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1 Introduction 232 

In today’s cloud data centers and edge computing, there are three main forces that impact 233 
security: (1) the introduction of billions of connected devices and increased adoption of the cloud 234 
have significantly increased attack surfaces; (2) hacking has become industrialized with 235 
sophisticated and evolving techniques to compromise data; and (3) solutions composed of 236 
multiple technologies from different vendors result in a lack of coherent and consistent 237 
implementations of security controls. Given these forces, the foundation for a data center or edge 238 
computing security strategy should have a consolidated approach to comprehensively secure the 239 
entire hardware platform on which workloads and data are executed and accessed. 240 

In the scope of this document, the hardware platform is a server (e.g., application server, storage 241 
server, virtualization server) in a data center or edge compute facility. The server’s hardware 242 
platform, also called the server platform, represents the first part of the layered security 243 
approach. Hardware-enabled security—security with its basis in the hardware platform—can 244 
provide a stronger foundation than one offered by software or firmware, which can be modified 245 
with relative ease. Hardware root of trust presents a smaller attack surface due to the small 246 
codebase. Existing security implementations can be enhanced by providing a base-layer, 247 
immutable hardware module that chains software and firmware verifications from the hardware 248 
all the way to the application space or specified security control. In that manner, existing security 249 
mechanisms can be trusted even more to accomplish their security goals without compromise, 250 
even when there is a lack of physical security or attacks originate from the software layer. 251 

This report explains hardware-based security techniques and technologies that can improve 252 
server platform security and data protection for cloud data centers and edge computing. The rest 253 
of this report covers the following topics: 254 

• Section 2 provides an overview of hardware platform security. 255 

• Section 3 discusses the measurement and verification of platform integrity. 256 

• Section 4 explores software runtime attacks and protection mechanisms. 257 

• Section 5 considers protecting data in use, also known as confidential computing. 258 

• Section 6 examines remote attestation services, which can collate platform integrity 259 
measurements to aid in integrity verification. 260 

• Section 7 describes a number of cloud use case scenarios that take advantage of 261 
hardware-enabled security. 262 

• Section 8 states the next steps for this report and how others can contribute. 263 

• The References section lists the cited references for this report. 264 

• Appendix A describes vendor-agnostic technology examples. 265 

• Appendix B describes Intel technology examples. 266 

• Appendix C describes technology examples from AMD. 267 

• Appendix D lists the acronym and abbreviations used in the report. 268 
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• Appendix E provides a glossary of selected terms used in the report. 269 

As technology and security capabilities evolve, NIST is continuously seeking feedback from the 270 
community on the content of the report and soliciting additional technology example 271 
contributions from other companies. 272 

Although this document does not address other platforms like laptops, desktops, mobile devices, 273 
or Internet of Things (IoT) devices, the practices in this report can be adapted to support those 274 
platforms and their associated use cases. 275 

Please send your feedback and comments to hwsec@nist.gov. 276 

    277 
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2 Hardware Platform Security Overview 278 

The data center threat landscape has evolved in recent years to encompass more advanced attack 279 
surfaces with more persistent attack mechanisms. With increased attention being applied to high-280 
level software security, attackers are pushing lower in the platform stack, forcing security 281 
administrators to address a variety of attacks that threaten the platform firmware and hardware. 282 
These threats can result in: 283 

• Unauthorized access to and potential extraction of sensitive platform or user data, 284 
including direct physical access to dual in-line memory modules (DIMMs) 285 

• Modification of platform firmware, such as that belonging to the Unified Extensible 286 
Firmware Interface (UEFI)/Basic Input Output System (BIOS), Board Management 287 
Controller (BMC), Manageability Engine (ME), Peripheral Component Interconnect 288 
Express (PCIE) device, and various accelerator cards 289 

• Supply chain interception through the physical replacement of firmware or hardware with 290 
malicious versions 291 

• Access to data or execution of code outside of regulated geopolitical or other boundaries 292 

• Circumvention of software and/or firmware-based security mechanisms 293 

For example, LoJax, discovered in August 2018, manifests itself in UEFI malware, allowing it to 294 
continuously persist in the firmware layer despite operating system (OS) reinstallations, and thus 295 
remain invisible to standard kernel-based virus scans [1]. These attacks can be devastating to 296 
cloud environments because they often require server-by-server rebuilds or replacements, which 297 
can take weeks. Although still rare, these attacks are increasing as attackers become more 298 
sophisticated.  299 

Workloads subject to specific regulations or containing sensitive data present additional security 300 
challenges for multi-tenant clouds. While virtualization and containers significantly benefit 301 
efficiency, adaptability, and scalability, these technologies consolidate workloads onto fewer 302 
physical platforms and introduce the dynamic migration of workloads and data across platforms. 303 
Consequently, cloud adoption results in a loss of consumer visibility and control over the 304 
platforms that host virtualized workloads and data, and introduces the usage of third-party 305 
infrastructure administrators. Cloud providers and cloud adopters follow a shared responsibility 306 
model, where each party has responsibility for different aspects of the overall implementation. 307 
Cloud providers can expose information related to infrastructure security and platform capability 308 
in order to provide their tenants with security assurances. Furthermore, cloud providers often 309 
have data centers that span multiple geopolitical boundaries, subjecting workload owners to 310 
complicated legal and regulatory compliance requirements from multiple countries. Hybrid cloud 311 
architectures, in particular, utilize multiple infrastructure providers, each with their own 312 
infrastructure configurations and management.  313 

Without physical control over or visibility into platform configurations, conventional security 314 
best practices and regulatory requirements become difficult or impossible to implement. With 315 
new regulatory structures like the European General Data Protection Regulation (GDPR) 316 
introducing high-stakes fines for noncompliance, having visibility and control over where data 317 
may be accessed is more important than ever before. Top concerns among security professionals 318 
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include the protection of workloads from general security risks, the loss or exposure of data in 319 
the event of a data breach, and regulatory compliance. 320 

Existing mitigations of threats against cloud servers are often rooted in firmware or software, 321 
making them vulnerable to the same attack strategies. For example, if the firmware can be 322 
successfully exploited, then the firmware-based security controls can most likely be 323 
circumvented in the same fashion. Hardware-enabled security techniques can help mitigate these 324 
threats by establishing and maintaining platform trust—an assurance in the integrity of the 325 
underlying platform configuration, including hardware, firmware, and software. By providing 326 
this assurance, security administrators can gain a level of visibility and control over where access 327 
to sensitive workloads and data is permitted. Platform security technologies that establish 328 
platform trust can provide notification or even self-correction of detected integrity failures. 329 
Platform configurations can automatically be reverted back to a trusted state and give the 330 
platform resilience against attack. 331 

All security controls must have a root of trust (RoT)—a starting point that is implicitly trusted. 332 
Hardware-based controls can provide an immutable foundation for establishing platform 333 
integrity. Combining these functions with a means of producing verifiable evidence that these 334 
integrity controls are in place and have been executed successfully is the basis of creating a 335 
trusted platform. Minimizing the footprint of this RoT translates to reducing the number of 336 
modules or technologies that must be implicitly trusted. This substantially reduces the attack 337 
surface. 338 

Platforms that secure their underlying firmware and configuration provide the opportunity for 339 
trust to be extended higher in the software stack. Verified platform firmware can, in turn, verify 340 
the OS boot loader, which can then verify other software components all the way up to the OS 341 
itself and the hypervisor or container runtime layers. The transitive trust described here is 342 
consistent with the concept of the chain of trust (CoT)—a method where each software module 343 
in a system boot process is required to measure the next module before transitioning control. 344 

Rooting platform integrity and trust in hardware security controls can strengthen and 345 
complement the extension of the CoT into the dynamic software category. There, the CoT can be 346 
extended even further to include data and workload protection. Hardware-based protections 347 
through CoT technology mechanisms can form a layered security strategy to protect data and 348 
workloads as they move to multi-tenant environments in a cloud data center or edge computing 349 
facility. 350 

In addition, there are other hardware platform security technologies that can protect data at rest, 351 
in transit, and in use by providing hardware-accelerated disk encryption or encryption-based 352 
memory isolation. Many of these capabilities can help mitigate threats from speculative 353 
execution and side-channel attacks. By using hardware to perform these tasks, the attack surface 354 
is mitigated, preventing direct access or modification of the required firmware. Isolating these 355 
encryption mechanisms to dedicated hardware can allow performance to be addressed and 356 
enhanced separately from other system processes as well. An example of hardware-based 357 
isolation is discussed later in the document.   358 
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3 Platform Integrity Verification 359 

A key concept of trusted computing is verification of the underlying platform’s integrity. 360 
Platform integrity is typically comprised of two parts:  361 

• Cryptographic measurement of software and firmware. In this report, the term 362 
measurement refers to calculating a cryptographic hash of a software or firmware 363 
executable, configuration file, or other entity. If there is any change in an entity, a new 364 
measurement will result in a different hash value than the original [2]. By measuring 365 
software and firmware prior to execution, the integrity of the measured modules and 366 
configurations can be validated before the platform launches or before data or workloads 367 
are accessed. These measurements can also act as cryptographic proof for compliance 368 
audits. 369 

• Firmware and configuration verification. When firmware and configuration 370 
measurements are made, local or remote attestations can be performed to verify if the 371 
desired firmware is actually running and if the configurations are authorized [3]. 372 
Attestation can also serve as the foundation for further policy decisions that fulfill various 373 
cloud security use case implementations. For instance, encryption keys can be released to 374 
client workloads if a proof is performed that the platform server is trusted and in 375 
compliance with policies. 376 

In some cases, a third part is added to platform integrity:  377 

• Firmware and configuration recovery. If the verification step fails (i.e., the attestations 378 
do not match the expected measurements), the firmware and configuration can 379 
automatically be recovered to a known good state, such as rolling back firmware to a 380 
trusted version. The process by which these techniques are implemented affects the 381 
overall strength of the assertion that the measured and verified components have not been 382 
accidentally altered or maliciously tampered. Recovery technologies allow platforms to 383 
maintain resiliency against firmware attacks and accidental provisioning mistakes [4]. 384 

There are many ways to measure platform integrity. Most technologies center around the 385 
aforementioned concept of the CoT. In many cases, a hardware security module is used to store 386 
measurement data to be attested at a later point in time. The rest of this section discusses 387 
hardware security modules and various chain of trust technology implementations. 388 

3.1 Hardware Security Module (HSM) 389 

A hardware security module (HSM) is “a physical computing device that safeguards and 390 
manages cryptographic keys and provides cryptographic processing” [5]. Cryptographic 391 
operations such as encryption, decryption, and signature generation/verification are typically 392 
hosted on the HSM device, and many implementations provide hardware-accelerated 393 
mechanisms for cryptographic operations. 394 

A trusted platform module (TPM) is a special type of HSM that can generate cryptographic keys 395 
and protect small amounts of sensitive information, such as passwords, cryptographic keys, and 396 
cryptographic hash measurements. [3] The TPM is a standalone device that can be integrated 397 
with server platforms, client devices, and other products. One of the main use cases of a TPM is 398 
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to store digest measurements of platform firmware and configuration during the boot process. 399 
Each firmware module is measured by generating a digest, which is then extended to a TPM 400 
platform configuration register (PCR). Multiple firmware modules can be extended to the same 401 
PCR, and the TPM specification provides guidelines for which firmware measurements are 402 
encompassed by each PCR [6]. 403 

