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Abstract

In this paper, we make the case that interpretability and explainability are distinct require-
ments for machine learning systems. To make this case, we provide an overview of the
literature in experimental psychology pertaining to interpretation (especially of numerical
stimuli) and comprehension. We find that interpretation refers to the ability to contextualize
a model’s output in a manner that relates it to the system’s designed functional purpose, and
the goals, values, and preferences of end users. In contrast, explanation refers to the ability
to accurately describe the mechanism, or implementation, that led to an algorithm’s output,
often so that the algorithm can be improved in some way. Beyond these definitions, our
review shows that humans differ from one another in systematic ways, that affect the extent
to which they prefer to make decisions based on detailed explanations versus less precise
interpretations. These individual differences, such as personality traits and skills, are asso-
ciated with their abilities to derive meaningful interpretations from precise explanations of
model output. This implies that system output should be tailored to different types of users.
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1. Introduction

This paper draws upon literature in computer science, systems engineering, and experi-
mental psychology to better define the concepts of interpretability and explainability for
complex engineered systems. Our specific focus is on systems enabled by artificial intelli-
gence and machine learning (AI/ML).

1.1 Why Define Interpretability and Explainability?

We focus on these terms because of their recent importance to the uptake of machine learn-
ing algorithms, as indicated by several recent laws that require algorithmic output to pro-
vide explanations or interpretations to users, who may differ significantly from one another
in terms of their goals, education, or personality traits. For example, the Equal Credit
Opportunity Act (ECOA)

...reflect[s] Congress’s determination that consumers and businesses applying
for credit should receive notice of the reasons a creditor took adverse action on
the application or on an existing credit account...to help consumers and busi-
nesses by providing transparency to the credit underwriting process and pro-
tecting against potential credit discrimination by requiring creditors to explain
the reasons adverse action was taken. [Ammermann] (emphasis added)

The implementation of ECOA in Regulation B further specifies that “A creditor must
disclose the principal reasons for denying an application or taking other adverse action...and
accurately describe the factors actually considered or scored by a creditor.” [Com]

Additionally, the European Union’s General Data Protection Regulation (GDPR) re-
quires that AI systems provide human subjects about whom data are being gathered the
right “...to obtain an explanation of the decision reached after such assessment and to
challenge the decision.” [111]1, with similar language reflected in France’s Loi pour une
République numérique [43] and ongoing debate about adopting similar regulations in the
United States in the wake of California’s adoption of the California Consumer Privacy
Act of 2018 and its recently adopted amendment – the California Privacy Rights Act of
November, 2020.

In parallel with attempts to address the societal concerns that drove the adoption of
this legislation, major government investments (e.g., DARPA’s eXplainable Artificial In-
telligence [XAI] program) and highly-cited literature (e.g., [6, 42, 74, 87, 94, 125]) have
attempted to define design requirements that engineers and computer scientists might adopt
in order to determine whether their systems are interpretable or explainable. For example,
Doshi-Velez and Kim [42] define model interpretability as a ML system possessing “the
ability to explain or to present [output] in understandable terms to a human.” Similarly,
Singh defines an explanation by a ML model as a “collection of visual and/or interactive
artifacts that provide a user with sufficient description of a model’s behavior to accurately

1Recital 71, EU GDPR, https://www.privacy-regulation.eu/en/r71.htm
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perform tasks like evaluation, trusting, predicting, or improving a model.” (Singh, as cited
in [61]). Gilpin et al. [54] posit that a good explanation occurs when modelers or con-
sumers “can no longer keep asking why” in regards to some ML model behavior. Finally,
Rudin [128] defines an interpretable machine learning model as one that is “constrained
in model form so that it is either useful to someone, or obeys structural knowledge of the
domain, such as monotonicity, causality, structural (generative) constraints, additivity, or
physical constraints that come from domain knowledge.” In contrast, she defines an ex-
plainable machine learning model as “a second (posthoc) model [that] is created to explain
the first black box model”.

Although these definitions identify interpretability and explainability as features of ma-
chine learning models, they point to important factors that are beyond the scope of tradi-
tional design: notions of simplicity, utility to the consumer, human comprehension, causal
inference, interaction with domain knowledge, content and context, and social evaluation
(such as trustworthiness).

These definitions, although localized to ML models, may be productively informed by
decades of literature in experimental psychology, which treats interpretability and explain-
ability as psychological constructs. The key insight of this literature is that interpretation
and explanation are distinct psychological processes, characterized by distinct mental rep-
resentations.2 The question of whether or not a result is interpretable or explainable de-
pends on the user. The designer must ask: “explainable or interpretable for whom?” (e.g.
[136]).

1.2 Proposed Definitions of Interpretability and Explainability

Although the terms interpretability and explainability are frequently used interchangeably,
especially in the computer science literature [6], this paper’s fundamental argument is that
interpretability and explainability are distinct concepts.

Interpretation refers to a human’s ability to make sense, or derive meaning, from a
given stimulus [71] (e.g., a machine learning model’s output) so that the human can make
a decision. Interpretations are simple, yet meaningful, “gist” mental representations that
contextualize a stimulus and leverage a human’s background knowledge (see Figure 1).
A gist is a simple, yet productive, representation of a stimulus that nevertheless captures
essential, or meaningful, distinctions that human users need to make informed, insightful
decisions. Thus, an interpretable model should provide users with a description of what
a stimulus, such as a datapoint or model output, means in context. In so doing, it enables
that human to achieve insight by cuing values, goals, and principles which, in turn, enable
high-level decision making.

Whereas humans rely on simple, imprecise gists to make decisions, machine learning
models rely on programmatic verbatim processes to generate predictions. Explanations are
relatively detailed mental representations that seek to describe the mechanisms underly-

2A mental representation of a stimulus (e.g., data or model output) is a symbolic image of that stimulus in a
human’s mind.
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Fig. 1. Diagram of the interaction between a machine learning model and human cognition. For
example, the initial training dataset may contain records of the hourly rainfall at a nearby beach.
This trained model is then used to generate predictions from new evaluation data, such as a
probability distribution over the amount of rain that a beachgoer might expect in a given hour.
These predictions and other model output are then provided to the human as a stimulus. The
human encodes the stimulus into multiple mental representations. The verbatim representation, is a
detailed symbolic representation of the stimulus such as a graphical representation of the
probability distribution over rainfall amounts per hour. In parallel, humans employ their
background knowledge to encode a meaningful gist interpretation from the stimulus. For example,
a simple categorical gist might be the distinction between “essentially no chance of rain” vs. “some
chance of rain”. Additionally, humans with appropriate expertise might be able to examine the
form of the model to determine how it arrived at its conclusion. For example, a meteorologist with
domain expertise might be able to examine the coefficients of a model’s time series equations and
recognize it as an indication of an incoming cold front. A human would then make a decision (e.g.,
whether or not to go to the beach) based on a combination of these representations. For example, a
human without technical expertise might look at the stimulus and determine that the probability of
rain is essentially nil, leading them to go to the beach (since the beach with no rain is fun, and the
beach with some rain is not fun, and having fun is good). On the other hand, a human with
meteorology expertise and data science expertise might recognize the signs of an oncoming cold
front and realize that rain is a non-negligible possibility, leading them to choose another activity.3
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ing these verbatim processes: an explanation of a model result is a description of how a
model’s outcome came to be. Explanations thus seek to describe the process, or rules, that
were implemented to achieve an outcome independent of context. Typically, explanations
are detailed, technical, and may be causative. For example, an explanation may be a pro-
cedure outlining how a model achieved its result. Thus, explanations are typically more
appropriate for technical practitioners, who can rely on extensive background knowledge
to enable debugging tasks.

Although they are not necessarily verbatim processes themselves, explanations are, in
this way, closer to verbatim mental representations than interpretations are. Whereas an
interpretation seeks to make sense of a stimulus presented to a human subject, an expla-
nation seeks to describe the process that generated an output.3 Thus, an explanation of an
algorithm’s output is justified relative to an implementation, or technical process, that was
used to generate a specific output. In contrast, an interpretation is justified relative to the
functional purpose of the algorithm.

Explanations of ML algorithms can provide implementation details for how the algo-
rithm carries out a known set of requirements. In contrast, interpretations justify these
implementations in terms of the system’s functional purpose. For example, the purpose of
a Support Vector Machine classifier is to map datapoints into discrete classes, a task that
must be justified in terms of the utility of the classification to a human decision-maker such
as if this classifier is used to assign job applicants’ resumes into merit-based categories dur-
ing an interview process. The quality of the classification would then be evaluated relative
to the requirements of this interview process – a classifier that is biased (e.g., that makes
classifications based upon categories that are not merit-based, such as age, race, ethnicity,
etc.) or that has a high error rate would be considered a poor classifier because it does not
meet its functional purpose. In contrast, the explanation for why a particular classification
decision was made is typically justified relative to its implementation. For example, when
asking how a particular job candidate was classified as “not eligible”, one must seek an
explanation in terms of the algorithm’s details, such as that the algorithm selected a set of
candidates’ profiles as “minimally acceptable” – i.e., they were support vectors – based on
training data, and that this particular candidate’s qualifications were, on the whole, inferior
to those reference candidates. An even more detailed explanation would entail examining
specific mathematical parameter values, such as the algorithm’s regularization weights, to
understand how specific attributes were combined and how support vectors were chosen.

In this paper, we make the case that explanations and interpretations are distinct mental
representations that are encoded simultaneously, and in parallel, in the minds of the sys-
tem’s users. Furthermore, users differ from one another in the degree to which they are
willing and able to utilize their own background knowledge to interpret detailed technical
information. In effect, interpretable systems should provide no more detail than necessary
to make a consequential decision, with the information provided justified relative to sys-

3Consider a car with a “check engine” light that is illuminated. An explanation might indicate that the check
engine light turned on because the car’s internal programming detected fuel flow irregularities. However,
the interpretation for the driver is that the car needs to be taken to a mechanic for further evaluation.

4

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8367



tem’s functional purpose. In contrast, explainable systems provide detailed mechanisms
underlying how a certain implementation generated a certain output, regardless of what
that output means to the decision-maker. An explanation seeks to replicate the decision in
a more detailed manner, whereas an interpretation seeks to communicate the bottom line
meaning.

