4. Threshold approaches . 21149

4.1. Intuition for efficiency of threshold [probabilistic] Schnorr signatures 21150

4.2. A template threshold Schnorr/EdDSA signature 23151

4.2.1. Key Generation . 23152

4.2.2. Signing . 24153

4.3. Deterministic threshold Schnorr . 25154

iv

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

4.3.1. A key-recovery pitfall . 26155

4.3.2. MPC-based threshold (deterministic) EdDSA 26156

4.3.3. Threshold signing with local deterministic contributions 27157

4.4. Probabilistic threshold Schnorr . 28158

4.4.1. Simulatable threshold Schnorr in three rounds 28159

4.4.2. Probabilistic Two-Round Schnorr 29160

5. Further considerations . 31161

5.1. “Thresholdized” signer . 31162

5.2. Threshold security formulation . 32163

5.2.1. Strong threshold unforgeability . 33164

5.2.2. Number of signatures per request 33165

5.2.3. Safety against adaptive corruptions 35166

5.2.4. Preventing subliminal exfiltration 36167

5.3. System model . 36168

5.3.1. Interface for signature request and delivery 37169

5.3.2. Authenticated channels . 38170

5.3.3. Broadcast . 39171

5.3.4. Timing assumptions . 39172

5.3.5. Offline/online phases . 39173

5.3.6. Beyond covered assumptions . 40174

5.4. Good vs. bad randomness . 40175

5.4.1. Inadvertent correlated randomness 41176

5.4.2. Manipulating the nonce commitment 41177

5.4.3. “Well-behaved” parties with bad randomness 41178

5.5. Modularity and composability . 42179

5.5.1. Phases . 42180

5.5.2. Gadgets . 43181

6. Conclusions . 44182

6.1. Comparing probabilistic and deterministic threshold EdDSA 44183

6.2. State of the art and beyond . 45184

6.3. Recommendation for a public call for threshold EdDSA schemes 46185

References . 47186

v

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

List of Tables 187

Table 1. Acronyms . 5188

Table 2. Symbols for conventional setting . 6189

Table 3. Symbols for threshold setting . 8190

Table 4. Determinism vs. verifiable determinism of signature schemes 12191

Table 5. EdDSA variants . 14192

Table 6. Types of nonce generation . 19193

Table 7. Conventional Schnorr vs. baseline semi-honest threshold Schnorr 22194

Table 8. Threshold approaches for deterministic signatures 26195

Table 9. Types of signature vs. concern — informal assessment 44196

List of Figures 197

Figure 1. Annotated simplified formula of an EdDSA signature 9198

Figure 2. (Simplified) EdDSA-style scheme, with generic nonce 11199

Figure 3. EdDSA pseudo-code and notation . 13200

vi

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Executive Summary201

Digital signatures, based on public-key cryptography, underpin the security of critical 202

information systems. They support authentication and non-repudiation, and have been 203

standardized by NIST, via the Federal Information Processing Standard (FIPS) Publication 204

186. Its most recent version — Draft FIPS 186-5 — specifies three signature schemes, the 205

most recent of which is the Edwards-Curve Digital Signature Algorithm (EdDSA).206

The security of signatures relies critically on the secrecy and proper use of its private signing 207

key. In threshold cryptography, the key is split (secret-shared) across various parties, so that 208

a signature can be produced only if a threshold number of parties agrees. In a threshold 209

signature scheme, the signing takes place without the parties ever recombining the key.210

For interoperability, a threshold scheme should produce signatures that, with respect to the 211

verification operation, are interchangeable with those produced in a non-threshold (conven-212

tional) manner. This allows for a drop-in replacement of the signature generation, without 213

changing legacy code for verification. EdDSA, being a Schnorr-style scheme, has a linearity 214

property that is very well suited for thresholdization, once the needed secrets have been 215

secret-shared. However, there are various ways in which to distributively achieve those secret 216

sharings. They give rise to a diversity of threshold approaches, with various tradeoffs.217

EdDSA signatures are specified as deterministic, but their determinism is not verifiable from 218

the signature. Thus, a variant probabilistic signature can still be interchangeable with respect 219

to EdDSA verification. Such a variant would use a randomized or hybrid (with randomness 220

and pseudorandomness) nonce, allowing for a simpler threshold protocols.221

Threshold EdDSA has a high potential for adoption, as it enables distribution of trust for 222

signing operations and higher resistance to certain attacks. Several considerations in this 223

report are also applicable to other NIST-approved signature schemes specified in Draft 224

FIPS 186-5. Allowing threshold EdDSA for pre-quantum security may also provide useful 225

experience for the exploration of threshold schemes for post-quantum primitives.226

The analysis in the present report is covered in four main sections:227

• Conventional setting: the context of the NIST specification, and the security proper-228

ties of EdDSA and interchangeable Schnorr-style signature schemes.229

• Threshold approaches: high-level summary of four types of approaches from the 230

literature, including both deterministic and probabilistic schemes.231

• Further considerations: various aspects of relevance in the threshold setting.232

• Conclusions: a synthesis of the benefits of the threshold setting, with a highlight on 233

probabilistic schemes, and a proposal for consultation with the greater community.234

The main security property of interest for EdDSA signatures is strong unforgeability. This 235

ensures that an adversarial client cannot produce any signature that has not been generated 236

by the key holder. There are other properties, such as binding, which can be considered from 237

the perspective of a malicious signer. 238

1

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

A main concern with the implementation of EdDSA is the assurance of good nonces. The 239

inadvertent reuse of a nonce (across different messages being signed) leaks the private key. 240

In fact, even a slight bias in the nonce allows for key-recovery, provided enough signatures 241

are obtained. Conversely, when the nonce is pseudorandomly generated as a transformation 242

of a persistent secret key and the message, thus avoiding a detectable bias, some side-channel 243

attacks may enable determining the secret key. The implementation of a hybrid mode, using 244

both randomness and pseudorandomness, has the potential to improve on each of the two 245

non-hybrid modes. This hybrid approach can also be useful in the threshold setting, where 246

there are more opportunities and challenges about randomness and determinism. 247

There are known solutions for threshold EdDSA/Schnorr-style schemes, including distributed 248

key generation. Recently there has been a surge of new approaches, focused on features like 249

low number of rounds and/or simulatability, for both deterministic and probabilistic signing. 250

For deterministic signing, a secure multi-party computation can distributively generate 252

a secret-sharing of a pseudorandom nonce, based on the message and a secret-shared 253

nonce-derivation key. Another approach is to let each party provide a deterministic nonce 254

contribution, while proving correctness with a zero-knowledge proof.255

For probabilistic signing, the distributed generation of a randomized nonce can take advan-256

tage of homomorphic properties already innate to the EdDSA/Schnorr scheme. Here, it is 257

important to safeguard security under concurrent executions, where an adversary has a view 258

of the intermediate state of many signing operations. Recent proposals have focused on 259

protocols with reduced number of rounds of interaction, with two and three being the norm 260

(assuming broadcast is possible in a single round), depending on the security formulation.261

There are two main frameworks used in practice to formulate and prove threshold security:262

• simulation-based (useful for modularity and composability): where the notion of 263

security is incorporated into an ideal functionality.264

• game-based: where a game defines each property of interest, e.g., unforgeability.265

Some considerations are inherent to the threshold setting: agreement on what to sign, 266

malicious “random” contributions, interface between requester and cosigners, authenticated 267

channel, timing assumptions, precomputation before receiving signature requests, failure 268

modes, good vs. bad randomness, modularity and composability. The options related to these 269

considerations create a diverse space of solutions that should be considered.270

This document explains the potential benefits of the threshold setting. In particular, there 271

are various advantages for probabilistic approaches. Yet, safely realizing the promise of 272

the threshold approach requires a thorough analysis. This can be pursued with an open 273

consultation with the community of experts, via a public call for threshold schemes, to 274

create a testbed, gathering security formulations, technical explanations, and reference 275

implementations. The clarification resulting from analyzing said reference material can then 276

be helpful to synthesize recommendations about threshold signature schemes.277

2

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

1. Introduction278

A signature scheme enables generating a “digital signature” (hereafter just “signature”) 279

that assures the authenticity of a “message” (any digital datum). The scheme is based on 280

a cryptographic private/public key-pair, such that only the private-key holder can produce 281

signatures that are verifiably valid with respect to that public key [DH76]. In other words, a 282

signature scheme is unforgeable. When the public key is certifiably bound to the identity of 283

the private-key holder, a valid signature provides non-repudiation: the signer cannot credibly 284

deny having produced said signature. These unforgeability and non-repudiation features 285

underpin the security of many modern applications of information systems, including public-286

key infrastructures (PKI). For example, they are extensively used to prevent impersonation 287

in cyberspace, establish authenticated channels between parties, enable contract signing 288

with legal validity, and provide offline-verifiable authenticity of software.289

NIST-specified signatures. As of August 2022, the Edwards-curve Digital Signature 290

Algorithm (EdDSA) is the most recent signature scheme included by the National Institute 291

of Standards and Technology (NIST) in a Federal Information Processing Standard (FIPS), 292

albeit still in draft mode: Draft FIPS 186-5. This FIPS also specifies the Elliptic Curve Digital 293

Signature Algorithm (ECDSA) and the Rivest–Shamir–Adleman (RSA) signature schemes. 294

Both EdDSA and ECDSA, relying on the infeasibility of computing discrete logarithms (and 295

related assumptions) over approved elliptic curves, allow signatures noticeably shorter than 296

RSA, which relies on the infeasibility of integer factorization (and related assumptions). For 297

example, at an estimated level of 128 bits of security, EdDSA and ECDSA signatures have a 298

bit length of 512, which is one-sixth of the 3072 bits required by RSA signatures.299

The threshold setting. The critical reliance on signature schemes requires a careful con-300

sideration of the techniques that help ensure the secrecy of the private signing key. The 301

multi-party “threshold” setting allows for a distribution of trust of the private key, by use of 302

secret sharing [Bla79; Sha79]. The key is split (i.e., “secret shared”) across multiple parties, 303

such that no coalition of up to some corruption threshold number f of faulty parties is able 304

to recover the key. Furthermore, the actual cryptographic operation of interest — in this 305

case signing — can be performed by any quorum with a stipulated participation threshold. 306

The signing takes place without reconstructing the key. Moreover, the signatures remain 307

unforgeable by a coalition of up to f malicious parties, without the help of other honest 308

parties. The study of threshold schemes has been active for over three decades [Des88; 309

DF90]. More recently, the NIST Internal Report NISTIR 8214A proposed that a focused 310

analysis takes place, to collect expert feedback that can be useful as a basis for developing 311

recommendations about threshold schemes.312

Schnorr and thresholdizability. EdDSA [BDLSY11; RFC 8032] is based on Schnorr 313

signatures [Sch90], which have been subject to extensive analysis in the literature. They have 314

the special feature of one of their components resulting from a linear combination of two 315

secret elements: the private signing key s and the (per-message secret) nonce r. This linearity 316

3

Table 1. Acronyms

Acronym Extended form

AES Advanced Encryption Standard

CA Certification authority

CSM Cryptographic Security Module

CMA Chosen message attack

DKG Distributed key generation

DSS Digital Signature Standard

ECC Elliptic-curve cryptography

ECDSA Elliptic-Curve Digital Signature Algorithm

EdDSA Edwards-curve Digital Signature Algorithm

EUF Existential unforgeability

FIPS Federal Information Processing Standard

HMAC Hash-based message authentication code

KOSK Knowledge of secret key (assumption)

LSS Linear secret sharing

MPC [Secure] multiparty computation

NIST National Institute of Standards and Technology

NISTIR NIST Internal or Interagency Report

NIZKPoK Non-interactive zero-knowledge proof of knowledge

PKCS Public-key cryptography Standards

PKI Public-key infrastructure

PVSS Publicly verifiable secret sharing

PRF Pseudorandom function

RFC Request For Comments, from the Internet Engineering Task Force

RSA Rivest–Shamir–Adleman (cryptosystem or signature scheme)

RSA-SSA RSA Signature Scheme with Appendix

RSA-PSS RSA-based Probabilistic Signature Scheme

SHA Secure Hash Algorithm

SHAKE SHA combined with KECCAK

SP 800 (NIST) Special Publication in Computer Security

SS; SSS Secret sharing; secret sharing scheme

SUF Strong unforgeability (or strongly unforgeable)

TLS Transport Layer Security (a communication protocol)

UTC Coordinated Universal Time (a time standard)

UC Universal composability (or universally composable)

UF Unforgeability (or Unforgeable), in an EUF-CMA sense

VSS Verifiable secret sharing

ZK; ZKP Zero knowledge; zero-knowledge proof

ZKPoK Zero-knowledge proof of knowledge

Table 2. Symbols for conventional setting

Symbol Description

+, · Binary operators for integer addition and multiplication.

✚, − Binary operators for addition and subtraction of two elliptic curve elements.
• Non-commutative binary operator used to multiply an elliptic curve element

(on the right) by an non-negative integer (on the left), e.g., s • G.
←$ Random sampling of a value.

b Bit-length (multiple of 8) of the public key Q, and the initial private key d.
EdDSA signatures σ have 2b bits. Approved values: 256 and 456.

c Binary logarithm (3 for Ed25519, 2 for Ed448) of the cofactor 2c (order of
small subgroup); useful to compare cofactorless vs. cofactored verification.

χ Challenge component computed in the Sign and Verify operations.

ctx Context (optional parameter in some signature modes).

d Precursor private key of the signature scheme. It is the hash pre-image used
to derive the signing key s and the nonce-derivation key ν .

Ei, j Some encoding function (the subscripts are used to differentiate encodings).

G Base point (aka generator), generator of the subgroup G of prime order n.

G Subgroup generated by G. It is the domain of public keys. It is the large
subgroup (or order n) of the elliptic curve group (of order 2c ·n)

H Some cryptographic hash function (subscripts can be used to differentiate
between hash functions).

κ Standardized security level (estimated bits of strength, e.g., 128 or 224).

M Message (string) being signed.

µ Index identifying the mode of a signature scheme.

n Prime order of the elliptic curve subgroup generated by G.

Q Public key of the signature scheme, equal to s • G.

r Nonce (secret).

R Commitment of the nonce r; used as the first component of the signature.

s Signing key (also called hdigest1 in Draft FIPS 186-5): it is the 1st half of
the digest of the private key d. It is used to generate the public key Q, and to
compute the 2nd component (S) of each signature.

ν Nonce-derivation key (hdigest2 in Draft FIPS 186-5): it is the 2nd half of the
digest of the private key d; used to pseudorandomly generate each nonce.

S Second component of the signature, obtained via a linear combination of the
signing key s and the secret nonce r, with the help of the challenge χ .

σ Signature — a pair (R,S) of elements.

Table 3. Symbols for threshold setting

Symbol Description

f Corruption threshold (smaller than t) w.r.t. unforgeability. With “mixed adver-
saries” one may differentiate thresholds across types of corruptions.

n Total number of “parties” (share-holders) [does not include the requester client,
coordinators and others without a share of the private key].

P Set of possible cosigners (aka parties) — there are n of them.

P ′ Set of cosigners agreed to participate in a particular signing execution.

Pi One of the parties (share holders) — the index i is used similarly for shares of
contributions, to identify to which party they correspond.

sid Session identifier (to distinguish sessions in a concurrent setting)

t Reconstruction threshold (usually t = f +1) of the baseline secret sharing.

t ′ Participation threshold: minimum size of quorum needed to generate a signa-
ture, when the number of corrupted parties does not exceed f .

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

 Secret nonce r = H(ν ,M)

 Base point (generator of order n)

 Hash function
 Public verification key Q = s • G

 Message being signed

 Private signing key

 Nonce “commitment” R = r • G

 “Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Figure 1. Annotated simplified formula of an EdDSA signature

• Keygen[n]: { (private key) s←$ Zn; (public key) Q = s • G; output (s,Q) }.

• Sign[s](M): {r← GenNonce(. . .); R = r • G; χ = H(R,Q,M);
S = r+χ · s(mod n); output σ = (R,S)}.

• Verify[Q](M,σ): {χ ′ = H(R,Q,M); output accept iff S • G =? R✚χ ′ • Q}

Legend: χ (challenge); G (base point, i.e., generator of G); GenNonce(. . .) (procedure used to generate
the secret nonce); M (message being signed); n (order of the group generated by G); Q (public key);
r (secret nonce); R (nonce commitment; first component of the signature); s (private signing key; in
the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); S (second
component of the signature); σ (signature); ←$ (random sampling); +, · (integer sum and multiplication);
✚, • (sum and multiplication-by-constant in additive group G). Extra verification details are required.

Figure 2. (Simplified) EdDSA-style scheme, with generic nonce

Table 4. Determinism vs. verifiable determinism of signature schemes

 Signature scheme Is the signature
 algorithm deterministic?

 Is the output signature
 verifiably deterministic?

 RSASSA-PKCS Yes Yes

 EdDSA Yes No
 Deterministic ECDSA Yes No

 RSA-PSS No No

 (Probabilistic) ECDSA No No

Keygen[b]: {
 (private key) d←$ Zb

2

 s‖ν = Hash(d);
 (public key) Q = s • G;
 output (d,Q) }

Sign[d](µ [,ctx],M): {
 s‖ν = HashKµ(d);
 r = GenNonce[ν](µ [,ctx],M) ∈ Zn;
 R = r • G;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));

 S = r+χ · s(mod n);
 output σ = (R,S) }

Verify[Q](µ [,ctx],M,σ): {
 (R,S) = σ ;
 if not 0≤ S < n, then reject;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));
 S′ = 2c • S; R′ = 2c • R; χ ′ = 2c • χ;
 if S′ • G =? R′✚χ ′ • Q
 then output accept,
 else output reject }

Legend/notation: b (number of bits of private key, as well as of public key; it is a multiple of 8); 2c

(cofactor — 8 for Ed25519, 2 for Ed448 — needed for cofactored verification); χ (challenge); ctx
(optional context string, empty by default, only available for the Ed25519ph, Ed448 and Ed448ph
modes, i.e., not available only for the Ed25519 mode; d (private key of the signature scheme); f
(transformation function applied to the message: identity for regular EdDSA; some hashing for
HashEdDSA); G (base point, aka generator, of a subgroup G of prime order n); HashK (hash function
used to derive the secret keys s and ν); HashC (hash function used to derive the challenge χ); µ
(mode: Ed25519, Ed448, Ed25519ph, Ed448ph, respectively encodable as (2,0), (4,0), (2,1), (4,1)
— see details in Table 5); M (message being signed); q (order of G); Q (public key, for verification);
r (secret nonce); s (private signing key); ν (private key for nonce generation; it is called hdigest2 in
Draft FIPS 186-5); R (public commitment of nonce); (+, ·) (integer sum and multiplication); (✚, •)

(sum and multiplication-by-constant in additive group G). = (assignment); =? (equality check); ||
(concatenation). For simplicity, details about encodings are omitted. As secret input to the Sign
algorithm, both the signing key s and nonce-derivation key ν can be used instead of the precursor key d.

Figure 3. EdDSA pseudo-code and notation

Table 5. EdDSA variants

 Type Standard Mode µ κ b = |d| s||ν GenNonce r Challenge χ

 Det. EdDSA Ed25519 128 256 H0(d) H0(ν‖M) H0(R‖Q‖M)

 Ed448 224 456 H1(d) H1(E4,0(ctx)‖ν‖M) H1(E4,0(ctx)‖R‖Q‖M)

 HashEdDSA Ed25519ph 128 256 H0(d) H0(E2,1(ctx)‖ν‖H0(M)) H0(E2,1(ctx)‖R‖Q‖H0(M))

 Ed448ph 224 456 H1(d) H1(E4,1(ctx)‖ν‖H2(M)) H1(E4,1(ctx)‖R‖Q‖H2(M))

 Type Variation Mode µ κ b = |d| s||ν GenNonce r Challenge χ

 Prob. Random — — — — ←$ Zq —
 Hybrid — — — — H(ν ,rand, f (M)) —

Legend: Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob. (probabilistic). s, ν (first
and second halves, respectively, of Hash(d), also denoted as 1st and 2nd digests of d; before encoding into an integer,
some bits in the left and right extremities of each of these digests is preset — see details in Draft FIPS 186-5). Ei, j(...)

(encoding function, defined in FIPS 186 as domi(j,...), where i is 2 or 4, corresponding to the Ed25519 or Ed448
curves, and j is 1 or 0, corresponding to whether or not it is a “pre-hash” mode). H (some cryptographic hash function
or extendable output function); H0 (SHA-512); H1 (SHAKE256-length-912); H2 (SHAKE256-length-512); rand
(secret randomness or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5.
The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.

Table 6. Types of nonce generation

 Nonce generation type Bias
 attacks

 Side-channel and
 fault injection attacks

 Deterministic: Pseudorandom, based on a secret key Not applicable More vulnerable

 Purely random: Entropy independent of secret key Vulnerable Less vulnerable

 Hybrid: Randomness and pseudo-randomness Not applicable Less vulnerable

Table 7. Conventional Schnorr vs. baseline semi-honest threshold Schnorr

 Phase Conventional Semi-honest threshold baseline

 Key-Gen Q = s • G [Q] = [s] • G; then open Q
 Commit nonce R = r • G [R] = [r] • G; then open R
 Compute challenge χ = H(R,Q,M) Same as in conventional
 Produce signature S = r+χ · s(mod n) [S] = [r]+χ · [s] (mod n); then open S
 Verify signature S • G =? R✚χ • Q Same as in conventional

To “open” a public value (Q, R and S) means that every party reveals their corresponding share (Qi,
Ri and Si, respectively), so that everyone can reconstruct the corresponding public value.