TPMs also host functionality to generate binding and signing keys that are unique per TPM and 404 
stored within the TPM non-volatile random-access memory (NVRAM). The private portion of 405 
this key pair is decrypted inside the TPM, making it only accessible by the TPM hardware or 406 
firmware. This can create a unique relationship between the keys generated within a TPM and a 407 
platform system, restricting private key operations to the platform firmware that has ownership 408 
and access to the specified TPM. Binding keys are used for encryption/decryption of data, while 409 
signing keys are used to generate/verify cryptographic signatures. The TPM provides a random 410 
number generator (RNG) as a protected capability with no access control. This RNG is used in 411 
critical cryptographic functionality as an entropy source for nonces, key generation, and 412 
randomness in signatures [6]. 413 

There are two versions of TPMs: 1.2 and 2.0. The 2.0 version supports additional security 414 
features and algorithms [6]. TPMs also meet the National Institute of Standards and Technology 415 
(NIST) Federal Information Processing Standard (FIPS) 140 validation criteria and support 416 
NIST-approved cryptographic algorithms [7]. 417 

3.2 The Chain of Trust (CoT) 418 

The chain of trust (CoT) is a method for maintaining valid trust boundaries by applying a 419 
principle of transitive trust. Each firmware module in the system boot process is required to 420 
measure the next module before transitioning control. Once a firmware module measurement is 421 
made, it is recommended to immediately extend the measurement value to an HSM register for 422 
attestation at a later point in time [6]. The CoT can be extended further into the application 423 
domain, allowing for files, directories, devices, peripherals, etc. to be measured and attested.  424 

Every CoT starts with an RoT module. It can be composed of different hardware and firmware 425 
components. For several platform integrity technologies, the RoT core firmware module is 426 
rooted in immutable read-only memory (ROM) code. However, not all technologies define their 427 
RoTs in this manner [6]. The RoT is typically separated into components that verify and 428 
measure. The core root of trust for verification (CRTV) is responsible for verifying the first 429 
component before control is passed to it. The core root of trust for measurement (CRTM) is the 430 
first component that is executed in the CoT and extends the first measurement to the TPM. The 431 
CRTM can be divided into a static portion (SCRTM) and dynamic portion (DCRTM). The 432 
SCRTM is composed of elements that measure firmware at system boot time, creating an 433 
unchanging set of measurements that will remain consistent across reboots. The DRTM allows a 434 
CoT to be established without rebooting the system, permitting the root of trust for measurement 435 
to be reestablished dynamically. 436 

An RoT that is built with hardware protections will be more difficult to change, while an RoT 437 
that is built solely in firmware can easily be flashed and modified. 438 
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Various platform integrity technologies build their own CoTs. Please refer to the following 439 
technology examples in the appendices for more information: 440 

• UEFI Secure Boot (SB) 441 

• Intel Trusted Execution Technology (TXT) 442 

• Intel Boot Guard 443 

• Intel Platform Firmware Resilience (PFR) 444 

• Intel Technology Example Summary 445 

• AMD Platform Secure Boot  446 

3.3 Supply Chain Protection 447 

Organizations are increasingly at risk of supply chain compromise, whether intentional or 448 
unintentional. Managing cyber supply chain risks requires, in part, ensuring the integrity, quality, 449 
and resilience of the supply chain, its products, and its services. Cyber supply chain risks may 450 
include counterfeiting, unauthorized production, tampering, theft, and insertion of malicious or 451 
otherwise unexpected software and hardware, as well as poor manufacturing and development 452 
practices in the cyber supply chain [8] [9] [10]. 453 

Special technologies have been developed to help ascertain the authenticity and integrity of 454 
platform hardware, including its firmware and configuration. These technologies help ensure that 455 
platforms are not tampered with or altered from the time that they are assembled at the 456 
manufacturer site to the time that they arrive at a consumer data center ready for installation. 457 
Verification of these platform attributes is one aspect of securing the supply chain.1 Some 458 
technologies include an additional feature for locking the boot process or access to these 459 
platforms until a secret is provided that only the consumer and manufacturer know. 460 

Please refer to the following technology examples in the appendices for more information: 461 

• Intel Transparent Supply Chain (TSC) 462 

• Intel PFR with Protection in Transit (PIT) 463 

    464 

 

1  For more information on supply chain security, see the National Cybersecurity Center of Excellence (NCCoE) Supply Chain 
Assurance project page at https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance.  

https://www.nccoe.nist.gov/projects/building-blocks/supply-chain-assurance
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4 Software Runtime Protection Mechanisms 465 

This section describes various software runtime attacks and protection mechanisms. 466 

4.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 467 
(COP/JOP) Attacks 468 

ROP attacks focus on utilizing buffer overflows and targeted memory overwrites of return 469 
addresses in the stack. Attackers redirect return flows by corrupting addresses on the data stack 470 
to be locations in already-executable code. These small selected sequences of code called 471 
gadgets result in malicious modifications to the system or the invocation of normally 472 
unauthorized operations. A common example is a call to the shell executable within the system 473 
interface [11]. 474 

COP/JOP attacks are similar to ROP attacks, relying on gadget building blocks. They target 475 
indirect jump instructions at the end of a gadget, many of which are intentionally emitted by the 476 
compiler. However, a jump gadget performs a one-directional control flow transfer to its target, 477 
as opposed to ROP, where gadgets return control back to the stack. This can make it difficult for 478 
attackers to regain control after executing their gadgets, but solutions to this problem, such as the 479 
one presented in [11], are beginning to appear. 480 

Applications can utilize a parallel stack, known as the shadow stack, to help mitigate software 481 
attacks which attempt to modify the control flow. Utilizing special hardware, the shadow stack is 482 
used to store a copy of return addresses; the address is checked against the normal program stack 483 
on return operations. If the content differs, an exception is generated, which can help prevent 484 
malicious code from gaining control of the system with techniques such as ROP. In this way, 485 
shadow stack hardware can help mitigate some of the most common and exploitable types of 486 
software bugs. 487 
Several defenses and preventative measures have been developed within industry to 488 
accommodate ROP and COP/JOP attacks, including: 489 

• Intel Control-Flow Enforcement Technology (CET) 490 

4.2 Address Translation Attacks 491 

Commodity operating systems rely on virtual memory protection models enabled via paging 492 
enforced by the processor memory management unit. Operating systems isolate process and 493 
kernel memory using page tables managed by systems software, with access permissions such as 494 
user/supervisor and read/write/execute (RWX). Process and kernel memory accesses are via 495 
virtual addresses which are mapped to physical memory addresses via address translation 496 
structures. These structures used for address translation are critical to enforcing the isolation 497 
model. 498 

Modern operating systems are single address space kernels (as opposed to micro-kernels), which 499 
provide good performance but have a large attack surface. A vulnerability in the kernel or driver 500 
can be leveraged to escalate privileges of a malicious process. Kernel read/write primitives can 501 
be leveraged with Write-What-Where vulnerabilities exploited from flaws discovered in kernel 502 
code and/or drivers. 503 
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Heuristic defense mechanisms such as Page Table randomization can be bypassed with 504 
information leaks achieved via malicious read/write primitives. Such information leaks are 505 
performed by chaining together a set of system calls (syscalls). For example, one syscall can 506 
allocate RWX pool memory, and a second can exploit an arbitrary memory write to overwrite the 507 
address translation structures. Two types of attacks can utilize this methodology for nefarious 508 
purposes. First, an attacker can redirect a virtual address in use to attacker-controlled contents 509 
(many times set up in user-space memory). Second, an attacker can create a malicious alias 510 
mapping which references desired physical memory with attacker-chosen permissions (e.g., 511 
read/write [RW] access to a page via an alias mapping that was originally read-only). It is 512 
important for address translation protection mechanisms to block both of these types of attacks. 513 

In addition to protecting the integrity of address translation structures, processors can also detect 514 
and block any execution or data access setup by lower privilege code from a higher privilege 515 
access. These protections establish boundaries, requiring code to execute with only the necessary 516 
permissions and forcing elevated permission requests when needed. 517 

Several defenses and preventative measures have been developed within industry to 518 
accommodate memory page-table attacks, including the following: 519 

• Intel Hypervisor Managed Linear Address Translation (HLAT) 520 

• Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 521 
Prevention (SMAP) 522 

• AMD Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access 523 
Prevention (SMAP) 524 

    525 

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
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5 Data Protection and Confidential Computing 526 

With the increase in adoption of consumer-based cloud services, virtualization has become a 527 
necessity in cloud data center infrastructure. Virtualization simulates the hardware that multiple 528 
cloud workloads run on top of. Each workload is isolated from others so that it has access to only 529 
its own resources, and each workload can be completely encapsulated for portability [12] [13]. 530 
Conventional virtual machines (VMs) have an isolated kernel space running all aspects of a 531 
workload alongside the kernel. Today, the virtualized environment has been extended to include 532 
containers and full-featured workload orchestration engines. Containers offer application 533 
portability by sharing an underlying kernel, which drastically reduces workload-consumed 534 
resources and increases performance.  535 

While containers can provide a level of convenience, vulnerabilities in the kernel space and 536 
shared layers can be susceptible to widespread exploitation, making security for the underlying 537 
platform even more important. With the need for additional protection in the virtualized 538 
workspace, an emphasis has been placed on encrypting data both at rest and while in use. At-rest 539 
encryption provides protection for data on disk. This typically refers to an unmounted data store 540 
and protects against threats such as the physical removal of a disk drive. Protecting and securing 541 
cloud data while in use, also referred to as confidential computing, utilizes hardware-enabled 542 
features to isolate and process encrypted data in memory so that the data is at less risk of 543 
exposure and compromise from concurrent workloads or the underlying system and platform 544 
[14]. This section describes technologies that can be leveraged for providing confidential 545 
computing for cloud and edge. 546 

A trusted execution environment (TEE) is an area or enclave protected by a system processor. 547 
Sensitive secrets like cryptographic keys, authentication strings, or data with intellectual property 548 
and privacy concerns can be preserved within a TEE, and operations involving these secrets can 549 
be performed within the TEE, thereby eliminating the need to extract the secrets outside of the 550 
TEE. A TEE also helps ensure that operations performed within it and the associated data cannot 551 
be viewed from outside, not even by privileged software or debuggers. Communication with the 552 
TEE is designed to only be possible through designated interfaces, and it is the responsibility of 553 
the TEE designer/developer to define these interfaces appropriately. A good TEE interface limits 554 
access to the bare minimum required to perform the task. 555 

5.1 Memory Isolation 556 

There are many technologies that provide data protection via encryption. Most of these solutions 557 
focus on protecting the respective data while at rest and do not cover the fact that the data is 558 
decrypted and vulnerable while in use. Applications running in memory share the same platform 559 
hardware and can be susceptible to attacks either from other workloads running on the same 560 
hardware or from compromised cloud administrators. There is a strong desire to secure 561 
intellectual property and ensure that private data is encrypted and not accessible at any point in 562 
time, particularly in cloud data centers and edge computing facilities. Various hardware 563 
technologies have been developed to encrypt content running in platform memory. 564 

Please refer to the following technology examples in the appendices for more information: 565 
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• Intel TME and Multi-Key Total Memory Encryption (MKTME) 566 

