
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date October 27, 2021

Original Release Date May 20, 2021

Superseding Document

Status 2nd Public Draft (2PD)

Series/Number NIST Interagency or Internal Report 8320

Title Hardware-Enabled Security: Enabling a Layered Approach to
Platform Security for Cloud and Edge Computing Use Cases

Publication Date October 2021

DOI https://doi.org/10.6028/NIST.IR.8320-draft2

CSRC URL https://csrc.nist.gov/publications/detail/nistir/8320/draft

Additional Information

https://doi.org/10.6028/NIST.IR.8320-draft2
https://csrc.nist.gov/publications/detail/nistir/8320/draft

Draft NISTIR 8320 1

Hardware-Enabled Security: 2

Enabling a Layered Approach to Platform Security for Cloud 3

and Edge Computing Use Cases 4

5

Michael Bartock 6
Murugiah Souppaya 7

Ryan Savino 8
Tim Knoll 9

Uttam Shetty 10
Mourad Cherfaoui 11

Raghu Yeluri 12
Akash Malhotra 13
Karen Scarfone 14

15

16

17

18 This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8320-draft 19

20

21

22

https://doi.org/10.6028/NIST.IR.8320-draft

Draft NISTIR 8320 23

Hardware-Enabled Security: 24

Enabling a Layered Approach to Platform Security for Cloud 25

and Edge Computing Use Cases 26

Michael Bartock 27
Murugiah Souppaya 28

Computer Security Division 29
Information Technology Laboratory 30

 31
Ryan Savino 32

Tim Knoll 33
Uttam Shetty 34

Mourad Cherfaoui 35
Raghu Yeluri 36

Intel Data Platforms Group 37
Santa Clara, CA 38

 39
Akash Malhotra 40

AMD Product Security and Strategy Group 41
Austin, TX 42

 43
Karen Scarfone 44

Scarfone Cybersecurity 45
Clifton, VA 46

 47
 48
 49

May 2021 50
 51

 52
 53

U.S. Department of Commerce 54
Gina Raimondo, Secretary 55

 56
National Institute of Standards and Technology 57

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce 58
for Standards and Technology & Director, National Institute of Standards and Technology 59

National Institute of Standards and Technology Interagency or Internal Report 8320 60
58 pages (May 2021) 61

This publication is available free of charge from: 62
https://doi.org/10.6028/NIST.IR.8320-draft 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67
There may be references in this publication to other publications currently under development by NIST in accordance 68
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 69
may be used by federal agencies even before the completion of such companion publications. Thus, until each 70
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 71
planning and transition purposes, federal agencies may wish to closely follow the development of these new 72
publications by NIST. 73
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 74
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 75
https://csrc.nist.gov/publications. 76

Public comment period: May 27, 2021 through June 30, 2021 77
National Institute of Standards and Technology 78

Attn: Applied Cybersecurity Division, Information Technology Laboratory 79
100 Bureau Drive (Mail Stop 2000) Gaithersburg, MD 20899-2000 80

Email: hwsec@nist.gov 81

All comments are subject to release under the Freedom of Information Act (FOIA). 82

 83

https://csrc.nist.gov/publications
mailto:hwsec@nist.gov

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

ii

Reports on Computer Systems Technology 84

The Information Technology Laboratory (ITL) at the National Institute of Standards and 85
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 86
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 87
methods, reference data, proof of concept implementations, and technical analyses to advance 88
the development and productive use of information technology. ITL’s responsibilities include the 89
development of management, administrative, technical, and physical standards and guidelines for 90
the cost-effective security and privacy of other than national security-related information in 91
federal information systems. 92

Abstract 93

In today’s cloud data centers and edge computing, attack surfaces have significantly increased, 94
hacking has become industrialized, and most security control implementations are not coherent 95
or consistent. The foundation of any data center or edge computing security strategy should be 96
securing the platform on which data and workloads will be executed and accessed. The physical 97
platform represents the first layer for any layered security approach and provides the initial 98
protections to help ensure that higher-layer security controls can be trusted. This report explains 99
hardware-enabled security techniques and technologies that can improve platform security and 100
data protection for cloud data centers and edge computing. 101

Keywords 102

confidential computing; container; hardware-enabled security; hardware security module 103
(HSM); secure enclave; trusted execution environment (TEE); trusted platform module (TPM); 104
virtualization. 105

Disclaimer 106

Any mention of commercial products or reference to commercial organizations is for information 107
only; it does not imply recommendation or endorsement by NIST, nor does it imply that the 108
products mentioned are necessarily the best available for the purpose. 109

 110

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

iii

Acknowledgments 111

The authors thank everyone who contributed their time and expertise to the development of this 112
report, including: 113

• From Intel Corporation: Ravi Sahita, Alex Eydelberg, Sugumar Govindarajan, Kapil 114
Sood, Jeanne Guillory, David Song, Scott Raynor, Scott Huang, Matthew Areno, Charlie 115
Stark, Subomi Laditan, Kamal Natesan, Haidong Xia, Jerry Wheeler, Dhinesh 116
Manoharan, and John Pennington 117

• From AMD: David Kaplan and Kathir Nadarajah 118

Audience 119

The primary audiences for this report are security professionals, such as security engineers and 120
architects; system administrators and other information technology (IT) professionals for cloud 121
service providers; and hardware, firmware, and software developers who may be able to leverage 122
hardware-enabled security techniques and technologies to improve platform security for cloud 123
data centers and edge computing. 124

Trademark Information 125

All registered trademarks or trademarks belong to their respective organizations. 126

 127

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

iv

Call for Patent Claims 128

This public review includes a call for information on essential patent claims (claims whose use 129
would be required for compliance with the guidance or requirements in this Information 130
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 131
directly stated in this ITL Publication or by reference to another publication. This call also 132
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 133
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 134
 135
ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 136
in written or electronic form, either: 137
 138

a) assurance in the form of a general disclaimer to the effect that such party does not hold 139
and does not currently intend holding any essential patent claim(s); or 140

 141
b) assurance that a license to such essential patent claim(s) will be made available to 142

applicants desiring to utilize the license for the purpose of complying with the guidance 143
or requirements in this ITL draft publication either: 144

 145
i. under reasonable terms and conditions that are demonstrably free of any unfair 146

discrimination; or 147
ii. without compensation and under reasonable terms and conditions that are 148

demonstrably free of any unfair discrimination. 149
 150
Such assurance shall indicate that the patent holder (or third party authorized to make assurances 151
on its behalf) will include in any documents transferring ownership of patents subject to the 152
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 153
the transferee, and that the transferee will similarly include appropriate provisions in the event of 154
future transfers with the goal of binding each successor-in-interest. 155
 156
The assurance shall also indicate that it is intended to be binding on successors-in-interest 157
regardless of whether such provisions are included in the relevant transfer documents. 158
 159
Such statements should be addressed to: hwsec@nist.gov 160
 161

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

v

Table of Contents 162
1 Introduction .. 1 163
2 Hardware Platform Security Overview ... 3 164
3 Platform Integrity Verification ... 5 165

3.1 Hardware Security Module (HSM) .. 5 166
3.2 The Chain of Trust (CoT) .. 6 167
3.3 Supply Chain Protection ... 7 168

4 Software Runtime Protection Mechanisms ... 8 169
4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 170
(COP/JOP) Attacks ... 8 171
4.2 Address Translation Attacks ... 8 172

5 Data Protection and Confidential Computing .. 10 173
5.1 Memory Isolation ... 10 174
5.2 Application Isolation .. 11 175
5.3 VM Isolation .. 11 176
5.4 Cryptographic Acceleration ... 11 177

6 Remote Attestation Services... 13 178
6.1 Platform Attestation ... 13 179
6.2 TEE Attestation ... 15 180

7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security 17 181
7.1 Visibility to Security Infrastructure ... 17 182
7.2 Workload Placement on Trusted Platforms ... 17 183
7.3 Asset Tagging and Trusted Location .. 19 184
7.4 Workload Confidentiality ... 20 185
7.5 Protecting Keys and Secrets ... 22 186

8 Next Steps .. 24 187
References ... 25 188
 189

List of Appendices 190
Appendix A— Vendor-Agnostic Technology Examples .. 29 191

A.1 Platform Integrity Verification .. 29 192
A.1.1 UEFI Secure Boot (SB) .. 29 193

Appendix B— Intel Technology Examples .. 31 194

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

vi

B.1 Platform Integrity Verification .. 31 195
B.1.1 The Chain of Trust (CoT) .. 31 196
B.1.2 Supply Chain Protection ... 35 197

B.2 Software Runtime Protection Mechanisms ... 36 198
B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented 199
Programming (COP/JOP) Attacks ... 36 200
B.2.2 Address Translation Attacks ... 36 201

B.3 Data Protection and Confidential Computing .. 38 202
B.3.1 Memory Isolation .. 38 203
B.3.2 Application Isolation.. 39 204
B.3.3 VM Isolation .. 40 205
B.3.4 Cryptographic Acceleration .. 40 206
B.3.5 Technology Example Summary .. 41 207

B.4 Remote Attestation Services ... 42 208
B.4.1 Intel Security Libraries for the Data Center (ISecL-DC) 42 209
B.4.2 Technology Summary ... 42 210

Appendix C— AMD Technology Examples ... 43 211
C.1 Platform Integrity Verification .. 43 212

C.1.1 AMD Platform Secure Boot (AMD PSB) ... 43 213
C.2 Data Protection and Confidential Computing .. 43 214

C.2.1 Memory Isolation: AMD Secure Memory Encryption 215
(SME)/Transparent Memory Encryption (TSME) ... 43 216
C.2.2 VM Isolation: AMD Secure Encrypted Virtualization (SEV) 44 217

Appendix D— Acronyms and Abbreviations .. 45 218
Appendix E— Glossary ... 49 219
 220

List of Figures 221

Figure 1: Notional Example of Remote Attestation Service ... 14 222
Figure 2: Notional Example of TEE Attestation Flow ... 16 223
Figure 3: Notional Example of Orchestrator Platform Labeling 18 224
Figure 4: Notional Example of Orchestrator Scheduling .. 19 225
Figure 5: Notional Example of Key Brokerage .. 20 226
Figure 6: Notional Example of Workload Image Encryption .. 21 227

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

vii

Figure 7: Notional Example of Workload Decryption ... 22 228
Figure 8: Firmware and Software Coverage of Existing Chain of Trust Technologies .. 34 229
 230

 231

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

1

1 Introduction 232

In today’s cloud data centers and edge computing, there are three main forces that impact 233
security: (1) the introduction of billions of connected devices and increased adoption of the cloud 234
have significantly increased attack surfaces; (2) hacking has become industrialized with 235
sophisticated and evolving techniques to compromise data; and (3) solutions composed of 236
multiple technologies from different vendors result in a lack of coherent and consistent 237
implementations of security controls. Given these forces, the foundation for a data center or edge 238
computing security strategy should have a consolidated approach to comprehensively secure the 239
entire hardware platform on which workloads and data are executed and accessed. 240

In the scope of this document, the hardware platform is a server (e.g., application server, storage 241
server, virtualization server) in a data center or edge compute facility. The server’s hardware 242
platform, also called the server platform, represents the first part of the layered security 243
approach. Hardware-enabled security—security with its basis in the hardware platform—can 244
provide a stronger foundation than one offered by software or firmware, which can be modified 245
with relative ease. Hardware root of trust presents a smaller attack surface due to the small 246
codebase. Existing security implementations can be enhanced by providing a base-layer, 247
immutable hardware module that chains software and firmware verifications from the hardware 248
all the way to the application space or specified security control. In that manner, existing security 249
mechanisms can be trusted even more to accomplish their security goals without compromise, 250
even when there is a lack of physical security or attacks originate from the software layer. 251

This report explains hardware-based security techniques and technologies that can improve 252
server platform security and data protection for cloud data centers and edge computing. The rest 253
of this report covers the following topics: 254

• Section 2 provides an overview of hardware platform security. 255

• Section 3 discusses the measurement and verification of platform integrity. 256

• Section 4 explores software runtime attacks and protection mechanisms. 257

• Section 5 considers protecting data in use, also known as confidential computing. 258

• Section 6 examines remote attestation services, which can collate platform integrity 259
measurements to aid in integrity verification. 260

• Section 7 describes a number of cloud use case scenarios that take advantage of 261
hardware-enabled security. 262

• Section 8 states the next steps for this report and how others can contribute. 263

• The References section lists the cited references for this report. 264

• Appendix A describes vendor-agnostic technology examples. 265

• Appendix B describes Intel technology examples. 266

• Appendix C describes technology examples from AMD. 267

• Appendix D lists the acronym and abbreviations used in the report. 268

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

2

• Appendix E provides a glossary of selected terms used in the report. 269

As technology and security capabilities evolve, NIST is continuously seeking feedback from the 270
community on the content of the report and soliciting additional technology example 271
contributions from other companies. 272

Although this document does not address other platforms like laptops, desktops, mobile devices, 273
or Internet of Things (IoT) devices, the practices in this report can be adapted to support those 274
platforms and their associated use cases. 275

Please send your feedback and comments to hwsec@nist.gov. 276

 277

mailto:hwsec@nist.gov

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

3

2 Hardware Platform Security Overview 278

The data center threat landscape has evolved in recent years to encompass more advanced attack 279
surfaces with more persistent attack mechanisms. With increased attention being applied to high-280
level software security, attackers are pushing lower in the platform stack, forcing security 281
administrators to address a variety of attacks that threaten the platform firmware and hardware. 282
These threats can result in: 283

• Unauthorized access to and potential extraction of sensitive platform or user data, 284
including direct physical access to dual in-line memory modules (DIMMs) 285

• Modification of platform firmware, such as that belonging to the Unified Extensible 286
Firmware Interface (UEFI)/Basic Input Output System (BIOS), Board Management 287
Controller (BMC), Manageability Engine (ME), Peripheral Component Interconnect 288
Express (PCIE) device, and various accelerator cards 289

• Supply chain interception through the physical replacement of firmware or hardware with 290
malicious versions 291

• Access to data or execution of code outside of regulated geopolitical or other boundaries 292

