

NISTIR 8360

Machine Learning for Access Control
Policy Verification

Vincent C. Hu

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8360

NISTIR 8360

Machine Learning for Access Control
Policy Verification

Vincent C. Hu

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8360

September 2021

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce
for Standards and Technology & Director, National Institute of Standards and Technology

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

National Institute of Standards and Technology Interagency or Internal Report 8360
25 pages (September 2021)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8360

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: ir8360-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:sp800-210-comments@nist.gov

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems.

Abstract

Access control policy verification ensures that there are no faults within the policy that leak or
block access privileges. As a software test, access control policy verification relies on methods
such as model proof, data structure, system simulation, and test oracle to verify that the policy
logic functions as expected. However, these methods have capability and performance issues
related to inaccuracy and complexity limited by applied technologies. For instance, model proof,
test oracle, and data structure methods initially assume that the policy under verification is faultless
unless the policy model cannot hold for test cases. Thus, the challenge of the method is to compose
test cases that can comprehensively discover all faults. Alternatively, a system simulation method
requires translating the policy to a simulated system. The translation between systems may be
difficult or impractical to implement if the policy logic is complicated or the number of policy
rules is large. To answer these challenges, this internal report (IR) proposes an efficient and
straightforward method for access control policy verification by applying a classification algorithm
of machine learning, which does not require comprehensive test cases, oracle, or system translation
but rather checks the logic of policy rules directly, making it more efficient and feasible compared
to traditional methods.

Keywords

attribute based access control; access control; access control test; access control verification; AI;
authorization; machine learning; policy.

Acknowledgments

The author, Vincent C. Hu of the National Institute of Standards and Technology (NIST), wishes
to thank Isabel Van Wyk and Jim Foti (NIST) who reviewed drafts of this document. The author
also gratefully acknowledges and appreciates the comments and contributions made by
government agencies, private organizations, and individuals in providing direction and assistance
in the development of this document.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents, and ITL
has not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Executive Summary

Access control policy verification ensures that there are no faults within the policy that leak or
block access privileges. As a software test, access control policy verification relies on methods
such as model proof, data structure, system simulation, and test oracle to verify that the policy
logic functions as expected. However, these methods have capability and performance issues
related to inaccuracy and complexity limited by applied technologies. For instance, model proof,
test oracle, and data structure methods initially assume that the policy under verification is faultless
unless the policy model cannot hold for test cases. Thus, the challenge of the method is to compose
test cases that can comprehensively discover all faults. Alternatively, a system simulation method
requires translating the policy to a simulated system. The translation between systems may be
difficult or impractical to implement if the policy logic is complicated or the number of policy
rules is large.

To answer these challenges, this report proposes an efficient and straightforward method for access
control policy verification by applying a classification algorithm of machine learning, which does
not require comprehensive test cases, oracle, or system translation but rather checks the logic of
policy rules directly, making it more efficient and feasible compared to traditional methods. This
report demonstrates an experiment for the proposed method with an example that uses current
available machine learning tools to facilitate the random forest classification algorithm. The result
illustrates its capabilities as well as parameter settings for performing the verification steps.
Ultimately, three general applications are provided: enhancement of existing verification methods,
verification of access control policies with numerical attributes, and policy enforcement that can
be supported by the proposed machine learning policy verification method.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Table of Contents

Executive Summary ... v

1 Introduction .. 1

2 Machine Learning for Access Control Verification ... 3

3 RFC Verification Approach ... 7

4 Applications ... 14

5 Conclusion ... 16

References .. 17

List of Figures

Figure 1: 1a (above), 1b (below) – Subtrees model generated by RFC classifier .. 4

Figure 2: Mapping of access control policy types and verification methods ... 6

Figure 3: Access control policy rules specified in a data table ... 7

Figure 4: RFC program in Python code .. 10

Figure 5: First 28 rendered model rules from RFC subtrees .. 11

Figure 6: Machine Learning RFC method for access control policy verification ... 12

Figure 7: Numerical attribute values in a subtree model .. 15

List of Tables

Table 1: Statistic from comparison of rendered model rules in Figure 5 with policy rules in Figure 3 11

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

1 Introduction

As a software test, access control policy verification relies on methods such as model proof
[Hwang et al. 10, ACPT], data structure [MARG], system simulation [VK13, ACRLCS], and test
oracle [ACTS] to verify the expected functional logic implied in policy rules [AS15]. The model
proof method converts policy to a finite state machine (FSM) and verifies test access cases against
it to detect policy faults, such as rule conflict, access blocking, or privilege leakage [SP192]. For
instance, [ACPT] applies the symbolic model verification [NuSMV] tool to build an FSM model
in terms of policy rule attributes. Thus, a test case is represented by a deterministic finite state
transducer that corresponds to the FSM, which should satisfy the two requirements below after it
takes actions in compliance with the test case:

1) Safety – There is no violation of the FSM model to the test case, and it is assured
that the FSM will eventually be in a desired state.

