NISTIR 8385

Cannabis Quality Assurance Program: Exercise 1 Final Report

Maryam Abdur-Rahman Melissa M. Phillips Walter B. Wilson

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8385

NISTIR 8385

Cannabis Quality Assurance Program: Exercise 1 Final Report

Maryam Abdur-Rahman Melissa M. Phillips Walter B. Wilson Chemical Sciences Division Material Measurement Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8385

July 2021

U.S. Department of Commerce Gina M. Raimondo, Secretary

National Institute of Standards and Technology James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce for Standards and Technology & Director, National Institute of Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8385 Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8385, 196 pages (July 2021)

> This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8385

TABLE OF CONTENTS

LIST OF ACRONYMSix
ABSTRACT1
INTRODUCTION1
OVERVIEW OF DATA TREATMENT AND REPRESENTATION
Statistics
Individualized Data Table
Summary Data Table
Figures
Data Summary View (Method Comparison Data Summary View)
Sample/Sample Comparison View
SECTION 1: STUDY MATERIAL PREPARATION AND CHARACTERIZATION 6
NIST Method for Study Material Characterization
Analytical Method
Calibration
Hemp Oil 1
Study Material Preparation
Study Material Characterization7
Participant Instructions
Hemp Oil 2
Study Material Preparation
Study Material Characterization
Participant Instructions
Hemp Oil 2a
Study Material Preparation9
Study Material Characterization9
Participant Instructions
Figure 1-1. Extracted wavelength chromatogram for Hemp Oil 1 at 220 nm
Figure 1-2. UV absorbance spectra of the six suspected cannabinoid peaks in Hemp Oil 2 (black) and calibration standard (red)
Figure 1-3. (A) Selection of the extracted wavelength chromatogram at 220 nm for Hemp Oil 2. (B, C, D) UV absorbance spectra of suspected CBC peak in Hemp Oil 2 (black) at different chromatographic retention times compared to a calibration standard (red)
Figure 1-4. Extracted wavelength chromatogram at different wavelengths for the CBC chromatographic peak in Hemp Oil 2

Figure 1-5. Extracted wavelength chromatogram for Hemp Oil 2 at 220 nm
Figure 1-6. Extracted wavelength chromatogram for Hemp Oil 2a at 220 nm
SECTION 2: Δ^9 -THC, THCA, Δ^8 -THC, AND Total THC
Study Overview
Reporting Statistics
Study Results
Δ^9 -THC
THCA
Δ^8 -THC
Total THC 19
Study Discussion and Technical Recommendations
Δ ⁹ -THC
THCA
Δ^{8} -THC
Total THC22
Overall
Table 2-1. Individualized data summary table (NIST) for Δ^9 -THC, THCA, Δ^8 -THC, and total THC in hemp oils. 24
Table 2-2. Data summary table for Δ^9 -THC in hemp oils
Figure 2-1. Δ^9 -THC in Hemp Oil 1 (data summary view – analytical method)
Figure 2-2. Δ^9 -THC in Hemp Oil 2 (data summary view – analytical method)
Figure 2-3. Δ^9 -THC in Hemp Oil 2a (data summary view – analytical method)
Figure 2-4. Laboratory means for Δ^9 -THC in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
Table 2-3. Data summary table for THCA in hemp oils. 31
Figure 2-5. THCA in Hemp Oil 1 (data summary view – analytical method)
Figure 2-6. THCA in Hemp Oil 2 (data summary view – analytical method)
Figure 2-7. THCA in Hemp Oil 2a (data summary view – analytical method)
Figure 2-8. Laboratory means for THCA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
Table 2-4. Data summary table for Δ^8 -THC in hemp oils
Figure 2-9. Δ^8 -THC in Hemp Oil 1 (data summary view – analytical method)
Figure 2-10. Δ^8 -THC in Hemp Oil 2 (data summary view – analytical method)
Figure 2-11. Δ^8 -THC in Hemp Oil 2a (data summary view – analytical method)

Figure 2-12. Laboratory means for Δ^{8} -THC in Hemp Oil 1 and Hemp Oil 2 (samparison view).	ple/sample 42
Table 2-5. Data summary table for total THC in hemp oils.	
Figure 2-13. Total THC in Hemp Oil 1 (data summary view – analytical method)	
Figure 2-14. Total THC in Hemp Oil 2 (data summary view – analytical method)	
Figure 2-15. Total THC in Hemp Oil 2a (data summary view – analytical method)	
Figure 2-16. Laboratory means for total THC in Hemp Oil 1 and Hemp Oil 2 (samp comparison view).	ple/sample 48
SECTION 3: CBD, CBDA, and Total CBD	49
Study Overview	
Reporting Statistics	
Study Results	50
CBD	50
CBDA	
Total CBD	51
Overall	52
Study Discussion and Technical Recommendations	52
CBD	52
CBDA	52
Total CBD	53
Overall	53
Table 3-1. Individualized data summary table (NIST) for CBD, CBDA, and total CB oils.	D in hemp
Table 3-2. Data summary table for CBD in hemp oils.	56
Figure 3-1. CBD in Hemp Oil 1 (data summary view – analytical method)	58
Figure 3-2. CBD in Hemp Oil 2 (data summary view – analytical method)	59
Figure 3-3. CBD in Hemp Oil 2a (data summary view – analytical method)	60
Figure 3-4. Laboratory means for CBD in Hemp Oil 1 and Hemp Oil 2 (samp comparison view).	ple/sample 61
Table 3-3. Data summary table for CBDA in hemp oils.	62
Figure 3-5. CBDA in Hemp Oil 1 (data summary view – analytical method)	64
Figure 3-6. CBDA in Hemp Oil 2 (data summary view – analytical method)	65
Figure 3-7. CBDA in Hemp Oil 2a (data summary view – analytical method)	66
Figure 3-8. Laboratory means for CBDA in Hemp Oil 1 and Hemp Oil 2 (samp comparison view).	ple/sample 67
Table 3-4. Data summary table for total CBD in hemp oils	68

Figure 3-9. Total CBD in Hemp Oil 1 (data summary view – analytical method)	70
Figure 3-10. Total CBD in Hemp Oil 2 (data summary view – analytical method)	71
Figure 3-11. Total CBD in Hemp Oil 2a (data summary view – analytical method)	72
Figure 3-12. Laboratory means for total CBD in Hemp Oil 1 and Hemp Oil 2 (sample/sa comparison view).	mple 73
SECTION 4: CBC and CBCA	74
Study Overview	74
Reporting Statistics	74
Study Results	75
CBC	75
CBCA	76
Overall	76
Study Discussion and Technical Recommendations	76
CBC	76
CBCA	77
Overall	77
Table 4-1. Individualized data summary table (NIST) for CBC and CBCA in hemp oils	79
Table 4-2. Data summary table for CBC in hemp oils.	80
Figure 4-1. CBC in Hemp Oil 1 (data summary view – analytical method)	82
Figure 4-2. CBC in Hemp Oil 2 (data summary view – analytical method)	83
Figure 4-3. CBC in Hemp Oil 2a (data summary view – analytical method)	84
Figure 4-4. Laboratory means for CBC in Hemp Oil 1 and Hemp Oil 2 (sample/sa comparison view).	mple 85
Table 4-3. Data summary table for CBCA in hemp oils.	86
Figure 4-5. CBCA in Hemp Oil 1 (data summary view – analytical method)	87
Figure 4-6. CBCA in Hemp Oil 2 (data summary view – analytical method)	88
Figure 4-7. CBCA in Hemp Oil 2a (data summary view – analytical method)	89
Figure 4-8. Laboratory means for CBCA in Hemp Oil 1 and Hemp Oil 2 (sample/sa comparison view).	mple 90
SECTION 5: CBDV and CBDVA	91
Study Overview	91
Reporting Statistics	91
Study Results	92
CBDV	92
CBDVA	93

Overall	93
Study Discussion and Technical Recommendations	
CBDV	
CBDVA	94
Overall	94
Table 5-1. Individualized data summary table (NIST) for CBDV and CBDVA in hemp	oils. 95
Table 5-2. Data summary table for CBDV in hemp oils.	96
Figure 5-1. CBDV in Hemp Oil 1 (data summary view – analytical method)	98
Figure 5-2. CBDV in Hemp Oil 2 (data summary view – analytical method)	99
Figure 5-3. CBDV in Hemp Oil 2a (data summary view – analytical method)	100
Figure 5-4. Laboratory means for CBDV in Hemp Oil 1 and Hemp Oil 2 (sample comparison view).	/sample
Table 5-3. Data summary table for CBDVA in hemp oils.	102
Figure 5-5. CBDVA in Hemp Oil 1 (data summary view – analytical method)	103
Figure 5-6. CBDVA in Hemp Oil 2 (data summary view – analytical method)	104
Figure 5-7. CBDVA in Hemp Oil 2a (data summary view – analytical method)	105
Figure 5-8. Laboratory means for CBDVA in Hemp Oil 1 and Hemp Oil 2 (sample comparison view).	/sample
SECTION 6: CBG and CBGA	107
Study Overview	107
Reporting Statistics	107
Study Results	108
CBG	108
CBGA	109
Overall	109
Study Discussion and Technical Recommendations	109
CBG	109
CBGA	110
Overall	110
Table 6-1. Individualized data summary table (NIST) for CBG and CBGA in hemp oils	s 112
Table 6-2. Data summary table for CBG in hemp oils.	113
Figure 6-1. CBG in Hemp Oil 1 (data summary view – analytical method).	115
Figure 6-2. CBG in Hemp Oil 2 (data summary view – analytical method).	116
Figure 6-3. CBG in Hemp Oil 2a (data summary view – analytical method)	117

Figure 6-4. Laboratory means for CBG in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
Table 6-3. Data summary table for CBA in hemp oils. 119
Figure 6-5. CBGA in Hemp Oil 1 (data summary view – analytical method) 121
Figure 6-6. CBGA in Hemp Oil 2 (data summary view – analytical method) 122
Figure 6-7. CBGA in Hemp Oil 2a (data summary view – analytical method) 123
Figure 6-8. Laboratory means for CBGA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
SECTION 7: CBL and CBLA 125
Study Overview
Reporting Statistics
Study Results
CBL
CBLA
Overall
Study Discussion and Technical Recommendations
CBL
CBLA
Overall
Table 7-1. Individualized data summary table (NIST) for CBL and CBLA in hemp oils 129
Table 7-2. Data summary table for CBL in hemp oils. 130
Figure 7-1. CBL in Hemp Oil 1 (data summary view – analytical method)
Figure 7-2. CBL in Hemp Oil 2 (data summary view – analytical method)
Figure 7-3. CBL in Hemp Oil 2a (data summary view – analytical method) 133
Figure 7-4. Laboratory means for CBL in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
Table 7-3. Data summary table for CBLA in hemp oils. 135
Figure 7-5. CBLA in Hemp Oil 1 (data summary view – analytical method)
Figure 7-6. CBLA in Hemp Oil 2 (data summary view – analytical method)
Figure 7-7. CBLA in Hemp Oil 2a (data summary view – analytical method) 138
Figure 7-8. Laboratory means for CBLA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
SECTION 8: CBN and CBNA140
Study Overview
Reporting Statistics

Study Results	
CBN	141
CBNA	
Overall	
Study Discussion and Technical Recommendations	
CBN	
CBNA	
Overall	
Table 8-1. Individualized data summary table (NIST) for CBN and CBNA in hen	np oils 145
Table 8-2. Data summary table for CBN in hemp oils.	146
Figure 8-1. CBN in Hemp Oil 1 (data summary view – analytical method)	
Figure 8-2. CBN in Hemp Oil 2 (data summary view – analytical method)	149
Figure 8-3. CBN in Hemp Oil 2a (data summary view – analytical method)	150
Figure 8-4. Laboratory means for CBN in Hemp Oil 1 and Hemp Oil 2 (se comparison view).	ample/sample
Table 8-3. Data summary table for CBNA in hemp oils.	
Figure 8-5. CBNA in Hemp Oil 1 (data summary view – analytical method)	153
Figure 8-6. CBNA in Hemp Oil 2 (data summary view – analytical method)	154
Figure 8-7. CBNA in Hemp Oil 2a (data summary view – analytical method)	155
Figure 8-8. Laboratory means for CBNA in Hemp Oil 1 and Hemp Oil 2 (se comparison view).	ample/sample 156
SECTION 9: THCV and THCVA	
Study Overview	
Reporting Statistics	
Study Results	
THCV	
THCVA	
Overall	
Study Discussion and Technical Recommendations	159
THCV	159
THCVA	159
Overall	
Table 9-1. Individualized data summary table (NIST) for THCV and THCVA	in hemp oils. 161
Table 9-2. Data summary table for THCV in hemp oils.	
-	

Figure 9-1. THCV in Hemp Oil 1 (data summary view – analytical method)164
Figure 9-2. THCV in Hemp Oil 2 (data summary view – analytical method)165
Figure 9-3. THCV in Hemp Oil 2a (data summary view – analytical method) 166
Figure 9-4. Laboratory means for THCV in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)
Table 9-3. Data summary table for THCVA in hemp oils. 168
Figure 9-5. THCVA in Hemp Oil 1 (data summary view – analytical method)169
Figure 9-6. THCVA in Hemp Oil 2 (data summary view – analytical method) 170
Figure 9-7. THCVA in Hemp Oil 2a (data summary view – analytical method) 171
Figure 9-8. Laboratory means for THCVA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view)

LIST OF ACRONYMS

ACN	Acetonitrile
CBC	Cannabichromene
CBCA	Cannabichromenic Acid
CBD	Cannabidiol
CBDA	Cannabidiolic acid
CBDV	Cannabidivarin
CBDVA	Cannabidivarinic Acid
CBG	Cannabigerol
CBGA	Cannabigerolic Acid
CBL	Cannabicyclol
CBLA	Cannabicyclolic Acid
CBN	Cannabinol
CBNA	Cannabinolic Acid
cGMP	current Good Manufacturing Practice
CO_2	Carbon dioxide
CRM	Certified Reference Material
GC-FID	Gas Chromatography with Flame Ionization Detection
GC-MS	Gas Chromatography Mass Spectrometry
CannaQAP	Cannabis Quality Assurance Program
DSQAP	Dietary Supplements Laboratory Quality Assurance Program
HAMQAP	Health Assessment Measurements Quality Assurance Program
H ₂ O	Water
LC-UV	Liquid Chromatography with UV Absorbance Detection
LC-PDA	Liquid Chromatography with Photodiode Array Detection
LC-MS	Liquid Chromatography with Mass Spectrometry Detection
LC-MS/MS	Liquid Chromatography with Tandem Mass Spectrometry Detection
LOQ	Limit of Quantification
MeOH	Methanol
NA	Not available
NIST	National Institute of Standards and Technology
PA	Phosphoric Acid
QAP	Quality Assurance Program
QL	Quantification Limit
RM	Reference Material
RSD	Relative Standard Deviation
SD	Standard Deviation
SRM	Standard Reference Material
THC	Tetrahydrocannabinol
Δ^8 -THC	Δ^8 -Tetrahydrocannabinol
Δ^9 -THC	Δ^9 -Tetrahydrocannabinol
THCA	Tetrahydrocannabinolic acid
THCV	Tetrahydrocannabivarin
THCVA	Tetrahydrocannabivarinic Acid

ABSTRACT

NIST launched a CannaQAP in 2020 to improve the comparability of the analytical measurements in forensic and *Cannabis* (hemp and marijuana) testing laboratories. CannaQAP is an interlaboratory study mechanism that is similar to a proficiency testing scheme; however, the focus is towards education without assigning pass/fail grades to anonymized participants. CannaQAP helps inform NIST about the current measurement capabilities and challenges to assist in the design and characterization of *Cannabis* RMs. Exercise 1 of CannaQAP focused on the determination of cannabinoids including Δ^9 -THC, THCA, total THC, CBD, CBDA, total CBD, and up to 13 additional cannabinoids in two hemp oils. This report provides a detailed description of the results of this exercise.

INTRODUCTION

CannaQAP offers the opportunity for laboratories to assess their in-house measurements of cannabinoids, other desirable components (e.g., terpenes), and contaminants (e.g., toxic elements, mycotoxins) in samples distributed by NIST. Reports and certificates of participation are provided and may be used as part of their laboratory's validation scheme, demonstrate compliance with cGMPs, and to potentially fulfill proficiency requirements established by related accreditation bodies. In addition, CannaQAP is designed to support the development and dissemination of analytical methods and reference materials. In the future, results from CannaQAP exercises could be used by NIST to identify problematic matrices and analytes for which consensus-based methods of analysis would benefit the stakeholders in numerous *Cannabis* communities.

NIST has decades of experience in the administration of QAPs, and CannaQAP builds on the approach taken by the former DSQAP and current HAMQAP by emphasizing emerging and challenging measurements in the various *Cannabis* and *Cannabis*-derived matrices. QAPs can be viewed as a perpetual interlaboratory study mechanism that is akin to a proficiency testing scheme but without the pass/fail grade with the goal of improving measurement comparability and/or competence for the participant and NIST results. These improvements focus around identifying biases among the different sample extraction, analytical methods and/or calibration approaches. In areas where few standard methods have been recognized, CannaQAP offers a unique tool for assessment of the quality of measurements and provides feedback about performance that can assist participants in improving laboratory operations.

This report summarizes the results from the first exercise of CannaQAP. One hundred sixteen laboratories responded to the call for participants distributed in August 2020. Samples were shipped to participants in October 2020 and results were returned to NIST by November 2020. This report contains the final data and information that was disseminated to the participants in December 2020. The results of the study are summarized below in a series of tables, figures, and text, and reported by section for 17 cannabinoids, total THC, and total CBD.

OVERVIEW OF DATA TREATMENT AND REPRESENTATION

Individualized data tables and certificates are provided to the participants that have submitted data, in addition to this report. Examples of the data tables using NIST data are also included in each section of this report. Community tables and figures are provided using randomized laboratory codes, with identities known only to NIST and individual laboratories. The statistical approaches are outlined below for each type of data representation.

Statistics

Data tables and figures throughout this report contain information about the performance of each laboratory relative to that of the other participants in this study and relative to a target around the expected result, if available. All calculations are performed in PROLab Plus (QuoData GmbH, Dresden, Germany).¹ The consensus means and standard deviations are calculated according to the robust Q/Hampel method outlined in ISO 13528:2015, Annex C.²

Individualized Data Table

The data in this table is individualized to each participating laboratory and is provided to allow participants to directly compare their data to the summary statistics (consensus or community data as well as NIST certified, non-certified, or estimated values, when available). The upper left of the data table includes the randomized laboratory code. Example individualized data tables are included in this report using sample NIST data; participating laboratories received uniquely coded individualized data tables in a separate distribution.

Section 1 of the data table (*Your Results*) contains the laboratory results as reported, including the mean and standard deviation when multiple values were reported. A blank indicates that NIST does not have data on file for that laboratory for the corresponding analyte or matrix. An empty box for standard deviation indicates that the participant reported a single value or a value below the LOQ and therefore that value was not included in the calculation of the consensus data.² Example individualized data tables are included in this report using NIST data in Section 1 to protect the identity and performance of participants.

Also included in Section 1 are two Z-scores. The first Z-score, Z'_{comm} , is calculated with respect to the community consensus value, taking into consideration bias that may result from the uncertainty in the assigned consensus value, using the consensus mean (x*), consensus standard deviation (s*), and standard deviation for proficiency assessment (SDPA, σ_{PT}^2) determined from the Q/Hampel estimator:

$$Z'_{\text{comm}} = \frac{x_i - x_*}{\sqrt{\sigma_{PT}^2 + s^{*2}}}$$

¹ Certain commercial equipment, instruments, or materials are identified in this certificate to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

² ISO 13528:2015, Statistical methods for use in proficiency testing by interlaboratory comparisons, pp. 53–54.

The second Z-score, Z_{NIST} , is calculated with respect to the target value (NIST certified, non-certified, or estimated value, when available), using x_{NIST} and 2^*U_{95} (the expanded uncertainty on the certified or reference value, U_{95} , or twice the standard deviation of NIST or other measurements):

$$Z_{\text{NIST}} = \frac{x_i - x_{\text{NIST}}}{2 \cdot U_{95}}$$

or

$$Z_{\text{NIST}} = \frac{x_i - x_{\text{NIST}}}{2 \cdot U_{\text{NIST}}}.$$

The significance of the *Z*-score and Z'-score is as follows:

- |Z| < 2 indicates that the laboratory result is considered to be within the community consensus range (for Z'_{comm}) or NIST target range (for Z_{NIST}).
- 2 < |Z| < 3 indicates that the laboratory result is considered to be marginally different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).
- |Z| > 3 indicates that the laboratory result is considered to be significantly different from the community consensus value (for Z'_{comm}) or NIST target value (for Z_{NIST}).

Section 2 of the data table (*Community Results*) contains the consensus results, including the number of laboratories reporting more than a single quantitative value for each analyte, the mean value determined for each analyte, and a robust estimate of the standard deviation of the reported values.² Consensus means and standard deviations are calculated using the laboratory means; if a laboratory reported a single value, the reported value is not included in determination of the consensus values.³ Additional information on calculation of the consensus mean and standard deviation.

Section 3 of the data table (*Target*) contains the target values for each analyte, when available. When possible, the target value is a certified value, a non-certified value, or a value determined at NIST. In this study, target values were determined at NIST through a validated LC-PDA method summarized in the Study Material Preparation and Characterization Section below. The target values for Hemp Oil 1 and Hemp Oil 2 represent the mean of at least three tested samples with triplicate preparations from the sample package. The target values for Hemp Oil 2 represent the mean of at least three tested samples from different sample package. These measurements allowed for the NIST to provide an expanded uncertainty (U_{95}) to encompass variability due to inhomogeneity within and between packaged units.

Summary Data Table

This data table includes a summary of all reported data for a particular analyte in a particular study. Participants can compare the raw data for their laboratory to data reported by the other participating laboratories and to the consensus data. A blank indicates that the laboratory signed up and received samples for that analyte and matrix, but NIST does not have data on file for that laboratory. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to yield $|Z'_{comm}| > 2$.

Figures

Data Summary View (Method Comparison Data Summary View)

In this view, individual laboratory data (circles) are plotted with the individual laboratory standard deviation (rectangle). Laboratories reporting values below the LOQ are shown in this view as downward triangles beginning at the LOQ, reported as QL on the figures. Laboratories reporting values as "below LOQ" can still be successful in the study if the target value is also below the laboratory LOQ. The blue solid line represents the consensus mean, and the green shaded area represents the 95 % confidence interval for the consensus mean, based on the standard error of the consensus mean. The uncertainty in the consensus mean is calculated using the equation below, based on the repeatability standard deviation (s_r), the reproducibility standard deviation (s_R), the number of participants reporting data, and the average number of replicates reported by each participant. The uncertainty about the consensus mean is independent of the range of tolerance. Where appropriate, two consensus means may be calculated for the same sample if bimodality is identified in the data. In this case, two consensus means and ranges will be displayed in the data summary view.

$$u_{mean} = \sqrt{\frac{s_R^2 - s_r^2}{n_{participants}} + \frac{s_R^2}{n_{participants} \times n_{Average \, Number \, of \, Replicates \, per \, Participant}}$$

The red shaded region represents the target zone for "acceptable" performance, which encompasses the NIST target value bounded by twice its uncertainty (U_{95} or U_{NIST}). The solid red lines represent the range of tolerance (values that result in an acceptable Z' score, $|Z'| \leq 2$). If the lower limit is below zero, the lower limit has been set to zero. In this view, the relative locations of individual laboratory data and consensus zones with respect to the target zone can be compared easily. In most cases, the target zone and the consensus zone overlap, which is the expected result. Major program goals include both reducing the size of the consensus zone and centering the consensus zone about the target value. Analysis of an appropriate reference material as part of a quality control scheme can help to identify sources of bias for laboratories reporting results that are significantly different from the target zone. In the case in which a method comparison is relevant, different colored data points may be used to identify laboratories that used a specific approach to sample preparation, analysis, or quantitation.

Sample/Sample Comparison View

In this view, the individual laboratory results for one sample (e.g., NIST SRM with a certified, NIST RM with non-certified, or NIST-determined value; a less challenging matrix) are compared to the results for another sample (e.g., NIST RM with a more challenging matrix; a commercial sample). The solid red box represents the target zone for the first sample (x-axis) and the second sample (y-axis), if available. The dotted blue box represents the consensus zone for the first sample (x-axis) and the second sample (y-axis). The axes of this graph are centered about the consensus mean values for each sample or control, to a limit of twice the range of tolerance (values that result in an acceptable Z' score, $|Z'| \leq 2$). Depending on the variability in the data, the axes may be scaled proportionally to better display the individual data points for each laboratory. In some cases, when the consensus and target ranges have limited overlap, the solid red box may only appear partially on the graph. If the variability in the data is high (greater than 100 % RSD), the dotted blue box may also only appear partially on the graph. These views emphasize trends in the data

that may indicate potential calibration issues or method biases. One program goal is to identify such calibration or method biases and assist participants in improving analytical measurement capabilities. In some cases, when two equally challenging materials are provided, the same view (sample/sample comparison) can be helpful in identifying commonalities or differences in the analysis of the two materials.

SECTION 1: STUDY MATERIAL PREPARATION AND CHARACTERIZATION

NIST Method for Study Material Characterization

Analytical Method

All study materials were characterized at NIST using an LC-PDA (*Cannabis Analyzer*, Shimadzu Scientific Instruments, Columbia, MD, USA) equipped with a binary pump, degasser, autosampler, column compartment, and a photodiode array detector, controlled using commercial Lab Solutions software (Shimadzu Scientific Instruments). Cannabinoid separations were carried out on a NexLeaf CBX for Potency C18 column (Shimadzu Scientific Instruments) with 15.0 cm length, 4.6 mm inner diameter, and 2.7 µm average particle diameter, protected by installation of a NexLeaf CBX guard column (Shimadzu Scientific Instruments). Premixed mobile phase solvents [H₂O and ACN containing 0.085 % PA (volume ratios)] were obtained from Shimadzu Scientific Instruments. The separation and detection conditions are summarized below.

Parameters		<u>Settings</u>	
Injection Volume		5 µL	
Column Temperature	40 °C		
Flow rate	1.6 mL/min		
Mobile Phase Program			
	Time (min)	0.085 % PA in H ₂ O	0.085 % PA in ACN
	0.0	30	70
	3.0	30	70
	7.0	15	85
	7.1	5	95
	8.0	5	95
	8.1	30	70
	10.0	30	70

Absorbance Wavelength Range

190 nm to 700 nm

Calibration

A CRM solution of 11 cannabinoids in ACN was obtained from Shimadzu Scientific Instruments. The mass concentration of each cannabinoid in the solution was 250 mg/L. Three independent working calibration solutions were gravimetrically prepared to have final mass concentrations of 2.5 mg/L, 10 mg/L, and 25 mg/L of each cannabinoid. The working solutions were analyzed by the LC-PDA method summarized above using a common wavelength of 220 nm. Peak areas were plotted for each compound with its corresponding mass concentration to construct an external calibration curve. Triplicate injection of the calibration standards demonstrated adequate reproducibility of the chromatographic method with RSDs below 3 % for all cannabinoids.

Hemp Oil 1

Study Material Preparation

Hemp Oil 1 was prepared by CV Sciences (San Diego, CA, USA) for use in CannaQAP through a CO₂ extraction from certified food-fiber hemp seed with decarboxylation to convert CBDA to CBD. The material was packaged into 10 mL amber vials and stored under controlled refrigeration (≈ 4 °C) until shipment to NIST. Samples of the material were sent to Alkemist Labs (Garden Grove, CA, USA) for cannabinoid testing prior to shipment to NIST. Upon arrival at NIST, materials were stored under controlled refrigeration (≈ 4 °C) until shipment to participating laboratories.

Study Material Characterization

Samples were prepared following the approach of Vaclavik et al.,³ modified to use MeOH instead of ethanol. Three 0.5 g samples of three individual Hemp Oil 1 sample bottles (N = 9) were accurately weighed into 50 mL centrifuge tubes and diluted with ≈ 20.0 g of MeOH. Samples were vortexed for 10 s to ensure initial mixing and shaken for 15 min using a large benchtop capacity mixer from Glas-Col (Terre Haute, IN, USA). Small quantities of Hemp Oil 1 samples were further diluted with MeOH resulting in a 10-fold and 100-fold dilutions. The original and diluted samples were filtered using a 0.45 µm PFTE syringe filter into autosampler vials for analysis by LC-PDA.

The LC-PDA chromatograms at 220 nm for samples of Hemp Oil 1 with no additional dilution, 10-fold dilution, and 100-fold dilution are shown in **Figure 1-1**. CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC were tentatively identified in Hemp Oil 1 based on matching retention times to reference standards. The presence of CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC was confirmed by comparison of the absorbance spectra collected at the maximum of the chromatographic peaks in Hemp Oil 1 to those collected from reference standards (**Figure 1-2**). With the exception of CBC, the absorbance spectra correlated extremely well between the samples and the standards. The absorbance spectrum of CBC in the calibrant is more distinct than the other five cannabinoids, with clear spectral features at 193 nm, 230 nm, and 284 nm. The absorbance wavelengths, but with drastically different peak heights indicating the coelution of interfering species in the chromatographic peak.

To investigate the potential interference in the CBC chromatographic peak for Hemp Oil 1, the extracted chromatogram at 220 nm was enlarged in **Figure 1-3A**. Absorbance spectra collected at 7.059 min, 7.113 min, and 7.200 min are compared to the reference standard in **Figure 1-3B**, **Figure 1-3C**, and **Figure 1-3D**, respectively. The absorbance spectrum obtained from Hemp Oil 1 at 7.059 min is virtually identical to CBC, with some variability in signal intensity. The absorbance spectrum at the chromatographic peak maximum in Hemp Oil 1 (7.113 min) has some representation of CBC with a 5-fold higher signal intensity but also includes a more intense spectral peak at 195 nm. The absorbance spectrum at 7.200 min from the Hemp Oil 1 sample shows contribution from the 195 nm peak only. Similar observations were noted for Hemp Oil 2 and 2a samples (data not shown). These results clearly indicate that CBC is present in the three samples, but that CBC cannot be quantitatively measured by LC-PDA using the 220 nm wavelength. Impact of the wavelength selected for quantitation of CBC for the three hemp oil samples.

A summary of the determined mass fraction (%) values for CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC in Hemp Oil 1 are summarized below. The good precision of the LC-PDA measurements with RSDs at or below ≈ 6 % between bottles indicating that Hemp Oil 1 samples were sufficiently

³ L Vaclavik, F Benes, M Fenclova, J Hricko, A Krmela, V Svobodova, J Hajslova, K Mastovska. *J AOAC Int* 102(6): 1822-1833 (2019) <u>https://doi.org/10.1093/jaoac/102.6.1822</u>.

homogeneous for use as study samples in CannaQAP Exercise 1. These values will be used as target values to estimate accuracy of participant results (Z_{NIST}).

Cannabinoids	$Mean \pm SD$	<u>RSD (%)</u>	N
CBDV	0.0391 ± 0.0024	6.17	18
CBG	0.0636 ± 0.0025	3.91	18
CBD	4.310 ± 0.058	1.34	9
CBN	0.01582 ± 0.00048	3.04	9
Δ^9 -THC	0.1315 ± 0.0026	1.98	18
CBC	0.1975 ± 0.0023	1.30	9

Participant Instructions

Participants were provided with one bottle containing approximately 5 mL of hemp oil and were asked to store the sample under controlled refrigeration (≈ 4 °C). Before use, participants were instructed to allow the contents of the bottle to equilibrate at room temperature for 24 h before mixing thoroughly. A sample size of 0.5 g was recommend based on homogeneity measurements at NIST to help minimize variability caused by sampling in the end results. Participants were asked to prepare three samples and report three mass fraction (%) values from the single bottle provided on an as-received basis.

Hemp Oil 2

Study Material Preparation

Hemp Oil 2 was prepared by CV Sciences (San Diego, CA, USA) for use in CannaQAP by distillation of Hemp Oil 1 and dilution with additional hemp oil fractions to reduce the mass fraction of total THC to below 0.3 %. The material was packaged into 10 mL amber vials and stored under controlled refrigeration (≈ 4 °C) until shipment to NIST. Samples of the material were sent to Alkemist Labs (Garden Grove, CA, USA) for cannabinoid testing prior to shipment to NIST. Upon arrival at NIST, materials were stored under controlled refrigeration (≈ 4 °C) until shipment to participating laboratories.

Study Material Characterization

Samples were prepared following the approach of Vaclavik et al.,³ modified to use MeOH instead of ethanol. Three 0.5 g samples of three individual Hemp Oil 2 sample bottles (N = 9) were accurately weighed into 50 mL centrifuge tubes and diluted with ≈ 20.0 g of MeOH. Samples were vortexed for 10 s to ensure initial mixing and shaken for 15 min using a large benchtop capacity mixer from Glas-Col (Terre Haute, IN, USA). Small quantities of Hemp Oil 2 samples were further diluted with MeOH resulting in a 10-fold and 100-fold dilutions. The original and diluted samples were filtered using a 0.45 µm PFTE syringe filter into autosampler vials for analysis by LC-PDA.

The LC-PDA chromatograms at 220 nm for samples of Hemp Oil 2 with no additional dilution, 10-fold dilution, and 100-fold dilution are shown in **Figure 1-5**. CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC were identified and determined in Hemp Oil 2 using similar procedures as described for Hemp Oil 1.

A summary of the determined mass fraction (%) values for CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC in Hemp Oil 2 are summarized below. The good precision of the LC-PDA measurements

with RSDs at or below 5 % between bottles indicated that Hemp Oil 2 samples were sufficiently homogeneous for use as study samples in CannaQAP Exercise 1. These values will be used as target values to estimate accuracy of participant results (*Z*_{NIST}).