The above definitions suggest that the efficacy of interpretations and explanations may
differ between individuals, and indeed, we will review literature showing that they do so
in systematic ways. That is, the audiences for these different types of outputs are likely to
differ, such that developers who lack domain knowledge would be able to use a detailed
mechanistic explanation to ensure that their design meets a specific functional requirement
(e.g., a certain accuracy target), but may not understand the implications of this requirement
for human users. In contrast, users who lack machine learning expertise but possess domain
knowledge would likely find these detailed mechanistic explanations confusing, instead
preferring a simple description of model output in terms of constructs with which they
are familiar. Finally, a developer with domain knowledge can often bring this combined
expertise to bear to make sense of a detailed mechanistic explanation in terms of its ultimate
use case, thus ensuring that the algorithm moves beyond the rote requirements to best
address the user’s needs.

Disentangling explainability – whether one can describe the mechanistic description of
how a system made a specific prediction – from interpretability – whether a human can
derive meaning from a system’s output for a specific use case – may form the basis for ro-
bust and reliable standards for explainable and interpretable ML system design, and should
allow the development of standards that isolate technical design features from specific sys-
tem functional requirements. This, in turn, should allow developers to segment the design
process, such that system requirements may be defined at the appropriate level of abstrac-
tion. Additionally, we expect that better definitions of these terms will allow the ultimate
development of metrics to assure compliance with these standards, thus enabling the cre-
ation of coherent regulatory policies for artificial intelligence that promote innovation while
building public trust.

1.2.1 Illustrative Example: Rental Applications

Applications of machine learning for property rental have recently received negative at-
tention given concerns about potentially discriminatory incidents4 and potential violations
of data privacy5. Under these circumstances, algorithmic interpretability may be an en-
abler of transparency, helping users better understand why a given decision was made.

4For example, the Landlord Tech Watch website reports on the technologies and
data sources that landlords may use to deny applicants access to affordable housing:
https://antievictionmappingproject.github.io/landlordtech

5For example, the “Locked Out” series reports on incidents of loan and rental applications that were
denied because of improper data cleaning, recording, transportation, etc., and the difficulties that
some renters applicants face in correcting these errors and, consequently, their personal records:
https://themarkup.org/series/locked-out
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For example, consider an algorithm that recommends rejection of a rental applicant. The
algorithm would make this determination based on a family of mathematical models fit
to training data, followed by evaluation of a model output generated from an additional
held-out datapoint that represents the applicant’s case. An interpretation of the algorithm’s
recommendation would contextualize the datapoint representing the applicant. A human
would use their background knowledge to generate this context. For example, a human as-
sessor might conclude that the applicant was a risk, based on the absence of the applicant’s
rental history. In contrast, a machine learning model would use a combination of training
data and the model selected by the machine learning algorithm (including any associated
sources of bias). Here, the algorithm might associate length of rental history with success,
and therefore also categorize the applicant with a short history represents a financial risk.
As will be discussed below, human interpretations differ from algorithmic ones in that the
former are flexible whereas the latter tend to be brittle. Importantly, both interpretations
are justified relative to a higher-level construct – a “rental history” – that contextualizes
the decision relative to domain knowledge. Furthermore, this output provides the user with
actionable insight. The solution to the problem is not to change the algorithm’s implemen-
tation, but rather for the applicant to establish a rental history. In order to understand the
meaning of this output, the applicant does not need to have any experience in AI or ML;
rather, they must possess sufficient domain expertise to understand why rental histories
are important indicators of approvals (we will discuss how interpretability may vary with
domain expertise in section 2.3).

In contrast, an explanation of the same algorithm’s output would start with the obser-
vation that the applicant was rejected and then seek to answer the question of how that
decision came to be. For example, the explanation might specify that the algorithm was
trained using a logistic regression classifier with specific coefficient values. Given the ap-
plicant’s datapoint, one could then plug the values into the logistic regression equation,
generate the model’s probability of success for the applicant, and then observe that it is
below the decision threshold. This explanation would not necessarily highlight the specific
role of rental history, but a human analyst with access to this equation, and the expertise to
interpret it, might observe that the largest marginal contribution to the algorithm’s decision
is the rental history.6 Similarly, a human, asked to explain a rejection, might provide a
causal explanation (“Your application was rejected because you don’t have a rental history.
People without rental histories are higher risk because they don’t have any experience with
paying rent on time, and because we don’t have any evidence that they are responsible. As
a rule, we prefer to rent to people with a reliable record of payments”). However, as we
will discuss below, humans, and especially subject-matter experts, routinely violate such
causal rules when making judgments. Arguably, this is because they are able to recognize
necessary exceptions through the application of educated intuition (however, these same
processes may also be a source of systematic bias if the underlying intuition is uneducated
or otherwise inapplicable).

6Importantly, many modern machine learning algorithms, and especially deep neural networks, are not as
easily analyzed by humans.
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1.2.2 Illustrative Example: Medical Diagnosis

Like rental applications, medical diagnosis is a field about which concerns regarding al-
gorithmic discrimination have been levied, necessitating transparency and, consequently
interpretable AI.7 Consider an AI system designed to make recommendations on antibiotic
prescription for upper respiratory tract infections. For simplicity, we will again assume
that this model is implemented using a logistic regression classifier with two classes cor-
responding to recommendations for, and against, antibiotic prescription. Finally, given the
data reported to the system, suppose that the model has determined that the probability
that a patient has a bacterial illness is 5%-10% [Cen]. The system would then provide the
prescribing physician with a stimulus – the recommendation not to prescribe.

An explanation of this recommendation would reference the model’s implementation.
For example, the system might list the coefficients of the logistic regression model and
the values of all of the model’s variables (whether the patient has a sore throat, pain when
swallowing, fever, red and swollen tonsils with white patches or streaks of pus, tiny red
spots on the roof of the mouth, swollen lymph nodes in the front of the neck, cough, runny
nose, hoarseness, or conjunctivitis [Wor]). Given these coefficients, the system might fur-
ther explain that, when one multiplies the coefficients by the variable values, and then sums
the result, the combined probability that the illness is bacterial is 5%-10%, indicating “No
further testing nor antibiotics” [Wor]. This is where the explanation would stop.8

In contrast, an interpretation of the system’s recommendation would reference simple,
categorical representations of the relative risk and then link these to values. For example,
the following values could apply: when the patient is sick getting better is good, whereas
the staying sick is bad. Additionally uncomfortable side effects are bad (they will make the
patient feel worse) and no side effects are good. Finally, unnecessary prescription promotes
antibiotic resistance, potentially harming others (bad), whereas not prescribing has no ef-
fect on others. Given these values, the system would state: 1) the likelihood antibiotics
would help is virtually nil; 2) antibiotics, if prescribed, could lead to uncomfortable side
effects; 3) using antibiotics when they are not necessary could harm others [23, 24, 72],
indicating “No further testing nor antibiotics”.

Despite these recommendations, there are several reasons why an expert physician
might prescribe antibiotics under these circumstances. For example, the expert might rec-
ognize that a patient is especially susceptible to bacterial infection, or might simply make
the gist-based strategic choice that “it’s better to be safe than sorry” [23].

7For example, a recent report [132] indicates how an attempt to adjust a statistical model to account for racial
disparities in training data may have led to under-treatment for African-American patients needing kidney
transplants.

8In practice an expert physician would probably not rely on rote output from this system, instead perhaps
acknowledging that patient followup is needed if the symptoms don’t clear up, since there is a possibility
that the illness could be bacterial. Depending on the specific circumstances and context, this possibility
could even lead the physician to prescribe “just in case” [24].

7

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8367



1.3 Historical context

Although interest in explainable artificial intelligence (AI) dates back to the development of
expert systems in the 1980s [33, 56], explainability has recently reemerged as a desideratum
for modern complex AI/ML systems. This is, in large part, due to the proliferation of such
systems throughout society and because of the increasingly complex, and computationally
intensive algorithms – sometimes trained on terabytes of data – that are being deployed to
solve real-world problems.

This development is not unique to AI; rather it is the consequence of an increasingly
complex infusion of technology into all aspects of society. Although our focus here is
restricted to computational, and especially machine learning, technologies, these develop-
ments are part of a larger trend that extends throughout all areas of technology. 9 Pervasive
embedded computation has accelerated this trend. It is rare to find a piece of technology
that doesn’t have some kind of computational component – from learning thermostats to
credit score adjudications to visa applications. These technologies also require several dif-
ferent types of expertise to regulate appropriately. First, technical expertise is required to
understand how these technologies operate and, because the technologies are so complex,
this expertise is restricted to a relatively small number of people, whereas the number of
people whose lives are directly impacted has grown significantly. However, many types of
expertise are relevant. For example, evaluating the legal consequences of AI/ML technolo-
gies requires in-depth familiarity with relevant areas of law. Similar concerns may apply to
financial credit assessment, job application review, issues of political and social equity, and
other ethical concerns. Thus, it is not sufficient to query the experts in a specific area. Ef-
fectively assessing, and thus regulating, interpretable and explainable AI systems requires
pooling expertise from across fields that have not traditionally interacted.

We can expect the pace of this trend towards increasingly complex systems to acceler-
ate. This evolution in major technological trends has been documented by the Engineer-
ing Systems movement. [39] Started in the early 2000s, this movement recognized that
technology and modern society are highly intertwined and that the pace of technological
and social change requires that the design of complex systems must adapt to account for
what these scholars have called the “ilities”.10 Explainability and interpretability are both
“ilities” and exhibit similar difficulties associated with their measurement. “Ilities” have
historically been subject to problems of both polysemy, meaning that the same terms are
frequently used to describe distinct concepts, and synonymy, meaning that different terms

9Consider automotive technologies: A mechanically-inclined person in the 1950s could often diagnose and
fix problems with their own automobiles. However, as these automotive systems increased in complexity,
professional expertise became increasingly necessary. By the early 2000s, with the rise of embedded com-
puting, specialized tools became necessary to even diagnose, let alone fix, problems. For example, a car’s
internal computer may trigger a check-engine light, but provide no additional information to the driver. Fur-
ther diagnosing this problem instead requires a specialized tool, which provides a diagnostic code that must
be interpreted by trained mechanics who specialize in that particular brand of automobile.

10So called because several of them end with the suffix “ility”. Key “ilities” include flexibility – the need for
a system to adapt to changes in its environment – survivability – the need for a system to continue operation
despite disruption, etc.
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sometimes refer to the same underlying construct [28]. Furthermore, these terms entail a
significant social component that cannot be disentangled from core values of users, design-
ers, and decision-makers. Finally, “ilities” have a strong policy component because they
cannot be studied in isolation from their effects on the public, and especially on vulnerable
populations. Thus, attempts to define explainability and interpretability in artificial intelli-
gence are comparable to challenges faced by scholars studying other complex engineered
systems [39], for which definitions of abstract, yet important, concepts such as flexibility,
resilience, etc., strongly depend on social evaluations. Two decades of research in this area
have discovered that these highly-abstract requirements may be difficult to measure in a
standard way because of their highly context-sensitive, socially-contingent nature. Never-
theless, their importance justifies the challenge of establishing standards that are flexible
enough to be responsive in different contexts.