• Circumvention of software and/or firmware-based security mechanisms 293

For example, LoJax, discovered in August 2018, manifests itself in UEFI malware, allowing it to 294
continuously persist in the firmware layer despite operating system (OS) reinstallations, and thus 295
remain invisible to standard kernel-based virus scans [1]. These attacks can be devastating to 296
cloud environments because they often require server-by-server rebuilds or replacements, which 297
can take weeks. Although still rare, these attacks are increasing as attackers become more 298
sophisticated. 299

Workloads subject to specific regulations or containing sensitive data present additional security 300
challenges for multi-tenant clouds. While virtualization and containers significantly benefit 301
efficiency, adaptability, and scalability, these technologies consolidate workloads onto fewer 302
physical platforms and introduce the dynamic migration of workloads and data across platforms. 303
Consequently, cloud adoption results in a loss of consumer visibility and control over the 304
platforms that host virtualized workloads and data, and introduces the usage of third-party 305
infrastructure administrators. Cloud providers and cloud adopters follow a shared responsibility 306
model, where each party has responsibility for different aspects of the overall implementation. 307
Cloud providers can expose information related to infrastructure security and platform capability 308
in order to provide their tenants with security assurances. Furthermore, cloud providers often 309
have data centers that span multiple geopolitical boundaries, subjecting workload owners to 310
complicated legal and regulatory compliance requirements from multiple countries. Hybrid cloud 311
architectures, in particular, utilize multiple infrastructure providers, each with their own 312
infrastructure configurations and management. 313

Without physical control over or visibility into platform configurations, conventional security 314
best practices and regulatory requirements become difficult or impossible to implement. With 315
new regulatory structures like the European General Data Protection Regulation (GDPR) 316
introducing high-stakes fines for noncompliance, having visibility and control over where data 317
may be accessed is more important than ever before. Top concerns among security professionals 318

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

4

include the protection of workloads from general security risks, the loss or exposure of data in 319
the event of a data breach, and regulatory compliance. 320

Existing mitigations of threats against cloud servers are often rooted in firmware or software, 321
making them vulnerable to the same attack strategies. For example, if the firmware can be 322
successfully exploited, then the firmware-based security controls can most likely be 323
circumvented in the same fashion. Hardware-enabled security techniques can help mitigate these 324
threats by establishing and maintaining platform trust—an assurance in the integrity of the 325
underlying platform configuration, including hardware, firmware, and software. By providing 326
this assurance, security administrators can gain a level of visibility and control over where access 327
to sensitive workloads and data is permitted. Platform security technologies that establish 328
platform trust can provide notification or even self-correction of detected integrity failures. 329
Platform configurations can automatically be reverted back to a trusted state and give the 330
platform resilience against attack. 331

All security controls must have a root of trust (RoT)—a starting point that is implicitly trusted. 332
Hardware-based controls can provide an immutable foundation for establishing platform 333
integrity. Combining these functions with a means of producing verifiable evidence that these 334
integrity controls are in place and have been executed successfully is the basis of creating a 335
trusted platform. Minimizing the footprint of this RoT translates to reducing the number of 336
modules or technologies that must be implicitly trusted. This substantially reduces the attack 337
surface. 338

Platforms that secure their underlying firmware and configuration provide the opportunity for 339
trust to be extended higher in the software stack. Verified platform firmware can, in turn, verify 340
the OS boot loader, which can then verify other software components all the way up to the OS 341
itself and the hypervisor or container runtime layers. The transitive trust described here is 342
consistent with the concept of the chain of trust (CoT)—a method where each software module 343
in a system boot process is required to measure the next module before transitioning control. 344

Rooting platform integrity and trust in hardware security controls can strengthen and 345
complement the extension of the CoT into the dynamic software category. There, the CoT can be 346
extended even further to include data and workload protection. Hardware-based protections 347
through CoT technology mechanisms can form a layered security strategy to protect data and 348
workloads as they move to multi-tenant environments in a cloud data center or edge computing 349
facility. 350

In addition, there are other hardware platform security technologies that can protect data at rest, 351
in transit, and in use by providing hardware-accelerated disk encryption or encryption-based 352
memory isolation. Many of these capabilities can help mitigate threats from speculative 353
execution and side-channel attacks. By using hardware to perform these tasks, the attack surface 354
is mitigated, preventing direct access or modification of the required firmware. Isolating these 355
encryption mechanisms to dedicated hardware can allow performance to be addressed and 356
enhanced separately from other system processes as well. An example of hardware-based 357
isolation is discussed later in the document. 358

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

5

3 Platform Integrity Verification 359

A key concept of trusted computing is verification of the underlying platform’s integrity. 360
Platform integrity is typically comprised of two parts: 361

• Cryptographic measurement of software and firmware. In this report, the term 362
measurement refers to calculating a cryptographic hash of a software or firmware 363
executable, configuration file, or other entity. If there is any change in an entity, a new 364
measurement will result in a different hash value than the original [2]. By measuring 365
software and firmware prior to execution, the integrity of the measured modules and 366
configurations can be validated before the platform launches or before data or workloads 367
are accessed. These measurements can also act as cryptographic proof for compliance 368
audits. 369

• Firmware and configuration verification. When firmware and configuration 370
measurements are made, local or remote attestations can be performed to verify if the 371
desired firmware is actually running and if the configurations are authorized [3]. 372
Attestation can also serve as the foundation for further policy decisions that fulfill various 373
cloud security use case implementations. For instance, encryption keys can be released to 374
client workloads if a proof is performed that the platform server is trusted and in 375
compliance with policies. 376

In some cases, a third part is added to platform integrity: 377

• Firmware and configuration recovery. If the verification step fails (i.e., the attestations 378
do not match the expected measurements), the firmware and configuration can 379
automatically be recovered to a known good state, such as rolling back firmware to a 380
trusted version. The process by which these techniques are implemented affects the 381
overall strength of the assertion that the measured and verified components have not been 382
accidentally altered or maliciously tampered. Recovery technologies allow platforms to 383
maintain resiliency against firmware attacks and accidental provisioning mistakes [4]. 384

There are many ways to measure platform integrity. Most technologies center around the 385
aforementioned concept of the CoT. In many cases, a hardware security module is used to store 386
measurement data to be attested at a later point in time. The rest of this section discusses 387
hardware security modules and various chain of trust technology implementations. 388

3.1 Hardware Security Module (HSM) 389

A hardware security module (HSM) is “a physical computing device that safeguards and 390
manages cryptographic keys and provides cryptographic processing” [5]. Cryptographic 391
operations such as encryption, decryption, and signature generation/verification are typically 392
hosted on the HSM device, and many implementations provide hardware-accelerated 393
mechanisms for cryptographic operations. 394

A trusted platform module (TPM) is a special type of HSM that can generate cryptographic keys 395
and protect small amounts of sensitive information, such as passwords, cryptographic keys, and 396
cryptographic hash measurements. [3] The TPM is a standalone device that can be integrated 397
with server platforms, client devices, and other products. One of the main use cases of a TPM is 398

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

6

to store digest measurements of platform firmware and configuration during the boot process. 399
Each firmware module is measured by generating a digest, which is then extended to a TPM 400
platform configuration register (PCR). Multiple firmware modules can be extended to the same 401
PCR, and the TPM specification provides guidelines for which firmware measurements are 402
encompassed by each PCR [6]. 403

TPMs also host functionality to generate binding and signing keys that are unique per TPM and 404
stored within the TPM non-volatile random-access memory (NVRAM). The private portion of 405
this key pair is decrypted inside the TPM, making it only accessible by the TPM hardware or 406
firmware. This can create a unique relationship between the keys generated within a TPM and a 407
platform system, restricting private key operations to the platform firmware that has ownership 408
and access to the specified TPM. Binding keys are used for encryption/decryption of data, while 409
signing keys are used to generate/verify cryptographic signatures. The TPM provides a random 410
number generator (RNG) as a protected capability with no access control. This RNG is used in 411
critical cryptographic functionality as an entropy source for nonces, key generation, and 412
randomness in signatures [6]. 413

There are two versions of TPMs: 1.2 and 2.0. The 2.0 version supports additional security 414
features and algorithms [6]. TPMs also meet the National Institute of Standards and Technology 415
(NIST) Federal Information Processing Standard (FIPS) 140 validation criteria and support 416
NIST-approved cryptographic algorithms [7]. 417

3.2 The Chain of Trust (CoT) 418

The chain of trust (CoT) is a method for maintaining valid trust boundaries by applying a 419
principle of transitive trust. Each firmware module in the system boot process is required to 420
measure the next module before transitioning control. Once a firmware module measurement is 421
made, it is recommended to immediately extend the measurement value to an HSM register for 422
attestation at a later point in time [6]. The CoT can be extended further into the application 423
domain, allowing for files, directories, devices, peripherals, etc. to be measured and attested. 424

Every CoT starts with an RoT module. It can be composed of different hardware and firmware 425
components. For several platform integrity technologies, the RoT core firmware module is 426
rooted in immutable read-only memory (ROM) code. However, not all technologies define their 427
RoTs in this manner [6]. The RoT is typically separated into components that verify and 428
measure. The core root of trust for verification (CRTV) is responsible for verifying the first 429
component before control is passed to it. The core root of trust for measurement (CRTM) is the 430
first component that is executed in the CoT and extends the first measurement to the TPM. The 431
CRTM can be divided into a static portion (SCRTM) and dynamic portion (DCRTM). The 432
SCRTM is composed of elements that measure firmware at system boot time, creating an 433
unchanging set of measurements that will remain consistent across reboots. The DRTM allows a 434
CoT to be established without rebooting the system, permitting the root of trust for measurement 435
to be reestablished dynamically. 436

An RoT that is built with hardware protections will be more difficult to change, while an RoT 437
that is built solely in firmware can easily be flashed and modified. 438

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

7

Various platform integrity technologies build their own CoTs. Please refer to the following 439
technology examples in the appendices for more information: 440

• UEFI Secure Boot (SB) 441

• Intel Trusted Execution Technology (TXT) 442

• Intel Boot Guard 443

• Intel Platform Firmware Resilience (PFR) 444

• Intel Technology Example Summary 445

• AMD Platform Secure Boot 446

3.3 Supply Chain Protection 447

Organizations are increasingly at risk of supply chain compromise, whether intentional or 448
unintentional. Managing cyber supply chain risks requires, in part, ensuring the integrity, quality, 449
and resilience of the supply chain, its products, and its services. Cyber supply chain risks may 450
include counterfeiting, unauthorized production, tampering, theft, and insertion of malicious or 451
otherwise unexpected software and hardware, as well as poor manufacturing and development 452
practices in the cyber supply chain [8] [9] [10]. 453

Special technologies have been developed to help ascertain the authenticity and integrity of 454
platform hardware, including its firmware and configuration. These technologies help ensure that 455
platforms are not tampered with or altered from the time that they are assembled at the 456
manufacturer site to the time that they arrive at a consumer data center ready for installation. 457
Verification of these platform attributes is one aspect of securing the supply chain.1 Some 458
technologies include an additional feature for locking the boot process or access to these 459
platforms until a secret is provided that only the consumer and manufacturer know. 460

Please refer to the following technology examples in the appendices for more information: 461

• Intel Transparent Supply Chain (TSC) 462

• Intel PFR with Protection in Transit (PIT) 463

 464

1 For more information on supply chain security, see the National Cybersecurity Center of Excellence (NCCoE) Supply Chain
Assurance project page at https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance.

https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

8

4 Software Runtime Protection Mechanisms 465

This section describes various software runtime attacks and protection mechanisms. 466

4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 467
(COP/JOP) Attacks 468

ROP attacks focus on utilizing buffer overflows and targeted memory overwrites of return 469
addresses in the stack. Attackers redirect return flows by corrupting addresses on the data stack 470
to be locations in already-executable code. These small selected sequences of code called 471
gadgets result in malicious modifications to the system or the invocation of normally 472
unauthorized operations. A common example is a call to the shell executable within the system 473
interface [11]. 474

COP/JOP attacks are similar to ROP attacks, relying on gadget building blocks. They target 475
indirect jump instructions at the end of a gadget, many of which are intentionally emitted by the 476
compiler. However, a jump gadget performs a one-directional control flow transfer to its target, 477
as opposed to ROP, where gadgets return control back to the stack. This can make it difficult for 478
attackers to regain control after executing their gadgets, but solutions to this problem, such as the 479
one presented in [11], are beginning to appear. 480

Applications can utilize a parallel stack, known as the shadow stack, to help mitigate software 481
attacks which attempt to modify the control flow. Utilizing special hardware, the shadow stack is 482
used to store a copy of return addresses; the address is checked against the normal program stack 483
on return operations. If the content differs, an exception is generated, which can help prevent 484
malicious code from gaining control of the system with techniques such as ROP. In this way, 485
shadow stack hardware can help mitigate some of the most common and exploitable types of 486
software bugs. 487
Several defenses and preventative measures have been developed within industry to 488
accommodate ROP and COP/JOP attacks, including: 489

• Intel Control-Flow Enforcement Technology (CET) 490

4.2 Address Translation Attacks 491

Commodity operating systems rely on virtual memory protection models enabled via paging 492
enforced by the processor memory management unit. Operating systems isolate process and 493
kernel memory using page tables managed by systems software, with access permissions such as 494
user/supervisor and read/write/execute (RWX). Process and kernel memory accesses are via 495
virtual addresses which are mapped to physical memory addresses via address translation 496
structures. These structures used for address translation are critical to enforcing the isolation 497
model. 498

Modern operating systems are single address space kernels (as opposed to micro-kernels), which 499
provide good performance but have a large attack surface. A vulnerability in the kernel or driver 500
can be leveraged to escalate privileges of a malicious process. Kernel read/write primitives can 501
be leveraged with Write-What-Where vulnerabilities exploited from flaws discovered in kernel 502
code and/or drivers. 503