<u>Cannabinoids</u>	$\underline{Mean \pm SD}$	<u>RSD (%)</u>	<u>N</u>
CBDV	0.1422 ± 0.0038	2.64	18
CBG	0.0879 ± 0.0041	4.71	18
CBD	9.21 ± 0.27	2.90	9
CBN	0.0240 ± 0.0011	4.78	9
Δ^9 -THC	0.1604 ± 0.0046	2.84	18
CBC	0.4122 ± 0.0056	1.37	9

Participant Instructions

Participants were provided with one bottle containing approximately 5 mL of hemp oil and were asked to store the sample under controlled refrigeration (≈ 4 °C). Before use, participants should mix the sample thoroughly after allowing the contents of the bottle to equilibrate at room temperature for 3 h, which was shorter than Hemp Oil 1 because the sample was a finished product sample matrix. A sample size of 0.5 g was recommend based on homogeneity measurements at NIST to help minimize variability caused by sampling in the end results. Participants were asked to prepare three samples and report three mass fraction (%) values from the single bottle provided on an as-received basis.

Hemp Oil 2a

Study Material Preparation

Hemp Oil 2a was prepared through the dilution of Hemp Oil 2 (1.60508 g) with methanol (62.41220 g) and ethanol (10.49705 g) with shaking for 30 min using a large benchtop capacity mixer from Glas-Col (Terre Haute, IN, USA) and filtration to remove any undissolved precipitates. The material was packaged into 1.8 mL amber autosampler vials and stored at \approx 4 °C until shipment to participating laboratories.

Study Material Characterization

Small quantities of three Hemp Oil 2a samples were further diluted with MeOH resulting in a 10-fold and 100-fold dilutions. The original and diluted samples were filtered using a 0.45 μ m PFTE syringe filter into autosampler vials for analysis by LC-PDA.

The LC-PDA chromatograms at 220 nm for samples of Hemp Oil 2a with no additional dilution, 10-fold dilution, and 100-fold dilution are shown in **Figure 1-6**. CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC were identified and determined in Hemp Oil 2a using similar procedures as described for Hemp Oil 1 and Hemp Oil 2.

A summary of the determined mass fraction (%) values for CBDV, CBG, CBD, CBN, Δ^9 -THC, and CBC in Hemp Oil 2a are summarized below. The good precision of the LC-PDA measurements with RSDs at or below ≈ 6.5 % between bottles indicated that Hemp Oil 2a samples were sufficiently homogeneous for use as study samples in CannaQAP Exercise 1. These values will be used as target values to estimate accuracy of participant results (*Z*_{NIST}).

$\underline{Mean \pm SD}$	<u>RSD (%)</u>	<u>N</u>
0.1273 ± 0.0041	3.22	6
0.0904 ± 0.0022	2.45	3
9.457 ± 0.038	0.40	3
0.01725 ± 0.00077	4.44	3
0.1543 ± 0.0060	3.90	6
0.390 ± 0.025	6.34	3
	$\frac{Mean \pm SD}{0.1273 \pm 0.0041}$ 0.0904 ± 0.0022 9.457 ± 0.038 0.01725 ± 0.00077 0.1543 ± 0.0060 0.390 ± 0.025	$\begin{array}{c c} \underline{\text{Mean} \pm \text{SD}} & \underline{\text{RSD}}(\%) \\ 0.1273 \pm 0.0041 & 3.22 \\ 0.0904 \pm 0.0022 & 2.45 \\ 9.457 \pm 0.038 & 0.40 \\ 0.01725 \pm 0.00077 & 4.44 \\ 0.1543 \pm 0.0060 & 3.90 \\ 0.390 \pm 0.025 & 6.34 \end{array}$

Participant Instructions

Participants were provided with three sample vials, each containing approximately 1 mL of hemp oil. Participants were asked to store the samples under controlled refrigeration (≈ 4 °C). Before use, participants were instructed to allow the contents of the bottle to equilibrate at room temperature for 3 h before mixing thoroughly and removing a sample size appropriate to their method of analysis. Participants were asked to prepare one sample and report one mass fraction (%) value from each vial provided on an as-received basis and adjusting for the dilution information provided.

Figure 1-1. Extracted wavelength chromatogram for Hemp Oil 1 at 220 nm.

Figure 1-2. UV absorbance spectra of the six suspected cannabinoid peaks in Hemp Oil 2 (black) and calibration standard (red).

Figure 1-3. (A) Selection of the extracted wavelength chromatogram at 220 nm for Hemp Oil 2. (B, C, D) UV absorbance spectra of suspected CBC peak in Hemp Oil 2 (black) at different chromatographic retention times compared to a calibration standard (red).

Figure 1-4. Extracted wavelength chromatogram at different wavelengths for the CBC chromatographic peak in Hemp Oil 2.

Figure 1-5. Extracted wavelength chromatogram for Hemp Oil 2 at 220 nm.

Figure 1-6. Extracted wavelength chromatogram for Hemp Oil 2a at 220 nm.

SECTION 2: Δ^9 -THC, THCA, Δ^8 -THC, AND TOTAL THC

Study Overview

The medicinal and recreational use of Cannabis (hemp and marijuana) and Cannabis-derived products continues to increase across the United States. As the industry grows, so does the need for reliable differentiation between legal and illegal Cannabis-derived products, which is highly variable depending on local regulations. This need for distinction has motivated a new interest in the analysis of Δ^9 -THC, THCA, and total THC mass fractions (%). THCA, the acidic precursor of Δ^9 -THC, is synthesized in the glandular trichomes of the Cannabis plant and forms Δ^9 -THC after the parent compound is decarboxylated by UV exposure, prolonged storage, or heat.⁴ Additionally, Δ^8 -THC, a non-psychoactive stereoisomer of Δ^9 -THC that may be present in Cannabis and derived products, has similar chromatographic behavior and mass spectral fingerprint to Δ^9 -THC. Many laboratories are interested in quantitation of Δ^8 -THC to ensure that their analytical methods can appropriately distinguish between the two isomers. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of Δ^9 -THC, THCA, Δ^8 -THC, and total THC in three hemp oils. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of THCA and levels of Δ^9 -THC in normal commercial hemp products.

Reporting Statistics

• The enrollment and reporting statistics for Δ^9 -THC, THCA, Δ^8 -THC, and total THC are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

<u>Hemp Oil 1</u>		<u>Hemp</u>	Oil 2	<u>Hemp Oil 2a</u>		
	Percent		Percent		Percent	
Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	
Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>	
79	86 %	92	85 %	19	63 %	
78	69 %	90	72 %	19	47 %	
56	66 %	66	64 %	19	42 %	
74	72 %	81	74 %	19	63 %	
	<u>Hemp</u> <u>Number of</u> <u>Participants</u> 79 78 56 74	Hemp Oil 1 Percent Number of Reporting Participants Results 79 86 % 78 69 % 56 66 % 74 72 %	Hemp Oil 1 Hemp Percent Percent Number of Reporting Number of Participants Results Participants 79 86 % 92 78 69 % 90 56 66 % 66 74 72 % 81	Hemp Oil 1 Hemp Oil 2 Percent Percent Number of Reporting Participants Results 79 86 % 78 69 % 56 66 % 69 % 81	Hemp Oil 1Hemp Oil 2Hemp Oil 2PercentPercentPercentNumber ofReportingNumber ofReportingParticipantsResultsParticipantsResultsParticipants79 86% 92 85% 1978 69% 90 72% 1956 66% 66 64% 1974 72% 81 74% 19	

• Most laboratories reported using solvent extraction or sample dilution for determination of Δ^9 -THC, THCA, Δ^8 -THC, and total THC in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

⁴ G Moreno-Sanz. Cannabis and Cannabinoid Research 1(1): 124-130 (2016) <u>http://doi.org/10.1089/can.2016.0008</u>.

<u>Reported</u>		Percent Reporting						
Preparation Method	Δ^9 -THC	THCA	Δ^8 -THC	<u>Total THC</u>				
Solvent Extraction	67.3	69.1	70.4	68.6				
Dilution	24.7	22.4	22.2	21.4				
Other	1.9	1.3	1.9	2.9				
None	1.2	1.3	1.9	1.4				
No Response	4.9	5.1	3.7	5.7				

• Most laboratories reported using LC-PDA or LC-UV for the determination of Δ^9 -THC, THCA, Δ^8 -THC, and total THC (see table below). Additional method details are summarized at the end of the report in Appendix I.

	Percent Reporting						
Δ^9 -THC	<u>THCA</u>	Δ^8 -THC	<u>Total THC</u>				
63.6	65.8	66.7	59.3				
25.3	27.0	24.1	23.6				
1.9	2.0	1.9	1.4				
3.7	3.3	3.7	4.3				
1.2	0.0	0.0	5.7				
3.1	2.0	1.9	5.0				
0.0	0.0	1.9	0.7				
	$\frac{\Delta^9\text{-THC}}{63.6}$ 25.3 1.9 3.7 1.2 3.1 0.0	$\begin{array}{c c} \underline{\Delta^{9}\text{-THC}} & \underline{\text{THCA}} \\ \hline \underline{\Delta^{9}\text{-THC}} & \underline{\text{THCA}} \\ \hline 63.6 & 65.8 \\ 25.3 & 27.0 \\ 1.9 & 2.0 \\ 3.7 & 3.3 \\ 1.2 & 0.0 \\ 3.1 & 2.0 \\ 0.0 & 0.0 \\ \end{array}$	Δ^9 -THCTHCA Δ^8 -THC63.665.866.725.327.024.11.92.01.93.73.33.71.20.00.03.12.01.90.00.01.9				

Study Results

∆9-THC

- The mass fractions (%) for Δ⁹-THC in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in Table 2-1. These NIST values are used as the target means and ranges summarized in Table 2-2 for comparison to the participant results.
- The target and consensus means and ranges are summarized for Δ^9 -THC via different analytical methods in **Figure 2-1**, **Figure 2-2**, and **Figure 2-3**, which include data from laboratories submitting two or three results for Δ^9 -THC. Data from participants submitting only one measurement were included in **Table 2-2** but were not included in the calculation of consensus statistics.²
 - For Δ⁹-THC in Hemp Oil 1, the consensus range was based on quantitative results from 65 laboratories and completely overlaps the target range (Figure 2-1).
 - The individual laboratory means from 37 laboratories (57 % of those reporting results) were outside the NIST range of tolerance for Δ^9 -THC in Hemp Oil 1.
 - The individual laboratory means from 10 laboratories (15 % of those reporting results) were outside the acceptable Z'_{comm} score for Δ^9 -THC in Hemp Oil 1.
 - The threshold or LOQ for 1 of 1 laboratory reporting a qualitative result was below the target mean for Δ^9 -THC in Hemp Oil 1.

- For Δ^9 -THC in Hemp Oil 2, the consensus range was based on quantitative results from 72 laboratories and completely overlaps the target range (Figure 2-2).
 - The individual laboratory means from 39 laboratories (54 % of those reporting results) were outside the NIST range of tolerance for Δ^9 -THC in Hemp Oil 2.
 - The individual laboratory means from 8 laboratories (11 % of those reporting results) were outside the acceptable Z'_{comm} score for Δ^9 -THC in Hemp Oil 2. The threshold or LOQ for 1 of 3 laboratories reporting a qualitative result were below
 - the target mean for Δ^9 -THC in Hemp Oil 2.
- For Δ^9 -THC in Hemp Oil 2a, the consensus range was based on quantitative results from 11 laboratories and overlaps approximately 85 % of the target range (Figure 2-3).
 - The individual laboratory means or thresholds from 6 laboratories (55 % of those reporting results) were outside the NIST range of tolerance for Δ^9 -THC in Hemp Oil 2a.
 - The individual laboratory mean from 1 laboratory (9 % of those reporting results) was outside the acceptable Z'_{comm} score for Δ^9 -THC in Hemp Oil 2a.
 - No results were reported using thresholds or LOQs for Δ^9 -THC in Hemp Oil 2a. •
- A comparison of individual laboratory means for Δ^9 -THC in Hemp Oil 1 and Hemp Oil 2 is summarized in Figure 2-4 for laboratories who reported results for both samples.

THCA

- No target means or ranges were provided for THCA in the three hemp oils (Table 2-1). •
- The consensus means and ranges for THCA are based on quantitative data from 27 laboratories (Figure 2-5), 34 laboratories (Figure 2-6), and 3 laboratories (Figure 2-7) for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 2-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for THCA in Hemp Oil 1 and Hemp Oil 2 is • summarized in Figure 2-8 for laboratories who reported results for both samples.

Δ^{8} -THC

- No target means or ranges were provided for Δ^8 -THC in the three hemp oils (**Table 2-1**).
- The consensus means and ranges for Δ^8 -THC are based on quantitative data from 18 laboratories (Figure 2-9), 23 laboratories (Figure 2-10), and 3 laboratories (Figure 2-11) for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 2-4 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for Δ^8 -THC in Hemp Oil 1 and Hemp Oil 2 is • summarized in Figure 2-12 for laboratories who reported results for both samples

Total THC

- The mass fractions (%) for total THC in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in Table 2-1. These NIST values are used as the target means and ranges summarized in Table 2-5 for comparison to the participant results.
- The target and consensus means and ranges are summarized for total THC via different • analytical methods in Figure 2-13, Figure 2-14, and Figure 2-15, which include data from

laboratories submitting two or three measurements for total THC. Data from participants submitting only one measurement were included in **Table 2-5** but were not included in the calculation of consensus statistics.²

- For total THC in Hemp Oil 1, the consensus range was based on quantitative results from 52 laboratories and overlaps approximately 70 % of the target range (Figure 2-13).
 - The individual laboratory means or thresholds from 32 laboratories (62 % of those reporting results) were outside the NIST range of tolerance for total THC in Hemp Oil 1.
 - The individual laboratory means from 7 laboratories (13 % of those reporting results) were outside the acceptable Z'_{comm} score for total THC in Hemp Oil 1.
 - The threshold or LOQ for 1 of 1 laboratory reporting a qualitative result was below the target mean for total THC in Hemp Oil 1.
- For total THC in Hemp Oil 2, the consensus range was based on quantitative results from 57 laboratories and overlaps approximately 50 % of the target range (Figure 2-14).
 - The individual laboratory means or thresholds from 34 laboratories (60 % of those reporting results) were outside the NIST range of tolerance for total THC in Hemp Oil 2.
 - The individual laboratory means from 6 laboratories (11 % of those reporting results) were outside the acceptable Z'_{comm} score for total THC in Hemp Oil 2.
 - The thresholds or LOQs for 2 of 2 laboratories reporting a qualitative result were below the target mean for total THC in Hemp Oil 2.
- For total THC in Hemp Oil 2a, the consensus range was based on quantitative results from 11 laboratories and overlaps approximately 75 % of the target range (Figure 2-15).
 - The individual laboratory means or thresholds from 8 laboratories (73 % of those reporting results) were outside the NIST range of tolerance for total THC in Hemp Oil 2a.
 - No individual laboratory means were outside the acceptable $Z'_{\rm comm}$ score for total THC in Hemp Oil 2a.
 - No results were reported using thresholds or LOQs for total THC in Hemp Oil 2a.
- A comparison of individual laboratory means for total THC in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 2-16** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of Δ^9 -THC, THCA, Δ^8 -THC, and total THC in the hemp oil samples are shown in the table below.

	Between	Between-Laboratory Variability (% RSD)						
Analyte	Hemp Oil 1	Hemp Oil 2	Hemp Oil 2a					
Δ^9 -THC	2.2	2.7	6.4					
THCA	28.8	27.9	85.1					
Δ^8 -THC	28.4	29.2	57.2					
Total THC	2.8	3.4	11.9					

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

*∆*9*-THC*

- Approximately 17 % of the laboratories reporting results for Δ^9 -THC provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 2-4**).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability for Δ⁹-THC was higher in Hemp Oil 2a (6.4 %) than Hemp Oil 1 (2.2 %) or Hemp Oil 2 (2.7 %). The variability of individual laboratory means was lower for Δ⁹-THC in Hemp Oil 1 (4.6 %) and Hemp Oil 2 (4.1 %) in comparison to Hemp Oil 2a (8.3 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
 - The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (11) compared to Hemp Oil 1 (65) and Hemp Oil 2 (72).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for Δ^9 -THC in the three hemp oil samples.

THCA

- Approximately 27 % of the laboratories reporting results for THCA provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 2-8**).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 did not necessarily report results above the consensus mean for Hemp Oil 2. Trends of this type often represent potential sample interferences and miss identifications due to levels of THCA being at or below participants LOQs.
- Most laboratories reported that THCA was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (28 % to 85 %).
 - Approximately 5 % of the laboratories reporting results used LC-MS or LC-MS/MS methods with most having adequate LOQs to determine THCA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 93 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 17 %, 22 %, and 12 % of these laboratories with sufficient LOQs to determine THCA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for THCA in the three hemp oil samples.

Δ^{8} -THC

• Approximately 18 % of the laboratories reporting results for Δ^8 -THC provided values outside the consensus range for both Hemp Oil 1 and Hemp Oil 2 (**Figure 2-12**).

- Laboratories reporting results above the consensus mean in Hemp Oil 1 also reported results above the consensus mean for Hemp Oil 2. Trends of this type often indicate a calibration bias.
- Most laboratories reported that Δ⁸-THC was present in the samples at or below their LOQ (non-zero values), resulting in large consensus ranges and between-laboratory variabilities (28 % to 57 %).
 - Approximately 6 % of the laboratories reporting results used LC-MS or LC-MS/MS methods with only 1 laboratory having sufficient LOQs to determine Δ^8 -THC at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 91 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 29 %, 30 %, and 33 % of these laboratories with adequate LOQs to determine Δ⁸-THC at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for Δ^8 -THC in the three hemp oil samples.

Total THC

- Approximately 14 % of the laboratories reporting results for total THC provided values outside the consensus range for both Hemp Oil 1 and Hemp Oil 2 (**Figure 2-16**).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability for total THC was higher in Hemp Oil 2a (11.9 %) than Hemp Oil 1 (2.8 %) or Hemp Oil 2 (3.4 %). The variability of individual laboratory means was lower for total THC in Hemp Oil 1 (4.8 %) and Hemp Oil 2 (4.0 %) in comparison to Hemp Oil 2a (8.1 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
 - The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (11) compared to Hemp Oil 1 (52) and Hemp Oil 2 (57).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for total THC in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because THCA can readily convert to Δ^9 -THC when store at elevated or room temperatures.⁴
 - Participants were asked to store the samples under controlled refrigeration (\approx 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵

⁵ ASTM INTERNATIONAL, ASTM D8309; Standard Guide for Stability Testing of Cannabis-Based Products, 2021.

Laboratories should make total THC determinations via experimental conversion of THCA to Δ⁹-THC (using elevated temperature or specific chemical reagents) or via calculation of total THC from the sum of measured Δ⁹-THC and THCA in the sample using the equation below.

Total THC = mass $\% \Delta^9$ -THC + (0.877 × mass % THCA)

- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass to Δ⁹-THC. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the Δ⁹-THC, THCA, and total THC in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02 %").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
 - Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

Table 2-1. Individualized data summary table (NIST) for Δ^9 -THC, THCA, Δ^8 -THC, and total THC in hemp oils.

			Canna	QAP Exerci	ise 1 - Fall 20	020						
	Lab Code: NIST 1. Your Results				2.	Community R	3. Target					
Analyte	Sample	Units	x _i	\mathbf{s}_{i}	Z'_{comm}	Z _{NIST}		Ν	x*	s*	x _{NIST}	U
△9-Tetrahydrocannabinol (△9-THC)	Hemp Oil 1	mass %	0.131	0.010	1.2	0.0		52	0.1274	0.0031	0.131	0.010
△9-Tetrahydrocannabinol (△9-THC)	Hemp Oil 2	mass %	0.16	0.018	0.8	0.0		61	0.1567	0.0043	0.16	0.018
△9-Tetrahydrocannabinol (△9-THC)	Hemp Oil 2a	mass %	0.154	0.024	1.0	0.0		10	0.1443	0.0093	0.154	0.024
Tetrahydrocannabinolic acid (THCA)	Hemp Oil 1	mass %						23	0.00556	0.0016		
Tetrahydrocannabinolic acid (THCA)	Hemp Oil 2	mass %						31	0.0115	0.0032		
Tetrahydrocannabinolic acid (THCA)	Hemp Oil 2a	mass %						2	0.021	0.018		
△8-Tetrahydrocannabinol (△8-THC)	Hemp Oil 1	mass %						15	0.0104	0.0030		
△8-Tetrahydrocannabinol (△8-THC)	Hemp Oil 2	mass %						22	0.0139	0.0041		
△8-Tetrahydrocannabinol (△8-THC)	Hemp Oil 2a	mass %						2	0.037	0.021		
Total △9-THC	Hemp Oil 1	mass %	0.131	0.010	1.0	0.0		48	0.1349	0.0038	0.131	0.010
Total △9-THC	Hemp Oil 2	mass %	0.16	0.018	1.5	0.0		54	0.1686	0.0057	0.16	0.018
Total ∆9-THC	Hemp Oil 2a	mass %	0.154	0.024	1.3	0.0		11	0.134	0.016	0.154	0.024
$\overline{x_i}$ Mean of reported values						Ν	Number of quantitative x _{NIST} NIST-assessed value		essed value			
			s _i Standard deviation of reported values					values rep	orted		U expanded	uncertainty
		Z' _{com}	<i>Z</i> ' _{comm} Z'-score with respect to community			x*	Robust m	ean of reported		about the l	NIST-assessed value	
			consensus					values				
		Z _{NIS}	T Z-score w	ith respect to	NIST value		s*	Robust sta	ndard deviatio	n		

National Institute of Standards and Technology
Table 2-2. Data summary table for Δ^9 -THC in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Δ9-Tetrahydrocannabinol (Δ9-TH								C)						
			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	155 %)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.131	0.010				0.160	0.018				0.154	0.024
	A001	0.14	0.13	0.12	0.1300	0.0100	0.17	0.18	0.17	0.1733	0.0058					
	A002	0.13898	0.1326	0.12578	0.1325	0.0066	0.170171	0.171068	0.1564/1	0.1659	0.0082					
	A003	0.11	0.11	0.11	0.1100	0.0000	0.174	0.103	0.137	0.1047	0.0080					
	A005	0.14	0.125	0.135	0.1333	0.0076	0.17	0.169	0.172	0.1703	0.0015					
	A006	0.15			0.1500		0.17			0.1700						
	A007						0.03	0.05	0.02	0.0333	0.0153					
	A008	0.069			0.0690	_					_					
	A009											0.164	0.164	0.176	0.1680	0.0069
	A010											present	present	present		
	A011 A012						0.14262	0 14309	0 14348	0 1431	0.0004					
	A013	0.134	0.141	0.144	0.1397	0.0051	0.151	0.147	0.145	0.1477	0.0031					
	A014	0.13			0.1300		0.15			0.1500						
	A015											0.18	0.12	0.28	0.1933	0.0808
	A016															
	A017	0.15			0.1500		0.21			0.2100						
	A018	0.13			0.1300		0.17			0.1700						
	A019 A020	0.13	0 124478	0 123915	0.1239	0.0006	0.17	0.146124	0 160594	0.1700	0.0089					
	A021	0112520	01121110	01120310	011203	010000	01111200	01110121	011000091	0.1201	010003	0.05	0.08	0.07	0.0667	0.0153
	A022											0.1199	0.1218	0.1226	0.1214	0.0014
	A023						0.1835	0.1795	0.1822	0.1817	0.0020					
lts	A024				_	_						0.17	0.181	0.176	0.1757	0.0055
tesu	A025	-0.15	-0.15	-0.15	-0.15		0.15	0.11	0.16	0.1400	0.0265					
al R	A026	<0.15	<0.15	<0.15	<0.15		<0.15	<0.15	<0.15	<0.15		0.156	0.158	0.158	0.1573	0.0012
idu	A027	0.1538	0.1718	0.1537	0.1598	0.0104	0.2198	0.1871	0.2153	0.2074	0.0177	0.150	0.158	0.158	0.1575	0.0012
vipu	A029						<2	<2	<2	<2						
-	A030	0.186			0.1860		0.182			0.1820						
	A031	0.12	0.12	0.12	0.1200	0.0000	0.13	0.14	0.14	0.1367	0.0058					
	A032	0.12	0.11	0.12	0.11(7	0.0050	0.14	0.15	0.12	0.1400	0.0100					
	A033	0.12	0.11	0.12	0.1167	0.0058	0.14	0.15	0.13	0.1400	0.0100					
	A034	0.129			0.1290		0.150	0.174	0.173	0.1727	0.0015					
	A036	0.135	0.137	0.14	0.1373	0.0025	0.181	0.182	0.187	0.1833	0.0032					
	A037	0.13	0.131	0.128	0.1297	0.0015	0.162	0.162	0.159	0.1610	0.0017					
	A038	0.161	0.16	0.158	0.1597	0.0015	0.207	0.192	0.208	0.2023	0.0090					
	A039	0.09	0.07	0.08	0.0800	0.0100	0.1	0.1	0.09	0.0967	0.0058	0.10(41	0.105(0	0.1070.4	0.10(5	0.0000
	A040	0.1	0.1	0.1	0.1000	0.0000	0.1	0.1	0.1	0.1000	0.0000	0.12641	0.12562	0.12734	0.1265	0.0009
	A041	BLO	BLO	BLO	0.1000	0.0000	BLO	BLO	BLO	0.1000	0.0000					
	A043	0.2	0.19	0.199	0.1963	0.0055	0.306	0.309	0.31	0.3083	0.0021					
	A044															
	A045															
	A046	0	0.1	0	0.0333	0.0577	0	0	0	0.0000	0.0000					
	A047	0.01	0.01	0.01	0.0100	0.0000	0.02	0.02	0.02	0.0200	0.0000					
	A048	0.007	0.008	0.088	0.1040	0.0118	0.082	0.08	0.08	0.1300	0.0012					
	A050	0.134	0.135	0.134	0.1343	0.0006	0.096	0.093	0.0946	0.0945	0.0015					
	A051															
	A052															
	A053	0.1017	0.101-	0.10.10	0.1001	0.0010	0.1	0.1.00	0.1.51	0.1/2-	0.0000					
	A055	0.1315 Concentra	0.1315 s Meen	0.1348	0.1326	0.0019	0.1662	0.1602 s Mesn	0.161	0.1625	0.0033	Conconce	s Macr		0 1442	
nity Is		Consensu	s Mican s Standard	Deviation	0.1276		Consensu	s Micall s Standard	Deviation	0.0043		Consensu	s Standard	Deviation	0.0093	
sult		Maximum	1	2 e maioli	0.6600		Maximum	l	2 et innoll	0.7900		Maximum	1	2 eviation	0.1933	
Re		Minimum	L		0.0000		Minimum			0.0000		Minimum			0.0667	
С		Ν			52		Ν			61		Ν			10	