• AMD Secure Memory Encryption (SME)/Transparent Memory Encryption (TSME)  567 

5.2 Application Isolation 568 

Application isolation utilizes a TEE to help protect the memory reserved for an individual 569 
application. The trust boundary associated with the application is restricted to only the central 570 
processing unit (CPU). Future generations of these techniques will allow entire applications to be 571 
isolated in their own enclaves rather than only protecting specific operations or memory. By 572 
using separate application enclaves with unique per-application keys, sensitive applications can 573 
be protected against data exposure, even to malicious insiders with access to the underlying 574 
platform. Implementations of application isolation will typically involve developer integration of 575 
a toolkit within the application layer, and it is the developer’s responsibility to ensure secure 576 
TEE design. 577 

Please refer to the following technology examples in the appendices for more information: 578 

• Intel Software Guard Extensions (SGX) 579 

5.3 VM Isolation 580 

As new memory and execution isolation technologies become available, it is more feasible to 581 
isolate entire VMs. VMs already enjoy a degree of isolation due to technologies like hardware-582 
assisted virtualization, but the memory of each VM remains in the clear. Some existing memory 583 
isolation technologies require implicit trust of the virtual machine manager (VMM). Isolation 584 
technologies in future platform generations will remove the VMM from the trust boundary and 585 
allow full encryption of VM memory with per-VM unique keys, protecting the VMs from not 586 
only malicious software running on the hypervisor host but also rogue firmware. 587 

VM isolation can be used to help protect workloads in multi-tenant environments like public and 588 
hybrid clouds. Isolating entire VMs translates to protection against malicious insiders at the 589 
cloud provider, or malware exposure and data leakage to other tenants with workloads running 590 
on the same platform. Many modern cloud deployments use VMs as container worker nodes. 591 
This provides a highly consistent and scalable way to deploy containers regardless of the 592 
underlying physical platforms. With full VM isolation, the virtual workers hosting container 593 
workloads can be effectively isolated without impacting the benefits of abstracting the container 594 
from the underlying platform. 595 

Please refer to the following technology examples in the appendices for more information: 596 

• Intel Trust Domain Extensions (TDX) 597 

• AMD Secure Encrypted Virtualization (SEV) 598 

5.4 Cryptographic Acceleration 599 

Encryption is quickly becoming more widespread in data center applications as industry adopts 600 
more standards and guidelines regarding the sensitivity of consumer data and intellectual 601 
property. Because cryptographic operations can drain system performance and consume large 602 
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amounts of compute resources, the industry has adopted specialized hardware interfaces called 603 
cryptographic accelerators, which offload cryptographic tasks from the main processing unit 604 
onto a separate coprocessor chip. Cryptographic accelerators often come in the form of pluggable 605 
peripheral adapter cards. 606 

Please refer to the following technology examples in the appendices for more information: 607 

• Intel Advanced Encryption Standard New Instructions (AES-NI) 608 

• Intel QuickAssist Technology (QAT) with Intel Key Protection Technology (KPT) 609 

• AMD Advanced Encryption Standard  610 

    611 

http://developer.amd.com/wordpress/media/2012/10/26568_APM_v41.pdf
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6 Remote Attestation Services 612 

Measuring a server’s firmware/configuration and extending these measurements to a hardware 613 
interface can help keep track of which firmware is running on a platform. Some platform 614 
integrity technologies can even perform local attestation and enforcement of firmware and 615 
configuration on a server. However, data centers are usually made up of thousands of servers, 616 
and keeping track of them and their respective firmware is an overwhelming task for an operator. 617 
A remote service can address this by collating server information and measurement details. 618 
Cryptographic signatures can be used to ensure the integrity of transferred measurement data. 619 
Furthermore, the remote service can be used to define allowlist policies, specifying which 620 
firmware versions and event measurements are acceptable for servers in a particular data center 621 
environment. This service would verify or attest each server’s collected data against these 622 
policies, feeding the results into a policy orchestrator to report, alert, or enforce rules based on 623 
the events.  624 

A remote attestation service can provide additional benefits besides verifying server firmware. 625 
Specifying allowlist policies for specific firmware versions can allow data center administrators 626 
to easily invalidate old versions and roll out new upgrades. In some cases, certain hardware 627 
technologies and associated capabilities on platforms can be discoverable by their specific event 628 
log measurements recorded in an HSM. The information tracked in this remote attestation 629 
service can even be exposed through the data center administration layer directly to the 630 
enterprise user. This would give endpoint consumers hardware visibility and the ability to 631 
specify firmware requirements or require platform features for the hardware on which their 632 
services are running. 633 

The key advantage to remote attestation is the enforcement of compliance across all hardware 634 
systems in a data center. The ability to verify against a collective allowlist as opposed to a local 635 
system enforcing a supply chain policy provides operators more flexibility and control in a 636 
cryptographically secured manner. These enforcement mechanisms can even be combined to 637 
provide stronger security policies. 638 

6.1 Platform Attestation 639 

Figure 1 shows a remote attestation service (AS) collecting platform configurations and integrity 640 
measurements from data center servers at a cloud service provider (CSP) via a trust agent service 641 
running on the platform servers. A cloud operator is responsible for defining allowlisted trust 642 
policies. These policies should include information and expected measurements for desired 643 
platform CoT technologies. The collected host data is compared and verified against the policies, 644 
and a report is generated to record the relevant trust information in the AS database. 645 
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 646 
Figure 1: Notional Example of Remote Attestation Service 647 

Platform attestation can be extended to include application integrity or the measurement and 648 
verification of the hypervisor container runtime interface (CRI) and applications installed on 649 
bare-metal servers. During boot time, an application agent on the server can measure operator-650 
specified files and directories that pertain to particular applications. An allowlist trust policy can 651 
be defined to include these expected measurements, and this policy can be included in the overall 652 
trust assessment of the platform in the remote AS. By extending measurements to a platform 653 
TPM, applications running on the bare-metal server can be added to the CoT. The components of 654 
the trust agent and application agent can be added to the policy and measured alongside other 655 
applications to ensure that the core feature elements are not tampered with. For example, a 656 
typical Linux implementation of the application agent could run inside initrd, and measurements 657 
made on the filesystem could be extended to the platform TPM. 658 

An additional feature commonly associated with platform trust is the concept of asset tagging. 659 
Asset tags are simple key value attributes that are associated with a platform like location, 660 
company name, division, or department. These key value attributes are tracked and recorded in a 661 
central remote service, such as the AS, and can be provisioned directly to a server through the 662 
trust agent. The trust agent can then secure these attribute associations with the host platform by 663 
writing hash measurement data for the asset tag information to a hardware security chip, such as 664 
the platform TPM NVRAM. Measurement data is then retrieved by the AS and included in the 665 
platform trust report evaluation. 666 

Please refer to the following technology examples in the appendices for more information: 667 

• Intel Security Libraries for the Data Center (ISecL-DC) 668 
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6.2 TEE Attestation 669 

There are instances when the high assurance that the output of the processing in a TEE can be 670 
trusted should be extended to an external attesting client. This is achieved thanks to a TEE 671 
attestation flow. TEE attestation involves the generation of a verifiable cryptographic quote of 672 
the enclave by the TEE. The quote is then sent to the attesting client, which can validate the 673 
signature of the quote. If the signature is valid, the attesting client concludes that the remote code 674 
is running in a genuine TEE enclave. 675 

A quote usually contains the measurement of the TEE enclave, as well as data related to the 676 
authenticity of the TEE and the compliant version of it. The measurement is a digest of the 677 
content of the enclave (e.g., code and static data) and other information. The measurement 678 
obtained at build time is typically known to the attesting client and is compared against a 679 
measurement contained in the quote that is actively taken during runtime. This allows the 680 
attesting client to determine that the remote code has not been tampered with. A quote may also 681 
contain the enclave’s developer signature and platform trusted computing base (TCB) 682 
information. The authenticity and version of the TEE are verified against TEE provider 683 
certificates that are accessible to the tenant or attesting client.  684 

The quote may also contain the public key part of an enclave key pair or a secure hash of the 685 
public/private key part if there is a limitation on the size of the quote. In the latter case, the 686 
public key part must be communicated along with the quote. The public key allows the attesting 687 
client to wrap secrets that it wants to send to the enclave. This capability allows the attesting 688 
client to provision secrets directly to the TEE enclave without needing to trust any other software 689 
running on the server. 690 

Figure 2 shows an example TEE attestation flow. 691 
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  692 

Figure 2: Notional Example of TEE Attestation Flow 693 

    694 
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7 Cloud Use Case Scenarios Leveraging Hardware-Enabled Security 695 

This section describes a number of cloud use case scenarios that take advantage of the hardware-696 
enabled security capability and trust attestation capability integrated with the operator 697 
orchestration tool to support various security and compliance objectives. 698 

7.1 Visibility to Security Infrastructure 699 

A typical attestation includes validation of the integrity of platform firmware measurements. 700 
These measurements are unique to a specific BIOS/UEFI version, meaning that the attestation 701 
report provides visibility into the specific firmware version currently in use, in addition to the 702 
integrity of that firmware. Attestation can also include hardware configuration and feature 703 
support information, both by attesting feature support directly and by resulting in different 704 
measurements based on which platform integrity technologies are used. 705 

Cryptographically verifiable reports of platform integrity and security configuration details (e.g., 706 
BIOS/UEFI versions, location information, application versions) are extremely useful for 707 
compliance auditing. These attestation reports for the physical platform can be paired with 708 
workload launch or key release policies, providing traceability to confirm that data and 709 
workloads have only been accessed on compliant hardware in compliant configurations with 710 
required security technologies enabled. 711 

7.2 Workload Placement on Trusted Platforms 712 

Platform information and verified firmware/configuration measurements retained within an 713 
attestation service can be used for policy enforcement in countless use cases. One example is 714 
orchestration scheduling. Cloud orchestrators, such as Kubernetes and OpenStack, provide the 715 
ability to label server nodes in their database with key value attributes. The attestation service 716 
can publish trust and informational attributes to orchestrator databases for use in workload 717 
scheduling decisions. Figure 3 illustrates this. 718 
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 719 

Figure 3: Notional Example of Orchestrator Platform Labeling 720 

In OpenStack, this can be accomplished by labeling nodes using custom traits. Workload images 721 
can be uploaded to an image store containing metadata that specifies required trait values to be 722 
associated with the node that is selected by the scheduling engine. In Kubernetes, nodes can be 723 
labeled in etcd via node selector or node affinity. Custom resource definitions (CRDs) can be 724 
written and plugged into Kubernetes to receive label values from the attestation service and 725 
associate them with nodes in the etcd. When a deployment or container is launched, node 726 
selector or node affinity attributes can be included in the configuration yaml to instruct 727 
Kubernetes to only select nodes that have the specified labels. Other orchestrator engines and 728 
flavors can be modified to accommodate a similar use case. Figure 4 illustrates how an 729 
orchestrator can be configured to only launch workloads on trusted platforms or platforms with 730 
specified asset tag attributes. 731 