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

9

Heuristic defense mechanisms such as Page Table randomization can be bypassed with 504
information leaks achieved via malicious read/write primitives. Such information leaks are 505
performed by chaining together a set of system calls (syscalls). For example, one syscall can 506
allocate RWX pool memory, and a second can exploit an arbitrary memory write to overwrite the 507
address translation structures. Two types of attacks can utilize this methodology for nefarious 508
purposes. First, an attacker can redirect a virtual address in use to attacker-controlled contents 509
(many times set up in user-space memory). Second, an attacker can create a malicious alias 510
mapping which references desired physical memory with attacker-chosen permissions (e.g., 511
read/write [RW] access to a page via an alias mapping that was originally read-only). It is 512
important for address translation protection mechanisms to block both of these types of attacks. 513

In addition to protecting the integrity of address translation structures, processors can also detect 514
and block any execution or data access setup by lower privilege code from a higher privilege 515
access. These protections establish boundaries, requiring code to execute with only the necessary 516
permissions and forcing elevated permission requests when needed. 517

Several defenses and preventative measures have been developed within industry to 518
accommodate memory page-table attacks, including the following: 519

• Intel Hypervisor Managed Linear Address Translation (HLAT) 520

• Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 521
Prevention (SMAP) 522

• AMD Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 523
Prevention (SMAP) 524

 525

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

10

5 Data Protection and Confidential Computing 526

With the increase in adoption of consumer-based cloud services, virtualization has become a 527
necessity in cloud data center infrastructure. Virtualization simulates the hardware that multiple 528
cloud workloads run on top of. Each workload is isolated from others so that it has access to only 529
its own resources, and each workload can be completely encapsulated for portability [12] [13]. 530
Conventional virtual machines (VMs) have an isolated kernel space running all aspects of a 531
workload alongside the kernel. Today, the virtualized environment has been extended to include 532
containers and full-featured workload orchestration engines. Containers offer application 533
portability by sharing an underlying kernel, which drastically reduces workload-consumed 534
resources and increases performance. 535

While containers can provide a level of convenience, vulnerabilities in the kernel space and 536
shared layers can be susceptible to widespread exploitation, making security for the underlying 537
platform even more important. With the need for additional protection in the virtualized 538
workspace, an emphasis has been placed on encrypting data both at rest and while in use. At-rest 539
encryption provides protection for data on disk. This typically refers to an unmounted data store 540
and protects against threats such as the physical removal of a disk drive. Protecting and securing 541
cloud data while in use, also referred to as confidential computing, utilizes hardware-enabled 542
features to isolate and process encrypted data in memory so that the data is at less risk of 543
exposure and compromise from concurrent workloads or the underlying system and platform 544
[14]. This section describes technologies that can be leveraged for providing confidential 545
computing for cloud and edge. 546

A trusted execution environment (TEE) is an area or enclave protected by a system processor. 547
Sensitive secrets like cryptographic keys, authentication strings, or data with intellectual property 548
and privacy concerns can be preserved within a TEE, and operations involving these secrets can 549
be performed within the TEE, thereby eliminating the need to extract the secrets outside of the 550
TEE. A TEE also helps ensure that operations performed within it and the associated data cannot 551
be viewed from outside, not even by privileged software or debuggers. Communication with the 552
TEE is designed to only be possible through designated interfaces, and it is the responsibility of 553
the TEE designer/developer to define these interfaces appropriately. A good TEE interface limits 554
access to the bare minimum required to perform the task. 555

5.1 Memory Isolation 556

There are many technologies that provide data protection via encryption. Most of these solutions 557
focus on protecting the respective data while at rest and do not cover the fact that the data is 558
decrypted and vulnerable while in use. Applications running in memory share the same platform 559
hardware and can be susceptible to attacks either from other workloads running on the same 560
hardware or from compromised cloud administrators. There is a strong desire to secure 561
intellectual property and ensure that private data is encrypted and not accessible at any point in 562
time, particularly in cloud data centers and edge computing facilities. Various hardware 563
technologies have been developed to encrypt content running in platform memory. 564

Please refer to the following technology examples in the appendices for more information: 565

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

11

• Intel TME and Multi-Key Total Memory Encryption (MKTME) 566

• AMD Secure Memory Encryption (SME)/Transparent Memory Encryption (TSME) 567

5.2 Application Isolation 568

Application isolation utilizes a TEE to help protect the memory reserved for an individual 569
application. The trust boundary associated with the application is restricted to only the central 570
processing unit (CPU). Future generations of these techniques will allow entire applications to be 571
isolated in their own enclaves rather than only protecting specific operations or memory. By 572
using separate application enclaves with unique per-application keys, sensitive applications can 573
be protected against data exposure, even to malicious insiders with access to the underlying 574
platform. Implementations of application isolation will typically involve developer integration of 575
a toolkit within the application layer, and it is the developer’s responsibility to ensure secure 576
TEE design. 577

Please refer to the following technology examples in the appendices for more information: 578

• Intel Software Guard Extensions (SGX) 579

5.3 VM Isolation 580

As new memory and execution isolation technologies become available, it is more feasible to 581
isolate entire VMs. VMs already enjoy a degree of isolation due to technologies like hardware-582
assisted virtualization, but the memory of each VM remains in the clear. Some existing memory 583
isolation technologies require implicit trust of the virtual machine manager (VMM). Isolation 584
technologies in future platform generations will remove the VMM from the trust boundary and 585
allow full encryption of VM memory with per-VM unique keys, protecting the VMs from not 586
only malicious software running on the hypervisor host but also rogue firmware. 587

VM isolation can be used to help protect workloads in multi-tenant environments like public and 588
hybrid clouds. Isolating entire VMs translates to protection against malicious insiders at the 589
cloud provider, or malware exposure and data leakage to other tenants with workloads running 590
on the same platform. Many modern cloud deployments use VMs as container worker nodes. 591
This provides a highly consistent and scalable way to deploy containers regardless of the 592
underlying physical platforms. With full VM isolation, the virtual workers hosting container 593
workloads can be effectively isolated without impacting the benefits of abstracting the container 594
from the underlying platform. 595

Please refer to the following technology examples in the appendices for more information: 596

• Intel Trust Domain Extensions (TDX) 597

• AMD Secure Encrypted Virtualization (SEV) 598

5.4 Cryptographic Acceleration 599

Encryption is quickly becoming more widespread in data center applications as industry adopts 600
more standards and guidelines regarding the sensitivity of consumer data and intellectual 601
property. Because cryptographic operations can drain system performance and consume large 602

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

12

amounts of compute resources, the industry has adopted specialized hardware interfaces called 603
cryptographic accelerators, which offload cryptographic tasks from the main processing unit 604
onto a separate coprocessor chip. Cryptographic accelerators often come in the form of pluggable 605
peripheral adapter cards. 606

Please refer to the following technology examples in the appendices for more information: 607

• Intel Advanced Encryption Standard New Instructions (AES-NI) 608

• Intel QuickAssist Technology (QAT) with Intel Key Protection Technology (KPT) 609

• AMD Advanced Encryption Standard 610

 611

http://developer.amd.com/wordpress/media/2012/10/26568_APM_v41.pdf

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

13

6 Remote Attestation Services 612

Measuring a server’s firmware/configuration and extending these measurements to a hardware 613
interface can help keep track of which firmware is running on a platform. Some platform 614
integrity technologies can even perform local attestation and enforcement of firmware and 615
configuration on a server. However, data centers are usually made up of thousands of servers, 616
and keeping track of them and their respective firmware is an overwhelming task for an operator. 617
A remote service can address this by collating server information and measurement details. 618
Cryptographic signatures can be used to ensure the integrity of transferred measurement data. 619
Furthermore, the remote service can be used to define allowlist policies, specifying which 620
firmware versions and event measurements are acceptable for servers in a particular data center 621
environment. This service would verify or attest each server’s collected data against these 622
policies, feeding the results into a policy orchestrator to report, alert, or enforce rules based on 623
the events. 624

A remote attestation service can provide additional benefits besides verifying server firmware. 625
Specifying allowlist policies for specific firmware versions can allow data center administrators 626
to easily invalidate old versions and roll out new upgrades. In some cases, certain hardware 627
technologies and associated capabilities on platforms can be discoverable by their specific event 628
log measurements recorded in an HSM. The information tracked in this remote attestation 629
service can even be exposed through the data center administration layer directly to the 630
enterprise user. This would give endpoint consumers hardware visibility and the ability to 631
specify firmware requirements or require platform features for the hardware on which their 632
services are running. 633

The key advantage to remote attestation is the enforcement of compliance across all hardware 634
systems in a data center. The ability to verify against a collective allowlist as opposed to a local 635
system enforcing a supply chain policy provides operators more flexibility and control in a 636
cryptographically secured manner. These enforcement mechanisms can even be combined to 637
provide stronger security policies. 638

6.1 Platform Attestation 639

Figure 1 shows a remote attestation service (AS) collecting platform configurations and integrity 640
measurements from data center servers at a cloud service provider (CSP) via a trust agent service 641
running on the platform servers. A cloud operator is responsible for defining allowlisted trust 642
policies. These policies should include information and expected measurements for desired 643
platform CoT technologies. The collected host data is compared and verified against the policies, 644
and a report is generated to record the relevant trust information in the AS database. 645

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

14

 646
Figure 1: Notional Example of Remote Attestation Service 647

Platform attestation can be extended to include application integrity or the measurement and 648
verification of the hypervisor container runtime interface (CRI) and applications installed on 649
bare-metal servers. During boot time, an application agent on the server can measure operator-650
specified files and directories that pertain to particular applications. An allowlist trust policy can 651
be defined to include these expected measurements, and this policy can be included in the overall 652
trust assessment of the platform in the remote AS. By extending measurements to a platform 653
TPM, applications running on the bare-metal server can be added to the CoT. The components of 654
the trust agent and application agent can be added to the policy and measured alongside other 655
applications to ensure that the core feature elements are not tampered with. For example, a 656
typical Linux implementation of the application agent could run inside initrd, and measurements 657
made on the filesystem could be extended to the platform TPM. 658

An additional feature commonly associated with platform trust is the concept of asset tagging. 659
Asset tags are simple key value attributes that are associated with a platform like location, 660
company name, division, or department. These key value attributes are tracked and recorded in a 661
central remote service, such as the AS, and can be provisioned directly to a server through the 662
trust agent. The trust agent can then secure these attribute associations with the host platform by 663
writing hash measurement data for the asset tag information to a hardware security chip, such as 664
the platform TPM NVRAM. Measurement data is then retrieved by the AS and included in the 665
platform trust report evaluation. 666

Please refer to the following technology examples in the appendices for more information: 667

• Intel Security Libraries for the Data Center (ISecL-DC) 668

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

15

6.2 TEE Attestation 669

There are instances when the high assurance that the output of the processing in a TEE can be 670
trusted should be extended to an external attesting client. This is achieved thanks to a TEE 671
attestation flow. TEE attestation involves the generation of a verifiable cryptographic quote of 672
the enclave by the TEE. The quote is then sent to the attesting client, which can validate the 673
signature of the quote. If the signature is valid, the attesting client concludes that the remote code 674
is running in a genuine TEE enclave. 675

A quote usually contains the measurement of the TEE enclave, as well as data related to the 676
authenticity of the TEE and the compliant version of it. The measurement is a digest of the 677
content of the enclave (e.g., code and static data) and other information. The measurement 678
obtained at build time is typically known to the attesting client and is compared against a 679
measurement contained in the quote that is actively taken during runtime. This allows the 680
attesting client to determine that the remote code has not been tampered with. A quote may also 681
contain the enclave’s developer signature and platform trusted computing base (TCB) 682
information. The authenticity and version of the TEE are verified against TEE provider 683
certificates that are accessible to the tenant or attesting client. 684

The quote may also contain the public key part of an enclave key pair or a secure hash of the 685
public/private key part if there is a limitation on the size of the quote. In the latter case, the 686
public key part must be communicated along with the quote. The public key allows the attesting 687
client to wrap secrets that it wants to send to the enclave. This capability allows the attesting 688
client to provision secrets directly to the TEE enclave without needing to trust any other software 689
running on the server. 690

Figure 2 shows an example TEE attestation flow. 691

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

16

 692

Figure 2: Notional Example of TEE Attestation Flow 693

 694

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

17

7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security 695

This section describes a number of cloud use case scenarios that take advantage of the hardware-696
enabled security capability and trust attestation capability integrated with the operator 697
orchestration tool to support various security and compliance objectives. 698

7.1 Visibility to Security Infrastructure 699

A typical attestation includes validation of the integrity of platform firmware measurements. 700
These measurements are unique to a specific BIOS/UEFI version, meaning that the attestation 701
report provides visibility into the specific firmware version currently in use, in addition to the 702
integrity of that firmware. Attestation can also include hardware configuration and feature 703
support information, both by attesting feature support directly and by resulting in different 704
measurements based on which platform integrity technologies are used. 705

Cryptographically verifiable reports of platform integrity and security configuration details (e.g., 706
BIOS/UEFI versions, location information, application versions) are extremely useful for 707
compliance auditing. These attestation reports for the physical platform can be paired with 708
workload launch or key release policies, providing traceability to confirm that data and 709
workloads have only been accessed on compliant hardware in compliant configurations with 710
required security technologies enabled. 711

7.2 Workload Placement on Trusted Platforms 712

Platform information and verified firmware/configuration measurements retained within an 713
attestation service can be used for policy enforcement in countless use cases. One example is 714
orchestration scheduling. Cloud orchestrators, such as Kubernetes and OpenStack, provide the 715
ability to label server nodes in their database with key value attributes. The attestation service 716
can publish trust and informational attributes to orchestrator databases for use in workload 717
scheduling decisions. Figure 3 illustrates this. 718

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

18

 719

Figure 3: Notional Example of Orchestrator Platform Labeling 720

In OpenStack, this can be accomplished by labeling nodes using custom traits. Workload images 721
can be uploaded to an image store containing metadata that specifies required trait values to be 722
associated with the node that is selected by the scheduling engine. In Kubernetes, nodes can be 723
labeled in etcd via node selector or node affinity. Custom resource definitions (CRDs) can be 724
written and plugged into Kubernetes to receive label values from the attestation service and 725
associate them with nodes in the etcd. When a deployment or container is launched, node 726
selector or node affinity attributes can be included in the configuration yaml to instruct 727
Kubernetes to only select nodes that have the specified labels. Other orchestrator engines and 728
flavors can be modified to accommodate a similar use case. Figure 4 illustrates how an 729
orchestrator can be configured to only launch workloads on trusted platforms or platforms with 730
specified asset tag attributes. 731