Table 8. Threshold approaches for deterministic signatures

 Reference
 Function-
 ally equi
valent?

 EdDSA
 Interchan-
 geable?

 Same signature per message?
Some gadgets Per/across

 quorums
 Across re
 sharings

 [BST21, §5] Yes Yes Yes/ Yes Yes MPC gadgets
 [BST21, §6] No Yes Yes/ Yes Yes MPC-friendly hash
 [GKMN21] No Yes Yes/ No No ZKGC, COT
 [NRSW20] No Yes Yes/ No N/A ZKP-friendly PRF

Some schemes implement the HashEdDSA mode (see Table 5). The last row [NRSW20] corresponds
to a multi-signature scheme, for which the resharing does not apply (N/A), since that would imply a
change in public key. COT = committed oblivious transfer. ZKGC = ZKPs from garbled circuits. The
approaches also differ in efficiency, allowed thresholds, and cryptographic assumptions.

Table 9. Types of signature vs. concern — informal assessment

 Signature
 mode

 Nonce
 generation

 Attack of
 Concern

 Informal assessment

 Conventional Threshold

 Deterministic Pseudorandom
 Bias Not applicable Not applicable

 Side channel More vulnerable Safer

 Probabilistic Randomized
 Bias Vulnerable Safer

 Side channel Less vulnerable Safer

 Hybrid
 Bias Not applicable Not applicable

 Side channel Less vulnerable Safer

The use of “Less” and “More” preceding “vulnerable” is only for comparison within the side-channel attack
concern. Each “Safer” is meant in comparison with the assessment of the conventional setting in the same row.
In the threshold setting, the assessment does not relate to the corruptibility of individual parties, but rather to
unforgeability property when assumed that the number of corrupted parties is within the allowed threshold. This
informal table is meant only to provide intuition; more context is needed for formal conclusions about each
concrete signature scheme.

		Table 1: Acronyms

		Table 2: Symbols for conventional setting

		Table 3: Symbols for threshold setting

		Figure 1: Annotated simplified formula of an EdDSA signature

		Figure 2: (Simplified) EdDSA-style scheme, with generic nonce

		Table 4: Determinism vs. verifiable determinism of signature schemes

		Figure 3: EdDSA pseudo-code and notation

		Table 5: EdDSA variants

		Table 6: Types of nonce generation

		Table 7: Conventional Schnorr vs. baseline semi-honest threshold Schnorr

		Table 8: Threshold approaches for deterministic signatures

		Table 9: Types of signature vs. concern — informal assessment

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

allows for simple threshold schemes based on a linear secret-sharing of the two secrets. The 317

matter becomes more elaborate when considering the nature of the nonce: pseudorandom 318

(deterministic) vs. randomized. The essential property is that r remains indistinguishable 319

from random. The secret-sharing of a random nonce can be easily achieved by leveraging 320

independent contributions from each party. Conversely, the threshold production of a 321

pseudorandom nonce based on the EdDSA specification is considerably more complex. It 322

requires an expensive distributed (multi-party) computation of a specific hash over a secret-323

shared input. Fortunately, probabilistic versions of EdDSA, when properly parameterized, 324

are interchangeable with respect to the verification algorithm of standardized EdDSA.325

EdDSA relevance. In applications where succinctness matters, RSA signatures may be too 326

long, and those based on elliptic curves may be preferred. In a threshold context, EdDSA 327

may be prefered to ECDSA because the process for threshold generation of interchangeable 328

signatures is far simpler. This report discusses the properties of conventional (non-threshold) 329

and threshold schemes interchangeable with respect to (w.r.t.) EdDSA verification, paving 330

the way to possible future recommendations or guidance about the latter.331

Avoiding bias. The Draft FIPS 186-5 specification of EdDSA requires the use of a pseu-332

dorandom nonce (i.e., deterministic, depending on a secret key). While this avoids the 333

catastrophic security breakdown in case of a biased “random” nonce, it raises a concern 334

about higher vulnerability to some side-channel attacks. Fortunately, determinism is not the 335

only solution to the mentioned problem. By properly adding a random component, as input 336

to the pseudorandom transformation already used by deterministic schemes, it is possible 337

to create a probabilistic scheme that minimizes the risk of bias. The EdDSA verification 338

algorithm works interchangeably with randomized and with deterministic signatures. In 339

fact, determinism is not a standalone verifiable property of EdDSA signatures.340

Toward guidance. After summarizing the NIST Draft FIPS 186-5 requirements of the 341

conventional EdDSA, this document puts in perspective various aspects of interest to corre-342

sponding Schnorr-based threshold schemes. This is intended to support possible future NIST 343

recommendations promoting secure implementations of threshold signatures interchangeable 344

with respect to the EdDSA verification algorithm. It is worth noting that Schnorr/EdDSA is 345

already widely deployed and used, albeit with variations of the curves and parameters. For 346

example, these signatures are used in Transport Layer Security (TLS), Secure Shell Protocol 347

(SSH), Signal, The Onion Router (TOR) / Invisible Internet Project (I2P) and Domain Name 348

Server Security Extensions (DNSSEC), as well as some cryptocurrencies.349

Document organization. Section 2 explains the notation. Section 3 establishes the NIST 350

context about the EdDSA specification, and analyzes some security properties, including 351

its non-verifiable determinism. Section 4 compares various approaches to thresholdize Ed-352

DSA/Schnorr. Section 5 comprises additional considerations relevant to future guidelines and 353

recommendations about threshold signatures. Section 6 concludes with a summary of insights 354

and a recommendation for a public call for threshold signature schemes interchangeable w.r.t. 355

the NIST specified EdDSA verification. 356

4

 NIST IR 8214B IPD

 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/

 SCHNORR SIGNATURES

2. Notation357

This section explains the acronyms, abbreviations and symbols used in the document.358

2.1. Acronyms359

Table 1. Acronyms360

Acronym362 Extended form

AES365 Advanced Encryption Standard

CA366 Certification authority

CSM367 Cryptographic Security Module

CMA368 Chosen message attack

DKG369 Distributed key generation

DSS370 Digital Signature Standard

ECC371 Elliptic-curve cryptography

ECDSA372 Elliptic-Curve Digital Signature Algorithm

EdDSA373 Edwards-curve Digital Signature Algorithm

EUF374 Existential unforgeability

FIPS375 Federal Information Processing Standard

HMAC376 Hash-based message authentication code

KOSK377 Knowledge of secret key (assumption)

LSS378 Linear secret sharing

MPC379 [Secure] multiparty computation

NIST380 National Institute of Standards and Technology

NISTIR381 NIST Internal or Interagency Report

NIZKPoK382 Non-interactive zero-knowledge proof of knowledge

PKCS383 Public-key cryptography Standards

PKI384 Public-key infrastructure

PVSS385 Publicly verifiable secret sharing

PRF386 Pseudorandom function

RFC387 Request For Comments, from the Internet Engineering Task Force

RSA388 Rivest–Shamir–Adleman (cryptosystem or signature scheme)

RSA-SSA389 RSA Signature Scheme with Appendix

5

 NIST IR 8214B IPD

 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/

 SCHNORR SIGNATURES

Table 1 (continued from previous page)363

Acronym364 Extended form

RSA-PSS390 RSA-based Probabilistic Signature Scheme

SHA391 Secure Hash Algorithm

SHAKE392 SHA combined with KECCAK

SP 800393 (NIST) Special Publication in Computer Security

SS; SSS394 Secret sharing; secret sharing scheme

SUF395 Strong unforgeability (or strongly unforgeable)

TLS396 Transport Layer Security (a communication protocol)

UTC397 Coordinated Universal Time (a time standard)

UC398 Universal composability (or universally composable)

UF399 Unforgeability (or Unforgeable), in an EUF-CMA sense

VSS400 Verifiable secret sharing

ZK; ZKP401 Zero knowledge; zero-knowledge proof

ZKPoK402 Zero-knowledge proof of knowledge

2.2. Abbreviations403

The report uses some abbreviations: det. (deterministic); discrete log (discrete logarithm); 404

e.g. (exempli gratia = for example); i.e. (id est = that is); iff (if and only if); keygen (key 405

generation); prob. (probabilistic); pub key (public key); vs. (versus); w.r.t. (with respect to).406

2.3. Symbols407

The symbols of some variables were chosen to match the notation used in Draft FIPS 186-5. 408

These often vary across the literature. The colors red, blue and green are sometimes used 409

to help identify private input or intermediate values, public output or intermediate values, 410

and public input values, respectively. However, color identification is not required for 411

understanding the descriptions.412

2.3.1. Symbols useful for the conventional setting413

Table 2. Symbols for conventional setting414

Symbol Description415

+, · Binary operators for integer addition and multiplication.417

6

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

 Table 2 (continued from previous page)

Symbol Description416

✚, − Binary operators for addition and subtraction of two elliptic curve elements.418

• Non-commutative binary operator used to multiply an elliptic curve element
(on the right) by an non-negative integer (on the left), e.g., s • G.

419
420

←$ Random sampling of a value.421

b Bit-length (multiple of 8) of the public key Q, and the initial private key d.
EdDSA signatures σ have 2b bits. Approved values: 256 and 456.

422
423

c Binary logarithm (3 for Ed25519, 2 for Ed448) of the cofactor 2c (order of
small subgroup); useful to compare cofactorless vs. cofactored verification.

424
425

χ Challenge component computed in the Sign and Verify operations.426

ctx Context (optional parameter in some signature modes).427

d Precursor private key of the signature scheme. It is the hash pre-image used
to derive the signing key s and the nonce-derivation key ν .

428
429

Ei, j Some encoding function (the subscripts are used to differentiate encodings).430

G Base point (aka generator), generator of the subgroup G of prime order n.431

G Subgroup generated by G. It is the domain of public keys. It is the large
subgroup (or order n) of the elliptic curve group (of order 2c ·n)

432
433

H Some cryptographic hash function (subscripts can be used to differentiate
between hash functions).

434
435

κ Standardized security level (estimated bits of strength, e.g., 128 or 224).436

M Message (string) being signed.437

µ Index identifying the mode of a signature scheme.438

n Prime order of the elliptic curve subgroup generated by G.439

Q Public key of the signature scheme, equal to s • G.440

r Nonce (secret).441

R Commitment of the nonce r; used as the first component of the signature.442

s Signing key (also called hdigest1 in Draft FIPS 186-5): it is the 1st half of
the digest of the private key d. It is used to generate the public key Q, and to
compute the 2nd component (S) of each signature.

443
444
445

ν Nonce-derivation key (hdigest2 in Draft FIPS 186-5): it is the 2nd half of the
digest of the private key d; used to pseudorandomly generate each nonce.

446
447

S Second component of the signature, obtained via a linear combination of the
signing key s and the secret nonce r, with the help of the challenge χ .

448
449

σ Signature — a pair (R,S) of elements.450

7

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

2.3.2. Symbols specific to the threshold setting451

Table 3. Symbols for threshold setting452

Symbol Description453

f Corruption threshold (smaller than t) w.r.t. unforgeability. With “mixed adver-
saries” one may differentiate thresholds across types of corruptions.

454
455

n Total number of “parties” (share-holders) [does not include the requester client,
coordinators and others without a share of the private key].

456
457

P Set of possible cosigners (aka parties) — there are n of them.458

P ′ Set of cosigners agreed to participate in a particular signing execution.459

Pi One of the parties (share holders) — the index i is used similarly for shares of
contributions, to identify to which party they correspond.

460
461

sid Session identifier (to distinguish sessions in a concurrent setting)462

t Reconstruction threshold (usually t = f +1) of the baseline secret sharing.463

t ′ Participation threshold: minimum size of quorum needed to generate a signa-
ture, when the number of corrupted parties does not exceed f .

464
465

For simplicity we assume throughout the paper that f is also the corruption threshold for 466

key-recovery, being equal to the corruption threshold for the underlying secret-sharing of 467

the signing key. However, there are conceivable protocols where the corruption threshold 468

for unforgeability is lower than that for key-recovery.469

2.3.3. On the use of square brackets []470

In the present document, square-bracketing is used for various purposes.471

1. Secret-sharing. To represent a (linear or additive) secret-sharing of the enclosed 472

element, when used in some operation, to indicate that a vector of operations takes 473

place. For example, [d] • G indicates that each secret-share di of d is multiplied by the 474

base point G, with each such operation being performed locally by a different party. 475

In Draft FIPS 186-5, the use of brackets in a left-side multiplier (e.g., [d]) is instead 476

used to indicate that the enclosed element is an integer, thus distinguished from the 477

group element (on the right side) G.478

2. Optional argument. When nested inside a parenthesis, to indicate an optional 479

argument of a function, e.g., f (a,b[,c]).480

3. Predicate evaluation. When embracing an equality with question mark, to enclose a 481

predicate evaluation/verification, e.g., [x =? y].482

8

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

3. The conventional EdDSA and Schnorr schemes483

The Edwards-curve Digital Signature Algorithm (EdDSA) is a signature scheme specified 484

in the Draft FIPS 186-5 “Digital Signature Standard (DSS)”. EdDSA operates over elliptic 485

curves, whose allowed parameters are specified in Draft SP 800-186. The NIST specification 486

is based on RFC 8032, which in turn was based on prior work [BDLSY11; BJLSY15]. 487

EdDSA is a variant of the Schnorr signature scheme, itself a proof of knowledge of a discrete 488

logarithm (discrete log) [Sch90].489

The EdDSA scheme specifies a triple (keygen,sign,verify) of algorithms. It operates 490

over an elliptic curve group of known order 2c ·n, where n is prime and c is a short integer 491

(2 or 3). However, the actual operations (in additive notation) are performed in the cyclic 492

subgroup G of order n, with an agreed base point G, the generator. Fig. 1 shows a simplified 493

version (missing some encoding details) of the formula for an EdDSA signature. Notably, 494

the 2nd element (the S) of the signature is a linear combination of the signing key s and the 495

secret nonce r, once the public challenge χ has been calculated. This linearity is a distinctive 496

feature of Schnorr/EdDSA-style signatures, as compared to ECDSA.497

498

499

500

501

502

σ =
(

r •G , r+H
(
R , Q , M

)
·s

)
EdDSA signature

 Secret nonce r = H(ν ,M)

 Base point (generator of order n)

 Hash function
 Public verification key Q = s • G

 Message being signed

 Private signing key

 Nonce “commitment” R = r • G

 “Challenge” χ = H(R,Q,M) S (2nd component of the signature)

Figure 1. Annotated simplified formula of an EdDSA signature503

The secrecy of the private signing key s (which is actually a cryptographic digest of the 504

precursor private key d) depends on the infeasibility of computing “discrete logs” (in 505

traditional multiplicative notation). In additive notation (as usual with elliptic curves, and as 506

used in this document), this requires that it be infeasible to compute which integer s needs 507

to multiply the base-point G to yield the public key Q = s • G. The generation of the secret 508

nonce r for each message requires the use of a nonce-derivation key ν (which is actually 509

another cryptographic digest of the precursor private key d), which must also remain secret. 510

The property of unforgeability also depends on the one-wayness (or collision resistance, 511

depending on the signature mode) of the hash function H.512

EdDSA as a variant of Schnorr. The EdDSA signature of a message M can be interpreted 513

as a (transferable) non-interactive zero-knowledge proof of knowledge (ZKPoK) of the 514

discrete-log (the private signing key) of the public key, with the property that M is bound to 515

the proof. The binding is done by including M in the pre-image of the ZKPoK “challenge” 516

9

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

element χ that is determined as a hash, according to the Fiat-Shamir heuristic [FS87]. This 517

ZKPoK approach for a signature was devised by Schnorr in 1989 [Sch90]. While the original 518

Schnorr scheme is probabilistic, the standardized EdDSA signature (per Draft FIPS 186-5) 519

is deterministic, since its secret nonce r = H(ν ||M) is pseudorandom. The original Schnorr 520

scheme includes the challenge χ in the signature, whereas EdDSA replaces it with the nonce 521

commitment R. This change of format requires a change in the verification operation, but 522

the rationale for unforgeability is similar, since both R and χ can be obtained from any of 523

the signatures. More concretely: χ = H(R,Q,M) and R = S • G−χ • Q. Based on the above, 524

EdDSA is sometimes said to be a Schnorr-style signature, or a variant of Schnorr.525

NIST-approved curves and modes. The Draft FIPS 186-5 specifies two Edwards curves 526

(with corresponding subgroups (G,+)), for two corresponding security levels: curve Ed-527

wards25519 for 128-bit strength; curve Edwards448 for 224-bit strength. Each of the two 528

curves allows two signing modes, w.r.t. whether the signed message is pre-hashed or not. 529

The Draft FIPS 186-5 specifies four allowed EdDSA modes: Ed25519, Ed25519ph, Ed448, 530

Ed448ph. The suffix “ph” means the message is prehashed when given as input to the 531

Sign operation, and these modes are sometimes called HashEdDSA. The preceding part 532

“EdXXX[XX]” identifies the underlying elliptic curve. Note that RFC 8032 defines an 533

extra mode Ed25519ctx that is not approved in Draft FIPS 186-5. Consequently, in Draft 534

FIPS 186-5, Ed25519 is the only mode (out of four) that does not use a context field (denoted 535

ctx in Fig. 3 and Table 5).536

Other curves and modes. In this document, the mode is sometimes left implicit, using a 537

“simplified” description that omits details about the used curves, the differentiated hash func-538

tions, encodings and/or a “context” argument. The logic of EdDSA can for the most part be 539

modularized away from these details. Thus, when some of these details are abstracted away, 540

some of the rationale may be applicable to non-standardized parameters. For example, while 541

the Draft FIPS 186-5 specification requires Ed22519 or Ed448 for the curve, and SHA-512 542

or SHAKE256 for hashing, a Schnorr variant used in Bitcoin [WNR20] specifies secp256k1 543

for the curve and SHA-256 for hashing. Nonetheless, when actual interchangeability with 544

Draft FIPS 186-5 EdDSA verification is required, the focus is on the concrete standardized 545

modes summarized in Table 5.546

Pre-Quantum. EdDSA is not a post-quantum secure scheme. It is plausible that a future 547

quantum computer will be able to use any EdDSA public verification key to determine the 548

corresponding secret signing key. Therefore, EdDSA may in the future be decommissioned 549

in favor of post-quantum alternatives. Nevertheless, EdDSA is currently an important 550

signature scheme with useful features. Guidance regarding how to thresholdize it can thus 551

be useful as a way to enable distribution of trust.552

3.1. Schemes interchangeable w.r.t. EdDSA verification553

NISTIR 8214A proposed the notion of interchangeability that is relevant for this document. 554

A secure scheme is said to be interchangeable w.r.t. the verification algorithm of (determin-555

10

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

istic) EdDSA signatures if the Verify algorithm accepts, without distinction, the variant 556

signatures. In particular for EdDSA, this applies to a probabilistic distribution of the nonce, 557

such as uniformly at random from Zn.558

Figure 2 shows a simplified description of a generic signature scheme interchangeable w.r.t. 559

EdDSA verification. It abstracts the nonce generation to fit several possibilities and omits 560

various details deferred to Fig. 3. A probabilistic variant of EdDSA can use a random nonce. 561

In a hybrid mode, it can also be a hash whose pre-image includes a secret key, as well as 562

some fresh randomness per signature. See Section 3.5 for security considerations about 563

these variants.564

• Keygen[n]: { (private key) s←$ Zn; (public key) Q = s • G; output (s,Q) }.565

• Sign[s](M): {r← GenNonce(. . .); R = r • G; χ = H(R,Q,M);566
S = r+χ · s(mod n); output σ = (R,S)}.567

• Verify[Q](M,σ): {χ ′ = H(R,Q,M); output accept iff S • G =? R✚χ ′ • Q}568

Legend: χ (challenge); G (base point, i.e., generator of G); GenNonce(. . .) (procedure used to generate
the secret nonce); M (message being signed); n (order of the group generated by G); Q (public key);
r (secret nonce); R (nonce commitment; first component of the signature); s (private signing key; in
the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); S (second
component of the signature); σ (signature); ←$ (random sampling); +, · (integer sum and multiplication);
✚, • (sum and multiplication-by-constant in additive group G). Extra verification details are required.