NISTIR 8320 (DRAFT) HARDWARE-ENABLED SECURITY: 
  ENABLING A LAYERED APPROACH TO PLATFORM SECURITY 

19 

 732 

Figure 4: Notional Example of Orchestrator Scheduling 733 

7.3 Asset Tagging and Trusted Location 734 

Trusted geolocation is a specific implementation of the aforementioned trusted asset tag feature 735 
used with platform attestation. Key attribute values specifying location information are used as 736 
asset tags and provisioned to server hardware, such as the TPM. In this way, location information 737 
can be included in platform attestation reports and therefore consumed by cloud orchestrators, 738 
infrastructure management applications, policy engines, and other entities [15]. Orchestration 739 
using asset tags can be used to segregate workloads and data access in a wide variety of 740 
scenarios. Geolocation can be an important attribute to consider with hybrid cloud environments 741 
subject to regulatory controls like GDPR, for example. Violating these constraints by allowing 742 
access to data outside of specific geopolitical boundaries can trigger substantial penalties. 743 

In addition to location, the same principle can apply to other sorts of tag information. For 744 
example, some servers might be tagged as appropriate for storing health information subject to 745 
Health Insurance Portability and Accountability Act (HIPAA) compliance. Data and workloads 746 
requiring this level of compliance should only be accessed on platforms configured to meet those 747 
compliance requirements. Other servers may be used to store or process information and 748 
workloads not subject to HIPAA requirements. Asset tags can be used to flag which servers are 749 
appropriate for which workloads beyond a simple statement of the integrity of those platforms. 750 
The attestation mechanisms help ensure that the asset tag information is genuine, preventing easy 751 
subversion. 752 

Outside of specific regulatory requirements, an organization may wish to segregate workloads by 753 
department. For example, human resources and finance information could be restricted to 754 
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platforms with different security profiles, and big data workloads could be required to run on 755 
platforms tagged for performance capabilities. For cloud orchestration platforms that do not 756 
natively support discovery or scheduling of workloads based on specific platform features, asset 757 
tags can provide a mechanism for seamlessly adding such a capability. For example, workloads 758 
that require Intel SGX can be orchestrated to only run on platforms that support the SGX 759 
platform feature, even if the cloud platform does not natively discover support for SGX. The 760 
open-ended user-configurable asset tag functionality allows virtually any level of subdivision of 761 
resources for business, security, or regulatory needs. 762 

7.4 Workload Confidentiality 763 

Consumers who place their workloads in the cloud or the edge are typically forced to accept that 764 
their workloads are secured by their service providers without insight or knowledge as to what 765 
security mechanisms are in place. The ability for end users to encrypt their workload images can 766 
provide at-rest cryptographic isolation to protect consumer data and intellectual property. Key 767 
control is integral to the workload encryption process. While it is preferable to transition key 768 
storage, management, and ownership to the endpoint consumer, an appropriate key release policy 769 
must be defined that includes a guarantee from the service provider that the utilized hardware 770 
platform and firmware are secure and uncompromised. 771 

There are several key management solutions (KMSs) in production that provide services to 772 
create and store keys. Many of these are compliant with the industry-standardized Key 773 
Management Interoperability Protocol (KMIP) and can be deployed within consumer enterprises. 774 
The concept is to provide a thin layer on top of the KMS called a key broker, as illustrated in 775 
Figure 5, that applies and evaluates policies to requests that come into the KMS. Supported 776 
requests to the key broker include key creation, key release policy association, and key request 777 
by evaluating associated policies. The key release policy can be any arbitrary set of rules that 778 
must be fulfilled before a key is released. The policy for key release is open-ended and meant to 779 
be easily extendible, but for the purpose of this discussion, a policy associated with platform 780 
trust is assumed. 781 

 782 

Figure 5: Notional Example of Key Brokerage 783 
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Once the key policy has been determined, a KMS-created and managed key can be used to 784 
encrypt a workload image, as shown in Figure 6. The enterprise user may then upload the 785 
encrypted image to a CSP orchestrator image store or registry. 786 

 787 

Figure 6: Notional Example of Workload Image Encryption 788 

The key retrieval and decryption process is the most complex piece of the workload 789 
confidentiality story, as Figure 7 shows. It relies on a secure key transfer between the enterprise 790 
and CSP with an appropriate key release policy managed by the key broker. The policy for key 791 
release discussed here is based on platform trust and the valid proof thereof. The policy can also 792 
dictate a requirement to wrap the key using a public wrapping key, with the private portion of the 793 
wrapping key only known to the hardware platform within the CSP.  794 
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  795 

Figure 7: Notional Example of Workload Decryption 796 

When the runtime node service receives the launch request, it can detect that the image is 797 
encrypted and make a request to retrieve the decryption key. This request can be passed through 798 
an attestation service so that an internal trust evaluation for the platform can be performed. The 799 
key request is forwarded to the key broker with proof that the platform has been attested. The 800 
key broker can then verify the attested platform report and release the key back to the CSP and 801 
node runtime services. At that time the node runtime can decrypt the image and proceed with the 802 
normal workload orchestration. The disk encryption kernel subsystem can provide at-rest 803 
encryption for the workload on the platform.  804 

7.5 Protecting Keys and Secrets 805 

Cryptographic keys are high-value assets in workloads, especially in environments where the 806 
owner of the keys is not in complete control of the infrastructure, such as public clouds, edge 807 
computing, and network functions virtualization (NFV) deployments. In these environments, 808 
keys are typically provisioned on disk as flat files or entries in configuration files. At runtime, 809 
workloads read the keys into random access memory (RAM) and use them to perform 810 
cryptographic operations like data signing, encryption/decryption, or Transport Layer Security 811 
(TLS) termination. 812 

Keys on disk and in RAM are exposed to conventional attacks like privilege escalation, remote 813 
code execution (RCE), and input buffer mismanagement. Keys can also be stolen by malicious 814 
administrators or be disclosed because of operational errors. For example, an improperly 815 
protected VM snapshot can be used by a malicious agent to extract keys. 816 
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An HSM can be attached to a server and used by workloads to store keys and perform 817 
cryptographic operations. This results in keys being protected at rest and in use. In this model, 818 
keys are never stored on disk or loaded into RAM. If attaching an HSM to a server is not an 819 
option, or if keys are needed in many servers at the same time, an alternative option is to use a 820 
network HSM. Workloads send the payload that needs cryptographic processing over a network 821 
connection to the network HSM, which then performs the cryptographic operations locally, 822 
typically in an attached HSM. 823 

An HSM option is not feasible in some environments. Workload owners may not have access to 824 
a cloud or edge environment in order to attach their HSM to a hardware server. Network HSMs 825 
can suffer from network latency, and some workloads require an optimized response time. 826 
Additionally, network HSMs are often provided as a service by the cloud, edge, or NFV 827 
providers and are billed by the number of transactions. Cost is often a deciding factor for using a 828 
provider network HSM. 829 

    830 
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8 Next Steps 831 

NIST is seeking feedback from the community on the content of the report and soliciting 832 
additional technology example contributions from other companies. The report is intended to be 833 
a living document that will be frequently updated to reflect advances in technology and the 834 
availability of commercial implementations and solutions. This can help raise the bar on platform 835 
security and evolve the use cases.  836 

Please send your feedback and comments on this report to hwsec@nist.gov. 837 

NIST is also working on other publications on hardware-enabled security as part of the NCCoE 838 
Trusted Cloud project. More information on the project and links to the other publications are 839 
available at https://www.nccoe.nist.gov/projects/building-blocks/trusted-cloud.  840 

  841 
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Appendix A—Vendor-Agnostic Technology Examples  844 

This section describes vendor-agnostic technology examples that map back to the key concepts 845 
described in the various sections of the document. 846 

A.1 Platform Integrity Verification 847 

A.1.1 UEFI Secure Boot (SB) 848 

“UEFI Secure Boot (SB) is a verification mechanism for ensuring that code launched by a 849 
computer’s UEFI firmware is trusted” [16]. SB prevents malware from taking “advantage of 850 
several pre-boot attack points, including the system-embedded firmware itself, as well as the 851 
interval between the firmware initiation and the loading of the operating system” [17].  852 

The basic idea behind SB is to sign executables using a public-key cryptography scheme. The 853 
public part of a platform key (PK) can be stored in the firmware for use as a root key. Additional 854 
key exchange keys (KEKs) can also have their public portion stored in the firmware in what is 855 
called the signature database. This database contains public keys that can be used to verify 856 
different components that might be used by UEFI (e.g., drivers), as well as bootloaders and OSs 857 
that are loaded from external sources (e.g., disks, USB devices, network). The signature database 858 
can also contain forbidden signatures, which correspond to a revocation list of previously valid 859 
keys. The signature database is meant to contain the current list of authorized and forbidden keys 860 
as determined by the UEFI organization. The signature on an executable is verified against the 861 
signature database before the executable can be launched, and any attempt to execute an 862 
untrusted program will be prevented [16][17].  863 

Before a PK is loaded into the firmware, UEFI is considered to be in setup mode, which allows 864 
anyone to write a PK or KEK to the firmware. Writing the PK switches the firmware into user 865 
mode. Once in user mode, PKs and KEKs can only be written if they are signed using the private 866 
portion of the PK. Essentially, the PK is meant to authenticate the platform owner, while the 867 
KEKs are used to authenticate other components of the distribution (distro), like OSs [17]. 868 

Shim is a simple software package that is designed to work as a first-stage bootloader on UEFI 869 
systems. It is a common piece of code that is considered safe, well-understood, and audited so 870 
that it can be trusted and signed using PKs. This means that firmware certificate authority (CA) 871 
providers only have to worry about signing shim and not all of the other programs that vendors 872 
might want to support [16]. Shim then becomes the RoT for all the other distro-provided UEFI 873 
programs. It embeds a distro-specific CA key that is itself used to sign additional programs (e.g., 874 
Linux, GRUB, fwupdate). This allows for a clean delegation of trust; the distros are then 875 
responsible for signing the rest of their packages. Ideally, shim will not need to be updated often, 876 
which should reduce the workload on the central auditing and CA teams [16]. 877 

A key part of the shim design is to allow users to control their own systems. The distro CA key is 878 
built into the shim binary itself, but there is also an extra database of keys that can be managed 879 
by the user—the so-called Machine Owner Key (MOK). Keys can be added and removed in the 880 
MOK list by the user, entirely separate from the distro CA key. The mokutil utility can be used 881 
to help manage the keys from Linux OS, but changes to the MOK keys may only be confirmed 882 
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directly from the console at boot time. This helps remove the risk of OS malware potentially 883 
enrolling new keys and therefore bypassing SB [16].  884 

On systems with a TPM chip enabled and supported by the system firmware, shim will extend 885 
various PCRs with the digests of the targets it is loading [18]. Certificate hashes are also 886 
extended to the TPM, including system, vendor, MOK, and shim denylisted and allowlisted 887 
certificate digests.  888 

 889 
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Appendix B—Intel Technology Examples  890 

This section describes a number of Intel technology examples that map back to the key concepts 891 
described in the various sections of the document. 892 