Image: Note:								∆9-	Tetrahydı	ocannabin	ol (∆9-TH	C)					
Inte Inte No No <th< th=""><th>_</th><th></th><th></th><th>Hemp</th><th>o Oil 1 (ma</th><th>ss %)</th><th></th><th></th><th>Hemp</th><th>o Oil 2 (ma</th><th>ss %)</th><th></th><th></th><th>Hemp</th><th>Oil 2a (ma</th><th>uss %)</th><th></th></th<>	_			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	uss %)	
NINT Outints Outints Outints Outints Outints Outints Outints A085 0.178 0.128 0.128 0.019 0.178 0.121 0.170 0.0000 0.171 0.0195 0.171 0.0195 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.018 0.111 0.018 0.111 0.018 0.111 0.018 0.111 0.018 0.111 0.018 0.011 0.018 0.011 0.018 0.011 0.018 0.011 0.018 0.011 0.018 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011		Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
Adds: Adds: <th< th=""><th></th><th>A056</th><th>0.01358</th><th></th><th></th><th>0.131</th><th>0.010</th><th>0.2019</th><th></th><th></th><th>0.160</th><th>0.018</th><th></th><th></th><th></th><th>0.154</th><th>0.024</th></th<>		A056	0.01358			0.131	0.010	0.2019			0.160	0.018				0.154	0.024
Adds 0.128 0.128 0.012 0.128 0.012 0.128 0.028		A057	0101000			010100		012013			0.2013						
Verticity 0.129 0.138 0.1283 0.026 0.1483 0.014 0.148 0.188 0.180 0.0000 A060 0.134 0.134 0.132 0.133 0.0012 0.158 0.18 0.180 0.0000 A060 0.134 0.132 0.133 0.0012 0.158 0.150 0.110 0.0000 A063		A058	0.178	0.152	0.189	0.1730	0.0190	0.178	0.182	0.171	0.1770	0.0056					
Image: 1000 00134 00134 00139 00003 0.0136 00138 00136 00136 00137 00001 0.011 00108 0.015 0.0110 0003 Added 1 1 1 1 1 1 0 0.013 0.115 0.110 0003 Added 1 1 1 1 1 1 0 0.0017 0.0019 Added 1 1 1 1 1 1 0 0.0017 0.0017 Added 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th></th> <th>A059</th> <th>0.129</th> <th>0.1305</th> <th>0.1255</th> <th>0.1283</th> <th>0.0026</th> <th>0.1685</th> <th>0.154</th> <th>0.147</th> <th>0.1565</th> <th>0.0110</th> <th></th> <th></th> <th></th> <th></th> <th></th>		A059	0.129	0.1305	0.1255	0.1283	0.0026	0.1685	0.154	0.147	0.1565	0.0110					
AM02 None None <t< th=""><th></th><th>A060</th><th>0.13</th><th>0.14</th><th>0.14</th><th>0.1433</th><th>0.0038</th><th>0.158</th><th>0.155</th><th>0.158</th><th>0.1300</th><th>0.0000</th><th></th><th></th><th></th><th></th><th></th></t<>		A060	0.13	0.14	0.14	0.1433	0.0038	0.158	0.155	0.158	0.1300	0.0000					
Adds Adds Non-second Adds Non-second <		A062											0.11	0.108	0.115	0.1110	0.0036
Aubes Just Just <thjust< th=""> Just Just <th< th=""><th></th><th>A063</th><th></th><th>_</th><th></th><th></th><th>_</th><th>0.12329</th><th>0.13481</th><th>0.13108</th><th>0.1297</th><th>0.0059</th><th></th><th>_</th><th></th><th></th><th></th></th<></thjust<>		A063		_			_	0.12329	0.13481	0.13108	0.1297	0.0059		_			
Andes Aboxes Andes Aboxes<		A064	ves	Ves	Ves			ves	ves	ves							
Aves Aves		A067	ye s	y 00	900			900	900	<i>J</i> 00							
M069		A068															
N011 N000 0.079 0.1700 0.1700 0.1700 0.1700 0.1700 0.0025 A073 0.138 0.138 0.138 0.138 0.137 0.0023 0.0218 0.128 0.0223 0.0025 0.014 0.102 0.1027 0.0025 0.138 0.0135 0.0025 0.145 0.145		A069	0.66			0.6600		<2	<2	<2	<2						
Norm An73 0.133 0.133 0.134 0.167 0.0023 0.214 0.213 0.1025 0.0005 0.0025 0.015 0.0155 0.0158 0.016 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107		A071 A072	0.00			0.1300		0.17			0.1700						
M074 0.007 0.087 0.009 0.0943 0.0064 0.125 0.123 0.123 0.0123 0.0023 0.0007 0.0075 A076 0.003125 0.003357 0.00330 0.0010 0.139 0.003812 0.003813 0.003812 0.003813 0.003813 0.00375 0.0075 A077 0.003125 0.003357 0.00320 0.003804 0.003812 0.003813 0.00397 0.0021 0.17 0.17 0.17 0.170 A081 0.143 0.147 0.1400 0.019 0.193 0.0137 0.0130 0.0137 0.017 0.17 0.17 0.17 A083 0.14 0.13 0.131 0.0131 0.0137 0.0170 0.170 0.17		A073	0.138	0.138	0.134	0.1367	0.0023	0.204	0.201	0.199	0.2013	0.0025					
A075 0.117 0.117 0.0187 0.0107 0.0107 0.0107 0.0110 0.0131 0.148 0.1887 0.0035 0.0035 A077 0 0.00357 0.00353 0.0033 0.00381 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.01112 0.1124 0.01124 0.01124 0.01124		A074	0.097	0.087	0.099	0.0943	0.0064	0.125	0.128	0.123	0.1253	0.0025					
Alton Nonclastic Conductor		A075	0.117	0.115	0.097	0.1097	0.0110	0.139	0.131	0.146	0.1387	0.0075					
A078 Image: second		A070	0.005125	0.005557	0.003337	0.0055	0.0001	ND	ND	ND	0.0056	0.0000					
A081 0.143 0.147 0.145 0.1450 0.0020 0.192 0.196 0.197 0.021 0.017 0.170 0.170 A083 0.14 0.131 0.133 0.131 0.131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0140 0.166 0.16 0.160 0.00000 0.0000 0.0000		A078															
A082 0.14 0.1400 0.19 0.1900 0.1700 0.1700 A084 0.131 0.133 0.131 0.137 0.002 0.166 0.158 0.157 0.1800 0.0000 <th></th> <th>A081</th> <td>0.143</td> <td>0.147</td> <td>0.145</td> <td>0.1450</td> <td>0.0020</td> <td>0.192</td> <td>0.196</td> <td>0.193</td> <td>0.1937</td> <td>0.0021</td> <td>0.17</td> <td></td> <td></td> <td>0.1700</td> <td></td>		A081	0.143	0.147	0.145	0.1450	0.0020	0.192	0.196	0.193	0.1937	0.0021	0.17			0.1700	
No84 0.131 0.131 0.011 0.137 0.0012 0.16 0.158 0.157 0.1583 0.0015 A085 0.14 0.13 0.14 0.137 0.008 0.16 0.16 0.160 0.1600 0.0001 0.0001		A082 A083	0.14			0.1400		0.19			0.1900		0.17			0.1700	
N985 0.14 0.13 0.14 0.1367 0.0058 0.16 0.16 0.16 0.160 0.0000 A086 0.11 0.13 0.14 0.1267 0.0133 0.17 0.17 0.170 0.0000 <t< td=""><th></th><th>A084</th><td>0.131</td><td>0.133</td><td>0.131</td><td>0.1317</td><td>0.0012</td><td>0.16</td><td>0.158</td><td>0.157</td><td>0.1583</td><td>0.0015</td><td></td><td></td><td></td><td></td><td></td></t<>		A084	0.131	0.133	0.131	0.1317	0.0012	0.16	0.158	0.157	0.1583	0.0015					
A086 0.11 0.13 0.14 0.1267 0.17 0.17 0.1700 0.0000 A087	sults	A085	0.14	0.13	0.14	0.1367	0.0058	0.16	0.16	0.16	0.1600	0.0000		_			
Proof Anose Image: Second Sec	l Re	A086	0.11	0.13	0.14	0.1267	0.0153	0.17	0.17	0.17	0.1700	0.0000					
PortA 0890.140.160.120.14000.02000.160.150.1130.14670.0153Image: constraint of the con	dual	A088						0.14	0.14	0.14	0.1400	0.0000					
A 090 Image: Constraint of the constraint of	divi	A089	0.14	0.16	0.12	0.1400	0.0200	0.16	0.15	0.13	0.1467	0.0153					
A091 0.1219 0.1219 0.1227 0.1222 0.0005 0.1453 0.1451 0.1453 0.0002 A093 0.15 0.14 0.16 0.1500 0.0100 0.18 0.18 0.16 0.1733 0.0115 A094	Ē	A090											0.1112	0.112	0.114	0.1124	0.0014
A0930.150.140.160.15000.01000.180.180.160.17330.0115A094		A091 A092	0.1219	0.1219	0.1227	0.1222	0.0005	0.1453	0.1451	0.1455	0.1453	0.0002					
A094		A093	0.15	0.14	0.16	0.1500	0.0100	0.18	0.18	0.16	0.1733	0.0115					
A095 0.1139 0.1093 0.1093 0.0025 0.1333 0.132 0.1316 0.0020 A096		A094	0.1120	0.1002	0.1007	0.1110	0.0025	0.1522	0.152	0.1404	0.1516	0.0020					
A097 0.1272 0.1089 0.1885 0.1415 0.0417 0.1817 0.1999 0.1905 0.1907 0.0091 A098 0.132 0.1320 0.19 0.1900 0.1900 A099 0.128 0.129 0.127 0.1280 0.0010 0.152 0.166 0.152 0.1567 0.0081 A100 0.1024 0.1088 0.1125 0.1079 0.0051 0.1509 0.1468 0.1399 0.1459 0.0056 A101		A095 A096	0.1139	0.1093	0.1097	0.1110	0.0025	0.1533	0.152	0.1494	0.1516	0.0020					
		A097	0.1272	0.1089	0.1885	0.1415	0.0417	0.1817	0.1999	0.1905	0.1907	0.0091					
A099 0.128 0.129 0.127 0.1280 0.0010 0.152 0.166 0.152 0.157 0.0081 A100 0.1024 0.1088 0.112 0.1079 0.0051 0.1509 0.1468 0.139 0.1459 0.0056 A101		A098	0.132	0.100	0.105	0.1320	0.004.0	0.19	0.444	0.150	0.1900	0.0001					
A100 0.1021 0.1003 0.1013 0.0001 0.1103 0.1103 0.0000 A101		A099 A100	0.128	0.129	0.127	0.1280	0.0010	0.152	0.166	0.152	0.1567	0.0081					
A102 0.1 0.09 0.093 0.0058 0.11 0.11 0.110 0.0000 A103 0 0 0 0.0000 0.0000 0.128 0.165 0.157 0.1500 0.0195 A104 0.146 0.142 0.144 0.1440 0.0020 0.204 0.209 0.2073 0.0029 A105 0.11 0.11 0.1 0.11 0.11 0.13 0.0133 0.0058 A106 0.119 0.116 0.116 0.0201 0.15 0.144 0.133 0.0058 A107 0.109 0.112 0.119 0.116 0.113 0.0011 0.113 0.0126 0.126 0.126 0.127 0.1250 0.0017 A108 0.150 0.0212 0.123 0.126 0.0212 A109 0.14 0.12 0.130 0.0141 0.18 0.15 0.1650 0.0212 A109 0.14 0.14 0.140 0.1400 0.0000 0.23 0.23 <th< th=""><th></th><th>A101</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		A101															
A103 0 0 0 0 0.0000 0.0000 0.128 0.165 0.157 0.1500 0.0195 A104 0.146 0.142 0.144 0.140 0.000 0.204 0.209 0.2073 0.0029 A105 0.11 0.11 0.1 0.1667 0.0058 0.13 0.14 0.133 0.0058 A106 0.119 0.116 0.115 0.1167 0.0021 0.15 0.144 0.137 0.1437 0.0065 A107 0.109 0.112 0.119 0.113 0.0051 0.126 0.126 0.120 0.0017 A108 0.1650 0.0212 0.127 A109 0.14 0.12 0.1300 0.0141 0.18 0.15 0.1650 0.0212 A110 0.14 0.14 0.1400 0.0000 0.23 0.23 0.24 0.2333 0.0058 A111 0.122 0.125 0.127 0.1247 0.0025 0.165 0.164 0.167 0.0049		A102	0.1	0.09	0.09	0.0933	0.0058	0.11	0.11	0.11	0.1100	0.0000					
A105 0.110 0.112 0.111 0.1107 0.0020 0.120 0.120 0.0005 A105 0.111 0.11 0.1107 0.0021 0.13 0.13 0.133 0.0005 A106 0.119 0.116 0.115 0.1167 0.0021 0.15 0.144 0.137 0.1437 0.0065 A107 0.109 0.112 0.119 0.1133 0.0051 0.126 0.123 0.1250 0.0017 A108		A 103	0 146	0 142	0 144	0.0000	0.0000	0.128	0.165	0.157	0.1500	0.0195					
A106 0.119 0.116 0.115 0.1167 0.0021 0.15 0.144 0.137 0.1437 0.0065 A107 0.109 0.112 0.119 0.1133 0.0051 0.126 0.126 0.123 0.1250 0.0017 A108 </th <th></th> <th>A105</th> <th>0.11</th> <th>0.11</th> <th>0.1</th> <th>0.1067</th> <th>0.0058</th> <th>0.13</th> <th>0.14</th> <th>0.13</th> <th>0.1333</th> <th>0.0058</th> <th></th> <th></th> <th></th> <th></th> <th></th>		A105	0.11	0.11	0.1	0.1067	0.0058	0.13	0.14	0.13	0.1333	0.0058					
A107 0.109 0.112 0.119 0.1133 0.0051 0.126 0.123 0.1250 0.0017 A108		A106	0.119	0.116	0.115	0.1167	0.0021	0.15	0.144	0.137	0.1437	0.0065					
A105 0.14 0.12 0.1300 0.0141 0.18 0.15 0.1650 0.0212 A110 0.14 0.14 0.140 0.000 0.23 0.23 0.24 0.2333 0.0058 A111 0.122 0.125 0.127 0.1247 0.0025 0.165 0.164 0.167 0.0049		A107	0.109	0.112	0.119	0.1133	0.0051	0.126	0.126	0.123	0.1250	0.0017					
A110 0.14 0.14 0.140 0.000 0.23 0.23 0.24 0.2333 0.0058 A111 0.122 0.125 0.127 0.1247 0.0025 0.165 0.164 0.156 0.1617 0.0049		A108 A109	0.14	0.12		0.1300	0.0141	0.18	0.15		0.1650	0.0212					
A111 0.122 0.125 0.127 0.1247 0.0025 0.165 0.164 0.156 0.1617 0.0049		A110	0.14	0.14	0.14	0.1400	0.0000	0.23	0.23	0.24	0.2333	0.0058					
		A111	0.122	0.125	0.127	0.1247	0.0025	0.165	0.164	0.156	0.1617	0.0049					
A112 0.117 0.113 0.115 0.115 0.0020 0.142 0.152 0.147 0.147 0.0050 A113 0.09657 0.097672 0.09933 0.0979 0.0014 0.134389 0.134243 0.131945 0.1335 0.0014		A112 A113	0.09657	0.097672	0.09933	0.0979	0.0020	0.142	0.134243	0.147	0.1470	0.0050					
A114 0.1401 0.1356 0.1358 0.1372 0.0025 0.1502 0.1492 0.1478 0.1491 0.0012		A114	0.1401	0.1356	0.1358	0.1372	0.0025	0.1502	0.1492	0.1478	0.1491	0.0012					
A115 0.16 0.15 0.16 0.1567 0.005		A115	0.000	0.1000	0.1000	0.1.1.5	0.010-	0.1252	0.1.000	0.150.1	0.1.47	0.0172	0.16	0.15	0.16	0.1567	0.0058
A116 0.092 0.1286 0.1228 0.1145 0.0197 0.1273 0.1603 0.1524 0.0172 Consensus Mean 0.1276 Consensus Mean 0.1567 Consensus Mean 0.1443		A116	0.092 Consensu	0.1286 s Mean	0.1228	0.1145	0.0197	0.1273 Consensu	0.1603 s Mean	0.1524	0.1467	0.0172	Consensu	s Mean		0.1443	
Image: Standard Deviation 0.0029 Consensus Standard Deviation 0.0043 Consensus Standard Deviation 0.0093	lts Its		Consensu	s Standard	Deviation	0.0029		Consensu	s Standard	Deviation	0.0043		Consensu	s Standard	Deviation	0.0093	
Maximum 0.6600 Maximum 0.7900 Maximum 0.1933	tesu		Maximum	ı		0.6600		Maximum	ı		0.7900		Maximum	L		0.1933	
D Minimum 0.0000 Minimum 0.0000 Minimum 0.0667 N 52 N 61 N 10	Col Fi		Minimum N			0.0000 52		Minimum N			0.0000 61		Minimum N			0.0667 10	

Figure 2-1. Δ^9 -THC in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-2. Δ^9 -THC in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-3. Δ^9 -THC in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 2-4. Laboratory means for Δ^9 -THC in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Table 2-3. Data summary table for THCA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Tetrahydrocannabinolic acid (TH							(A)							
			Hemp	p Oil 1 (ma	iss %)			Hemp	Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	ISS %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A 001	<0.15	<0.15	<0.15	<0.15		< 0.15	<0.15	<0.15	<0.15						
	A 002	<0.0084	<0.0084	<0.0084	<0.0084		<0.0084	<0.0084	<0.0084	<0.0084						
	A 003	0.11	0.00	0.07	0.0077	0.0000	< 0.01	<0.01	<0.01	< 10.01	0.0080					
	A 004	0.11	0.08	0.07	0.0667	0.0206	0.19	0.19	0.14	0.0000	0.0289					
	A 006	0.01	v	v	0.0000	0.0000	0.03	V	v	0.0000	0.0000					
	A 007	0.01			0.0100		0.03	0.13	0.13	0.1267	0.0058					
	A 008							0.10	0.10	0.1207	0.0000					
	A 009											< 0.00001	< 0.00001	< 0.00001	< 0.00001	
	A 010															
	A 01 1															
	A012						0	0	0	0.0000	0_0000					
	A 013															
	A014	<0.09			<0.09		<0.09			<0.09						
	A015															
	A017	<0.02			<0.02		<0.02			<0.02						
	A 018	40.02			40.02		40.02			40.02						
	A019	< 0.09			< 0.09		< 0.09			< 0.09						
	A 020						0.002196	0.002276	0.002097	0_0022	0.0001					
	A 021											< 0.05	< 0.05	<0.05	< 0.05	
	A022															
	A 023						0	0	0	0.0000	0.0000					
1tz	A 024					_					_	<0.010	0.014	0.01	0.012	0.003
Less U	A 025															
al P	A 026											< 0.0057	< 0.0057	< 0.0057	< 0.0057	
μų	A 028	<0.0470	<0.0470	<0.0470	<0.0470		0.0502	0.05	0.0491	0.0498	0.0006	< 0.0057	< 0.0057	< 0.0057	< 0.0057	
Alb.	A 029	-0_0170	-0-0110	-0_0170	-0_0170		<2	<2	<2	<2	0.0000					
A	A030															
	A 031	< 0.05	< 0.05	< 0.05	< 0.05		< 0.15	< 0.15	<0.15	< 0.15						
	A032															
	A 033	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A034		_	_		_	<0.01	<0.01	<0.01	<0.01	_		_	_		
	A 035	< 0.00250	< 0.200	< 0.200	<0.00250		< 0.00250	< 0.00250	<0.00250	< 0.00250						
	A 027	< 0.05	< 0.206	<0.05	< 0.05		<0.05	<0.05	<0.05	< 0.247						
	A038	<0.025	<0.025	<0.05	<0.025		<0.05	<0.025	<0.05	<0.025						
	A 039	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A040											ND	ND	ND		
	A 041	0.1	0	0	0.0333	0.0577	0	0	0	0.0000	0.0000					
	A043	0.004	0.004	0.004	0.0040	0.0000	0.01	0.011	0.011	0.0107	0.0006					
	A 044															
	A045	0	0	~	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 047	0.009	0.009	0 009	0.0000	0.0000	0.039	0.039	0.039	0.0390	0.0000					
	A049	0.005	0.000	0.000	0.0000	0.0000	0.055	0.000	0.000	0.0000	0.0000					
	A 050	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01						
	A051															
	A052															
	A053															
	A 054	<0.06	<0.06	<0.06	<0.06		<0.06	<0.06	<0.06	<0.06						
	A055	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000	C	a Mar-		0.021	
s stry		Consensus	s Mean s Standard 1	Deviation	0.0056		Consensu	s Mean s Standard '	Deviation	0.0015		Consensu	s Mean s Standard	Deviation	0.021	
물물		Maximum			1 4767		Maximum	s semiualu. I		2 4367		Maximum			0.050	
88		Minimum			0.0000		Minimum			0.0000		Minimum			0.000	
о О		N			23		N			31		N			2	

							Tet	rahydroca	nn ab inolic	acid (THC	CA)					
			Home		ee 6 6.)			Home	012/000	ee 4 6.)			Hamp	033.0-	we #6.)	
			IICM		33 70)			nemb		33 70)			nemh		33 70)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A057															
	A 059	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A.060	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02						
	A 061	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A062						0.0000	0.0000	0.04570	0.000	0.0000	<0.01	<0.01	<0.01	<0.01	
	A 063						0.06607	0.06634	0.06578	0.0661	0.0003					
	A 066															
	A068															
	A 069						<2	<2	<2	<2						
	A071	0			0.0000		0			0.0000						
	A072		0	0	0.0000	0.0000		0	0	0.0000	0.0000					
	A073	0	0	<0.000	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A075	0.007	0.05	0.008	0.0217	0.0245	0.056	0.052	0.057	0.0550	0.0026					
	A076	0.000393	0.0004	0.000398	0.0004	0.0000	0.000403	0.000417	0.000245	0.0004	0.0001					
	A077						ND	ND	ND							
	A078															
	A 081	0	0	0	0.0000	0.0000	0.052	0.053	0.053	0.0527	0.0006	0.05			0.050	
	A 082	<0.33			<0.33		<0.33			<0.33		0.05			0.050	
	A084	< 0.0125	< 0.0125	< 0.0125	-0.JJ		< 0.0125	< 0.0125	< 0.0125	-0.35						
	A085	<0.025	<0.025	<0.025			<0.025	<0.025	<0.025							
4	A 086	BLQ	BLQ	BLQ			BLQ	BLQ	BLQ							
Res	A 087															
3	A 088	1.46	1.6	1.47	1 47/7	0.0000	2.00	2.59	2.07	0.4077	0.0001					
Ϋ́Α	A 090	1.40	15	1.47	L4/07	0.0208	2.00	4.38	2.07	2.4507	0.3201	0.0002	0.0002	0.0002	0.0002	0.000
E I	A091											0.0002	0.0002	0.0002	0.0002	0.000
	A 092															
	A093															
	A 094		- 0 0155		10.0177											
	A 096	< 0.0177	< 0.0177	< 0.0177	< 0.0177		< 0.0177	< 0.0177	< 0.0177	< 0.0177						
	A097	<0.0100	<0.0100	<0.0100	<0.0100		<0.0100	<0.0100	<0.0100	<0.0100						
	A 098	0.005			0.0050		< 0.0025			< 0.0025						
	A 099	0.021	0.021	0.019	0.0203	0.0012	0.023	0.023	0.019	0.0217	0.0023					
	A 100	< 0.0210	< 0.0210	< 0.0210	< 0.0210		< 0.0210	< 0.0210	< 0.0210	< 0.0210						
	A 101	< 0.04	< 0.04	< 0.01	< 0.04		< 0.04	< 0.04	< 0.04	< 0.04						
	A 102	0.04	< 0.04 0	< 0.04 0	0.0000	0.0000	0.04	0.128	0.04	0.1157	0.0214					
	A 104	< 0.033	< 0.026	< 0.034	< 0.033		< 0.033	< 0.026	< 0.034	< 0.033						
	A 105	<0.025	<0.025	<0.025	<0.025		0.06	0.06	0.06	0.0600	0.0000					
	A 106	< 0.05	<0.05	<0.05	< 0.05		< 0.05	<0.05	<0.05	< 0.05						
	A 107	0.0123	0.012	0.0123	0.0122	0.0002	0.012	0_0121	0.0116	0.0119	0_0003					
	A 108															
	A 110	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01						
	A111	0.017	0.017	0.018	0.0173	0.0006	0.005	0.005	0.005	0.0050	0.0000					
	A112															
	A113	0.024324	0.024052	0.023356	0.0239	0.0005	0	0	0	0.0000	0.0000					
	A 114						0.0812	0.084	0.086	0.0837	0.0024	<0.01	<0.01	<0.01	<0.01	
	A115	0	0.0156	0.0179	0.0112	0.0097	0	0	0.0086	0,0029	0.0050	VU01	~U_U1	~0_01	~0.01	
~		Consensu	s Mean		0.0056		Consensu	s Mean		0.0115		Consensu	s Mean		0_021	
H H		Consensu	s Standard	Deviation	0.0016		Consensu	s Standard	Deviation	0.0032		Consensu	s Standard	Deviation	0_018	
		Maximum	ı		L4767		Maximum	ı		2.4367		Maximum	L		0.050	
อี ต		Minimum			0.0000		Minimum			0.0000		Minimum			0.000	
		IN			23		IN			31		IN			2	

Figure 2-5. THCA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-6. THCA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-7. THCA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-8. Laboratory means for THCA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Table 2-4. Data summary table for Δ^8 -THC in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		∆8-Tetrahydrocannabinol (∆8-1									C)					
			Hemp	o Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	155 %)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST															
	A002	< 0.0104	< 0.0104	< 0.0104	< 0.0104		< 0.0104	< 0.0104	< 0.0104	< 0.0104						
	A003	0	0	0	0.0000	0.0000	< 0.01	< 0.01	<0.01	< 0.01	0.0000					
	A005	0	U	0	0.0000	0.0000	U	0	U	0.0000	0.0000					
	A007	0.044			0.0440											
	A 009	0.044			0.0440							<0.00268	<0.002687	<0.00268	<0.00268	
	A010											~0.00200	~0.002007	<0.00200	~0.00200	
	A011															
	A012						0	0	0	0.0000	0.0000					
	A013						0.074	0.048	0.078	0.0667	0.0163					
	A014	< 0.09			< 0.09		< 0.09			< 0.09						
	A015															
	A016															
	A017	< 0.02			< 0.02		0.02			0.0200						
	A019	< 0.09			< 0.09		< 0.09			< 0.09						
	A020															
	A021											< 0.05	< 0.05	< 0.05	< 0.05	
ults	A022															
Res	A023						0	0	0	0.0000	0.0000					
lal	A024											0.011	0.023	0.012	0.02	0.01
vidı	A025															
ipu	A026											+ 0.0057	. 0. 00.57	. 0.0057	. 0.0057	
-	A027	<0.01			<0.01		<0.01			<0.01		< 0.0057	< 0.0057	< 0.0057	< 0.0057	
	A030	<0.01			<0.01		<0.01			<0.01						
	A033	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A034	×	v	•	0.0000	0.0000	v		v	0.0000	0.0000					
	A035	0.0147			0.0147		0.0257	0.0286	0.0246	0.0263	0.0021					
	A036	< 0.206	< 0.206	< 0.206			< 0.247	< 0.247	< 0.247	< 0.247						
	A038	< 0.025	< 0.025	< 0.025			< 0.025	< 0.025	< 0.025	< 0.025						
	A039	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A040											ND	ND	ND		
	A041	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A043	0.01	0.009	0.007	0.0087	0.0015	0.015	0.015	0.015	0.0150	0.0000					
	A044															
	A045	-	-						_							
	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A050	<0.01	<0.01	< 0.01	<0.01		< 0.01	<0.01	<0.01	<0.01						
	A052															
	A055	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
~	A033	Consensus	s Mean	U	0.0104	0.0000	Consensu	s Mean	U	0.0139	0.0000	Consensu	s Mean		0.04	
nity Is		Consensus	s Standard	Deviation	0.0030		Consensu	s Standard	Deviation	0.0041		Consensu	s Standard	Deviation	0.02	
nu		Maximum	u	, , , , , , , , , , , , , , , , , ,	0.0467		Maximum	1	/	0.1067		Maximum	l		0.13	
om Re		Minimum			0.0000		Minimum			0.0000		Minimum			0.00	
C		Ν			15		Ν			22		Ν			2	

							∆8-	Tetrahydr	ocannabin	ol (∆8-TH	C)					
			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	uss %)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST															
	A057															
	A059	0.042	0.043	0.044	0.0430	0.0010	0.11	0.116	0.094	0.1067	0.0114					
	A060	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02						
	A061	0.034	0.035	0.036	0.0350	0.0010	0.067	0.067	0.068	0.0673	0.0006	-0.01	-0.01	-0.01	-0.01	
	A062						0.05966	0.00047	0.05790	0.0500	0.0012	< 0.01	<0.01	<0.01	<0.01	
	A003						0.05866	0.06047	0.05789	0.0590	0.0015					
	A064															
	A000 A067															
	A068															
	A071															
	A072															
	A073	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A074	0.016	0.014	0.016	0.0153	0.0012	0.014	0.014	0.013	0.0137	0.0006					
	A076	0.000072	0.000173	0.000174	0.0001	0.0001	0.000227	0.000244	0.000242	0.0002	0.0000					
	A077						ND	ND	ND							
	A081	0.047	0.046	0.047	0.0467	0.0006	0.074	0.074	0.073	0.0737	0.0006					
	A082											0.13			0.13	
Its	A083	< 0.33			< 0.33		< 0.33			< 0.33						
esu	A084	< 0.017	< 0.017	< 0.017	< 0.017		< 0.017	< 0.017	< 0.017	< 0.017						
a l	A087															
dua	A088	-0.01	-0.01	-0.01	-0.01		-0.01	-0.01	10.01	-0.01						
livi	A089	<0.01	<0.01	< 0.01	<0.01		<0.01	<0.01	<0.01	<0.01		0.0024	0.0024	0.0024	0.00	0.00
Ĕ	A090 A 001											0.0034	0.0034	0.0034	0.00	0.00
	A 092															
	A093															
	A095	< 0.0933	< 0.0933	< 0.0933	< 0.0933		< 0.0933	< 0.0933	< 0.0933	< 0.0933						
	A096															
	A098	< 0.0046			< 0.0046		< 0.0025			< 0.0025						
	A099	< 0.009	< 0.009	< 0.009	< 0.009		< 0.009	< 0.009	< 0.009	< 0.009						
	A100	< 0.0210	< 0.0210	< 0.0210	< 0.0210		< 0.0210	< 0.0210	< 0.0210	< 0.0210						
	A101															
	A102	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02						
	A103	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A104	<0.03/	<0.033	<0.042	< 0.037	0.0059	0.05	0.05	0.05	0.0500	0.0000					
	A105	0.02	<0.03	<0.03	0.0267	0.0058	0.03	0.05	0.05	0.0300	0.0000					
	A107	0.00501	~0.01	~0.01	0.0050		~0.01	0.0175	0.015	0.0105	0.0018					
	A109															
	A110	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01						
	A112					_										
	A113						0	0	0	0.0000	0.0000					
	A115															
t,		Consensu	s Mean		0.0104		Consensu	s Mean		0.0139		Consensus	s Mean		0.04	
uni Its		Consensu	s Standard	Deviation	0.0030		Consensu	s Standard	Deviation	0.0041		Consensus	s Standard	Deviation	0.02	
n n l		Maximum	1		0.0467		Maximum	1		0.1067		Maximum			0.13	
^w Co		Minimum			0.0000		Minimum			0.0000		Minimum			0.00	
-		N			15		N			22		N			2	

Figure 2-9. Δ^8 -THC in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-10. Δ^8 -THC in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-11. Δ^8 -THC in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-12. Laboratory means for Δ^8 -THC in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

Table 2-5. Data summary table for total THC in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

								To	tal ∆9-TH	С						
			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	188 %)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.131	0.010				0.160	0.018				0.15	0.024
	A001	0.14	0.13	0.12	0.1300	0.0100	0.17	0.18	0.17	0.1733	0.0058					
	A002	0.13898	0.1326	0.12578	0.1325	0.0066	0.170171	0.171068	0.156471	0.1659	0.0082					
	A003						0.174	0.163	0.157	0.1647	0.0086					
	A004	0.21	0.18	0.17	0.1867	0.0208	0.32	0.3	0.25	0.2900	0.0361					
	A005	0.14	0.125	0.135	0.1333	0.0076	0.17	0.169	0.172	0.1703	0.0015					
	A007						0.08	0.11	0.08	0.0900	0.0173					
	A008											0.174	0.1.61	0.157	0.1/7	0.000
	A009											0.164	0.161	0.176	0.167	0.008
	A010															
	A011	0.124	0.141	0.144	0.1207	0.0051	0.151	0.147	0.145	0 1477	0.0021					
	A013	0.134	0.141	0.144	0.1397	0.0051	0.151	0.147	0.145	0.14//	0.0051					
	A014											0.18	0.12	0.28	0.103	0.081
	A015											0.10	0.12	0.20	0.195	0.001
	A017															
	A018															
	A019															
	A020	0.12328	0.124478	0.123915	0.1239	0.0006	0.146315	0.14812	0.162433	0.1523	0.0088					
	A021											0.05	0.08	0.07	0.067	0.015
lts	A022											0.1199	0.1218	0.1226	0.121	0.001
esu	A023						0.1835	0.1795	0.1822	0.1817	0.0020					
al R	A024											0.17	0.193	0.184	0.182	0.012
np	A026	< 0.15	< 0.15	< 0.15	< 0.15		< 0.15	< 0.15	< 0.15	< 0.15						
divi	A027											0.156	0.158	0.158	0.157	0.001
Inc	A028	0.1538	0.1718	0.1537	0.1598	0.0104	0.2638	0.231	0.2584	0.2511	0.0176					
	A030	0.186			0.1860		0.182			0.1820						
	A031	0.12	0.12	0.12	0.1200	0.0000	< 0.15	< 0.15	< 0.15	< 0.15						
	A033	0.12	0.11	0.12	0.1167	0.0058	0.14	0.15	0.13	0.1400	0.0100					
	A034						0.136	0.135	0.135	0.1353	0.0006					
	A035	0.129			0.1290		0.2	0.203	0.202	0.2017	0.0015					
	A036	0.135	0.137	0.14	0.1373	0.0025	0.181	0.182	0.187	0.1833	0.0032					
	A037	0.1.(1	0.16	0.150	0.1507	0.0015	0.007	0.100	0.000	0.0000	0.0000					
	A038	0.161	0.16	0.158	0.1597	0.0015	0.207	0.192	0.208	0.2023	0.0090					
	A039	0.09	0.07	0.08	0.0800	0.0100	0.1	0.1	0.09	0.0967	0.0058	0.12641	0 12562	0 12724	0.126	0.001
	A 043	0.204	0.194	0.203	0.2003	0.0055	0.315	0.310	0.32	0.3180	0.0026	0.12041	0.12502	0.12754	0.120	0.001
	A 044	0.204	0.174	0.205	0.2005	0.0035	0.515	0.517	0.52	0.5100	0.0020					
	A045											0.075	0.078	0.077	0.077	0.002
	A046	0	0.1	0	0.0333	0.0577	0	0	0	0.0000	0.0000	0.075	0.070	0.077	0.077	0.002
	A047	0.01	0.01	0.01	0.0100	0.0000	0.02	0.02	0.02	0.0200	0.0000					
	A048	0.075	0.076	0.095	0.0820	0.0113	0.115	0.114	0.114	0.1143	0.0006					
	A050	0.134	0.135	0.134	0.1343	0.0006	0.096	0.093	0.0946	0.0945	0.0015					
	A052															
	A053															
	A055	0.1315	0.1315	0.1348	0.1326	0.0019	0.1662	0.1602	0.161	0.1625	0.0033					
Ś		Consensu	s Mean		0.1349		Consensu	s Mean		0.1686		Consensu	s Mean		0.134	
lts I		Consensu	s Standard	Deviation	0.0038		Consensu	s Standard	Deviation	0.0057		Consensu	s Standard	Deviation	0.016	
esu		Maximum	ι		0.7000		Maximum	ı –		0.8000		Maximum	ı		0.1933	
é a		Minimum			0.0000		Minimum			0.0000		Minimum			0.0667	
-		Ν			48		Ν			54		Ν			11	

								To	tal ∆9-TH	С						
			Hemp) Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	155 %)	
	Lab	Α	В	С	Avg	SD	Α	В	С	Avg	SD	Α	В	С	Avg	SD
	NIST				0.131	0.010				0.160	0.018				0.15	0.024
	A056 A057															
	A058	0.178	0.152	0.189	0.1730	0.0190	0.178	0.182	0.171	0.1770	0.0056					
	A059	0.129	0.1305	0.1255	0.1283	0.0026	0.1685	0.154	0.147	0.1565	0.0110					
	A060	0.15	0.14	0.15	0.1467	0.0058	0.18	0.18	0.18	0.1800	0.0000		_		_	
	A061	0.134	0.134	0.133	0.1337	0.0006	0.158	0.155	0.158	0.1570	0.0017	0.11	0.108	0.115	0.111	0.004
	A062						0.18123	0.19299	0.18877	0.1877	0.0060	0.11	0.108	0.115	0.111	0.004
	A064															
	A065	0.2	0.13	0.18	0.1700	0.0361	0.265	0.24	0.16	0.2217	0.0548					
	A066															
	A068 A070															
	A071	0.7			0.7000		0.8			0.8000						
	A072	0.13			0.1300		0.17			0.1700						
	A073	0.138	0.138	0.134	0.1367	0.0023	0.204	0.201	0.199	0.2013	0.0025					
	A074	0.115	0.101	0.115	0.1097	0.0076	0.139	0.142	0.137	0.1393	0.0025					
	A076	0.003125	0.003357	0.003339	0.0033	0.0001	0.003804	0.003812	0.003813	0.0038	0.0000					
	A077						<loq< td=""><td><loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
	A078		0.010			0.04.50	0.0050				0.0004					
	A080	0.2337	0.212	0.145	0.2229	0.0153	0.2353	0.2324	0.239	0.2339	0.0021					
s	A082	0.145	0.147	0.145	0.1450	0.0020	0.250	0.242	0.237	0.2397	0.0021					
sult	A083															
I Re	A084															
idua	A085	0.16	0.15	0.16	0.1567	0.0058	0.16	0.16	0.16	0.1600	0.0000					
idivi	A080 A087	0.11	0.15	0.14	0.1207	0.0155	0.17	0.17	0.17	0.1700	0.0000					
5	A088						0.14	0.14	0.14	0.1400	0.0000					
	A089	0.14	0.16	0.16	0.1533	0.0115	0.16	0.15	0.13	0.1467	0.0153					
	A090											0.1114	0.1121	0.1141	0.113	0.001
	A091	0.1219	0.1219	0.1227	0.1222	0.0005	0.1453	0.1451	0.1455	0.1453	0.0002					
	A093	0.15	0.14	0.16	0.1500	0.0100	0.18	0.18	0.16	0.1733	0.0115					
	A095	0.1139	0.1093	0.1097	0.1110	0.0025	0.1533	0.152	0.1494	0.1516	0.0020					
	A096 A097	0 1272	0 1089	0.1185	0.1182	0.0092	0 1817	0 1999	0 1905	0 1907	0.0091					
	A099	0.1272	0.1005	0.1105	0.1152	0.0012	0.1017	0.1999	0.1505	0.1757	0.0091					
	A100	0.1024	0.1088	0.1125	0.1079	0.0051	0.1509	0.1468	0.1399	0.1459	0.0056					
	A101		0.00	0.00	0.0022	0.0050		0.11		0.1100	0.0000	Neg	Neg	Neg		
	A102 A103	0.1	0.09	0.09	0.0933	0.0058	0.11	0.11	0.11	0.1100	0.0000					
	A104	0.146	0.142	0.144	0.1440	0.0020	0.204	0.209	0.209	0.2073	0.0029					
	A105	0.11	0.11	0.1	0.1067	0.0058	0.18	0.19	0.18	0.1833	0.0058					
	A106	0.119	0.116	0.115	0.1167	0.0021	0.15	0.144	0.137	0.1437	0.0065					
	A 107	0.12	0.123	0.13	0.1243	0.0051	0.137	0.137	0.133	0.1357	0.0023					
	A109	0.14	0.12		0.1300	0.0141	0.18	0.15		0.1650	0.0212					
	A110	0.14	0.14	0.14	0.1400	0.0000	0.17	0.17	0.17	0.1700	0.0000					
	A111	0.122	0.125	0.127	0.1247	0.0025	0.165	0.164	0.156	0.1617	0.0049					
	A112 A114	0.1401	0.1356	0.1358	0.1372	0.0025	0.2214	0.2228	0.2233	0.2225	0.0010					
	A115	0.1401	0.1550	0.1550	0.1372	0.0025	0.2214	0.2220	0.2233	0.2223	0.0010	0.16	0.15	0.16	0.157	0.006
ţ		Consensu	s Mean		0.1349		Consensu	s Mean		0.1686		Consensu	s Mean		0.134	
ults		Consensu	s Standard	Deviation	0.0038		Consensu	s Standard	Deviation	0.0057		Consensu	s Standard	Deviation	0.016	
Res		Minimum			0.7000		Minimum			0.8000		Maximum	L		0.1933	
ŭ		N			48		N			54		N			11	

Figure 2-13. Total THC in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-14. Total THC in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-15. Total THC in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 2-16. Laboratory means for total THC in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

SECTION 3: CBD, CBDA, AND TOTAL CBD

Study Overview

CBD is the primary cannabinoid found in hemp oils, which has attracted significant interest due to numerous purported beneficial health effects along with its safety and tolerability profile in humans.⁶ The first CBD drug, Epidiolex, was approved by the US FDA in 2018 to treat two rare forms of epilepsy.⁷ More recently, the FDA has extended approval in 2020 for treatment of seizures associated with tuberous sclerosis complex in patients 1 year and older. CBD does not exist in *Cannabis* naturally but is formed following decarboxylation of its acidic form (CBDA) through exposure to heat or light. These decarboxylation steps are commonly used in the production of hemp oils to increase CBD content. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBD, CBDA, and total CBD in three hemp oils. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of CBDA and levels of CBD in normal commercial product ranges.