2. The Psychology of Interpretability and Explainability

The definitions of interpretability and explainability proposed in this paper build upon
decades of empirical research in experimental psychology (see [115, 118] for reviews).
We draw upon this extensive literature to posit a distinction between interpretation – the
process of deriving meaning from a stimulus (such as a model’s output) – and explanation
– the process of generating a detailed description of how an outcome was reached (see [55]
for preliminary data supporting this claim). We argue that the relationship between human
decision making and algorithmic decision making is analogous to different levels of mental
representation. Human individual differences also consistently predict which human sub-
jects prefer to rely on these different representations when making consequential decisions,
especially about how to use numerical information [27].11

2.1 Interpretations Provide Meaning in Context

Interpretable machine learning is concerned with helping humans generate interpretations
of data and model output. Thus, we review literature in human psychology pertaining to
how humans derive interpretations from stimuli, and especially quantitative stimuli. A
leading theory in this area, Fuzzy-Trace Theory, posits that humans encode stimuli into
multiple mental representations simultaneously and in parallel [115] (see Figure 2). These
mental representations vary from one another in their level of precision, with humans pre-
ferring to rely on the least precise representation that still makes a meaningful distinction
when making a decision.

11For example, a recent preprint provides some preliminary data suggesting that one leading algorithm for
explainable AI [126] did not improve decision-makers’ objective accuracy – i.e., their ability to retrieve
the right (verbatim) number – whereas a more accurate AI system did. Similarly, a recent human subjects
experiment [107] shows that model transparency – i.e., a model with a small number of features – did not
improve humans’ prediction accuracy and may have actually impaired their ability to correct inaccurate
predictions due to information overload (see also [55]).
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Fig. 2. Multiple Levels of Mental Representation Encoded in Parallel.
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Table 1. Performance of three hypothetical models to detect online malicious behaviors.

Model Accuracy Precision Recall F1 Score
Naive Bayes 0.267 0.563 0.897 0.692
Support Vector Machine 0.732 1.000 0.716 0.834
k-Nearest-Neighbor 0.524 0.834 0.637 0.722
Logistic Regression 0.907 0.859 0.617 0.718

Humans tend to make decisions based on the simplest of these representations – the
gist interpretations of stimuli. Humans may encode multiple gists at varying levels of pre-
cision, forming a hierarchy of gists [27]. In contrast, algorithms follow only rote verbatim
processes when making predictions. Humans also encode verbatim mental representations,
which are simply detailed representations of the stimulus itself (e.g., raw system output).
These different levels of mental representation of a stimulus are encoded simultaneously
and in parallel [115]. Furthermore, these representations may compete with, or build upon
one another [22] when providing input into human decision-making.

2.1.1 Categorical Gists

Mental representations are hierarchical in nature, with humans preferring to make deci-
sions on the least precise, often categorical, representation of a stimulus. These categories
nevertheless make meaningful distinctions. For example, for numbers, these categorical
representations often take the form of simple contrasts such as between “some” and “none”
of a quantity. (The categorical distinction between “some” and “none” is one of the most
basic gists [22].) Under these circumstances, humans draw upon their prior knowledge
when making these determinations. For example, consider a set of machine learning mod-
els that are designed to detect malicious online behavior. A social media platform might use
this classifier to automatically remove accounts that seem to violate the platform’s Terms
of Service (see Table 1).

A computer scientist evaluating these classifiers may notice that the k-Nearest-Neighbor
(kNN) classifier has an accuracy of 52.4% on this binary classification task and determine
that it has “essentially no” predictive accuracy (where 50% is the performance of a random
coin flip). Notably, this assessment requires some background knowledge: 1) that there
are only two classes; 2) that the classes are balanced in the training set. In contrast, the
accuracy of the other two models would both be an improvement over that of the SVM.
Both would have “some” accuracy. In this case, it would rule out the kNN classifier. How-
ever, these gists are not just simple – they are also insightful. For example, the Naive Bayes
Classifier has an accuracy of 26.7% which, although the smallest value, should also be clas-
sified as having a gist of “some accuracy” since a computer scientist would recognize that,
for binary classifiers, an accuracy of 26.7% is equivalent to an accuracy of 73.3% if one
simply flips the class labels. In contrast, a novice applying verbatim rules would not share
this insight and might erroneously consider the Naive Bayes Classifier to be less predictive
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than the kNN classifier.
Humans, when deciding, must draw upon values [135] to determine which category, in

a binary pair, is better. Here, some accuracy is good and no accuracy is bad. These binary
valences are held in long-term memory [114] and constitute part of what the human brings
to the evaluation process.

2.1.2 Ordinal Gists

Several options can have the same gist. For example, all but the kNN classifier models
have “some” accuracy. Here, categorical gists do not make meaningful distinctions and
therefore cannot assist a decision. To distinguish between these classifiers, a more precise
level of mental representation can be used. The Logistic Regression classifier has “more
accuracy” than the other classifiers. “More” vs. “less” is an ordinal gist. However, this gist
is only helpful in selecting a model when there is a single evaluation metric. In practice,
ML models may be evaluated using several metrics. For example, the Naive Bayes model
has higher recall, but lower precision, whereas the Logistic Regression model has higher
precision but lower recall. Thus, these models cannot be ranked along these dimensions
using only an ordinal gist.

2.1.3 Precise Verbatim Representations

Typically, practitioners try to reduce these multiple metrics to a single metric for compar-
ison purposes. The process of deriving these composite, precise metrics requires rote ap-
plication of mathematical rules. For example, one may rely on a composite metric, such as
the F1-score (i.e., the harmonic mean of precision and recall). In this example, the Logistic
Regression and Naive Bayes classifiers have equal values of F1, which means humans (or
algorithms) relying on this verbatim rule would be indifferent between the two. In contrast,
the Support Vector Machine has the highest F1 score of the three models.

2.1.4 Moving Beyond Rote Optimization: Gists are Insightful

Does this mean that the Support Vector Machine is the best model? Although humans
encode multiple levels of representation in parallel, we prefer to make decisions based
on gists whenever possible. These gists are not arbitrary, but correspond to meaningful
distinctions. In the case of machine learning models, we use these models to achieve a
goal. In the example above, the classifier was used to identify malicious online behavior.
In the context of this task, it makes sense to favor precision over recall and accuracy since
the consequences of a false positive are significantly worse than those of a false negative. A
novice might blindly apply this rule and thus select the Support Vector Machine. However,
a human expert would not necessarily do so. Consider that the Support Vector Machine
has a precision of 1.000 – a “perfect score”. Although someone relying on the verbatim
representation – such as an inexperienced student – might judge this to be the best possible
precision score, an experienced modeler would recognize that such a high value could be an
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indicator of a problem in the algorithm’s implementation. For example, one might achieve
perfect precision if only a very small number of cases are being correctly classified. The
corresponding gist would be “too good to be true”. As described above, the kNN classifier
would be ruled out because it has a gist of no accuracy which, regardless of precision, is
problematic. Thus, the human expert might rely on an ordinal gist to choose the model
with “better” precision – the Logistic Regression model – because contextual cues indicate
that the other two models are inferior for the functional purpose – i.e., the goal – of the
machine learning task. Research based on Fuzzy-Trace Theory has shown that models
that emphasize the gist – such as by displaying output in ways that more readily allow
users to draw meaningful conclusions – inspire greater trust, confidence, and understanding
[37, 146? ]. This implies a clear design goal for ML system designers who are concerned
with interpretability – system output must communicate the gist.

2.2 Explanations Emphasize Implementation

One of the key tenets of Fuzzy-Trace Theory is that humans encode multiple mental rep-
resentations. Whereas interpretations are mental representations that communicate new
categorical insights, explanations are detailed mental representations that communicate
the implementation mechanisms that led to a particular output.

2.2.1 Causal Mental Models

Several theories of explanation emphasize the importance of inferring the “causal chain”
leading to a specific model’s output (for a review, see [94, 95])12. Lombrozo’s [86] review
of explanations in human cognition also indicates that causal structures are one enabler
of explainability 13 Following these traditions, the XAI literature has focused on causality
as the theoretical foundation of explanation. For example Hoffman & Klein [65] relate
explanation to causal inference, especially arguing that humans explain things by creating
prospective (i.e., predictive) causal explanations and highlighting a lacuna in the litera-
ture around this specific type of explanation, instead arguing that most prior work has fo-
cused on physical causality and retrospective causality. Hoffman et al., [66] describe prior
work extracting various different structures of causal chains pertaining to events around
the world, and Klein [74], further develops this theme by claiming that causal networks
can and should be the basis for communicating explanations. Finally, Hoffman et al. [64]

12Beyond the role of causality, these theories assert that explanations are “contrastive” (e.g., Why P rather
than Q?). As will be discussed in 2.3 some human subjects are more likely to carry out these contrastive
comparisons between successive stimuli. Beyond causal relationships, Miller also emphasizes that expla-
nations also entail social attributions [88].

13One of Lombrozo’s primary insights is that explanations are not exclusively causal, but rather that similarity
and diversity of stimuli can help subjects derive general principles that go beyond the surface forms of the
causal structures that one might infer. These general principles draw upon extensive prior knowledge that
make certain explanations more probable than others. This implies that attempts to define “explainability”
(here, understood as encompassing both explanation and interpretation) entirely based on causality (or
conversely, on counterfactual reasoning) may be missing an essential element – generalizability/gist.
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Fig. 3. Representational Hierarchy for a Text. By Original uploader was Aschoeke at
en.wikibooks. Later version(s) were uploaded by Asarwary at en.wikibooks. - Transferred from
en.wikibooks, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=5063569

emphasize the role of exploration in forming causal explanations, differentiating between
global and local explanations that accord with users’ mental models, and emphasizing lo-
cal explanations’ needs for contrastive or counterfactual accounts; implicitly putting causal
structures at the center of an explanation. According to these scholars, an explanation is,
at its core, a causal mental model.14

These claims are supported by extensive prior work in psycholinguistics and narrative
reasoning, especially in the legal domain. Several decades of prior work in psycholinguis-
tics have emphasized the role of causal structure building in generating a “situation model”
– i.e., a structured mental representation – of a given text (see Figure 3). By analogy, a
similar hierarchy may be constructed for ML model output (see Figure 4).