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

19

 732

Figure 4: Notional Example of Orchestrator Scheduling 733

7.3 Asset Tagging and Trusted Location 734

Trusted geolocation is a specific implementation of the aforementioned trusted asset tag feature 735
used with platform attestation. Key attribute values specifying location information are used as 736
asset tags and provisioned to server hardware, such as the TPM. In this way, location information 737
can be included in platform attestation reports and therefore consumed by cloud orchestrators, 738
infrastructure management applications, policy engines, and other entities [15]. Orchestration 739
using asset tags can be used to segregate workloads and data access in a wide variety of 740
scenarios. Geolocation can be an important attribute to consider with hybrid cloud environments 741
subject to regulatory controls like GDPR, for example. Violating these constraints by allowing 742
access to data outside of specific geopolitical boundaries can trigger substantial penalties. 743

In addition to location, the same principle can apply to other sorts of tag information. For 744
example, some servers might be tagged as appropriate for storing health information subject to 745
Health Insurance Portability and Accountability Act (HIPAA) compliance. Data and workloads 746
requiring this level of compliance should only be accessed on platforms configured to meet those 747
compliance requirements. Other servers may be used to store or process information and 748
workloads not subject to HIPAA requirements. Asset tags can be used to flag which servers are 749
appropriate for which workloads beyond a simple statement of the integrity of those platforms. 750
The attestation mechanisms help ensure that the asset tag information is genuine, preventing easy 751
subversion. 752

Outside of specific regulatory requirements, an organization may wish to segregate workloads by 753
department. For example, human resources and finance information could be restricted to 754

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

20

platforms with different security profiles, and big data workloads could be required to run on 755
platforms tagged for performance capabilities. For cloud orchestration platforms that do not 756
natively support discovery or scheduling of workloads based on specific platform features, asset 757
tags can provide a mechanism for seamlessly adding such a capability. For example, workloads 758
that require Intel SGX can be orchestrated to only run on platforms that support the SGX 759
platform feature, even if the cloud platform does not natively discover support for SGX. The 760
open-ended user-configurable asset tag functionality allows virtually any level of subdivision of 761
resources for business, security, or regulatory needs. 762

7.4 Workload Confidentiality 763

Consumers who place their workloads in the cloud or the edge are typically forced to accept that 764
their workloads are secured by their service providers without insight or knowledge as to what 765
security mechanisms are in place. The ability for end users to encrypt their workload images can 766
provide at-rest cryptographic isolation to protect consumer data and intellectual property. Key 767
control is integral to the workload encryption process. While it is preferable to transition key 768
storage, management, and ownership to the endpoint consumer, an appropriate key release policy 769
must be defined that includes a guarantee from the service provider that the utilized hardware 770
platform and firmware are secure and uncompromised. 771

There are several key management solutions (KMSs) in production that provide services to 772
create and store keys. Many of these are compliant with the industry-standardized Key 773
Management Interoperability Protocol (KMIP) and can be deployed within consumer enterprises. 774
The concept is to provide a thin layer on top of the KMS called a key broker, as illustrated in 775
Figure 5, that applies and evaluates policies to requests that come into the KMS. Supported 776
requests to the key broker include key creation, key release policy association, and key request 777
by evaluating associated policies. The key release policy can be any arbitrary set of rules that 778
must be fulfilled before a key is released. The policy for key release is open-ended and meant to 779
be easily extendible, but for the purpose of this discussion, a policy associated with platform 780
trust is assumed. 781

 782

Figure 5: Notional Example of Key Brokerage 783

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

21

Once the key policy has been determined, a KMS-created and managed key can be used to 784
encrypt a workload image, as shown in Figure 6. The enterprise user may then upload the 785
encrypted image to a CSP orchestrator image store or registry. 786

 787

Figure 6: Notional Example of Workload Image Encryption 788

The key retrieval and decryption process is the most complex piece of the workload 789
confidentiality story, as Figure 7 shows. It relies on a secure key transfer between the enterprise 790
and CSP with an appropriate key release policy managed by the key broker. The policy for key 791
release discussed here is based on platform trust and the valid proof thereof. The policy can also 792
dictate a requirement to wrap the key using a public wrapping key, with the private portion of the 793
wrapping key only known to the hardware platform within the CSP. 794

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

22

 795

Figure 7: Notional Example of Workload Decryption 796

When the runtime node service receives the launch request, it can detect that the image is 797
encrypted and make a request to retrieve the decryption key. This request can be passed through 798
an attestation service so that an internal trust evaluation for the platform can be performed. The 799
key request is forwarded to the key broker with proof that the platform has been attested. The 800
key broker can then verify the attested platform report and release the key back to the CSP and 801
node runtime services. At that time the node runtime can decrypt the image and proceed with the 802
normal workload orchestration. The disk encryption kernel subsystem can provide at-rest 803
encryption for the workload on the platform. 804

7.5 Protecting Keys and Secrets 805

Cryptographic keys are high-value assets in workloads, especially in environments where the 806
owner of the keys is not in complete control of the infrastructure, such as public clouds, edge 807
computing, and network functions virtualization (NFV) deployments. In these environments, 808
keys are typically provisioned on disk as flat files or entries in configuration files. At runtime, 809
workloads read the keys into random access memory (RAM) and use them to perform 810
cryptographic operations like data signing, encryption/decryption, or Transport Layer Security 811
(TLS) termination. 812

Keys on disk and in RAM are exposed to conventional attacks like privilege escalation, remote 813
code execution (RCE), and input buffer mismanagement. Keys can also be stolen by malicious 814
administrators or be disclosed because of operational errors. For example, an improperly 815
protected VM snapshot can be used by a malicious agent to extract keys. 816

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

23

An HSM can be attached to a server and used by workloads to store keys and perform 817
cryptographic operations. This results in keys being protected at rest and in use. In this model, 818
keys are never stored on disk or loaded into RAM. If attaching an HSM to a server is not an 819
option, or if keys are needed in many servers at the same time, an alternative option is to use a 820
network HSM. Workloads send the payload that needs cryptographic processing over a network 821
connection to the network HSM, which then performs the cryptographic operations locally, 822
typically in an attached HSM. 823

An HSM option is not feasible in some environments. Workload owners may not have access to 824
a cloud or edge environment in order to attach their HSM to a hardware server. Network HSMs 825
can suffer from network latency, and some workloads require an optimized response time. 826
Additionally, network HSMs are often provided as a service by the cloud, edge, or NFV 827
providers and are billed by the number of transactions. Cost is often a deciding factor for using a 828
provider network HSM. 829

 830

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

24

8 Next Steps 831

NIST is seeking feedback from the community on the content of the report and soliciting 832
additional technology example contributions from other companies. The report is intended to be 833
a living document that will be frequently updated to reflect advances in technology and the 834
availability of commercial implementations and solutions. This can help raise the bar on platform 835
security and evolve the use cases. 836

Please send your feedback and comments on this report to hwsec@nist.gov. 837

NIST is also working on other publications on hardware-enabled security as part of the NCCoE 838
Trusted Cloud project. More information on the project and links to the other publications are 839
available at https://www.nccoe.nist.gov/projects/building-blocks/trusted-cloud. 840

 841

mailto:hwsec@nist.gov
https://www.nccoe.nist.gov/projects/building-blocks/trusted-cloud

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

25

References 842

[1] Barrett B (2018) Russia’s Elite Hackers Have a Clever New Trick That's Very Hard to
Fix, Wired. Available at https://www.wired.com/story/fancy-bear-hackers-uefi-rootkit

[2] Intel Corporation (2021) Intel® Trusted Execution Technology (Intel® TXT) –
Software Development Guide – Measured Launched Environment Developer’s Guide,
Revision 017. Available at https://www.intel.com/content/www/us/en/software-
developers/intel-txt-software-development-guide.html

[3] Regenscheid AR (2014) BIOS Protection Guidelines for Servers. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
147B. https://doi.org/10.6028/NIST.SP.800-147B

[4] Regenscheid AR (2018) Platform Firmware Resiliency Guidelines. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
193. https://doi.org/10.6028/NIST.SP.800-193

[5] Barker EB, Barker WC (2019) Recommendation for Key Management: Part 2 – Best
Practices for Key Management Organizations. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-57 Part 2, Rev. 1.
https://doi.org/10.6028/NIST.SP.800-57pt2r1

[6] Trusted Computing Group (2019) Trusted Platform Module Library Specification,
Family “2.0”. Available at https://trustedcomputinggroup.org/work-groups/trusted-
platform-module/

[7] National Institute of Standards and Technology (2001) Security Requirements for
Cryptographic Modules. (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 140-2, Change Notice 2
December 03, 2002. https://doi.org/10.6028/NIST.FIPS.140-2

[8] Diamond T, Grayson N, Paulsen C, Polk T, Regenscheid A, Souppaya M, Brown C
(2020) Validating the Integrity of Computing Devices: Supply Chain Assurance.
(National Institute of Standards and Technology, Gaithersburg, MD). Available at
https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance

[9] Boyens JM, Paulsen C, Moorthy R, Bartol N (2015) Supply Chain Risk Management
Practices for Federal Information Systems and Organizations. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-
161. https://doi.org/10.6028/NIST.SP.800-161

[10] National Institute of Standards and Technology (2020) Cyber Supply Chain Risk
Management. Available at https://csrc.nist.gov/Projects/cyber-supply-chain-risk-
management

https://www.wired.com/story/fancy-bear-hackers-uefi-rootkit
https://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://doi.org/10.6028/NIST.SP.800-147B
https://doi.org/10.6028/NIST.SP.800-193
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://doi.org/10.6028/NIST.FIPS.140-2
https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance
https://doi.org/10.6028/NIST.SP.800-161
https://csrc.nist.gov/Projects/cyber-supply-chain-risk-management
https://csrc.nist.gov/Projects/cyber-supply-chain-risk-management

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

26

[11] Bletsch T, Jiang X, Freeh V, Liang Z (2011) Jump-Oriented Programming: A New
Class of Code-Reuse Attack. Available at
https://www.comp.nus.edu.sg/~liangzk/papers/asiaccs11.pdf

[12] Scarfone KA, Souppaya MP, Hoffman P (2011) Guide to Security for Full
Virtualization Technologies. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-125.
https://doi.org/10.6028/NIST.SP.800-125

[13] Intel Corporation (2020) Intel® Virtualization Technology (Intel® VT). Available at
https://www.intel.com/content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html

[14] Linux Foundation (2020) Confidential Computing Consortium. Available at
https://confidentialcomputing.io

[15] Bartock MJ, Souppaya MP, Yeluri R, Shetty U, Greene J, Orrin S, Prafullchandra H,
McLeese J, Scarfone KA (2015) Trusted Geolocation in the Cloud: Proof of Concept
Implementation. (National Institute of Standards and Technology, Gaithersburg, MD),
NIST Interagency or Internal Report (IR) 7904. https://doi.org/10.6028/NIST.IR.7904

[16] Debian Wiki (2019) Secure Boot. Available at https://wiki.debian.org/SecureBoot

[17] Wilkins R, Richardson B (2013) UEFI Secure Boot in Modern Computer Security
Solutions (Unified Extensible Firmware Interface Forum). Available at
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer
_Security_Solutions_2013.pdf

[18] RedHat (2018) README (for shim). Available at https://github.com/rhboot/shim

[19] Intel Corporation (2018) Intel® Trusted Execution Technology (Intel® TXT) Overview.
Available at
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.ht
ml

[20] Futral W, Greene J (2013) Intel® Trusted Execution Technology for Server Platforms
(Apress, Berkeley, CA). Available at https://www.apress.com/gp/book/9781430261483

[21] Linux Kernel Organization (2020) Intel® TXT Overview. Available at
https://www.kernel.org/doc/Documentation/intel_txt.txt

[22] Intel Corporation (2020) Transparent Supply Chain. Available at
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-
chain.html

https://www.comp.nus.edu.sg/%7Eliangzk/papers/asiaccs11.pdf
https://doi.org/10.6028/NIST.SP.800-125
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://confidentialcomputing.io/
https://doi.org/10.6028/NIST.IR.7904
https://wiki.debian.org/SecureBoot
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://github.com/rhboot/shim
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.html
https://www.intel.com/content/www/us/en/support/articles/000025873/technologies.html
https://www.apress.com/gp/book/9781430261483
https://www.kernel.org/doc/Documentation/intel_txt.txt
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-chain.html
https://www.intel.com/content/www/us/en/products/docs/servers/transparent-supply-chain.html

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

27

[23] Intel Corporation (2020) Intel Highlights Latest Security Investments at RSA 2020.
Available at https://newsroom.intel.com/news-releases/intel-highlights-latest-security-
investments-rsa-2020/

[24] Department of Defense (2018) Subpart 246.870, Contractors’ Counterfeit Electronic
Part Detection and Avoidance Systems, Defense Federal Acquisition Regulation
Supplement. Available at
https://www.acq.osd.mil/dpap/dars/dfars/html/current/246_8.htm#246.870-2

[25] Intel Corporation (2021) Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 1: Basic Architecture. Available at
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-
architectures-software-developers-manual-volume-1-basic-architecture.html

[26] Nichols S (2020) RIP ROP, COP, JOP? Intel to bring anti-exploit tech to market in
this year's Tiger Lake chip family. (The Register, San Francisco, CA). Available at
https://www.theregister.com/2020/06/15/intel_cet_tiger_lake

[27] Patel BV (2020) A Technical Look at Intel’s Control-flow Enforcement Technology.
(Intel Fellow Client Computing Group, Intel Corporation). Available at
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-
flow-enforcement-technology.html

[28] Patel BV (2016) Intel Releases New Technology Specifications to Protect Against ROP
attacks. (Intel Corporation). Available at
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-
technology-specifications-protect-rop-attacks.html