Reporting Statistics

• The enrollment and reporting statistics for CBD, CBDA, and total CBD are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

	<u>Hemp</u>	Oil 1	<u>Hemp</u>	Oil 2	Hemp	<u>Oil 2a</u>
		Percent		Percent		Percent
	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>
Analyte	Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>
CBD	77	88 %	90	88 %	19	63 %
CBDA	72	76 %	81	73 %	19	42 %
Total CBD	68	71 %	75	73 %	19	53 %

• Most laboratories reported using solvent extraction or sample dilution for determination of CBD, CBDA, and total CBD in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

Reported		Percent Reporting	
Preparation Method	<u>CBD</u>	<u>CBDA</u>	Total CBD
Solvent Extraction	68.3	71.5	70.3
Dilution	26.7	24.1	22.7
Other	0.6	1.5	2.3
None	1.2	0.0	0.0
No Response	3.1	2.9	4.7

⁶ X Lim, T Tan, S Rosli, M Sa'at, S Ali, A Mohamed. *PLOS ONE* 16(1): 1-22 (2021) <u>https://doi.org/10.1371/journal.pone.0245471</u>.

⁷ https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-comprised-active-ingredientderived-marijuana-treat-rare-severe-forms.

• Most laboratories reported using LC-PDA or LC-UV for the determination of CBD, CBDA, and total CBD (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>		Percent Reporting	
Analytical Method	<u>CBD</u>	<u>CBDA</u>	Total CBD
LC-PDA	62.7	62.8	66.4
LC-UV	26.1	31.4	25.8
LC-MS	1.9	2.2	1.6
LC-MS/MS	3.1	3.6	2.3
GC-FID	3.1	0.0	3.1
GC-MS	3.1	0.0	0.0
Other	0.0	0.0	0.8

Study Results

CBD

- The mass fractions (%) for CBD were determined by NIST using LC-PDA as described in Section 2 and are summarized in **Table 3-1**. These NIST values are used as the target means and ranges summarized **Table 3-2** for comparison to the participant results.
- The target and consensus means and ranges are summarized for CBD via different analytical methods in Figure 3-1, Figure 3-2, and Figure 3-3, which include data from laboratories submitting two or three results for CBD. Data from participants submitting only one measurement were included in Table 3-2 but were not included in the calculation of consensus statistics.²
 - For CBD in Hemp Oil 1, the consensus range was based on quantitative results from 68 laboratories and completely overlaps the target range (Figure 3-1).
 - The individual laboratory means from 31 laboratories (46 % of those reporting results) were outside the NIST range of tolerance for CBD in Hemp Oil 1.
 - The individual laboratory means from 9 laboratories (13 % of those reporting results) were outside the acceptable Z'_{comm} score for CBD in Hemp Oil 1.
 - No results were reported using thresholds or LOQs for CBD in Hemp Oil 1.
 - For CBD in Hemp Oil 2, the consensus range was based on quantitative results from 79 laboratories and completely overlaps the target range (Figure 3-2).
 - The individual laboratory means from 15 laboratories (19 % of those reporting results) were outside the NIST range of tolerance for CBD in Hemp Oil 2.
 - The individual laboratory means from 9 laboratories (11 % of those reporting results) were outside the acceptable Z'_{comm} score for CBD in Hemp Oil 2.
 - No results were reported using thresholds or LOQs for CBD in Hemp Oil 2.
 - For CBD in Hemp Oil 2a, the consensus range was based on quantitative results from 11 laboratories and does not overlap the target range (Figure 3-3).
 - The individual laboratory means from 11 laboratories (100 % of those reporting results) were outside the NIST range of tolerance for CBD in Hemp Oil 2a.

- All individual laboratory means were within the acceptable $Z'_{\rm comm}$ score for CBD in Hemp Oil 2a.
- No results were reported using thresholds or LOQs for CBD in Hemp Oil 2.
- A comparison of individual laboratory means for Δ^9 -THC in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 3-4** for laboratories who reported results for both samples.

CBDA

- No target means or ranges were provided in **Table 3-1** for CBDA in the three hemp oils.
- The consensus means and ranges for CBDA are based on quantitative data from 38 laboratories (Figure 3-5), 34 laboratories (Figure 3-6), and 4 laboratories (Figure 3-7) for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 3-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBDA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 3-8** for laboratories who reported results for both samples.

Total CBD

- The mass fractions (%) for total CBD in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in **Table 3-1**. These NIST values are used as the target means and ranges summarized in **Table 3-4** for comparison to the participant results.
- The target and consensus means and ranges are summarized for total CBD via different analytical methods in Figure 3-9, Figure 3-10, and Figure 3-11, which include data from laboratories submitting two or three measurements for total CBD. Data from participants submitting only one measurement were included in Table 3-4 but were not included in the calculation of consensus statistics.²
 - For total CBD in Hemp Oil 1, the consensus range was based on quantitative results from 48 laboratories and is completely within the target range (**Figure 3-9**).
 - The individual laboratory means from 23 laboratories (48 % of those reporting results) were outside the NIST range of tolerance for total CBD in Hemp Oil 1.
 - The individual laboratory means from 6 laboratories (13 % of those reporting results) were outside the acceptable Z'_{comm} score for total CBD in Hemp Oil 1.
 - No results were reported using thresholds or LOQs for CBD in Hemp Oil 1.
 - For total CBD in Hemp Oil 2, the consensus range was based on quantitative results from 55 laboratories and its completely within the target range (**Figure 3-10**).
 - The individual laboratory means from 11 laboratories (20 % of those reporting results) were outside the NIST range of tolerance for total CBD in Hemp Oil 2.
 - The individual laboratory means from 5 laboratories (9 % of those reporting results) were outside the acceptable Z'_{comm} score for total CBD in Hemp Oil 2.
 - No results were reported using thresholds or LOQs for CBD in Hemp Oil 2.
 - For total CBD in Hemp Oil 2a, the consensus range was based on quantitative results from 10 laboratories and does not overlap the target range (Figure 3-11).
 - The individual laboratory means from 10 laboratories (100 % of those reporting results) were outside the NIST range of tolerance for total CBD in Hemp Oil 2a.

- No individual laboratory means were outside the acceptable $Z'_{\rm comm}$ score for total CBD in Hemp Oil 2a.
- No results were reported using thresholds or LOQs for CBD in Hemp Oil 2a.
- A comparison of individual laboratory means for total CBD in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 3-12** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBD, CBDA, and total CBD in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
Analyte	Hemp Oil 1	Hemp Oil 2	Hemp Oil 2a
CBD	1.0	0.9	8.5
CBDA	9.0	26.0	78.2
Total CBD	1.1	1.0	9.4

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBD

- Approximately 15 % of the laboratories reporting results for CBD provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 3-4).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability for CBD was higher in Hemp Oil 2a (9.4 %) than Hemp Oil 1 or Hemp Oil 2 (≈ 1 %). The variability of individual laboratory means was slightly higher for CBD in Hemp Oil 1 (2.6 %) and Hemp Oil 2 (2.2 %) in comparison to Hemp Oil 2a (1.4 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
 - The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (11) compared to Hemp Oil 1 (68) and Hemp Oil 2 (79).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBD in the three hemp oil samples.

CBDA

- Approximately 15 % of the laboratories reporting results for CBDA provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 3-8**).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 did not necessarily report results above the consensus mean for Hemp Oil 2. Trends of this type often represent potential sample interferences and miss identifications due to levels of CBDA being at or below participants LOQs.

- No laboratories reported results below the consensus mean in Hemp Oil 1 or Hemp Oil 2 for CBDA.
- Most laboratories reported that CBDA was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (9.0 % to 78.2 %).
 - Approximately 6 % of the laboratories reporting results used LC-MS or LC-MS/MS methods with all having low enough LOQs to determine CBDA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 94 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 50 %, 38 %, and 29 % of these laboratories with low enough LOQs to determine CBDA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBDA in the three hemp oil samples.

Total CBD

- Approximately 15 % of the laboratories reporting results for total CBD provided values outside the consensus range for both Hemp Oil 1 and Hemp Oil 2 (Figure 3-12).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability for total CBD was higher in Hemp Oil 2a (≈ 9 %) than Hemp Oil 1 or Hemp Oil 2 (≈ 1 %). The variability of individual mean laboratory means was slightly higher for total CBD in Hemp Oil 1 (≈ 2.4 %) and Hemp Oil 2 (≈ 2.2 %) in comparison to Hemp Oil 2a (≈ 1.4 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
 - The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (10) compared to Hemp Oil 1 (48) and Hemp Oil 2 (55).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for total CBD in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBDA can readily convert to CBD when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (\approx 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Laboratories should make total CBD determinations via experimentally converting CBDA to CBD (using elevated temperature or specific chemical reagents) or via calculation of total CBD from the sum of measured CBD and CBDA in the sample using the equation below.

 $Total CBD = mass \% CBD + (0.877 \times mass \% CBDA)$

- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBD, CBDA, and total CBD in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
 - Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

			Canna	QAP Exerc	ise 1 - Fall 20	920								
	Lab Code:	NIST		1. You	r Results		2.	Community R		3. Target				
Analyte	Sample	Units	x _i	s _i	Z' _{comm}	Z _{NIST}		N	x*	s*		X _{NST}	U	
Cannabidiol (CBD)	Hemp Oil 1	ın ass %	4.31	0.23	3.1	0.0		56	4.181	0.041		4.31	0.23	
Cannabidiol (CBD)	Hemp Oil 2	ın ass %	9.2	1.1	6.0	0.0		69	8.749	0.077		9.2	1.1	
Cannabidiol (CBD)	Hemp Oil 2a	ın ass %	9.46	0.15	2.6	0.0		10	7.75	0.66		9.46	0.15	
Cannabidiolic acid (CBDA)	Hemp Oil 1	ın ass %						31	0.0183	0.0017				
Cannabidiolic acid (CBDA)	Hemp Oil 2	ın ass %						28	0.0098	0.0026				
Cannabidiolic acid (CBDA)	Hemp Oil 2a	ın ass %						3	0.0080	0.0063				
Total CBD	Hemp Oil 1	ın ass %	4.31	0.23	2.4	0.0		44	4.203	0.045		4.31	0.23	
Total CBD	Hemp Oil 2	ın ass %	9.2	1.1	5.1	0.0		51	8.759	0.088		9.2	1.1	
Total CBD	Hemp Oil 2a	ın ass %	9.46	0.15	2.7	0.0		10	7.56	0.71		9.46	0.15	
\mathbf{x}_i Mean of reported values									Number of quantitative			X _{NIST} NIST-assessed value		
			s _i Standard (deviation of	reported valu	ies		values rep	/alues reported		U e	xpanded uncertainty		
		Z'a	Z'-score w	vith respect t	o community		x*	Robust me values	ean of reported	l	a	bout the N	UST-assessed value	

National Institute of Standards and Technology

Z_{NET} Z-score with respect to NIST value

s* Robust standard deviation

_

Table 3-2. Data summary table for CBD in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Cannabidiol (CBD)															
			Hemp	Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)					
	Lab	A	в	С	Avg	SD	A	в	С	Avg	SD	A	в	С	Avg	SD	
	NIST				4.31	0.23				9.2	1.1				9.46	0.15	
	A 001	4.06	4.08	4.04	4.060	0.020	8.35	8.35	8.38	8.360	0.017						
	A 002	4_32135	4.37755	4_24454	4.314	0_067	9.214958	8.713401	9.708629	9_212	0.498						
	A 003						9.354	9.659	9.161	9.391	0.251						
	A.004	3.12	2.98	3.1	3.067	0.076	6.24	6.33	6.12	6.230	0.105						
	A 005	4.42	4.24	4.61	4.423	0.185	9.23	9.22	9.28	9.243	0.032						
	A006	4.65	1 07	1.0	4.650	0.057	9.52	07	0.55	9.520	0.160						
	A 008	1.90	1.0/	1.9	1.917	0.057	0.30	0./	0.00	0.545	0.160						
	A 009	435										4 516	4 53	4 533	4 53	0.01	
	A 010											nresent	nresent	nresent	4.55	0.01	
	A011											product	Protota	Protein			
	A012						6_96878	6.94137	6.93743	6.949	0.017						
	A013	4.221	4.423	4.596	4.413	0.188	8.385	9.247	9.228	8.953	0.492						
	A014	4.22			4_220		9.23			9.230							
	A 01 5											10.14	10.48	10.23	10.28	0.18	
	A016																
	A017	4.45			4.450		8.88			8.880							
	A018												_				
	A019	4.16			4.160		8.51			8.510							
	A 020	3_982784	4.055099	3_98743	4.008	0.040	7_539147	7_9206	8_38996	7_950	0_426						
	A 021											7.88	8.68	8.5	8.35	0.42	
ы	A022						0.7105	0.0740	0.0700	0.750	0.107	6.9829	7.046	7.0714	7.03	0.05	
lu sul	A 023						8. /195	8.0/40	8.8/88	8.758	0.107	0.267	0.120	0.291	0.72	0.09	
R	A 025						9.5	10	9.6	9 700	0.265	9_207	9.129	9.201	9.23	0.06	
	A 026	37	38	39	3 800	0 100	86	84	8.8	8 600	0.200						
1MM	A 027	5.1	5.0	22	5.000	0_100	0.0	0.1	0.0	0.000	0_200	8.87	8.98	8.89	8.91	0.06	
A	A028	4.4883	4_5036	4.4891	4.494	0.009	9.1859	9.2043	9.0885	9.160	0.062						
	A 029						8.5	7.7	9	8.400	0.656						
	A030	5.3			5.300		10.4			10.400							
	A031	4.27	4.33	4.26	4.287	0.038	8.84	8.78	8.87	8.830	0.046						
	A032	3.7	3.7	3.2	3_533	0.289	8.9	8_9	8.8	8.867	0.058						
	A 033	3.97	3.77	3.9	3.880	0.101	8.21	8.21	8.22	8.213	0.006						
	A034						9.761	9.552	9.566	9.626	0.117						
	A 035	4.31	4.0	4.0.0	4.310	0.040	8.6	8.94	8.83	8.790	0.173						
	A036	4.29	4.22	4_58	4_323	0.049	8.98	8.9	8.93	8.937	0.040						
	A 03 9	4.2	4.22	4.11	4.177	0.059	8.57	0.011 8.40	8.40	8 517	0.064						
	A 039	4 33	4 67	5.22	4 740	0.449	10.11	10.45	9.4	9.987	0.536						
	A040	1.55			1.7 10	0.110	10.11	10.15	2.1	5.507	0.000	7.20747	7.16035	7.22586	7.20	0.03	
	A041	4.1	4	3.9	4.000	0.100	8.3	8	8.5	8.267	0.252						
	A043	3_902	3.879	3.835	3.872	0.034	9.043	8.489	8.822	8.785	0.279						
	A044																
	A045																
	A 046	4.1	4.2	4.3	4.200	0.100	9.12	9.2	9.18	9.167	0.042						
	A050	4.19	4.19	4.19	4.190	0.000	9.29	9.29	9.42	9.333	0.075						
	A051																
	A052	4.24	4.15	4.22	4_203	0.047	8.75	8.47	8_54	8_587	0.146						
	A 053	4.02	4.0	4.97	4 900	0.021	10.00	0.05	0.07	0.090	0.026						
	A 055	4.0921	4.9	4.80	4.100	0.061	8 7820	9.95	8 3 2 7	9.980	0.298						
	AUSS	Consensu	s Mean	4.0000	4 182	0.001	Consensu	s Mean	0.521	8 750	0.270	Consensu	s Mean		7.75		
fi z l		Consensu	Consensus Standard Deviation				Consensus	Consensus Standard Deviation				Consensus Standard Deviation			0.66		
ommun Result		Maximum			20.800		Maximum			43.100		Maximum			10.28		
		Minimum			0.105		Minimum			0.066		Minimum			4_53		
Ŭ		N			56		N			69		N			10		

		Cannabidiol (CBD)																
			Нещ	p Oil 1 (ma	ss %)			Нетр	o Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)						
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD		
	NIST				4.31	0.23				9.2	1.1				9.46	0.15		
	A 057	10/5		4.455	4 401	0.040	0.00	0.056	0.070	0.100	0 100							
	A 058	4.365	4.44	4.457	4.421	0.049	9.03	9.076	9.278	9.128	0.132							
	A059	3.99	4.124	4.002	4.071	0.049	839	836	8.47	8.407	0.010							
	A 061	4.319	4.347	4.295	4.320	0.026	8.923	8.738	8.878	8.846	0.096							
	A 062											5_594	5_588	5.749	5.64	0.09		
	A 063						7.5979	7.69951	7.66995	7.656	0.052							
	A 064																	
	A 066	yes	yes	yes			yes	yes	yes	0.055	0.000							
	A067						0.066	0.066	0.066	0.066	0.000							
	A 069						89	89	9	8 933	0.058							
	A071	20.8			20.800		43.1		_	43.100								
	A072	4.01			4.010		8.03			8.030								
	A073	4.29	4.36	4.32	4.323	0.035	8.635	8.61	8.635	8.627	0.014							
	A074	2.886	2.346	3.03	2.754	0.361	4.403	4.783	4_55	4_579	0.192							
	A075	4.59	4.48	4.64	4.570	0.082	9.84	9.9	10.1	9.947	0.136							
	A076	0.104044	0.105835	0.105419	0.105	0.001	0.182171	0.182711	0.182733	0.183	0.000							
dual Results	A077						0.//	0.03	9.5	0.975	0.280							
	A 079	4.2	4.2	4.2	4.200	0.000	8.8	8.7	8.7	8.733	0.058							
	A081	4.169	4.166	4.177	4.171	0.006	8.602	8.635	8.648	8.628	0.024							
	A 082											9.67			9.67			
	A083	4.1			4.100		8.38			8.380								
	A 084	4.063	4.096	4.079	4.079	0.017	7.962	8.194	7.945	8.034	0.139							
	A 085	4.2	4.13	4_27	4_200	0.070	8.44	8.48	8.41	8.445	0.035							
	A087	5.5	-	7.4	5.900	0.501	0.7	0.7	1	0.755	0.050							
	A 088						8.87	9.06	9.15	9.027	0.143							
dtvå	A 089	4.12	4.2	4.42	4.247	0.155	8.9	9.07	7.61	8_527	0.798							
I	A 090											6.5691	6.4445	6.4724	6.50	0.07		
	A 091	1.0=10		1.044	4 9 9 9			0.000		0.000								
	A 092	4.2743	4.3643	4.361	4.535	0.051	8.7/12	8.6602	8.7468	8.726	0.058							
	A 094	4.12	4.7	4.55	4,363	0.274	87	8.8	8.8	8 767	0.058							
	A 095	4.0425	3.9904	4.0222	4.018	0.026	8.3004	8.1306	8.2899	8.240	0.095							
	A 096																	
	A 097	4.4894	4.0027	4_3622	4.285	0.252	8.7544	9.2935	9_5432	9.197	0.403							
	A 098	4.422		1 10 5	4.422	0.000	9.82		0.470	9.820								
	A 100	4.127	4.156	4.186	4.156	0.030	8.407	8.169	8.472	8.349	0.160							
	A 101	5.000	5.655	3.741	5.622	0.122	0.725	0.425	0.002	0.549	0.150							
	A 102	4.29	4.24	4.26	4.263	0.025	8.8	8.88	8.86	8.847	0.042							
	A 103	4.608	4.719	4.496	4.608	0.112	7.242	8.757	8.874	8.291	0.910							
	A 104	4.134	4.221	4.234	4.196	0.054	8.803	8.73	8.648	8.727	0.078							
	A 105	4_29	4.13	4.13	4.183	0.092	9	8.95	9.01	8_987	0.032							
	A 106	3.927	3.811	3.766	3.835	0.083	8.526	8.217	8.093	8.279	0.223							
	A 107	5.09	5.41	3.39	3_303	0.142	7.49	0.04	7.11	7.080	0.420							
	A 109	3.77	3.71		3.740	0.042	7.46	7.51		7.485	0.035							
	A 110	3.9	4	4.1	4.000	0.100	8.2	8.2	8.2	8.200	0.000							
	A111	3.66	4.15	3.83	3.880	0.249	7.78	8.47	7_57	7_940	0.471							
	A112	3.75	4.22	3.985	3.985	0.235	9.34	7.93	8.64	8.637	0.705							
	A 113	0.183501	0.18506	0.182346	0.184	0.001	8.446587	8.423583	8_425891	8.432	0.013							
	A 114	4.4251	4.4441	4.4174	4.429	0.014	0.7931	0.0045	0.9147	0.000	0.000	7.90	78	8.02	7 94	0.12		
	A 116	4.2844	4.0437	3.9107	4.080	0.189	8.8352	8.4205	7.9769	8.411	0.429			0.02				
×		Consensu	Consensus Mean 4-182				Consensu	is Mean		8.750		Consensus Mean 7.75						
편 목 목		Consensus Standard Deviation			0_040		Consensu	ıs Standard	Deviation	0.075		Consensus Standard Deviation			0.66			
Les u		Maximum			20.800		Maximun	Maximum				Maximum			10.28	10.28		
i i i i i i i i i i i i i i i i i i i		Minimum					Minimum	1		0.066		Minimum			4_53	4_53		
-		10	N				LUN			09		IN .			10			

Figure 3-1. CBD in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-2. CBD in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-3. CBD in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-4. Laboratory means for CBD in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

Table 3-3. Data summary table for CBDA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

								Cannabi	diolic acid	(CBDA)						
			Hen	p Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	155 %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A 001	< 0.15	< 0.15	< 0.15	< 0.15		< 0.15	<0.15	< 0.15	< 0.15						
	A 002	<0.0043	<0.0043	< 0.0043	<0.0043		<0.0043	<0.0043	<0.0043	<0.0043						
	A 003						< 0.01	< 0.01	< 0.01	< 0.01						
	A 004	0.02	0.02	0.02	0.0200	0.0000	0.02	0.02	0.02	0.0200	0.0000					
	A 005	0.02	0.0191	0.021	0.0200	0.0010	0.015	0.0124	0.0141	0.0138	0.0013					
	A 006	0.02			0.0200		0.01			0.0100						
	A 007															
	A.008											<0.00001	-0.00001		-0.00001	
	A 009											< 0.00001	<0.00001	<0.00001	< 0.00001	
	A010															
	A011						0	0	0	0.0000	0.0000					
	A 013	0.014	0.015	0.015	0.0147	0.0006	v	v	v	0.0000	0.0000					
	A 014	<0.09	0.015	0.015	<0.09	0.0000										
	A 015	-0.05			10.00											
	A 016															
	A017	0.02			0.0200		0.1			0,1000						
	A018															
	A019	< 0.09			< 0.09		< 0.09			< 0.09						
	A 020	0.016051	0.015651	0.015359	0.0157	0.0003	0.005797	0.005608	0.00668	0.0060	0.0006					
2	A 021											< 0.05	< 0.05	< 0.05	< 0.05	
du	A022															
2	A 023						0	0	0	0.0000	0.0000					
	A 024											0.015	0.016	0.016	0.0157	0.0006
P	A 025															
F I	A027											< 0.0057	< 0.0057	< 0.0057	< 0.0057	
	A 028	< 0.0310	< 0.0310	< 0.0310	< 0.0310		< 0.0310	< 0.0310	< 0.0310	< 0.0310						
	A030	0.02			0.0200		0.016			0.0160						
	A 03 1	< 0.15	<0.15	<0.15	< 0.15		< 0.15	< 0.15	< 0.15	< 0.15						
	A033	0.03	0.03	0.02	0.0267	0.0058	0	0	0	0.0000	0.0000					
	A034	0.00.00			0.0000		< 0.01	< 0.01	< 0.01	< 0.01						
	A035	0.0202	10.047	10.047	0.0202		<0.0025	<0.0025	<0.0025	<0.0025						
	A 036	< 0.247	< 0.247	< 0.247	< 0.247		< 0.247	< 0.247	< 0.247	< 0.247						
	A037	<0.05 0.0110	<0.05 0.0117	<0.05 0.012	<0.05 0.0110	0.0002	<0.05	<0.05	<0.05	<0.05						
	A (730	0.0119	0.0117	0.012	0.0113	0.0002	~0.025	0.025	~0.023	0.025	0.0058					
	A 040	0.04	0.05	0.04	0.0455	0.00.00	0.05	0.02	0.05	0.0207	0.0050	ND	ND	ND		
	A041	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000	112	TLD .	112		
	A 043	0.024	0.024	0.025	0.0243	0.0006	0.014	0.014	0.015	0.0143	0.0006					
	A044															
	A 045															
	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 050	0.0201	0.019	0.0221	0.0204	0.0016	< 0.01	< 0.01	< 0.01	< 0.01						
	A051															
	A052															
	A053															
	A054	< 0.01	< 0.01	<0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01						
	A055	0.0213	0_0223	0_0213	0.0216	0_0006	0	0	0	0.0000	0_0000					
<u>a</u>		Consensu	s Mean		0.0183		Consensu	s Mean		0.0098		Consensu	s Mean		0.0080	
目着し		Consensu	s Standard	Deviation	0.0017		Consensu	s Standard I	Deviation	0.0026		Consensu	s Standard	Deviation	0.0063	
		Maximum	1		0.1633		Maximum	1		0.3900		Maximun	1		0.0157	
ē"∣		Minimum	L		0.0000		Minimum	L .		0.0000		Minimum	1		0.0000	
-		IN			31		IN			28		IN			3	

								Cannabi	id iolic acid	(CBDA)										
			Hemp	Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	155 %)	SD				
	Lab	A	в	С	Avg	SD	A	В	С	Avg	SD	A	в	С	Avg	SD				
	NIST																			
	A057																			
	A 058	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000									
	A 060	0.02	0.02	0.02	0.0000	0.0000	<0.02	<0.02	<0.02	<0.000	0.0000									
	A061	0.018	0.018	0.018	0.0180	0.0000	0.01	0.01	0.01	0.0100	0.0000									
	A.062																			
	A 063						0.00918	0.01003	0.01171	0.0103	0.0013									
	A064																			
	A 066																			
	A071	0.06			0.0600		0			0.0000										
	A072																			
	A073	0.017	0.018	0.019	0.0180	0.0010	0.012	0.011	0.012	0.0117	0.0006									
	A074	0.015	0_016	0.015	0.0153	0.0006	0.005	0.007	0.005	0.0057	0.0012									
	A075	0.000785	0.000702	0.00078	0.0000	0.0000	0.00054	0.000517	0.000515	0.0005	0.0000									
	A076	0.000785	0.000792	0.00078	0.0008	0.0000	0.00054 ND	0.000516	ND	0.0005	0.0000									
	A081	0.027	0_027	0.027	0.0270	0.0000	0.019	0.019	0.019	0.0190	0.0000									
	A 082											0			0.0000					
	A083	0.05			0.0500		0.1			0.1000										
	A084	0.016	0.014	0.016	0.0153	0.0012	0.016	0.02	0.02	0.0187	0.0023									
-	A085	0.03 PLO	DU3	DU3	0.0300	0.0000	U.US PLO	0.05 PLO	0.05 PLO	0.0500	0.0000									
stin	A087	вцб	BLQ	BLQ			BLQ	BLQ	BLQ											
Res	A088																			
lau	A089	0.16	0.17	0.16	0.1633	0.0058	0.41	0.39	0.37	0.3900	0.0200									
tv1q	A 090											0.0067	0.0063	0.0065	0.0065	0.0002				
Ind	A 091																			
	A 092 A 093																			
	A 095	< 0.0596	< 0.0596	< 0.0596	< 0.0596		< 0.0596	<0.0596	< 0.0596	< 0.0596										
	A096																			
	A097	0.0198	0.0206	0.0176	0.0193	0.0016	0.0125	0.0114	0.0112	0.0117	0.0007									
	A.098	<0.0058			<0.0058		<0.012			<0.012										
	A 100	0.014	0.014	0.013 <0.0210	0.0137 ≤0.0210	0.0006	<0.015	<0.015	<0.015	<0.015										
	A100	-0.0210	-0.0210	-0.0210	~0.0210		~0.0210	-0.0210	-0.0210	-0.0210										
	A102	0.02	0.02	0.02	0.0200	0.0000	< 0.01	< 0.01	< 0.01	< 0.01										
	A 103	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000									
	A104	<0.037	<0.033	<0.042	<0.037		<0.033	<0_026	< 0.034	<0.033										
	A 105	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025										
	A107	0.0273	0.0272	0.0289	0.0278	0.0010	0.075	0.0718	0.0689	0.0719	0.0031									
	A108																			
	A 109	0.04			0.0400		0.03			0.0300										
	A110	<0.01	<0.01	<0.01	<0.01		<0.01	<0_01	<0.01	<0.01										
	A111	0.026	0.027	0.027	0.0267	0.0006	0.015	0.015	0.015	0.0150	0.0000									
	A112 A113	0.0041	0.003	0.0035	0.0000	0.0006	0.0011	0.0009	0.001	0.0000	0.0001									
	A114		~	~	0.0000	0.0000	~		~	0.0000	0.0000									
	A115											0.01	0.01	0.01	0.0100	0.0000				
	A116	0_03	0_024	0.0231	0.0257	0.0038	0_02	0.0162	0.0142	0.0168	0.0029									
£_		Consensu:	s Mean	n_:	0.0183		Consensu	s Mean	D_:	0.0098		Consensu	s Mean	D_:	0_0080					
		Maximum	s Standard I	Deviation	0.0017		Maximum	s Standard .)	Deviation	0.0026		Maximum	s standard.	DEVIATION	0.0063					
E Z		Minimum			0.0000		Minimum			0.0000		Minimum			0.0000					
Ũ		N			31		N			28		N			3					

Figure 3-5. CBDA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 3-6. CBDA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 3-7. CBDA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 3-8. Laboratory means for CBDA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Table 3-4. Data summary table for total CBD in hemp oils. Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{\text{comm}}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