Causal relations are among the most important (although certainly not the only) types of
inferences that are extracted from narrative texts by readers seeking to comprehend a text.
Furthermore, studies in psycholinguistics have identified a narrative’s causal coherence as
a key factor driving a story’s comprehensibility [137, 143]. Although several dimensions
of narrative coherence have been identified [50, 110, 151], there is a consensus within
the literature that coherent narratives allow readers to construct causal situation models of
the events described [41, 51, 89, 138, 143]. By analogy, one might expect that system

14Notably, these authors identify several structures beyond causal chains, including abstractions, “swarm”,
etc., and relate these to different types of explanations, concluding that “The property of ’being an ex-
planation’ is not a property of statements: It is an interaction of statements with knowledge, context, and
intention.”
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Fig. 4. Representational Hierarchy for a Support Vector Machine.
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users seeking to understand or explain model output would be assisted by coherent causal
explanations that would explain how a system came to a certain conclusion.15

This interpretation of the literature is supported by an extensive body of work on mental
models, which studies how technical experts represent, and make decisions about, com-
plex systems. Although a full review of this literature is beyond the scope of this paper,
scholars agree that mental models “represent (perceived) cause-and-effect dynamics of a
phenomenon” [68], thus helping people to make predictions. Thus, literature that seeks to
derive causal descriptions of complex system operation is concordant with classical mental
model theories. Finally, these causal representations are also widely used in legal reason-
ing. For example, the “story model” of juror decisionmaking [103] generally assumes that
jurors jointly construct a causal story regarding the facts of a court case, and that these
causal stories are then matched to verdicts. Similar techniques for building “cognitive
maps” have been applied to fields as diverse as political science [10], and power plant de-
sign [99]. Thus, several domains have independently converged on the same conclusion –
that comprehension of mechanisms is facilitated by a structured causal model. However,
these domains also agree that applying these mechanisms to real-world problems must go
beyond causal reasoning. In the story model, jurors must match story structure to knowl-
edge about verdicts. In the mental model literature, Rasmussen’s [108] abstraction hierar-
chy has been widely applied to demonstrate the contingency of causal representations on
functional purpose. Finally, in the narrative comprehension literature, causal structures ex-
ist at multiple levels, with several substructures. Furthermore, the most meaningful levels
in these substructures interface with other narrative elements associated with preferences
(e.g., goals and characters) [58]. Importantly, in each of these cases, later research has
documented that causal explanations are interpreted before a decision is made. Beyond
Rasmussen’s abstraction hierarchy, which applies to causal mental models [99], scholars
of legal reasoning have found that amounts awarded as damages for legal verdicts depend
on categorical and ordinal contextual cues that allow jurors to compare amounts to a mean-
ingful reference point [63].

Thus, although one might think that a meaningful interpretation is a consequence of an
unambiguous or otherwise precise explanation, Fuzzy-trace theorists have shown that dif-
ferent mental representations are encoded in parallel. This means that a mental representa-
tion that provides an interpretation can be distinct from a mental representation providing
an explanation, and vice versa. As will be discussed in the next sections, the choice of
mental representation on which to rely is also a function of individual differences in skills
and personality traits.

2.3 Individual differences

Although one might think that a meaningful interpretation is a consequence of an unam-
biguous or otherwise precise explanation, Fuzzy-trace theorists have shown that different

15These structures, in turn, can facilitate extraction of gist of the story (see [25], for a review); however, the
causal structures are not, themselves, the gist.
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mental representations are encoded in parallel. Meaningful interpretations and mechanistic
explanations are often not derived from one another or from precise verbatim data. The
choice of mental representation on which a human relies is also a function of individual
differences in skills and personality traits.

Humans differ from one another in systematic ways. Some of these differences are
matters of skill. For example, a professional computer scientist with years of training is
endowed with a skillset that is quite different from that of a professional legal scholar.
Individuals with relevant skills may prefer to rely on more precise levels of mental repre-
sentation if they have the ability to process them. For example “numeracy” – mathematical
ability [44, 84, 104] – allows individuals to make sense of complex numeric data such as
percentages and fractions, such that they are less susceptible to statistical bias when making
decisions. Similarly, in a machine learning context, [67] found that users with computer
science backgrounds (and especially doctoral-level training) were more likely to agree that
the system was useful and trustworthy if they understood how the system worked (and vice
versa), and Linderholm et al. [85] found that more skilled readers, and those with more
relevant background knowledge, were better able to extract the gist from narratives with
poorly-defined causal structures. These interpretive processes are associated with domain
expertise [115] – a hallmark of gist processing [121].

Other differences are matters of personality traits. For example, some individuals pre-
fer to rely on their “gut feelings” – i.e., their intuitive judgments – when making a decision,
whereas others prefer to engage in extensive deliberation. The Cognitive Reflection Test
(CRT; [46]) is a measure of this trait (although it is also correlated with numeracy and in-
telligence [84, 104]), and researchers have found that individuals with high CRT are less
susceptible to decision biases that oppose intuitive to deliberative modes of thought (such
as the well-known “framing effect”; [141]). Similarly, the Need for Cognition (NFC) Scale
[31, 32] measures subjects’ preferences to exert mental effort. For example, [57] describes
evidence for a model of narrative comprehension in which multiple levels of mental rep-
resentation are encoded, with some readers preferring to use coherence-building strategies
relying on effortful “close-to-the-text” reading and those who utilize a more interpretive
strategy that is “farther” from the text. In the domain of decision-making under risky, re-
searchers have found that individuals possessing high NFC scores are more likely to answer
several risky choice framing problems consistently [38, 82], presumably because they ex-
ert effort to notice similarities or contradictions between different problems with similar
structure. This explanation of these findings is supported by evidence that within-subjects
comparisons between stimuli can lead subjects to censor gist-based responses when con-
tradictions are detected, thus encouraging subjects to focus on more detailed features [27].
Similarly, research has shown that some human subjects have difficulty making determina-
tions about whether models are ”fair” or ”just” – both categorical gists – in the abstract (i.e.,
absent important context), and instead compare those explanations to prior experience or to
a second system, enabling ordinal comparisons (”more fair/just” vs. ”less fair/just”) [12].
For this reason, Mittelstadt and colleagues [97] argue that models should be contrastive to
facilitate interpretability. However, these authors also take pains to emphasize that such
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contrastive explanations frequently miss important context – i.e., they spur reliance on de-
contextualized verbatim representations.

The above discussion implies that there is no single measure for interpretability or ex-
plainability that applies to all humans; however, there may be a measure that can be de-
fined relative to the expected distribution of skills and personality traits for each intended
audience. Future work should therefore focus on characterizing these factors within user
communities.

2.3.1 Experts prefer to rely on meaningful interpretations

Above, we stated that most individuals reason, recall, and prefer to rely on less precise
representations when making decisions [118]. This reliance on gist representation is a de-
velopmental feature of human cognition: compared to non-experts, experts are more likely
to rely on gist representations in their domains of expertise [7, 123, 124]. Fuzzy Trace
Theory [115] therefore distinguishes between rote knowledge – recall of verbatim facts or
associations – and insightful expertise. Compared to novices, experts are better able ex-
tract the essence, or most relevant information, and ignore less meaningful details [123].
Experts have therefore developed intuitive categorical representations of stimuli that are
simple, yet powerful, and enable them to make decisions. For example, NASA engineers
rely on categorical determinations of “costly” or “costless” when making determinations
about launching cargo missions [90], whereas expert physicians rely on categorical deter-
minations of risk – reflecting an intelligent strategic choice that takes the very low proba-
bility, but non-negligible possibility, that the patient may require antibiotic therapy – when
treating very sick patients who might require antibiotics [23, 24, 72].

2.4 Relationship of Fuzzy-Trace Theory to Prior Theories

Fuzzy-Trace Theory moves beyond alternative accounts that are found in the AI and psy-
chology literatures.

2.4.1 Schema Theories and Association Theories

Several prior theories may be categorized into two broad groups: schema theories and as-
sociation theories (e.g., [49, 133]). Schema theories posit that humans use higher-level data
structures – called “schemata” or “frames” – that impose “top-down” structure on memo-
ries and experiences, making sense of world stimuli, and thus imposing biases. In contrast,
association theories assume that meaning emerges “bottom-up” from frequently-observed
patterns that co-occur in the world. Rather than making sense of these co-occurrence pat-
terns, associationist theories posit that meaning is simply a function of statistical regularity.
As early as 1983, Alba and Hasher [8] found that human memory displayed characteris-
tics of both schematic and associationist theories. However, elements of both models were
also repeatedly falsified, meaning that neither schematic nor associationist theories could
account for all of the experimental findings (see [26, 115] for a more detailed exposition).
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Fuzzy-Trace Theory explains these contradictory findings with the core theoretical dis-
tinction between gist and verbatim mental representations, that are encoded distinctly, yet
in parallel (gist representations are not derived from verbatim representations). Although
humans prefer to rely on gists, they also encode, and can therefore recognize, verbatim
representations. In contrast, algorithms are verbatim by their very nature. Thus, humans
working together with ML algorithms may get the best of both worlds – applying gist-based
structured background knowledge to interpret association-based algorithmic output.

2.4.2 Heuristics and Biases

The key construct of Fuzzy-Trace Theory, gist, also moves beyond other theories that posit
reliance on intuitive judgment. The “heuristics and biases” research paradigm (e.g., [53])
also acknowledges the role of intuition in human behavior, but considers intuitive judg-
ments to be primitive and therefore associated with poor decision-making. This tradition
points to routine human violations of statistical and decision-axioms as evidence for this
claim; however, developmentally-advanced educated intuition often leads to better out-
comes [112] even when experts may achieve these outcomes for what external observer
may consider to be the “wrong reasons” (see 4.1). For example, an experienced physician
may make the right decision regarding how to treat a patient given test results, even though
their mathematical calculations regarding the numerical probabilities that they assign to
different treatment outcomes may be incorrect [7]. Indeed, gist representations of complex
problems allow experts to make decisions that are driven by context that is grounded in ex-
tensive background knowledge [17, 113, 117, 118, 122, 123]. This context allows experts
to focus on the essence of information when making decisions, neglecting less important
features that do not deliver insight [112]. Thus, gist representations, when informed by
expertise, are not just based on a rote simplification, but are rather driven by insightful
simplifications that are meaningful to decision-makers.

Evidence in favor of Fuzzy-Trace Theory’s account of decision-making shows that the
theory is both scientifically parsimonious and has more predictive accuracy than does Cu-
mulative Prospect Theory [142] – the leading theoretical account in the heuristics and bi-
ases tradition – which nevertheless cannot account for key experimental effects that Fuzzy-
Trace Theory does account for (see [22, 115] for details).