2) Liveness – Where the FSM will have neither a deadlock in which the system waits
forever for system events nor a livelock in which the model repeatedly executes the
same operations forever [NuSMV].

An access control policy verification method uses structured data that represents underlying policy
rule logics. The data structure, such as a binary decision diagram [CFMY93], is given assignments
of binary values to the policy attributes that traverse from the root to a terminal of the rule’s
permission [Fisler et al. 05]. This method is used by software tool suite Margrave [MARG] for
verifying safety requirements (test cases) against policies written in eXtensible Access Control
Markup Language (XACML) [XACML]. Margrave’s API verifies safety requirements in the form
of queries, which should hold by the binary tree. Otherwise, counterexamples are produced
indicating violations of the tree structure [SND13].

Model proof and data structure methods initially accept the policy under verification as faultless
until tested against specified cases or requirements. Faults are then claimed if the policy model or
data structure cannot hold. Therefore, in order to detect all possible faults embedded in a policy,
the challenge is to compose test cases or requirements that can discover them. Other similar
methods, however, may rely on a test oracle that contains all possible access control requests and
access permissions as input to verify if requests’ permissions conflict with expected permissions
assigned to rules. Thus, excessive computing time or resources are required for large numbers of
policy attributes. For example, given n, 2n+1 access requests (1 for permission states) are required
for the test oracle. Most of today’s access control policies can easily have hundreds of attributes.
Hence, test oracles will be too large to be practically performed.

In addition to model proof and structured data, a simulated system is built to simulate the access
control policy rules for verification. In such systems, each policy rule is represented by simulated
system components such that faults can be detected by triggering the system functions that cause
errors. For example, the access control Rule Logic Circuit Simulation (ACRLCS) system
[ACRLCS] detects faults when rule circuits are added that conflict with existing logic circuits.
ACRLCS allows error detecting and fixing to be performed in real time before adding rule circuits
that further complicate the detecting effort. In other words, instead of checking by retracing the
interrelations between rules after the policy is completed, it only checks the new added rule against
previous “correct” ones. Even though this method does not require comprehensive large numbers

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

of test cases, requirements, or an oracle, the translation or mapping process for implementing the
simulated system is a challenge [VK13].

This report proposes an innovative technique that applies a classification algorithm of machine
learning [ML] to answer challenges of capability due to the coverage of test cases or oracle and
the difficulty of system translation from traditional access control policy verification methods. In
this report, the Introduction describes the challenges of traditional policy verification methods.
Section 2 explains how an ML Classification method can be applied to policy verification. Section
3 demonstrates a policy verification approach for an ML random forest classification (RFC)
algorithm. Section 4 describes general access control applications that can benefit from the
proposed method. The last section is the Conclusion.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

2 Machine Learning for Access Control Verification

Machine learning has been used for device control, system analysis, and business forecasting.
However, the use of ML for software testing is in the early stages [AWCS, CAT5]. In particular,
ML applications for model proof are still elusive and have yet to be explored. ML classification
allows for the generation or prediction of target classes for new input data using some sample
training data produced by running the system instead of comprehensive input data. For access
control policy verification, the training data is assigned attributes’ values of policy rules, and the
target for classification is access permissions (e.g., grant and deny) assigned to rules. The data is
consumed by an ML classification algorithm to generate a classification model. Querying the
accuracy of training data against the model allows for the detection of inconsistencies, indicating
faults found among policy rules. In addition, to verify new or updated policy rules, they need to
be contained in test data for additional accuracy analysis on test data.