									Total CBD							
			Hemp	Oil 1 (ma	ss %)			Нетр	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	ss %)	
	Lab	A	В	С	Avg	SD	A	в	С	Avg	SD	A	В	С	Avg	SD
	NIST				4.31	0.23				9.2	1.1				9.46	0.15
	A 001	4.06	4.08	4.04	4.060	0.020	8.35	8.35	8.38	8.360	0.017					
	A002	4.32135	4.37755	4.24454	4.314	0.067	9.214958	8.713401	9.708629	9.212	0_498					
	A 003						9.354	9.659	9.161	9.391	0.251					
	A.004	3.14	3	3.12	3.087	0.076	6.26	6.35	6.13	6.247	0.111					
	A 005	4.43	4.26	4.63	4.440	0.185	9.25	9.23	9.29	9.257	0.031					
	A.007	1.98	1.87	1.9	L917	0.057	8.38	8.7	8.55	8_543	0.160					
	A 008						9.412			9.412						
	A009											4_516	4.53	4.533	4_53	0.01
	A010															
	A011															
	A013	4.233	4.436	4.609	4.426	0.188	8.385	9.247	9.228	8.953	0.492					
	A014															
	A015											10.14	10.48	10.23	10.28	0.18
	A016															
	A017															
	A018															
	A019															
-	A020	3.99686	4.068825	4.0009	4.022	0.040	7_544231	7_925518	8_395818	7.955	0.427					
Ha	A 021											7.88	8.68	8.5	8.35	0.42
Se l	A022											6.9829	7.046	7.0714	7.03	0.05
al a	A 023						8.7195	8.6746	8.8788	8.758	0.107					
Ŗ	A024											9.28	9.143	9.295	9.24	0.08
Alp	A027											8.87	8.98	8.89	8.91	0.06
Ē.	A028	3.9362	3_9496	3_937	3.941	0.008	8.056	8.0722	7_9706	8.033	0.055					
	A 030	5.3175			5.318		10.4			10.400						
	A031	4.3	4.35	4.29	4.313	0.032	8.91	8.87	8.94	8_907	0.035					
	A 033	3.99	3.79	3.92	3.900	0.101	8.21	8.21	8.22	8.213	0.006					
	A034						9.761	9.552	9_566	9.626	0.117					
	A035	4.33			4.330		8.6	8.94	8.83	8.790	0.173					
	A036	4.29	4_3	4.38	4.323	0.049	8.98	8_9	8.9 3	8_937	0.040					
	A037															
	A038	4.13	4.17	4.15	4.150	0.020	8.57	8.49	8.49	8_517	0.046					
	A039	4.37	4.71	5.26	4.780	0.449	10.13	10.47	9.42	10.007	0.536					
	A040											7.20747	7.16035	7.22586	7_20	0.03
	A 043	3.923	3.9	3.857	3.893	0.034	9.055	8.501	8.835	8.797	0.279					
	A044															
	A045															
	A046	4.1	4_2	4.3	4.200	0.100	9.12	9.2	9.18	9.167	0.042					
	A050	4.21	4.21	4.21	4.210	0.000	9.29	9.29	9.42	9.333	0.075					
	A052	4_24	4.15	4.22	4.203	0.047	8.75	8.47	8.54	8_587	0.146					
	A 053															
	A054	4.92	4.9	4.86	4.893	0.031	10.02	9.95	9.97	9_980	0.036					
	A055	4.1108	4.1959	4.0775	4.128	0.061	8.7839	8.8859	8.327	8.666	0.298					
<u>a</u>		Consensu	s Mean		4.203		Consensu	s Mean		8.759		Consensu	s Mean		7_56	
필월		Consensu	s Standard I	Deviation	0.045		Consensu	s Standard I	Deviation	0_088		Consensu	s Standard	Deviation	0.71	
8		Maximum	1		20_900		Maximum	ı		43.100		Maximum	L		10.28	
5 M		Minimum			1.917		Minimum	ι		4_584		Minimum			4_53	
•		N			44		N			51		N			10	

									Total CBD							
			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	155 %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST				4.31	0_23				9.2	1.1				9.46	0.15
	A056															
	A 05 P	4 265	4 469	4 457	4.420	0.057	0.02	0.076	0.278	0.179	0.122					
	A 059	4 02.75	4 124	4.062	4 071	0.049	8 6445	8.629	8.647	8 640	0.010					
	A060	4.01	4.03	4.05	4.030	0.020	8.39	8.36	8.47	8.407	0.057					
	A061	4.335	4.363	4.312	4.337	0.026	8.932	8.746	8.886	8.855	0.097					
	A062											5_594	5_588	5.749	5.64	0.09
	A 063						7.60595	7.70831	7.68022	7.665	0.053					
	A 064															
	A 065	4.635	4.54	4.495	4.557	0.071	8.78	9.965	10.05	9.598	0.710					
	A 068															
	A 071	20.9			20.900		43.1			43 100						
	A072	4.01			4.010		8.03			8.030						
	A073	4.305	4.376	4.337	4.339	0.036	8.646	8.62	8.646	8.637	0.015					
	A074	2.901	2.362	3.045	2.769	0.360	4.408	4.789	4.555	4.584	0.192					
	A075															
	A076															
	A077						8.77	8.85	9_3	8_973	0.286					
	A 078	4.100	4 1 0 2	4 104	4 1 0 0	0.007	0.(10	0.650	0.005	0.645	0.024					
	A081 A082	4.180	4.183	4. 194	4.186	0.006	8.019	8.032	8.005	8.040	0.024					
뙵	A 083															
651	A084															
A I	A 085	4.23	4.16	4.3	4.230	0.070	8.48	8.52	8.45	8.483	0.035					
i i i i i i i i i i i i i i i i i i i	A086	3.5	4	4.2	3.900	0.361	8.9	8.9	9	8.933	0.058					
div	A087															
8	A 088					0.000	8.87	9.06	9.15	9.027	0.143					
	A 089	4.27	4.34	4.33	4.313	0.038	9.24	9.42	7.94	8.867	0.808	6 5740	6 15	6 4791	6.50	0.07
	A 090											0.3749	0.45	0.4/01	0.50	0.07
	A 092	4 2743	4 3643	4 361	4 3 3 3	0.051	8 7712	8 6602	8 7468	8 726	0.058					
	A 093	4.12	4.7	4.33	4.383	0.294	9.07	8.85	9.02	8.980	0.115					
	A 095	4.0425	3.9904	4.0222	4.018	0.026	8.3004	8.1306	8.2899	8.240	0.095					
	A 096															
	A 097	4.5068	4.0208	4.3776	4.302	0.252	8.7654	9.3035	9.553	9.207	0.403					
	A099	4.139	4.168	4.198	4.168	0.030	8.407	8.169	8.472	8_349	0.160					
	A 100	3.686	3.859	3.921	3.822	0.122	8.723	8.423	8.502	8.549	0.156					
	A 102	431	4 26	4 28	4 2.83	0.025	8.8	8 88	8.86	8 847	0.042					
	A 103	4.608	4.719	4.496	4.608	0.112	7.242	8.757	8.874	8.291	0.910					
	A 104	4.134	4.221	4.234	4.196	0.054	8.803	8.73	8.648	8.727	0.078					
	A 105	4.29	4.13	4.13	4.183	0.092	9	8.95	9.01	8_987	0.032					
	A 107	3.71	3.43	3.62	3.587	0.143	7.56	6.7	7.17	7.143	0.431					
	A 108															
	A 109	3.77	3.71		3.740	0.042	7.46	7.51		7.485	0.035					
	A 111	2.60	4 19	2.96	2.010	0.240	7 0	Q /Q	7.50	7 057	0.465					
	A112	5.09	4.10	5.00	5.910	0.249	7.0	0.40	1.59	1.231	0.405					
	A 114	4.4251	4.4441	4.4174	4.429	0.014	8.7951	8.8643	8.9147	8.858	0.060					
	A115											8	7_81	8.03	7.95	0.12
£		Consensu	s Mean		4.203		Consensu	s Mean		8.759		Consensus	s Mean		7_56	
필석		Consensu	s Standard	Deviation	0.045		Consensu	s Standard	Deviation	0_088		Consensus	s Standard	Deviation	0.71	
		Maximum	L .		20_900		Maximum	1		43.100		Maximum			10.28	
ខឺ 🖱		Minimum			1.917		Mininum			4_584		Minimum			4_53	
		N 44					IN			51		TN .			10	

Figure 3-9. Total CBD in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-10. Total CBD in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-11. Total CBD in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 3-12. Laboratory means for total CBD in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$.

SECTION 4: CBC AND CBCA

Study Overview

CBC is a non-intoxicating cannabinoid that has attracted significant interest due to research showing potential health benefits for humans.⁸ CBC is one of the most commonly identified cannabinoids in Cannabis plants and Cannabis-derived products, and reliable analytical methods are needed to better understand the health impacts of CBC consumption. CBC does not exist in Cannabis plant naturally but is formed following decarboxylation of its acidic precursor (CBCA) by exposure to heat or light. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBC and CBCA in three hemp oil samples. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of CBCA and levels of CBC in normal commercial product ranges.

Reporting Statistics

• The enrollment and reporting statistics for CBC and CBCA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

Hemp	Oil 1	Hemp	Oil 2	<u>Hemp Oil 2a</u>				
	Percent		Percent		Percent			
Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>			
Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>			
63	84 %	71	85 %	19	63 %			
36	56 %	38	55 %	19	21 %			
	<u>Hemp</u> <u>Number of</u> <u>Participants</u> 63 36	Hemp Oil 1PercentNumber ofReportingParticipantsResults6384 %3656 %	Hemp Oil 1HempPercentPercentNumber ofReportingParticipantsResults6384 %3656 %38	Hemp Oil 1Hemp Oil 2PercentPercentNumber ofReportingParticipantsResults63 84% 36 56% 38 55%	Hemp Oil 1Hemp Oil 2Hemp Oil 2PercentPercentPercentNumber ofReportingNumber ofReportingParticipantsResultsParticipantsResultsParticipants63 84% 71 85% 1936 56% 38 55% 19			

• Most laboratories reported using solvent extraction or sample dilution for determination of CBC and CBCA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent	<u>Reporting</u>
Preparation Method	<u>CBC</u>	<u>CBCA</u>
Solvent Extraction	71.1	68.3
Dilution	21.9	26.7
Other	0.0	0.0
None	2.3	1.7
No Response	4.7	3.3

⁸ M Zagozen, A Cerenak, S Kreft. Acta Pharm. 71: 355-364 (2021) <u>https://doi.org/10.2478/acph-2021-0021</u>.

• Most laboratories reported using LC-PDA or LC-UV for the determination of CBC and CBCA in the three hemp oil samples (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent R	<u>Reporting</u>
Analytical Method	<u>CBC</u>	<u>CBCA</u>
LC-PDA	68.3	57.7
LC-UV	28.1	36.7
LC-MS	1.6	3.3
LC-MS/MS	4.7	0.0
GC-FID	0.0	0.0
GC-MS	2.3	0.0
Other	0.0	3.3

Study Results

CBC

- The mass fractions (%) for CBC in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in **Table 4-1**. These NIST values are used as the target means and ranges summarized in **Table 4-2** for comparison to the participant results.
- The target and consensus means and ranges are summarized for CBC via different analytical methods in Figure 4-1, Figure 4-2, and Figure 4-3, which include data from laboratories submitting two or three results for CBC. Data from participants submitting only one measurement were included in Table 4-2 but were not included in the calculation of consensus statistics.²
 - For CBC in Hemp Oil 1, the consensus range was based on quantitative results from 53 laboratories and does not overlap with the target range (Figure 4-1).
 - The individual laboratory means or thresholds from 49 laboratories (93 % of those reporting results) were outside the NIST range of tolerance for CBC in Hemp Oil 1.
 - The individual laboratory means from 9 laboratories (17 % of those reporting results) were outside the acceptable Z'_{comm} score for CBC in Hemp Oil 1.
 - No results were reported using thresholds or LOQs for CBC in Hemp Oil 1.
 - For CBC in Hemp Oil 2, the consensus range was based on quantitative results from 59 laboratories and overlaps 20 % of the target range (Figure 4-2).
 - The individual laboratory means or thresholds from 42 laboratories (71 % of those reporting results) were outside the NIST range of tolerance for CBC in Hemp Oil 2.
 - The individual laboratory means from 9 laboratories (15 % of those reporting results) were outside the acceptable Z'_{comm} score for CBC in Hemp Oil 2.
 - No results were reported using thresholds or LOQs for CBC in Hemp Oil 2.
 - For CBC in Hemp Oil 2a, the consensus range was based on quantitative results from 11 laboratories and complete overlaps within the target range (Figure 4-3).
 - The individual laboratory means or thresholds from 2 laboratories (18 % of those reporting results) were outside the NIST range of tolerance for CBC in Hemp Oil 2a.

- The individual laboratory mean from 1 laboratory (9 % of those reporting results) was outside the acceptable Z'_{comm} score for CBC in Hemp Oil 2a.
- No results were reported using thresholds or LOQs for CBC in Hemp Oil 2a.
- A comparison of individual laboratory means for CBC in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 4-4** for laboratories who reported results for both samples.

CBCA

- No target means or ranges were provided in Table 4-1 for CBCA in the three hemp oils.
- The consensus means and ranges for CBCA are based on quantitative data from 4 laboratories (Figure 4-5), 5 laboratories (Figure 4-6) for Hemp Oil 1 and Hemp Oil 2, respectively. A consensus mean could not be determined for CBCA in Hemp Oil 2a (Figure 4-7). Data from participants submitting only one measurement were included in Table 4-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBCA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 4-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBC and CBCA in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
Analyte	<u>Hemp Oil 1</u>	Hemp Oil 2	<u>Hemp Oil 2a</u>
CBC	1.6	1.4	6.0
CBCA	136.9	146.6	NA

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBC

- Approximately 19 % of the laboratories reporting results for CBC provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 4-4).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 did not necessarily report results above the consensus mean for Hemp Oil 2. Trends of this type often represent potential sample interferences and miss identifications as illustrated in Section 1 for CBC.
- The between-laboratory variability for CBC was higher in Hemp Oil 2a (6.0 %) than Hemp Oil 1 or Hemp Oil 2 (≈ 1.5 %). The variability of individual mean laboratory means was higher for CBC in Hemp Oil 1 (6.7 %) in comparison to Hemp Oil 2 (3.3 %) and Hemp Oil 2a (2.0 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
 - The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (11) compared to Hemp Oil 1 (53) and Hemp Oil 2 (59).
- NIST also observed a significant interference in the chromatographic peak of CBC as discussed in Section 1. Modification of the detection wavelength to 230 nm eliminated most of the

interference; however, presence of a small interference is possible and may result in high bias of the NIST target value in comparison to the results obtained by other LC-UV and LC-PDA methods using different separation parameters. No trends for sample preparation were observed to explain the low recovery of CBC relative to the NIST value.

• No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBC in the three hemp oil samples.

CBCA

- Most laboratories reported that CBCA was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (21 % to 56 %).
 - Approximately 3 % of the laboratories reporting results used LC-MS or LC-MS/MS methods did not have low enough LOQs to determine CBCA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 93 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 5 %, 5 %, and 33 % of these laboratories with low enough LOQs to determine CBCA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBCA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBCA can readily convert to CBC when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (≈ 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBC and CBCA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").

• Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

			Canna	IQAP Exerc	ise 1 - Fall 20)20							
	Lab Code	NIST		1. You	r Results			2.	Community Re	esults		3. Ta	rget
Analyte	Sample	Units	Xi	s _i	Z' _{comm}	Znist		N	x *	s*		X _{NIST}	U
Cannabichromene (CBC)	Hemp Oil 1	mass %	0.198	0.012	10.6	0.0	_	42	0.1693	0.0027		0.198	0.012
Cannabichromene (CBC)	Hemp Oil 2	mass %	0.412	0.024	5.0	0.0		50	0.3844	0.0055		0.412	0.024
Cannabichromene (CBC)	Hemp Oil 2a	mass %	0.39	0.10	2.1	0.0		10	0.346	0.021		0.39	0.10
Cannabichromenic acid (CBCA)	Hemp Oil 1	mass %						4	0.0022	0.0030			
Cannabichromenic acid (CBCA)	Hemp Oil 2	mass %						5	0.0025	0.0037			
Cannabichromenic acid (CBCA)	Hemp Oil 2a	mass %											
		x	Mean of I	reported valu	ıes		N	Number o	of quantitative		X _{NIST}	NIST-asse	ssed value
		5	s Standard	deviation of	reported valu	ies		values rep	orted		U	expanded	uncertainty
		Z'œm	Z'-score v	with respect t	o community		x*	x* Robust mean of reported about			about the 1	NST-assessed value	
			consensus	5				values					
		Z _{NIS}	T Z-score w	ith respect to	o NIST value		s*	Robust sta	indard deviation	n			

Table 4-2. Data summary table for CBC in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

								Cannab	ichromene	e (CBC)						
			Hemp	o Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	ss %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST				0.198	0.012				0.412	0.024				0_390	0.100
	A 002	0.1695	0.17934	0.17043	0.1731	0.0054	0.393342	0.395283	0.368675	0.3858	0.0148					
	A 003						0.423	0_446	0.425	0.4313	0_0127					
	A 005	0.164	0.16	0.177	0.1670	0.0089	0.411	0.405	0.408	0.4080	0.0030					
	A.006	0.18			0.1800		0.4			0.4000						
	A007						0.31	0.33	0.31	0.3167	0.0115					
	A 008	0.18			0.1800											
	A 009											0.176	0.176	0.175	0.176	0.001
	A010											present	present	present		
	A012						0.45956	0.45851	0.45935	0.4591	0.0006					
	A013	0.171	0.176	0.182	0.1763	0.0055	0_378	0_414	0.413	0.4017	0_0205					
	A014	0.17			0.1700		0.42			0.4200						
	A015											0.4	0.42	0_38	0.400	0.020
	A016															
	A017	0.18			0.1800		0.4			0.4000						
	A018															
	A019	0.17			0.1700		0_38			0.3800						
	A 020	0.1763	0.178381	0.174015	0.1762	0.0022	0.371925	0.377754	0.422814	0.3908	0.0279					
fi	A 021											0_31	0.35	0_34	0_333	0.021
Sec.	A 022											0.3335	0.3361	0.3375	0.336	0.002
-	A.023						0.5182	0.5129	0.505	0.5120	0.0066					
- R	A 024											0.389	0.398	0.388	0.392	0.006
Alb .	A 025						0_36	0.26	0.4	0.3400	0.0721					
4	A027											0.375	0.378	0.38	0.378	0.003
	A030	0.2			0.2000		0.46			0.4600						
	A 03 1															
	A033	0.16	0.14	0.16	0.1533	0.0115	0.36	0.36	0_36	0.3600	0_0000					
	A 03 5	0.169			0.1690		0.37	0.373	0.372	0.3717	0.0015					
	A036	0.168	0.17	0.172	0.1700	0.0020	0_388	0_384	0.392	0.3880	0.0040					
	A037	0.143	0.143	0.14	0.1420	0.0017	0.336	0.336	0.331	0.3343	0.0029					
	A038	0.167	0.17	0.169	0.1687	0.0015	0.373	0_377	0.372	0.3740	0.0026					
	A 039	0.08	0.06	0.08	0.0733	0.0115	0.1	0.1	0.1	0.1000	0.0000					
	A 040											0_31861	0.31907	0.31619	0.318	0.002
	A 043	0.165	0.167	0.168	0.1667	0.0015	0.359	0.367	0.378	0.3680	0.0095					
	A044															
	A 045															
	A046	0.1	0.1	0.2	0.1333	0.0577	0.35	0.35	0.36	0.3533	0.0058			_		
	A050	0.186	0.187	0.187	0.1867	0.0006	0.387	0.392	0.39	0.3897	0.0025					
	A052															
	A 053	0.17	0.17	0.17	0.1700	0.0000	0.20	0.27	0.27	0.27/7	0.0115					
	A054	0.17	0.17	0.17	0.1700	0.0000	0.39	0.37	0.37	0.3767	0.00115					
	A055	0.1555	0.1588	0.1555	0.1559	0.0027	0.3895	0.3929 n Moon	0.5781	0.3808	0.0078	Company	a Maan		0.246	
¥.,		Consensu	o Nicali o Stondord	Doniotion	0.0027		Consensu	o Stondord	Domintion	0.0055		Consensu	o Stondord '	Dominition	0.021	
클클		Mavines	o o muualu. V	DOMENT	0.2400		Mayimpur	a siamualu.	DOT MILOT	0.5167		Maying	a siamualu. V		0.450	
Ĕ Ž		Mining			0.0000		Miningros			0.0000		Miningum			0.4.50	
ປີ		N			40		N			50		N			10	
		74			44		- 1			50					10	

								Cannat	ichromene	e (CBC)						
			Hen	p Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Непр	Oil 2a (ma	iss %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST				0.198	0.012				0.412	0.024				0_390	0.100
	A057															
	A 058	0.304	0.189	0.192	0.2283	0.0655	0.387	0.434	0.6	0.4737	0.1119					
	A059	0_202	0_2	0.201	0.2010	0.0010	0_393	0_387	0.388	0.3893	0_0032					
	A 060	0.16	0.16	0.16	0.1600	0.0000	0.37	0.37	0.38	0.3733	0.0058					
	A061	0.169	0.169	0.168	0.1687	0.0006	0_378	0_368	0.375	0.3737	0.0051			0.070	0.040	
	A 062						0.2205	0 22001	0.00000	0.0004	0.0005	0.355	0.356	0.368	0.360	0.007
	A 064						0.3303	0.55061	0_3/2963	0.5504	0.0003					
	A 066	Ves	ves	ves												
	A 068	, <u> </u>		J												
	A071	0			0.0000		0			0.0000						
	A072	0.17			0.1700		0.36			0.3600						
	A073	0.185	0.185	0.185	0.1850	0.0000	0_394	0_392	0.389	0_3917	0.0025					
	A074	0.144	0.134	0.151	0.1430	0.0085	0.356	0.368	0.357	0.3603	0.0067					
	A075															
	A076	0.006043	0.006147	0.006115	0.0061	0.0001	0.011866	0.011895	0.011648	0.0118	0.0001					
	A077						<too< td=""><td><too< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></too<></td></too<>	<too< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></too<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
	A 081	0.187	0.185	0.183	0.1850	0.0020	0.404	0.404	0.404	0.4040	0.0000					
	A 082	0.17			0.1700		0.20			0.2000		0.36			0.360	_
	A 083	0.17	0.170	0.176	0.1700	0.0016	0.38	0.207	0.208	0.3800	0.0007					
4	A 084	0.179	0.24	0.24	0.2400	0.0015	0.51	0.52	0.598	0.5167	0.0058					
[] 22	A 087	0.24	0.24	0.24	0.2400	0.0000	0.51	0.52	0.54	0.5107	0.0058					
Ř	A 088						0.37	0 37	0.38	0 3733	0.0058					
gra	A089	0.18	0.18	0.14	0.1667	0.0231	0.37	0.37	0.29	0.3433	0.0462					
14K	A 090											0.2132	0.2114	0.2143	0.213	0.001
Ind	A 091															
	A 092	0.1549	0.1539	0.154	0.1543	0.0006	0.3553	0.3561	0.3575	0.3563	0.0011					
	A 093	0.17	0.18	0.17	0.1733	0.0058	0.36	0.36	0.37	0.3633	0.0058					
	A 095	0.1475	0.1449	0.149	0.1471	0.0021	0.3601	0.3579	0.3524	0.3568	0.0040					
	A096															
	A 098	0.177			0.1770		0.42			0.4200						
	A 100	0.16	0.163	0.166	0.1630	0.0030	0.372	0.372	0.369	0.3710	0.0017					
	A 100	0.1925	0.1950	0.1954	0.1944	0.0019	0.4545	0.4404	0.4385	0.4404	0.00/9					
	A 102	0.17	0.17	0.17	0 1700	0.0000	0.39	0.39	0.39	0.3900	0.0000					
	A 102	0.17	0.17	0.17	0.0000	0.0000	0.299	0.398	0.404	0.3670	0.0590					
	A 104	0.168	0.169	0.17	0.1690	0.0010	0.386	0.377	0.381	0.3813	0.0045					
	A 105	0.16	0.15	0.16	0.1567	0.0058	0.4	0.39	0.39	0.3933	0.0058					
	A 106	0.16	0.16	0.157	0.1590	0.0017	0.392	0.376	0.369	0.3790	0.0118					
	A 107	0.14	0.134	0.137	0.1370	0.0030	0.313	0.299	0.29	0.3007	0.0116					
	A 108															
	A 109	0.25	0.18		0.2150	0.0495	0.53	0.47		0.5000	0.0424					
	A 110	0.16	0.16	0.016	0.1120	0.0831	0.36	0.36	0.36	0.3600	0.0000					
	A112	0.147	0.192	0.1695	0.1695	0.0225	0_328	0.368	0.348	0.3480	0.0200					
	A 113	0.135541	0.136351	0.136725	0.1362	0.0006	0.024787	0.024675	0.024704	0.0247	0.0001					
	A 114	0.17	0.1715	0.1833	0.1730	0.0084	0.5872	0_3838	0.5801	0.5804	0.0007	0.45	0.44	0.46	0.450	0.010
	A116	0.0819	0.09	0.09	0.0873	0.0047	0 1826	0.24	0 221	0 2145	0.0292	0.45	0.44	0.40	0.450	0.010
~		Consensu	s Mean	0.07	0.1693	0.0011	Consensu	s Mean	second at the	0.3844	0.0404	Consensu	s Mean		0_346	
fi z		Consensu	s Standard	Deviation	0.0027		Consensu	s Standard	Deviation	0.0055		Consensu	s Standard	Deviation	0.021	
		Maximum	ı		0.2400		Maximum	1		0.5167		Maximum	ı		0.450	
₽ Z		Minimum			0.0000		Minimum	L L		0.0000		Minimum			0.176	
9		N			42		N			50		N			10	

Figure 4-1. CBC in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 4-2. CBC in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 4-3. CBC in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 4-4. Laboratory means for CBC in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

85

		Cannabich romenic acid (CBCA)																	
			Hem	p Oil 1 (ma	ss %)			Hen	o Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)							
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD			
	NIST							-0.04.04											
	A 002	<0.0181	<0.0181	<0.0181	<0.0181		<0.0181	<0.0181	<0.0181	<0.0181									
	A010											< 0.00210	< 0.00210	< 0.00210	< 0.00210				
	A014	<0.09			<0.09		<0.09			<0.09									
	A 015																		
	A016	-0.025			<0.025		<0.025			<0.025									
	A017 A018	<0.025			<0.025		<0.025			<0.025									
	A019	<0.09			< 0.09		< 0.09			< 0.09									
	A 020																		
	A 021																		
	A 022						0	0	0	0.0000	0.0000								
	A023						v	v	V	0.0000	0.0000								
	A 025																		
	A027											< 0.0057	< 0.0057	< 0.0057	< 0.0057				
	A 030	< 0.01			< 0.01		< 0.01			< 0.01									
	A031	<0.0025			<0.0025		<0.0025	<0.0025	<0.0025	<0.0025									
	A040	~0.0025			<0.0025		~0.0025	~0.0025	~0.0025	~0.0025		ND	ND	ND					
	A 043	0.009	0.01	0.007	0.0087	0.0015	0.013	0.012	0.013	0.0127	0.0006								
	A044																		
	A 045	0			0.0000	0.0000	0		0	0.0000	0.0000								
	A 046	U	U	U	0.0000	0.0000	0	U	U	0.0000	0.0000								
4	A052																		
tesu	A 055	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000								
Ilai	A057																		
vidu	A 058																		
tpu	A 062																		
-	A068																		
	A071																		
	A072	~	•	•			~	•	<u>_</u>										
	A073	<0.019	<0.019	0 <0.019	<0.0000	0.0000	<0.019	0 <0.019	<0.019	<0.0000	0.0000								
	A076	0.015	0.015	0.015	0.015		0.015	0.015	0.015	0.015									
	A 082											0.04			0.0400				
	A 083	<0.75			<0.75		<0.75			<0.75									
	A 084	< 0.0125	< 0.0125	< 0.0125	< 0.0125		< 0.0125	< 0.0125	< 0.0125	< 0.0125									
	A089	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01									
	A 090																		
	A 092																		
	A 093																		
	A 098	< 0.0046			< 0.0046		< 0.0025			< 0.0025									
	A 099	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025									
	A 100	< 0.0408	< 0.0408	< 0.0408	< 0.0408		< 0.0408	< 0.0408	< 0.0408	< 0.0408									
	A 101	10.00	10.00	10.00	10.00		10.00	10.00	10.00	10.00									
	A 102 A 104	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03									
	A 107	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	<0.01	< 0.01	< 0.01									
	A 108																		
	A112																		
	A 113																		
~	AID	Consensu	s Mean		0.0022		Consensu	s Mean		0.0025		Consensu	is Mean						
ti si		Consensu	s Standard	dard Deviation 0.0030			Consensu	s Standard	Deviation	0.0037		Consensu	s Standard	Deviation					
Tes T		Maximum	1		0.0087		Maximum	1		0.0127		Maximum	a		0.0400				
õ S		Minimum			0.0000		Minimum			0.0000		Minimum	1		0.0400				
		14			4		14			3		19			v				

Table 4-3. Data summary table for CBCA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present").

Figure 4-5. CBCA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 4-6. CBCA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 4-7. CBCA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The downward triangle represents data reported as a threshold or LOQ value.

Figure 4-8. Laboratory means for CBCA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 5: CBDV AND CBDVA

Study Overview

CBDV is a non-intoxicating cannabinoid often detected in Cannabis plants and Cannabis-derived products. CBDV is a homolog of CBD with an alternate side chain shortened by two methylene units. CBDV has attracted significant interest in the research community and reliable analytical methods are necessary to further explore potential health benefits.⁹ CBDV does not exist in the Cannabis plant naturally but is formed through decarboxylation of its acidic precursor (CBDVA) by exposure to heat or light. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBDV and CBDVA in the three hemp oils. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of CBDVA and levels of CBDV consistent with normal ranges in commercial products.

Reporting Statistics

• The enrollment and reporting statistics for CBDV and CBDVA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

<u>Hemp</u>	<u>Oil 1</u>	Hemp	Oil 2	Hemp Oil 2a			
	Percent		Percent		Percent		
Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>		
Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>		
56	82 %	64	78 %	19	63 %		
38	61 %	40	63 %	19	21 %		
	<u>Hemp</u> <u>Number of</u> <u>Participants</u> 56 38	Hemp Oil 1PercentNumber ofReportingParticipantsResults5682 %3861 %	Hemp Oil 1HempPercentPercentNumber of ParticipantsReporting ResultsNumber of Participants5682 %643861 %40	Hemp Oil 1Hemp Oil 2PercentPercentNumber ofReportingParticipantsResults56 82% 38 61% 40 63%	Hemp Oil 1Hemp Oil 2Hemp Oil 2PercentPercentPercentNumber ofReportingNumber ofReportingParticipantsResultsParticipantsResultsParticipants56 82% 64 78% 1938 61% 40 63% 19		

• Most laboratories reported using solvent extraction or sample dilution for determination of CBDV and CBDVA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent	Reporting
Preparation Method	<u>CBDV</u>	<u>CBDVA</u>
Solvent Extraction	70.4	71.9
Dilution	24.3	25.0
Other	0.0	0.0
None	2.6	1.6
No Response	2.6	1.6

⁹ N Stone, A Murphy, T England, S O'Sullivan. *Br J Pharmacol.* 177: 4330-4352 (2020) <u>https://doi.org/10.1111/bph.15185</u>.

• Most laboratories reported using LC-PDA or LC-UV for the determination of CBDV and CBDVA in the three hemp oil samples (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent R	eporting
Analytical Method	<u>CBDV</u>	<u>CBDVA</u>
LC-PDA	64.3	65.6
LC-UV	27.0	29.7
LC-MS	0.0	0.0
LC-MS/MS	5.2	1.6
GC-FID	0.0	0.0
GC-MS	2.6	0.0
Other	0.9	3.1

Study Results

CBDV

- The mass fractions (%) for CBDV in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in **Table 5-1**. These NIST values are used as the target means and ranges summarized in **Table 5-2** for comparison to the participant results.
- The target and consensus means and ranges are summarized for CBDV via different analytical methods in Figure 5-1, Figure 5-2, and Figure 5-3, which include data from laboratories submitting two or three results for CBDV. Data from participants submitting only one measurement were included in Table 5-2 but were not included in the calculation of consensus statistics.²
 - For CBDV in Hemp Oil 1, the consensus range was based on quantitative results from 39 laboratories and completely overlaps with the target range (Figure 5-1).
 - The individual laboratory means from 21 laboratories (54 % of those reporting results) were outside the NIST range of tolerance for CBDV in Hemp Oil 1.
 - The individual laboratory means from 3 laboratories (8 % of those reporting results) were outside the acceptable Z'_{comm} score for CBDV in Hemp Oil 1.
 - The thresholds or LOQs for 1 of 6 laboratories reporting qualitative values were below the target mean for CBDV in Hemp Oil 1.
 - For CBDV in Hemp Oil 2, the consensus range was based on quantitative results from 49 laboratories and completely overlaps the target range (Figure 5-2).
 - The individual laboratory means or thresholds from 26 laboratories (53 % of those reporting results) were outside the NIST range of tolerance for CBDV in Hemp Oil 2.
 - The individual laboratory means from 7 laboratories (14 % of those reporting results) were outside the acceptable Z'_{comm} score for CBDV in Hemp Oil 2.
 - No results were reported using thresholds or LOQs for CBDV in Hemp Oil 2.
 - For CBDV in Hemp Oil 2a, the consensus range was based on quantitative results from 11 laboratories and overlaps 80 % of the target range (Figure 5-3).

- The individual laboratory means or thresholds from 6 laboratories (55 % of those reporting results) were outside the NIST range of tolerance for CBDV in Hemp Oil 2a.
- The individual laboratory mean from 1 laboratory (9 % of those reporting results) was outside the acceptable Z'_{comm} score for CBDV in Hemp Oil 2a.
- No results were reported using thresholds or LOQs for CBDV in Hemp Oil 2a.
- A comparison of individual laboratory means for CBDV in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 5-4** for laboratories who reported results for both samples.

CBDVA

- No target means or ranges were provided in Table 5-1 for CBDVA in the three hemp oils.
- The consensus means and ranges for CBDVA are based on quantitative data from 9 laboratories (Figure 5-5), 13 laboratories (Figure 5-6) for Hemp Oil 1 and Hemp Oil 2, respectively. A consensus mean could not be determined for CBDVA in Hemp Oil 2a (Figure 5-7). Data from participants submitting only one measurement were included in Table 5-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBDVA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 5-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBDV and CBDVA in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
Analyte	<u>Hemp Oil 1</u>	<u>Hemp Oil 2</u>	<u>Hemp Oil 2a</u>
CBDV	8.5	3.2	6.3
CBDVA	69.3	34.9	NA

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBDV

- Approximately 8 % of the laboratories reporting results for CBDV provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 5-4).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability was lower for CBDV in Hemp Oil 2 (3.2 %) than Hemp Oil 1 (8.5 %) and Hemp Oil 2a (6.3 %). The individual mean laboratory variability was lower for CBDV in Hemp Oil 2a (3.8 %) in comparison to Hemp Oil 1 (6.1 %) and Hemp Oil 2 (6.1 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.