2.4.3 Naturalistic Decision Making

Naturalistic Decision Making [73, 150, KLEIN et al.], another leading framework that is
especially popular in the human factors engineering and XAI literatures, posits that humans
draw upon their prior experience to recognize patterns, which, in turn, drive decisions [76].
Both Naturalistic Decision Making and Fuzzy-Trace Theory acknowledge the role of intu-
ition in improving decision-making; however, decisions that are based on gist intuitions are
not simply “recognition primed decisions” as posited by the Naturalistic Decision Making
tradition [76]. Rather, context cues (such as when subjects are encouraged to think about
a problem from a medical or statistical perspective) can influence reliance on the level of
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mental representation [15] meaning that recognition does not guarantee that a decision will
rely on expert intuition. Whereas recognition is a rote verbatim strategy (theorized by as-
sociationism), gist representations bring background knowledge to bear, contextualizing
scenarios such that they make sense and therefore providing insight to the human decision-
maker. In fact, an extensive body of literature shows that humans can recognize both gist
and verbatim representations in parallel, and yet prefer to rely on the gist when making
decisions [18, 19, 115, 119].

Thus, an extensive body of literature supports the contention that Fuzzy-Trace Theory
is both more parsimonious and more predictive than competing theoretical accounts of the
role of interpretation in judgments and decisions. These findings apply to both texts, such
as are found in the legal reasoning domain, and numerical stimuli such as are found in the
engineering domain [90] or generated by machine learning models.

3. Computer Science Definitions of Interpretability and Explainability

The above discussion emphasizes that interpretability and explainability are functions of
the user, the use case, and other contextual factors, as much as they are functions of the
system being used. However, the psychometric properties of users are generally not under
designers’ control. Here, we discuss the state-of-the-art for explainable AI algorithms, and
how systems might be designed to promote interpretability and explainability.

3.1 Comparison of Mental Representations to Current Machine Learning Paradigms

Whereas humans generate multiple mental representations in parallel, “shallow learning”
algorithms generate a single model, or distribution of models from the same mathematical
family, when representing a dataset – a verbatim process. Beyond shallow learning, several
ML techniques do generate multiple representations. For example, ensemble learning is a
process by which multiple models are generated and then ultimately aggregated to form a
single hypothesis. However, these models do not differ from one another in terms of their
level of precision – they simply apply different families of mathematical operators to the
same set of features. In contrast, multitask learning algorithms seek to replicate the flexibil-
ity of human gist representations by training a model to generate a common representation
of several stimuli from different domains, thus enabling “far transfer”. When successful,
these models may learn more abstract representations that are superficially similar to gist
representations; however, they still generate only a single model. Finally, deep neural nets
generate multiple representations of a dataset; however, they do so by deriving abstract
representations from more concrete representations, whereas humans encode these repre-
sentations simultaneously and in parallel, meaning that humans do not derive more simple
interpretations from more detailed representations [118].
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3.2 Algorithmic Paradigms Designed to Promote Interpretability and Explainability

A recent comprehensive literature review of computational approaches to explainable AI
notes that, for computer scientists, the concepts of interpretability and explainability are
“closely related” [6]. These authors assert that “intepretable systems are explainable if
their operations can be understood by humans” (pp. 52140-52141; emphasis added). Al-
though explainability and interpretability are sometimes used interchangeably in the com-
puter science literature, this review provides data supporting the contention that “in [the]
ML community the term ‘interpretable’ is more used than ‘explainable”’ (p. 52141; see
also [42]), especially when compared to the usage of these terms by the general public.
Consistent with the psychological definitions outlined above, this finding may indicate that
producers of AI products are more able to interpret the output of these systems because
they posses specialized background knowledge. Indeed, Bhatt et al. [11] posit that this
distinction may belie a difference in the design goals of these user groups: algorithm de-
velopers generally seek explanations so that they may debug or otherwise improve their
algorithms, and they might therefore develop explainable AI tools for that purpose. Thus,
an explanation is generally understood by computer scientists to indicate how a computa-
tional system arrived at, or generated, a certain output. A good explanation is often causal
and justified relative to a system’s implementation – e.g., “the algorithm is biased towards
visa application refusal BECAUSE the training data are unbalanced”. This sort of expla-
nation is quite useful for debugging these complex systems, but only if the user has the
appropriate background knowledge and technical expertise to do so.16 For example, the
explanation given above would lead a developer to gather more balanced data and retrain
the algorithm, but would not suggest an immediate action to an end user, except perhaps to
abandon use of the algorithm.

3.2.1 Local Feature Importance

Much of the work in explainable artificial intelligence attempts to help developers to deter-
mine simple rote verbatim associations between inputs and outputs, with the aim of assist-
ing them to infer potential causal mechanisms. For example, the local feature importance
paradigm (e.g., [33, 87, 125]) may be the most popular way for practitioners to interact
with technical explanations. This approach seeks to communicate how small changes in
specific features may lead to changes in specific model outputs.

Local Interpretable Model-agnostic Explanations (LIME). LIME [125], one of the
leading algorithms using the local feature importance paradigm, aims to “explain the pre-

16Consider our prior analogy of an automotive system. Just as a diagnostic code on a modern automobile can
be used to determine whether a car’s check engine light is on because of an electrical problem in the sensor,
or because of a legitimate engine malfunction, a tradition within computer science identifies an explanation
with an outcome that enables other trained technical experts to debug, assess, or otherwise improve a faulty
system. Nevertheless, interpreting a car’s diagnostic code, and knowing what to do next, usually requires
some specialized expertise (either mechanical, computational, or both – or sometimes, just deep familiarity
with the system).
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Fig. 5. An example of output from LIME which emphasizes text features that led a specific
paragraph to be classified as about atheism, rather than Christianity. The original image may be
found at this URL: https://github.com/marcotcr/lime/blob/master/doc/images/twoclass.png

dictions of any classifier or regressor in a faithful way, by approximating it locally with an
interpretable model...by presenting textual or visual artifacts that provide qualitative under-
standing of the relationship between the instance’s components (e.g. words in text, patches
in an image) and the model’s prediction.” LIME can help developers to understand how
changes in individual features might change the model’s output around a specific predic-
tion. To the extent that these insights generalize, and are based on meaningful features, they
may help developers to infer the model’s causal mechanisms; however, these approaches
may also mislead if they become subject to spurious correlations. For example, Figure 5
shows the output of LIME when applied to a paragraph of text that was classified as about
atheism rather than about Christianity. This classifier appears to focus on properties of the
author (e.g., the fact that they originate from an academic institution, as indicated by the
.edu in their email address) and specific stylometric features (e.g., use of the words “have”
and “there”) rather than words that might be indicative of content.

In so doing, LIME draws users’ attention to specific features that the model uses to
make a specific prediction, thus connecting a specific output to a simplified representation
of the model that generated that output. For example, Figure 6 demonstrates how a classi-
fier designed to tell the difference between wolves and huskies classified a particular image
based on the presence of snow in the background (and not based on the anatomical features
that would actually differentiate these two species). A data scientist with appropriate do-
main knowledge would be able to use this information to modify or otherwise debug this
faulty classification.

Thus, this process bears some resemblance to the definition of explanation presented
above; however, there are also important differences. First, LIME does not provide the
user with an explanation of the model per se, but rather provides the users with a simplified
model that approximates the more complex model that the algorithm is trying to explain.
In effect, LIME replaces a complex, causal, description of a model’s inner workings with a
simpler description of a different model whose results are only correlated with the original
model. For example, LIME provides no information regarding whether the wolf vs. husky
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Fig. 6. An example of output from LIME which emphasizes input features that are diagnostic of a
specific image classification. In this case, a picture of a husky was incorrectly classified as a wolf
because of the presence of snow in the background. Such information may help tool developers
debug overfit classifiers. This image was originally presented in [125]

classifier in Figure 6 would make accurate predictions on images that did not have snow in
their backgrounds.

The authors of LIME argue that these simplified models (e.g., regression models with
a small number of coefficients) are inherently more interpretable because they “provide
qualitative understanding between the input variables and the response.” While this goal
is broadly consistent with Fuzzy-Trace Theory’s definition of gist, gists, when educated,
capture a human expert’s insight regarding which features are most likely to generalize.
Techniques such as LIME may aid humans in generating these representations, and indeed,
preliminary experiments seem to suggest that human subjects could use these techniques
to remove features that interfered with predictive accuracy – i.e., they could make a better
classifier – and that a small sample of human subjects with with data science expertise
(and, in particular, familiarity with the concept of spurious correlation) might be able to
use LIME to derive better explanations.

SHapley Additive exPlanations (SHAP). Like LIME, the SHAP [87] family of models
start from the premise that “The best explanation of a simple model is the model itself” and
attempts to therefore represent complex models with simpler models. SHAP therefore
returns importance scores for each feature, which are analogous to regression coefficients.
For a given prediction, SHAP scores indicate how much any of these features contributed
to that prediction, as in Figure 7.

As such, SHAP models possess many of the same strengths and weaknesses of LIME,
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Fig. 7. An example of output from SHAP which indicates which indicates the model’s baseline
value, the marginal contributions of each of its features, and the final prediction. Such an approach
is analogous to a graphical interpretation of linear regression coefficients. The original image may
be found at https://github.com/slundberg/shap

albeit with the ability to generalize to a larger class of machine-learning models. These
models are verbatim in the most concrete sense – they output a set of rules (feature impor-
tance scores), which may be applied in a rote manner to generate a post-hoc description of
the desired prediction. However, they do not communicate causal mechanisms, and they
are prone to unknown error as the model is applied outside of the local neighborhood of a
specific prediction. Individual human subjects – such as informed practitioners – that have
the willingness and the ability to examine these findings in depth may be able to leverage
their own background knowledge to generate an explanation, but SHAP does not provide
enough information to help these practitioners figure out when the model no longer applies.
In effect, these techniques provide human users with a stimulus that they must then explain
or interpret whereas true “black box” models do not even provide this stimulus.

Explainable Neural Networks. Whereas SHAP and LIME seek to explain complex
models using a regression-like paradigm (i.e., a linear additive function), Explainable Neu-
ral Networks (XNNs) [144] use a more general formulation based on an “additive index
model” [127]. Here, the algorithm seeks to return a function that describes how model pre-
dictions vary with changes to individual parameters (or, more recently, pairs of parameters
[148]). As in LIME and SHAP, these models can help data scientists with the appropriate
training to understand how changing a specific feature might change the model’s predic-
tion, albeit at the risk of inferring spurious correlations. These approaches have especially
been applied to deep neural network models, in which one neural network is used to pro-
vide a simplified representation of another, and then rendered into a table that is analogous
to an Analysis of Variance, showing main effects and, in some cases, two-way interactions
[35].