Decision tree (DT) and random forest classification (RFC) are two of the main ML classification
algorithms capable of access control policy verification. Among other ML classification
algorithms, which are better suited to regression analysis for numerical data [MG17], DT and RFC
algorithms apply binary tree algorithms that support the processing of non-regression analysis of
binary data. Figure 1 shows an example binary tree model generated by the RFC classification
algorithm.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Figure 1: 1a (above), 1b (below) – Subtrees model generated by RFC classifier

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Compared to DT, an RFC algorithm is more suitable for access control policy verification because
from the perspective of a rendered model, an RFC algorithm generates ensembles of decision
subtrees that represent multiple model policy rules. In contrast, a DT algorithm generates a single
decision tree model that represents a single rule underlying combined rule logics. The rule is hard
to abstract into separate expressive rules unless the DT tree is pruned or limited to split, but that
might cause incompleteness of the model. In addition, policy attribute values may be binary or
non-binary (e.g., rank and age) types that are applicable to different traditional verification
methods. For both algorithms, verifications of policies have only a binary attribute value. The
overfitting of models will not cause inaccuracy. However, for non-binary values with numeric
number policies, such as a situation-aware policy, the classification is based on the regression
analysis, and the overfitting may cause inaccurate analysis. In this regard, RFC is able to reduce
overfitting while retaining accuracy, which DT does not support.

In summary, the advantages of the RFC algorithm over the DT algorithm and traditional
verification methods for access control policy verification are illustrated in Figure 2. The numbers
attached to the dotted lines categorize the challenges listed below, which are answered by the
connecting ML classification methods in squares.

1. Requires test case/requirements or oracle to discover all possible policy faults
2. Difficult to implement and update to the simulated system
3. Cannot render separated policy rules from model and may overfit for policy with non-

binary attributes values

The solid lines point to the applicable traditional verification methods or ML classification
algorithms for the connected access control policies in the circle with the types of attributes
specified.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Figure 2: Mapping of access control policy types and verification methods

As shown in Figure 2, RFC is the only method that can answer all three challenges, which other
methods can only partially address.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

3 RFC Verification Approach

Applying the RFC algorithm to policy verification requires the preparation of a data table that
contains classification-required training and test data transferred from specific access control
policy rules. In the table, each column contains an attribute, action, or permission value. Each row
represents a policy rule, and the access permission is based on the attribute and action values in
the row.

In Figure 3, an access control policy is specified in a table: columns A and B contain subject
attributes, columns C and D contain available actions, columns E to G contain object attributes,
and column H contains the grant (1) or deny (0) access permission for rules from rows 2 to 20. For
example, columns A and B are subject attributes “Project-A member” and “Project-B member”,
and columns C and D are available access actions of read and write. Columns E to G are
“document-X”, “document-Y”, and “document-Z”. Column H is a permission state 1 or 0, meaning
“grant” or “deny.” For instance, the rule of row 2 states that a user is a member of Project-A and
Project-B and can read the document-X.

Figure 3: Access control policy rules specified in a data table

The size of a data table, therefore, is the number of subject and object attributes plus the number
of available actions plus one permission state total times the number of access control rules. As

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

with some access control systems, policy rules are automatically generated from previous access
logs or by an intelligent mechanism. To make sure that the policy rules are reasonable (i.e.,
syntactically correct), the table needs to be cleaned so that it contains only enforceable rules. The
cleaning is done by removing rules that contain no assigned subject attribute, action, or object
attribute values. Additionally, any rule that contains more than one action or more than one object
attribute value needs to be broken into separate sub-rules that each contain only one action and
one object attribute value. The reason for this is that the RFC subtree model can only branch by
evaluating Boolean EITHER OR of a tree node representing an attribute or action.

Note that the combinations of sub-rules with only one action and only one object attribute value
for each are semantically the same as the original single rule they derived from. As a result, the
cleaned data table contains policy rules that have one or more subject attributes values, only one
action, and only one object attribute value. In other words, the original policy’s AND Boolean
relations for subject attribute values can be listed in the same row, but OR relations for actions or
object attribute values need to be dispersed to different rows. The rationale for doing so is that to
render a model rule from RFC model subtrees, subject attribute nodes’ AND relations need to be
in the same true paths of a tree branch, but a subject/object attribute or action node’s OR relation
has to be in true paths from different subtree branches.