B.1 Platform Integrity Verification 893 

B.1.1 The Chain of Trust (CoT) 894 

B.1.1.1 Intel Trusted Execution Technology (TXT) 895 

Intel Trusted Execution Technology (TXT) in conjunction with a TPM provides a hardware RoT 896 
available on Intel server and client platforms that enables “security capabilities such as measured 897 
launch and protected execution” [19]. TXT utilizes authenticated code modules (ACMs) that 898 
measure various pieces of the CoT during boot time and extend them to the platform TPM 899 
[2][19]. TXT’s ACMs are chipset-specific signed binaries that are called to perform functions 900 
required to enable the TXT environment. An ACM is loaded into and executed from within the 901 
CPU cache in an area referred to as the authenticated code RAM (AC RAM). CPU microcode, 902 
which acts as the core root of trust for measurement (CRTM), authenticates the ACM by 903 
verifying its included digital signature against a manufacturer public key with its digest hard-904 
coded within the chipset. The ACM code, loaded into protected memory inside the processor, 905 
performs various tests and verifications of chipset and processor configurations.  906 

The ACMs needed to initialize the TXT environment are the BIOS and the Secure Initialization 907 
(SINIT) ACMs. Both are typically provided within the platform BIOS image. The SINIT ACM 908 
can be provisioned on disk as well [2][20]. The BIOS ACM is responsible for measuring the 909 
BIOS firmware to the TPM and performs additional BIOS-based security operations. The latest 910 
version of TXT converged with Intel Boot Guard Technology labels this ACM as the Startup 911 
ACM to differentiate it from the legacy BIOS ACM. The SINIT ACM is used to measure the 912 
system software or operating system to the TPM, and it “initializes the platform so the OS can 913 
enter the secure mode of operation” [20]. 914 

When the BIOS startup procedures have completed, control is transitioned to the OS loader. In a 915 
TXT-enabled system, the OS loader is instructed to load a special module called Trusted Boot 916 
before loading the first kernel module [20]. Trusted Boot (tboot) is an open-source, pre-917 
kernel/virtual machine manager (VMM) module that integrates with TXT to perform a measured 918 
launch of an OS kernel/VMM. The tboot design typically has two parts: a preamble and the 919 
trusted core. The tboot preamble is most commonly executed by the OS loader but can be loaded 920 
at OS runtime. The tboot preamble is responsible for preparing SINIT input parameters and is 921 
untrusted by default. It executes the processor instruction that passes control to the CPU 922 
microcode. The microcode loads the SINIT into AC RAM, authenticates it, measures SINIT to 923 
the TPM, and passes control to it. SINIT verifies the platform configuration and enforces any 924 
present Launch Control Policies, measuring them and tboot trusted core to the TPM. The tboot 925 
trusted core takes control and continues the CoT, measuring the OS kernel and additional 926 
modules (like initrd) before passing control to the OS [21]. 927 

Intel TXT includes a policy engine feature that provides the capability to specify known good 928 
platform configurations. These Launch Control Policies (LCPs) dictate which system software is 929 
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permitted to perform a secure launch. LCPs can enforce specific platform configurations and 930 
tboot trusted core versions required to launch a system environment [20]. 931 

B.1.1.2 Intel Boot Guard 932 

Intel Boot Guard provides a hardware RoT for authenticating the BIOS. An original equipment 933 
manufacturer (OEM) enables Boot Guard authentication on the server manufacturing line by 934 
permanently fusing a policy and OEM-owned public key into the silicon. When an Intel 935 
processor identifies that Boot Guard has been enabled on the platform, it authenticates and 936 
launches an ACM. The ACM loads the initial BIOS or Initial Boot Block (IBB) into the 937 
processor cache, authenticates it using the fused OEM public key, and measures it into the TPM. 938 

If the IBB authenticates properly, it verifies the remaining BIOS firmware, loads it into memory, 939 
and transfers execution control. The IBB is restricted to this limited functionality, which allows it 940 
to have a small enough size to fit in the on-die cache memory of Intel silicon. If the Boot Guard 941 
authentication fails, the system is forced to shut down. When the Boot Guard execution 942 
completes, the CoT can continue for other components by means of UEFI Secure Boot. TXT can 943 
be used in conjunction with these technologies to provide a dynamic trusted launch of the OS 944 
kernel and software. 945 

Because Boot Guard is rooted in permanent silicon fuses and authenticates the initial BIOS from 946 
the processor cache, it provides resistance from certain classes of physical attacks. Boot Guard 947 
also uses fuses to provide permanent revocation of compromised ACMs, BIOS images, and input 948 
polices. 949 

B.1.1.3 Intel Platform Firmware Resilience (PFR) 950 

Intel Platform Firmware Resilience (PFR) technology is a platform-level solution that creates an 951 
open platform RoT based on a programmable logic device. It is designed to provide firmware 952 
resiliency (in accordance with NIST SP 800-193 [4]) and comprehensive protection for various 953 
platform firmware components, including BIOS, Server Platform Services Firmware (SPS FW), 954 
and BMCs. PFR provides the platform owner with a minimal trusted compute base (TCB) under 955 
full platform-owner control. This TCB provides cryptographic authentication and automatic 956 
recovery of platform firmware to help guarantee correct platform operation and to return to a 957 
known good state in case of a malicious attack or an operator error such as a failed update. 958 

NIST SP 800-193 [4] outlines three guiding principles to support the resiliency of platforms 959 
against potentially destructive attacks:  960 

• Protection: Mechanisms for ensuring that platform firmware code and critical data 961 
remain in a state of integrity and are protected from corruption, such as the process for 962 
ensuring the authenticity and integrity of firmware updates 963 

• Detection: Mechanisms for detecting when platform firmware code and critical data have 964 
been corrupted 965 

• Recovery: Mechanisms for restoring platform firmware code and critical data to a state 966 
of integrity in the event that any such firmware code or critical data are detected to have 967 
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been corrupted or when forced to recover through an authorized mechanism. Recovery is 968 
limited to the ability to recover firmware code and critical data. 969 

In addition, NIST SP 800-193 [4] provides guidance on meeting those requirements via three 970 
main functions of a Platform Root of Trust:  971 

• Root of Trust for Update (RTU), which is responsible for authenticating firmware 972 
updates and critical data changes to support platform protection capabilities; this includes 973 
signature verification of firmware updates as well as rollback protections during update.  974 

• Root of Trust for Detection (RTD), which is responsible for firmware and critical data 975 
corruption detection capabilities. 976 

• Root of Trust for Recovery (RTRec), which is responsible for recovery of firmware and 977 
critical data when corruption is detected or when instructed by an administrator. 978 

PFR is designed to support NIST guidelines and create a resilient platform that is able to self-979 
recover upon detection of attack or firmware corruption. This includes verification of all 980 
platform firmware and configuration at platform power-on time, active protection of platform 981 
non-volatile memory at runtime, and active protection of the Serial Peripheral Interface (SPI 982 
flash) and System Management Bus (SMBus). PFR functionality also incorporates monitoring 983 
the platform component’s boot progress and providing automatic firmware recovery to a known 984 
good state upon detection of firmware or configuration corruption. PFR achieves this goal by 985 
utilizing a Field-Programmable Gate Array (FPGA) to establish an RoT. 986 

PFR technology defines a special pre-boot mode (T-1) where only the PFR FPGA is active. Intel 987 
Xeon processors and other devices that could potentially interfere with the boot process, such as 988 
the Platform Controller Hub (PCH)/Manageability Engine (ME) and BMC, are not powered. 989 
Boot critical firmware, like the BIOS, ME, and BMC, are cryptographically verified during T-1 990 
mode. In case of corruption, a recovery event is triggered, and the corrupted firmware in the 991 
active regions of the SPI flash is erased and restored with a known-good recovery copy. Once 992 
successful, the system proceeds to boot in a normal mode, leveraging Boot Guard for static RoT 993 
coverage. 994 

The PFR FPGA RoT leverages a key hierarchy to authenticate data structures residing in SPI 995 
flash. The key hierarchy is based on a provisioned Root Key (RK) stored in the NVRAM of the 996 
FPGA RoT and a Code Signing Key (CSK) structure, which is endorsed by the RK, stored in the 997 
SPI flash, and used for the signing of lower-level data structures. The PFR FPGA uses this CSK 998 
to verify the digital signature of the Platform Firmware Manifest (PFM), which describes the 999 
expected measurements of the platform firmware. The PFR FPGA RoT verifies those 1000 
measurements before allowing the system to boot. When a recovery is needed, either because 1001 
measurements do not match the expected value or because a hang is detected during system 1002 
bootup, the PFR FPGA RoT uses a recovery image to recover the firmware. The recovery image 1003 
and any update images are stored in a compressed capsule format and verified using a digital 1004 
signature. 1005 

Each platform firmware storage is divided into three major sections: Active, Recovery, and 1006 
Staging. The Recovery regions, as well as the static parts of the Active regions, are write-1007 
protected from other platform components by the PFR FPGA RoT. The Staging region is open to 1008 
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the other platform components for writing in order to provide an area to place digitally signed 1009 
and compressed update capsules, which are then verified by the PFR FPGA RoT before being 1010 
committed to the Active or Recovery regions. The Recovery copy can be updated in T-1 mode 1011 
once the PFR FPGA has verified the digital signature of the update capsule and confirmed that 1012 
the recovery image candidate is bootable. 1013 

B.1.1.4 Technology Example Summary 1014 

There are several technologies that provide different levels of platform integrity and trust. 1015 
Individual technologies do not provide a complete CoT. When used in combination, they can 1016 
provide comprehensive coverage all the way up to the OS and VMM layer. Figure 8 outlines the 1017 
firmware and software coverage of each existing CoT technology example. 1018 

 1019 

Figure 8: Firmware and Software Coverage of Existing Chain of Trust Technologies 1020 

Figure 8 identifies the components of each technology that make up the RoT in their own 1021 
respective chains and also shows a rough outline of the firmware and software coverage of each 1022 
technology. 1023 

Because many technologies are available, it can be difficult to decide on the correct combination 1024 
for deployment. Figure 8 illustrates the possible combinations of technologies that extend 1025 
measurements to a TPM for platform integrity attestation. Note that each combination includes at 1026 
least one hardware technology to ensure an RoT implementation. A complementary option for 1027 
extending the CoT up through the OS can also be provided. Including only the hardware 1028 
technologies would break the CoT by supplying integrity measurements for only pre-OS 1029 
firmware. Using only UEFI Secure Boot will use firmware as the RoT that does not have 1030 
hardware security protections and is much more susceptible to attack. By enabling both parts, the 1031 
CoT can be extended from a hardware RoT into the OS and beyond. 1032 
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These combinations will help ensure that appropriate measurements are extended to a TPM for 1033 
integrity attestation and can prevent a server from booting if specific security modules are 1034 
compromised. The attestation mechanisms provided by these technologies give cryptographic 1035 
proof of the integrity of measured components, which can be used to provide visibility into 1036 
platform security configurations and prove integrity. Note the combination of UEFI SB with 1037 
TXT in Figure 8. This combination provides the UEFI SB signature verification capability on top 1038 
of the tboot integrity measurement in the OS/VMM layer. 1039 

In addition to attestation, PFR provides both additional verification of platform firmware and 1040 
adds automatic recovery of compromised firmware to known good versions. PFR works with any 1041 
combination of CoT technologies, providing a defense and resilience against firmware attack 1042 
vectors. Combining a hardware-based firmware resilience technology like PFR with a hardware-1043 
based CoT configuration is part of a layered security strategy. 1044 