However, LIME is not without limitations: the explanations that analysts might draw
from applying these tools may, themselves, be based on spurious correlations or may engen-
der false confidence in model predictions outside the scope of the immediate neighborhood
of the datapoint that LIME is attempting to explain17. Worse, these misleading explana-
tions may be engineered by adversaries seeking to take advantage of humans’ tendency to

17Precisely this sort of inappropriate model generalization led NASA engineers to conclude that an impact
from foam insulation upon the space shuttle Columbia’s wing from its external tank did not pose a threat,
precipitating the loss of the space shuttle upon re-entry into Earth’s atmosphere [16]
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impute causality where none exists [134].
Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM is a method

designed to explain computer vision models that use deep learning architectures (specifi-
cally, convolutional neural nets – currently the state-of-the-art architecture for computer
vision). Specifically, Grad-CAM “uses the gradients of any target concept (say ‘dog’ in
a classification network or a sequence of words in captioning network) flowing into the
final convolutional layer to produce a coarse localization map highlighting the important
regions in the image for predicting the concept” [129]. Grad-CAM takes advantage of the
layered architecture of CNNs to identify those regions of an image that are most diagnostic
of a particular prediction. For example, Figure 8 shows how Grad-CAM output can draw
a user’s attention to the part of an image that are diagnostic of a specific prediction that a
user wishes to explain. This is a visual version of the feature importance paradigm – where
the features are ensembles of specific pixels – with several of the corresponding strengths
and limitations.

3.2.2 “Simpler Models Are Inherently More Interpretable”

Rudin [128] has sharply critiqued techniques which seek to generate simple explanations of
complex models, arguing that they can obfuscate the actual inner-workings of these models
in a manner that misleads decision-makers and analysts. Models that are locally-accurate
do not provide information on the extent of that accuracy or whether its degradation is
graceful or sudden. Instead of trying to approximate more complex models with simpler
models, Rudin argues that simpler models should be used directly, because they are more
“interpretable” (i.e., by data scientists), especially when the stakes are high. The rationale
for this approach is that data scientists, at least, may understand the model’s inner workings.

Scalable Bayesian Rule Lists. Scalabale Bayesian Rule Lists [147] are one example
of a technique that aims to avoid model complexity. In contrast to the techniques out-
lined above, which seek to provide continuous representations of complex models, Scal-
able Bayesian Rule Lists explicitly do not attempt to compete with “black box classifiers
such as neural networks, support vector machines, gradient boosting or random forests. It
is useful when machine learning tools are used as a decision aid to humans, who need to
understand the model in order to trust it and make data-driven decisions.” As such, SBRLs
do not aim to achieve both high predictive accuracy and explainability; rather, they seek
to provide a set of simplified (verbatim) probabilistic rules that can be used to partition a
datset (see Table 2).

Generalized Additive Models with pairwise interactions. One approach that may
address Rudin’s critique relies on using Generalized Additive Models with pairwise inter-
actions (GA2Ms) – a class of models which restrict the “contribution of a single feature
to the final prediction” to depend only on that feature [34]. The intent of these models
is to disentangle each feature from all other features such that they may be evaluated in-
dependently of one another. Figure 9 shows the output of an GA2M applied to a dataset
that predicts risk of hospital 30-day admission for pneumonia. As above, these models are
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Fig. 8. An example of output from Grad-CAM, indicating which pixels in an image are diagnostic
of the predicted class (dog or cat). The original image may be found at [129]
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Table 2. Example of SBRL output, which seeks to explain whether a customer will leave the
service provider. PP = Probability that the label is positive. Source: [147]

Rule-list PP Test Accuracy
if ( Contract=One year&StreamingMovies=Yes ), 0.20 0.81
else if ( Contract=Two year ), 0.032 0.98
else if ( Contract=One year ), 0.054 0.97
else if ( tenure<1year&InternetService=Fiber optic ), 0.70 0.72
else if ( PaymentMethod=Electronic check & InternetService=Fiber optic ), 0.48 0.45
else ( TechSupport=No&OnlineSecurity=No ), 0.42 0.64
else ( default ), 0.22 0.78

primarily correlational in nature and may help domain experts to select features – for exam-
ple, the authors note that pneumonia readmission risk decreases, rather than increases, with
asthma – a counterintuitive finding. This model surfaces that finding. However, domain
experts must then explain that finding post-hoc, as follows:

[P]atients with a history of asthma who presented with pneumonia usually were
admitted not only to the hospital but directly to the ICU (Intensive Care Unit).
The good news is that the aggressive care received by asthmatic pneumonia pa-
tients was so effective that it lowered their risk of dying from pneumonia com-
pared to the general population. The bad news is that because the prognosis
for these patients is better than average, models trained on the data incorrectly
learn that asthma lowers risk, when in fact asthmatics have much higher risk
(if not hospitalized)[34].

The discussion above indicates that these concerns apply to explainability – where the
goal is to assist a data scientist to understand how a model works – but may apply less to
interpretability, where the aim is fundamentally to assist a decision maker to link a model
output to a meaningful distinction that allows them to leverage their values, goals, and
preferences to make a choice. Specifically, the explanation given above might help a user
to debug the model, or even to decide whether or not to trust the model; however, it may
not explicitly provide the user with meaningful information that can inform their ultimate
treatment decision.

Monotonically Constrained Gradient-Boosting Machines Gradient-Boosting Ma-
chines seek to use an ensemble of “weak learners” – i.e., models with low predictive
accuracy – to jointly make accurate predictions. This approach leads to significant im-
provements in predictive capability, at the cost of model complexity. In order to cope with
this complexity, Monotonically Constrained Gradient-Boosting Machines impose a con-
straint that any given feature in the model must have a monotonic relationship with the
output. This is theorized to increase explainability because these monotonic relationships
restrict the relationship between features and predictions to have clear qualitative directions
– an increase in the feature must consistently lead to either an increase or decrease in the
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Fig. 9. An example of output from a GA2M which indicates how several features (horizontal axes)
vary with relative risk of readmission for pneumonia at 30 days (vertical axis). Pairwise
interactions are shown in the heatmaps at the bottom of the figure. The original image is in [34].
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prediction. As above, these models assume that simpler functional forms are inherently
more explainable. However, these models, in their current form, may simply apply a form
of regularization that is not necessarily grounded in domain knowledge. Monotonicity may
be appropriate in some cases – such as a dose-response curve – but not in others – such as
in modeling waves or other sinusoidal behavior. Domain knowledge is required to deter-
mine whether monotonicity constraints, or any other constraints, are appropriate. Absent
that domain knowledge, application of such constraints may indeed simplify the model, but
may do so in a misleading way that can foster inference of incorrect explanations.

3.2.3 Limitations of Current Explainable AI Models

Generally speaking, the assumption that simplified models are inherently interpretable as-
sumes some degree of domain knowledge on the part of model users – i.e., that they have
sufficient data science expertise to make sense of linear models, decision trees, rule lists,
etc. Furthermore, these “interpretable” models may not provide users with sufficient con-
text to apply their values, goals, and principles to enable a decision. These techniques are
truly verbatim in the sense that they provide a rule but with no insight as to the algorithm’s
actual mechanism. They provide correlation but not causation. However, they may assist
subject-matter experts or data scientists to infer causation. These techniques can encour-
age experts with appropriate background expertise to more deeply explore the mechanisms
by which a particular classification was made, although without making those mechanisms
themselves explicit. Thus, a technical expert can perhaps leverage their background knowl-
edge of the type of algorithm used to infer causality from these tools. This may enable them
to construct an explanation in the same way that a juror or a reader can infer coherent struc-
ture from cohesive text. However, it is ultimately the human that imputes the explanation to
the model output. The techniques outlined above do not provide explicit representations of
causal mechanisms or interface with users’ values, goals, or preferences. Rather, they must
rely on humans’ background knowledge for their utility. Thus, these models assume much
of the viewer, including potentially-significant domain knowledge regarding the meaning
of technical terms (such as “hematocrit” in the GA2M pneumonia diagnosis example), the
ability to distinguish between continuous and discrete variables, etc. Similarly, subjects
must have extensive subject-matter expertise to be able to recognize, for example, that prior
history of asthma should not be associated with lower pneumonia risk. Thus, the model,
on its own, is not interpretable or explainable in the way that psychologists conceive these
terms, but may help users with the appropriate background knowledge, and willingness to
investigate, to draw more meaningful and accurate conclusions.

Because these models are correlational in nature, they may be subject to spurious as-
sociation. Indeed, it has long been acknowledged in the social sciences [130] that the
identification of meaningful structure in data (e.g., due to a correlation or regression), is
only the first step in the imputation of a causal mechanism and, absent a counterfactual
(such as an experimental control group), cannot be relied upon to make causal claims.
Thus, approaches that simplify complex models by reducing them to a set of monotonic
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relationships may mislead users into imputing a causal mechanism within the model where
none exists. This problem is not limited to computational systems, but is a general fea-
ture of complex engineered system with multiple interacting parts [29]. Thus, future work
in explainable artificial intelligence may productively focus on how to help data scientists
and domain experts to accurately impute causal claims while avoiding drawing inferences
based on spurious correlation.

3.2.4 Purpose-Built Graphical User Interfaces

In general, the approaches outlined above seek to enhance explainability by helping users
to understand how changes to a specific feature might change model output. Although these
are theorized to enhance explainability when a data scientist can use them to infer causal
mechanisms about how the algorithm works, these techniques may be less effective for es-
tablishing interpretability – i.e., meaning in context for the end user. Whereas developers
need to know how the system works so that they can identify flaws in their implementation
and fix them, members of the public or subject-matter experts from other fields typically
lack the in-depth technical training and expertise of computer scientists; nor should they be
expected to develop it. For example, an immigration lawyer may want to know the legal
implications of a visa review algorithm or a financial analyst may want to know the finan-
cial implications of a credit rating algorithm. Often, these users will simply assume that
the algorithm was implemented correctly, and that the training data were adequately rep-
resentative. Finally, job/visa/credit applicants would naturally want to know the standards
by which they are being assessed and whether they are competitive for a specific position.
These users need to know why a system generated its result. That is, they seek to make
sense of model output such that they can contextualize it in terms that are meaningful to
them.