Syntactically reasonable policy rules may have semantic errors (i.e., contain conflicts between
rules), such as the following three set rules:

1. Either one is correct but not both:
user has subject attribute A read object with object attribute X is granted;
user has subject attribute A read object with object attribute X is denied

2. The latter two rules conflict with the first one:
user has subject attribute A or B read object with object attribute X is granted;
user has subject attribute A read object with object attribute X is denied;
user has subject attribute B read object with object attribute X is denied

3. Either one is correct but not both:
user has subject attribute A or B read object with object attribute X is granted;
user has subject attribute A and B read object with object attribute X is denied

For verification of a policy that only has binary attribute values, there is no need for test data
because instead of a general purpose of prediction from a classification algorithm, the goal is to
analyze the accuracy (i.e., correctness) of rules specified in training data. Hence, in order to
include all policy rules in training data, the ratio of test set data to training data must be kept to a
minimum. However, the algorithm may require no empty test data. In such cases, if the algorithm
allowed, some training data can be duplicated to test data. The data table can then be processed by
the RFC algorithm to render an RFC subtrees model (Figure 1), whose subtree branches may be
rendered to zero or more model policy rules from paths linked by the tree nodes of attributes,
actions, and tree leaves of permissions.

After the generation of an RFC subtree model, the analysis of accuracy function is executed to
verify the model against the training data to ensure that it is 100 % accurate and to verify the

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

semantic correctness of the policy rules. In addition to detect permission conflict rules, the RFC
model is able to recognize (i.e., find no conflict with) the following policy rule semantics:

• Condition property: For example, the rules “user has subject attributes A read object with
attribute X is granted” and “user has subject attributes A and B read object with attribute
X is granted” are not in conflict with the rule “user has subject attributes B read object
with attribute X is denied.”

• SOD (separation of duty) property: For example, the rule “user has subject attributes A
read object with attribute X is granted” is not in conflict with the rule “user has subject
attributes A and B read object with attribute X is be denied.”

• Exclusion property: For example, the rule “user has subject attributes A or B read object
with attribute X is granted” is not in conflict with the rule “user has subject attributes A
and B read object with attribute X is denied.”

For this experiment, the RandomForestClassifier algorithm was applied from Sklearn
[SKLEARN], as shown in Figure 4, for Figure 3 sample policy verification. Since the parameter
settings of the algorithm affect the number and shape of subtrees, the following parameters need
to be set in order to render as many model rules from subtrees as possible to cover verification
against original policy rules.

• Use max feature to allow the algorithm to select all subject/object attributes and actions for
subtree nodes.

• The min_samples_split number should be equal to the minimum number of data point
samples to allow the subtree branches to split the minimum number of nodes allowed,
which affects the level of a tree and, therefore, the number of model rules rendered. All
relations between attributes and actions should be included.

• If the RFC algorithm required at least one test data, then set sample number instead of
floating number in train_test_split class to be exactly the number of the policy rules plus
an additional one for test data, because according to the floating number there might be
more than one rule to be split to test data.

• Set n_estimator, the number of subtrees, to at least 2(|S|+|A|+|O|+|P|) in order to include all
possible relations between attributes and actions. Where |S| is the number of subject
attributes, |A| is the number of actions, |O| is the number object attributes, and |P| is the
number of permissions.

• Set >= 0.5 for 1 (Boolean ‘true’) and <=0.5 for 0 (Boolean ‘false’) on evaluating the values
of attributes, actions, and permissions for branch factor to next subtree generation.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Figure 4: RFC program in Python code

Each RFC model subtree branch that starts from any node to a leaf has one or more of the 54
branch types composed by containing attribute and action nodes in true paths. A branch type is
one of the combinations consisting of three options of multiple, single, or no subject attributes
times three options of multiple, single, or no actions times three options of multiple, single, or no
object attributes times two options of permissions. As described earlier, among those types, only
four can be accepted as syntactically correct (i.e., enforceable) model rules as listed below, where
sa is a subject attribute, a is an action, and oa is an object attribute.

Branch type 1: contains one sa, one a, and one oa with grant
Branch type 2: contains multiple sas, one a, and one oa with grant
Branch type 3: contains one sa, one a, and one oa with deny
Branch type 4: contains multiple sas, one a, and one oa with deny

For example, the subtree in Figure 1a can be rendered to one rule: user has subject attribute 1, and
subject attribute 2 can write object with object attribute 1. Alternatively, no rule can be rendered
from the Figure 1b subtree. (Note that, in this experiment, the false path is followed because the
algorithm treats a value greater than 0.5 to be the Boolean false, which is an AND relation for
rules.) Formally, a subtree branch contains at least one subject attribute, only one action, and only
one object attribute linked by true paths that can be rendered to be a model policy rule. Figure 5

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

lists rendered rules from RFC model subtrees in table format. For example, entry 6 (rule number
4) is from the Figure 1a subtree. Note that there are 147 rules rendered for this sample; due to the
page limit, only the first 28 are listed.