B.1.2 Supply Chain Protection 1045 

B.1.2.1 Intel Transparent Supply Chain (TSC) 1046 

“Intel Transparent Supply Chain (TSC) is a set of policies and procedures implemented at ODM 1047 
factories that enable end-users to validate where and when every component of a platform was 1048 
manufactured” [22]. “Intel TSC tools allow platform manufacturers to bind platform information 1049 
and measurements using [a TPM]. This allows customers to gain traceability and accountability 1050 
for platforms with component-level reporting” [23].  1051 

Intel TSC provides the following key features [22]: 1052 

• Digitally signed statement of conformance for every platform 1053 

• Platform certificates linked to a discrete TPM, providing system-level traceability 1054 

• Component-level traceability via a direct platform data file that contains integrated 1055 
components, including a processor, storage, memory, and add-in cards 1056 

• Auto Verify tool that compares the snapshot of the direct platform data taken during 1057 
manufacturing with a snapshot of the platform components taken at first boot 1058 

• Firmware load verification 1059 

• Conformity with Defense Federal Acquisition Regulation Supplement (DFARS) 1060 
246.870-2 [24] 1061 

B.1.2.2 PFR with Protection in Transit (PIT) 1062 

In addition to the platform protection, detection, and recovery features, PFR also offers 1063 
protection in transit (PIT) or supply chain protection. Platform lockdown requires that a 1064 
password be present in the PFR FPGA as well as a radio frequency (RF) component. The 1065 
password is removed before platform shipment and must be replaced before the platform will be 1066 
allowed to power up. With platform firmware sealing, the PFR FPGA computes hashes of 1067 
platform firmware in the PCH and BMC attached flash devices, including static and dynamic 1068 
regions, and stores them in an NVRAM space before shipment. Upon delivery, the PFR FPGA 1069 
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will recompute the hashes and report any mismatches to ensure that the firmware has not been 1070 
tampered with during system transit. 1071 

B.2 Software Runtime Protection Mechanisms 1072 

B.2.1 Return Oriented Programming (ROP) and Call/Jump Oriented Programming 1073 
(COP/JOP) Attacks 1074 

B.2.1.1 Intel Control-Flow Enforcement Technology (Intel CET) 1075 

Intel Control-Flow Enforcement Technology (Intel CET) is an instruction set extension to 1076 
implement control flow integrity (CFI) and defend against ROP and COP/JOP style subversion 1077 
attacks. ROP and similarly COP/JOP have been the prevalent attack methodology for stealth 1078 
exploit writers targeting vulnerabilities in programs. [25] 1079 

Intel CET prevents this class of exploits by providing the following capabilities: 1080 

• Shadow stack – return address protection to defend against ROP 1081 

• Indirect branch tracking – free branch protection to defend against COP/JOP 1082 

“CET introduces a shadow stack system to detect and thwart the stack manipulation required by 1083 
ROP” [26]. This second stack is used exclusively for control transfer operations and is designed 1084 
to be protected from application code memory accesses while keeping track of CPU stored 1085 
copies of the return addresses [27]. “When CET is enabled, a CALL instruction pushes the return 1086 
address into a shadow stack in addition to its normal behavior of pushing return address into the 1087 
normal stack (no changes to traditional stack operation). The return instructions (e.g. RET) pops 1088 
return address from both shadow and traditional stacks, and only transfers control to the popped 1089 
address if return addresses from both stacks match. […] The page table protections for shadow 1090 
stack are also designed to protect the integrity of the shadow stack by preventing unintended or 1091 
malicious switching of shadow stack and/or overflow and underflow of shadow stack.” [28] 1092 

“CET also adds an indirect branch tracking capability to provide software the ability to restrict 1093 
COP/JOP attacks.” [27] This ENDBRANCH instruction is a new addition to Intel Instruction Set 1094 
Architecture (ISA). It marks legal targets for an indirect branch or jump, forcing the CPU to 1095 
generate an exception for unintended or malicious operations [28]. 1096 

“Intel has been actively collaborating with Microsoft and other industry partners to address 1097 
control-flow hijacking by using Intel’s CET technology to augment the previous software-only 1098 
control-flow integrity solutions. Intel’s CET, when used properly by software, is a big step in 1099 
helping to prevent exploits from hijacking the control-flow transfer instructions.” [28] A security 1100 
analysis of Intel CET is published in [29]. 1101 

B.2.2 Address Translation Attacks 1102 

B.2.2.1 Intel Hypervisor Managed Linear Address Translation (HLAT) 1103 

Hypervisor managed linear address translation (HLAT) is a capability to enable Intel 1104 
Virtualization Technology (Intel VT-x) based security monitors to enforce runtime protection 1105 
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and integrity assertions on OS-managed page tables. This helps protect kernel assets, as well as 1106 
in-band security agents and agent-monitored assets from OS page-table attacks. 1107 

“[HLAT] is intended to be used by a Hypervisor/Virtual Machine Monitor (VMM) to enforce 1108 
guest linear translation (to guest physical mappings). When combined with the existing Extended 1109 
Page Table (EPT) capability, HLAT enables the VMM to ensure the integrity of combined guest 1110 
linear translation (mappings and permissions) cached by the processor TLB, via a reduced 1111 
software TCB managed by the VMM.” [30] In this fashion, the VMM-enforced guest 1112 
translations are more protected from alterations by untrusted system software adversaries. [30] 1113 

“This feature is intended to augment the security functionality for a type of Virtual Machine 1114 
Monitor (VMM) that may use legacy EPT read/write/execute (XWR) permission bits (bits 2:0 of 1115 
the EPTE) as well as the new user-execute (XU) access bit (bit 10 of the EPTE) to ensure the 1116 
integrity of code/data resident in guest physical memory assigned to the guest operating system. 1117 
EPT permissions are also used in these VMMs to isolate memory; for example, to host a Secure 1118 
Kernel (SK) that can manage security properties for the General Purpose Kernel (GPK). For such 1119 
usages, it is important that the VMM ensure that the guest linear address mappings which are 1120 
used by the General Purpose Kernel to refer to the EPT monitored guest physical pages are 1121 
access-controlled as well.” [30] 1122 

“VMMs could enforce the integrity of these specific guest linear to guest physical mappings 1123 
(paging structures) by using legacy EPT permissions to mark the guest physical memory 1124 
containing the relevant guest paging structures as read-only. The intent of marking these guest 1125 
paging structures as read-only is to ensure an invalid mapping is not created by guest software. 1126 
However, such page-table edit control techniques are known to cause very high overheads due to 1127 
the requirement that the VMM must monitor all paging contexts created by the (Guest) operating 1128 
system. HLAT enables a VMM to enforce the integrity of guest linear mappings without this 1129 
high overhead.” [30] 1130 

HLAT utilizes a processor mechanism that implements an alternate Intel Itanium architecture 1131 
(IA) paging structure managed in guest physical memory by a Secure Kernel. This paging 1132 
structure contains guest linear to guest physical translations that the VMM/Secure Kernel wants 1133 
to enforce. 1134 

Additionally, to accommodate legacy page-table monitoring approaches, HLAT defines two new 1135 
EPT control bits in EPT leaf entries. A “Paging-Write” control bit specifies which guest physical 1136 
pages hold HLAT or legacy IA paging structures. This allows the processor to use the Paging-1137 
Write as permission to perform A/D bit writes, instead of the software W permission in the 1138 
EPTE. A “Verify Paging-Write” control bit specifies which guest physical pages should only be 1139 
referenced via translation (guest) paging structures marked as Paging-writable under EPT [30]. 1140 

B.2.2.2 Intel Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode 1141 
Access Prevention (SMAP) 1142 

Supervisor Mode Execution Prevention (SMEP) and Supervisor Mode Access Prevention 1143 
(SMAP) are opt-in capabilities that can be used by systems software (such as the kernel) to 1144 
harden the privilege separation between user-mode and kernel-mode. These capabilities further 1145 
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enforce the user/supervisor properties specified via address translation mechanisms by mitigating 1146 
malicious code execution or malicious use of data setup by processes executing in user-mode. 1147 

Intel OS Guard, also known as SMEP, helps prevent execution out of untrusted application 1148 
memory while operating at a more privileged (supervisor) level. “[When] enabled, the operating 1149 
system will not be allowed to directly execute application code, even speculatively. This makes 1150 
branch target injection attacks on the OS substantially more difficult by forcing the attacker to 1151 
find gadgets within the OS code. It is also more difficult for an application to train OS code to 1152 
jump to an OS gadget. All major operating systems enable SMEP support by default.” [31] 1153 

SMAP is a security feature that helps prevent unauthorized kernel consumption of data 1154 
accessible to user space [32]. An enabling SMAP bit in the CR4 control register will cause a 1155 
page fault to be triggered when there is any attempt to access user-space memory while running 1156 
in a privileged mode. When access to user space memory is needed by the kernel, a separate AC 1157 
flag is toggled to allow the required access [33]. “Two new instructions (STAC and CLAC) are 1158 
provided to manipulate that flag relatively quickly.” When the AC flag is set in protection mode 1159 
under normal operating circumstances, SMAP blocks a whole class of exploits where the kernel 1160 
is fooled into reading from (or writing to) user-space memory by mistake. SMAP also allows for 1161 
the early discovery of kernel bugs where developers dereference user space pointers directly 1162 
from the kernel [33]. 1163 

B.3 Data Protection and Confidential Computing 1164 

B.3.1 Memory Isolation 1165 

B.3.1.1 Intel TME and Intel Multi-Key TME (Intel MKTME) 1166 

Intel Total Memory Encryption (Intel TME) provides the capability to encrypt the entire physical 1167 
memory of a system. This capability is typically enabled in the very early stages of the boot 1168 
process with a small change to the BIOS. Once this change is configured and locked, all data on 1169 
the external memory buses of a CPU and any additional DIMMs will be encrypted using 128-bit 1170 
keys utilizing the NIST standard AES-XTS algorithm. The encryption key used for Intel TME 1171 
uses a hardware random number generator implemented in the Intel CPU, and the keys are not 1172 
accessible by software or by using external interfaces to the CPU. The architecture is flexible and 1173 
will support additional memory protection schemes in the future. Intel TME is intended to 1174 
support unmodified existing system and application software. The overall performance impact of 1175 
TME is likely to be relatively small and highly dependent on workload. 1176 

Intel Multi-Key Total Memory Encryption (Intel MKTME) builds on Intel TME and adds 1177 
support for multiple encryption keys. The CPU implementation supports a fixed number of 1178 
encryption keys, and software can configure a CPU to use a subset of available keys. Software 1179 
manages the use of keys and can use each of the available keys for encrypting any page of the 1180 
memory. Thus, Intel MKTME allows page granular encryption of memory. By default, Intel 1181 
MKTME uses the Intel TME encryption key unless explicitly specified by software.  1182 

In addition to supporting a CPU-generated ephemeral key (not accessible by software or by using 1183 
external interfaces to a CPU), Intel MKTME also supports software-provided keys. Software-1184 
provided keys are particularly useful when used with nonvolatile memory, when combined with 1185 
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attestation mechanisms or used with key provisioning services. An OS may be enabled to take 1186 
additional advantage of the Intel MKTME capability, both in native and virtualized 1187 
environments. When properly enabled, Intel MKTME is available to each guest OS in a 1188 
virtualized environment, and the guest OS can take advantage of Intel MKTME in the same ways 1189 
as a native OS. 1190 