[29] Shanbhogue V, Gupta D, Sahita R (2019) Security Analysis of Processor Instruction
Set Architecture for Enforcing Control-Flow Integrity. (HASP ’19: Proceedings of the
8th International Workshop on Hardware and Architectural Support for Security and
Privacy). https://doi.org/10.1145/3337167.3337175

[30] Intel Corporation (2021) Intel Architecture Instruction Set Extensions and Future
Features Programming Reference. Available at
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-
instruction-set-extensions-programming-reference.html

[31] Intel Corporation (2018) Intel Security Features and Technologies Related to Transient
Execution Attacks. Available at
https://software.intel.com/content/www/us/en/develop/articles/software-security-
guidance/best-practices/related-intel-security-features-technologies.html

[32] Anvin HP (2012) Description x86: Supervisor Mode Access Prevention. Available at
https://lwn.net/Articles/517251/

https://newsroom.intel.com/news-releases/intel-highlights-latest-security-investments-rsa-2020/
https://newsroom.intel.com/news-releases/intel-highlights-latest-security-investments-rsa-2020/
https://www.acq.osd.mil/dpap/dars/dfars/html/current/246_8.htm#246.870-2
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture.html
https://www.theregister.com/2020/06/15/intel_cet_tiger_lake
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-flow-enforcement-technology.html
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-flow-enforcement-technology.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://doi.org/10.1145/3337167.3337175
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/best-practices/related-intel-security-features-technologies.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/best-practices/related-intel-security-features-technologies.html
https://lwn.net/Articles/517251/

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

28

 843

[33] Corbet J (2012) Supervisor Mode Access Prevention. Available at
https://lwn.net/Articles/517475/

[34] Intel Corporation (2020) Strengthen Enclave Trust with Attestation. Available at
https://software.intel.com/en-us/sgx/attestation-services

[35] European Telecommunications Standards Institute (2020) Network Functions
Virtualisation (NFV). Available at http://www.etsi.org/technologies-
clusters/technologies/nfv

[36] Intel Corporation (2020) Intel® Trust Domain Extensions. Available at
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-
whitepaper-v4.pdf

[37] Intel Corporation (2010) Intel Data Protection Technology with AES-NI and Secure
Key. Available at https://www.intel.com/content/www/us/en/architecture-and-
technology/advanced-encryption-standard-aes/data-protection-aes-general-
technology.html

[38] Intel Corporation (2020) Flexible Workload Acceleration on Intel Architecture Lowers
Equipment Cost. Available at
https://www.intel.fr/content/dam/www/public/us/en/documents/white-
papers/communications-quick-assist-paper.pdf

[39] Tadepalli, H (2017) Intel QuickAssist Technology with Intel Key Protection Technology
in Intel Server Platforms Based on Intel Xeon processor Scalable Family. (Intel
Corporation). Available at https://www.aspsys.com/images/solutions/hpc-
processors/intel-xeon/Intel-Key-Protection-Technology.pdf

[40] Intel Corporation (2020) Intel® Security Libraries for Data Center (Intel® SecL-DC).
Available at https://01.org/intel-secl

[41] Kaplan D, Powell J, Woller T (2016) AMD Memory Encryption. (Advanced Micro
Devices, Inc.). Available at
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whi
tepaper_v7-Public.pdf

[42] Kaplan D (2017) Protecting VM Register State with SEV-ES. (Advanced Micro
Devices, Inc.). Available at
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20Stat
e%20with%20SEV-ES.pdf

[43] Advanced Micro Devices, Inc. (2020) AMD SEV-SNP: Strengthening VM Isolation
with Integrity Protection and More. Available at
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-
with-integrity-protection-and-more.pdf

https://lwn.net/Articles/517475/
https://software.intel.com/en-us/sgx/attestation-services
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/communications-quick-assist-paper.pdf
https://www.intel.fr/content/dam/www/public/us/en/documents/white-papers/communications-quick-assist-paper.pdf
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://01.org/intel-secl
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

29

Appendix A—Vendor-Agnostic Technology Examples 844

This section describes vendor-agnostic technology examples that map back to the key concepts 845
described in the various sections of the document. 846

A.1 Platform Integrity Verification 847

A.1.1 UEFI Secure Boot (SB) 848

“UEFI Secure Boot (SB) is a verification mechanism for ensuring that code launched by a 849
computer’s UEFI firmware is trusted” [16]. SB prevents malware from taking “advantage of 850
several pre-boot attack points, including the system-embedded firmware itself, as well as the 851
interval between the firmware initiation and the loading of the operating system” [17]. 852

The basic idea behind SB is to sign executables using a public-key cryptography scheme. The 853
public part of a platform key (PK) can be stored in the firmware for use as a root key. Additional 854
key exchange keys (KEKs) can also have their public portion stored in the firmware in what is 855
called the signature database. This database contains public keys that can be used to verify 856
different components that might be used by UEFI (e.g., drivers), as well as bootloaders and OSs 857
that are loaded from external sources (e.g., disks, USB devices, network). The signature database 858
can also contain forbidden signatures, which correspond to a revocation list of previously valid 859
keys. The signature database is meant to contain the current list of authorized and forbidden keys 860
as determined by the UEFI organization. The signature on an executable is verified against the 861
signature database before the executable can be launched, and any attempt to execute an 862
untrusted program will be prevented [16][17]. 863

Before a PK is loaded into the firmware, UEFI is considered to be in setup mode, which allows 864
anyone to write a PK or KEK to the firmware. Writing the PK switches the firmware into user 865
mode. Once in user mode, PKs and KEKs can only be written if they are signed using the private 866
portion of the PK. Essentially, the PK is meant to authenticate the platform owner, while the 867
KEKs are used to authenticate other components of the distribution (distro), like OSs [17]. 868

Shim is a simple software package that is designed to work as a first-stage bootloader on UEFI 869
systems. It is a common piece of code that is considered safe, well-understood, and audited so 870
that it can be trusted and signed using PKs. This means that firmware certificate authority (CA) 871
providers only have to worry about signing shim and not all of the other programs that vendors 872
might want to support [16]. Shim then becomes the RoT for all the other distro-provided UEFI 873
programs. It embeds a distro-specific CA key that is itself used to sign additional programs (e.g., 874
Linux, GRUB, fwupdate). This allows for a clean delegation of trust; the distros are then 875
responsible for signing the rest of their packages. Ideally, shim will not need to be updated often, 876
which should reduce the workload on the central auditing and CA teams [16]. 877

A key part of the shim design is to allow users to control their own systems. The distro CA key is 878
built into the shim binary itself, but there is also an extra database of keys that can be managed 879
by the user—the so-called Machine Owner Key (MOK). Keys can be added and removed in the 880
MOK list by the user, entirely separate from the distro CA key. The mokutil utility can be used 881
to help manage the keys from Linux OS, but changes to the MOK keys may only be confirmed 882

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

30

directly from the console at boot time. This helps remove the risk of OS malware potentially 883
enrolling new keys and therefore bypassing SB [16]. 884

On systems with a TPM chip enabled and supported by the system firmware, shim will extend 885
various PCRs with the digests of the targets it is loading [18]. Certificate hashes are also 886
extended to the TPM, including system, vendor, MOK, and shim denylisted and allowlisted 887
certificate digests. 888

 889

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

31

Appendix B—Intel Technology Examples 890

This section describes a number of Intel technology examples that map back to the key concepts 891
described in the various sections of the document. 892

B.1 Platform Integrity Verification 893

B.1.1 The Chain of Trust (CoT) 894

B.1.1.1 Intel Trusted Execution Technology (TXT) 895

Intel Trusted Execution Technology (TXT) in conjunction with a TPM provides a hardware RoT 896
available on Intel server and client platforms that enables “security capabilities such as measured 897
launch and protected execution” [19]. TXT utilizes authenticated code modules (ACMs) that 898
measure various pieces of the CoT during boot time and extend them to the platform TPM 899
[2][19]. TXT’s ACMs are chipset-specific signed binaries that are called to perform functions 900
required to enable the TXT environment. An ACM is loaded into and executed from within the 901
CPU cache in an area referred to as the authenticated code RAM (AC RAM). CPU microcode, 902
which acts as the core root of trust for measurement (CRTM), authenticates the ACM by 903
verifying its included digital signature against a manufacturer public key with its digest hard-904
coded within the chipset. The ACM code, loaded into protected memory inside the processor, 905
performs various tests and verifications of chipset and processor configurations. 906

The ACMs needed to initialize the TXT environment are the BIOS and the Secure Initialization 907
(SINIT) ACMs. Both are typically provided within the platform BIOS image. The SINIT ACM 908
can be provisioned on disk as well [2][20]. The BIOS ACM is responsible for measuring the 909
BIOS firmware to the TPM and performs additional BIOS-based security operations. The latest 910
version of TXT converged with Intel Boot Guard Technology labels this ACM as the Startup 911
ACM to differentiate it from the legacy BIOS ACM. The SINIT ACM is used to measure the 912
system software or operating system to the TPM, and it “initializes the platform so the OS can 913
enter the secure mode of operation” [20]. 914

When the BIOS startup procedures have completed, control is transitioned to the OS loader. In a 915
TXT-enabled system, the OS loader is instructed to load a special module called Trusted Boot 916
before loading the first kernel module [20]. Trusted Boot (tboot) is an open-source, pre-917
kernel/virtual machine manager (VMM) module that integrates with TXT to perform a measured 918
launch of an OS kernel/VMM. The tboot design typically has two parts: a preamble and the 919
trusted core. The tboot preamble is most commonly executed by the OS loader but can be loaded 920
at OS runtime. The tboot preamble is responsible for preparing SINIT input parameters and is 921
untrusted by default. It executes the processor instruction that passes control to the CPU 922
microcode. The microcode loads the SINIT into AC RAM, authenticates it, measures SINIT to 923
the TPM, and passes control to it. SINIT verifies the platform configuration and enforces any 924
present Launch Control Policies, measuring them and tboot trusted core to the TPM. The tboot 925
trusted core takes control and continues the CoT, measuring the OS kernel and additional 926
modules (like initrd) before passing control to the OS [21]. 927

Intel TXT includes a policy engine feature that provides the capability to specify known good 928
platform configurations. These Launch Control Policies (LCPs) dictate which system software is 929

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

32

permitted to perform a secure launch. LCPs can enforce specific platform configurations and 930
tboot trusted core versions required to launch a system environment [20]. 931

B.1.1.2 Intel Boot Guard 932

Intel Boot Guard provides a hardware RoT for authenticating the BIOS. An original equipment 933
manufacturer (OEM) enables Boot Guard authentication on the server manufacturing line by 934
permanently fusing a policy and OEM-owned public key into the silicon. When an Intel 935
processor identifies that Boot Guard has been enabled on the platform, it authenticates and 936
launches an ACM. The ACM loads the initial BIOS or Initial Boot Block (IBB) into the 937
processor cache, authenticates it using the fused OEM public key, and measures it into the TPM. 938

If the IBB authenticates properly, it verifies the remaining BIOS firmware, loads it into memory, 939
and transfers execution control. The IBB is restricted to this limited functionality, which allows it 940
to have a small enough size to fit in the on-die cache memory of Intel silicon. If the Boot Guard 941
authentication fails, the system is forced to shut down. When the Boot Guard execution 942
completes, the CoT can continue for other components by means of UEFI Secure Boot. TXT can 943
be used in conjunction with these technologies to provide a dynamic trusted launch of the OS 944
kernel and software. 945

Because Boot Guard is rooted in permanent silicon fuses and authenticates the initial BIOS from 946
the processor cache, it provides resistance from certain classes of physical attacks. Boot Guard 947
also uses fuses to provide permanent revocation of compromised ACMs, BIOS images, and input 948
polices. 949

B.1.1.3 Intel Platform Firmware Resilience (PFR) 950

Intel Platform Firmware Resilience (PFR) technology is a platform-level solution that creates an 951
open platform RoT based on a programmable logic device. It is designed to provide firmware 952
resiliency (in accordance with NIST SP 800-193 [4]) and comprehensive protection for various 953
platform firmware components, including BIOS, Server Platform Services Firmware (SPS FW), 954
and BMCs. PFR provides the platform owner with a minimal trusted compute base (TCB) under 955
full platform-owner control. This TCB provides cryptographic authentication and automatic 956
recovery of platform firmware to help guarantee correct platform operation and to return to a 957
known good state in case of a malicious attack or an operator error such as a failed update. 958

NIST SP 800-193 [4] outlines three guiding principles to support the resiliency of platforms 959
against potentially destructive attacks: 960

• Protection: Mechanisms for ensuring that platform firmware code and critical data 961
remain in a state of integrity and are protected from corruption, such as the process for 962
ensuring the authenticity and integrity of firmware updates 963

• Detection: Mechanisms for detecting when platform firmware code and critical data have 964
been corrupted 965

• Recovery: Mechanisms for restoring platform firmware code and critical data to a state 966
of integrity in the event that any such firmware code or critical data are detected to have 967

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

33

been corrupted or when forced to recover through an authorized mechanism. Recovery is 968
limited to the ability to recover firmware code and critical data. 969

In addition, NIST SP 800-193 [4] provides guidance on meeting those requirements via three 970
main functions of a Platform Root of Trust: 971

• Root of Trust for Update (RTU), which is responsible for authenticating firmware 972
updates and critical data changes to support platform protection capabilities; this includes 973
signature verification of firmware updates as well as rollback protections during update. 974

• Root of Trust for Detection (RTD), which is responsible for firmware and critical data 975
corruption detection capabilities. 976

• Root of Trust for Recovery (RTRec), which is responsible for recovery of firmware and 977
critical data when corruption is detected or when instructed by an administrator. 978

PFR is designed to support NIST guidelines and create a resilient platform that is able to self-979
recover upon detection of attack or firmware corruption. This includes verification of all 980
platform firmware and configuration at platform power-on time, active protection of platform 981
non-volatile memory at runtime, and active protection of the Serial Peripheral Interface (SPI 982
flash) and System Management Bus (SMBus). PFR functionality also incorporates monitoring 983
the platform component’s boot progress and providing automatic firmware recovery to a known 984
good state upon detection of firmware or configuration corruption. PFR achieves this goal by 985
utilizing a Field-Programmable Gate Array (FPGA) to establish an RoT. 986