Figure 5: First 28 rendered model rules from RFC subtrees

Table 1 shows the statistic results that match original policy rules from Figure 3 with rendered
rules from the RFC subtree model in Figure 5.

Table 1: Statistic from comparison of rendered model rules in Figure 5 with policy rules in Figure 3

Rules ID 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sub # * 2 3 0 6 10 1 11 4 5 6 7 7 3 4 1 3 0 4 1
Con # ** 0 0 0 0 0 0 0 0 0 1 4 0 1 0 0 3 0 1 0

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

* Number of times the rule is rendered from RFC model subtree
** Number of rendered rules that conflict with the original policy rule

The first row is the rules identifier (ID) of the original policy under verification. The second row
is the number of rendered rules from RFC model subtrees that match the original policy rule. The
third row lists the number of conflicts of rendered rules against the original policy rule in terms of
permissions (grant/deny) to the target class. The statistic shows that, except for rules number 4 and
18 of the policy, rules found matches by at least one of the subtree branches rendered from a total
of 128 model subtrees. Note that the two non-matches because the number of subtrees is not
enough to generate rules to cover them. This can be adjusted by increasing the parameter
n_estimators in Figure 4, where 128 is increased to 256:

forest= RandomForestClassifier(n_estimators=256, random_state=0, min_samples_split=2)

The analysis of accuracy function provides the percentage of semantic correctness of the original
policy versus the RFC model. A correctness of less than 100 % indicates that conflict (error) rules
may exist in the policy, as shown in Table 1, where five rules numbered 11, 12, 14, 17, and 19
conflict with others. Even with the conflicts, 100 % accuracy was reported on training data in
Figure 4 (i.e., no faults in the policy), because the RFC algorithm uses a majority votes mechanism
to resolve the conflicts. However, if the accuracy is not 100 %, the conflicts are most likely what
cause faults in policy, especially the ones with a higher rate of matched versus conflicts (e.g., rule
number 17 in Table 1 has the highest of 3/3).

Figure 6 shows steps for the RFC policy verification process as described above.

Figure 6: Machine Learning RFC method for access control policy verification

In Step 1, the policy under verification is transferred, cleaned into a data table (e.g., Figure 3), and
entered to the RFC (e.g., Figure 4) process in Step 2. This generates a subtree model (e.g., Figure
1) that will be analyzed for the accuracy (i.e., the correctness) of the original policy in Step 3. If
the accuracy analysis result is not 100 %, the subtree model needs to be further processed to render
model rules (e.g., Figure 5) in Step 4. Finally, in Step 5, the original policy can be matched to

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

produce an error report (e.g., Table 1) for policy rules that are not recognized or that conflict with
rendered model rules.

A scikit-learn package from scikit-learn.org [SKLEARN] was used for the RFC classification
algorithm, and Jupyter Notebook [JUPY] for Python [PYTH] was used for the program interface.
The result shows that faults in an access control policy can be detected when the accuracy analysis
result is not 100 %. In a few cases, the number of subtrees generated by the RFC model were not
enough to cover all policy rules (such as two unrecognized rules in Table 1), which can be adjusted
by increasing the number of subtrees generated by setting the n_estimator parameter and repeating
the analysis process.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

4 Applications

In addition to access control policy rule verification, there are three major types of applications
that the RFC method can support, as described below.

1. Enhancement of existing verification method – In addition to replacing traditional access
control policy verification methods, the RFC verification method can be used to enhance
traditional methods by checking the correctness of the policy model itself before applying
it to test new or updated cases. Most traditional model verification methods assume that
the access control policy has no faults until new or updated rules are tested against. For
example, Access Control Policy Tool (ACPT) [Hwang et al. 10, ACPT] uses security
requirements as test cases for counterexample generation of found faults. It would be more
efficient if the policy model error can be verified without composing security requirements
to discover faults that already exist in the model.