569
570
571
572
573
574

Figure 2. (Simplified) EdDSA-style scheme, with generic nonce576

Key-prefixing. The inclusion of the public key Q in the hash-calculation of the challenge χ577

is a best practice (known as key-prefixing) that addresses concerns w.r.t. application settings 578

with more than one public key [Ber15; BCJZ21]. It is used in EdDSA, but it is actually not 579

considered in the original Schnorr signature scheme [Sch90]. Hereafter in this document, 580

the reference to “Schnorr” type signatures is considered (sometimes implicitly) only within 581

the scope of key-prefixed versions.582

Non-verifiable determinism. The EdDSA signing procedure defined in Draft FIPS 186-5 583

generates a deterministic signature, since GenNonce is a hash-based pseudorandom function. 584

However, the deterministic property is not verifiable from the signature itself, without 585

the secret signing key. This lack of verifiable determinism distinguishes EdDSA (and 586

ECDSA) from some other schemes (see Table 4). Particularly, the RSA Signature Scheme 587

with Appendix (SSA) — RSASSA-PKCS-v1_5 — part of the Public Key Cryptography 588

Standards (PKCS) incorporated in Draft FIPS 186-5 produces verifiably deterministic 589

signatures. (Note that Draft FIPS 186-5 also specifies an RSA-based Probabilistic Signature 590

Scheme (PSS): RSA-PSS-PKCS-v2_1.)591

At considerable computation cost compared to that of producing a signature, a signer could 599

produce a ZKP that an EdDSA signature was correctly generated with the prescribed secret 600

11

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Table 4. Determinism vs. verifiable determinism of signature schemes592

593 Signature scheme Is the signature
 algorithm deterministic?

 Is the output signature
 verifiably deterministic?

594 RSASSA-PKCS Yes Yes

595 EdDSA Yes No
596 Deterministic ECDSA Yes No

597 RSA-PSS No No

598 (Probabilistic) ECDSA No No

nonce. Such a ZKP is outside the scope of the EdDSA specification. 601

3.2. Detailed EdDSA procedures602

The next subsections describe the three EdDSA operations: Keygen, Sign, and Verify. 603

In comparison with the simplified Fig. 2, the pseudo-code describing EdDSA in Fig. 3 604

includes: a parameter µ to differentiate various EdDSA modes (encoding, curves, and hash 605

functions); details about the pseudorandom nonce generation; the use of a cofactor c in the 606

verification mechanism; and the differentiation between signing key s and nonce-derivation 607

key ν . Table 5 gives further details for Hash and GenNonce. 608

3.2.1. Keygen635

As an asymmetric-key signature scheme, EdDSA requires a private signing key s for signing, 636

and a public verification key Q to validate signatures. As specified in Draft FIPS 186-5, the 637

private signing key is in fact derived from a precursor private key d of the scheme. Specif-638

ically, d is hashed to yield a pair (s,ν) of secret digests, which are then used separately. For 639

simplicity, some encoding details (explained in Draft FIPS 186-5) are being omitted here, 640

namely on how some bits in the extremities of the digests need to be preset, and on how the 641

strings are converted into integers. The first digest — the signing key s — is used in two 642

ways: (i) it is multiplied by the base point G to yield the public key Q = s ·G; (ii) it is used 643

in the signing process to derive a linear form S that combines the nonce and the challenge. 644

The second digest — the nonce-derivation key ν — is used only in the signing process, to 645

derive a message-specific secret nonce r. In practice, the two digests can be computed once 646

in the keygen phase and stored, for use thereafter in the signing phase; otherwise they can 647

be recomputed from d during each signing operation.648

As described in Table 5, EdDSA has parameters approved for two security strengths (called 649

requested_security_strength in Draft FIPS 186-5) κ: 128 and 224. The private key d is 650

required to be obtained using an approved random bit generator (RBG) as a string with at 651

least b bits. The integer b must be a multiple of 8 and is at least double κ: b = 256 for 652

12

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Keygen[b]: {
 (private key) d←$ Zb

2

 s‖ν = Hash(d);
 (public key) Q = s • G;
 output (d,Q) }

609

610

611

612

613
614

Sign[d](µ [,ctx],M): {
 s‖ν = HashKµ(d);
 r = GenNonce[ν](µ [,ctx],M) ∈ Zn;
 R = r • G;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));

615

616

617

618

619

 S = r+χ · s(mod n);
 output σ = (R,S) }

Verify[Q](µ [,ctx],M,σ): {
 (R,S) = σ ;
 if not 0≤ S < n, then reject;
 χ = HashCµ([ctx‖]R‖Q‖ f (M));
 S′ = 2c • S; R′ = 2c • R; χ ′ = 2c • χ;
 if S′ • G =? R′✚χ ′ • Q
 then output accept,
 else output reject }

Legend/notation: b (number of bits of private key, as well as of public key; it is a multiple of 8); 2c

(cofactor — 8 for Ed25519, 2 for Ed448 — needed for cofactored verification); χ (challenge); ctx
(optional context string, empty by default, only available for the Ed25519ph, Ed448 and Ed448ph
modes, i.e., not available only for the Ed25519 mode; d (private key of the signature scheme); f
(transformation function applied to the message: identity for regular EdDSA; some hashing for
HashEdDSA); G (base point, aka generator, of a subgroup G of prime order n); HashK (hash function
used to derive the secret keys s and ν); HashC (hash function used to derive the challenge χ); µ
(mode: Ed25519, Ed448, Ed25519ph, Ed448ph, respectively encodable as (2,0), (4,0), (2,1), (4,1)
— see details in Table 5); M (message being signed); q (order of G); Q (public key, for verification);
r (secret nonce); s (private signing key); ν (private key for nonce generation; it is called hdigest2 in
Draft FIPS 186-5); R (public commitment of nonce); (+, ·) (integer sum and multiplication); (✚, •)

(sum and multiplication-by-constant in additive group G). = (assignment); =? (equality check); ||
(concatenation). For simplicity, details about encodings are omitted. As secret input to the Sign
algorithm, both the signing key s and nonce-derivation key ν can be used instead of the precursor key d.

620
621
622
623
624
625
626
627
628
629
630
631
632
633

Figure 3. EdDSA pseudo-code and notation634

κ = 128; b = 456 for κ = 224. Note that for κ = 224 the private key length b is 8 beyond 653

the double, as defined in the RFC. Hereafter, d is simply assumed to be uniformly selected 654

from Zb = {0, ...,2b−1}.655

3.2.2. Sign673

The signing procedure (Sign) involves generating a pseudorandom nonce r (secret), whose 674

procedure GenNonce varies with the signature mode, as described in Table 5. The “Prob” 675

types (rows 6 and 7), although not FIPS-approved, are “interchangeable” in the sense of 676

being verifiable as correct signatures by the FIPS-approved Verify algorithm. For that 677

reason they are of interest to consider in the threshold setting, where some advantages will 678

emerge from the use of randomness.679

13

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Table 5. EdDSA variants656

657 Type Standard Mode µ κ b = |d| s||ν GenNonce r Challenge χ

658 Det. EdDSA Ed25519 128 256 H0(d) H0(ν‖M) H0(R‖Q‖M)

659 Ed448 224 456 H1(d) H1(E4,0(ctx)‖ν‖M) H1(E4,0(ctx)‖R‖Q‖M)

660 HashEdDSA Ed25519ph 128 256 H0(d) H0(E2,1(ctx)‖ν‖H0(M)) H0(E2,1(ctx)‖R‖Q‖H0(M))

661 Ed448ph 224 456 H1(d) H1(E4,1(ctx)‖ν‖H2(M)) H1(E4,1(ctx)‖R‖Q‖H2(M))

662 Type Variation Mode µ κ b = |d| s||ν GenNonce r Challenge χ

663 Prob. Random — — — — ←$ Zq —
664 Hybrid — — — — H(ν ,rand, f (M)) —

Legend: Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob. (probabilistic). s, ν (first
and second halves, respectively, of Hash(d), also denoted as 1st and 2nd digests of d; before encoding into an integer,
some bits in the left and right extremities of each of these digests is preset — see details in Draft FIPS 186-5). Ei, j(...)

(encoding function, defined in FIPS 186 as domi(j,...), where i is 2 or 4, corresponding to the Ed25519 or Ed448
curves, and j is 1 or 0, corresponding to whether or not it is a “pre-hash” mode). H (some cryptographic hash function
or extendable output function); H0 (SHA-512); H1 (SHAKE256-length-912); H2 (SHAKE256-length-512); rand
(secret randomness or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5.
The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.

665

666

667

668

669

670

671

672

The actual signature is a pair σ = (R,S), whose first element is a “commitment” R of the 680

secret nonce r. The second element is a linear combination S = r+χ · s of the nonce r and 681

of the first digest s of the signing key (d), applying as slope factor in the latter a hash-based 682

“challenge” χ . The challenge χ is computed as a cryptographic hash of the commitment R, 683

the public key Q and the message M, as shown in Table 5. Some modes (all except Ed25519) 684

can also use a context string ctx to determine the nonce r and the challenge χ . The hash 685

functions (and encodings) vary depending on the signature mode.686

On the meaning of “commitment” in reference to R. The name “nonce commiment” 687

given to R is used for convenience, but it should be understood in a sense more loose than 688

that of a typical commitment scheme. The latter has two phases (commit and open), and 689

needs to satisfy binding and semantic hiding properties. Conversely, the use of R as a 690

“commitment” of the nonce r never requires an open phase, and its hiding property is only 691

as provided by the application of a one-way permutation (which, being a bijection, does not 692

semantically hide the input). The binding is satisfied unconditionally.693

3.2.3. Verify694

The verification procedure (Verify) corresponds to checking a relation between the com-695

ponents (S and R) of the signature, the public parameters (Q and G) and the message M. The 696

operation requires recomputing the challenge χ , which in turn also depends on the signed 697

message M, and then performing two multiplications and one group addition. All values (Q, 698

R and S) are to be checked for canonical encoding. The actual verification operation specified 699

14

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

in Draft FIPS 186-5 is called cofactored, as it includes a cofactor adjustment (multiplication 700

by 2c) of S, R and χ . 701

Both cofactorless (i.e., without cofactor adjusmtent) and cofactored verifications validate 702

signatures generated per Draft FIPS 186-5 signing specification. However, cofactored 703

verification is less strict, also validating “signatures” outside the subgroup G, i.e., with 704

components in a subgroup different from the one generated by G [CGN20].705

It is worth noting that an additional check (not specified in Draft FIPS 186-5) on the public 706

key Q and the nonce commitment R — namely that their order is not smaller than the cofactor 707

2c — can be used to protect against some key substitution attacks [BCJZ21, Table 2].708

Batch verification. In Draft FIPS 186-5, the EdDSA Verify algorithm is only specified for 709

individual signatures. However, in practice some applications amortize the cost of simultane-710

ous verification of multiple signatures (possibly across different messages and public keys). 711

This can be done as a single verification using an adjusted S, R, and Q, with each adjusted 712

element being obtained as the same random linear combination (i.e., with random coeffi-713

cients) of the corresponding elements used across all signatures [CGN20]. An accepted test 714

implies an overwhelming probability, in the size of the random linear coefficients (e.g., 128 715

bits), that all of the individual signatures would pass their respective verifications.716

3.3. Strong unforgeability717

Unforgeability is the essential security property of a signature scheme. It considers an adver-718

sary not knowing the private signing key s, but being able to obtain, from a signing oracle, 719

signatures on many chosen messages [GMR88]. A scheme is “existentially unforgeable 720

against a chosen message attack” (EUF-CMA) if no such adversary can produce a new 721

valid signature (denoted forgery) σ for a previously unsigned message. For simplicity, this 722

is hereafter simply referred to as UF — the existential (“E”) and the CMA aspects remain 723

implicit. The interest in this document is in a stronger notion: strong UF (SUF) [CD95, 724

Remark 2], where the adversary cannot produce any new previously unseen message/sig-725

nature pair (M,σ) that is accepted by the Verify algorithm. (The acronym SUF should 726

not be confused with the notion of selective unforgeability, which is a notion weaker than 727

existential unforgeability, in both the regular and strong senses). That is, SUF requires, 728

in addition to UF, that the adversary be unable to construct an alternative signature for a 729

message that has already been signed. More formally, SUF requires the adversary to have a 730

negligible probability (in the security parameter κ) of winning the following game:731

1. The keygen phase takes place as prescribed and the private key remains secret, i.e., 732

known only to a signing oracle.733

2. The adversary can choose up to q messages — {Mi : i = 1, ...,q}, for which it can 734

obtain corresponding valid signatures σi from the oracle.735

3. The adversary wins the game if it can output a previously unseen pair (σq+1,Mq+1), 736

for which Verify[Q](Mq+1,σq+1) outputs accept.737

15

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Note that, in the SUF game (as well as in a corresponding UF game), the adversarial 738

capability varies between deterministic and probabilistic signatures. In the latter case the 739

adversary receives a different signature each time it repeats a query for the signing oracle to 740

sign the same message. The UF and SUF notions for signatures are the direct analogue of 741

the same type of properties for message authentication codes (MAC) in the symmetric key 742

setting [BKR00; BN08].743

Strong unforgeability implies unforgeability, i.e., if a scheme is SUF, then it is also UF. 744

This is because the adversarial goal in the SUF game is less ambitious than in the UF game. 745

Moreover, if a scheme is verifiably deterministic and UF, then it is also SUF, since it is 746

infeasible to produce more than one valid signature for the same message (as in the case 747

of RSASSA-PKCS-v1_5; see Section 3.1). However, both probabilistic and non-verifiably 748

deterministic schemes can be UF without being SUF. 749

The study of Schnorr/EdDSA unforgeability has been the subject of much research, with 750

techniques such as the forking lemma [PS00, Theorem 4] in the programmable random oracle 751

model, and other results ([PS96, Thm 13], [FF13; KMP16; RS21; BCJZ21]). Assuming the 752

infeasibility of solving the “discrete log” problem in the underlying elliptic curve and the 753

one-wayness of the hash function, the EdDSA specified in Draft FIPS 186-5 provides strong 754

unforgeability. The HashEdDSA mode additionally requires collision resistance from the 755

hash function.756

Intuitively, SUF of EdDSA stems from SUF of Schnorr signatures, where the adversary has 757

access to multiple random signatures for each message. The adversary in EdDSA can only get 758

one signature per message which, although deterministic, is indistinguishable from random. 759

Still, the details matter for an actual proof [BCJZ21]. Note that achieving SUF requires 760

checking that the signature components are in a canonical representation. For EdDSA, this 761

requires (as specified in Fig. 3) checking that S is a positive integer less than n. Otherwise, 762

replacing S by S+n would trivially produce a valid forgery violating SUF.763

A signature scheme that is interchangeable with Draft FIPS 186-5 EdDSA verification 764

is not automatically unforgeable. While interchangeability only depends on the Verify 765

function, unforgeability also depends on the space and distribution of signatures. Consider 766

the pathological case of a signing algorithm that always uses the same nonce even when 767

signing different messages. Such a scheme would allow extraction of the private key when 768

the adversary queries the signing oracle on two different messages (see Section 3.5.1), and 769

is therefore forgeable. Other pathological examples of interchangeable schemes can be 770

devised to break strong unforgeability without breaking UF, or break UF without allowing 771

key-recovery (see Section 5.2.4).772

3.4. Binding and non-repudiation773

The classical notion of unforgeability, where the adversary is external to the signer, does 774

not consider all possibly desirable security properties of a signature scheme. For example, 775

SP 800-57-P1-R5 specifies that: a “Digital Signature” is “the result of a cryptographic 776

16

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

transformation of data that, when properly implemented with a supporting infrastructure 777

and policy, provides the services of: 1. Source/identity authentication, 2. Data integrity 778

authentication, and/or 3. Support for signer non-repudiation.” 779

The unforgeability game considers the case of an adversary without knowledge of the private 780

key. What happens, however, if the adversary controls the signer, i.e., knows and/or is able 781

to generate the private key, and then tries to manipulate the signature generation against an 782

unwary verifier? That may jeopardize the “data integrity authentication” requirement, even if 783

maintaining “source/identity authentication”. For example, an unforgeable signature scheme 784

may still allow a malicious signer to produce two messages (possibly under two different 785

public keys) and one signature that validates both messages [CGN20; BCJZ21]. 786

3.4.1. Binding787

The EdDSA verification specified in Draft FIPS 186-5 provides a form of binding that 788

follows trivially from the collision resistance of the hash used to calculate the challenge χ . 789

Considering a fixed public key Q, a malicious signer cannot find two messages M and M’ 790

and a signature σ that validates both of them under that public key. Thus, when the signer’s 791

identity is certifiably bound to a single public key Q, such as when relying on a PKI, then a 792

signature σ binds the signer to a single message.793

A stronger binding notion [CGN20; BCJZ21] goes further, considering that the public key 794

may also be manipulated: a signature scheme provides strong binding if no malicious signer 795

is able to find two different pubkey–message pairs — (Q,M) and (Q’,M’) — and a signature 796

σ that is valid against both pairs. In the case of EdDSA, such a collision can be obtained by 797

a malicious signer, by using a public-key Q that is part of the small subgroup. This allows 798

the signer to later perform a key-substitution attack: after initially sending (M,σ), w.r.t. 799

public key Q, the signer later claims that it has actually sent (M’,σ) w.r.t. a public key Q’. 800

While having one of the keys being in the small subgroup is not compliant with the EdDSA 801

keygen phase, such a key is nonetheless not caught as incorrect in the standardized EdDSA 802

verification. As already briefly mentioned in Section 3.2.3, this can be fixed by adding a 803

simple additional verification regarding the public key Q and the nonce commitment R.804

Binding can even be considered in a stronger sense, across various signature schemes and 805

parameters (e.g., approved EdDSA and ECDSA modes), which may use different hash 806

functions H, base-points G, encodings Eµ , moduli n and even Verify algorithms. For 807

example, one can ask whether one can find a signature simultaneously valid for EdDSA and 808

for ECDSA, each with their own parameters.809

3.4.2. Non-repudiation810

The colloquial expression “non-repudiation” means the inability of a signer to repudiate811

(plausibly deny) having produced a signature w.r.t. a message. However, the expression 812

leaves some room for ambiguity, as evident by comparing the two notions explained below. 813

17

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Such ambiguity can be resolved by expressing the needed non-repudiation features in terms 814

of unforgeability and binding properties.815

A (weak) notion of non-repudiation considers that the signature can be used “to support a 816

determination by a third party of whether a message was actually signed by a given entity” 817

[SP 800-57-P1-R5], if it can be assumed that the private key is indeed private. This property 818

is implied by SUF, since SUF implies that any valid message–signature pair must have been 819

created by a holder of the private key. Even if a SUF scheme is non-binding in the sense 820

of allowing a malicious signer to produce, under the same public key, two messages and 821

one signature that validates both messages, it still follows that both messages must indeed 822

have been signed by the entity that knows the private key. EdDSA, being SUF, provides 823

non-repudiation in the mentioned sense.824

Some application settings may warrant a stronger notion of “non-repudiation”, equivalent to 825

binding. The following is an example application setting where a false repudiation occurs 826

despite of the use of a SUF signature scheme. Consider, hypothetically, a non-binding 827

signature scheme used in an application where an honest signer, upon request by a server A, 828

generates and sends to A two messages M0 and M1, and a corresponding single signature σ829

that validates both messages. Later, the signer is asked to securely send to another server 830

B one of those messages, Mb, for some b of the client’s choice. If server B is unaware 831

of the non-binding property, it may think that the authenticity of the message sent by the 832

client is protected by the accompanying signature σ . However, if server A controls the 833

communication channel, it could now replace the message by M1−b, without the client or 834

the server B realizing it, even though server B could check that the received signature σ is 835

valid for the received message M1−b. Alternatively, if server A is honest (and thus server 836

B actually receives the original message Mb), then a malicious client can later plausibly 837

repudiate that it sent said message, and claim that the message was in fact M1−b, and that, 838

plausibly, server A may have tampered with the communication. The use of a signature 839

scheme with strong binding would make this repudiation implausible.840

3.5. Nonce implementation issues841

Even if the unforgeability of the specified EdDSA algorithms is assumed or proven (see 842

Section 3.3), there are still potential security issues that arise from the implementation. The 843

security of signatures interchangeable w.r.t. EdDSA verification depends critically on the 844

secrecy and unbiased selection of the nonce r used in any signature (R,S). For example, 845

should a nonce ever be known to an adversary, the signing key s can then be recovered, 846

simply as s = χ−1 · (S− r)(mod n). Other subtle issues within the GenNonce procedure can 847

cause catastrophic security failures. The same type of issues apply to implementations of 848

the ECDSA signature scheme, against which the mentioned attacks have been demonstrated. 849

To summarize (also see Table 6):850

• Implementations of probabilistic nonces may introduce biases, and even small biases 851

can result in full recovery of the private signing key.852

18

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

• Deterministic nonce generation prevents bias, but is more subject to side-channel and 853

fault injection attacks that also enable key recovery.854

• The upshot is that it can be more secure to generate the nonce in a hybrid manner, by 855

adding some random noise to an otherwise deterministic procedure.856

Table 6. Types of nonce generation857

858 Nonce generation type Bias
 attacks

 Side-channel and
 fault injection attacks

859 Deterministic: Pseudorandom, based on a secret key Not applicable More vulnerable

860 Purely random: Entropy independent of secret key Vulnerable Less vulnerable

861 Hybrid: Randomness and pseudo-randomness Not applicable Less vulnerable

3.5.1. Nonce reuse862

A serious nonce-related security failure occurred when the ECDSA signing key of a home 863

video game console was recovered [bmss10]. This is due to the use of the same nonce 864

when signing different pieces of software. A similar attack is possible if nonces are reused 865

when EdDSA-signing different messages. In that case, from two signatures (R,S) and 866

(R′,S′), one can find the secret key by solving a pair of linear equations with two unknowns. 867