PFR technology defines a special pre-boot mode (T-1) where only the PFR FPGA is active. Intel 987
Xeon processors and other devices that could potentially interfere with the boot process, such as 988
the Platform Controller Hub (PCH)/Manageability Engine (ME) and BMC, are not powered. 989
Boot critical firmware, like the BIOS, ME, and BMC, are cryptographically verified during T-1 990
mode. In case of corruption, a recovery event is triggered, and the corrupted firmware in the 991
active regions of the SPI flash is erased and restored with a known-good recovery copy. Once 992
successful, the system proceeds to boot in a normal mode, leveraging Boot Guard for static RoT 993
coverage. 994

The PFR FPGA RoT leverages a key hierarchy to authenticate data structures residing in SPI 995
flash. The key hierarchy is based on a provisioned Root Key (RK) stored in the NVRAM of the 996
FPGA RoT and a Code Signing Key (CSK) structure, which is endorsed by the RK, stored in the 997
SPI flash, and used for the signing of lower-level data structures. The PFR FPGA uses this CSK 998
to verify the digital signature of the Platform Firmware Manifest (PFM), which describes the 999
expected measurements of the platform firmware. The PFR FPGA RoT verifies those 1000
measurements before allowing the system to boot. When a recovery is needed, either because 1001
measurements do not match the expected value or because a hang is detected during system 1002
bootup, the PFR FPGA RoT uses a recovery image to recover the firmware. The recovery image 1003
and any update images are stored in a compressed capsule format and verified using a digital 1004
signature. 1005

Each platform firmware storage is divided into three major sections: Active, Recovery, and 1006
Staging. The Recovery regions, as well as the static parts of the Active regions, are write-1007
protected from other platform components by the PFR FPGA RoT. The Staging region is open to 1008

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

34

the other platform components for writing in order to provide an area to place digitally signed 1009
and compressed update capsules, which are then verified by the PFR FPGA RoT before being 1010
committed to the Active or Recovery regions. The Recovery copy can be updated in T-1 mode 1011
once the PFR FPGA has verified the digital signature of the update capsule and confirmed that 1012
the recovery image candidate is bootable. 1013

B.1.1.4 Technology Example Summary 1014

There are several technologies that provide different levels of platform integrity and trust. 1015
Individual technologies do not provide a complete CoT. When used in combination, they can 1016
provide comprehensive coverage all the way up to the OS and VMM layer. Figure 8 outlines the 1017
firmware and software coverage of each existing CoT technology example. 1018

 1019

Figure 8: Firmware and Software Coverage of Existing Chain of Trust Technologies 1020

Figure 8 identifies the components of each technology that make up the RoT in their own 1021
respective chains and also shows a rough outline of the firmware and software coverage of each 1022
technology. 1023

Because many technologies are available, it can be difficult to decide on the correct combination 1024
for deployment. Figure 8 illustrates the possible combinations of technologies that extend 1025
measurements to a TPM for platform integrity attestation. Note that each combination includes at 1026
least one hardware technology to ensure an RoT implementation. A complementary option for 1027
extending the CoT up through the OS can also be provided. Including only the hardware 1028
technologies would break the CoT by supplying integrity measurements for only pre-OS 1029
firmware. Using only UEFI Secure Boot will use firmware as the RoT that does not have 1030
hardware security protections and is much more susceptible to attack. By enabling both parts, the 1031
CoT can be extended from a hardware RoT into the OS and beyond. 1032

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

35

These combinations will help ensure that appropriate measurements are extended to a TPM for 1033
integrity attestation and can prevent a server from booting if specific security modules are 1034
compromised. The attestation mechanisms provided by these technologies give cryptographic 1035
proof of the integrity of measured components, which can be used to provide visibility into 1036
platform security configurations and prove integrity. Note the combination of UEFI SB with 1037
TXT in Figure 8. This combination provides the UEFI SB signature verification capability on top 1038
of the tboot integrity measurement in the OS/VMM layer. 1039

In addition to attestation, PFR provides both additional verification of platform firmware and 1040
adds automatic recovery of compromised firmware to known good versions. PFR works with any 1041
combination of CoT technologies, providing a defense and resilience against firmware attack 1042
vectors. Combining a hardware-based firmware resilience technology like PFR with a hardware-1043
based CoT configuration is part of a layered security strategy. 1044

B.1.2 Supply Chain Protection 1045

B.1.2.1 Intel Transparent Supply Chain (TSC) 1046

“Intel Transparent Supply Chain (TSC) is a set of policies and procedures implemented at ODM 1047
factories that enable end-users to validate where and when every component of a platform was 1048
manufactured” [22]. “Intel TSC tools allow platform manufacturers to bind platform information 1049
and measurements using [a TPM]. This allows customers to gain traceability and accountability 1050
for platforms with component-level reporting” [23]. 1051

Intel TSC provides the following key features [22]: 1052

• Digitally signed statement of conformance for every platform 1053

• Platform certificates linked to a discrete TPM, providing system-level traceability 1054

• Component-level traceability via a direct platform data file that contains integrated 1055
components, including a processor, storage, memory, and add-in cards 1056

• Auto Verify tool that compares the snapshot of the direct platform data taken during 1057
manufacturing with a snapshot of the platform components taken at first boot 1058

• Firmware load verification 1059

• Conformity with Defense Federal Acquisition Regulation Supplement (DFARS) 1060
246.870-2 [24] 1061

B.1.2.2 PFR with Protection in Transit (PIT) 1062

In addition to the platform protection, detection, and recovery features, PFR also offers 1063
protection in transit (PIT) or supply chain protection. Platform lockdown requires that a 1064
password be present in the PFR FPGA as well as a radio frequency (RF) component. The 1065
password is removed before platform shipment and must be replaced before the platform will be 1066
allowed to power up. With platform firmware sealing, the PFR FPGA computes hashes of 1067
platform firmware in the PCH and BMC attached flash devices, including static and dynamic 1068
regions, and stores them in an NVRAM space before shipment. Upon delivery, the PFR FPGA 1069

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

36

will recompute the hashes and report any mismatches to ensure that the firmware has not been 1070
tampered with during system transit. 1071

B.2 Software Runtime Protection Mechanisms 1072

B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 1073
(COP/JOP) Attacks 1074

B.2.1.1 Intel Control-Flow Enforcement Technology (Intel CET) 1075

Intel Control-Flow Enforcement Technology (Intel CET) is an instruction set extension to 1076
implement control flow integrity (CFI) and defend against ROP and COP/JOP style subversion 1077
attacks. ROP and similarly COP/JOP have been the prevalent attack methodology for stealth 1078
exploit writers targeting vulnerabilities in programs. [25] 1079

Intel CET prevents this class of exploits by providing the following capabilities: 1080

• Shadow stack – return address protection to defend against ROP 1081

• Indirect branch tracking – free branch protection to defend against COP/JOP 1082

“CET introduces a shadow stack system to detect and thwart the stack manipulation required by 1083
ROP” [26]. This second stack is used exclusively for control transfer operations and is designed 1084
to be protected from application code memory accesses while keeping track of CPU stored 1085
copies of the return addresses [27]. “When CET is enabled, a CALL instruction pushes the return 1086
address into a shadow stack in addition to its normal behavior of pushing return address into the 1087
normal stack (no changes to traditional stack operation). The return instructions (e.g. RET) pops 1088
return address from both shadow and traditional stacks, and only transfers control to the popped 1089
address if return addresses from both stacks match. […] The page table protections for shadow 1090
stack are also designed to protect the integrity of the shadow stack by preventing unintended or 1091
malicious switching of shadow stack and/or overflow and underflow of shadow stack.” [28] 1092

“CET also adds an indirect branch tracking capability to provide software the ability to restrict 1093
COP/JOP attacks.” [27] This ENDBRANCH instruction is a new addition to Intel Instruction Set 1094
Architecture (ISA). It marks legal targets for an indirect branch or jump, forcing the CPU to 1095
generate an exception for unintended or malicious operations [28]. 1096

“Intel has been actively collaborating with Microsoft and other industry partners to address 1097
control-flow hijacking by using Intel’s CET technology to augment the previous software-only 1098
control-flow integrity solutions. Intel’s CET, when used properly by software, is a big step in 1099
helping to prevent exploits from hijacking the control-flow transfer instructions.” [28] A security 1100
analysis of Intel CET is published in [29]. 1101

B.2.2 Address Translation Attacks 1102

B.2.2.1 Intel Hypervisor Managed Linear Address Translation (HLAT) 1103

Hypervisor managed linear address translation (HLAT) is a capability to enable Intel 1104
Virtualization Technology (Intel VT-x) based security monitors to enforce runtime protection 1105

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

37

and integrity assertions on OS-managed page tables. This helps protect kernel assets, as well as 1106
in-band security agents and agent-monitored assets from OS page-table attacks. 1107

“[HLAT] is intended to be used by a Hypervisor/Virtual Machine Monitor (VMM) to enforce 1108
guest linear translation (to guest physical mappings). When combined with the existing Extended 1109
Page Table (EPT) capability, HLAT enables the VMM to ensure the integrity of combined guest 1110
linear translation (mappings and permissions) cached by the processor TLB, via a reduced 1111
software TCB managed by the VMM.” [30] In this fashion, the VMM-enforced guest 1112
translations are more protected from alterations by untrusted system software adversaries. [30] 1113

“This feature is intended to augment the security functionality for a type of Virtual Machine 1114
Monitor (VMM) that may use legacy EPT read/write/execute (XWR) permission bits (bits 2:0 of 1115
the EPTE) as well as the new user-execute (XU) access bit (bit 10 of the EPTE) to ensure the 1116
integrity of code/data resident in guest physical memory assigned to the guest operating system. 1117
EPT permissions are also used in these VMMs to isolate memory; for example, to host a Secure 1118
Kernel (SK) that can manage security properties for the General Purpose Kernel (GPK). For such 1119
usages, it is important that the VMM ensure that the guest linear address mappings which are 1120
used by the General Purpose Kernel to refer to the EPT monitored guest physical pages are 1121
access-controlled as well.” [30] 1122

“VMMs could enforce the integrity of these specific guest linear to guest physical mappings 1123
(paging structures) by using legacy EPT permissions to mark the guest physical memory 1124
containing the relevant guest paging structures as read-only. The intent of marking these guest 1125
paging structures as read-only is to ensure an invalid mapping is not created by guest software. 1126
However, such page-table edit control techniques are known to cause very high overheads due to 1127
the requirement that the VMM must monitor all paging contexts created by the (Guest) operating 1128
system. HLAT enables a VMM to enforce the integrity of guest linear mappings without this 1129
high overhead.” [30] 1130

HLAT utilizes a processor mechanism that implements an alternate Intel Itanium architecture 1131
(IA) paging structure managed in guest physical memory by a Secure Kernel. This paging 1132
structure contains guest linear to guest physical translations that the VMM/Secure Kernel wants 1133
to enforce. 1134

Additionally, to accommodate legacy page-table monitoring approaches, HLAT defines two new 1135
EPT control bits in EPT leaf entries. A “Paging-Write” control bit specifies which guest physical 1136
pages hold HLAT or legacy IA paging structures. This allows the processor to use the Paging-1137
Write as permission to perform A/D bit writes, instead of the software W permission in the 1138
EPTE. A “Verify Paging-Write” control bit specifies which guest physical pages should only be 1139
referenced via translation (guest) paging structures marked as Paging-writable under EPT [30]. 1140

B.2.2.2 Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode 1141
Access Prevention (SMAP) 1142

Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access Prevention 1143
(SMAP) are opt-in capabilities that can be used by systems software (such as the kernel) to 1144
harden the privilege separation between user-mode and kernel-mode. These capabilities further 1145

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

38

enforce the user/supervisor properties specified via address translation mechanisms by mitigating 1146
malicious code execution or malicious use of data setup by processes executing in user-mode. 1147

Intel OS Guard, also known as SMEP, helps prevent execution out of untrusted application 1148
memory while operating at a more privileged (supervisor) level. “[When] enabled, the operating 1149
system will not be allowed to directly execute application code, even speculatively. This makes 1150
branch target injection attacks on the OS substantially more difficult by forcing the attacker to 1151
find gadgets within the OS code. It is also more difficult for an application to train OS code to 1152
jump to an OS gadget. All major operating systems enable SMEP support by default.” [31] 1153

SMAP is a security feature that helps prevent unauthorized kernel consumption of data 1154
accessible to user space [32]. An enabling SMAP bit in the CR4 control register will cause a 1155
page fault to be triggered when there is any attempt to access user-space memory while running 1156
in a privileged mode. When access to user space memory is needed by the kernel, a separate AC 1157
flag is toggled to allow the required access [33]. “Two new instructions (STAC and CLAC) are 1158
provided to manipulate that flag relatively quickly.” When the AC flag is set in protection mode 1159
under normal operating circumstances, SMAP blocks a whole class of exploits where the kernel 1160
is fooled into reading from (or writing to) user-space memory by mistake. SMAP also allows for 1161
the early discovery of kernel bugs where developers dereference user space pointers directly 1162
from the kernel [33]. 1163

B.3 Data Protection and Confidential Computing 1164

B.3.1 Memory Isolation 1165

B.3.1.1 Intel TME and Intel Multi-Key TME (Intel MKTME) 1166

Intel Total Memory Encryption (Intel TME) provides the capability to encrypt the entire physical 1167
memory of a system. This capability is typically enabled in the very early stages of the boot 1168
process with a small change to the BIOS. Once this change is configured and locked, all data on 1169
the external memory buses of a CPU and any additional DIMMs will be encrypted using 128-bit 1170
keys utilizing the NIST standard AES-XTS algorithm. The encryption key used for Intel TME 1171
uses a hardware random number generator implemented in the Intel CPU, and the keys are not 1172
accessible by software or by using external interfaces to the CPU. The architecture is flexible and 1173
will support additional memory protection schemes in the future. Intel TME is intended to 1174
support unmodified existing system and application software. The overall performance impact of 1175
TME is likely to be relatively small and highly dependent on workload. 1176