2. Verification for policy with numerical attributes – Some context-aware access control
policies, such as Policy Based Access Control (PBAC) [PBAC] or situation-awarded
access control systems, have attributes as numerical variables. These non-binary attributes
measure values such as numbers, volumes, and other measurable counts to make access
decisions for policy rules, such as “if the current security level is greater than 3, then the
user has subject attribute X and is allowed to access resource with object attribute Y,” or
“if the total amount of spending is higher than $50, then the discount is accessible to
customers but not accessible to employees.” These policies cannot be verified by traditional
verification methods, including an infinite number of attribute values in test cases/oracle.
The RFC verification method for these policies is especially useful because an RFC
algorithm is fundamentally equipped for the evaluation of regression values. Its branch
factors for subtree nodes test the limitations of attribute values, as shown in Figure 7, where
the time and the temperature attribute values can vary to an unlimited real number
depending on the resolutions of the variables.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

Figure 7: Numerical attribute values in a subtree model

3. Policy enforcement – In addition to the verification for policy with numerical attributes
as described above, the RFC method can be used for policy enforcing mechanisms
[LDW20] to automatically decide the permissions of an access request that was not
delineated in any policy rule, especially for policies with a wide range of attribute values,
because it is impractical to list all possible rules to accommodate all possible attribute
values in the policy. For such applications, the RFC method should take an access request
as additional test data to perform accuracy analysis. Without 100 %, the access request
should be denied.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

5 Conclusion

A machine learning classification algorithm is particularly efficient for system model verification
because it does not require comprehensive or complex test cases or oracle, which are needed for
traditional model verification methods. This report proposes an innovative technique that applies
the machine learning random forest classification algorithm to answer challenges for traditional
access control policy verification methods due to the capability of test cases and oracle for
discovering faults. The algorithm uses access control policy rules as samples (training data) and
the permission assigned to the rules as a classification target. The algorithm generates a
classification subtree model of the policy, analyzes the accuracy in percentage against the model,
and detects inconsistencies (i.e., faults) in the policy rules. Unlike traditional system simulation
methods that require complex system translation, the random forest classification algorithm allows
for directly entering new and updated rules for verification in the form of data instead of system
components, thereby improving performance efficiency.

This report demonstrates an experiment for the proposed method with an example that uses current
available machine learning tools to facilitate the random forest classification algorithm. The result
illustrates its capabilities as well as parameter settings for performing the verification steps.
Ultimately, three general applications are provided: enhancement of existing verification methods,
verification of access control policies with numerical attributes, and policy enforcement that can
be supported by the proposed machine learning policy verification method.

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

References

[ACPT] National Institute of Standards and Technology (2021) Access Control Policy
Tool (ACPT). Available at https://www.nist.gov/programs-projects/access-
control-policy-tool-acpt

[ACRLCS] National Institute of Standards and Technology (2021) Access Control Rule
Logic Circuit Simulation (ACRLCS). Available at
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/access-control-rule-
logic-circuit-simulation

[ACTS] National Institute of Standards and Technology (2021) Automated
Combinatorial Testing for Software (ACTS). Available at
https://www.nist.gov/programs-projects/automated-combinatorial-testing-
software-acts

[AS15] Aqib M, Ahmed S R (2014) Analysis and Comparison of Access Control
Policies Validation Mechanisms. International Journal of Computer Network
and Information Security 7(1):54-69. https://doi.org/10.5815/ijcnis.2015.01.08

[AWCS] Merrill P (2017) Top trends: 5 ways AI will change software testing.
Available at https://techbeacon.com/app-dev-testing/5-ways-ai-will-change-
software-testing

[CAT5] Colantonio J (2018) 5 great ways to use AI in your test automation. Available
at https://techbeacon.com/app-dev-testing/how-ai-changing-test-automation-5-
examples

[CFMYZ93] Clarke E, Fujita M, McGeer P, Yang J, Zhao X (1993) Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation.
International Workshop on Logic Synthesis. Available at
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1456&context=compsci

[Fisler et al. 05] Fisler K, Krishnamurthi S, Meyerovich L A, Tschantz M C (2005)
Verification and Change Impact Analysis of Access Control Policies.
Proceeding, 27th International Conference on Software Engineering (New
York, USA), pp 196-205. https://doi.org/10.1145/1062455.1062502

[Hele17] Helemski G (2017) Policy Based Access Control: 5 Key Features. Available
at https://blog.plainid.com/5-key-features-of-policy-based-access-control