From S′− S = (r′− r)+ s · (χ ′− χ) (mod n), and r = r′, the secret key follows as s =868

(S′−S)(χ ′−χ)−1 (mod n).869

Nonce reuse can occur when an adversary is able to perform a “rewinding” attack. For 870

example, if the signer is running in a virtual machine and nonces are generated before 871

the message to be signed is determined, an adversary may rewind the virtual machine in 872

order to obtain signatures on two different messages using the same nonce and different 873

challenges. This attack can be prevented by generating the nonce in a way that depends on 874

the message to be signed, as happens in the pseudorandom nonce generation specified for 875

EdDSA in Draft FIPS 186-5. Some system models may also avoid rewinding concerns based 876

on other assumptions on fresh randomness, such as selecting the nonce via a non-rewindable 877

hardware random-number generator that produces true fresh randomness on every call.878

3.5.2. Partial knowledge of random nonce879

Partial information about nonces can be leaked through a poorly implemented or biased 880

random number generator [BH19], as well as various side-channel attacks, such as cache-881

timing side-channels [ANTTY20]. Deliberately injected faults can also induce bias in the 882

nonce [TTA18]. This bias can be leveraged to recover the private signing key by solving 883

the Hidden Number Problem (HNP) [BV96] using one of two known techniques. Fourier 884

analysis [Ble00; ANTTY20] is used when there is a very small bias (potentially even less 885

19

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

than a single bit [ANTTY20]) but the adversary has access to many signatures; lattice-886

based techniques [HS01] can be used when the bias is more significant but the adversary 887

has access to fewer signatures.888

3.5.3. Side-channel and fault injection attacks against deterministic nonce889

A pseudorandom (deterministic) nonce generation avoids the issues caused by bad ran-890

domness. However, that may result in a signing process more susceptible to side-channel 891

[ABFJLM18] and fault injection attacks [RP17; SB18]. For example, differential power 892

analysis on the modular addition operation within SHA-512 can enable the recovery of the 893

nonce-derivation key ν being hashed. Also, a differential fault injection attack can induce 894

a “glitch” during the computation of the challenge χ , resulting in a faulted challenge hash 895

χ ′. Then, the computation follows with the proper formula S = R+ χ · s, but using the 896

incorrect challenge value χ ′, leading to an invalid signature component S′ that is nonetheless 897

a linear relation of the secret key and a secret nonce. Since the signature is pseudorandom, 898

the adversary can additionally obtain a valid signature component S for the same message, 899

using the same nonce r as before (and thus the same R as before), and necessarily having 900

a different (correct) challenge χ . From S and S′ the adversary can recover the private key, 901

similar to as when a nonce is reused when signing different messages (see Section 3.5.1). 902

The exploitation of these vulnerabilities often requires physical access to the signing device.903

3.5.4. Hybrid nonce generation — combined randomness and determinism904

The security issues mentioned above can be mitigated by using a hybrid mode of nonce 905

generation, combining both random and pseudorandom components. As with deterministic 906

nonce generation, the nonce can be computed as the output of a pseudorandom function 907

(using as key the nonce-derivation key), whose input is the message. However, to protect 908

against side-channel and fault-injection attacks, the function can additionally take some 909

random bytes as input. The actual details on how the randomness and the nonce-derivation 910

key are possibly intertwined when used as input to the pseudorandom function may depend 911

on the concrete side-channel protection being sought.912

Even if there is some bias in the used randomness, the use of a PRF (dependent on the secret 913

nonce-derivation key) will prevent the bias from being apparent in the nonce itself. The idea 914

is not new [SBBDS18; PSSLR18]. It has also been suggested as an update [MTR22] to 915

RFC 8032 (on which the EdDSA specified in Draft FIPS 186-5 is based), which after the 916

encoding of the nonce derivation key ν would concatenate a random string (with the same 917

length as ν), used as a preimage to the hashing that computes the nonce.918

Furthermore, as long as the “random” values contributed to this function do not repeat for the 919

same message, there is some additional protection against side-channels and fault-injection 920

attacks. With a single signer, if the needed entropy is unavailable at signing time, the signing 921

simply falls back to the deterministic mode. (The threshold setting requires particular 922

attention against insider attacks, as discussed in Section 4.3.1).923

20

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

4. Threshold approaches924

This section surveys, at a high level, several approaches for threshold signatures with 925

potential interchangeability w.r.t. EdDSA verification. Section 4.1 provides intuition about 926

the linear operations involved in a semi-honest probabilistic setting. Section 4.2 describes a 927

template protocol for threshold Schnorr/EdDSA signatures, matching at a high-level many 928

concrete protocols. Section 4.3 explains several deterministic approaches, while Section 4.4 929

considers probabilistic approaches.930

4.1. Intuition for efficiency of threshold [probabilistic] Schnorr signatures931

The baseline building block assumed available for threshold signatures is a secret sharing 932

(SS) scheme . From an initial secret value x, the SS scheme allows producing a vector 933

[x] = 〈x1,x2, ...,xn〉 of shares, usually for distribution across n parties, such that any subset 934

of t parties can reconstruct the secret x, but any subset of t − 1 colluding parties learns 935

“nothing” about the secret. For example, Shamir SS [Sha79] selects a random polynomial of 936

degree t−1, subject to its evaluation at zero being the secret x; then the various shares are 937

the evaluation of the polynomial at other points. The evaluation points across shares must 938

not collide (which would affect the threshold guarantee) and must not be zero (which would 939

reveal the secret).940

For Schnorr signatures in particular, it is most useful to use a linear SS (LSS) scheme. 941

Linearity enables local computation of the sum of shares, and multiplication-by-constant 942

of shares. Therefore: if z = x+ y, it follows that [z] = [x] + [y] (i.e., each local share zi943

can be obtained as xi + yi.); also, if z = a ·w, then [z] = [a ·w] (i.e., each local share zi can 944

be obtained as a ·wi). The threshold properties of the secret-sharing [z] upon these linear 945

operations remains the same (namely t shares are required to reconstruct a secret). It should 946

be noted that different secret-sharing schemes exist and can be useful, including those with 947

multiplicative properties.948

Compared with ECDSA, the better efficiency of threshold Schnorr signatures comes from 949

being able to compute the signature operations (all linear) locally at each party, once the 950

needed shares are distributed. In particular, when the nonce is allowed to be randomized (as 951

in regular Schnorr, although not in EdDSA), then even the distributed secret selection of the 952

nonce and the calculation of its commitment depend only on simple linear/homomorphic 953

operations. Conversely, ECDSA requires computing the modular inverse of a secret-shared 954

element, which is more complicated and inefficient to perform in a distributed manner. The 955

non-linear operation requires interaction and may be based on a different type of secret 956

sharing (e.g., multiplicative) and a corresponding final conversion to linear secret sharing.957

This simplicity is captured well in a semi-honest threshold implementation (i.e., where every 958

party behaves according to the protocol specification), as summarized in Table 7. In this 959

case, the distributed computation only involves the secret-sharing and corresponding recon-960

struction of secret elements, as well as simple homomorphic operations. The description 961

21

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

is for n-of-n signatures. The k-out-of-n case is resolved by Lagrange interpolation in the 962

exponent, which can also be done with (homomorphically) linear operations.963

Table 7. Conventional Schnorr vs. baseline semi-honest threshold Schnorr964

965 Phase Conventional Semi-honest threshold baseline

966 Key-Gen Q = s • G [Q] = [s] • G; then open Q
967 Commit nonce R = r • G [R] = [r] • G; then open R
968 Compute challenge χ = H(R,Q,M) Same as in conventional
969 Produce signature S = r+χ · s(mod n) [S] = [r]+χ · [s] (mod n); then open S
970 Verify signature S • G =? R✚χ • Q Same as in conventional

To “open” a public value (Q, R and S) means that every party reveals their corresponding share (Qi,
Ri and Si, respectively), so that everyone can reconstruct the corresponding public value.

971
972

For each row involving secret material, the baseline threshold version simply computes 973

the needed public element shares (Qi, Ri and Si) by homomorphic computations over 974

the secret-shared secret values (si and ri). Some additional care is required to deal with 975

active/malicious adversaries, which in practice leads to some variations (e.g., how the nonce, 976

or signature shares are produced), while leaving the compute challenge and verify signature 977

steps identical to the conventional scheme.978

On regular threshold signatures vs. multi-signatures. Sometimes it is useful to clearly 979

distinguish between two types of distributed signature schemes:980

• (Regular) Threshold Schemes: there is a fixed public key Q, whose corresponding 981

private signing key s is secret-shared across various parties.982

• Multi-Signature schemes: there is a setting where each party Pi has a public key Qi, 983

and a corresponding private signing key si, and any subset of them can come together 984

to produce a multi-signature, which can only have been produced by a collaboration of 985

all corresponding private keys, and whose verification is based on either (i) a list of the 986

Qi’s of all signatories, or (ii) an aggregate public key Q that is derived from them.987

The case of n-out-of-n (regular) threshold signatures has some similarities to a multi-sig-988

nature from n parties. In particular, overlooking the Keygen phase, the Sign and Verify 989

phases of a multi-signature scheme can be transformed into those of a n-out-of-n regular 990

threshold scheme, by fixing the public key Q and the set of n parties. In both types, there 991

is a threshold security property: an adversary must corrupt all n cosigners in order to forge 992

a signature. Furthermore, Schnorr multi-signatures can be interchangeable w.r.t. the EdDSA 993

verification algorithm, provided that the aggregate public key is given. For the most part, 994

the discussion in this report considers threshold schemes in the regular sense. However, 995

considering the above, it is sometimes useful to consider “threshold schemes” in a broad 996

sense that also includes multi-signatures.997

22

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

4.2. A template threshold Schnorr/EdDSA signature998

A conventional signature scheme is composed of three procedures: Keygen, Sign, and 999

Verify. A threshold implementation of it alters only the Keygen and Sign operations, 1000

which relate to private key. The verification operation (Verify) remains unchanged. Here-1001

after, the focus is on actively secure protocols (i.e., against malicious adversaries).1002

4.2.1. Key Generation1003

In the Keygen phase, each party obtains a share si of the private signing key s. During this 1004

process, every party also learns all “public” keys Qi associated to the private keys of each 1005

other party, from which anyone can derive the global public key Q. The secret sharing 1006

(SS) can be one from several kinds, including verifiable SS (VSS) or publicly verifiable 1007

SS (PVSS), where each party learns additional information that enables verifying that their 1008

share is correctly related to the global public key.1009

The generation of these keys typically follows one of two main approaches:1010

• centralized (by a dealer): a dealer (trusted or untrusted) determines the private 1011

signing key s, then produces a secret sharing [d] of the private signing key, and sends 1012

a different secret share di to each party i. The public key Q = s • G, as well as its 1013

shares Qi = si • G, are sent to every party.1014

• distributed (by the signatories): the parties interact in a distributed key-generation 1015

protocol, such that no party knows the global secret key d. Typically, each party 1016

generates their own secret key share and corresponding public key share, which are 1017

then combined to generate the global public key.1018

Note: In the actual (deterministic) EdDSA there is also a nonce-derivation key ν . In a 1019

threshold (deterministic) EdDSA scheme, functionally equivalent to EdDSA, the parties also 1020

obtain corresponding secret shares ν i. There is nonetheless an essential difference across 1021

the two private keys, w.r.t. the distributed signature process: for the signing key s, there are 1022

homomorphic properties that facilitate the group operations to be carried out in secret-shared 1023

mode; the same does note apply for the SHA-based hash-related operations performed on 1024

ν . There are other threshold schemes interchangeable w.r.t. EdDSA verification that avoid 1025

the latter problem by deriving independent local nonce derivation keys per party, or even 1026

simply assuming access to good randomness.1027

Distributed key generation (DKG) approach. A DKG for public keys has a basic goal of 1028

letting each party obtain a secret-share of a random private key s. For typical discrete-log 1029

based schemes, the homomorphic properties of the group are such that an additive secret 1030

sharing si • G of the private key allows the calculation of (now in additive notation) a share 1031

Qi = si • G of the public key Q. A useful gadget for DKG is a VSS scheme [CGMA85]. 1032

In particular, Feldman’s scheme [Fel87] allows for non-interactive verifiability. After an 1033

interactive (e.g., 2 rounds of communication) secret-sharing, each share si “proves its own 1034

validity” via a verification algorithm that checks it against a commitment of the secret s. An 1035

23

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

initial DKG scheme [Ped91] based on Feldman’s VSS allowed a malicious party to bias 1036

the public key. While such a public key may still be sufficient for some purposes, it does 1037

not emulate the case of a random public key selected by a trusted dealer. A later protocol 1038

[GJKR99] solves that issue, by ensuring that any party must propose their contribution 1039

before they can learn the resulting public key. This can be achieved by adding an initial 1040

communication round where parties commit to their contributions, e.g., using Pedersen 1041

commitments [Ped92]. The mentioned DKG, for an honest majority setting and assuming 1042

broadcast channels, can be used as a basis for subsequent threshold Schnorr-style signing 1043

[SS01]. Other alternatives may be possible with a different number of rounds, depending on 1044

the system model.1045

Rogue-key attack. Some restrictions need to be enforced w.r.t. the key shares, in order to 1046

protect against “rogue key” attacks, where a malicious party sets their public key share Qi1047

to some function of the honest parties’ public keys. For example, consider a 2-of-2 multi-1048

signature scheme intended to prove that both Alice and Bob have participated in creating 1049

a signature. Let honest Alice have private key sA and public key QA = sA • G. Bob, who is 1050

malicious, has private key sB and public key QB = sB • G. Alice says her public key is QA, 1051

while Bob says his public key is Q′ = QB−QA (instead of the correct QB), even though Bob 1052

is unaware of the discrete log of Q′. The resulting shared public key is QB, so Bob can sign 1053

for the group without Alice’s consent.1054

To prevent such attacks, each party may be required to prove knowledge of their secret key 1055

(KOSK), using a NIZKPoK of DL (base G) of Qi, essentially equivalent to producing a 1056

signature with their private key. Some multi-signature schemes operate in the plain public 1057

key model, where parties are not required to prove knowledge of their secret keys in order to 1058

thwart rogue key attacks. This involves tweaking the procedure for generating an aggregated 1059

public key, as well as modifying the process for generating signature shares.1060

4.2.2. Signing1061

In each threshold signing session, the parties need to obtain agreement on several parameters: 1062

the message M to be signed; the set P ′ of cosigners actively participating in the signing 1063

session; and a session identifier sid used to distinguish between concurrent executions. 1064

Unless otherwise noted, the remainder of this section assumes there is a mechanism whereby 1065

parties agree on the tuple (sid,P ′,M). In practice, however, threshold implementations 1066

must explicitly consider this agreement.1067

In an actively secure threshold Schnorr signature, some variations or extra steps are required 1068

as compared to the semi-honest setting (Section 4.1). A simple template for threshold proba-1069

bilistic signing [SS01] is to perform a DKG to obtain a secret-shared secret nonce r, along 1070

with each party receiving the nonce-contribution commitment Ri of everyone, and then let 1071

each party locally compute and broadcast their corresponding signature share. Some tricks 1072

can reduce the number of rounds, but special care is required to prevent the challenge χ from 1073

being maliciously manipulated in a way that could break unforgeability.1074

24

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

1. Nonce commit. Each party computes a random nonce share ri and then the corre-1075

sponding commitment Ri = ri • G. The details of this computation define whether the 1076

overall EdDSA implementation is deterministic (see Section 4.3), or probabilistic 1077

(see Section 4.4). Due to homomorphism, the commitment Ri is also a share of 1078

the commitment R of the random secret nonce r (of which no party is aware). In 1079

other words, the distributed system produces secret-sharings [r] and [R] = [r] • G. 1080

The shares of [R] are then revealed between all parties, which allows each party to 1081

locally reconstruct the public commitment R. Special care is required to thwart attacks 1082

where an adversary tries to manipulate the challenge χ (dependent on M, R, and 1083

Q), possibly in a concurrent setting with many distributed signing operations taking 1084

place [DEFKLNS19]. This manipulation can be prevented by having a round of 1085

communication where parties, when committing to their nonce contribution (e.g., ri), 1086

do not immediately reveal a share (e.g., Ri = ri • G) of the nonce commitment, or with 1087

more advanced techniques that can eliminate a round of communication. For example, 1088

the nonce commitment R may be a more complex linear combination of the shares Ri, 1089

using additional coefficients to avoid some malleability attacks. The revealing of the 1090

shares Ri of the public value R follows after a corresponding commitment phase, to 1091

ensure independence of values. A secret-sharing [r] of a SHA-based pseudorandom 1092

nonce r would require a more generic (secure) multiparty computation (MPC).1093

2. Compute challenge. In the simplest (and EdDSA-interchangeable) case, the chal-1094

lenge χ is locally computed by each party, as a hash of the nonce commitment R, the 1095

public key Q, and the message M. Some modes also include a context component ctx1096

(see Table 5), or other small tweaks.1097

3. Signature shares. Based on the linear properties of the secret-sharing scheme, each 1098

party can locally compute a share of the output signature This can be as simple as 1099

[S] = [r]+χ · [s] (in Zn). However, some protocols use sophisticated techniques where 1100

some of the elements may be tweaked. The final signature can then be computed by 1101

anyone collecting all signature shares. 1102

The above description is for n-out-of-n signatures. The k-out-of-n case is resolved by 1103

additionally using Lagrange coefficients.1104

4.3. Deterministic threshold Schnorr1105

In a deterministic threshold Schnorr signature scheme, each message leads to a single 1106

possible signature, once the public key and/or the subset of signatories is fixed. In particular, 1107

the secret nonce r (i.e., the discrete-log of the nonce commitment R) is deterministic, even 1108

through never computed by a single party. It could seem that this can be trivially achieved 1109

by having each party provide a deterministic contribution Ri = ri • G, for a locally computed 1110

deterministic ri. However, a careless protocol could result in a key-recovery vulnerability 1111

against internal adversaries (see §4.3.1). Therefore, a protocol needs to be carefully crafted, 1112

possibly using an MPC (see §4.3.2) or ZKP (see §4.3.3) that ensures correct behavior from 1113

the signatories. Table 8 compares various aspects of different deterministic approaches.1114

25

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Table 8. Threshold approaches for deterministic signatures1115

1116

 Reference
 Function-
 ally equi
valent?

 EdDSA
 Interchan-
 geable?

 Same signature per message?
Some gadgets

1117
 Per/across
 quorums

 Across re
 sharings

1118 [BST21, §5] Yes Yes Yes/ Yes Yes MPC gadgets
1119 [BST21, §6] No Yes Yes/ Yes Yes MPC-friendly hash
1120 [GKMN21] No Yes Yes/ No No ZKGC, COT
1121 [NRSW20] No Yes Yes/ No N/A ZKP-friendly PRF

Some schemes implement the HashEdDSA mode (see Table 5). The last row [NRSW20] corresponds
to a multi-signature scheme, for which the resharing does not apply (N/A), since that would imply a
change in public key. COT = committed oblivious transfer. ZKGC = ZKPs from garbled circuits. The
approaches also differ in efficiency, allowed thresholds, and cryptographic assumptions.