B.3.2 Application Isolation 1191 

B.3.2.1 Intel Software Guard Extensions (SGX) 1192 

Intel Software Guard Extensions (SGX) is a set of instructions that increases the security of 1193 
application code and data. Developers can partition security-sensitive code and data into an SGX 1194 
enclave, which is executed in a CPU protected region. The developer creates and runs SGX 1195 
enclaves on server platforms where only the CPU is trusted to provide attestations and protected 1196 
execution environments for enclave code and data. SGX also provides an enclave remote 1197 
attestation mechanism. This mechanism allows a remote provider to verify the following [34]: 1198 

1. The enclave is running on a real Intel processor inside an SGX enclave. 1199 
2. The platform is running at the latest security level (also referred to as the TCB version). 1200 
3. The enclave’s identity is as claimed. 1201 
4. The enclave has not been tampered with. 1202 

Once all of this is verified, the remote attester can then provision secrets into the enclave. SGX 1203 
enclave usage is reserved for Ring-3 applications and cannot be used by an OS or BIOS 1204 
driver/module. 1205 

SGX removes the privileged software (e.g., OS, VMM, System Management Mode [SMM], 1206 
devices) and unprivileged software (e.g., Ring-3 applications, VMs, containers) from the trust 1207 
boundary of the code running inside the enclave, enhancing security of sensitive application code 1208 
and data. An SGX enclave trusts the CPU for execution and memory protections. SGX encrypts 1209 
memory to protect against memory bus snooping and cold boot attacks for enclave code and data 1210 
in host DRAM. SGX includes ISA instructions that can be used to handle Enclave Page Cache 1211 
(EPC) page management for creating and initializing enclaves. 1212 

SGX relies on the system UEFI BIOS and OS for initial provisioning, resource allocation, and 1213 
management. However, once an SGX enclave starts execution, it is running in a 1214 
cryptographically isolated environment separate from the OS and BIOS. 1215 

SGX can allow any application (whole or part of) to run inside an enclave and puts application 1216 
developers in control of their own application security. However, it is recommended that 1217 
developers keep the SGX code base small, validate the entire system (including software side 1218 
channel resistance), and follow other secure software development guidelines. 1219 

SGX enclaves can be used for applications ranging from protecting private keys and managing 1220 
security credentials to providing security services. In addition, industry security standards, like 1221 
European Telecommunications Standards Institute (ETSI) Network Functions Virtualization 1222 
(NFV) Security (ETSI NFV SEC) [35], have defined and published requirements for Hardware 1223 
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Mediated Execution Enclaves (HMEEs) for the purposes of NFV, 5G, and edge security. SGX is 1224 
an HMEE.  1225 

B.3.3 VM Isolation 1226 

B.3.3.1 Intel Trust Domain Extensions (Intel TDX) 1227 

Intel Trust Domain Extensions (Intel TDX) introduces new architectural elements to deploy 1228 
hardware-isolated VMs called trust domains (TDs). Intel TDX is designed to isolate VMs from 1229 
the VMM/hypervisor and any non-TD software on the platform to protect TDs from a broad 1230 
range of software. TDX is built using a combination of Virtual Machine Extensions (VMX) ISA 1231 
extensions, MKTME technology, and a CPU-attested software module called the TDX-SEAM 1232 
module. TDX isolates VMs from many hardware threats and most software-based threats, 1233 
including from the VMM and other CSP software. TDX helps give the cloud tenant control of 1234 
their own data security and IP protection. TDX does this while maintaining the CSP role of 1235 
managing resources and cloud platform integrity. 1236 

The TDX solution provides the following capabilities to TDs to address the security challenges:  1237 

• Memory and CPU state confidentiality and integrity to help keep the sensitive IP and 1238 
workload data secure from most software-based attacks and many hardware-based 1239 
attacks. The workload now has a tool that supports excluding the firmware, software, 1240 
devices, and operators of the cloud platform from the TCB. The workloads can use this 1241 
tool to foster more secure access to CPU instructions and other CPU features. The 1242 
workload can have this ability irrespective of the cloud infrastructure used to deploy the 1243 
workload. 1244 

• Remote attestation enables a relying party (either the owner of the workload or a user of 1245 
the services provided by the workload) to establish that the workload is running on a 1246 
TDX-enabled platform located within a TD prior to providing that workload data. 1247 
Remote attestation aims to allow the owners and consumers of the service to digitally 1248 
determine the version of the TCB they are relying on to help secure their data. The VMM 1249 
remains the platform resource manager, and TDs should not cause denial of service to the 1250 
VMM. Defending TDs against denial of service by the VMM is not a goal. 1251 

TDX also augments defense of the TD against limited forms of attacks that use physical access 1252 
to the platform memory, such as offline, DRAM analysis (example: cold-boot attacks), and 1253 
active attacks of DRAM interfaces, including capturing, modifying, relocating, splicing, and 1254 
aliasing memory contents [36]. The VMM continues to be the resource manager, and TDs do not 1255 
have privileges to deny service to the VMM. 1256 

B.3.4 Cryptographic Acceleration 1257 

B.3.4.1 Intel Advanced Encryption Standard New Instructions (Intel AES-NI) 1258 

Intel AES New Instructions (Intel AES-NI) is an encryption instruction set that improves 1259 
hardware performance of the Advanced Encryption Standard (AES) algorithm and accelerates 1260 
data encryption. Intel AES-NI consists of seven new instructions that accelerate encryption and 1261 
decryption and improve key generation and matrix manipulation, all while aiding in carry-less 1262 
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multiplication. This minimizes application performance concerns inherent in conventional 1263 
cryptographic processing and helps provide enhanced security by addressing side channel attacks 1264 
on AES associated with conventional software methods of table lookups [37]. 1265 

AES is the most widely used standard for protecting network traffic, personal data, and corporate 1266 
IT infrastructures. By implementing certain intensive sub-steps of the AES algorithm into the 1267 
hardware, Intel AES-NI strengthens and accelerates execution of the AES application [37]. 1268 

B.3.4.2 Intel QuickAssist Technology (QAT) with Intel Key Protection Technology 1269 
(KPT) 1270 

Intel QuickAssist Technology (QAT) is a high-performance hardware accelerator for performing 1271 
cryptographic, security, and compression operations. Applications like VMs, containers, and 1272 
Function as a Service (FaaS) call Intel QAT using industry-standard OpenSSL, TLS, and Internet 1273 
Protocol Security (IPsec) interfaces to offload symmetric and asymmetric cryptographic 1274 
operations. Cloud, multi-tenancy, NFV, edge, and 5G infrastructures and applications are best 1275 
suited for QAT for all types of workloads, including software-defined networks (SDNs), content 1276 
delivery networks (CDNs), media, and storage [38]. 1277 

Intel Key Protection Technology (KPT) helps enable customers to secure their keys to be used 1278 
with QAT through a bring-your-own-key (BYOK) paradigm. KPT allows customers to deliver 1279 
their own cryptographic keys to the QAT device in the target platform where their workload is 1280 
running. KPT-protected keys are never in the clear in host DRAM or in transit. The customers 1281 
encrypt their workload key (e.g., RSA private key for Nginx) using KPT inside their HSMs. This 1282 
encrypted workload key is delivered to the target QAT platform, where it is decrypted 1283 
immediately prior to use. KPT provides key protection at rest, in transit, and while in use [39]. 1284 

B.3.5 Technology Example Summary 1285 

Cloud infrastructure creates improvements in the efficiency, agility, and scalability of data center 1286 
workloads by abstracting hardware from the application layer. This introduces new security 1287 
concerns as workloads become multi-tenant, attack surfaces become shared, and infrastructure 1288 
administrators from the cloud operator gain access to underlying platforms. Isolation techniques 1289 
provide answers to these concerns by adding protection to VMs, applications, and data during 1290 
execution, and they represent a crucial layer of a layered security approach for data center 1291 
security architecture. 1292 

Various isolation techniques exist and can be leveraged for different security needs. Full memory 1293 
isolation defends a platform against physical memory extraction techniques, while the same 1294 
technology extended with multiple keys allows individual VMs or platform tenants to have 1295 
uniquely encrypted memory. Future generations of these technologies will allow full memory 1296 
isolation of VMs, protecting them against malicious infrastructure insiders, multi-tenant 1297 
malware, and more. Application isolation techniques allow individual applications to create 1298 
isolated enclaves that require implicit trust in the platform CPU and nothing else and that have 1299 
the ability to provide proof of the enclave to other applications before data is sent. 1300 
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B.4 Remote Attestation Services 1301 

B.4.1 Intel Security Libraries for the Data Center (ISecL-DC) 1302 

Intel Security Libraries for the Data Center (ISecL-DC) is an open-source remote attestation 1303 
implementation of a set of building blocks that utilize Intel Security features to discover, attest, 1304 
and enable critical foundation security and confidential computing use-cases. This middleware 1305 
technology provides a consistent set of application programming interfaces (APIs) for easy 1306 
integration with cloud management software and security monitoring and enforcement tools. 1307 
ISecL-DC applies the remote attestation fundamentals described in this section and standard 1308 
specifications to maintain a platform data collection service and an efficient verification engine 1309 
to perform comprehensive trust evaluations. These trust evaluations can be used to govern 1310 
different trust and security policies applied to any given workload, as referenced in the workload 1311 
scheduling use case in Section 7.2. In future generations, the product will be extended to include 1312 
TEE attestation to provide assurance and validity of the TEE to enable confidential computing 1313 
[40]. 1314 

B.4.2 Technology Summary 1315 

Platform attestation provides auditable foundational reports for server firmware and software 1316 
integrity and can be extended to include the location of other asset tag information stored in a 1317 
TPM, as well as integrity verification for applications installed on the server. These reports 1318 
provide visibility into platform security configurations and can be used to control access to data 1319 
and workloads. Platform attestation is performed on a per-server basis and typically consumed 1320 
by cloud orchestration or a wide variety of infrastructure management platforms. 1321 

TEE attestation provides a mechanism by which a user or application can validate that a genuine 1322 
TEE enclave with an acceptable TCB is actually being used before releasing secrets or code to 1323 
the TEE. Formation of a TEE enclave is performed at the application level, and TEE attestations 1324 
are typically consumed by a user or application requiring evidence of enclave security before 1325 
passing secrets. 1326 

These different attestation techniques serve complementary purposes in a cloud deployment in 1327 
the data center or at the edge computing facility. 1328 
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Appendix C—AMD Technology Examples  1330 

This section describes a number of AMD technology examples that map back to the key 1331 
concepts described in the various sections of the document. 1332 

C.1 Platform Integrity Verification 1333 

C.1.1 AMD Platform Secure Boot (AMD PSB)  1334 

AMD Platform Secure Boot (AMD PSB) provides a hardware RoT to authenticate the initial 1335 
Platform BIOS code during the boot process of the server. Manufacturers of server systems, like 1336 
OEMs or Original Device Manufacturers (ODMs), enable the functionality of AMD PSB in their 1337 
manufacturing flow by permanently fusing policy into the silicon. 1338 

The OEM or ODM’s final BIOS image contains the AMD public key and the OEM BIOS-1339 
signing public key (signed with the AMD private key). When a system powers on, the AMD 1340 
Security Processor (ASP) starts executing the immutable on-chip Boot ROM. It authenticates 1341 
and loads multi-stage ASP Boot Loaders from SPI/Low Pin Count (LPC) Flash into its internal 1342 
memory, which initializes the silicon and the system memory.  1343 