• No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBDV in the three hemp oil samples.

CBDVA

- Most laboratories reported that CBDVA was present in the samples at or below their LOQ (non-zero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (35 % to 69 %).
 - All the laboratories reporting results used LC-UV or LC-PDA methods with only 17 % and 28 % of these laboratories with low enough LOQs to determine CBDVA at the consensus levels in Hemp Oil 1 and Hemp Oil 2. No laboratories using LC-UV or LC-PDA reported LOQs low enough to determine CBDVA at the consensus level in Hemp Oil 2a.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBDVA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBDVA can readily convert to CBDV when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (≈ 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBDV and CBDVA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
 - Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

			Canna	QAP Exerc	ise 1 - Fall 20)20							
	r Results			2. Community Results				3. Ta	rget				
Analyte	Sample	Units	Xi	s _i	Z' _{comm}	Znist		N	x *	s*		X _{NIST}	U
Cannabidivarin (CBDV)	Hemp Oil 1	mass %	0.039	0.010	0.2	0.0	_	30	0.0398	0.0035		0.039	0.010
Cannabidivarin (CBDV)	Hemp Oil 2	mass %	0.142	0.016	0.0	0.0		42	0.1421	0.0046		0.142	0.016
Cannabidivarin (CBDV)	Hemp Oil 2a	mass %	0.127	0.016	0.7	0.0		10	0.1328	0.0084		0.127	0.016
Cannabidivarinic acid (CBDVA)	Hemp Oil 1	mass %						9	0.00274	0.0019			
Cannabidivarinic acid (CBDVA)	Hemp Oil 2	mass %						12	0.0109	0.0038			
Cannabidivarinic acid (CBDVA)	Hemp Oil 2a	mass %											
			K _i Mean of 1	Mean of reported values				Num ber o	of quantitative		X _{NIST}	NIST-asse	ssed value
	s, Standard deviation of reported values							values rep	orted		U	expanded r	uncertainty
		Z'œ	Z'-score with respect to community				x*	Robust m	ean of reported			about the 1	WST-assessed value
			consensus					values					
		Z _{NIS}	Z _{NIST} Z-score with respect to NIST value					Robust st	indard deviation	n			

Table 5-2. Data summary table for CBDV in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Cannabiliwarin (CBDV)																
_			Hemp	Oil 1 (ma	ss %)		Hemp Oil 2 (mass %)					Hemp Oil 2a (mass %)						
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD		
	NIST				0.039	0.010				0_142	0.016				0_127	0.016		
	A 002	0.04011	0.03892	0.02849	0.0358	0.0064	0.14816	0.140093	0.148368	0.1455	0.0047							
	A.003						0.247	0.248	0.237	0.2440	0.0061							
	A 005	0.0517	0.0469	0.0533	0.0506	0.0033	0.168	0.167	0.168	0.1677	0.0006							
	A.006	0.13			0.1300		0.26			0.2600								
	A 007							0.02		0.0200								
	A008	0.133			0.1330													
	A 009											0.132	0.149	0.132	0.1377	0.0098		
	A010											present	present	present				
	A012						0.14966	0.15056	0.14932	0.1498	0.0006							
	A013	0.058	0.047	0.049	0.0513	0.0059	0.161	0.177	0.177	0.1717	0.0092							
	A014	< 0.09			<0.09		0.14			0.1400								
	A015											0.15	0.14	0.16	0.1500	0.0100		
	A016																	
	A017	0.05			0.0500		0.17			0.1700								
	A018																	
	A 019	<0.09			<0.09		0.14			0.1400								
\$	A 020	0.0322	0.032346	0.031258	0.0319	0.0006	0.131187	0.130074	0.13407	0.1318	0.0021							
ES II	A021											0.12	0.12	0.13	0.1233	0.0058		
R	A 022											0.0876	0.0876	0.088	0.0877	0.0002		
(en	A023						0.2095	0.239	0.2213	0.2233	0.0148							
PNN PNN	A 024											0.142	0.142	0.172	0.1520	0.0173		
īρπ	A025																	
н	A027											0.143	0.144	0.144	0.1437	0.0006		
	A031																	
	A 033	0.05	0.04	0.04	0.0433	0.0058	0.15	0.14	0.15	0.1467	0.0058							
	A035	0.0502			0.0502		0.152	0.152	0.152	0.1520	0.0000							
	A 036	< 0.206	< 0.206	< 0.206	< 0.206		0.121	0.121	0.124	0.1220	0.0017							
	A038	0.0462	0.0483	0.0479	0.0475	0.0011	0.161	0.159	0.155	0.1583	0.0031							
	A 039	0.03	0.03	0.03	0.0300	0.0000	0.11	0.12	0.12	0.1167	0.0058							
	A040											0.14257	0.13653	0.14842	0.1425	0.0059		
	A 041	0	0	0	0.0000	0.0000	0.1	0.1	0.1	0.1000	0.0000							
	A043	0.08	0.079	0.081	0.0800	0.0010	0.203	0.207	0.207	0.2057	0.0023							
	A044																	
	A045																	
	A 046	0	0	0	0.0000	0.0000	0	0.14	0.13	0.0900	0.0781							
	A050	<0.01	<0.01	<0.01	<0.01		0.152	0.183	0.152	0.1623	0.0179							
	A 052																	
	A053																	
	A054	< 0.07	<0.07	<0.07	<0.07		0.15	0.13	0.13	0.1367	0.0115							
	A055	0.0502	0.0518	0.0441	0.0487	0.0041	0.15	0.1523	0.1426	0_1483	0.0051							
£		Consensu	s Mean		0.0393		Consensus Mean			0.1421		Consensu	s Mean		0.1328			
14		Consensu	s Standard	Deviation	0_0034		Consensu	is Standard	Deviation	0_0046		Consensu	s Standard	Deviation	0_0084			
		Maximum	1		0.1330		Maximun	a		0.3067		Maximum	L I		0.2000			
ы ц		Minimum	L		0.0000		Minimum	1		0.0037		Minimum			0.0877			
5		N			30		N	N				N			10			
								Cannal	bidivarin (CBDV)								
------------	-------	-----------	------------	-------------	--------	--------	----------	------------	-------------	--------	---------	----------	------------	------------	--------	--------	--	--
			Hen	p Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	ass %)			
[Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD		
	NIST				0.039	0.010				0_142	0.016				0.127	0.016		
	A057																	
	A060	0_04	0_04	0_04	0_0400	0.0000	0.14	0.15	0.15	0.1467	0.0058							
	A061	0.031	0.032	0.031	0.0313	0.0006	0.133	0.129	0.132	0.1313	0.0021							
	A062											0.1	0.1	0.103	0.1010	0.0017		
	A063						0.11679	0.11646	0.12307	0.1188	0.0037							
	A064																	
	A 066	yes	yes	yes														
	A068								_									
	A071	0.03			0.0300													
	A072	0.047	0.045	0.044	0.0452	0.0015	0.1.41	0.14	0.1.42	0.1410	0.0010							
	A073	0.047	0.045	0.044	0.0455	0.0015	0.141	0.14	0.142	0.1247	0.0010							
	A074	0.034	0.00117	0.034	0.0537	0.0006	0.002672	0.002691	0.002660	0.1347	0.0021							
	A070	0.00115	0.00117	0.001162	0.0012	0.0000	<100	<1.00	<100	0.0057	0.0000							
	A 081	0.033	0.033	0.033	0.0330	0.0000	0.112	0.123	0.112	0.1157	0.0064							
	A 082	0.055	0.055	0.055	0.0550	0.0000	0.112	0.125	0.112	0.1157	0.0004	0.2			0.2000			
	A 083	0.07			0.0700		0.17			0.1700		0.2			0.2000			
	A 084	0.046	0.046	0.044	0.0453	0.0012	0.159	0.150	0.159	0.1590	0.0000							
표	A 085	0.04	0.04	0.04	0.0400	0.0000	0.15	0.16	0.15	0.1533	0.0058							
1159	A 087	0.01	0.01	0.01	0.0100	0.0000	0.15	0.10	0.15	0.1555	0.0000							
Ř	A 088						0.14	0.15	0.14	0 1433	0.0058							
1	A089	0.07	0.07	0.04	0.0600	0.0173	0.14	0.12	0.11	0.1233	0.0153							
1 X	A 090											0.1175	0.1151	0.113	0.1152	0.0023		
E	A091																	
	A 092	0.0373	0.0371	0.0376	0.0373	0.0003	0.1434	0.1426	0.1438	0.1433	0.0006							
	A093																	
	A 095	0.0584	0.0565	0.0575	0.0575	0.0010	0.1445	0.1446	0.1442	0.1444	0.0002							
	A096																	
	A 098	0.075			0.0750		0.17			0.1700								
	A099	0.033	0.033	0.033	0.0330	0.0000	0.135	0.135	0.134	0.1347	0.0006							
	A100	< 0.0210	< 0.0210	0.02118	0.0212		0.1131	0.1093	0.1123	0.1116	0.0020							
	A 101																	
	A102	0.02	0.02	0.02	0.0200	0.0000	0.11	0.11	0.11	0.1100	0.0000							
	A103	0	0	0	0.0000	0.0000	0.076	0.098	0.118	0.0973	0.0210							
	A 104	< 0.037	< 0.033	< 0.042			0.227	0.253	0.274	0.2513	0.0235							
	A107	0_08	0.0759	0.0787	0.0782	0.0021	0.185	0.181	0.0165	0.1275	0.0961							
	A 108	0.04			0.0400		0.14	0.10		0.1000	0.01.41							
	A109	0.04	0.10	0.10	0.0400	0.0000	0.14	0.12	0.22	0.1300	0.0141							
	A 110	0.12	0.12	0.12	0.1200	0.0000	0.29	0.5	0.55	0.3067	0.0208							
	A112	0.0207	0.0207	0.0267	0.0267	0.0000	0.112	0.13	0.121	0.1210	0.0090							
	A115	0.029902	0.030023	0.05	0.0300	0.0000	0.13993	0.139091	0.156112	0.1390	0.0009	0.12	0.12	0.12	0.1200	0.0000		
	A116	0.005	0.028	0.0268	0.0199	0.0129	0.108	0.15	0 1341	0 1307	0.0212	0.15	0.15	0.1.5	5.1500	5_0000		
	AIIU	Consensus	s Mean	0.0200	0.0393	0.0127	Consensu	s Mean	9.1971	0 1421	0.0212	Consensu	s Mean		0 1328			
튚포		Consensus	s Standard	Deviation	0.0034		Consensu	s Standard	Deviation	0.0046		Consensu	s Standard	Deviation	0.0084			
33		Maximum			0.1330		Maximum	0		0_3067		Maximum	1U		0.2000			
8 %		Minimum			0.0000		Minimum			0.0037		Minimum	L .		0.0877			
о Г		N			30		N			42		N			10			

Figure 5-1. CBDV in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 5-2. CBDV in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 5-3. CBDV in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region).

Figure 5-4. Laboratory means for CBDV in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

Table 5-3. Data summary table for CBDVA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$.

								Cannabidi	varinic aci	I (CBDVA)	1						
			Hemp	Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Hemp	Oil 2a (ma	iss %)			
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD		
	NIST																	
	A 002	< 0.0021	< 0.0021	< 0.0021	< 0.0021	0.0000	< 0.0021	< 0.0021	< 0.0021	< 0.0021	0.0000							
	A 009	0	0	0	0.0000	0.0000	0	U	U	0.0000	0.0000	<0.00100	<0.00100	<0.00100	<0.00100			
	A010											~0.00100	~0.00100	~0.00100	~0.00100			
	A014	< 0.09			<0.09		< 0.09											
	A015																	
	A016																	
	A017	<0.01			⊲0_01		0.01			0.0100								
	A018	<0.09			⊲0.09		<0.09											
	A 020																	
	A021											<0.05	<0.05	<0.05	<0.05			
	A022																	
	A023			_			0	0	0	0.0000	0.0000							
	A 024						0.04	0.04	0.04	0.0400	0.0000							
	A 027						0.01	0.01	0.01	0.0100	0.0000	< 0.0057	< 0.0057	< 0.0057	< 0.0057			
	A031																	
	A 03 5	< 0.0025			< 0.0025		<0.0025	< 0.0025	< 0.0025	<0.0025								
	A038	<0.025	<0.025	<0.025	<0_025	_	<0.025	<0.025	<0.025	<0.025	_		_			_		
	A 040	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
	A 041	0.004	0.005	0.005	0.0000	0.0006	0.006	0.005	0.005	0.0053	0.0006							
	A044	0.000	0.000	0.000	0.0017	0.0000	0.000	0.005	0.000	0.0000	0.0000							
	A 045																	
~	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
sult	A 052																	
Re	A053	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
Ten I	A057	0	0	U	0.0000	0.0000	U U	U	U	0.0000	0.0000							
IM	A 062																	
å	A066																	
	A 068																	
	A071																	
	A072	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
	A074	< 0.007	< 0.007	< 0.007	< 0.007		< 0.007	< 0.007	<0.007	< 0.007								
	A076																	
	A 082	-0.00			-0.00		-0.00			-0.00								
	A 083	< 0.33	0.013	0.013	<0_33 0.0143	0.0023	< 0.0125	< 0.0125	< 0.0125	< 0.0125								
	A087	0.017	0.015	0.015	0.0145	0.0025	~ 0.0125	~ 0.0125	~ 0.0125	~ 0.0125								
	A 089	0.03	0.05	0.01	0.0300	0.0200	0.02	0.02		0.0200	0.0000							
	A 090											0.0003	0.0003	0.0003	0	0		
	A 092																	
	A 093	< 0.0200	< 0.0200	< 0.0200	< 0.0200		< 0.0200	< 0.0200	< 0.0200	< 0.0200								
	A096	~ 0.0500	~ 0.0500	~ 0.0500	- 0.0500		20.0500	~ 0.0500	~ 0.0500	20.0500								
	A 098	< 0.0046			< 0.0046		< 0.0025			< 0.0025								
	A 099	<0.007	<0.007	<0.007	<0.007		0.021	0.021	0.021	0.0210	0.0000							
	A 100	< 0.0210	< 0.0210	< 0.0210	< 0.0210		0.04424	0.04328	0.04347	0.0437	0.0005							
	A 101	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01								
	A102	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01								
	A 107	0.0059	0.00571	< 0.01	0.0058	0.0001	0.0231	0.0226	0.0215	0.0224	0.0008							
	A 108																	
	A112																	
	A 113																	
~	AIIS	Consensu	s Mean		0.0027		Consensu	s Mean		0.0109		Consensu	s Mean					
ti z		Consensu	s Standard	Deviation	0.0019		Consensu	s Standard	Deviation	0.0038		Consensu	s Standard	Deviation				
		Maximum	ı		0.0300		Maximum	ı		0.0437		Maximum	ı		0.0003			
ĕ≝		Minimum	ι		0.0000		Minimum			0.0000		Minimum			0.0003			
		N			9		N			12		N			1			

Figure 5-5. CBDVA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 5-6. CBDVA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 5-7. CBDVA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The downward triangle represents data reported as a threshold or LOQ value.

Figure 5-8. Laboratory means for CBDVA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 6: CBG AND CBGA

Study Overview

CBG is a non-intoxicating cannabinoid often detected in Cannabis plants and Cannabis-derived products. CBG has attracted significant research interest and reliable analytical methods are necessary to explore the potential health benefits.⁹ CBG does not exist in Cannabis plant naturally but is formed through decarboxylation of its acidic precursor (CBGA) by exposure to heat or light. CBGA is also a precursor to the formation of CBCA, CBDA, and THCA.¹⁰ CBGA is an intermediate compound, immediately converted to either THCA or CBDA during the growth cycle and limiting the amount of CBGA and CBG found in mature Cannabis plants. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBG and CBGA in the three hemp oils. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of CBGA and levels of CBG consistent with normal ranges in commercial products.

Reporting Statistics

• The enrollment and reporting statistics for CBG and CBGA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

<u>Hemp</u>	<u>Oil 1</u>	<u>Hemp</u>	Oil 2	<u>Hemp Oil 2a</u>			
	Percent		Percent		Percent		
Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>		
Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>		
65	83 %	71	83 %	19	63 %		
63	70 %	73	68 %	19	47 %		
	Hemp Number of Participants 65 63	Hemp Oil 1PercentNumber ofReportingParticipantsResults6583 %6370 %	Hemp Oil 1HempPercentNumber ofParticipants6583 %6370 %73	Hemp Oil 1Hemp Oil 2PercentPercentNumber ofReportingParticipantsResults6583 %6370 %7368 %	Hemp Oil 1Hemp Oil 2Hemp Oil 2PercentPercentNumber ofReportingNumber ofReportingParticipantsResultsParticipantsResultsParticipants6583 %7183 %196370 %7368 %19		

• Most laboratories reported using solvent extraction or sample dilution for determination of CBG and CBGA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

Percent	Reporting
<u>CBG</u>	CBGA
70.5	73.9
21.2	21.0
0.0	0.0
2.3	1.7
6.1	3.4
	Percent <u>CBG</u> 70.5 21.2 0.0 2.3 6.1

¹⁰ M Zagozen, A Cerenak, S Kreft. Acta Pharm. 71: 355-364 (2021) <u>https://doi.org/10.2478/acph-2021-0021</u>

• Most laboratories reported using LC-PDA or LC-UV for the determination of CBG and CBGA in the three hemp oil samples (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent R	<u>leporting</u>
Analytical Method	CBG	<u>CBGA</u>
LC-PDA	63.6	64.7
LC-UV	26.5	29.4
LC-MS	2.3	3.4
LC-MS/MS	3.8	2.5
GC-FID	1.5	0.0
GC-MS	2.3	0.0
Other	0.0	0.0

Study Results

CBG

- The mass fractions (%) for CBG in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in **Table 6-1**. These NIST values are used as the target means and ranges summarized in **Table 6-2** for comparison to the participant results.
- The target and consensus means and ranges are summarized for CBG via different analytical methods in Figure 6-1, Figure 6-2, and Figure 6-3, which include data from laboratories submitting two or three results for CBG. Data from participants submitting only one measurement were included in Table 6-2 but were not included in the calculation of consensus statistics.²
 - For CBG in Hemp Oil 1, the consensus range was based on quantitative results from 51 laboratories and completely overlaps within the target range (Figure 6-1).
 - The individual laboratory means or thresholds from 25 laboratories (49 % of those reporting results) were outside the NIST range of tolerance for CBG in Hemp Oil 1.
 - The individual laboratory means from 7 laboratories (14 % of those reporting results) were outside the acceptable Z'_{comm} score for CBG in Hemp Oil 1.
 - Of the 2 laboratories reporting qualitative results, neither of the thresholds or LOQs were below the target mean for CBG in Hemp Oil 1.
 - For CBG in Hemp Oil 2, the consensus range was based on quantitative results from 56 laboratories and completely overlaps within the target range (**Figure 6-2**).
 - The individual laboratory means or thresholds from 23 laboratories (41 % of those reporting results) were outside the NIST range of tolerance for CBG in Hemp Oil 2.
 - The individual laboratory means from 11 laboratories (20 % of those reporting results) were outside the acceptable Z'_{comm} score for CBG in Hemp Oil 2.
 - The thresholds or LOQs for 1 of 2 laboratories reporting qualitative results were below the target mean for CBG in Hemp Oil 2.
 - For CBG in Hemp Oil 2a, the consensus range was based on quantitative results from 10 laboratories and overlaps 50 % of the target range (Figure 6-3).

- The individual laboratory means or thresholds from 8 laboratories (80 % of those reporting results) were outside the NIST range of tolerance for CBG in Hemp Oil 2a.
- The individual laboratory mean from 2 laboratories (20 % of those reporting results) was outside the acceptable Z'_{comm} score for CBG in Hemp Oil 2a.
- The threshold or LOQ for 1 of 1 laboratory reporting qualitative results were below the target mean for CBG in Hemp Oil 2a.
- A comparison of individual laboratory means for CBG in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 6-4** for laboratories who reported results for both samples.

CBGA

- No target means or ranges were provided in **Table 6-1** for CBGA in the three hemp oils.
- The consensus means and ranges for CBGA are based on quantitative data from 21 laboratories (Figure 6-5), 24 laboratories (Figure 6-6), and 3 laboratories (Figure 6-7) for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 6-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBGA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 6-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBG and CBGA in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
Analyte	Hemp Oil 1	Hemp Oil 2	Hemp Oil 2a
CBG	4.1	3.2	13.2
CBGA	67.6	66.8	137.9

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBG

- Approximately 27 % of the laboratories reporting results for CBG provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 6-4**).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability was higher for CBG in Hemp Oil 2a (13.2 %) than Hemp Oil 1 (4.1 %) and Hemp Oil 2 (3.2 %). The variability between individual mean laboratories were higher for CBG in Hemp Oil 1 (6.2 %) in comparison to Hemp Oil 2 (4.8 %) and Hemp Oil 2a (4.0 %).

- Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
- The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (11) compared to Hemp Oil 1 (65) and Hemp Oil 2 (72).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBG in the three hemp oil samples.

CBGA

- Approximately 14 % of the laboratories reporting results for CBGA provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 6-8**).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 also reported results above the consensus mean for Hemp Oil 2. Trends of this type often indicate a calibration bias.
 - No laboratories reported results below the consensus mean in Hemp Oil 1 or Hemp Oil 2 for CBGA.
- Most laboratories reported that CBGA was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (67 % to 138 %).
 - Approximately 6 % of the laboratories reporting results used LC-MS or LC-MS/MS methods did not have low enough LOQs to determine CBGA at the consensus level in Hemp Oil 1 and Hemp Oil 2; however, one laboratory had a low enough LOQ to determine CBGA at the consensus level in Hemp Oil 2a.
 - Approximately 94 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 11 %, 15 %, and 22 % of these laboratories with low enough LOQs to determine CBGA at the consensus level in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBGA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBGA can readily convert to CBG when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (≈ 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.

- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBG and CBGA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
- Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

			Canna	QAP Exerci	ise 1 - F all 20	920							
	Lab Code	: NIST		1. You	r Results			2.	Community Re	sults		3. Ta	rget
Analyte	Sample	Units	Xi	Si	Z' _{comm}	Znist		N	x *	s*		X _{NIST}	U
Cannabigerol (CBG)	Hemp Oil 1	mass %	0.064	0.010	0.6	0.0	_	42	0.0625	0.0027		0.064	0.010
Cannabigerol (CBG)	Hemp Oil 2	mass %	0.088	0.016	0.7	0.0		49	0.0861	0.0027		0.088	0.016
Cannabigerol (CBG)	Hemp Oil 2a	mass %	0.0900	0.0080	2.0	0.0		9	0.0714	0.0094		0.0900	0.0080
Cannabigerolic acid (CBGA)	Hemp Oil 1	mass %						18	0.0020	0.0014			
Cannabigerolic acid (CBGA)	Hemp Oil 2	mass %						21	0.0047	0.0031			
Cannabigerolic acid (CBGA)	Hemp Oil 2a	mass %						2	0.0027	0.0038			
		:	x _i Mean of 1	reported valu	ies		N	Number o	of quantitative		X _{NIST}	NIST-asse	essed value
			s, Standard	Standard deviation of reported values					orted		U	expanded r	uncertainty
		Z'œ	Z'-score v	Z'-score with respect to community				Robust m	ean of reported			about the 1	NIST-assessed value
			consensus					values					
		ZNE	$_{\rm T}$ Z-score with respect to NIST value					Robust sta	indard deviation	L			

Table 6-2. Data summary table for CBG in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

Hemp Oil 1 (mass %) Hemp Oil 2 (mass %) Hemp							
	Hemp Oil 2a (mass %)						
Lab A B C Avg SD A B C Avg SD A B	С	Avg	SD				
NIST 0.064 0.010 0.088 0.016		0.090	0.008				
A 002 0.06885 0.06925 0.04051 0.0595 0.0165 0.081143 0.077166 0.077195 0.0785 0.0023							
A 003 0.107 0.106 0.083 0.0987 0.0136							
A 005 0.0761 0.072 0.0783 0.0755 0.0032 0.119 0.0997 0.11 0.1096 0.0097							
A006 0.08 0.0800 0.11 0.1100							
A 007							
A008 0.041 0.0410							
A 009 <0.00219 <0.00219 <0.00219	< 0.00219	< 0.00219					
A010 present present	present						
A 012 0.08452 0.08509 0.08495 0.0849 0.0003							
A013 0.063 0.061 0.067 0.0637 0.0031 0.111 0.121 0.12 0.1173 0.0055							
A 014 <0.09 <0.09 0.15 0.1500							
A015 0.1 0.14	0.15	0.1300	0.0265				
A016							
A017 0.07 0.0700 0.09 0.0900							
A018							
A 019 <0.09 <0.09 <0.09 <0.09							
A 020 0.054465 0.055098 0.054253 0.0546 0.0004 0.075415 0.072179 0.076533 0.0747 0.0023							
<u>x</u> A021 0.06 0.07	0.07	0.0667	0.0058				
	0.0557	0.0558	0.0003				
A 023 0.0866 0.0874 0.0885 0.0875 0.0010							
	0.092	0.0917	0.0006				
	0.0004	0.000.5	0.000.5				
	0.0834	0.0835	0.0005				
A030 0.116 0.1180 0.11 0.1100							
A031 A022 0.05 0.07 0.07 0.058 0.07 0.08 0.08 0.0767 0.0058							
A035 0.061 0.06 0.062 0.0610 0.0010 0.06 0.06 0.064 0.0613 0.0023							
A037 0.003 0.005 0.001 0.0023 0.0012 0.0011 0.0031 0.0011 0.0073 0.0086 0.0020							
	0.05542	0.0580	0.0022				
	0.05545	0.0500	0-0022				
A013 0.095 0.097 0.0963 0.0012 0.189 0.188 0.187 0.1808 0.0010							
A045							
A050 0.0625 0.064 0.0628 0.0631 0.0008 0.0849 0.0846 0.0848 0.0848 0.0002							
A053							
A 054 <0.02 <0.02 0.03 0.0300 <0.02 0.04 <0.02 0.0400							
A 055 0 0546 0 0602 0 0545 0 0564 0 0033 0 073 0 0803 0 0728 0 0754 0 0043							
Consensus Mean 0.0629 Consensus Mean 0.0861 Consensus Mean		0.0714					
🖥 🚆 🔰 Consensus Standard Deviation 0.0026 Consensus Standard Deviation 0.0027 Consensus Standard Deviation	Deviation	0.0094					
A Maximum 0.1263 Maximum 0.3400 Maximum		0.1300					
🖁 🛱 Minimum 0.0000 Minimum 0.0000 Minimum		0.0000					
V N 42 N 49 N		9					

	1	Cannabigerol(CBG)																		
			Hemp	Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	ISS %)					
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD				
	NIST				0.064	0.010				0.088	0.016				0.090	0.008				
	A 056																			
	A057			0.400					0.400											
	A 058	0.133	0.123	0.123	0.1263	0.0058	0.125	0.127	0.139	0.1303	0.0076									
	A059	0.082	0.081	0.083	0.0820	0.0010	0.112	0.108	0.11	0.1100	0.0020									
	A 061	0.00	0.00	0.007	0.0000	0.0000	0.08	0.08	0.09	0.0655	0.0058									
	A 062	0.090	0.096	0.097	0.0977	0.0000	0.141	0.119	0.159	0.1550	0.0122	0.069	0.07	0.07	0.0697	0.0006				
	A 063						0.08707	0.09317	0.09053	0.0903	0.0031	0.000	0.07	0.07	0.0007	0.0000				
	A 064																			
	A066	yes	yes	yes																
	A 068																			
	A071	0			0.0000		0			0.0000										
	A072																			
	A073	0.071	0.076	0.068	0.0717	0.0040	0.103	0.103	0.103	0.1030	0.0000									
	A074	0.061	0.058	0.06	0.0597	0.0015	0.077	0.079	0.077	0.0777	0.0012									
	A075	0.001.7.02	0.001010	0.001.770	0.001.0	0.0000	0.000140	0.000114	0.000057	0.0001	0.0000									
	A076	0.001763	0.001818	0.001779	0.0018	0.0000	0.002148	0.002114	0.002057	0.0021	0.0000									
	A 081	0	0	0	0.0000	0.0000			VLOQ 0	0.0000	0.0000									
	A 082	V	V	v	0.0000	0.0000	V	v	0	0.0000	0.0000	0			0.0000					
	A 083	0.06			0.0600		0.08			0.0800		V			0.0000					
'n	A084	0.057	0.064	0.059	0.0600	0.0036	0.086	0.079	0.08	0.0817	0.0038									
Ins	A 085	0.07	0.07	0.07	0.0700	0.0000	0.08	0.08	0.08	0.0800	0.0000									
R.	A 087																			
La L	A088						0.08	0.08	0.09	0.0833	0.0058									
PA A	A 089	0.06	0.06	0.08	0.0667	0.0115	0.08	0.08	0.08	0.0800	0.0000									
n di	A 090											0.0555	0.056	0.056	0.0558	0.0003				
	A091																			
	A 092	0.0569	0.0566	0.0564	0.0566	0.0003	0.0724	0.0724	0.0725	0.0724	0.0001									
	A 095	0.0936	0.0644	0.07	0.0850	0.0000	0.0903	0.0933	0.1249	0.1028	0.0115									
	A 096	0.0950	0.0044	0.0971	0.0050	0.0100	0.0905	0.0955	0.1249	0.1028	0.0192									
	A 098	0.074			0.0740		< 0.0025			< 0.0025										
	A 099	0.063	0.062	0.063	0.0627	0.0006	0.088	0.086	0.082	0.0853	0.0031									
	A 100	0.04314	0.04471	0.04673	0.0449	0.0018	0.0707	0.06797	0.06874	0.0691	0.0014									
	A 101																			
	A 102	0.06	0.05	0.05	0.0533	0.0058	0.08	0.08	0.08	0.0800	0.0000									
	A 103	0	0	0	0.0000	0.0000	0.068	0.083	0.076	0.0757	0.0075									
	A 104	0.051	0.048	0.052	0.0503	0.0021	0.053	0.053	0.06	0.0553	0.0040									
	A 105	0.12	0.09	0.09	0.1000	0.0173	0.11	0.12	0.12	0.1167	0.0058									
	A 106	0.064	0.063	0.062	0.0630	0.0010	0.089	0.087	0.086	0.0873	0.0015									
	A 107	0.0504	0.0527	0_0346	0.0546	0.0019	0.0691	0.0007	0_0034	0.0671	0.0019									
	A 109	0.07	0.06		0.0650	0.0071	01	0.08		0.0900	0.0141									
	A110	0.06	0.06	0.06	0.0600	0.0000	0.07	0.07	0.07	0.0700	0.0000									
	A112	0.0402	0.0423	0.0413	0.0413	0.0011	0.0486	0.0447	0.0467	0.0467	0.0020									
	A 113	0.048092	0.047682	0.048611	0.0481	0.0005	0	0	0	0.0000	0.0000									
	A 114	0.0679	0.0674	0.0644	0.0666	0.0019	0.086	0.0888	0.0899	0.0882	0.0020									
	A 115											0.09	0.09	0.09	0.0900	0.0000				
	A 116	0_0276	0_0599	0.0584	0.0486	0_0182	0_0598	0_0865	0_0831	0.0765	0_0145									
£		Consensu	s Mean		0_0629		Consensu	s Mean		0.0861		Consensus	Mean		0_0714					
[몹 몹		Consensu	s Standard :	Deviation	0.0026		Consensu:	s Standard I	Deviation	0.0027		Consensus	Standard I	Deviation	0.0094					
82		Minimum	L		0.0000		Maximum	L		0.3400		Maximum			0.0000					
ບິ 🗌		N			42		N			49		N			9					
		1 - 1			14		1 - 1					1 - 1			-					

Figure 6-1. CBG in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-2. CBG in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-3. CBG in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-4. Laboratory means for CBG in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable $Z'_{\text{comm}} = 2$.