1122

1123

1124

1125

4.3.1. A key-recovery pitfall1126

Suppose the secret nonce r is a naive combination of “deterministic” nonce contributions 1127

from the various parties. Consider now two executions to sign the same message M. Since 1128

the determinism is not verifiable, a malicious party can provide different nonce contributions 1129

in both, whereas the honest participants supply the same deterministic nonce each time 1130

[MPSW19]. This allows the adversary to learn:1131

• two different challenges (χ,χ ′), since they respectively depend on the two different 1132

nonce contributions from the malicious party;1133

• two different signature shares (Si,S′i) from each honest party, since they depend on 1134

the two different challenges,1135

The above pairs from honest parties will both have been derived using the the same secret 1136

nonce ri (prescribed to be deterministic) and the same secret signing share si. This enables 1137

the malicious party to obtain the secret key share of each honest party, by solving a simple 1138

pair of linear equations, leading to: si = (χ−χ ′)−1 · (Si−S′i)(mod n).1139

Secure versions of deterministic threshold EdDSA/Schnorr need to resolve the above men-1140

tioned problem. Two such approaches are described below.1141

4.3.2. MPC-based threshold (deterministic) EdDSA1142

The above described pitfall (§4.3.1) can be avoided by directly using generic MPC to ensure 1143

that the secret nonce r is a hash whose pre-image includes the nonce-derivation key ν1144

[BST21], exactly as prescribed for (deterministic) EdDSA.1145

1. KeyGen: use a dealer or a dealerless keygen, such that each party has a secret share 1146

si of the signing key, and a secret share ν i of the nonce-derivation key.1147

26

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

2. Nonce commit: use generic MPC to compute a nonce-commitment R = r ·G, with-1148

out anyone learning the corresponding discrete-log r (the nonce), and yet be assured 1149

that the nonce satisfies the prescribed relation, i.e., r = Hash(ν ,Hash(M)) in case 1150

of HashEdDSA. Considering the original SHA-based hash as a Boolean circuit, the 1151

techniques used to perform its distributed computation can be based on MPC gadgets, 1152

say, to obtain a secret-sharing [r] of the nonce, which can then be homomorphically 1153

converted to the corresponding commitment shares [R]. The distributed hashing can be 1154

based on garbled circuits, and using oblivious transfer to handle the secret inputs of the 1155

circuit evaluator. Alternatively, the circuit evaluation can proceed by computing over 1156

bits that are secret-shared using a LSS scheme and a mechanism for authentication 1157

of shares. To convert between shares (of the nonce-derivation key or of the nonce) 1158

in Fn, and the bits (i.e., in F2) used in the distributed hash computation, a modular 1159

conversion mechanism can also be used. In some cases it can be easier to use a Q2 1160

access structure, to handle multiplicative shares [BST21].1161

3. Challenge: compute the challenge χ as prescribed (see Table 5).1162

4. Signature shares: locally compute the signature share Si = ri + χ · si (mod n) and 1163

send it to a combiner (anyone receiving all signature shares), who can then trivially 1164

obtain the final signature.1165

The main challenge above is the distributed SHA-based hashing needed to obtain the secret-1166

shared nonce r, depending on the secret shares ν i of the nonce-derivation key ν . The generic 1167

feasibility of MPC guarantees this is possible (e.g., see [BST21] for an implementation 1168

in an honest majority setting), albeit contrived when compared with what is needed for 1169

probabilistic Schnorr.1170

As an alternative, substantial efficiency improvements can be obtained by using an MPC-1171

friendly hash (not the case of SHA-512 or SHAKE256) to distributively compute the nonce. 1172

This will no longer yield a functionally equivalent signature, but it will still be interchange-1173

able w.r.t. EdDSA verification. Note that the hashing used to generate the challenge χ1174

remains the original (SHA-based) one [BST21, §6].1175

4.3.3. Threshold signing with local deterministic contributions1176

An alternative solution to the key recovery pitfall (§4.3.1) is to have parties generate their 1177

nonce contributions deterministically and supply an accompanying proof that they were 1178

generated correctly [GKMN21; NRSW20].1179

1. KeyGen: Either a dealer or dealerless keygen protocol provides to each party a 1180

secret share si of the signing key. Each party i can locally select, independently, a 1181

nonce-derivation key ν i and send a commitment of it to all other parties. The parties 1182

may also generate some additional random state to be used for the proof of correct 1183

nonce derivation during the signing process. [GKMN21]1184

2. Nonce commit: Each party locally derives their deterministic contribution ri for the 1185

27

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

nonce, which depends on the secret ν i and on the public message M. Then the party 1186

commits as usual by sending Ri = ri • G to everyone, but now also sends a ZKP that 1187

this is correctly related to the commitment of the nonce-derivation key. If all the 1188

proofs are valid, the honest parties combine the various contributions to obtain the 1189

global nonce commitment R = ∑Ri; otherwise, the parties abort. The specifics of the 1190

ZKP and deterministic function depend on the scheme.1191

3. Challenge: The challenge χ is computed as usual (see Table 5).1192

4. Signature shares: Generate, broadcast, and aggregate (partial) Schnorr signature 1193

shares. The actual techniques may be more sophisticated, such as by masking the typi-1194

cal signature share such that the masks are cancelled out when combined across parties 1195

[GKMN21], or including multiplicative coefficients that allows for key aggregation 1196

(in case of multi-signature) [NRSW20].1197

What distinguishes schemes with local deterministic nonces from each other is the pseudo-1198

random function (PRF) used to generate the nonce, and the ZKP method for proving it was 1199

properly generated. In MuSig-DN [NRSW20] (a multi-signature scheme), the nonce is a 1200

specially designed PRF. It is keyed with the nonce derivation key, and takes as input the 1201

message M, the set of signers’ public keys Qi, and the commitments of the nonce derivation 1202

keys. The corresponding ZKP is computationally heavy, but signing takes only two rounds and 1203

is very efficient bandwidth wise. In [GKMN21], the PRF is the NIST-standardized advanced1204

encryption standard (AES) cipher, and the ZKP is based on garbled circuits. This is computa-1205

tionally lighter, at the expense of higher bandwidth and three rounds of communication.1206

4.4. Probabilistic threshold Schnorr1207

The probabilistic approach for threshold Schnorr/EdDSA signing allows the distributed 1208

nonce generation to take advantage of homomorphic properties innate to the signature 1209

scheme elements. As mentioned (§4.2.1), the secret-sharing of a random secret nonce can 1210

be performed by a DKG protocol, then to be followed by a simple local generation of 1211

signature shares [SS01]. Some schemes can be tailored for a small number of parties, e.g., 1212

two [NKDM03]. More recent works have focused on a reduced number of communication 1213

rounds (though still making use of a broadcast channel, whose real implementation may 1214

require multiple rounds, depending on the system model). The protocol design can be 1215

framed within a simulatable (§4.4.1) or a game-based (§4.4.2) security formulation.1216

4.4.1. Simulatable threshold Schnorr in three rounds1217

In the ideal/real simulation paradigm of MPC, which allows for composability of ideal 1218

components, a threshold Schnorr protocol is relatively straightforward when considering 1219

as available gadgets an ideal commitment scheme, an ideal non-interactive zero-knowledge 1220

proof of knowledge (NIZKPoK), and assuming authenticated communication [Lin22]. The 1221

protocol follows from the intuitive semi-honest threshold Schnorr. A coordinator can be 1222

28

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

employed to decide the message to be signed and the signatory-subset (P ′), who collab-1223

oratively determine a session id (sid) for each signing execution. The signature format uses 1224

as first component the challenge χ , instead of the nonce commitment R, which technically 1225

makes the scheme not interchangeable w.r.t. EdDSA. However, the scheme could be adapted 1226

to become interchangeable.1227

1. Keygen: Based on a PKI, the parties are either given shares of the secret signing key 1228

or perform a Feldman VSS.1229

2. Nonce commit: Each party is invoked with the same message M to be signed.1230

• Agree on session identifier (sid). Initially, each party Pi commits (in a hiding 1231

manner) to a share Ri of the usual Schnorr nonce commitment R [notice the dou-1232

ble “commit”], at the same time that it proposes a contribution sidi to a session id. 1233

Essentially, the double commitment prevents the nonce commitment itself from 1234

being biased/manipulated even by the last party to propose their contribution. 1235

The signatory-subset S is either assumed known or proposed by the central 1236

coordinator once hearing from the several parties. Each party calculates the 1237

session id sid for the ongoing signature protocol based on the signatory subset.1238

• Reveal the nonce commitment contributions Ri. The nonce commitment 1239

contribution Ri = ri • G (not the actual nonce contribution ri) is then opened 1240

(verifiable w.r.t. its corresponding commitment) to the coordinator, along with 1241

a ZKPoK of the secret nonce contribution ri, and a signature bound to the sid. 1242

The parties then homomorphically build the global nonce commitment R, by 1243

simple group sum of all corresponding shares.1244

3. Challenge: χ is computed as usual, based on R, Q and M (see Table 5).1245

4. Signature shares: The signature shares si are generated locally by each party, based 1246

on the calculated challenge, the signing key-share and the nonce-share ri. The central 1247

coordinator (or anyone with access to the signature shares) can build the final signature 1248

and check its correctness.1249

The proof, in the static corruption model, relies on the simulation of ideal components, 1250

which allows extracting the hidden elements (e.g., nonce shares and signing-key shares) that 1251

enable ensuring the ideal execution is indistinguishable from a real one. 1252

4.4.2. Probabilistic Two-Round Schnorr1253

A class of two-round threshold probabilistic Schnorr schemes [KG21; NRS21; AB21; 1254

CKM21] protects against the k-sum attack [DEFKLNS19] by using multiple nonce contri-1255

butions per participant, and employing a “nonce binding” technique where each share of the 1256

nonce becomes dependent on the message, the set of cosigners, and the nonce contributions 1257

of all the cosigners.1258

29

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

These two-round protocols can precompute the first round, deferring for later a single 1259

round of communication for signing. The description below corresponds to FROST without 1260

preprocessing [KG21]. Other schemes operate in a similar manner.1261

1. KeyGen: Each party receives their signing key share si either from a dealer or via 1262

distributed key generation.1263

2. Nonce commit: The most distinctive aspect of this class of protocols is that each party 1264

generates two or more nonce contributions (ri,1,ri,2), instead of just one (usually two, 1265

but possibly more, depending on the scheme and security model). The contribution of 1266

each party to the final nonce commitment R is “bound” to the message M, the set P ′1267

of cosigners, and each of their own nonce commitments Ri supplied during a given 1268

signing operation.1269

Specifically, party Pi chooses two random nonces (ri,1,ri,2), and generates their 1270

corresponding commitments (Ri,1 = ri,1 • G,Ri,2 = ri,2 • G). Let B be an ordered 1271

list of the participants involved in the signing operation, P ′ and their commit-1272

ments: B = {(i,Ri,1,Ri,2) : i ∈P ′}. All parties compute a set of “binding values” 1273

ρi = H(i,M,B), for i ∈P ′. The final nonce commitment R, common to all parties, 1274

is then R = ∑i Ri,1✚ρi • Ri,2. Given the linearity of the secret-sharing scheme, the 1275

corresponding implied secret share of the nonce for each party Pi is ri = ri,1 +ρi · ri,2.1276

3. Challenge: χ is computed as usual, based on R, Q and M (see Table 5).1277

4. Signature shares: Each party’s signature share Si is computed as Si = ri,1 +ρi · ri,2 +1278

χ ·λi · si, where λi is the Lagrange coefficient for the i-th cosigner in P ′.1279

The elaborate nonce commitment procedure is needed in order to thwart the k-sum attack 1280

[DEFKLNS19], which some two-round Schnorr multisignature schemes were susceptible to 1281

when an adversary could open multiple concurrent signing sessions. The attack involves 1282

finding a challenge value χ∗ = H(R∗,Q∗,M∗) that is the sum of several other challenge 1283

values that differ in either the group’s nonce commitment R or the message M. The attack 1284

is possible when the adversary has control over the nonce commitment R, by choosing the 1285

contribution of a corrupted party adaptively after seeing the contributions of all other parties. 1286

Exploiting the attack involves solving the Generalized Birthday Problem, which can be done 1287

with subexponential complexity using Wagner’s algorithm [Wag02].1288

To turn the above scheme into a single round signing protocol, parties can locally generate a 1289

list of their nonce contributions and corresponding commitments, securely save them, and 1290

publish a list of commitments to a common location (or provide them to a party acting as 1291

the coordinator or signature aggregator). When a new signing session is initiated, the next 1292

set of commitments for each party can be sent to the parties along with the message.1293

The FROST scheme [KG21] is full threshold, meaning it can be instantiated with any secret-1294

sharing recovery threshold t (out of n). MuSig2 [NRS21] and the delinearized witness 1295

multi-signatures (DWMS) [AB21] are multisignature schemes that operate in the plain public 1296

key model. SpeedyMuSig is similar to MuSig2 but operates in the KOSK model, which 1297

enables faster key aggregation [CKM21]. 1298

30

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

5. Further considerations1299

Section 4 has described various approaches for producing threshold Schnorr-style signatures. 1300

The present section proposes complementary aspects relevant for when preparing future 1301

related guidance and recommendations. These considerations are also relevant for any 1302

upcoming call for contributions and/or when analysing corresponding proposals of threshold 1303

schemes interchangeable w.r.t. EdDSA verification.1304

• Section 5.1 enumerates aspects of the threshold setting that make the case of a 1305

corrupted signer more complex and inherently more pertinent.1306

• Section 5.2 points out the diversity of security formulations, and how some security 1307

notions (e.g., strong unforgeability) are generalized in the threshold setting. 1308

• Section 5.3 considers characteristics of the system model, namely assumptions about 1309

underlying communication functionalities.1310

• Section 5.4 revisits the issue of bad randomness, and how the threshold setting enabled 1311

new ways of resolving it.1312

• Section 5.5 motivates modularity and composability, and recalls useful phases (e.g., 1313

key-resharing, and replacement of faulty-parties).1314

5.1. “Thresholdized” signer1315

In the conventional setting, the security formulation of digital signatures is classically 1316

established by an unforgeability game (Section 3.3). There, the adversary does not know 1317

the private signing key but controls a client, who can request signatures from a signing 1318

oracle that knows the private key. The case of a corrupted signer is typically less considered, 1319

although it is the basis for the message binding property (Section 3.4). In the threshold 1320

setting, the signer becomes distributed, due to the secret sharing of the private key across 1321

multiple parties. The adversary can then also control some of the key-share holders. It thus 1322

becomes relevant to consider the case of a corrupted signer (i.e., in the threshold sense). The 1323

more complex adversarial model raises new considerations about adversarial capabilities 1324

and goals. For example:1325

1. Corruption threshold: the adversary can control up to a corruption threshold f of the 1326

key-share holders. Which ranges of f are acceptable? Some functionalities/protocols 1327

will only work for certain intervals of the proportion f/n (corruption threshold over 1328

number of parties).1329

2. Agreement: the decision to sign a message becomes distributed across a set of 1330

cosigners, including corrupted parties. Whether the agreement is assumed as implicit, 1331

or follows explicitly from a verifiable request from an external client or coordinator, it 1332

needs to actually be implemented when the system is deployed.1333

3. Number of signatures: if the participation threshold (i.e., the needed quorum) is not 1334

higher than (n+ f)/2, how many signatures should it be possible to create from a 1335

single authorized request that is broadcast to all parties? Consider an adversary who 1336

— besides compromising f parties — has some control over the network, and can 1337

31

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

partition the honest parties into two separate networks, causing them to participate in 1338

two distinct Schnorr signings of the same message.1339

4. Concurrent signing: the adversary can corrupt some of the parties and thus observe 1340

and interfere with the intermediate steps of the concurrent generation of multiple 1341

signatures. This is not possible in the conventional unforgeability game, where 1342

each signature is produced by an oracle who processes each request independently. 1343

Without proper safeguards, some protocols secure in a threshold standalone setting 1344

(without concurrency) may enable forgeries in the threshold concurrent setting. For 1345

example, if the signature scheme allows the adversary to maliciously influence the 1346

nonce commitment R, then a forgery may be obtained upon solving a k-sum problem 1347

[DEFKLNS19; BLLOR21].1348

5. Messages adapted to the nonce commitment: depending on the threshold protocol, 1349

an adversary may be able to select a message with a noticeable relation to M (e.g., 1350

M=R). This would not be possible in the conventional SUF game, since there the 1351

oracle signer produces a (pseudo)random R. However, actual unforgeability may 1352

follow even though the adversary is able to learn R before selecting the message M. 1353

(Note that such capability is not considered in usual conventional proofs of security.) 1354

Other security formulations may specifically disallow this.1355

Being aware of the possible options and their differences is relevant to enable a security 1356

formulation that captures the intended functionality and/or desired properties. 1357

5.2. Threshold security formulation1358

There is room for nuances in security formulations for threshold signatures. For example, an 1359

ideal threshold signature functionality — in the universal composability (UC) framework 1360

— may define that a signature is produced only when all parties request the signature of a 1361

given message M. In a security-with-abort formulation, the adversary is allowed to see the 1362

signature first and decide whether or not the honest parties can receive it [BST21, Fig. 8].1363

The functionality may also require that all parties agree on a proposed nonce commitment R, 1364

before proceeding to release the remainder (S) of the signature [GKMN21, Func. 9.1]. The 1365

quorum (participation threshold) t ′ and session identifier sid may be explicitly encoded, so 1366

that the signature is produced once t ′ parties request it, with an agreeing sid [Lin22, Fig. 4.2].1367

Security formulations can be described via an ideal functionality or via games for each 1368

intended property. These may also encode whether or not, for example, a coordinator/aggre-1369

gator facilitates the communication between the remaining parties, and is responsible for 1370

outputting the final signature upon obtaining signature shares from the other parties [KG21; 1371

Lin22]. In the case of multi-signatures, the UF game also considers the set of public keys 1372

used to generate a signature. Then, an adversarial win requires generating a signature for a 1373

message M and a cosigners set P ′ (i.e., set of their public keys) that includes at least one 1374

honest party that never agreed to sign the message within that cosigners set ([BN06, Sec. 4]; 1375

[NRS21, Fig. 3]). This can be generalized to a SUF sense, by considering as forgery any 1376

32

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

new signature for the same pair (P ′, M). Various levels of unforgeability strength can be 1377

defined based on the goal and capabilities of the adversary (see Sections 3.3 and 5.2.1), 1378

namely what is considered a valid forgery and which contributions an adversary can obtain 1379

from honest parties [BTZ22; BCKMTZ22]. Security formulations can also cover additional 1380

modules/features, such as robustness [RRJSS22].1381

The suitability of each formulation can vary with the intended system model and/or the 1382

presence of features of interest to envisioned application settings. It is nonetheless important 1383

to check whether the adversary in the threshold setting is prevented from gaining an ability 1384

that exceeds that of the adversary in the conventional scheme.1385

The simulatability setting provides a natural way of going beyond unforgeability. For 1386

example, it inherently requires an unbiased nonce commitment, whereas in the case of a 1387

game-based definition for UF, that property only tends to appear as a protection against a 1388

concrete attack. Still, one can also define games for other threshold properties. As another 1389

example, when an ideal functionality directly selects the nonce commitment, after the 1390

message to be signed has been determined, the formulation inherently requires protects 1391

against subliminal channels (see §5.2.4).1392

5.2.1. Strong threshold unforgeability1393

Since EdDSA is not verifiably deterministic, unforgeability should be considered in the 1394

“strong” sense: SUF (see Section 3.3). This notion becomes generalized in the threshold 1395

setting, where the adversary can corrupt up to f parties, besides possibly controlling a client 1396

able to issue valid requests for message signing, and also possibly controlling the message 1397

delivery in some channels. Thus, with EdDSA being SUF in the conventional setting, it is 1398

useful that a threshold scheme interchangeable w.r.t. EdDSA considers a threshold notion of 1399

SUF within the claimed corruption threshold.1400

Recent work has formalized game-based definitions for various levels of strong unforge-1401

ability in the threshold setting [BTZ22; BCKMTZ22]. The different levels consider, for 1402

example, the number of honest parties providing contributions (e.g., signature shares, if in a 1403

non-interactive setting) upon receiving a signing request. Also of interest are simulatability 1404

formulations, where an intended notion of unforgeability (as well as other properties) may 1405

be derived from the specification of an ideal functionality.1406

A SUF notion should clarify the conditions under which an adversary is expected to be able 1407

to generate a new signature (see §5.2.2). Also, unforgeability should remain even when the 1408

adversary is able to adaptively corrupt parties (see §5.2.3).1409

5.2.2. Number of signatures per request1410

The conventional unforgeability notion asks that an adversary be unable to obtain more 1411

signatures than those that have been properly “requested”. In the threshold setting, the 1412

notion of “request” can depend on the system model. For example, it can vary between (i) 1413

33

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

being any request signed by an authorized client (including one controlled by the adversary), 1414

and (ii) being the result of an agreement (i.e, decided by an external protocol) between 1415

the parties. There are diverse options for the threshold security formulation to encode the 1416

meaning of valid signing request.1417

A security formulation for a threshold signature scheme should enable a clear understanding 1418

of what would be considered generating too many signatures, as compared to the number 1419

of legitimate requests. It should consider that some malicious requests (say, in the model 1420

where a client directly sends valid signed requests to each separate party) may lead to 1421

partial executions that do not end with a valid signature. These partially fulfilled requests (a 1422

notion not present in the conventional setting) should not give the adversary an additional 1423

advantage in producing non-requested signatures. Several techniques may be considered 1424

to protect against the generation of extra signatures. These may include, for example, a 1425

requirement for starting with a collective agreement on which messages to sign, and in 1426

which order, and/or the use of clocks, timestamps, counters and session identifiers.1427

The notion of a participation threshold t ′ is also relevant. Consider a protocol with a 1428

small corruption threshold f (with f < bn/2c), and an underlying secret-sharing whose 1429

reconstruction threshold t is equal to just one more party (i.e., t = f +1). If a request does 1430

not identify the cosigner subset P ′, then an adversary controlling the network channels 1431

can partition the set of parties into two independent quorums. Could this lead the same 1432

request to generate two different signatures? Despite the low corruption threshold f , by 1433

requiring that the participation threshold t ′ is higher than n/2+ f (the exact minimum may 1434

vary with the type of synchrony and other assumptions), then any two signing executions 1435

will have at least one common honest party. Note that this is exemplifying a participation1436

threshold t ′ higher than the reconstruction threshold t. Alternatively, a protocol may require 1437

that each signing request explicitly identifies the subset P ′ of allowed cosigners, to prevent 1438

non-included honest parties from giving a contribution to the adversary.1439

Example of multiple uncontextualized requests. Consider an application that composes a 1440

threshold signature scheme with an external decision algorithm used by each honest party 1441

to decide whether (i) to participate honestly in the signing, or (ii) to declare not being 1442

available to participate. What happens then if a request to sign the same message appears 1443

several times, while the parties’ participation decisions (whether or not to sign that message) 1444

alternate across requests and across parties?1445

Consider a threshold scheme with participation threshold t = 3, and only n = 3 parties: 1446

A and B are honest; C is malicious. Suppose there are two certified requests to sign the 1447

same message M. Suppose that upon the first request only parties A and C are willing to 1448

participate, and upon the second request only parties B and C are willing to participate. 1449