Once the system memory is initialized, the ASP Boot Loaders load and authenticate the OEM 1344 
BIOS-signing public key, followed by authenticating the initial BIOS code. Once the verification 1345 
is successful, ASP releases the x86 core to execute authenticated initial BIOS code. The BIOS 1346 
can continue CoT for other components by means of UEFI Secure Boot. If PSB authentication 1347 
fails, the system is forced to shut down. 1348 

AMD PSB supports revocation and rollback protection of BIOS images through the OEM BIOS-1349 
signing key revision ID and rollback protection. 1350 

C.2 Data Protection and Confidential Computing 1351 

C.2.1 Memory Isolation: AMD Secure Memory Encryption (SME)/Transparent Memory 1352 
Encryption (TSME) 1353 

AMD Secure Memory Encryption (SME) is a memory encryption technology from AMD which 1354 
helps protect data in DRAM by encrypting system memory content [41]. When enabled, memory 1355 
content is encrypted via dedicated hardware in the on-die memory controllers. Each controller 1356 
includes a high-performance AES engine that encrypts data when it is written to DRAM and 1357 
decrypts it when read. The encryption of data is done with an encryption key in a mode that 1358 
utilizes an additional physical address-based tweak to protect against ciphertext block move 1359 
attacks.  1360 

The encryption key used by the AES engine with SME is randomly generated on each system 1361 
reset and is not visible to any software running on the CPU cores. This key is managed entirely 1362 
by the AMD Secure Processor (AMD-SP) that functions as a dedicated security subsystem 1363 
integrated within the AMD System-on-Chip (SOC). The key is generated using the onboard 1364 
NIST SP 800-90 compliant hardware random number generator and is stored in dedicated 1365 
hardware registers where it is never exposed outside the SOC in the clear. 1366 
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Two modes of memory encryption are supported for various use cases. The simplest mode is 1367 
Transparent Secure Memory Encryption (TSME), which is a BIOS option and enables memory 1368 
encryption automatically on all memory accesses. TSME works in the background and requires 1369 
no software interaction. Another supported mode is the OS-managed Secure Memory Encryption 1370 
(SME) mode in which individual pages of memory may be marked for encryption via CPU page 1371 
tables. SME provides additional flexibility if only a subset of memory needs to be encrypted but 1372 
does require appropriate software support. 1373 

Encrypted memory provides strong protection against cold boot, DRAM interface snooping, and 1374 
similar types of attacks. 1375 

C.2.2 VM Isolation: AMD Secure Encrypted Virtualization (SEV) 1376 

The AMD Secure Encrypted Virtualization (SEV) feature is designed to isolate VMs from the 1377 
hypervisor. When SEV is enabled, individual VMs are encrypted with an AES encryption key. 1378 
When a component such as the hypervisor attempts to read memory inside a guest, it is only able 1379 
to see the data in its encrypted form. This provides strong cryptographic isolation between the 1380 
VMs, as well as between the VMs and the hypervisor.    1381 

To protect SEV-enabled guests, the SEV firmware assists in the enforcement of three main 1382 
security properties: authenticity of the platform, attestation of a launched guest, and 1383 
confidentiality of the guest’s data. 1384 

Authenticating the platform prevents malicious software or a rogue device from masquerading as 1385 
a legitimate platform. The authenticity of the platform is proven with its identity key. This key is 1386 
signed by AMD to demonstrate that the platform is an authentic AMD platform with SEV 1387 
capabilities. 1388 

Attestation of the guest launch proves to guest owners that their guests securely launched with 1389 
SEV enabled. A signature of various components of the SEV-related guest state, including initial 1390 
contents of memory, is provided by the firmware to the guest owner to verify that the guest is in 1391 
the expected state. With this attestation, a guest owner can ensure that the hypervisor did not 1392 
interfere with the initialization of SEV before transmitting confidential information to the guest.  1393 

Confidentiality of the guest is accomplished by encrypting memory with a memory encryption 1394 
key that only the SEV firmware knows. The SEV management interface does not allow the 1395 
memory encryption key or any other secret SEV state to be exported outside of the firmware 1396 
without properly authenticating.  1397 

AMD SEV has two additional modes:  1398 

• SEV With Encrypted State (SEV-ES): This mode encrypts and protects VM registers 1399 
from being read or modified by a malicious hypervisor or VM [42].  1400 

• SEV with Secure Nested Paging (SEV-SNP): This mode adds strong memory integrity 1401 
protection to help prevent malicious hypervisor-based attacks like data replay and 1402 
memory remapping. [43] 1403 
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Appendix D—Acronyms and Abbreviations 1405 

Selected acronyms and abbreviations used in this paper are defined below. 1406 

AC RAM Authenticated Code Random Access Memory 
ACM Authenticated Code Module 
AES Advanced Encryption Standard 
AMD PSB AMD Platform Secure Boot 
AMD-SP AMD Secure Processor 
API Application Programming Interface 
AS Attestation Service 
ASP AMD Security Processor 
BIOS Basic Input/Output System 
BMC Board Management Controller 
BYOK Bring Your Own Key 
CA Certificate Authority 
CDN Content Delivery Network 
CFI Control Flow Integrity 
COP Call Oriented Programming 
CoT Chain of Trust 
CPU Central Processing Unit 
CRD Custom Resource Definition 
CRI Container Runtime Interface 
CRTM Core Root of Trust for Measurement 
CRTV Core Root of Trust for Verification 
CSK Code Signing Key 
CSP Cloud Service Provider 
DCRTM Dynamic Core Root of Trust for Measurement 
DFARS Defense Federal Acquisition Regulation Supplement 
DIMM Dual In-Line Memory Module 
DRAM Dynamic Random-Access Memory 
EPC Enclave Page Cache 
EPT Extended Page Table 
ETSI European Telecommunications Standards Institute 
ETSI NFV 
SEC 

European Telecommunications Standards Institute Network Functions 
Virtualization Security 

FaaS Function as a Service 
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FIPS Federal Information Processing Standard 
FOIA Freedom of Information Act 
FPGA Field Programmable Gate Array 
GDPR General Data Protection Regulation 
GPK General Purpose Kernel 
HASP Hardware and Architectural Support for Security and Privacy 
HIPAA Health Insurance Portability and Accountability Act 
HLAT Hypervisor Managed Linear Address Translation 
HMEE Hardware Mediated Execution Enclave 
HSM Hardware Security Module 
IA Intel Itanium Architecture 
IBB Initial Boot Block 
Intel AES-NI Intel Advanced Encryption Standard New Instructions 
Intel CET Intel Control-Flow Enforcement Technology 
Intel 
MKTME 

Intel Multi-Key Total Memory Encryption 

Intel TDX Intel Trust Domain Extensions 
Intel TME Intel Total Memory Encryption 
Intel TSC Intel Transparent Supply Chain 
Intel VT-x Intel Virtualization Technology 
IoT Internet of Things 
IPsec Internet Protocol Security 
IR NIST Interagency or Internal Report 
ISA Instruction Set Architecture 
ISecL-DC Intel Security Libraries for the Data Center 
IT Information Technology 
ITL Information Technology Laboratory 
JOP Jump Oriented Programming 
KEK Key Exchange Key 
KMIP Key Management Interoperability Protocol 
KMS Key Management Service 
KPT Key Protection Technology 
LCP Launch Control Policy 
LPC Low Pin Count 
ME Manageability Engine 
MOK Machine Owner Key 
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NCCoE National Cybersecurity Center of Excellence 
NFV Network Functions Virtualization 
NIST National Institute of Standards and Technology 
NVRAM Non-Volatile Random-Access Memory 
ODM Original Design Manufacturer 
OEM Original Equipment Manufacturer 
OS Operating System 
PCH Platform Controller Hub 
PCIE Peripheral Component Interconnect Express 
PCR Platform Configuration Register 
PFM Platform Firmware Manifest 
PFR Platform Firmware Resilience 
PIT Protection in Transit 
PK Platform Key 
QAT QuickAssist Technology 
RAM Random Access Memory 
RCE Remote Code Execution 
RF Radio Frequency 
RK Root Key 
RNG Random Number Generator 
ROM Read-Only Memory 
ROP Return Oriented Programming 
RoT Root of Trust 
RTD Root of Trust for Detection 
RTRec Root of Trust for Recovery 
RTU Root of Trust for Update 
RW Read/Write 
RWX Read/Write/Execute 
SB UEFI Secure Boot 
SCRTM Static Core Root of Trust for Measurement 
SDN Software Defined Network 
SEV Secured Encrypted Virtualization 
SEV-ES Secured Encrypted Virtualization with Encrypted State 
SEV-SNP Secured Encrypted Virtualization with Secured Nested Paging 
SGX Software Guard Extensions 
SINIT ACM Secure Initialization Authenticated Code Module 
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SK Secure Kernel 
SMAP Supervisor Mode Access Prevention 
SMBus System Management Bus 
SME Secure Memory Encryption 
SMEP Supervisor Mode Execution Prevention 
SMM System Management Mode 
SOC System-on-Chip 
SP Special Publication 
SPI Serial Peripheral Interface 
SPS FW Server Platform Services Firmware 
TCB Trusted Compute Base, Trusted Computing Base 
TD Trust Domain 
TEE Trusted Execution Environment 
TLB Translation Lookaside Buffer 
TLS Transport Layer Security 
TPM Trusted Platform Module 
TSME Transparent Memory Encryption 
TXT Trusted Execution Technology 
UEFI Unified Extensible Firmware Interface 
USB Universal Serial Bus 
VM Virtual Machine 
VMM Virtual Machine Manager, Virtual Machine Monitor 
VMX Virtual Machine Extensions 
XTS xor-encrypt-xor (XEX) Based Tweaked-Codebook Mode with Ciphertext 

Stealing 
XU User-Execute 
XWR Read/Write/Execute 

  1407 
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Appendix E—Glossary 1408 

Asset Tag  Simple key value attributes that are associated with a 1409 
platform (e.g., location, company name, division, or 1410 
department). 1411 

Chain of Trust (CoT)  A method for maintaining valid trust boundaries by 1412 
applying a principle of transitive trust, where each 1413 
software module in a system boot process is required 1414 
to measure the next module before transitioning 1415 
control. 1416 

Confidential Computing Hardware-enabled features to isolate and process 1417 
encrypted data in memory so that the data is at less 1418 
risk of exposure and compromise from concurrent 1419 
workloads or the underlying system and platform. 1420 

Cryptographic Accelerator A specialized separate coprocessor chip from the 1421 
main processing unit where cryptographic tasks are 1422 
offloaded to for performance benefits. 1423 

Hardware-Enabled Security Security with its basis in the hardware platform. 1424 
Platform Trust An assurance in the integrity of the underlying 1425 

platform configuration, including hardware, 1426 
firmware, and software. 1427 

Root of Trust (RoT) A starting point that is implicitly trusted. 1428 
Shadow Stack A parallel hardware stack that applications can utilize 1429 

to store a copy of return addresses that are checked 1430 
against the normal program stack on return 1431 
operations. 1432 

Trusted Execution Environment (TEE) An area or enclave protected by a system processor. 1433 
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