Table 6-3. Data summary table for CBA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

								Cannabi	gerolic acid	(CBGA))						
			Hemp	o Oil 1 (ma	iss %)			Hemp	o Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	155 %)		
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD	
	NIST																
	A 002	< 0.0049	< 0.0049	< 0.0049	< 0.0049		< 0.0049	< 0.0049	< 0.0049	<0.0049							
	A 003						<0.01	<0.01	<0.01	<0.01							
	A 005	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A.006	0.02			0.0200		0.07			0.0700							
	A 007																
	A008											10.001.00		10.00100			
	A 009											< 0.00192	< 0.00192	< 0.00192	< 0.00192		
	AUIU						<u> </u>	•	0	0.0000	0.0000						
	A012						0	0	0	0.0000	0.0000						
	AUIS	<0.00			<0.00		<0.00			<0.00							
	A014	~0.09			~0.09		~0.09			~0.09							
	AOL																
	A010	0.01			0.0100		0.02			0.0200							
	A018	0.01			0.0100		0.03			0.0300							
	A010	<0.00			<0.00		<0.00			<0.00							
	A 020	~0.09			~0.05		~0.09			-0.05							
	A 021											<0.05	<0.05	<0.05	<0.05		
đ	A 022											-0.05	-0_0_	-0_0_	-0_0_5		
Res	A 023						0	0	0	0.0000	0.0000						
[]e	A 024						-	-	-			<0.010	<0.010	<0.010	<0.010		
, idu	A025																
4P	A027											< 0.0057	< 0.0057	< 0.0057	< 0.0057		
8	A030	<0.01			<0.01		<0.01			<0.01							
	A 031																
	A033	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A 035	< 0.00250			< 0.00250		< 0.0025	< 0.0025	< 0.0025	< 0.0025							
	A036	< 0.206	< 0.206	< 0.206	< 0.206		< 0.247	< 0.247	< 0.247	< 0.247							
	A 037	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	<0.05							
	A038	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025	<0.025							
	A 039	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A 040											0.00798	0.00845	0.00775	0.0081	0.0004	
	A 041	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A043	0.008	0.008	0.007	0_0077	0.0006	0.018	0.024	0.018	0.0200	0.0035						
	A044																
	A045																
	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A050	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01							
	A 052																
	AU53	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	_						
	A 054	~0.01	~0.01	~0.01	0.000	0.0000	~0.01	~0.01	~0.01	0.00	0.0000						
	AUD	Conserers	s Mean	U	0.0020	0.0000	Conserve	s Mean	U	0.0047	0.0000	Conservat	s Mean		0.0027		
fi s		Consenso	s Standard	Deviation	0.0014		Consensu	s Standard	Deviation	0.0031		Consensu	s Standard	Deviation	0.0038		
a P		Maximum		ar or marking	0.0367		Maximum			0 1033		Maximum		o or mavil	0.0081		
88		Minimum	-		0.0000		Minimum	-		0.0000		Minimum	-		0.0000		
Ũ		N			18		N			21		N			2		
	L	1 · · ·								~1					~		

		Can nabigerolic acid (CBGA)														
			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	iss %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A057															
	A 058															
	A 059	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A.060	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02						
	A 061	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A062							0.00	0.0000.0	0.0000	0.0010	<0.01	<0.01	<0.01	<0.01	
	A 063						0.0037	0.00	0.00236	0.0020	0.0019					
	A 064															
	A 069															
	A 071	0			0.0000		0			0.0000						
	A 072	v			0.0000		v			0.0000						
	A 073	0	0	0	0.0000	0 0000	0	0	0	0.0000	0 0000					
	A074	0.02	0.018	0.021	0.0197	0.0015	0.036	0.036	0.035	0.0357	0.0006					
	A076	0.000093	0.000083	0.000080	0.0001	0.0000	0.000099	0.000087	0.000083	0.0001	0.0000					
	A077						ND	ND	ND							
	A 081	0	0	0	0.0000	0.0000	0.021	0.022	0.022	0.0217	0.0006					
	A082											0			0.0000	
	A 083	< 0.33			< 0.33		< 0.33			< 0.33						
	A084	< 0.0125	< 0.0125	< 0.0125	< 0.0125		< 0.0125	< 0.0125	< 0.0125	< 0.0125						
표	A 085	< 0.025	< 0.025	< 0.025	< 0.025		< 0.025	< 0.025	<0.025	< 0.025						
12	A 087															
Ř	A 088															
- a	A.089	0.04	0.04	0.03	0.0367	0.00.58	0.12	0.11	0.08	0.1033	0.0208					
ĮM	A 090											0.0001	0.0001	0.0001	0.0001	0.0000
A	A 091															
	A 092															
	A 095	< 0.0438	< 0.0438	< 0.0428	< 0.0428		< 0.0438	< 0.0438	< 0.0438	< 0.0428						
	A 006	~ 0.0450	< 0.0450	< 0.0430	~ 0.0430		~ 0.0430	~ 0.0430	~ 0.0430	< 0.0430						
	A 098	<0.0046			<0.0046		<0.0025			<0.0025						
	A 099	< 0.012	<0.012	< 0.012	< 0.012		<0.012	<0.012	<0.012	< 0.012						
	A 100	< 0.0210	< 0.0210	< 0.0210	< 0.0210		< 0.0210	< 0.0210	< 0.0210	< 0.0210						
	A 101															
	A 102	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03						
	A 103	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 104	< 0.037	< 0.033	< 0.042	< 0.037		< 0.033	< 0.026	< 0.034	< 0.032						
	A 105	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 106	<0.05	<0.05	<0.05	< 0.05		< 0.05	<0.05	<0.05	< 0.05						
	A 107	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01						
	A 108															
	A 109	-0.01		10.01	-0.01		10.01	-0.01	-0.01	-0.01						
	A 110	<0.01	< 0.01	< 0.01	<0.01		< 0.01	<0.01	<0.01	< 0.01						
	A 112	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 114	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 114											< 0.01	< 0.01	<0.01	<0.01	
	A116	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000	~0.01	~0.01	-0.01	~0.01	
~		Consensu	s Mean	-	0_0020		Consensu	s Mean	-	0.0047		Consensu	s Mean		0.0027	
۲ ۲		Consensu	s Standard	Deviation	0.0014		Consensu	s Standard	Deviation	0.0031		Consensu	s Standard	Deviation	0.0038	
		Maximum	1		0.0367		Maximum	L I		0.1033		Maximum	L I		0.0081	
ä¤ ∣		Minimum			0.0000		Minimum			0.0000		Minimum			0.0000	
9		N			18		N			21		N			2	

Figure 6-5. CBGA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-6. CBGA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-7. CBGA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 6-8. Laboratory means for CBGA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 7: CBL AND CBLA

Study Overview

CBL is a non-intoxicating cannabinoid often detected at extremely low levels in Cannabis plants and Cannabis-derived products making its determination challenging.^{11,12} As a result, limited information on the potential health benefits of CBL has been conducted and reliable analytical methods are necessary to further scientific research. Unlike other cannabinoids formed through decarboxylation of an acidic precursor, formation of CBL is understood to occur through the degradation of CBC during long-term storage or exposure to heat or light. The acidic precursor of CBL, CBLA, has demonstrated resistance to decarboxylation. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBL and CBLA in the three hemp oils. These samples were stored in a control environment that would prevent the degradation of CBC resulting in extremely low levels of CBL and CBLA.

Reporting Statistics

• The enrollment and reporting statistics for CBL and CBLA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

Hemp	<u>Oil 1</u>	Hemp	Oil 2	Hemp Oil 2a			
	Percent		Percent		Percent		
Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>		
Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	Results		
32	72 %	34	71 %	19	21 %		
21	43 %	23	39 %	19	5 %		
	<u>Hemp</u> <u>Number of</u> <u>Participants</u> 32 21	Hemp Oil 1PercentNumber ofReportingParticipantsResults3272 %2143 %	Hemp Oil 1HempPercentNumber ofParticipants3272 %342143 %23	Hemp Oil 1Hemp Oil 2PercentPercentNumber ofReportingParticipantsResults32 72% 2143\%2339\%	Hemp Oil 1Hemp Oil 2Hemp Oil 2PercentPercentPercentNumber ofReportingNumber ofReportingParticipantsResultsParticipantsResultsParticipants32 72% 34 71% 1921 43% 23 39% 19		

• Most laboratories reported using solvent extraction or sample dilution for determination of CBL and CBLA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

Reported Preparation	Percent	<u>Reporting</u>
Method	<u>CBL</u>	<u>CBLA</u>
Solvent Extraction	63.2	65.5
Dilution	31.6	31.0
Other	0.0	0.0
None	1.8	0.0
No Response	3.5	3.4

¹¹ Y Wang, B Avula, M ElSohly, M Radwan, M Wang, A Wanas, Z Mehmedic, I Khan. *Planta Med* 84: 260-266 (2018) <u>https://doi.org/10.1055/s-0043-124873</u>.

¹² W Gul, S Gul, M Radwan, A Wanas, Z Mehmedic, I Khan, M Sharaf, M ElSohly. J AOAC Intern 98(6): 1523-1528 (2015) <u>https://doi.org/10.5740/jaoacint.15-095</u>.

• Most laboratories reported using LC-PDA or LC-UV for the determination of CBL and CBLA in the three hemp oil samples (see table below). Additional method details are summarized at the end of the report in Appendix I.

Reported Analytical	Percent F	Reporting
Method	<u>CBL</u>	<u>CBLA</u>
LC-PDA	50.9	79.3
LC-UV	35.1	13.8
LC-MS	0.0	0.0
LC-MS/MS	5.3	0.0
GC-FID	0.0	0.0
GC-MS	5.3	0.0
Other	3.5	6.9
Other	3.5	6.9

Study Results

- CBL
- No target means or ranges were provided in **Table 7-1** for CBL in the three hemp oils.
- The consensus means and ranges for CBL are based on quantitative data from 17 laboratories (Figure 7-1), 19 laboratories (Figure 7-2), and 2 laboratories (Figure 7-3) for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 7-2 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBL in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 7-4** for laboratories who reported results for both samples.

CBLA

- No target means or ranges were provided in Table 7-1 for CBLA in the three hemp oils.
- The consensus means and ranges for CBLA are based on quantitative data from 6 laboratories for Hemp Oil 1 (Figure 7-5) and Hemp Oil 2 (Figure 7-6). A consensus mean could not be determined for CBLA in Hemp Oil 2a (Figure 7-7). Data from participants submitting only one measurement were included in Table 7-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBLA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 7-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBL and CBLA in the hemp oil samples are shown in the table below.

	Between-	Laboratory Variability	<u>(% RSD)</u>
<u>Analyte</u>	<u>Hemp Oil 1</u>	Hemp Oil 2	Hemp Oil 2a
CBL	11.8	9.4	24.7
CBLA	120.2	82.5	NA

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBL

- Approximately 19 % of the laboratories reporting results for CBL provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 7-4).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 also reported results above the consensus mean for Hemp Oil 2. Trends of this type often indicate a calibration bias.
- Approximately 22 % (5), 21 % (5), and 33 % (1) of the laboratories reported that CBL was present in the Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively, at or below their LOQ (non-zero values).
- The between-laboratory variability was higher for CBL in Hemp Oil 2a (24.7 %) than Hemp Oil 1 (11.8 %) and Hemp Oil 2 (9.4 %). The variability between individual mean laboratories was higher for CBL in Hemp Oil 1 (5.5 %) in comparison to Hemp Oil 2 (3.9 %) and Hemp Oil 2a (2.9 %).
 - Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in less variability both within and among participating laboratories.
 - The elevated level of variability for Hemp Oil 2a may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (2) compared to Hemp Oil 1 (17) and Hemp Oil 2 (19).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBL in the three hemp oil samples.

CBLA

- Approximately 50 % of all laboratories reported that CBLA was present in the samples at or below their LOQ (non-zero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (83 % to 120 %).
 - All laboratories reporting results used LC-UV or LC-PDA methods with only 50 % and 40 % of these laboratories with low enough LOQs to determine CBLA at the consensus level in Hemp Oil 1 and Hemp Oil 2, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBLA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBC can convert to CBL when stored over long periods of time.
 - Participants were asked to store the samples under controlled refrigeration (≈ 4 °C).

- Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBL and CBLA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
 - Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

National Institute of Standards and Technology

			Canna	IQAP Exer	cise 1 - Fall 20	20							
	Lab Code	ır Results		2. Community Results					3. Tar	get			
Analyte	Sample	Units	Xi	Si	Z' _{comm}	Znist		N	x *	s*		X _{NIST}	U
Cannabicy clol (CBL)	Hemp Oil 1	mass %					_	14	0.0210	0.0026			
Cannabicy clol (CBL)	Hemp Oil 2	mass %						17	0.0507	0.0048			
Cannabicy clol (CBL)	Hemp Oil 2a	mass %						2	0.042	0.010			
Cannabicy clolic acid (CBLA)	Hemp Oil 1	mass %						6	0.0029	0.0035			
Cannabicy clolic acid (CBLA)	Hemp Oil 2	mass %						6	0.0015	0.0013			
Cannabicy clolic acid (CBLA)	Hemp Oil 2a	mass %											
		2	Mean of	reported val	ues		N	Number o	of quantitative		X _{NIST}	NIST-assess	ed value
		:	s, Standard	deviation of	f reported valu	es		values rep	orted		U	expanded u	1 certain ty
		Z'œm	Z'-score v	with respect	to community		x*	Robust m	ean of reported			about the N	ST-assessed value
			consensu	5				values					
		Z _{NIS}	T Z-score w	with respect t	to NIST value		s*	Robust sta	andard deviation	1			

Table 7-2. Data summary table for CBL in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$.

		Cannabicyclol (CBL)															
			Heng	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)					
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD	
	NIST	0.02260	0.02414	0.02626	0.0247	0.0014	<0.0112	<0.0112	<0.0112	<0.0112							
	A 002	0.02369	0.02414	0.02030	0.0247	0.0014	~0.0112	~0.0112	~0.0112	~0.0112		<0.00092	<0.00092	<0.00092	<0.00092		
	A010											present	present	present	-0.00052		
	A014	<0.09			<0.09		<0.09			<0.09		•	•	•			
	A015																
	A016	0.00			0.0200		0.07			0.0700							
	A017	<0.02			<0.0200		<0.07			<0.0700							
	A 020	0.028313	0.034296	0.031985	0.0315	0.0030	0.070628	0.065329	0.080747	0.0722	0.0078						
	A 021																
	A 022																
	A023						0.044	0_044	0.0453	0.0444	0_0008						
	A 024						0.05	0.04	0.04	0.0433	0.0058						
	A027						0.05	0.04	0.04	0.0435	0.0050	0.0456	0.0477	0.0441	0.046	0.002	
	A031																
	A 03 5	0.0142			0.0142		0.0422	0.0415	0.0412	0.0416	0.0005						
	A040																
	A 043	0.027	0.026	0.026	0.0263	0.0006	0.055	0.056	0.055	0.0553	0.0006						
	A 044																
	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000						
	A 052																
ults	A053																
Res	A055	0.0201	0.0209	0.0202	0.0204	0.0004	0.0513	0.0517	0.0485	0.0505	0.0017						
[]en	A057																
Md ⁰	A 062	3700	3200	3700													
lbul	A 068	<i></i>		<i></i>													
-	A071																
	A072																
	A073	0.022	0.023	0.024	0.0230	0.0010	0.055	0.055	0.054	0.0547	0.0006						
	A 074	0.025	0.019	0.021	0.0217	0.0031	0.048	0.049	0.048	0.0483	0.0006						
	A 082	0.090111	0.091806	0.091810	0.0912	0.0010	0.022089	0.22938	0.218817	0.1570	0.1104						
	A 083	< 0.33			<0.33		0.06			0.0600							
	A 084	0.066	0.066	0.066	0.0660	0.0000	0.134	0.133	0.127	0.1313	0.0038						
	A.087																
	A 089	0.03	0.02	0.02	0.0233	0.0058	0.06	0.06		0.0600	0.0000						
	A 090	0.0211	0.021	0.0211	0.0211	0.0001	0.055	0.0528	0.0522	0.0533	0.0015	0.0386	0.0383	0.0372	0.038	0.001	
	A 092	0.0211	0.021	0.0211	0.0211	0.0001	0.055	0.0528	0.0522	0.0555	0.0015						
	A 096																
	A 098	<0.0046			<0.0046		<0.0025			<0.0025							
	A 099	0.029	0.028	0.037	0.0313	0.0049	0.056	0.051	0.055	0.0540	0.0026						
	A 100	0.02199	<0_0210	<0.0210	0.0220		0.06652	0.06343	0.06728	0.0657	0_0020						
	A 101	<0.037	<0.033	<0.042	<0.037		<0.033	<0.006	<0.034	<0.032							
	A 104	0.0114	~0.033 0.0118	~0.042	0.0116	0.0003	0.0272	0.0281	0.0275	0.0276	0.0005						
	A 108																
	A112	0.0153	0.0154	0.0154	0.0154	0.0001	0.03	0.0268	0.0284	0.0284	0.0016						
	A 113																
	A 115	Comercia	n Marm		0.0700		Company	a Mar-		0.0507		Comercia	a Marm		0.042		
tt s		Consensu	s Standard	Deviation	0.0025		Consensu	s Standard	Deviation	0.0048		Consensu	s Standard	Deviation	0.042		
n in s		Maximum	1		0.0912		Maximum	U		0.1570		Maximum	1		0.046		
ы В М		Minimum			0.0000		Minimum			0.0000		Minimum			0.038		
-		N			14		N			17		N			2		

Figure 7-1. CBL in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-2. CBL in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \leq 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-3. CBL in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-4. Laboratory means for CBL in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Table 7-3. Data summary table for CBLA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Can nab icyclolic a cid (CBLA)														
			Hemp	o Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)			Нетр	Oil 2a (ma	155 %)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A 002	< 0.0124	< 0.0124	< 0.0124	< 0.0124		< 0.0124	< 0.0124	< 0.0124	< 0.0124						
	A.009											<0.00116	<0.00116	<0.00116	<0.00116	
	A010															
	A015															
	A016															
	A020															
	A021															
	A022						•	•	•	0.0000	0.0000					
	A023						U	0	0	0.0000	0.0000					
	A024															
	A025															
	A 031															
	A 040															
	A 043	<0.002	0.007	0.009	0.0080	0.0014	0.003	0.003	0.003	0.0030	0.0000					
	A044		0.007	0.000	0.0000	0.0011	0.000	0.000	0.005	0.00000	0.0000					
	A 045															
	A046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
¥	A 052						-									
esu	A053															
I.	A 055	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
- np	A057															
14 A	A 062															
ř	A066															
	A 068															
	A071															
	A072															
	A073	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A074	< 0.012	< 0.012	< 0.012	< 0.012		< 0.012	< 0.012	< 0.012	< 0.012						
	A076	0.067748	0.089133	0.083809	0.0802	0.0111										
	A 082															
	A.084	0.006	0_007	0.006	0.0063	0.0006	0.01	0.01	0.009	0.0097	0.0006					
	A 087															
	A090															
	A 092															
	A 095															
	A 090	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	<0.006						
	A 101	~0.000	~0.000	~0.000	~0.000		-0.000	~0.000	~0.000	~0.000						
	A 107															
	A 112															
	A113															
	A115															
2		Consensu	s Mean		0.0029		Consensu	s Mean		0.0015		Consensus	Mean			
1 2		Consensu	s Standard	Deviation	0.0035		Consensu	s Standard I	Deviation	0.0013		Consensus	Standard]	Deviation		
E E		Maximum	ı		0.0802		Maximum			0.0097		Maximum				
S 🖌 🛛		Minimum		0.0000		Minimum (0.0000		Minimum					
Ÿ		N			6		N			6		N				

Figure 7-5. CBLA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-6. CBLA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-7. CBLA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The downward triangle represents data reported as a threshold or LOQ value.

Figure 7-8. Laboratory means for CBLA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 8: CBN AND CBNA

Study Overview

CBN is a non-intoxicating cannabinoid often detected in Cannabis plants and Cannabis-derived products at low levels and has attracted interest due to research showing potential health benefits.⁹ CBN and its acidic precursor CBNA are formed through the oxidation of Δ^9 -THC and THCA, respectively, in Cannabis plant following exposure to prolonged periods of light or heat requiring reliable analytical methods. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of CBN and CBNA in the three hemp oils. The preparation of these hemp oils included a decarboxylation step resulting in extremely low levels of CBNA and levels of CBN consistent with normal ranges in commercial products.

Reporting Statistics

• The enrollment and reporting statistics for CBN and CBNA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

	<u>Hemp</u>	<u>Oil 1</u>	Hemp	Oil 2	<u>Hemp Oil 2a</u>			
		Percent			Percent			
	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>		
<u>Analyte</u>	Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>		
CBN	75	81 %	85	80 %	19	63 %		
CBNA	29	55 %	31	48 %	19	11 %		

• Most laboratories reported using solvent extraction or sample dilution for determination of CBN and CBNA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

Percent]	<u>Reporting</u>
<u>CBN</u>	<u>CBNA</u>
68.5	69.6
25.5	26.1
2.0	2.2
2.0	2.2
4.0	2.2
	Percent 1 <u>CBN</u> 68.5 25.5 2.0 2.0 4.0

• Most laboratories reported using LC-UV or LC-PDA for the determination of CBN and CBNA (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent I	Reporting
Analytical Method	<u>CBN</u>	<u>CBNA</u>
LC-PDA	61.7	52.2
LC-UV	28.2	43.5
LC-MS	1.3	0.0
LC-MS/MS	3.4	0.0
GC-FID	2.7	0.0
GC-MS	2.0	0.0
Other	0.7	4.3

Study Results

CBN

- The mass fractions (%) for CBN in the hemp oil samples were determined by NIST using LC-PDA as described in Section 1 and are summarized in **Table 8-1**. These NIST values are used as the target means and ranges summarized in **Table 8-2** for comparison to the participant results.
- The target and consensus means and ranges are summarized for CBN via different analytical methods in Figure 8-1, Figure 8-2, and Figure 8-3, which include data from laboratories submitting two or three results for CBN. Data from participants submitting only one measurement were included in Table 8-2 but were not included in the calculation of consensus statistics.²
 - For CBN in Hemp Oil 1, the consensus range was based on quantitative results from 49 laboratories and overlaps approximately 90 % of the target range (Figure 8-1).
 - The individual laboratory means from 33 laboratories (81 % of those reporting results) were outside the NIST range of tolerance for CBN in Hemp Oil 1.
 - The individual laboratory means from 11 laboratories (27 % of those reporting results) were outside the acceptable Z'_{comm} score for CBN in Hemp Oil 1.
 - The thresholds or LOQs for 15 of 19 laboratories reporting qualitative results were below the target mean for CBN in Hemp Oil 1.
 - For CBN in Hemp Oil 2, the consensus range was based on quantitative results from 49 laboratories and overlaps approximately 35 % of the target range (Figure 8-2).
 - The individual laboratory means from 17 laboratories (35 % of those reporting results) were outside the NIST range of tolerance for CBN in Hemp Oil 2.
 - The individual laboratory means from 9 laboratories (18 % of those reporting results) were outside the acceptable Z'_{comm} score for CBN in Hemp Oil 2.
 - The thresholds or LOQs for 11 of 16 laboratories reporting qualitative results were below the target mean for CBN in Hemp Oil 2.
 - For CBN in Hemp Oil 2a, the consensus range was based on quantitative results from 10 laboratories and overlaps approximately 55 % of the target range (Figure 8-3).

- The individual laboratory means from 5 laboratories (50 % of those reporting results) were outside the NIST range of tolerance for CBN in Hemp Oil 2a.
- All laboratory means were within the acceptable $Z'_{\rm comm}$ score for CBN in Hemp Oil 2a.
- The single laboratory reporting a qualitative threshold or LOQ for CBN in Hemp Oil 2a was above the target mean.
- A comparison of individual laboratory means for CBN in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 8-4** for laboratories who reported results for both samples.

CBNA

- No target means or ranges were provided in **Table 8-1** for CBNA in the three hemp oils.
- The consensus means and ranges for CBDVA are based on quantitative data from 7 laboratories for Hemp Oil 1 (Figure 8-5) and 7 laboratories for Hemp Oil 2 (Figure 8-6), respectively. A consensus mean could not be determined in Hemp Oil 2a (Figure 8-7). Data from participants submitting only one measurement were included in Table 8-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for CBNA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 8-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of CBN and CBNA in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
Analyte	<u>Hemp Oil 1</u>	Hemp Oil 2	<u>Hemp Oil 2a</u>
CBN	6.8	5.1	9.3
CBNA	81.4	60.2	NA

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

CBN

- Approximately 30 % of the laboratories reporting results for CBN provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 8-4).
 - Laboratories reporting results below the consensus mean in Hemp Oil 1 also reported results below the consensus mean for Hemp Oil 2. The reverse is also observed for laboratories reporting values above the consensus mean in both samples. Trends of this type often indicate a calibration bias.
- The between-laboratory variability was higher for CBN in Hemp Oil 2a (9.3 %) than Hemp Oil 1 (6.8 %) and Hemp Oil 2 (5.1 %). The variability between individual mean laboratories were relatively close for CBN in Hemp Oil 1 (5.9 %), Hemp Oil 2 (5.9 %), and Hemp Oil 2a (5.2 %).

- Hemp Oil 2a was prepared through a methanol/ethanol extraction of Hemp Oil 2 at NIST. The additional processing of Hemp Oil 2a was expected to result in minimal variability both within and among participating laboratories.
- The elevated level of variability may be an artifact of significantly fewer laboratories reporting results for Hemp Oil 2a (10) compared to Hemp Oil 1 (49) and Hemp Oil 2 (49).
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBN in the three hemp oil samples.

CBNA

- Approximately 20 % of the laboratories reporting results for CBNA provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (**Figure 8-8**).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 also reported results above the consensus mean for Hemp Oil 2. Trends of this type often indicate a calibration bias.
- Most laboratories reported that CBNA was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (60 % to 81 %).
 - Approximately 96 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 31 % and 20 % of these laboratories with low enough LOQs to determine CBNA at the consensus level in Hemp Oil 1 and Hemp Oil 2, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for CBNA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because CBNA can readily convert to CBN when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (≈ 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.
- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the CBN and CBNA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.

- Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
- Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
- Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

			Canna	QAP Exerci	ise 1 - F all 20	920							
	Lab Code:	NIST		1. Your Results				2. Community Results				3. Ta	rget
Analyte	Sample	Units	Xi	Si	Z' _{comm}	Znist		N	x *	s*		X _{NIST}	U
Cannabinol (CBN)	Hemp Oil 1	mass %	0.0160	0.0020	0.4	0.0	_	33	0.0165	0.0012		0.0160	0.0020
Cannabinol (CBN)	Hemp Oil 2	mass %	0.0240	0.0040	3.1	0.0		41	0.0207	0.0011		0.0240	0.0040
Cannabinol (CBN)	Hemp Oil 2a	mass %	0.0170	0.0040	1.7	0.0		9	0.0203	0.0019		0.0170	0.0040
Cannabinolic acid (CBNA)	Hemp Oil 1	mass %						5	0.00897	0.0073			
Cannabinolic acid (CBNA)	Hemp Oil 2	mass %						3	0.033	0.020			
Cannabinolic acid (CBNA)	Hemp Oil 2a	mass %											
			x _i Mean of r	eported valu	ies		N	Number	of quantitative		X _{NIST}	NIST-asse	essed value
			s, Standard	deviation of	reported valu	ıes		values rej	orted		U	expanded	uncertainty
		Z'a	Z'-score w	rith respect to	o community		x*	Robust m	ean of reported			about the N	NIST-assessed value
			consensus					values					
		ZN	ust Z-score w	ith respect to	NIST value		s*	Robust st	andard deviatio	n			

_

_

Table 8-2. Data summary table for CBN in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Can nabinol (CBN)														
			Hemp	Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)		Hemp UII 28 (III 285 %)				
	Lab	A	в	С	Avg	SD	A	в	С	Avg	SD	A	в	С	Avg	SD
	NIST				0.0160	0.0020				0.0240	0.0040				0.0170	0.0040
	A 001	< 0.05	< 0.05	< 0.05	< 0.05		< 0.15	< 0.15	< 0.15	< 0.15						
	A 002	0.02259	0.02545	0.02212	0.0234	0.0018	0.026719	0.024345	0.026389	0.0258	0.0013					
	A 003						< 0.05	< 0.05	< 0.05	< 0.05						
	A004	0.02	0.02	0.02	0.0200	0.0000	0.03	0.03	0.02	0.0267	0.0058					
	A 005	0.0176	0.0174	0.0188	0.0179	0.0008	0.0267	0.0264	0.0264	0.0265	0.0002					
	A.006	0.08			0.0800		0.03			0.0300						
	A007															
	A 008	0.011			0.0110											
	A 009											0.012	0.012	0.013	0.0123	0.0006
	A010											present	present	present		
	A011															
	A012						0.01275	0.01285	0.01293	0.0128	0.0001					
	A013	0.019	0.02	0.02	0.0197	0.0006	0.023	0.026	0.026	0.0250	0.0017					
	A014	<0.09			<0.09		<0.09			<0.09						
	A015												0.02	0.03	0.0250	0.0071
	A016															
	A017	0.02			0.0200		0.02			0.0200						
	A018															
	A019	< 0.09			< 0.09		< 0.09			< 0.09						
	A020	0.020738	0.020595	0.02041	0.0206	0.0002	0.025181	0.024386	0.027899	0.0258	0.0018					
21	A 021											< 0.05	< 0.05	<0.05	<0.05	0.0000
T I	A022						0.0225	0.0245	0.0220	0.0240	0.0005	0.0169	0.0171	0.0168	0.0169	0.0002
Re	A 023						0.0235	0.0245	0.0239	0.0240	0.0005	0.000	0.024	0.005	0 0005	0.0015
Ien	A 024						0.00	0.02	0.00	0.0267	0.0050	0.022	0.024	0.025	0.0237	0.0015
N N	A 025						0.05	0.05	0.02	0.0267	0.0058					
- F	A 027											0.0288	0.0287	0.0201	0.0280	0.0002
н	A027	<0.0630	<0.0630	<0.0630	<0.0630		<0.0630	<0.0630	<0.0630	<0.0630		0.0288	0.0207	0.0291	0.0209	0.0002
	A 030	0.033	-0.0000	~0_00_00	0.0330		0.023	-0.00.0	0.0050	0.0230						
	A031	<0.05	<0.05	<0.05	<0.05		<0.15	<0.15	<0.15	<0.15						
	A 033	0.02	0.02	0.02	0.0200	0.0000	0.02	0.02	0.02	0.0200	0.0000					
	A034						0.025	0.025	0.025	0.0250	0.0000					
	A 035	0.0217			0.0217		0.0299	0.0284	0.0063	0.0215	0.0132					
	A036	< 0.206	< 0.206	< 0.206	< 0.206		< 0.247	< 0.247	< 0.247	< 0.247						
	A037	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05						
	A038	0.0189	0.0185	0.018	0.0185	0.0005	0.0255	0.0249	0.025	0.0251	0.0003					
	A039	0.02	0.01	0.01	0.0133	0.0058	0.02	0.02	0.02	0.0200	0.0000					
	A040											0.01653	0.01727	0.01718	0.0170	0.0004
	A 041	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A043	0.036	0.037	0.035	0.0360	0.0010	0.056	0.056	0.057	0.0563	0.0006					
	A044															
	A045															
	A 046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A050	<0.01	<0.01	<0.01	<0.01		0.0154	0.0133	0.0146	0.0144	0.0011					
	AUSI															
	A052															
	A 053	0.01	0.01	0.01	0.0100	0.0000	0.01	0.01	0.01	0.0100	0.0000					
	A 055	0.0137	0.014	0.0135	0.0137	0.0003	0.0224	0.0219	0.0224	0.0222	0.0003					
	AVJ	Consensu	s Mean	0.0100	0.0165	0.0003	Consensu	s Mean	0.0224	0.0207	0.0005	Consensu	s Mean		0.0203	
튑포		Consensu	s Standard	Deviation	0.0011		Consensu	s Standard	Deviation	0.0011		Consensus Standard Deviation 0.0019				
	Maximum 0.0800 Maximum			0.1100		Maximum 0.0289										
월 22		Minimum			0.0000		Minimum			0.0000		Minimum			0.0123	
ъ Г		N			33		N			41		N			9	

		Cannabinol (CEN)														
			Home		ee 4 4.)			Home	017/00	ee 4 4.)		Hemp Oil 2a (mass %)				
			nemb		ss 70)			nemb		ss 70)			nemh		53 70)	
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST				0.0160	0_0020	0.0070.0			0.0240	0_0040				0.0170	0_0040
	A056	0			0.0000		0.02386			0.0239						
	A057		0.021	0.072	0.0465	0.0361		0.029	0.046	0.0375	0.0120					
	A 059	0.018	0.018	0.018	0.0180	0.0000	0.024	0.024	0.025	0.0243	0.0006					
	A.060	<0.02	<0.02	<0.02	<0.02		0.02	0.02	0.02	0.0200	0.0000					
	A 061	0.016	0.016	0.016	0.0160	0.0000	0.021	0.02	0.02	0.0203	0.0006					
	A062											0.023	0.022	0.023	0.0227	0.0006
	A 063						0.02026	0.02116	0.0205	0.0206	0.0005					
	A 064															
	A 066	yes	yes	yes												
	A067															
	A 071	0.08			0.0800		0.11			0.1100						
	A072	0.00			0.0000		0.11			0.1100						
	A073	0.018	0.019	0.019	0.0187	0.0006	0.025	0.025	0.026	0.0253	0.0006					
	A074	0.015	0.014	0.016	0.0150	0.0010	0.02	0.02	0.02	0.0200	0.0000					
	A075	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001						
	A076	0.000439	0.000448	0.000446	0.0004	0.0000	0.000500	0.000511	0.000511	0.0005	0.0000					
	A077						ND	ND	ND							
	A 079	BLQ	BLQ	BLQ	0.007	0.0000	BLQ	BLQ	BLQ	0.0000	0.0007					
	A 082	0.027	0.027	0_026	0.0267	0.0006	0.033	0.034	0.033	0.0555	0.0006	0.02			0.0200	
	A 083						0.02			0.0200		0.02			0.0200	
lts	A 084	0.012	0.011	0.011	0.0113	0.0006	0.012	0.012	0.012	0.0120	0.0000					
	A085	0.02	0.02	0.02	0.0200	0.0000	0.02	0.02	0.02	0.0200	0.0000					
Kest	A 086						BLQ	BLQ	BLQ							
al I	A 087															
1qu	A 088															
tpr	A 089	0.02	0.02	0.02	0.0200	0_000	0.02	0.02	<0.01	0.0200	0_0000	0.01.01	0.01/0	0.01.62	0.01/0	0.0001
A	A 090											0.0161	0.0162	0.0105	0.0162	0.0001
	A 092	0.0163	0.0164	0.0166	0.0164	0.0002	0.0198	0.0199	0.0201	0.0199	0.0002					
	A093	0.02	0.02	0.02	0.0200	0.0000	0.03	0.03	0.02	0.0267	0.0058					
	A 095	< 0.0217	< 0.0217	< 0.0217	< 0.0217		< 0.0217	< 0.0217	< 0.0217	< 0.0217						
	A 096															
	A 097	0.016	0.0154	0.0166	0.0160	0.0006	0.0202	0.0208	0.0207	0.0206	0.0003					
	A 098	<0.0046			<0.0046		<0.0025			<0.0025						
	A 099	0.011	0.011	0.011	0.0110	0.0000	0.016	0.015	0.015	0.0153	0.0006					
	A 100	N0.0210	NO_0210	\0.0210	N0.0210		N0.0210	\0_0210	\U_U210	N0.0210						
	A 102	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	0.02	0.0200						
	A 103	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 104	<0.037	<0.033	<0.042	<0.037		<0.033	<0.026	<0.034	<0.032						
	A 105	< 0.025	< 0.025	<0.025	< 0.025		< 0.025	< 0.025	< 0.025	< 0.025						
	A 106	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05						
	A 107	0.0137	0.0138	0.0147	0.0141	0.0006	0.0126	0.0124	0.012	0.0123	0.0003					
	A 108	0.02			0.0200		0.02			0.0200						
	A 109	<0.02	<0.01	<0.01	<0.0200		<0.02	<0.01	<0.01	<0.0200						
	A 111	0.017	0.017	0.017	0.0170	0.0000	0.023	0.023	0.023	0.0230	0.0000					
	A112	0.0187	0.0182	0.0185	0.0185	0.0003	0.0265	0.0241	0.0253	0.0253	0.0012					
	A 113	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 114															
	A 115											0.02	0.02	0.02	0.0200	0.0000
	A116	0.06	0_0164	0.016	0.0308	0_0253	0.1	0_0206	0.0198	0.0468	0.0461	0	- 14-		0.0000	
tty.		Consensu	s Mean s Stondord	Doviation	0.0011		Consensu	s Mean Stondor-J	Daviatio-	0.0207		Consensus Mean 0.0203				
in the		Maximum	a Similiaio. N		0.0800		Maximum	a preminand.	1.04 INTION	0.1100		Maximum	a semuand 1 J	CUMUUI	0.0789	
8 %		Minimum	-		0.0000		Minimum	-		0.0000		Minimum	- 1		0.0123	
υ		N			33		N			41		N			9	

Figure 8-1. CBN in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-2. CBN in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-3. CBN in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance, calculated as the values above and below the consensus mean that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$. The red shaded region represents the NIST range of tolerance, which encompasses the target value bounded by twice its uncertainty (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{NIST}| \le 2$. The shaded beige region represents the overlapping of the 95 % confidence interval for the consensus mean (green region) and the NIST range of tolerance (red region). The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-4. Laboratory means for CBN in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The solid red box represents the NIST range of tolerance for the two samples, Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), which encompasses the target values bounded by their uncertainties (U_{NIST}) and represents the range that results in an acceptable Z_{NIST} score, $|Z_{\text{NIST}}| \leq 2$. The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{\text{comm}}| \leq 2$.