In some cases, Graphical User Interfaces (GUIs) such as Google’s What-If tool, may
be paired with model output to assist users with limited numeracy or statistical knowledge
to “get the gist”. For example, there is a body of work in medical decision-making exam-
ining individual differences in graph literacy (e.g., [48]) and techniques that may be used
to overcome these differences to communicate the gist of complex medical information
[37, 37, 145]. However, designers must take care not to assume that a graphical format is
necessarily more interpretable. Rather, the graphical output must be contextualized with
appropriate representations of base rates, thresholds, and other indicators of meaningful
categorical distinctions that, in many cases, may need to be elicited from users. Ultimately,
machine-generated interpretations must be contextualized in terms of background knowl-
edge and goals, and tailored to individual differences, if they are to be effective.

3.2.5 Coherent Topic Models

Topic models are a family of Bayesian inference algorithms that have been widely applied
to text data for information retrieval and document summarization [13]. The most widely-
applied of these algorithms, Latent Dirichlet Allocation (LDA) [14], infers latent “topics”
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Fig. 10. A visualization of Latent Dirichlet Allocation output from [13]. Probabilistic topic models
such as LDA map each word in a text corpus to a topic. The most frequent words in that topic are
then presented to humans for interpretation.

that are supposed to contain semantic content held in common across multiple documents.
In practice, these topics are actually a probability distribution over words in the text corpus
upon which the LDA model is trained. Humans use topic models by inspecting the top
words, or top documents, for any given topic and then assigning meaning to those top-
ics [59], with some even going so far as to claim that topic models explicitly measure the
gist of text [60]. However, more recent work has shown that humans have difficulty inter-
preting some topic model output [36], especially when they are not familiar with how the
algorithm works [83]. Although computer scientists have developed measures to improve
the coherence (hypothesized to increase interpretability) of topic model output [81, 96],
the resulting output does not explicitly provide an interpretation to human users, but re-
mains a list of words with associated topic probabilities, which humans must interpret (see
Figure 10). Nevertheless, topic models are perhaps unique among ML algorithms in that
their users have attempted to explicitly engineer interpretability into their structure and
output using tasks that are evaluated by non-expert humans with no knowledge of how the
algorithm works. Future work should focus on evaluating this approach and potentially
applying it to other algorithmic paradigms.

4. Incorporating Insights from Psychology Into Design

How might one evaluate the explainability and interpretability of AI systems in a manner
that is psychologically plausible? How might we design systems that satisfy these psycho-
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logical definitions? This section addresses these questions.

4.1 Psychological Correlates of AI Expert System Paradigms

The ML techniques described in section 3.2 reflect a tension between two different ap-
proaches to evaluating the quality of mathematical models, and “rational” behavior more
broadly.

4.1.1 Coherence and “White-Box Models”

The first approach, which Hammond [62] called “coherence”, emphasizes the process by
which a result is obtained. According to this approach, a result is judged according to
whether it is obtained by following logical rules that start from universally-accepted ax-
ioms. Early AI systems – especially rule-based systems – exhibited high degrees of coher-
ence and, by extension, explainability per the psychology-based definitions in this paper.
Strengths of the coherence approach include its guarantees of logical completeness – if
the axioms are correct, and the rules are followed unerringly, then the conclusions must
necessarily be correct. However, these systems have been criticized for their fragility in
real-world decision-making (e.g., the work that inspired the GA2M approach [33]). In prac-
tice, they may fail if the axioms are not correct (but at least one could determine how that
conclusion was attained!) For example, a classical expert system is typically constructed
by eliciting rules from experts; however, these rules could be applied “mindlessly” (e.g.,
without relevant background knowledge, such as about time, human anatomy, or important
exceptions, as in the case of a rule-based medical expert system [93]). To the extent that
those rules are correct, the system’s recommendations should be correct; however, the pro-
cess of eliciting these rules may introduce sources of error that would invalidate the results,
such as when patients do not disclose all relevant information to an algorithm since they
do not know the algorithm requires it, or because they do not trust the algorithm to use that
information appropriately. Indeed, traditional rule-based AI systems are marked by a strict
adherence to verbatim rules that occasionally lead to the wrong conclusions. Attempts
to oversimplify machine learning models based on purely algorithmic considerations may
actually impose harmful biases in some circumstances [77].

White-box models. Like human decision processes emphasizing coherence, “white-
box” ML models are transparent with humans able to readily understand how they operate
because they follow a set of transparent rules. Examples of white-box models include
linear models, which can be readily transformed from input to prediction by multiplying
by well-defined coefficient values. These models also seem to accord with Rudin’s [128]
definition of interpretability. Furthermore the explainable AI techniques outlined in section
3.2 appear to be designed to make black-box models more like white-box models (at the
risk of introducing potential spurious correlations).
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4.1.2 Correspondence and “Black-Box Models”

It is generally assumed that explainability and predictive accuracy must be traded against
one another. Consistent with this perceived dichotomy, Hammond [62] defined “correspon-
dence” approaches as those which emphasizes empirical accuracy all else. Here, a decision
is considered to be good if it leads to a good result, regardless of how this result is ob-
tained. This is analogous to the machine learning paradigm, which emphasizes prediction
over explanation [131, 149]. Standard machine learning techniques aim to optimize spe-
cific predictive metrics, such as accuracy, precision, recall, F-score, etc. Furthermore, any
number of algorithms may be employed regardless of whether the underlying theory of the
algorithm is a good description of the process generating the data. This approach is consis-
tent with Hammond’s definition of correspondence since it privileges predictive accuracy
over a specific causal theory. Deep neural nets, in particular, have been criticized – but also
lionized – because they often achieve significant predictive predictive performance at the
cost of explainability. Thus, like ML, the weaknesses of the correspondence approach are
fundamentally connected to low explainability – a method may achieve the right answers
for the wrong reasons – i.e., dut to spurious correlation – thus, there is no confidence that
future model results will be correct. As Hammond [62] states,

Scientific research seeks both coherence and correspondence, but gets both
only in advanced, successful work. Most scientific disciplines are forced to
tolerate contradictory facts and competitive theories...But policymakers find
it much harder than researchers to live with this tension because they are ex-
pected to act on the basis of information. (p. 54).

Black-box models. Like decision approaches favoring correspondence, “black-box
models” are those whose inner workings are inaccessible, and hence incomprehensible, to
human users becuase they emphasize predictve accuracy over explainability. These models
can only be evaluated for their predictive qualities, and one must simply “trust” that they
will continue to perform in the real world as they do on training data. Prototypical examples
of black-box models include deep neural nets.

Hammond’s discussion highlights that the current tension between explanation and pre-
diction in machine learning and statistics (see also [131]) is, in fact, a longstanding feature
of the scientific method that can nevertheless be at odds with policy and legal requirements
for data-driven decision-making. Indeed, there seems to be a common perception that
models possessing high correspondence are likely to have low coherence and vice versa
(although see [97]). However, the discussion above highlights that explanations are fun-
damentally about providing coherent outputs that describe the process by which a model
achieved a given result. In contrast, interpretations emphasize how a stimulus (either a
model’s output, a datapoint or dataset, or a description of the model itself) is contextual-
ized in the broader world setting, and thus could be evaluated relative to correspondence
criteria.
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4.1.3 A Third Way: Enhancing Interpretability by Querying Human Experts and
“Grey-Box Models”

By distinguishing between interpretation and explanation, we propose that human experts’
gists may be thought of as analogous to a “grey box model” – one for which a full mecha-
nistic explanation (i.e., a white box model) is not available, but for which blind trust (i.e.,
a black box model) is also not required. This middle road is achieved by experts’ com-
municating the gists of their decision-making processes, rather than trying to explain all of
the details of their structured mental models. Specifically, experts can communicate how
what they are doing is consistent with the values of users in easy-to-understand categori-
cal terms while not necessarily possessing the ability to describe the exact mechanisms in
every detail. We propose grey box model design as a goal for interpretable AI.

Human decision-making exhibits varying degrees of coherence and correspondence.
Specifically, experts’ gist representations tend to correspond to better real-world outcomes,
exhibiting correspondence; however, experts may violate coherence [7] – i.e., they can
provide an explanation for an action in a particular context, but that explanation may not
necessarily generalize to all contexts, roughly analogous to a linear estimate of a nonlinear
model. Unlike these linear estimates which provide explanatory power over a narrow pa-
rameter range, experts can be queried for their rationales. The above discussion emphasizes
how, far from being a unique feature of machine learning models, high correspondence with
low explainability may also be a feature of some types of human expertise. In fact, there is
a significant body of literature in engineering management that discusses the “tacit” nature
of human expertise [100–102, 105, 106]. In other words, like the most complex models,
human experts may not be consciously aware of how they have obtained a certain outcome.
Nevertheless, they are often able to describe why they did what they did – for example
expert tennis players were more likely justify their actions relative to the goals of the game
whereas novices focused more conscious attention on the mechanics of executing specific
maneuvers [92]. Thus, experts’ decisions show a high degree of empirical correspondence
despite being subject to “biases” under predictable circumstances [112]. Furthermore, sub-
ject matter experts tend to rely on, consume, and prefer to use model output that interprets,
rather than explains, relevant results.

This discussion suggests that designers may be able to enhance interpretability by cre-
ating “grey-box models”, that can provide the rationale for a given decision relative to a
set of functional requirements. In section 4.2, we argue that this goal is aligned with has
long dealt with similar problems when attempting to integrate large-scale systems from
across several different complex domains of expertise into a common artifact to be used by
consumers, including policymakers, with varying levels of technical sophistication [21].

4.2 Interpretable and Explainable Outputs Are Different Abstractions of a System

Arguably, designing an explainable or interpretable AI system boils down to selecting the
appropriate level of abstraction at which to communicate system output given a user’s
needs. Here, we review research in both psychology and systems engineering research
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supporting this claim. This literature primarily focuses on drawing an analogy between the
concept of mental representation and levels of abstraction.

Computer science depends on successive levels of abstraction for its successful oper-
ation simply because the operations of computational systems are far too complex, at the
physical level, to explain to even the most expert computer scientists. Consider that a com-
puter is itself an abstraction – a “Turing machine” – that is implemented using another
abstraction – bits – that are themselves implemented in silicon semiconductors. Abbott
[4, 5] points out that bits themselves are abstractions and, to the extent that the abstraction
isn’t violated (e.g., because of physical limits such as too much heat), system develop-
ers do not need to understand the mechanism (e.g., the physical regularities) underlying
the implementation of the computational system that they are using. Similar logic applies
to software development. Although it is certainly helpful, in some cases, to understand
computer architecture when designing software, most software developers do not need a
detailed understanding of the code implementation underlying a particular computer’s op-
erating system when designing an application. Kroll [79] even argues that explanations
that focus on the mechanisms of an AI system’s operations actually obscure users’ abili-
ties to understand how the system operates within its social context (e.g., power structure).
Indeed, users routinely utilize applications – e.g., on the Internet – without detailed expla-
nations of how those applications work. Rather, they are familiar with a set of functions
that the application is intended to perform and, as well as those functions are carried out in
a way that does not impose undue externalities, the user generally does not need, or even
care to, know about implementation details. It is precisely these externalities that lie at the
heart of the need for system interpretability. Thus, Abbott provides a section pertaining to
“platform governance” that provides an overview of some of the research on governance
of common resources that could productively be adapted to algorithmic explainability and
interpretability, and especially to the development of standards in this area. Specifically,
these standards might be framed in terms of high-level requirements [40] with measures of
effectiveness for interpretable and explainable systems.