Intel Multi-Key Total Memory Encryption (Intel MKTME) builds on Intel TME and adds 1177
support for multiple encryption keys. The CPU implementation supports a fixed number of 1178
encryption keys, and software can configure a CPU to use a subset of available keys. Software 1179
manages the use of keys and can use each of the available keys for encrypting any page of the 1180
memory. Thus, Intel MKTME allows page granular encryption of memory. By default, Intel 1181
MKTME uses the Intel TME encryption key unless explicitly specified by software. 1182

In addition to supporting a CPU-generated ephemeral key (not accessible by software or by using 1183
external interfaces to a CPU), Intel MKTME also supports software-provided keys. Software-1184
provided keys are particularly useful when used with nonvolatile memory, when combined with 1185

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

39

attestation mechanisms or used with key provisioning services. An OS may be enabled to take 1186
additional advantage of the Intel MKTME capability, both in native and virtualized 1187
environments. When properly enabled, Intel MKTME is available to each guest OS in a 1188
virtualized environment, and the guest OS can take advantage of Intel MKTME in the same ways 1189
as a native OS. 1190

B.3.2 Application Isolation 1191

B.3.2.1 Intel Software Guard Extensions (SGX) 1192

Intel Software Guard Extensions (SGX) is a set of instructions that increases the security of 1193
application code and data. Developers can partition security-sensitive code and data into an SGX 1194
enclave, which is executed in a CPU protected region. The developer creates and runs SGX 1195
enclaves on server platforms where only the CPU is trusted to provide attestations and protected 1196
execution environments for enclave code and data. SGX also provides an enclave remote 1197
attestation mechanism. This mechanism allows a remote provider to verify the following [34]: 1198

1. The enclave is running on a real Intel processor inside an SGX enclave. 1199
2. The platform is running at the latest security level (also referred to as the TCB version). 1200
3. The enclave’s identity is as claimed. 1201
4. The enclave has not been tampered with. 1202

Once all of this is verified, the remote attester can then provision secrets into the enclave. SGX 1203
enclave usage is reserved for Ring-3 applications and cannot be used by an OS or BIOS 1204
driver/module. 1205

SGX removes the privileged software (e.g., OS, VMM, System Management Mode [SMM], 1206
devices) and unprivileged software (e.g., Ring-3 applications, VMs, containers) from the trust 1207
boundary of the code running inside the enclave, enhancing security of sensitive application code 1208
and data. An SGX enclave trusts the CPU for execution and memory protections. SGX encrypts 1209
memory to protect against memory bus snooping and cold boot attacks for enclave code and data 1210
in host DRAM. SGX includes ISA instructions that can be used to handle Enclave Page Cache 1211
(EPC) page management for creating and initializing enclaves. 1212

SGX relies on the system UEFI BIOS and OS for initial provisioning, resource allocation, and 1213
management. However, once an SGX enclave starts execution, it is running in a 1214
cryptographically isolated environment separate from the OS and BIOS. 1215

SGX can allow any application (whole or part of) to run inside an enclave and puts application 1216
developers in control of their own application security. However, it is recommended that 1217
developers keep the SGX code base small, validate the entire system (including software side 1218
channel resistance), and follow other secure software development guidelines. 1219

SGX enclaves can be used for applications ranging from protecting private keys and managing 1220
security credentials to providing security services. In addition, industry security standards, like 1221
European Telecommunications Standards Institute (ETSI) Network Functions Virtualization 1222
(NFV) Security (ETSI NFV SEC) [35], have defined and published requirements for Hardware 1223

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

40

Mediated Execution Enclaves (HMEEs) for the purposes of NFV, 5G, and edge security. SGX is 1224
an HMEE. 1225

B.3.3 VM Isolation 1226

B.3.3.1 Intel Trust Domain Extensions (Intel TDX) 1227

Intel Trust Domain Extensions (Intel TDX) introduces new architectural elements to deploy 1228
hardware-isolated VMs called trust domains (TDs). Intel TDX is designed to isolate VMs from 1229
the VMM/hypervisor and any non-TD software on the platform to protect TDs from a broad 1230
range of software. TDX is built using a combination of Virtual Machine Extensions (VMX) ISA 1231
extensions, MKTME technology, and a CPU-attested software module called the TDX-SEAM 1232
module. TDX isolates VMs from many hardware threats and most software-based threats, 1233
including from the VMM and other CSP software. TDX helps give the cloud tenant control of 1234
their own data security and IP protection. TDX does this while maintaining the CSP role of 1235
managing resources and cloud platform integrity. 1236

The TDX solution provides the following capabilities to TDs to address the security challenges: 1237

• Memory and CPU state confidentiality and integrity to help keep the sensitive IP and 1238
workload data secure from most software-based attacks and many hardware-based 1239
attacks. The workload now has a tool that supports excluding the firmware, software, 1240
devices, and operators of the cloud platform from the TCB. The workloads can use this 1241
tool to foster more secure access to CPU instructions and other CPU features. The 1242
workload can have this ability irrespective of the cloud infrastructure used to deploy the 1243
workload. 1244

• Remote attestation enables a relying party (either the owner of the workload or a user of 1245
the services provided by the workload) to establish that the workload is running on a 1246
TDX-enabled platform located within a TD prior to providing that workload data. 1247
Remote attestation aims to allow the owners and consumers of the service to digitally 1248
determine the version of the TCB they are relying on to help secure their data. The VMM 1249
remains the platform resource manager, and TDs should not cause denial of service to the 1250
VMM. Defending TDs against denial of service by the VMM is not a goal. 1251

TDX also augments defense of the TD against limited forms of attacks that use physical access 1252
to the platform memory, such as offline, DRAM analysis (example: cold-boot attacks), and 1253
active attacks of DRAM interfaces, including capturing, modifying, relocating, splicing, and 1254
aliasing memory contents [36]. The VMM continues to be the resource manager, and TDs do not 1255
have privileges to deny service to the VMM. 1256

B.3.4 Cryptographic Acceleration 1257

B.3.4.1 Intel Advanced Encryption Standard New Instructions (Intel AES-NI) 1258

Intel AES New Instructions (Intel AES-NI) is an encryption instruction set that improves 1259
hardware performance of the Advanced Encryption Standard (AES) algorithm and accelerates 1260
data encryption. Intel AES-NI consists of seven new instructions that accelerate encryption and 1261
decryption and improve key generation and matrix manipulation, all while aiding in carry-less 1262

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

41

multiplication. This minimizes application performance concerns inherent in conventional 1263
cryptographic processing and helps provide enhanced security by addressing side channel attacks 1264
on AES associated with conventional software methods of table lookups [37]. 1265

AES is the most widely used standard for protecting network traffic, personal data, and corporate 1266
IT infrastructures. By implementing certain intensive sub-steps of the AES algorithm into the 1267
hardware, Intel AES-NI strengthens and accelerates execution of the AES application [37]. 1268

B.3.4.2 Intel QuickAssist Technology (QAT) with Intel Key Protection Technology 1269
(KPT) 1270

Intel QuickAssist Technology (QAT) is a high-performance hardware accelerator for performing 1271
cryptographic, security, and compression operations. Applications like VMs, containers, and 1272
Function as a Service (FaaS) call Intel QAT using industry-standard OpenSSL, TLS, and Internet 1273
Protocol Security (IPsec) interfaces to offload symmetric and asymmetric cryptographic 1274
operations. Cloud, multi-tenancy, NFV, edge, and 5G infrastructures and applications are best 1275
suited for QAT for all types of workloads, including software-defined networks (SDNs), content 1276
delivery networks (CDNs), media, and storage [38]. 1277

Intel Key Protection Technology (KPT) helps enable customers to secure their keys to be used 1278
with QAT through a bring-your-own-key (BYOK) paradigm. KPT allows customers to deliver 1279
their own cryptographic keys to the QAT device in the target platform where their workload is 1280
running. KPT-protected keys are never in the clear in host DRAM or in transit. The customers 1281
encrypt their workload key (e.g., RSA private key for Nginx) using KPT inside their HSMs. This 1282
encrypted workload key is delivered to the target QAT platform, where it is decrypted 1283
immediately prior to use. KPT provides key protection at rest, in transit, and while in use [39]. 1284

B.3.5 Technology Example Summary 1285

Cloud infrastructure creates improvements in the efficiency, agility, and scalability of data center 1286
workloads by abstracting hardware from the application layer. This introduces new security 1287
concerns as workloads become multi-tenant, attack surfaces become shared, and infrastructure 1288
administrators from the cloud operator gain access to underlying platforms. Isolation techniques 1289
provide answers to these concerns by adding protection to VMs, applications, and data during 1290
execution, and they represent a crucial layer of a layered security approach for data center 1291
security architecture. 1292

Various isolation techniques exist and can be leveraged for different security needs. Full memory 1293
isolation defends a platform against physical memory extraction techniques, while the same 1294
technology extended with multiple keys allows individual VMs or platform tenants to have 1295
uniquely encrypted memory. Future generations of these technologies will allow full memory 1296
isolation of VMs, protecting them against malicious infrastructure insiders, multi-tenant 1297
malware, and more. Application isolation techniques allow individual applications to create 1298
isolated enclaves that require implicit trust in the platform CPU and nothing else and that have 1299
the ability to provide proof of the enclave to other applications before data is sent. 1300

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

42

B.4 Remote Attestation Services 1301

B.4.1 Intel Security Libraries for the Data Center (ISecL-DC) 1302

Intel Security Libraries for the Data Center (ISecL-DC) is an open-source remote attestation 1303
implementation of a set of building blocks that utilize Intel Security features to discover, attest, 1304
and enable critical foundation security and confidential computing use-cases. This middleware 1305
technology provides a consistent set of application programming interfaces (APIs) for easy 1306
integration with cloud management software and security monitoring and enforcement tools. 1307
ISecL-DC applies the remote attestation fundamentals described in this section and standard 1308
specifications to maintain a platform data collection service and an efficient verification engine 1309
to perform comprehensive trust evaluations. These trust evaluations can be used to govern 1310
different trust and security policies applied to any given workload, as referenced in the workload 1311
scheduling use case in Section 7.2. In future generations, the product will be extended to include 1312
TEE attestation to provide assurance and validity of the TEE to enable confidential computing 1313
[40]. 1314

B.4.2 Technology Summary 1315

Platform attestation provides auditable foundational reports for server firmware and software 1316
integrity and can be extended to include the location of other asset tag information stored in a 1317
TPM, as well as integrity verification for applications installed on the server. These reports 1318
provide visibility into platform security configurations and can be used to control access to data 1319
and workloads. Platform attestation is performed on a per-server basis and typically consumed 1320
by cloud orchestration or a wide variety of infrastructure management platforms. 1321

TEE attestation provides a mechanism by which a user or application can validate that a genuine 1322
TEE enclave with an acceptable TCB is actually being used before releasing secrets or code to 1323
the TEE. Formation of a TEE enclave is performed at the application level, and TEE attestations 1324
are typically consumed by a user or application requiring evidence of enclave security before 1325
passing secrets. 1326

These different attestation techniques serve complementary purposes in a cloud deployment in 1327
the data center or at the edge computing facility. 1328

 1329

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

43

Appendix C—AMD Technology Examples 1330

This section describes a number of AMD technology examples that map back to the key 1331
concepts described in the various sections of the document. 1332

C.1 Platform Integrity Verification 1333

C.1.1 AMD Platform Secure Boot (AMD PSB) 1334

AMD Platform Secure Boot (AMD PSB) provides a hardware RoT to authenticate the initial 1335
Platform BIOS code during the boot process of the server. Manufacturers of server systems, like 1336
OEMs or Original Device Manufacturers (ODMs), enable the functionality of AMD PSB in their 1337
manufacturing flow by permanently fusing policy into the silicon. 1338

The OEM or ODM’s final BIOS image contains the AMD public key and the OEM BIOS-1339
signing public key (signed with the AMD private key). When a system powers on, the AMD 1340
Security Processor (ASP) starts executing the immutable on-chip Boot ROM. It authenticates 1341
and loads multi-stage ASP Boot Loaders from SPI/Low Pin Count (LPC) Flash into its internal 1342
memory, which initializes the silicon and the system memory. 1343

Once the system memory is initialized, the ASP Boot Loaders load and authenticate the OEM 1344
BIOS-signing public key, followed by authenticating the initial BIOS code. Once the verification 1345
is successful, ASP releases the x86 core to execute authenticated initial BIOS code. The BIOS 1346
can continue CoT for other components by means of UEFI Secure Boot. If PSB authentication 1347
fails, the system is forced to shut down. 1348

AMD PSB supports revocation and rollback protection of BIOS images through the OEM BIOS-1349
signing key revision ID and rollback protection. 1350

C.2 Data Protection and Confidential Computing 1351

C.2.1 Memory Isolation: AMD Secure Memory Encryption (SME)/Transparent Memory 1352
Encryption (TSME) 1353

AMD Secure Memory Encryption (SME) is a memory encryption technology from AMD which 1354
helps protect data in DRAM by encrypting system memory content [41]. When enabled, memory 1355
content is encrypted via dedicated hardware in the on-die memory controllers. Each controller 1356
includes a high-performance AES engine that encrypts data when it is written to DRAM and 1357
decrypts it when read. The encryption of data is done with an encryption key in a mode that 1358
utilizes an additional physical address-based tweak to protect against ciphertext block move 1359
attacks. 1360

The encryption key used by the AES engine with SME is randomly generated on each system 1361
reset and is not visible to any software running on the CPU cores. This key is managed entirely 1362
by the AMD Secure Processor (AMD-SP) that functions as a dedicated security subsystem 1363
integrated within the AMD System-on-Chip (SOC). The key is generated using the onboard 1364
NIST SP 800-90 compliant hardware random number generator and is stored in dedicated 1365
hardware registers where it is never exposed outside the SOC in the clear. 1366