Table 8-3. Data summary table for CBNA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$.

		Cannab inolic acid (CBNA)														
			Heng	o Oil 1 (ma	ss %)			Hemp	Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)				
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A 002	<0.0060	<0.0060	< 0.0060	<0.0060		<0.0060	<0.0060	< 0.0060	<0.0060		<0.00001	<0.00001	<0.00001	<0.00001	
	A 010											<0.00091	<0.00091	<0.00091	<0.00091	
	A014	<0.09			<0.09		<0.09			<0.09						
	A 01 5															
	A016															
	A017	0.01			0.0100		0.03			0.030						
	A019	<0.09			<0.09		<0.09			<0.09						
	A 020	0.000544	0.000559	0.000383	0.0005	0.0001										
	A 021											<0.05	<0.05	<0.05	<0.05	
	A 022															
	A 025															
	A 02.7															
	A 031															
	A035	<0.0025					<0.0025	<0.0025	<0.0025	<0.0025						
	A 040															
	A043	0.013	0.013	0.014	0.0133	0.0006	<0.002	<0.002	<0.002	<0.002						
	A 044															
	A045															
	A 046	0	0	0	0.0000	0.0000	0	0	0	0.000	0.000					
2	A 052															
[N 54	A 055	0	0	0	0.0000	0.0000	0	0	0	0.000	0.000					
I R	A 057	Ŭ	U	Ŭ	0.0000	0.0000	0	0	0	0.000	0.000					
qua	A 062															
1MP	A 064															
Ă	A066															
	A 068															
	A071															
	A 072	<0.008	<0.008	<0.009	<0.008		<0.008	<0.009	<0.009	<0.008						
	A074	~0.008	~0.008	~0.008	~0_008		~0.008	~0.008	~0.006	<u>~0_008</u>						
	A 082															
	A 083	0.03			0.0300		0.06			0.060						
	A084	< 0.0125	< 0.0125	< 0.0125	< 0.0125		< 0.0125	< 0.0125	< 0.0125	< 0.0125						
	A 087															
	A.089	0.24	0.24	0.1	0.1933	0.0808	0.25	0.24	0.17	0.220	0.044					
	A 090															
	A 092															
	A 095															
	A 098	< 0.0046			< 0.0046		< 0.0025			< 0.0025						
	A 099	<0.009	<0.009	<0.009	<0.009		<0.009	<0.009	<0.009	<0.009						
	A 101															
	A 102	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05						
	A 107															
	A 108															
	A 112															
	A 115															
x		Consensu	s Mean		0.0090		Consensu	s Mean		0.033		Consensu	s Mean			
H H		Consensu	s Standard	Deviation	0.0073		Consensu	s Standard	Deviation	0.020		Consensu	s Standard	Deviation		
		Maximum	ı		0.1933		Maximum	L I		0.220		Maximum	ı			
ы С С		Minimum			0.0000		Minimum			0.000		Minimum				
-		N			5		Ν			3		N				

Figure 8-5. CBNA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-6. CBNA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-7. CBNA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The downward triangle represents data reported as a threshold or LOQ value.

Figure 8-8. Laboratory means for CBNA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

SECTION 9: THCV AND THCVA

Study Overview

THCV is similar in structure to Δ^9 -THC with similar psychoactive properties. THCV is often detected at low levels in Cannabis plants and Cannabis-derived products and research has shown potential health for humans.^{Error! Bookmark not defined.13} THCV is synthesized in the plant from CBGA s imilar to Δ^9 -THC instead of its acidic precursor THCVA, which is produced from the breakdown of CBGVA through decarboxylation with exposure of heat or light. Participants in this study were asked to use in-house analytical methods to determine the mass fraction (%) of THCV and THCVA in the three hemp oils. The preparation of these hemp oils included a decarboxylation step permitting the potential presence of THCV and THCVA in these samples.

Reporting Statistics

• The enrollment and reporting statistics for THCV and THCVA are described in the table below for each analyte. Reported values may include non-quantitative results (zero or below LOQ).

	<u>Hemp</u>	<u>Oil 1</u>	Hemp	Oil 2	<u>Hemp Oil 2a</u>			
		Percent			Percent			
	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>	Number of	<u>Reporting</u>		
<u>Analyte</u>	Participants	<u>Results</u>	Participants	<u>Results</u>	Participants	<u>Results</u>		
THCV	54	67 %	62	66 %	19	47 %		
ГНСVА	36	58 %	38	58 %	19	16 %		

• Most laboratories reported using solvent extraction or sample dilution for determination of THCV and THCVA in the three hemp oil samples (see table below). Additional sample preparation details are summarized at the end of the report in Appendix I.

Percent]	<u>Reporting</u>
THCV	THCVA
69.9	72.9
26.2	25.4
0.0	0.0
1.9	1.7
1.9	0.0
	Percent 1 <u>THCV</u> 69.9 26.2 0.0 1.9 1.9

¹³ J McPartland, M Duncan, V Marzo, R Pertwee. *Br J Pharmacol.* 172: 737-753 (2015) https://doi.org/10.111/bph.12944.

• Most laboratories reported using LC-PDA or LC-UV for the determination of THCV and THCVA in the three hemp oil samples (see table below). Additional method details are summarized at the end of the report in Appendix I.

<u>Reported</u>	Percent R	Reporting
Analytical Method	THCV	<u>THCVA</u>
LC-PDA	65.0	61.0
LC-UV	27.2	33.9
LC-MS	1.0	1.7
LC-MS/MS	4.9	0.0
GC-FID	0.0	0.0
GC-MS	0.0	0.0
Other	1.9	3.4

Study Results

THCV

- No target means or ranges were provided in **Table 9-1** for THCV in the three hemp oils.
- The consensus means and ranges for THCV are summarized in Figure 9-1, Figure 9-2, and Figure 9-3 for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 9-2 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for THCV in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 9-4** for laboratories who reported results for both samples.

THCVA

- No target means or ranges were provided in **Table 9-1** for THCVA in the three hemp oils.
- The consensus means and ranges for THCVA are summarized in Figure 9-5, Figure 9-6, and Figure 9-7 for Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a, respectively. Data from participants submitting only one measurement were included in Table 9-3 but were not included in the calculation of consensus statistics.²
- A comparison of individual laboratory means for THCVA in Hemp Oil 1 and Hemp Oil 2 is summarized in **Figure 9-8** for laboratories who reported results for both samples.

Overall

• The between-laboratory variabilities for determination of THCV and THCVA in the hemp oil samples are shown in the table below.

	Between	-Laboratory Variability	<u>(% RSD)</u>
<u>Analyte</u>	<u>Hemp Oil 1</u>	<u>Hemp Oil 2</u>	<u>Hemp Oil 2a</u>
THCV	59.4	29.2	303.1
THCVA	133.0	83.8	NA

Study Discussion and Technical Recommendations

The following recommendations are based on results obtained from the participants in this study.

THCV

- Approximately 20 % of the laboratories reporting results for THCV provided values outside the consensus ranges for both Hemp Oil 1 and Hemp Oil 2 (Figure 9-4).
 - Laboratories reporting results above the consensus mean in Hemp Oil 1 also reported results above the consensus mean for Hemp Oil 2. Trends of this type often indicate a calibration bias.
- Most laboratories reported that THCV was present in the samples at or below their LOQ (nonzero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (29 % to 303 %).
 - Approximately 6 % of the laboratories reporting results used LC-MS or LC-MS/MS methods with some having low enough LOQs to determine THCV at the consensus level in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 92 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 31 % and 26 % of these laboratories with low enough LOQs to determine THCV at the consensus levels in Hemp Oil 1 and Hemp Oil 2, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for THCV in the three hemp oil samples.

THCVA

- Most laboratories reported that THCVA was present in the samples at or below their LOQ (non-zero values). The low levels resulted in large consensus ranges and between-laboratory variabilities (84 % to 133 %).
 - Approximately 2 % of the laboratories reporting results used LC-MS or LC-MS/MS methods with none having low enough LOQs to determine THCVA at the consensus levels in Hemp Oil 1, Hemp Oil 2, and Hemp Oil 2a.
 - Approximately 95 % of the laboratories reporting results used LC-UV or LC-PDA methods with only 5 % and 9 % of these laboratories with low enough LOQs to determine THCVA at the consensus levels in Hemp Oil 1 and Hemp Oil 2, respectively.
- No additional trends were observed for the sample preparation, analytical methods, and/or analytical parameters reported for THCVA in the three hemp oil samples.

Overall

- Proper storage conditions are important for hemp oils because THCVA can readily convert to THCV when stored at elevated or room temperatures.
 - Participants were asked to store the samples under controlled refrigeration (\approx 4 °C).
 - Laboratories should perform in-house evaluations of their storage conditions through stability test of their hemp oils at various environmental factors such as temperature, humidity, and light exposure.⁵
- Over 100 cannabinoids have been identified in *Cannabis* plant samples with similarities in structure and molecular mass. As a result, chromatographic peak identity should always be confirmed using appropriate reference spectra of pure standards for cannabinoids and is particularly important for cannabinoids that are present at levels close to the method LOQ. Analytical methods should be able to clearly distinguish between cannabinoids.

- The use of appropriate calibration materials and quality assurance samples to establish that a method is in control and being performed correctly may reduce the likelihood of outlying data. Quality assurance samples can be commercially available reference materials (CRMs, SRMs, or RMs) or materials prepared in-house.
- Measurement results should be reported accurately.
 - Reported values should be the mass fraction (%) of the THCV and THCVA in the three hemp oil samples. Participants who reported values based on a volume fraction (%) for Hemp Oil 2 or Hemp Oil 2a should use the density of the sample for the conversion to mass fraction. Hemp Oil 1 was too viscous to prepare dilutions by volume.
 - Zero is not a quantity that can be measured. If values are below LOQ, results should be reported as such. A more appropriate result would be to report that a value is below the LOQ (e.g., "< 0.02").
 - Laboratories reporting results based on a certain threshold should enter the numerical threshold (e.g., "< 1").
 - Laboratories reporting results flagged as outliers should check for calculation errors when preliminary data tables are sent for inspection. One example is to confirm that factors for all dilutions have been properly tabulated or that results are reported in the requested units.

Table 9-1. Individualized data summary table (NIST) for THCV and THCVA in hemp oils.

National Institute of Standards and Technology

				Canna	QAP Exer	cise 1 - Fall 2	2020							
	Lab Code	: NIST	_		1. Yo	ur Results			2.	Community R		3. Target		
Analyte	Sample	Units		Xi	Si	Z' _{comm}	Z _{nist}		N	x *	s*		X _{NIST}	U
Tetrahy drocannabivarin (THCV)	Hemp Oil 1	mass %	-						14	0.0035	0.0021			
Tetrahydrocannabivarin (THCV)	Hemp Oil 2	mass %							19	0.0133	0.0039			
Tetrahydrocannabivarin (THCV)	Hemp Oil 2a	mass %												
Tetrahydrocannabivarinic acid (THCVA)	Hemp Oil 1	mass %							5	0.0010	0.0013			
Tetrahydrocannabivarinic acid (THCVA)	Hemp Oil 2	mass %							7	0.0015	0.0013			
Tetrahydrocannabivarinic acid (THCVA)	Hemp Oil 2a	mass %	_											
			x,	Mean of reported values			N	Number of quantitative				NIST-assess	ed value	
			s,	s Standard deviation of reported values					values rep	orted		U	expanded u	ıcertainty
		Z'a	0. m.m	Z'-score with respect to community			ty	x*	Robust m	ean of reported	l		about the NIST-assessed v	
				consensus					values					
		Z	UST	Z-score w	ith respect	to NIST valu	e	s*	Robust st	andard deviatio	n			

Table 9-2. Data summary table for THCV in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present"). Data highlighted in blue have been identified as outside the consensus tolerance limits and would be estimated to result in an unacceptable Z'_{comm} score, $|Z'_{comm}| \ge 2$. Note: This table spans two pages; the NIST values and consensus values are included on both pages for convenience.

		Tetrahydrocannabivarin (THCV)																
_			Hemp	o Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)		Hemp Oil 2a (mass %)						
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD		
	NIST																	
	A 002	< 0.0069	< 0.0069	< 0.0069	< 0.0069		< 0.0069	<0.0069	< 0.0069	<0.0069								
	A 003						<0.01	<0.01	<0.01	<0.01								
	A 005	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
	A 006	<0.001			<0.001		<0.001			<0.001								
	A 007																	
	A 008															_		
	A 009											< 0.00205	< 0.00205	< 0.00205	< 0.00205			
	A010															_		
	A012						0	0	0	0.0000	0.0000							
	A013															_		
	A014	< 0.09			< 0.09		< 0.09			< 0.09								
	AUIS																	
	A016	0.01			0.0100		0.04			0.0400								
	A017	0.01			0.0100		0.04			0.0400								
	A018	-0.00			-0.00					-0.00								
- fi	A019	~0.09			×0.09		×0.09			×0.09								
5	A 020											10.05	-0.05	-0.05	-0.05			
- 2	A021											<0.05	<0.05	<0.05	<0.05			
- P	A 022						0	0	0	0.0000	0.0000							
4	A023						0	0	0	0.0000	0.0000	<0.01	<0.01	<0.01	<0.01			
Ă	A 024											<0.01	<0.01	<0.01	<0.01			
	A025											< 0.0057	< 0.0057	< 0.0057	< 0.0057			
	A 021											~ 0.0037	< 0.0037	< 0.0037	~ 0.0037			
	A 025	0.00622			0.0062		0.0125	0.0115	0.0124	0.0128	0.0011							
	AGG	< 0.206	< 0.206	< 0.206	< 0.206		< 0.247	< 0.247	< 0.247	< 0.247	0.0011							
	A 038	<0.025	< 0.025	<0.025	<0.025		<0.0247	< 0.025	<0.0247	<0.0247								
- E	A (39	0.025	-0.025	-0.025	0.0000	0.0000	-0.025	-0.025	0.025	0.0000	0.0000							
	A 040	U	0	U	0.0000	0.0000	Ŭ	U	U I	0.0000	0.0000	ND	ND	ND				
- E	A 041	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000							
	A 043	0.009	0.006	0.009	0.0080	0.0017	0.011	0.011	0.011	0.0110	0.0000							
- E	A 044	0.000	0.000	0.007	0.0000	0.0017	0.011	0.011			0.0000							
	A 045																	
	A046	0	0	0	0 0000	0.0000	0	0	0	0 0000	0.0000							
	A 050	0.11	0 1 1 2	0 112	0 1113	0.0012	<0.01	< 0.01	<0.01	<0.01								
- E	A052							0.01										
	A 053		_					_										
- E	A055	0.0068	0.0056	0.0047	0.0057	0.0011	0	0	0	0.0000	0.0000							
~		Consensu	s Mean		0.0035		Consensu	s Mean		0.0133		Consensu	s Mean		0.0016			
번 문		Consensu	s Standard	Deviation	0.0021		Consensu	s Standard	Deviation	0.0039		Consensu	s Standard	Deviation	0.0049			
		Consensus Standard Deviation			4 0133		Maximum	1		8.4067		Maximum	ı I		0.0033			
8 Z		Minimum					Minimum					Minimum						
2 - 1		Minimum			0.0000		Minimum			0.0000		Minimum			0.0000			

		Tetrahydrocannabisarin (THCV)														
			Hen	p Oil 1 (ma	ss %)			Hemp	o Oil 2 (ma	ss %)			Hemp	155 %)		
	Lab	A	B	С	Avg	SD	A	B	С	Avg	SD	A	В	С	Avg	SD
	NIST															
	A057															
	A059	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A 060	3.99	4.02	4.03	4.0133	0.0208	8.39	8.36	8.47	8.4067	0.0569					
	A061	0.025	0.025	0.024	0.0247	0.0006	0.047	0.045	0.048	0.0467	0.0015					
	A062											< 0.01	< 0.01	< 0.01	< 0.01	
	A063						0.04136	0.03967	0.04099	0.0407	0.0009					
	A064															
	A066															
	A 068															
	A071															
	A072						0.12			0.1200						
	A073	0	0	0	0.0000	0.0000	0.012	0.011	0.012	0.0117	0.0006					
	A074	< 0.004	< 0.004	< 0.004	< 0.004		< 0.004	<0.004	< 0.004	< 0.004						
	A076			0.000019	0.0000											
	A077						ND	ND	ND							
	A082											0			0.0000	
	A 083	<0.25			<0.25		<0.25			<0.25						
	A084	< 0.017	< 0.017	< 0.017	< 0.017		< 0.017	< 0.017	< 0.017	< 0.017						
3	A085	< 0.025	< 0.025	< 0.025	<0.025		< 0.025	< 0.025	< 0.025	< 0.025						
Se l	A087															
	A088															
ŝ	A089	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01						
-te	A090											0.0031	0.0034	0.0033	0.0033	0.0002
1	A091															
	A 092															
	A093															
	A 095	< 0.0851	< 0.0851	<0.0851	< 0.0851		< 0.0851	< 0.0851	< 0.0851	< 0.0851						
	A096															
	A 098	< 0.0046			< 0.0046		< 0.0025			< 0.0025						
	A099	<0.017	<0.017	<0.017	<0.017		0.025	0.029	0.025	0.0263	0.0023					
	A100	< 0.0210	< 0.0210	< 0.0210	< 0.0210		< 0.0210	< 0.0210	< 0.0210	< 0.0210						
	A 101															
	A102	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02						
	A104	<0.037	<0.033	<0.042	<0.037		<0.033	<0.026	<0.034	<0.032						
	A 105	< 0.025	< 0.025	< 0.025	< 0.025		0.04	0.05	0.06	0.0500	0.0100					
	A107	0.125	0.0129	<0.01	0.0690	0.0793	0.0257	0.0255	0.0249	0.0254	0.0004					
	A 108															
	A109															
	A110	< 0.01	<0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01						
	A112	0.0021	0_002	0.0021	0.0021	0.0001	0.0052	0.0059	0.0056	0.0056	0.0004					
	A113	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A114															
	A115											< 0.01	< 0.01	< 0.01	< 0.01	
<u>a</u>		Consensu	s Mean		0.0035		Consensu	s Mean		0_0133		Consensu	s Mean		0.0016	
클푝		Consensu	s Standard	Deviation	0.0021		Consensu	s Standard	Deviation	0.0039		Consensu	is Standard (Deviation	0.0049	
븱딇ㅣ		Maximum	1		4.0133		Maximum	1		8.4067		Maximun	n		0.0033	
ខ័្ី		Minimum			0.0000		Minimum	i i		0.0000		Minimum	1		0.0000	
~		N			14		N			19		N 1				

Figure 9-1. THCV in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-2. THCV in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-3. THCV in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-4. Laboratory means for THCV in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

			Hemp	p Oil 1 (ma	ss %)			Hem	p Oil 2 (ma	ss %)	Hemp Oil 2a (mass %)					
	Lab	A	В	С	Avg	SD	A	В	С	Avg	SD	A	В	С	Avg	SD
	NIST			10.00.00	10.0050				-0.00.00	10.0050						
	A 002	<0.0062	<0.0062	< 0.0062	<0.0062	0.0000	<0.0062	<0.0062	< 0.0062	<0.0062	0.0000					
	A 009	v	Ū	Ū	0.0000	0.0000	v	U	U	0.0000	0.0000	< 0.00071	< 0.00071	< 0.00071	< 0.00071	
	A010															
	A014	<0.09			<0.09		< 0.09			<0.09						
	A015															
	A016 A017	<0.01			<0.01		<0.01			<0.01						
	A018	-0-01			-0.01		-0-01			-0.01						
	A019	<0.09			<0.09		<0.09			<0.09						
	A 020															
	A021															
	A 022						0	0	0	0.0000	0.0000					
	A 024						v	v	v	0.0000	0.0000					
	A025															
	A027											< 0.0057	< 0.0057	< 0.0057	< 0.0057	
	A031							0.00.404	0.00400							
	A 035	<0.0025	<0.075	<0.025	<0.0025		0.00413	0.00421	0.00408	0.0041	0.0001					
	A 040	<0.023	\0.02 3	\0.02 3	<0.023		~0.023	\0.02 3	\0.02 3	<0.023		ND	ND	ND		
	A043	0.005	0.005	0.005	0.0050	0_000	0.009	0.008	0.008	0.0083	0.0006					
	A044															
	A045															
2	A 046	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
esul	A052															
I R	A055	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
np	A057															
Alb.	A 062															
8	A 066															
	A 071															
	A072															
	A073	0	0	0	0.0000	0.0000	0	0	0	0.0000	0.0000					
	A074	<0.008	<0.008	<0.008	<0.008		<0.008	<0.008	<0.008	<0.008						_
	A076															
	A 082	<0.33			<0.33		<0.33			<0.33						
	A 084	< 0.0125	< 0.0125	< 0.0125	< 0.0125		< 0.0125	< 0.0125	< 0.0125	< 0.0125						
	A087															
	A089	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01						
	A 090															
	A 092															
	A 096															
	A 098	< 0.0046			< 0.0046		< 0.0025			< 0.0025						
	A099	<0.029	<0.029	<0.029	<0.029		<0.029	<0.029	<0.029	<0.029						
	A 100	<0.0210	< 0.0210	< 0.0210	< 0.0210		<0.0210	< 0.0210	< 0.0210	< 0.0210						
	A 101	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03						
	A 104	<0.037	<0.033	<0.042	<0.037		<0.037	<0.033	<0.042	<0.037						
	A 107	< 0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01						
	A 108															
	A 112															
	A 115															
è		Consensu	s Mean		0_0010		Consensu	s Mean		0.0015		Consensu	s Mean			
tan sa		Consensu	s Standard	Deviation	0.0013		Consensu	s Standard	Deviation	0.0013		Consensu	s Standard	Deviation		
E R		Maximum	L .		0.0050		Maximum	L I		0.0083		Maximum	1			
ວິ 📕		N			0.0000		N			0.0000		N				

Table 9-3. Data summary table for THCVA in hemp oils. Data highlighted in red have been flagged as a data entry of zero or results that include text (e.g., "< LOQ" or "present").

Figure 9-5. THCVA in Hemp Oil 1 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-6. THCVA in Hemp Oil 2 (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The solid blue line represents the consensus mean, and the green shaded region represents the 95 % confidence interval for the consensus mean. The solid red line represents the upper consensus range of tolerance, calculated as the values above the consensus mean that results in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$, with the lower limit set at zero. A NIST value has not been determined in this material. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-7. THCVA in Hemp Oil 2a (data summary view – analytical method). In this view, individual laboratory data are plotted (circles) with the individual laboratory standard deviation (rectangle). The color of the data point represents the analytical method employed. The downward triangle represents data reported as a threshold or LOQ value.

Figure 9-8. Laboratory means for THCVA in Hemp Oil 1 and Hemp Oil 2 (sample/sample comparison view). In this view, the individual laboratory mean for one sample (Hemp Oil 1) is compared to the individual laboratory mean for a second sample (Hemp Oil 2). The dotted blue box represents the consensus range of tolerance for Hemp Oil 1 (x-axis) and Hemp Oil 2 (y-axis), calculated as the values above and below the consensus means that result in an acceptable Z'_{comm} score, $|Z'_{comm}| \le 2$.

Appendix I – Method Questionnaire Responses

A002	A013	A028	A046	A060	A083	A100
A005	A015	A031	A050	A062	A085	A102
A007	A020	A033	A052	A063	A088	A104
A008	A021	A038	A054	A071	A089	A111
A009	A024	A039	A055	A072	A092	A114
A012	A026	A041	A059	A081	A093	

41 laboratories completed the method questionnaire.

Sample Preparation

All laboratories that tested both samples (Hemp Oil 1 and Hemp Oil 2) reported using the same sample preparation approach for both samples.

	Dilution with alco	ohol (ethanol, me	ethanol, etc.) (82	2%)	Dilution with other solvent (hexane, DMSO, etc.) (15%)	Dilution with multiple solvent types (3%)
A002	A026	A052	A071	A093	A005	A072
A007	A028	A054	A081	A100	A008	
A009	A033	A055	A083	A102	A015	
A012	A038	A059	A085	A104	A020	
A013	A041	A060	A088	A111	A031	
A021	A046	A062	A089	A114	A039	
A024	A050	A063	A092			

General Analytical Methods

All laboratories that tested both samples (Hemp Oil 1 and Hemp Oil 2) reported using the same analytical methods for both samples.

	LC-P	DA or LC-UV	(93%)		LC-MS or LC-MS/MS (5%)	GC-MS
A002	A020	A050	A071	A092	A021	A026
A005	A024	A052	A072	A093	A039	
A007	A028	A054	A081	A100		
A008	A031	A055	A083	A102		
A009	A033	A059	A085	A104		
A012	A038	A060	A088	A111		
A013	A041	A062	A089	A114		
A015	A046	A063				

LC-PDA and LC-UV Method Information

Injection Conditions

Type of Wash Solvent *of the 20 participants reporting use of a solvent wash

No Wash (17 %)	A009	A054	A063	A088					
ACN (8 %)	A038	A100							
ACN/IPA (4 %)	A031								
ACN/IPA/H2O (4 %)	A050								
IPA (8 %)	A114	A072							
IPA/H ₂ O (4 %)	A055								
Methanol (13 %)	A005	A024	A081						
Water (4 %)	A041								
Unspecified Solvent (54 %)	A033	A052	A059	A104	A015	A060	A093	A102	A092

Column Type All laboratories reported using a C₁₈ column.

Cortecs Shield RP18 (3 %)	A028						
Phenomenex Aqua 5u C18 (3 %)	A071						
Phenomenex Luna Omega 1.6um polar C18 (3 %)	A033						
Shimadzu NexLeaf CBX (8 %)	A012	A062	A111				
Agilent InfinityLab Poroshell 120 EC-C18 (13 %)	A054	A063	A081	A102	A013		
Restek Raptor ARC-18 (34 %)	A007	A038	A052	A055	A088	A093	A104
	A085	A031	A041	A089	A009	A015	
Unspecified C18 Column (37 %)	A020	A002	A046	A092	A024	A100	A114
	A050	A083	A008	A072	A005	A059	A060

Column Temperature

26 °C (3 %)	A020									
30 °C (26 %)	A002	A007	A038	A046	A052	A055	A088	A092	A093	A104
35 °C (13 %)	A012	A024	A062	A100	A114					
37 °C (3 %)	A085									
40 °C (24 %)	A028	A031	A033	A041	A050	A071	A083	A089	A111	
50 °C (18 %)	A008	A009	A015	A054	A063	A081	A102			
60 °C (3 %)	A072									
Unspecified Temperature (11 %)	A005	A013	A059	A060						

Mobile Phase

Isocratic Separation (29 %)	A007	A008	A009	A012	A013	A015	A020	A024	A028	A038
	A046	A050	A052	A054	A059	A060	A062	A063	A071	A072
	A081	A092	A100	A102	A114					
Gradient Separation (66 %)	A002	A033	A041	A055	A083	A085	A088	A089	A093	A104
	A111									
Unspecified Separation Type (5 %)	A005	A031								

Water/ACN (61 %)	A002	A012	A024	A028	A033	A038	A041	A046	A050	A052
	A060	A083	A085	A088	A089	A092	A093	A100	A104	A111
	A114									
Water/MeOH (29 %)	A008	A009	A013	A020	A054	A059	A063	A071	A072	A081
	A102									
THF (8 %)	A031									
Unspecified Solvent (8 %)	A005	A015	A062							

_

Modifiers

A009	A028	A031	A033	A038	A041	A046	A050	A052
A055	A059	A063	A072	A081	A083	A085	A088	A092
A104	A114							
A060	A071	A100	A111					
A012	A013	A020	A089					
A015	A024	A062	A102					
	A009 A055 A104 A060 A012 A015	A009A028A055A059A104A114A060A071A012A013A015A024	A009A028A031A055A059A063A104A114-A060A071A100A012A013A020A015A024A062	A009A028A031A033A055A059A063A072A104A114	A009 A028 A031 A033 A038 A055 A059 A063 A072 A081 A104 A114 A060 A071 A100 A111 A012 A013 A020 A089 A015 A024 A062 A102	A009 A028 A031 A033 A038 A041 A055 A059 A063 A072 A081 A083 A104 A114 A081 A083 A060 A071 A100 A111 A0612 A013 A020 A089 A015 A024 A062 A102	A009 A028 A031 A033 A038 A041 A046 A055 A059 A063 A072 A081 A083 A085 A104 A114 A083 A085 A060 A071 A100 A111	A009 A028 A031 A033 A038 A041 A046 A050 A055 A059 A063 A072 A081 A083 A085 A088 A104 A114 A081 A083 A085 A088 A104 A114 A083 A085 A088 A088 A084 A085 A088 A085 A088 A085 A088

Detector Wavelength

*note some laboratories reported using multiple distinct wavelengths (up to 4)

210 nm (4 %)	A085	A089								
220 nm (16 %)	A002	A007	A012	A015	A024	A041	A100	A111		
222 nm (2 %)	A085									
225 nm (4 %)	A050	A072								
228 nm (28 %)	A028	A033	A041	A046	A052	A054	A055	A063	A083	A088
	A092	A093	A104	A114						
229 nm (4 %)	A005	A008								
230 nm (6%)	A013	A020	A081							
254 nm (4 %)	A052	A088								
258 nm (16 %)	A020									
269 nm (2 %)	A005									
270 nm (4 %)	A020	A081								
272 nm (28 %)	A008	A088								
274 nm (4 %)	A041									
278 nm (16 %)	A020									
284 nm (2 %)	A009									
Wavelength Range (4 %)	A038	A062								
Unspecified Wavelength (10 %)	A031	A059	A060	A071	A102					

Detector Type

PDA (84 %)	A085	A002	A012	A015	A024	A041	A100	A050	A072	A028
	A033	A046	A052	A054	A055	A063	A088	A092	A104	A114
	A005	A013	A020	A081	A008	A009	A038	A062	A031	A059
	A071	A102								
VWD (11 %)	A089	A007	A111	A060						
Unspecified Modifier (5 %)	A083	A093								

Calibration Type

External Standard (50 %)	A002	A008	A013	A020	A028	A033	A038	A050	A055	A059
	A060	A062	A071	A072	A088	A089	A093	A100	A104	
Internal Standard (4 %)	A009	A046	A052	A114						
Unspecified Approach (39 %)	A005	A007	A012	A015	A024	A031	A041	A054	A063	A081
	A083	A085	A092	A102	A111					

_

Source of Calibrants

*note that some laboratories reported use of standards from multiple providers

Cerilliant (36 %)	A005	A008	A009	A015	A031	A033	A038	A041	A046	A052
	A054	A055	A071	A081	A083	A100	A102	A104		
Absolute Standards (2 %)	A028									
Cayman (14 %)	A007	A038	A062	A063	A081	A088	A111			
Dr. Ehrenstorfer (2 %)	A054									
Lipomed (2 %)	A102									
Millipore Sigma (2 %)	A009									
Restek (12 %)	A005	A038	A041	A072	A081	A085				
Shimadzu (6 %)	A012	A062	A100							
SPEX Certiprep (2 %)	A009									
Unspecified Approach (22 %)	A002	A013	A020	A024	A050	A059	A060	A089	A092	A093
	A114									