Suppose the adversary is able to replay messages, judiciously selecting which messages to 1450

send to which honest parties. Can the adversary induce the creation of a signature, even 1451

though the number of “honest” parties available to participate for each request has never 1452

reached the participation threshold?1453

34

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

A proposed security formulation and system model for a threshold signature scheme should 1454

include details that enable answering this type of question. Special care is required for 1455

the case of concurrent signing requests, where parties may receive requests in inconsistent 1456

orderings, or even with inconsistent content produced by malicious participants. The use of 1457

(and agreement on) session identifiers is often a necessary element to handle concurrency.1458

5.2.3. Safety against adaptive corruptions1459

Unforgeability should be guaranteed against adversaries that can adaptively choose, based 1460

on an observation of the protocol execution, which parties to corrupt (up to the threshold f). 1461

As compared to static corruptions, which must occur at the onset of a protocol execution, 1462

adaptive corruptions introduce a new degree of freedom.1463

The following is a classical example (slightly adapted in the parameters) of a statically-secure 1464

but adaptively-insecure protocol [CFGN96], w.r.t. confidentiality for secret storage: an 1465

incorruptible dealer distributes secret-shares of a key across a relatively small random subset 1466

with f parties (f ≈
√

n), using an f -out-of- f secret-sharing scheme, and then advertises 1467

the subset. A static adversary has a negligible probability — asymptotically in n — of 1468

having corrupted the needed subset of f parties before said set is advertised. Concretely, 1469

the probability is the inverse of the number (“n choose f ”) of possible subsets of f parties 1470

from within the set of n parties. Conversely, an adaptive adversary can wait to hear the 1471

advertisement and only then corrupt exactly the f key-share holders, thereby finding the 1472

secret. The example can be adapted to other safety properties, such as unforgeability.1473

Despite the gap between static and adaptive security, many protocols that in practice are 1474

proven statically-secure also retain some desirable properties (though not necessarily all) in 1475

the adaptive corruption setting. W.r.t. a game-based security property, a proof of security 1476

for a given protocol may happen to be independent of the difference between static vs. 1477

adaptive corruptions, and imply security against both types of adversaries. In the UC 1478

simulatability setting (ideal/real simulation paradigm) [Can01], security against adaptive-1479

active corruptions is in general more challenging to achieve, compared to the case of 1480

static-active corruptions [CDDIM01]. However, this difficulty is often because the security 1481

formulation comprises not just one safety property (such as unforgeability), but rather defines 1482

a whole functionality encompassing properties of a different nature, such as deniability of 1483

execution and composability (which are not captured by the unforgeability game).1484

Because of the technical difficulties with adaptive security in a simulatability setting in the 1485

UC framework, it is common to see protocols proven secure only in the static setting, often 1486

with an implicit understanding that the lack of adaptive security does not mean a complete 1487

breakdown of safety properties in case of adaptive corruptions. In fact, a loss of deniability 1488

of execution and/or of some types of composability is something that may already happen 1489

when a protocol deployed in practice uses real (non-ideal) components to instantiate ideal 1490

components used in the proof of security (e.g., replacing a programmable random oracle by 1491

a cryptographic hash function).1492

35

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

Given the possibility of adaptive corruptions in the real world, it is important to consider for 1493

any proposed threshold signature scheme whether the major safety properties of interest (such 1494

as unforgeability) are safeguarded against such an adversary. It is acceptable that this comes 1495

at the expense of some adjustment of the ideal functionality. It can also come in the form of a 1496

different argument, such as the case of adaptive security in the constructive cryptography (CC) 1497

setting [HLM21]. The latter provides an approach to explore another flavor of simulatable 1498

adaptive security, while avoiding the mentioned difficulties. 1499

5.2.4. Preventing subliminal exfiltration1500

A (stateless) probabilistic signature scheme provides an avenue for exfiltration of secret 1501

information, using the randomized component (e.g., a nonce commitment) as a subliminal 1502

channel [Sim94; AMV15]. This also applies to deterministic signatures (such as EdDSA and 1503

deterministic ECDSA) that can be undetectably made probabilistic by a malicious signer. For 1504

example, consider the case of a client who requests EdDSA signatures from a cryptographic 1505

security module (CSM) that holds the signing key. If the CSM has been corrupted, then it 1506

can maliciously influence the nonce commitment R to exfiltrate secrets via signatures.1507

The threat of subliminal channels can be mitigated with suitable threshold schemes, for both 1508

probabilistic and deterministic schemes. Suppose the administrator establishes a threshold 1509

signature scheme across various CSMs. A protocol can be such that no isolated CSM (nor 1510

any coalition up to the corruption threshold) is able to bias the bits in the final signature. A 1511

limitation exists in the case of security-with-abort formulations, where the the adversary has 1512

a chance to prevent undesired outputs, which provides a low capacity channel.1513

Since unforgeability does not imply unbiased signatures, the threshold assurance of the latter 1514

in Schnorr/EdDSA signatures depends on the actual threshold scheme / security formulation. 1515

In particular, the malicious manipulation is allowed in some 2-round protocols (§4.4.2) where 1516

a malicious party (possibly the coordinator) is able to wait to be the last to propose a nonce 1517

commitment contribution, while already knowing the nonce commitment contributions of the 1518

other parties. Conversely, threshold schemes arising from a simulatability formulation tend to 1519

automatically ensure an unbiased nonce commitment. This is because their ideal functionality, 1520

which the protocol needs to emulate, selects the nonce r (uniformly or pseudorandomly) and 1521

calculates the nonce commitment R without interference from any party. This applies to both 1522

probabilistic (§4.4.1) and deterministic cases (§4.3). Naturally, this is also possible from 1523

protocols proven unforgeable with respect to a game-based definition, such as usual in those 1524

with three or more rounds [SS01; MPSW19].1525

5.3. System model1526

Several elements of the system model affect the suitability of protocols, approaches and 1527

realizable functionalities for threshold signatures. The following are relevant considerations: 1528

how authenticated channels are implemented (§5.3.2); whether parties have access to a reli-1529

able broadcast channel (§5.3.3); which timing assumptions the protocol can rely on (§5.3.4); 1530

36

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

whether the deployment allows for a precomputation (offline) phase, before learning the 1531

message to sign (§5.3.5); what happens when system model assumptions are broken (§5.3.6).1532

5.3.1. Interface for signature request and delivery1533

Use of a coordinator or aggregator. Important safety properties, such as unforgeability, 1534

must hold even if the coordinator is malicious and sends inconsistent messages across 1535

different cosigners, so long as the number of corrupted cosigners is within the corruption 1536

threshold. As a tradeoff, some availability properties may be sacrificed, as happens with 1537

security-with-abort formulations, where an adversary can decide to not let the protocol 1538

produce a valid signature. 1539

Shared-I/O modes. In a threshold scheme where the operation request comes from an 1540

external party, it is possible to have none of the internal parties (i.e., the key-share holders, 1541

including corrupted ones) see the final signature value. This shared-output (shared-O) mode 1542

can result from a formulation where the ideal functionality sends the signature (or set of 1543

signature shares) only to the client that requested it. The ideal functionality also interacts 1544

with the various parties to ask their agreement about signing the message. However, besides 1545

seeing the message, each party sees at most a few shares of the signature (not enough to 1546

reconstruct it). A shared-Input (shared-I) mode is also conceivable, with the input arriving 1547

secret-shared (e.g., possibly with a VSS to enable verifying consistency of the shares). This 1548

is less practical since it requires a distributed computation of the SHA-based challenge χ . 1549

The shared-I/O modes [NISTIR 8214A, §2.3] are not meant to include the special case of an 1550

MPC where the message remains secret for the entire threshold entity (even if all parties 1551

collude). The current scope is to consider an outsourced signature, performed by a threshold 1552

entity, where the client (the signature requester) may at most perform secret-sharing and/or 1553

reconstruction. Naturally, one can combine both shared-O and shared-I features into a 1554

shared-IO mode.1555

Threshold auditability. Threshold schemes may have additional features beyond their 1556

functional output. For example, public auditability may be useful for some applications. This 1557

verifiability can be embedded into secret sharing [Sch99] as well as into more general MPC 1558

[BDO14]. Besides the original intended output, a publicly auditable MPC would produce 1559

a proof of correct execution. For a threshold signature scheme this could mean a proof 1560

that a signature was produced via a threshold interaction ([NISTIR 8214A, §2.5]), with the 1561

agreement and collaboration of a particular subset of parties. This makes sense if the client 1562

or the public has access to a PKI with the public keys of the cosigners, or to something that 1563

verifies the underlying secret sharing. To be clear, an auditability transcript would not be 1564

considered part of the signature to be parsed by the client, but rather an auxiliary output of 1565

the protocol execution, to possibly be consumed by a separate audit application.1566

37

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

5.3.2. Authenticated channels1567

It is customary in MPC protocols to assume the existence of authenticated channels. In 1568

a practical deployment, the channels have to somehow be instantiated. In the real world, 1569

authentication may depend on physical assumptions (such as a communication wire con-1570

necting two parties) and/or cryptography. Such a setup may be prepared by an administrator 1571

(e.g., if all parties belong to the same administrative domain), or in some ad-hoc manner 1572

(perhaps based on a PKI, a distributed protocol, or other means). Practical implementations 1573

can, for example, be based on:1574

• public-key cryptography: e.g., based on digital signatures with one public-key associ-1575

ated to each party; or1576

• symmetric-key cryptography: e.g., using a hash-based message authentication code 1577

(HMAC), with a different key for each pair of parties.1578

The type of authentication affects the security and capabilities of protocols. For example, a 1579

PKI can support transferable authentication based on signatures, so that party A can prove 1580

to party B that party C sent something to A. Conversely, an HMAC-based authentication 1581

is typically non-transferable (deniable). Typical ideal authenticated channels are deniable. 1582

A transferable instantiation may be considered a feature or a handicap, depending on the 1583

context. Authentication is also relevant between a client that requests a message and the 1584

parties that receive such request. 1585

The actual (real) authenticated channels available in the signing phase may be different 1586

from those in a preceding distributed keygen. In fact, the state obtained from a keygen 1587

(distributed or dealer-based) may be designed to enable new authenticated channels (even 1588

private, if need be, to support secrecy of transmitted content) in the subsequent signing 1589

phase. This requires proper care, or else possibly result in a security failure. In practice, 1590

a popular instantiation of authenticated and/or private channels is based on the transport1591

layer security (TLS) protocol. However, its composability with (i.e., replacing the ideal 1592

authenticated channels of) a threshold scheme should be carefully considered. For example, 1593

a careless instantiation of authenticated channels by using the actual key-shares obtained in 1594

the keygen phase could help the adversary produce a forgery. Conversely, it is an interesting 1595

consideration to think how to enable, in the signing phase of a threshold signature scheme, 1596

an instantiation of authenticated channels based on the material obtained during the keygen 1597

phase. Conceivably, this may be based on signatures that rely on the actual key-shares of the 1598

signing key, or derived therefrom.1599

As part of the communication setup, a threshold scheme specification can assume that every 1600

party knows the set of possible cosigners (and each other’s public key, or pairwise symmetric-1601

key). In practice this may be bootstrapped by an administrator, or by an ad-hoc agreement 1602

between parties with the help of a PKI. Some system models may allow a dynamic set of 1603

participants, establishing rules for deciding when and how to onboard new cosigners (and 1604

their keys), and/or remove old cosigners. 1605

38

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

5.3.3. Broadcast1606

As a primitive to facilitate obtaining agreement, some protocols make use of reliable broad-1607

cast, where an honest receiving party is ensured that other honest parties have also received 1608

the same message. In some cases, reliable broadcast may be woven into the communication 1609

steps of the signing protocol, to reduce the overall number of communication rounds. Its 1610

realization depends on the communication model, e.g., whether or not there is a PKI to enable 1611

transferable authentication of messages (i.e., party A can prove to party B that party C has 1612

signed a message), a coordinator facilitating the message delivery (possibly also signing the 1613

delivered messages) vs. only point-to-point channels. The notion of reliable broadcast is 1614

stronger than a simple multicast where a party sends a message to every other party. In other 1615

words, it matters that each receiving party gains assurance that a particular message claimed 1616

to have been broadcast/multicast has also been received by every other honest party.1617

5.3.4. Timing assumptions1618

The performance and security of threshold signature schemes depends on the underlying 1619

communication model, particularly the timing for message delivery across participants. In 1620

the synchronous model, there is a known upper bound on the delay before messages are 1621

delivered. The asynchronous model, on the other hand, has no upper bound on the message 1622

delay, only requiring that messages be delivered eventually. A variety of other models 1623

exist, such as partial synchrony, where a period of asynchrony is followed by a period of 1624

synchronous communication.1625

More conservative timing assumptions can make a protocol more resilient to problems with 1626

the underlying communication network. However, this can come at the cost of stricter re-1627

quirements on the protocol’s design, performance penalties, and lower corruption thresholds. 1628

For example, the asynchronous setting does not allow parties to distinguish between the 1629

following scenarios: (i) a malicious party did not send a message, and (ii) an honest party 1630

sent a message, but is experiencing delays in its delivery over the network. As a result, more 1631

honest parties may be required to achieve the protocol’s security goals.1632

5.3.5. Offline/online phases1633

Efficiency goals usually aim for low latency (low round-complexity), low communication 1634

complexity (number of communicated bytes) and/or high throughput (number of signatures 1635

per unit of time). In threshold settings, there are so-called offline/online models that allow pre-1636

processing a significant amount of computation and communication in an offline phase, before 1637

the actual arrival of a message signing request. This allows for a subsequent lighter/faster 1638

online phase. For example, the selection of elements necessary for a later determination 1639

of the nonce commitment R and the nonce secret-sharing [r] can be performed before the 1640

message is known. (Note that even the contributions Ri to the “nonce commitment” R may 1641

be initially “committed”, when a security formulation requires preventing the adversary from 1642

maliciously affecting R.) The generation of correlated randomness (and pseudorandomness) 1643

39

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

can be particularly useful [Bea96; IKMOP13; BCGIKS19]. An offline phase may also 1644

prepare some aspects of agreement, such as possibly a coordinator.1645

5.3.6. Beyond covered assumptions1646

A threshold scheme may be designed and have provable security for a particular system 1647

model and adversarial capabilities. What happens, however, if those assumptions are not 1648

met? For example, what happens if (i) an assumed synchronous communication network 1649

turns out to be asynchronous (see §5.3.4), or if (ii) an assumed reliable broadcast channel 1650

(see §5.3.3) does not actually reach every party, or if (iii) the number of corrupted parties 1651

(see Section 5.1) exceeds the corruption threshold by 1 or more? It is useful that the security 1652

analysis of a threshold scheme considers these questions, identifying possible ranges of 1653

graceful degradation, vs. others of complete security breakdown. In the case of a signature 1654

scheme, allowing forgeries would be a complete security breakdown, whereas losing fairness 1655

could be acceptable. Thus, if a protocol enables a given security formulation with up to f1656

corruptions, it may still enable another security formulation with up to f + ε corruptions, 1657

possibly with mixed types of corruptions (some active, others fail-stop, others semi-honest) 1658

[FHM98; HM20; DER21]. Graceful degradation w.r.t. to continued corruptions can also be 1659

promoted by abort-recovery subprotocols, for example if identifying the parties that have 1660

misbehaved and then being able to remove them. 1661

5.4. Good vs. bad randomness1662

The issue of good vs. bad randomness is central to implementation security, as already 1663

discussed in Section 3.5. In the threshold setting, each party may be subject to the causes 1664

of bad randomness that affect the conventional (non-threshold) setting, such as insufficient 1665

entropy, or rewinding/snapshot susceptibility (see §3.5.1). In the conventional setting, these 1666

concerns have motivated the use of pseudorandomness when generating the secret nonce in 1667

EdDSA. The use of randomness is more complex in the threshold setting, with both more 1668

opportunities and challenges for security.1669

A naive recourse to a purely pseudorandom mode may be vulnerable to the malicious 1670

introduction of randomness (see §4.3.1). Conversely, the threshold setting can provide 1671

some protection against bad randomness in probabilistic signature schemes. For example, a 1672

threshold protocol can combine various random contributions in such a way that the good 1673

randomness from a single honest party results in a signature without bias. Probabilistic 1674

threshold signature schemes nevertheless have various randomness-related concerns, such as: 1675

inadvertent correlated randomness across parties (§5.4.1), attempts to maliciously influence 1676

the value of the secret nonce r or its commitment R (§5.4.2), and internal attacks against 1677

internal “well behaved” parties that have bad randomness (§5.4.3).1678

Issues of bad randomness can affect even threshold protocols for deterministic signing. 1679

This is because multi-party protocols often resort to randomness for internal gadgets (e.g., 1680

garbled circuits and oblivious transfer). In fact, even secret sharing of a key most often 1681

40

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

relies on randomness. Therefore, the issue of good vs. bad randomness needs to be carefully 1682

considered in the specification of a threshold scheme, including the phases of keygen and 1683

signing (both deterministic and probabilistic).1684

5.4.1. Inadvertent correlated randomness1685

The threshold setting brings in the issue of inadvertent “correlated randomness”. When 1686

various signers operate in a similar environment (e.g., same software bootstrapped in equal 1687

conditions, and/or using a common pool of entropy), their resulting local randomness may 1688

be inadvertently correlated.1689

One mitigation to address this unwanted correlation is to have each party transform their 1690

randomness by applying a pseudorandom transformation relying on a local secret. This 1691

ensures that the randomness of each party is unpredictable, as long as their secret remains 1692

unpredictable to the other parties. For better resistance against side-channel attacks that may 1693

try to exfiltrate such a secret, the secret can be updated in each use (to the extent that that 1694

party is able to maintain that extra state).1695

The issue of inadvertent “correlated randomness” discussed here should not be confused 1696

with the use of securely generated “correlated randomness” in MPC [IKMOP13], which can 1697

be useful to reduce communication complexity.1698

5.4.2. Manipulating the nonce commitment1699

It is well known that the biasing of the secret nonce r used to produce an EdDSA signature 1700

allows extracting the signing key (§3.5.2). More subtly, the possibility of malicious influence 1701

of the nonce commitment R is also problematic. If a cosigner is able to present their 1702

contribution Ri once already able to compute the final nonce commitment R, then it can 1703

use the nonce commitment as a subliminal channel to exfiltrate information. Perhaps more 1704

importantly, in the threshold setting, the manipulation of the nonce commitment can in some 1705

cases enable forgeries, in the case of concurrent signing [DEFKLNS19]. The malicious 1706

influence can be avoided by requiring that every participant commits to their contribution 1707

before anyone reveals it [SS01; MPSW19] (see also §5.2.4). These challenges should be 1708

limited within the indicated corruption threshold (see Section 5.2.4), since the R is supposed 1709

to be indistinguishable from random.1710

5.4.3. “Well-behaved” parties with bad randomness1711

The threshold setting can easily leverage the local good randomness from a single participant 1712

to ensure an unbiased secret nonce r, and thus mitigate the risk of leaking information about 1713

the signing key. The tolerance to malicious corruptions already handles the case of (up to a 1714

threshold f) parties with bad randomness. Yet, there is benefit in focusing attention in the 1715

specific case of “well-behaved but with bad local randomness” (WBBR) parties.1716

Corruption escalation. The key-recovery pitfall described earlier (§4.3.1), for a (careless) 1717

41

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

threshold deterministic scheme can be reconsidered for a probabilistic scheme. The former 1718

had an honest deterministic party interacting with a maliciously randomized party. By 1719

analogy, the same issue may occur in a (careless) probabilistic scheme where a well-behaved 1720

(colloquially called “honest”) party only has access to “bad randomness” (such as from 1721

a repeating seed). Then, the well-behaved party may leak their secret key-share to an 1722

internal malicious party, becoming itself corrupted to a higher degree. A threshold protocol 1723

should protect WBBR parties from having their corruption escalate to an exfiltration of their 1724

key-shares when interacting with (other) malicious parties.1725

Tolerance to more corruptions. If handled properly, the attention to the WBBR case allows 1726

for a possible increase in the tolerance to corruptions. Once fixing the main corruption 1727

threshold f for malicious compromises, the requirement for “good randomness” may be 1728

sufficient to apply to a threshold of the remaining honest parties, rather than to all of them. 1729

This can mean more suitability for deployment in settings where some “bad randomness” is 1730

expected. The WBBR parties would then leverage good randomness from the other honest 1731

parties. The advantage is resistance to not only up to f (the original threshold of) arbitrarily 1732

malicious parties, but potentially to the participation of additional WBBR parties. The 1733

presence of at least one honest party (with good randomness) requires the number of WBBR 1734

parties to not be higher than t ′− f −1, where t ′ is the quorum required by for signing. In the 1735

optimistic case where every party follows the protocol specification, the good randomness 1736

from a single honest party, is sufficient to ensure an unbiased nonce, despite the possible 1737

presence of up to t ′− 1 WBBR parties. Lower thresholds for WBBR may be required, 1738

depending on the approach, and a formal security claim requires careful analysis.1739

5.5. Modularity and composability1740

A threshold scheme proposal can benefit from a modular description and implementation. 1741