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

44

Two modes of memory encryption are supported for various use cases. The simplest mode is 1367
Transparent Secure Memory Encryption (TSME), which is a BIOS option and enables memory 1368
encryption automatically on all memory accesses. TSME works in the background and requires 1369
no software interaction. Another supported mode is the OS-managed Secure Memory Encryption 1370
(SME) mode in which individual pages of memory may be marked for encryption via CPU page 1371
tables. SME provides additional flexibility if only a subset of memory needs to be encrypted but 1372
does require appropriate software support. 1373

Encrypted memory provides strong protection against cold boot, DRAM interface snooping, and 1374
similar types of attacks. 1375

C.2.2 VM Isolation: AMD Secure Encrypted Virtualization (SEV) 1376

The AMD Secure Encrypted Virtualization (SEV) feature is designed to isolate VMs from the 1377
hypervisor. When SEV is enabled, individual VMs are encrypted with an AES encryption key. 1378
When a component such as the hypervisor attempts to read memory inside a guest, it is only able 1379
to see the data in its encrypted form. This provides strong cryptographic isolation between the 1380
VMs, as well as between the VMs and the hypervisor. 1381

To protect SEV-enabled guests, the SEV firmware assists in the enforcement of three main 1382
security properties: authenticity of the platform, attestation of a launched guest, and 1383
confidentiality of the guest’s data. 1384

Authenticating the platform prevents malicious software or a rogue device from masquerading as 1385
a legitimate platform. The authenticity of the platform is proven with its identity key. This key is 1386
signed by AMD to demonstrate that the platform is an authentic AMD platform with SEV 1387
capabilities. 1388

Attestation of the guest launch proves to guest owners that their guests securely launched with 1389
SEV enabled. A signature of various components of the SEV-related guest state, including initial 1390
contents of memory, is provided by the firmware to the guest owner to verify that the guest is in 1391
the expected state. With this attestation, a guest owner can ensure that the hypervisor did not 1392
interfere with the initialization of SEV before transmitting confidential information to the guest. 1393

Confidentiality of the guest is accomplished by encrypting memory with a memory encryption 1394
key that only the SEV firmware knows. The SEV management interface does not allow the 1395
memory encryption key or any other secret SEV state to be exported outside of the firmware 1396
without properly authenticating. 1397

AMD SEV has two additional modes: 1398

• SEV With Encrypted State (SEV-ES): This mode encrypts and protects VM registers 1399
from being read or modified by a malicious hypervisor or VM [42]. 1400

• SEV with Secure Nested Paging (SEV-SNP): This mode adds strong memory integrity 1401
protection to help prevent malicious hypervisor-based attacks like data replay and 1402
memory remapping. [43] 1403

 1404

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

45

Appendix D—Acronyms and Abbreviations 1405

Selected acronyms and abbreviations used in this paper are defined below. 1406

AC RAM Authenticated Code Random Access Memory
ACM Authenticated Code Module
AES Advanced Encryption Standard
AMD PSB AMD Platform Secure Boot
AMD-SP AMD Secure Processor
API Application Programming Interface
AS Attestation Service
ASP AMD Security Processor
BIOS Basic Input/Output System
BMC Board Management Controller
BYOK Bring Your Own Key
CA Certificate Authority
CDN Content Delivery Network
CFI Control Flow Integrity
COP Call Oriented Programming
CoT Chain of Trust
CPU Central Processing Unit
CRD Custom Resource Definition
CRI Container Runtime Interface
CRTM Core Root of Trust for Measurement
CRTV Core Root of Trust for Verification
CSK Code Signing Key
CSP Cloud Service Provider
DCRTM Dynamic Core Root of Trust for Measurement
DFARS Defense Federal Acquisition Regulation Supplement
DIMM Dual In-Line Memory Module
DRAM Dynamic Random-Access Memory
EPC Enclave Page Cache
EPT Extended Page Table
ETSI European Telecommunications Standards Institute
ETSI NFV
SEC

European Telecommunications Standards Institute Network Functions
Virtualization Security

FaaS Function as a Service

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

46

FIPS Federal Information Processing Standard
FOIA Freedom of Information Act
FPGA Field Programmable Gate Array
GDPR General Data Protection Regulation
GPK General Purpose Kernel
HASP Hardware and Architectural Support for Security and Privacy
HIPAA Health Insurance Portability and Accountability Act
HLAT Hypervisor Managed Linear Address Translation
HMEE Hardware Mediated Execution Enclave
HSM Hardware Security Module
IA Intel Itanium Architecture
IBB Initial Boot Block
Intel AES-NI Intel Advanced Encryption Standard New Instructions
Intel CET Intel Control-Flow Enforcement Technology
Intel
MKTME

Intel Multi-Key Total Memory Encryption

Intel TDX Intel Trust Domain Extensions
Intel TME Intel Total Memory Encryption
Intel TSC Intel Transparent Supply Chain
Intel VT-x Intel Virtualization Technology
IoT Internet of Things
IPsec Internet Protocol Security
IR NIST Interagency or Internal Report
ISA Instruction Set Architecture
ISecL-DC Intel Security Libraries for the Data Center
IT Information Technology
ITL Information Technology Laboratory
JOP Jump Oriented Programming
KEK Key Exchange Key
KMIP Key Management Interoperability Protocol
KMS Key Management Service
KPT Key Protection Technology
LCP Launch Control Policy
LPC Low Pin Count
ME Manageability Engine
MOK Machine Owner Key

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

47

NCCoE National Cybersecurity Center of Excellence
NFV Network Functions Virtualization
NIST National Institute of Standards and Technology
NVRAM Non-Volatile Random-Access Memory
ODM Original Design Manufacturer
OEM Original Equipment Manufacturer
OS Operating System
PCH Platform Controller Hub
PCIE Peripheral Component Interconnect Express
PCR Platform Configuration Register
PFM Platform Firmware Manifest
PFR Platform Firmware Resilience
PIT Protection in Transit
PK Platform Key
QAT QuickAssist Technology
RAM Random Access Memory
RCE Remote Code Execution
RF Radio Frequency
RK Root Key
RNG Random Number Generator
ROM Read-Only Memory
ROP Return Oriented Programming
RoT Root of Trust
RTD Root of Trust for Detection
RTRec Root of Trust for Recovery
RTU Root of Trust for Update
RW Read/Write
RWX Read/Write/Execute
SB UEFI Secure Boot
SCRTM Static Core Root of Trust for Measurement
SDN Software Defined Network
SEV Secured Encrypted Virtualization
SEV-ES Secured Encrypted Virtualization with Encrypted State
SEV-SNP Secured Encrypted Virtualization with Secured Nested Paging
SGX Software Guard Extensions
SINIT ACM Secure Initialization Authenticated Code Module

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

48

SK Secure Kernel
SMAP Supervisor Mode Access Prevention
SMBus System Management Bus
SME Secure Memory Encryption
SMEP Supervisor Mode Execution Prevention
SMM System Management Mode
SOC System-on-Chip
SP Special Publication
SPI Serial Peripheral Interface
SPS FW Server Platform Services Firmware
TCB Trusted Compute Base, Trusted Computing Base
TD Trust Domain
TEE Trusted Execution Environment
TLB Translation Lookaside Buffer
TLS Transport Layer Security
TPM Trusted Platform Module
TSME Transparent Memory Encryption
TXT Trusted Execution Technology
UEFI Unified Extensible Firmware Interface
USB Universal Serial Bus
VM Virtual Machine
VMM Virtual Machine Manager, Virtual Machine Monitor
VMX Virtual Machine Extensions
XTS xor-encrypt-xor (XEX) Based Tweaked-Codebook Mode with Ciphertext

Stealing
XU User-Execute
XWR Read/Write/Execute

 1407

NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY:
 ENABLING A LAYERED APPROACH TO PLATFORM SECURITY

49

Appendix E—Glossary 1408

Asset Tag Simple key value attributes that are associated with a 1409
platform (e.g., location, company name, division, or 1410
department). 1411

Chain of Trust (CoT) A method for maintaining valid trust boundaries by 1412
applying a principle of transitive trust, where each 1413
software module in a system boot process is required 1414
to measure the next module before transitioning 1415
control. 1416

Confidential Computing Hardware-enabled features to isolate and process 1417
encrypted data in memory so that the data is at less 1418
risk of exposure and compromise from concurrent 1419
workloads or the underlying system and platform. 1420

Cryptographic Accelerator A specialized separate coprocessor chip from the 1421
main processing unit where cryptographic tasks are 1422
offloaded to for performance benefits. 1423

Hardware-Enabled Security Security with its basis in the hardware platform. 1424
Platform Trust An assurance in the integrity of the underlying 1425

platform configuration, including hardware, 1426
firmware, and software. 1427

Root of Trust (RoT) A starting point that is implicitly trusted. 1428
Shadow Stack A parallel hardware stack that applications can utilize 1429

to store a copy of return addresses that are checked 1430
against the normal program stack on return 1431
operations. 1432

Trusted Execution Environment (TEE) An area or enclave protected by a system processor. 1433

	1 Introduction
	2 Hardware Platform Security Overview
	3 Platform Integrity Verification
	3.1 Hardware Security Module (HSM)
	3.2 The Chain of Trust (CoT)
	3.3 Supply Chain Protection

	4 Software Runtime Protection Mechanisms
	4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming (COP/JOP) Attacks
	4.2 Address Translation Attacks

	5 Data Protection and Confidential Computing
	5.1 Memory Isolation
	5.2 Application Isolation
	5.3 VM Isolation
	5.4 Cryptographic Acceleration

	6 Remote Attestation Services
	6.1 Platform Attestation
	6.2 TEE Attestation

	7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security
	7.1 Visibility to Security Infrastructure
	7.2 Workload Placement on Trusted Platforms
	7.3 Asset Tagging and Trusted Location
	7.4 Workload Confidentiality
	7.5 Protecting Keys and Secrets

	8 Next Steps
	References
	Appendix A— Vendor-Agnostic Technology Examples
	A.1 Platform Integrity Verification
	A.1.1 UEFI Secure Boot (SB)
	Appendix B— Intel Technology Examples
	B.1 Platform Integrity Verification
	B.1.1 The Chain of Trust (CoT)
	B.1.1.1 Intel Trusted Execution Technology (TXT)
	B.1.1.2 Intel Boot Guard
	B.1.1.3 Intel Platform Firmware Resilience (PFR)
	B.1.1.4 Technology Example Summary
	B.1.2 Supply Chain Protection
	B.1.2.1 Intel Transparent Supply Chain (TSC)
	B.1.2.2 PFR with Protection in Transit (PIT)

	B.2 Software Runtime Protection Mechanisms
	B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming (COP/JOP) Attacks
	B.2.1.1 Intel Control-Flow Enforcement Technology (Intel CET)

	B.2.2 Address Translation Attacks
	B.2.2.1 Intel Hypervisor Managed Linear Address Translation (HLAT)
	B.2.2.2 Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access Prevention (SMAP)

	B.3 Data Protection and Confidential Computing
	B.3.1 Memory Isolation
	B.3.1.1 Intel TME and Intel Multi-Key TME (Intel MKTME)

	B.3.2 Application Isolation
	B.3.2.1 Intel Software Guard Extensions (SGX)

	B.3.3 VM Isolation
	B.3.3.1 Intel Trust Domain Extensions (Intel TDX)

	B.3.4 Cryptographic Acceleration
	B.3.4.1 Intel Advanced Encryption Standard New Instructions (Intel AES-NI)
	B.3.4.2 Intel QuickAssist Technology (QAT) with Intel Key Protection Technology (KPT)

	B.3.5 Technology Example Summary

	B.4 Remote Attestation Services
	B.4.1 Intel Security Libraries for the Data Center (ISecL-DC)
	B.4.2 Technology Summary

	Appendix C— AMD Technology Examples
	C.1 Platform Integrity Verification
	C.1.1 AMD Platform Secure Boot (AMD PSB)

	C.2 Data Protection and Confidential Computing
	C.2.1 Memory Isolation: AMD Secure Memory Encryption (SME)/Transparent Memory Encryption (TSME)
	C.2.2 VM Isolation: AMD Secure Encrypted Virtualization (SEV)

	Appendix D— Acronyms and Abbreviations
	Appendix E— Glossary

	Word Bookmarks
	Ref_Wired_Russia_Elite_Hackers
	Ref_Intel_TXT_SDG
	Ref_NIST_SP_800_147
	Ref_NIST_SP_800_193
	Ref_NIST_SP_800_57pt2r1
	Ref_TCG_TPM
	Ref_FIPS_140
	Ref_NCCoE_SupplyChainAssurance
	Ref_NIST_SP_800_161
	Ref_NIST_CSCRM
	Ref_NCSU_JOP
	Ref_NIST_SP_800_125
	Ref_Intel_Virtualization_Technology
	Ref_Confidential_Computing_Consortium
	Ref_NISTIR_7904
	Ref_Debian_Wiki_Secure_Boot
	Ref_UEFI_Secure_Boot_Modern
	Ref_RedHat_UEFI_Shim_Loader_README
	Ref_Intel_TXT_Overview
	Ref_Intel_TXT_Server_Platforms
	Ref_Intel_TXT_tboot_Overview
	Ref_Intel_Transparent_Supply_Chain
	Ref_Intel_Highlights_RSA_2020
	Ref_DoD_Subpart_246870
	Ref_Intel_CFETS
	Ref_TheRegister_RIP_ROP_COP_JOP
	Ref_Intel_Technical_Look_Intel_CFET
	Ref_Intel_Releases_Specs_ROP
	Ref_Intel_Security_Analysis_ProcISA
	Ref_Intel_ArchInstrSetExtensions
	Ref_Intel_RelatedIntelSecFeatures
	Ref_Anvin_Description_x86_SMAP
	Ref_Corbet_SMAP
	Ref_Intel_Strengthen_Enclave_Trust
	Ref_ETSI_NFV_Security_Standards
	Ref_Intel_Trust_Domain_Extensions
	Ref_Intel_IntelDataProtectionTech
	Ref_Intel_Flexible_Workload_Acceleration
	Ref_Intel_QuickAssist
	Ref_Intel_SecL_DC
	Ref_AMD_Memory_Encryption
	Ref_AMD_Protecting_VM_Register_State
	Ref_AMD_SEV_SNP