[Hwang et al.] Hwang J, Xie, Hu V, Altunay M (2010) ACPT: A Tool for Modeling and
Verifying Access Control Policies. IEEE International Symposium on Policies
for Distributed Systems and Networks (P0LICY 2010) (IEEE, Fairfax, USA).
https://doi.org/10.1109/POLICY.2010.22

[JUPY] Project Jupyter (2021) Jupyter Notebook. Available at https://jupyter.org/

https://www.nist.gov/programs-projects/access-control-policy-tool-acpt
https://www.nist.gov/programs-projects/access-control-policy-tool-acpt
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/access-control-rule-logic-circuit-simulation
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/access-control-rule-logic-circuit-simulation
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://doi.org/10.5815/ijcnis.2015.01.08
https://techbeacon.com/app-dev-testing/5-ways-ai-will-change-software-testing
https://techbeacon.com/app-dev-testing/5-ways-ai-will-change-software-testing
https://techbeacon.com/app-dev-testing/how-ai-changing-test-automation-5-examples
https://techbeacon.com/app-dev-testing/how-ai-changing-test-automation-5-examples
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1456&context=compsci
https://doi.org/10.1145/1062455.1062502
https://blog.plainid.com/5-key-features-of-policy-based-access-control
https://doi.org/10.1109/POLICY.2010.22
https://jupyter.org/

NISTIR 8360 MACHINE LEARNING FOR ACCESS CONTROL
 POLICY VERIFICATION

 18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8360

[Kayesa et al.] Kayes ASM, Rahayu W, Dillon T, Chang E, Han J (2019) Context-aware
access control with imprecise context characterization for cloud-based data
resources. Future Generation Computer Systems 93(April 2019):237-255.
https://doi.org/10.1016/j.future.2018.10.036

[LDW20] Liu A, Du X, Wang N, (2021) Efficient Access Control Permission Decision
Engine Based on Machine Learning. Security and Communication Networks
2021, Article ID 3970485. https://doi.org/10.1155/2021/3970485

[MARG] Margrave (2021) The Margrave Policy Analyzer. Available at
http://www.margrave-tool.org/

[MG17] Müller AC, Guido S (2016) Introduction to Machine Learning with Python
(O’Reilly Media, Sebastopol, CA).

[NuSMV] NuSMV (2021) NuSMV: A new symbolic model checker. Available at
http://nusmv.fbk.eu/

[PBAC] Axiomatics (2021) What is Policy Based Access Control (PBAC)? Available
at https://www.axiomatics.com/policy-based-access-control/

[PYTH] Python Software Foundation (2021) Python. Available at
https://www.python.org/

[SKLEARN] scikit-learn (2020) sklearn.ensemble.RandomForestClassifier, scikit-learn
0.24.1. Available at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html

[SND13] Saghafi S, Nelson T, Dougherty DJ (2013) Geometric Logic for Policy
Analysis. International Workshop on Automated Reasoning in Security and
Software Verification (Nancy, France), pp 1-9. Available at
http://web.cs.wpi.edu/~tn/publications/snd-arsec13-geometric.pdf

[SP192] Hu VC, Kuhn DR, Yaga DJ (2017) Verification and Test Methods for Access
Control Policies/Models. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-192.
https://doi.org/10.6028/NIST.SP.800-192

[VK13] Hu VC, Scarfone KA (2013) Real-Time Access Control Rule Fault Detection
Using a Simulated Logic Circuit. Proceeding, 2013 ASE/IEEE International
Conference on Privacy, Security, Risk and Trust, (IEEE, Alexandria,
Virginia), pp 494-501. https://doi.org/10.1109/SocialCom.2013.76

[XACML] OASIS (2021) OASIS eXtensible Access Control Markup Language (XACML)
TC. Available at https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

https://doi.org/10.1016/j.future.2018.10.036
https://doi.org/10.1155/2021/3970485
http://www.margrave-tool.org/
http://nusmv.fbk.eu/
https://www.axiomatics.com/policy-based-access-control/
https://www.python.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://web.cs.wpi.edu/%7Etn/publications/snd-arsec13-geometric.pdf
https://doi.org/10.6028/NIST.SP.800-192
https://doi.org/10.1109/SocialCom.2013.76
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

	NISTIR 8360, Machine Learning for Access Control Policy Verification
	Executive Summary
	Table of Contents
	1 Introduction
	2 Machine Learning for Access Control Verification
	3 RFC Verification Approach
	4 Applications
	5 Conclusion
	References