This applies both to protocol phases and to building blocks (gadgets).1742

5.5.1. Phases1743

Some modularity naturally follows from the structure of a signature scheme. The keygen 1744

and the signing phases should be defined separately, albeit in an interoperable manner. That 1745

is, the signing protocol should make sense regardless of whether the keygen is achieved via 1746

a dealer or a distributed protocol (§4.2.1).1747

Modularity also makes sense w.r.t. possible additional sub-protocols, such as:1748

• secret-resharing, for proactive security, to render useless any key-share that may have 1749

already leaked to the adversary (assuming fewer than f shares have leaked since the 1750

most recent resharing);1751

• dynamic change of participants, such as altering the set of potential cosigners (and thus, 1752

when applicable, their keys) and possibly the change of corruption and participation 1753

thresholds.1754

42

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

The above examples require deletion of old shares, in order to retain security in the face of 1755

mobile adversaries that continue corrupting parties after a resharing phase.1756

Some phases may be the result of a certified administrative request built in to the implemen-1757

tation, such as to increase n and f , requiring a resharing of the private key.Some phases may 1758

be activated when special internal conditions are met, such as those foreseen in threshold 1759

schemes with identifiable abort, where a party may be identified as malicious. A protocol 1760

may have a special provision to retry a signing operation after getting rid of an identified 1761

malicious party, in order to provide robustness, i.e., successfully producing a signature 1762

despite the malicious parties.1763

Each phase may come with tradeoffs, such as possibly imposing a more restrictive set of 1764

security parameters (e.g., thresholds) or setup conditions (e.g., communication network). 1765

For example, the phases may be more difficult to complete in an asynchronous network or 1766

against adaptive adversaries, and may bring other operational concerns related to agreement. 1767

Some changes in the system need to be agreed upon by all (or a qualified majority of the) 1768

honest parties, to avoid a partitioning where a qualified set of parties (able to produce 1769

signatures) retains a vision of the past shares.1770

Even within the signing phase, there may be a partition between precomputation and online 1771

sub-phases. There may also be a modular description of possible consensus mechanisms 1772

used to decide which message is to be signed, the session identifier sid and the subset of 1773

cosigners to participate in the session. Despite modular descriptions of some aspects of the 1774

signing phase, it may be possible to superpose them in order to reduce the number of rounds 1775

of communication. For example, the parties may both commit to their nonces and agree on 1776

an sid in the same round.1777

5.5.2. Gadgets1778

Ideally, various building blocks (gadgets) can be identified and used in a way that allows 1779

replacement with other instantiations, and/or which can be reused in other threshold schemes. 1780

This document has mentioned several examples of gadgets: secret sharing, garbled circuits, 1781

oblivious transfer, commitment schemes, secret resharing, Lagrange interpolation, zero-1782

knowledge proofs, etc. The security upon replacement of a gadget instantiation by another 1783

one may depend on the composability of the scheme, as well as variations in the setup 1784

assumptions. Some replacements are safeguarded by some type of security proof (e.g., 1785

universal composability, where an ideal component can be replaced by a corresponding 1786

UC-secure one), while others may require a closer look (e.g., because of a somewhat distinct 1787

interface) but still provide a conceptual simplification that eases the analysis.1788

43

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

6. Conclusions1789

This document has discussed threshold signature schemes interchangeable w.r.t. the Ed-1790

DSA verification specified in Draft FIPS 186-5. These threshold signatures allow for a 1791

drop-in replacement of conventional (non-threshold) EdDSA signatures, being compatible 1792

with legacy code for signature verification. Compared to conventional implementations, a 1793

threshold signature scheme enables a distribution of trust regarding the secrecy of the private 1794

signing key. The threshold setting additionally allows for better implementation security 1795

w.r.t. concerns of bad randomness and side-channel attacks (see Table 9).1796

Table 9. Types of signature vs. concern — informal assessment1797

1798 Signature
 mode

 Nonce
 generation

 Attack of
 Concern

 Informal assessment

1799 Conventional Threshold

1800
 Deterministic Pseudorandom

 Bias Not applicable Not applicable

1801 Side channel More vulnerable Safer

1802
 Probabilistic Randomized

 Bias Vulnerable Safer

1803 Side channel Less vulnerable Safer

1804
 Hybrid

 Bias Not applicable Not applicable

1805 Side channel Less vulnerable Safer

The use of “Less” and “More” preceding “vulnerable” is only for comparison within the side-channel attack
concern. Each “Safer” is meant in comparison with the assessment of the conventional setting in the same row.
In the threshold setting, the assessment does not relate to the corruptibility of individual parties, but rather to
unforgeability property when assumed that the number of corrupted parties is within the allowed threshold. This
informal table is meant only to provide intuition; more context is needed for formal conclusions about each
concrete signature scheme.

1806

1807

1808

1809

1810

1811

6.1. Comparing probabilistic and deterministic threshold EdDSA1812

There is a wide design space for threshold signature schemes interchangeable w.r.t. FIPS-1813

specified EdDSA verification. This includes schemes that produce deterministic signatures 1814

(though not verifiably-deterministic) and also probabilistic schemes. Considering the di-1815

versity of approaches and tradeoffs, it would be beneficial to devise recommendations or 1816

guidance, to facilitate the secure deployment of threshold signatures. This should involve 1817

a more thorough analysis and refined characterization of the potential space, aided by the 1818

broader community of cryptography experts.1819

Threshold deterministic EdDSA signatures may be useful in some niche cases, but they tend 1820

to be considerably less efficient than threshold probabilistic schemes. If an application re-1821

quires ECC-based deterministic signatures interchangeable w.r.t. FIPS-specified verification, 1822

44

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

then the threshold setting provides an interesting mitigation against the lack of verifiable 1823

determinism. A protocol can be devised so that determinism stems from the coverage of the 1824

threshold corruption assumption, though this determinism remains unverifiable.1825

Deterministic threshold schemes that require a distributed SHA-based nonce computation 1826

are prone to an inefficient protocol. Other approaches that calculate a deterministic secret 1827

nonce using MPC/ZKP-friendly hashes can reduce the cost. In the setting of threshold 1828

signature schemes interchangeable w.r.t. EdDSA-verification, the probabilistic approach 1829

enables schemes that may be simpler and more efficient than deterministic ones. Intuitively, 1830

the probabilistic approach is natural for threshold Schnorr-style schemes, taking advantage 1831

of homomorphic properties already innate to the signature scheme elements.1832

Compared to probabilistic Schnorr/EdDSA schemes in the conventional setting, the threshold 1833

setting enables schemes that may be less vulnerable to biased random number generators. 1834

Additional assurance can come from utilizing a hybrid mode of nonce generation (see 1835

Section 3.5), which is possible in both conventional and threshold settings. It can be 1836

straightforwardly employed to enhance a prior use of pure randomness, by additionally 1837

applying a pseudorandom transformation, while retaining high efficiency.1838

The comparison between probabilistic and deterministic approaches can further depend 1839

on the application setting and intended features. For example, the resharing of a secret-1840

shared private nonce-derivation key (only needed for the deterministic approach) may be 1841

substantially more difficult than that of the private signing key.1842

The mentioned features make probabilistic EdDSA well aligned for consideration by NIST, 1843

as framed in Draft FIPS 186-5 when expressing (page 5, end of item 3) that “additional digital 1844

signature schemes may be specified and approved in FIPS publications or in NIST Special 1845

Publications.” Interestingly, Draft FIPS 186-5 already specifies probabilistic ECC-based 1846

signatures in the form of probabilistic ECDSA (which is more difficult to thresholdize). The 1847

consideration of probabilistic EdDSA for the threshold setting warrants a thorough analysis, 1848

as can take place based on a public call for threshold signature schemes interchangeable 1849

with EdDSA verification. The resulting analysis may clarify the potential and feasibility for 1850

adoption of threshold schemes for EdDSA.1851

6.2. State of the art and beyond1852

The state of the art in threshold schemes has come a long way, including progress in recent 1853

years with newly proposed schemes, and a better understanding of security (namely in the 1854

concurrent setting). At the same time, there remain worthwhile directions for future work. 1855

The following list summarizes possible features that could benefit from further attention 1856

from the community. While these are not necessary in order to have useful threshold 1857

signatures, they may have utility for some applications.1858

1. Leveraging good randomness. Schemes that leverage the good randomness from 1859

some participating honest parties, being secure even if other “well behaved” parties 1860

45

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

(beyond the corruption threshold) have bad randomness (see §5.4).1861

2. Authenticated channels with real keys. A threshold scheme whose authenticated 1862

channels during the signing phase are based on signatures (possibly EdDSA/Schnorr) 1863

whose keys are determined in the (possibly augmented) keygen phase (see §5.3.2). 1864

Such a composition requires careful security analysis.1865

3. Shared I/O. Threshold signing where the parties do not get to learn the message 1866

being signed or/nor the produced signature (see §5.3.1).1867

4. Adaptive simulatability. An efficient/practical simulatable threshold scheme with 1868

proven strong unforgeability against adaptive corruptions, possibly in the constructive 1869

cryptography sense (see §5.2.3).1870

5. Auditability. Protocols that generate an auditable proof that the signature was indeed 1871

produced by a valid threshold interaction (see §5.3.1).1872

6.3. Recommendation for a public call for threshold EdDSA schemes1873

A public call for threshold signature schemes interchangeable with the standardized Draft 1874

FIPS 186-5 EdDSA verification could be of great benefit. It would seek to collect reference 1875

implementations, accompanied by technical explanation and security analysis. The scope 1876

would include threshold schemes for probabilistic signatures, as well as those with pseudoran-1877

dom nonce generation. Such a call would need to provide baseline criteria [Call2021a], such 1878

as requiring a proof of active security with a minimum requirement of strong unforgeability. 1879

It should also be flexible to allow submissions across various ranges of number of parties 1880

and thresholds, security formulations (see Section 5.2), and system models (see Section 5.3). 1881

Ideally, the distributed computation would be based on cryptographic assumptions close to 1882

those required for EdDSA security, such as discrete-log and hash-related assumptions. Natu-1883

rally, the interest on threshold schemes includes those for other NIST-approved key-based 1884

cryptographic primitives, including RSA, ECDSA and AES.1885

Besides the keygen and signing phases, it is useful to consider secret-resharing for proactive 1886

security, possibly also allowing dynamic change of the threshold parameters and number 1887

of parties. The envisioned call should recommend submissions to be described and imple-1888

mented with modularity w.r.t. building blocks (gadgets) that are likely reusable by other 1889

schemes, or that can have different internal instantiations while having a similar interface. 1890

The security analysis should describe the security fall-back guarantees or breakdown when 1891

some of the operational requirements are not met (e.g., exceeded corruption threshold, 1892

asynchrony or non-reliable message transmission).1893

46

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

References1894

[AB21] Handan Kılınç Alper and Jeffrey Burdges. “Two-round trip schnorr multi-signatures via 1895

delinearized witnesses”. In: Advances in Cryptology — CRYPTO 2021. Springer. 2021. DOI: 10.10071896

/978-3-030-84242-0_7. Also at ia.cr/2020/1245 (Cited on pp. 29, 30).1897

[ABFJLM18] Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter, and 1898

Bruce Murray. “Differential attacks on deterministic signatures”. In: Cryptographers’ Track at the 1899

RSA Conference. Springer. 2018. Also at ia.cr/2017/975 (Cited on p. 20).1900

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. “Subversion-Resilient Signa-1901

ture Schemes”. In: Proc. 22nd ACM SIGSAC Conference on Computer and Communications Security. 1902

CCS ’15. Association for Computing Machinery, 2015. DOI: 10.1145/2810103.2813635. Also at 1903

ia.cr/2015/517 (Cited on p. 36).1904

[ANTTY20] Diego F Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and 1905

Yuval Yarom. “Ladderleak: Breaking ECDSA with Less Than One Bit of Nonce Leakage”. In: Proc. 1906

2020 ACM SIGSAC Conference on Computer and Communications Security. CCS ’20. ACM, 2020.1907

DOI: doi/10.1145/3372297.3417268. Also at ia.cr/2020/615 (Cited on pp. 19, 20).1908

[BCGIKS19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. 1909

“Efficient Pseudorandom Correlation Generators: Silent OT Extension and More”. In: Advances in 1910

Cryptology — CRYPTO 2019. Springer International Publishing, 2019. DOI: 10.1007/978-3-030-2691911

54-8_16. Also at ia.cr/2019/448 (Cited on p. 40).1912

[BCJZ21] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. “The Provable 1913

Security of Ed25519: Theory and Practice”. In: Symposium on Security and Privacy (SP) (2021).1914

DOI: 10.1109/SP40001.2021.00042. Also at ia.cr/2020/823 (Cited on pp. 11, 15–17).1915

[BCKMTZ22] Mihir Bellare, Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and 1916

Chenzhi Zhu. “Better than Advertised Security for Non-Interactive Threshold Signatures”. In: (2022). 1917

Combines two papers: “How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold 1918

Signatures” at ia.cr/2021/1375, and “Stronger Security for Non-Interactive Threshold Signatures: 1919

BLS and FROST” at ia.cr/2022/833. (Cited on p. 33).1920

[BDLSY11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-1921

Speed High-Security Signatures”. In: Cryptographic Hardware and Embedded Systems — CHES 1922

2011. Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-23951-9_9. Also at Journal 1923

of Cryptographic Engineering, vol. 2, pp. 77–89 (2012), 10.1007/s13389-012-0027-1. Also at 1924

ia.cr/2011/368 (Cited on pp. 3, 9).1925

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. “Publicly Auditable Secure Multi-1926

Party Computation”. In: Security and Cryptography for Networks. Springer International Publishing, 1927

2014. DOI: 10.1007/978-3-319-10879-7_11. Also at ia.cr/2014/075 (Cited on p. 37).1928

[Bea96] Donald Beaver. “Correlated Pseudorandomness and the Complexity of Private Computa-1929

tions”. In: Proc. 28th Annual ACM Symposium on Theory of Computing. STOC ’96. Association for 1930

Computing Machinery, 1996. DOI: 10.1145/237814.237996 (Cited on p. 40).1931

47

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://eprint.iacr.org/2020/1245
https://eprint.iacr.org/2017/975
https://doi.org/10.1145/2810103.2813635
https://eprint.iacr.org/2015/517
https://doi.org/doi/10.1145/3372297.3417268
https://eprint.iacr.org/2020/615
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://eprint.iacr.org/2019/448
https://doi.org/10.1109/SP40001.2021.00042
https://eprint.iacr.org/2020/823
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2022/833
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/s13389-012-0027-1
https://eprint.iacr.org/2011/368
https://doi.org/10.1007/978-3-319-10879-7_11
https://eprint.iacr.org/2014/075
https://doi.org/10.1145/237814.237996

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[Ber15] Daniel J Bernstein. “Multi-user Schnorr security, revisited”. In: Cryptology ePrint Archive, 1932

Report ia.cr/2015/996 (2015) (Cited on p. 11).1933

[BH19] Joachim Breitner and Nadia Heninger. “Biased nonce sense: Lattice attacks against weak 1934

ECDSA signatures in cryptocurrencies”. In: Financial Cryptography and Data Security: 23rd 1935

International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised 1936

Selected Papers. Springer. Springer-Verlag, 2019. DOI: 10.1007/978-3-030-32101-7_1. Also at 1937

ia.cr/2019/023 (Cited on p. 19).1938

[BJLSY15] Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. 1939

EdDSA for more curves. https : / / ed25519 . cr . yp . to / eddsa - 20150704 . pdf. July 2015. Also at 1940

ia.cr/2015/677 (Cited on p. 9).1941

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of the Cipher Block 1942

Chaining Message Authentication Code”. In: J. Comput. Syst. Sci. 61.3 (December 2000). DOI: 1943

10.1006/jcss.1999.1694. Earlier version at CRYPTO 1994, LNCS vol. 839, DOI:10.1007/3-540-1944

48658-5_32 (Cited on p. 16).1945

[Bla79] G. R. Blakley. “Safeguarding cryptographic keys”. In: Managing Requirements Knowledge, 1946

International Workshop on. IEEE Computer Society, June 1979. DOI: 10.1109/AFIPS.1979.98 (Cited 1947

on p. 3).1948

[Ble00] Daniel Bleichenbacher. “On the generation of one-time keys in DL signature schemes”. In: 1949

Presentation at IEEE P1363 working group meeting. 2000 (Cited on p. 19).1950

[BLLOR21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana1951

Raykova. “On the (in)security of ROS”. In: Advances in Cryptology — EUROCRYPT 2021. Springer 1952

International Publishing, 2021. DOI: 10.1007/978-3-030-77870-5_2. Also at ia.cr/2020/945 (Cited 1953

on p. 32).1954

[bmss10] bushing, marcan, segher, and sven. “Console hacking 2010 – ps3 epic fail”. In: 27th Chaos 1955

Communication Congress. https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/17801956

_27c3_console_hacking_2010.pdf (Accessed March 2022). Chaos Computer Club. 2010 (Cited on 1957

p. 19).1958

[BN06] Mihir Bellare and Gregory Neven. “Multi-Signatures in the Plain Public-Key Model and 1959

a General Forking Lemma”. In: Proc. 13th ACM Conference on Computer and Communications 1960

Security. CCS ’06. Association for Computing Machinery, 2006. DOI: 10.1145/1180405.1180453 1961

(Cited on p. 32).1962

[BN08] Mihir Bellare and Chanathip Namprempre. “Authenticated Encryption: Relations among 1963

Notions and Analysis of the Generic Composition Paradigm”. In: J. Cryptol. 21.4 (September 2008).1964

DOI: 10.1007/s00145-008-9026-x. Also at ia.cr/2000/025 (Cited on p. 16).1965

[BST21] Charlotte Bonte, Nigel P. Smart, and Titouan Tanguy. “Thresholdizing HashEdDSA: MPC 1966

to the rescue”. In: International Journal of Information Security 20 (2021). DOI: 10.1007/s10207-021967

1-00539-6. Also at ia.cr/2020/214 (Cited on pp. 26, 27, 32).1968

48

https://eprint.iacr.org/2015/996
https://doi.org/10.1007/978-3-030-32101-7_1
https://eprint.iacr.org/2019/023
https://ed25519.cr.yp.to/eddsa-20150704.pdf
https://eprint.iacr.org/2015/677
https://doi.org/10.1006/jcss.1999.1694
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1007/978-3-030-77870-5_2
https://eprint.iacr.org/2020/945
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/s00145-008-9026-x
https://eprint.iacr.org/2000/025
https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/s10207-021-00539-6
https://doi.org/10.1007/s10207-021-00539-6
https://eprint.iacr.org/2020/214

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. “Stronger Security for Non-Interactive 1969

Threshold Signatures: BLS and FROST”. In: Cryptology ePrint Archive, Report ia.cr/2022/833 (June 1970

2022) (Cited on p. 33).1971

[BV96] Dan Boneh and Ramarathnam Venkatesan. “Hardness of computing the most significant 1972

bits of secret keys in Diffie-Hellman and related schemes”. In: Advances in Cryptology — CRYPTO 1973

’96. Springer. Springer Berlin Heidelberg, 1996. DOI: 10.1007/3-540-68697-5_11 (Cited on p. 19).1974

[Call2021a] Luís Brandão. Call 2021a for Feedback on Criteria for Threshold Schemes. https://csrc1975

.nist.gov/projects/threshold-cryptography. June 2021 (Cited on p. 46).1976

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic 1977

Protocols”. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science. 2001. DOI: 1978

10.1109/SFCS.2001.959888. Extended version at “Universally Composable Security”, Journal of the 1979

ACM, Vol. 67, Issue 5, October 2020 Art. 28, doi:10.1145/3402457. Also at ia.cr/2000/067 (Cited on 1980

p. 35).1981

[CD95] Ronald Cramer and Ivan Damgård. “Secure Signature Schemes based on Interactive Proto-1982

cols”. In: Advances in Cryptology — CRYPTO’ 95. Springer Berlin Heidelberg, 1995. DOI: 10.1001983

7/3-540-44750-4_24. Also at BRICS Report Series, 1(29), 1994, DOI:10.7146/brics.v1i29.21637 1984

(Cited on p. 15).1985

[CDDIM01] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. “On 1986

Adaptive vs. Non-adaptive Security of Multiparty Protocols”. In: Advances in Cryptology — EU-1987

ROCRYPT 2001. Springer Berlin Heidelberg, 2001. DOI: 10.1007/3-540-44987-6_17. Also at 1988

ia.cr/2001/017 (Cited on p. 35).1989

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. “Adaptively Secure Multi-1990

Party Computation”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of 1991

Computing. STOC ’96. Association for Computing Machinery, 1996. DOI: 10.1145/237814.238015 1992

(Cited on p. 35).1993

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. “Verifiable Secret 1994

Sharing and Achieving Simultaneity in the Presence of Faults”. In: Proc. 26th Annual Symposium on 1995

Foundations of Computer Science. SFCS ’85. IEEE Computer Society, 1985. DOI: 10.1109/SFCS.191996

85.64 (Cited on p. 23).1997

[CGN20] Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. “Taming the Many 1998

EdDSAs”. In: International Conference on Security Standardisation Research. Springer, 2020. DOI: 1999

10.1007/978-3-030-64357-7_4. Also at ia.cr/2020/1244 (Cited on pp. 15, 17).2000

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to Prove Schnorr Assuming 2001