4.2.1 Psychological Evidence that Abstraction Improves Interpretability and Deci-
sion Quality

The distinction between “how” and “why” levels of mental representation is theoretically-
motivated and empirically-supported in the psychology literature. Construal Level The-
ory (CLT) [52, 139], a leading theory of abstraction in human psychology, distinguishes
between mental representations in terms of their “psychological distance” (although see
[120] for an alternative account). Here, a less distant representation entails memory for
things that are either spatially or temporally proximate, whereas a more distant representa-
tion entails memory for things that are more distant. According to CLT, questions that ask
“how” – what we have called explanations – are more psychologically proximate than are
questions that ask “why” – interpretations. Furthermore, CLT characterizes the distinction
between more and less distant representations in terms of their level of abstraction [52].

35

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8367



Finally, recent findings [47] show that increasing psychological distance, including by pro-
viding more abstract representations – lead to better decisions because these more distant
representations make use of gist interpretations. This has direct implications for design:
interpretable AI systems – i.e., those that help end users to make meaningful decisions –
may, in fact, be less explainable, and vice versa, at least for end users without data science
expertise.

4.2.2 Abstraction Hierarchies in Engineering

The idea that explanations – justified relative to system implementation – and interpre-
tations – justified relative to system goals – are distinct is also supported by extensive
literature in human factors engineering. This paper has described how Fuzzy-Trace Theory
posits that these representations are encoded distinctly and in parallel, with experts pre-
ferring to rely on more abstract descriptions. This section discusses how these notions of
abstraction are used in engineering design by practicing engineers. Specifically, CLT’s core
construct – the abstraction hierarchy distinguishing between more detailed “how” questions
– that are defined relative to specific implementations and thus less meaningful with respect
to system goals – and less detailed, but more meaningful “why” questions – was presaged
in the human factors engineering/systems engineering literature by the work of Jens Ras-
mussen [108] (see Figure 11). Rasmussen’s work, which was conducted exclusively on
technical experts (largely electrical engineers making consequential decisions pertaining to
complex systems, such as nuclear power plants), defined an abstraction hierarchy as one in
which “...the functional properties of a technical system are represented in several levels of
functional abstraction along the means-end dimension” [108](p. 235) – a continuum of rep-
resentations bounded below by the system’s “physical form” (here, analogous to the actual
physical implementation of a machine-learning algorithm on a computer, in terms of which
bits are flipped), through to a system’s “generalized” and “abstract function” (analogous to
the software functions implemented by a specific ML system, which give outputs justified
relative to those functions), which define the system’s causal structure and/or information
flow topology, and bounded above by the system’s “functional purpose” – i.e., its objec-
tives relative to its end users. Rasmussen and Lind [109] further note that, when coping
with complexity, engineers often rely on multiple levels of representation, even switching
between them for the purpose of diagnoses, with the higher levels indicating the functional
requirements for why the lower levels are implemented, and the lower levels indicating the
specific concrete realization of how the higher level requirements are carried out. Thus,
users and designers can only understand system output to the extent that they possess the
technical or domain expertise required to utilize corresponding levels of the abstraction hi-
erarchy. In general, moving between levels of abstraction requires understanding that level
of abstraction on its own terms and bringing to bear relevant background knowledge.Thus,
the form of abstraction that we discuss here bears some similarity to Kolmogorov’s [78]
definition of complexity – it is a simplified representation that can be expressed using a
short description, where the description length is defined relative to a pre-defined knowl-
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Functional Purpose 
(Loan 

recommendation)

Abstract Function (Credit 
score determination)

General Function (Deep neural net 
implementation)

Physical Function (computation)

Physical Form (workstation and data storage units)

How?

How?

How?

How?

Why?

Why?

Why?

Why?

Fig. 11. An example of an Abstraction Hierarchy for a ML system designed to make loan
recommendations. Each higher level implemented by the level immediately below it and each
lower level implements a technical solution to carry out a function specified by the higher level.

edge base (usually, a programming language, but see also [20, 45, 91]). However, the term
abstraction is itself polysemous (for a review, see [30]) and we emphasize that the form of
abstraction that we refer to is not just simplification, but rather is augmented by the user’s
background knowledge [120].

4.2.3 Design for Interpretability and Explainability as Requirements Engineering

CLT and the Abstraction Hierarchy both suggest that systems should be evaluated in terms
of their “requirements”, rather than their specific technical specifications (see also [79].
Good requirements are “solution neutral” – they do not specify details of implementation,
but only the function that a system should carry out. The aim is to specify this function as
clearly as possible while not overly constricting the technical design of the system itself.
For example, a solution neutral requirement might specify that a system should achieve an
accuracy of at least 0.85 without specifying the particular algorithm used. Thus, require-
ments are specified in terms of measures of effectiveness, or measures of performance,
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that have a meaning in terms of the system’s ultimate function; not its implementation.
This form of design is familiar to machine learning researchers who frequently use several
different algorithms to obtain the same function. For example, the function may be classi-
fication, which has well-defined metrics – precision, recall, accuracy, etc. – with the best
metric selected based on the task. Given the function required, and the metric benchmark
that the system is supposed to achieve (i.e., the requirement), system designers may use
any number of algorithms to achieve this function. For classification, candidate algorithms
might include logistic regression classifiers, Naive Bayes classifiers, support vector clas-
sifiers, k-nearest neighbor classifiers, convolutional neural nets, etc., all perform the same
function, yet using very different implementations.

The concept of solution neutrality is equally familiar to legal scholars and regulators
and legal scholars, who have significant experience with evaluating complex systems, such
as human-drug interactions, in other highly technical domains [80, 140]. Thus, the key to
a good design is matching the system’s evaluation metric to the end-user’s goals. Stan-
dard ML metrics, such as those defined above, may be insufficient to address the system’s
functional requirements. Systems engineering, and especially requirements engineering, is
the discipline that focuses on evaluating end-user needs and translating these into a suite
of metrics. However, for sufficiently complex systems, groups of engineers must pool
their knowledge to achieve better design outcomes. Attempts to generate unified models
seamlessly integrating input from different engineering fields (“Model-Based Systems En-
gineering”) have yielded mixed results [21]. In contrast, techniques that seek to translate
meaningful information between engineering specialties are both more widely accepted by
practicing engineers. Although there is no guarantee that these techniques generate op-
timal outcomes, they are, at a minimum, acceptable [22, 69, 70]. Thus, other fields of
engineering have developed methods to ensure that expert input from multiple fields can
be integrated into a larger, complex project. Specifically, systems engineering is the field
of engineering that is concerned with coordinating these multiple experts from multiple
domains. Since, nowadays, no one person can be an expert in all fields of human inquiry,
systems engineers have developed a set of tools and techniques to increase the confidence
with which expertise is deployed when developing complex systems.

5. Conclusion

Our review indicates that explainability and interpretability should be distinct requirements
for ML systems, with the former primarily being of value to developers who seek to de-
bug systems or otherwise improve their design, while the latter more useful to regulators,
policymakers, and general users. However, this dichotomy is not absolute – individual dif-
ferences may be associated with reliance on one representation of a system more so than
another. For developers, the explanation may be very similar to the interpretation – similar
to how numerate individuals derive decisions that are informed by verbatim calculations
– however, if developers lack domain expertise, they may be unable to contextualize their
interpretations in terms that are meaningful to end users. Similarly, end users lacking de-

38

______________________________________________________________________________________________________ 
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8367



velopers’ expertise may be unable to understand how the system arrived at its conclusion
(but they also may not desire to).

5.1 Implications for Designing Explainable and Interpretable Artificial Intelligence

The history of modern engineering demonstrates that systems can be designed to facilitate
both explainability and interpretability and, indeed, there are examples of such throughout
recent history, ranging from drug approvals to the automotive sector. Although significant
effort has been devoted to developing automated approaches to create explanations of AI
algorithms, comparatively little attention has focused on interpretability. Since interpreta-
tions differ between individuals, more research is needed in order to determine how best
to link model output to specific gists so that users can appropriately contextualize this out-
put. The extent to which this process can be fully automated, or would require curation by
domain experts, remains an open question.

The above discussion indicates that interpretable algorithms are those that contextual-
ize data by placing it in the context of structured background knowledge, representing it
in a simple manner that captures essential, insightful distinctions, and then justifying the
corresponding output relative to values elicited from human users. Such representations
contextualize the model’s output and provide meaning to the human user in terms of val-
ues stored in long-term memory. Typically, these values (or similar preference-generating
constructs, such as goals) cannot be elicited directly from data based on rote, brittle, ver-
batim association. Thus, techniques to simplify complex models are likely to share this
brittleness [98]. In contrast, gist representations are simple, yet flexible and insightful; they
bring to bear contextual elements – such as goals and values – that are not explicitly rep-
resented in the data. Future work may therefore productively focus on eliciting these gist
representations from experts in the form of mappings from structured background knowl-
edge to meaningful, yet simple, categories – associated with goals, values, principles, or
other preferences. Previous “expert systems” lacked the ability to scale precisely because
of the difficulty eliciting these essential distinctions [33]. To move beyond this impasse,
the discussion in this paper highlights the need to account for multiple levels of mental
representation when generating interpretable AI output. In short, rather than assimilating
human cognition to machine learning, we might benefit from designing machine learning
models to better reflect empirical insights about human cognition [116]. In between a ver-
batim, data-driven approach, and an inflexible top-down schematic approach lies one in
which human users engage in a process of contextualizing model output that is then used
to select between, and refine, existing background knowledge structures. There is some
preliminary evidence that these “communicative” approaches — in which human users in-
teract with and curate the output of AI systems — may show some promise. Furthermore,
users’ needs vary with individual differences, e.g., in metacognition and training. Future
work should therefore focus on characterizing these factors within user communities. This
review provides the theoretical basis for such an approach, and provides explicit directions
for future work: such approaches must communicate the gist of the data to the user.
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