Schnorr: Security of Multi- and Threshold Signatures. Cryptology ePrint Archive, Report ia.cr/20212002

/1375. 2021 (Cited on pp. 29, 30).2003

[DEFKLNS19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory2004

Neven, and Igors Stepanovs. “On the Security of Two-Round Multi-Signatures”. In: 2019 IEEE 2005

Symposium on Security and Privacy (SP) (2019). DOI: 10.1109/SP.2019.00050. Also at ia.cr/2018/417 2006

(Cited on pp. 25, 29, 30, 32, 41).2007

49

https://eprint.iacr.org/2022/833
https://doi.org/10.1007/3-540-68697-5_11
https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3402457
https://eprint.iacr.org/2000/067
https://doi.org/10.1007/3-540-44750-4_24
https://doi.org/10.1007/3-540-44750-4_24
https://doi.org/10.1007/3-540-44750-4_24
https://doi.org/10.7146/brics.v1i29.21637
https://doi.org/10.1007/3-540-44987-6_17
https://eprint.iacr.org/2001/017
https://doi.org/10.1145/237814.238015
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1007/978-3-030-64357-7_4
https://eprint.iacr.org/2020/1244
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1109/SP.2019.00050
https://eprint.iacr.org/2018/417

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[DER21] Ivan Damgård, Daniel Escudero, and Divya Ravi. “Information-Theoretically Secure MPC 2008

Against Mixed Dynamic Adversaries”. In: TCC 2021: Theory of Cryptography (19th international 2009

conference). Springer-Verlag, 2021. DOI: 10.1007/978-3-030-90459-3_20. Also at ia.cr/2021/1163 2010

(Cited on p. 40).2011

[Des88] Yvo Desmedt. “Society and Group Oriented Cryptography: a New Concept”. In: Advances 2012

in Cryptology — CRYPTO ’87. Springer Berlin Heidelberg, 1988. DOI: 10.1007/3-540-48184-2_8 2013

(Cited on p. 3).2014

[DF90] Yvo Desmedt and Yair Frankel. “Threshold cryptosystems”. In: Advances in Cryptology — 2015

CRYPTO’ 89 Proceedings. Springer New York, 1990. DOI: 10.1007/0-387-34805-0_28 (Cited on 2016

p. 3).2017

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transactions on 2018

Information Theory 22.6 (1976). DOI: 10.1109/TIT.1976.1055638 (Cited on p. 3).2019

[Fel87] Paul Feldman. “A Practical Scheme for Non-Interactive Verifiable Secret Sharing”. In: Proc. 2020

28th Annual Symposium on Foundations of Computer Science. SFCS ’87. IEEE Computer Society, 2021

1987. DOI: 10.1109/SFCS.1987.4 (Cited on p. 23).2022

[FF13] Marc Fischlin and Nils Fleischhacker. “Limitations of the Meta-reduction Technique: The 2023

Case of Schnorr Signatures”. In: Advances in Cryptology — EUROCRYPT 2013. Springer Berlin 2024

Heidelberg, 2013. DOI: 10.1007/978-3-642-38348-9_27. Also at ia.cr/2013/140 (Cited on p. 16).2025

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. “Trading correctness for privacy in uncon-2026

ditional multi-party computation”. In: Advances in Cryptology — CRYPTO ’98. Springer Berlin 2027

Heidelberg, 1998. DOI: 10.1007/BFb0055724 (Cited on p. 40).2028

[FIPS 186-5 (Draft)] National Institute of Standards and Technology (2019). Digital Signature 2029

Standard (DSS). (U.S. Department of Commerce, Washington, D.C.) Draft Federal Information 2030

Processing Standards Publication (FIPS PUBS) 186-5. October 2019. DOI: 10.6028/NIST.FIPS.186-2031

5-Draft.2032

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to Identification 2033

and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Springer Berlin Heidelberg, 2034

1987. DOI: 10.1007/3-540-47721-7_12 (Cited on p. 10).2035

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure Distributed 2036

Key Generation for Discrete-Log Based Cryptosystems”. In: Advances in Cryptology — EURO-2037

CRYPT’99. Springer-Verlag, 1999. DOI: 10.1007/3-540-48910-X_21. See also J. Cryptology 20, 2038

pp. 51–83, 2007, DOI:10.1007/s00145-006-0347-3 (Cited on p. 24).2039

[GKMN21] François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko. “Thr-2040

eshold Schnorr with Stateless Deterministic Signing from Standard Assumptions”. In: Advances 2041

in Cryptology — CRYPTO 2021. Springer. 2021. DOI: 10.1007/978-3-030-84242-0_6. Also at 2042

ia.cr/2021/1055 (Cited on pp. 26–28, 32).2043

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme 2044

Secure Against Adaptive Chosen-Message Attacks”. In: SIAM Journal on Computing 17.2 (1988).2045

DOI: 10.1137/0217017 (Cited on p. 15).2046

50

https://doi.org/10.1007/978-3-030-90459-3_20
https://eprint.iacr.org/2021/1163
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/978-3-642-38348-9_27
https://eprint.iacr.org/2013/140
https://doi.org/10.1007/BFb0055724
https://doi.org/10.6028/NIST.FIPS.186-5-Draft
https://doi.org/10.6028/NIST.FIPS.186-5-Draft
https://doi.org/10.6028/NIST.FIPS.186-5-Draft
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-030-84242-0_6
https://eprint.iacr.org/2021/1055
https://doi.org/10.1137/0217017

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[HLM21] Martin Hirt, Chen-Da Liu-Zhang, and Ueli Maurer. “Adaptive Security of Multi-party 2047

Protocols, Revisited”. In: TCC 2021: Theory of Cryptography (19th international conference). Sprin-2048

ger International Publishing, 2021. DOI: 10.1007/978-3-030-90459-3_23. Also at ia.cr/2021/1175 2049

(Cited on p. 36).2050

[HM20] Martin Hirt and Marta Mularczyk. “Efficient MPC with a Mixed Adversary”. In: 1st 2051

Conference on Information-Theoretic Cryptography (ITC 2020). Vol. 163. Leibniz International 2052

Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. DOI: 2053

10.4230/LIPIcs.ITC.2020.3. Also at ia.cr/2020/356 (Cited on p. 40).2054

[HS01] Nick A Howgrave-Graham and Nigel P. Smart. “Lattice attacks on digital signature sche-2055

mes”. In: Designs, Codes and Cryptography 23.3 (2001). DOI: 10.1023/A:1011214926272 (Cited on 2056

p. 20).2057

[IKMOP13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-2058

Cherniavsky. “On the Power of Correlated Randomness in Secure Computation”. In: Proc. 10th 2059

Theory of Cryptography Conference. TCC’13. Springer-Verlag, 2013. DOI: 10.1007/978-3-642-362060

594-2_34. Also at https://www.iacr.org/archive/tcc2013/77850598/77850598.pdf (Cited on pp. 40, 2061

41).2062

[KG21] Chelsea Komlo and Ian Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold 2063

Signatures”. In: (2021). DOI: 10.1007/978-3-030-81652-0_2. Also at ia.cr/2020/852 (Cited on pp. 29, 2064

30, 32).2065

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. “Optimal Security Proofs for Signatures from 2066

Identification Schemes”. In: Advances in Cryptology — CRYPTO 2016. Springer Berlin Heidelberg, 2067

2016. DOI: 10.1007/978-3-662-53008-5_2. Also at ia.cr/2016/191 (Cited on p. 16).2068

[Lin22] Yehuda Lindell. Simple Three-Round Multiparty Schnorr Signing with Full Simulatability. 2069

Cryptology ePrint Archive Report ia.cr/2022/374. 2022 (Cited on pp. 28, 32).2070

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. “Simple Sch-2071

norr multi-signatures with applications to bitcoin”. In: Designs, Codes and Cryptography 87.9 (2019).2072

DOI: 10.1007/s10623-019-00608-x. Also at ia.cr/2018/068 (Cited on pp. 26, 36, 41).2073

[MTR22] John Preuß Mattsson, Erik Thormarker, and Sini Ruohomaa. Deterministic ECDSA and 2074

EdDSA Signatures with Additional Randomness. Internet-Draft. https://datatracker.ietf.org/doc/html2075

/draft-mattsson-cfrg-det-sigs-with-noise-04. Internet Engineering Task Force, February 2022 (Cited 2076

on p. 20).2077

[NISTIR 8214A] Luís T. A. N. Brandão, Michael Davidson, and Apostol Vassilev. NIST Roadmap 2078

Toward Criteria for Threshold Schemes for Cryptographic Primitives. NISTIR 8214A, National 2079

Institute of Standards and Technology (NIST). July 2020. DOI: 10.6028/NIST.IR.8214A (Cited on 2080

p. 37).2081

[NKDM03] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and David Mazières. “Proactive 2082

Two-Party Signatures for User Authentication”. In: Proc. Network and Distributed System Security 2083

Symposium, NDSS 2003, San Diego, California, USA. The Internet Society, 2003. Available at 2084

https://www.ndss-symposium.org/ndss2003 (Cited on p. 28).2085

51

https://doi.org/10.1007/978-3-030-90459-3_23
https://eprint.iacr.org/2021/1175
https://doi.org/10.4230/LIPIcs.ITC.2020.3
https://eprint.iacr.org/2020/356
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://www.iacr.org/archive/tcc2013/77850598/77850598.pdf
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2020/852
https://doi.org/10.1007/978-3-662-53008-5_2
https://eprint.iacr.org/2016/191
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/s10623-019-00608-x
https://eprint.iacr.org/2018/068
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04
https://doi.org/10.6028/NIST.IR.8214A
https://www.ndss-symposium.org/ndss2003

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. “MuSig2: Simple Two-Round Schnorr 2086

Multi-signatures”. In: Advances in Cryptology — CRYPTO 2021. Springer International Publishing, 2087

2021. DOI: 10.1007/978-3-030-84242-0_8. Also at ia.cr/2020/1261 (Cited on pp. 29, 30, 32).2088

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. “MuSig-DN: Schnorr 2089

Multi-Signatures with Verifiably Deterministic Nonces”. In: Proc. 2020 ACM SIGSAC Conference 2090

on Computer and Communications Security. CCS ’20. Association for Computing Machinery, 2020.2091

DOI: 10.1145/3372297.3417236. Also at ia.cr/2020/1057 (Cited on pp. 26–28).2092

[Ped91] Torben Pryds Pedersen. “A Threshold Cryptosystem without a Trusted Party”. In: Advances 2093

in Cryptology — EUROCRYPT ’91. Springer Berlin Heidelberg, 1991. DOI: 10.1007/3-540-46416-62094

_47 (Cited on p. 24).2095

[Ped92] Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable 2096

Secret Sharing”. In: Advances in Cryptology — CRYPTO ’91. Springer Berlin Heidelberg, 1992. DOI: 2097

10.1007/3-540-46766-1_9 (Cited on p. 24).2098

[PS00] David Pointcheval and Jacques Stern. “Security Arguments for Digital Signatures and Blind 2099

Signatures”. In: J. Cryptology 13.3 (January 2000). DOI: 10.1007/s001450010003. Earlier version at 2100

Eurocrypt 1996 (doi:10.1007/3-540-68339-9_33) (Cited on p. 16).2101

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”. In: Advances 2102

in Cryptology — EUROCRYPT ’96. Springer Berlin Heidelberg, 1996. DOI: 10.1007/3-540-68339-92103

_33 (Cited on p. 16).2104

[PSSLR18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and Paul2105

Rösler. “Attacking deterministic signature schemes using fault attacks”. In: 2018 IEEE European 2106

Symposium on Security and Privacy (EuroS&P). IEEE. 2018. DOI: 10.1109/EuroSP.2018.00031. 2107

Also at ia.cr/2017/1014 (Cited on p. 20).2108

[RFC 8032] S. Josefsson and I. Liusvaara. “Edwards-Curve Digital Signature Algorithm (EdDSA)”. 2109

In: RFC 8032. Request for Comments (January 2017). Errata exists. DOI: 10.17487/RFC8032 (Cited 2110

on p. 3).2111

[RP17] Yolan Romailler and Sylvain Pelissier. “Practical fault attack against the Ed25519 and 2112

EdDSA signature schemes”. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography 2113

(FDTC). IEEE. 2017. DOI: 10.1109/FDTC.2017.12 (Cited on p. 20).2114

[RRJSS22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique2115

Schröder. ROAST: Robust Asynchronous Schnorr Threshold Signatures. Cryptology ePrint Archive 2116

Report ia.cr/2022/550. 2022 (Cited on p. 33).2117

[RS21] Lior Rotem and Gil Segev. “Tighter Security for Schnorr Identification and Signatures: A 2118

High-Moment Forking Lemma for Σ -Protocols”. In: Advances in Cryptology — CRYPTO 2021. 2119

Springer International Publishing, 2021. DOI: 10.1007/978-3-030-84242-0_9. Also at ia.cr/2021/971 2120

(Cited on p. 16).2121

[SB18] Niels Samwel and Lejla Batina. “Practical fault injection on deterministic signatures: the case 2122

of EdDSA”. In: Progress in Cryptology — AFRICACRYPT 2018. Springer International Publishing, 2123

2018. DOI: 10.1007/978-3-319-89339-6_17 (Cited on p. 20).2124

52

https://doi.org/10.1007/978-3-030-84242-0_8
https://eprint.iacr.org/2020/1261
https://doi.org/10.1145/3372297.3417236
https://eprint.iacr.org/2020/1057
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1109/EuroSP.2018.00031
https://eprint.iacr.org/2017/1014
https://doi.org/10.17487/RFC8032
https://doi.org/10.1109/FDTC.2017.12
https://eprint.iacr.org/2022/550
https://doi.org/10.1007/978-3-030-84242-0_9
https://eprint.iacr.org/2021/971
https://doi.org/10.1007/978-3-319-89339-6_17

 NIST IR 8214B IPD
 AUGUST 2022

 NOTES ON THRESHOLD EDDSA/
 SCHNORR SIGNATURES

[SBBDS18] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella. “Break-2125

ing Ed25519 in WolfSSL”. In: Topics in Cryptology — Cryptographers’ Track at the RSA Conference 2126

(CT-RSA 2018). Springer International Publishing, 2018. DOI: 10.1007/978-3-319-76953-0_1. Also 2127

at ia.cr/2017/985 (Cited on p. 20).2128

[Sch90] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Advances in 2129

Cryptology — CRYPTO’ 89 Proceedings. Springer New York, 1990. DOI: 10.1007/0-387-34802130

5-0_22. See also J. Cryptology 4, pp. 161–174, 1991, DOI:10.1007/BF00196725 (Cited on pp. 3, 2131

9–11).2132

[Sch99] Berry Schoenmakers. “A Simple Publicly Verifiable Secret Sharing Scheme and Its Applica-2133

tion to Electronic Voting”. In: Advances in Cryptology — CRYPTO’ 99. Springer Berlin Heidelberg, 2134

1999. DOI: 10.1007/3-540-48405-1_10 (Cited on p. 37).2135

[Sha79] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (November 1979). DOI: 2136

10.1145/359168.359176 (Cited on pp. 3, 21).2137

[Sim94] Gustavus J. Simmons. “Subliminal Communication is Easy Using the DSA”. In: Advances 2138

in Cryptology — EUROCRYPT ’93. Springer Berlin Heidelberg, 1994. DOI: 10.1007/3-540-48285-72139

_18 (Cited on p. 36).2140

[SP 800-186] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. Draft SP 800-186, 2141

Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters. 2142

National Institute of Standards and Technology (NIST). October 2019. DOI: 10.6028/NIST.SP.800-12143

86.2144

[SP 800-57-P1-R5] Elaine Barker. SP 800-57 Part 1 Rev. 5, Recommendation for Key Management: 2145

Part 1 — General. National Institute of Standards and Technology (NIST). May 2022. DOI: 10.60282146

/NIST.SP.800-57pt1r5 (Cited on p. 18).2147

[SS01] Douglas R. Stinson and Reto Strobl. “Provably Secure Distributed Schnorr Signatures and 2148

a (t, n) Threshold Scheme for Implicit Certificates”. In: Information Security and Privacy. ACISP 2149

2001. Springer Berlin Heidelberg, 2001. DOI: 10.1007/3-540-47719-5_33 (Cited on pp. 24, 28, 36, 2150

41).2151

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. “New Bleichenbacher records: Fault 2152

attacks on qDSA signatures”. In: IACR Transactions on Cryptographic Hardware and Embedded 2153

Systems (CHES ’18) 3 (2018). DOI: 10.13154/tches.v2018.i3.331-371. Also at ia.cr/2018/396 (Cited 2154

on p. 19).2155

[Wag02] David Wagner. “A generalized birthday problem”. In: Advances in Cryptology — CRYPTO 2156

2002. Springer Berlin Heidelberg, 2002. DOI: 10.1007/3-540-45708-9_19. Also at https://www.iacr2157

.org/archive/crypto2002/24420288/24420288.pdf (Cited on p. 30).2158

[WNR20] Pieter Wuille, Jonas Nick, and Tim Ruffing. “BIP 340: Schnorr Signatures for secp256k1”. 2159

In: Bitcoin Improvement Proposals. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki. 2160

GitHub, January 2020 (Cited on p. 10).2161

53

https://doi.org/10.1007/978-3-319-76953-0_1
https://eprint.iacr.org/2017/985
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.13154/tches.v2018.i3.331-371
https://eprint.iacr.org/2018/396
https://doi.org/10.1007/3-540-45708-9_19
https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf
https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf
https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	Frontmatter
	NIST IR 8214B ipd (Cover)
	NIST IR 8214B ipd (Title Page)
	Disclaimer and contacts
	NIST Technical Series Policies
	Publication History
	How to cite this NIST Technical Series Publication
	NIST Author ORCID iDs
	Contact Information
	Public Comment Period
	Submit Comments

	Abstract page
	Reports on Computer Systems Technology
	Abstract
	Keywords

	Preface
	Acknowledgments
	Call for Patent Claims

	Contents
	Table of Contents
	List of Tables
	Table 1: Acronyms
	Table 2: Symbols useful for the conventional setting
	Table 3: Symbols specific to the threshold setting
	Table 4: Determinism vs. verifiable determinism of signature schemes
	Table 5: EdDSA variants
	Table 6: Types of nonce generation
	Table 7: Conventional Schnorr vs. baseline semi-honest threshold Schnorr
	Table 8: Threshold approaches for deterministic signatures
	Table 9: Types of signature vs. concern — informal assessment

	List of Figures
	Figure 1: Annotated simplified formula of an EdDSA signature
	Figure 2: (Simplified) EdDSA-style scheme, with generic nonce
	Figure 3: EdDSA pseudo-code and notation

	Executive Summary
	1 Introduction
	2 Notation
	2.1 Acronyms
	2.2 Abbreviations
	2.3 Symbols
	2.3.1 Symbols useful for the conventional setting
	2.3.2 Symbols specific to the threshold setting
	2.3.3 On the use of square brackets []

	3 The conventional EdDSA and Schnorr schemes
	3.1 Schemes interchangeable w.r.t. EdDSA verification
	3.2 Detailed EdDSA procedures
	3.2.1 Keygen
	3.2.2 Sign
	3.2.3 Verify

	3.3 Strong unforgeability
	3.4 Binding and non-repudiation
	3.4.1 Binding
	3.4.2 Non-repudiation

	3.5 Nonce implementation issues
	3.5.1 Nonce reuse
	3.5.2 Partial knowledge of random nonce
	3.5.3 Side-channel and fault injection attacks against deterministic nonce
	3.5.4 Hybrid nonce generation — combined randomness and determinism

	4 Threshold approaches
	4.1 Intuition for efficiency of threshold [probabilistic] Schnorr signatures
	4.2 A template threshold Schnorr/EdDSA signature
	4.2.1 Key Generation
	4.2.2 Signing

	4.3 Deterministic threshold Schnorr
	4.3.1 A key-recovery pitfall
	4.3.2 MPC-based threshold (deterministic) EdDSA
	4.3.3 Threshold signing with local deterministic contributions

	4.4 Probabilistic threshold Schnorr
	4.4.1 Simulatable threshold Schnorr in three rounds
	4.4.2 Probabilistic Two-Round Schnorr

	5 Further considerations
	5.1 ``Thresholdized'' signer
	5.2 Threshold security formulation
	5.2.1 Strong threshold unforgeability
	5.2.2 Number of signatures per request
	5.2.3 Safety against adaptive corruptions
	5.2.4 Preventing subliminal exfiltration

	5.3 System model
	5.3.1 Interface for signature request and delivery
	5.3.2 Authenticated channels
	5.3.3 Broadcast
	5.3.4 Timing assumptions
	5.3.5 Offline/online phases
	5.3.6 Beyond covered assumptions

	5.4 Good vs. bad randomness
	5.4.1 Inadvertent correlated randomness
	5.4.2 Manipulating the nonce commitment
	5.4.3 ``Well-behaved'' parties with bad randomness

	5.5 Modularity and composability
	5.5.1 Phases
	5.5.2 Gadgets

	6 Conclusions
	6.1 Comparing probabilistic and deterministic threshold EdDSA
	6.2 State of the art and beyond
	6.3 Recommendation for a public call for threshold EdDSA schemes

	References

