Identifying and Estimating Cybersecurity Risk for Enterprise Risk Management (ERM)

Kevin Stine
Stephen Quinn
Nahla Ivy
Larry Feldman
Greg Witte
R. K. Gardner

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8286A-draft2
Identifying and Estimating Cybersecurity Risk for Enterprise Risk Management (ERM)

Kevin Stine
Applied Cybersecurity Division
Information Technology Laboratory

Larry Feldman
Greg Witte
Huntington Ingalls Industries
Annapolis Junction, MD

Stephen Quinn
Computer Security Division
Information Technology Laboratory

R. K. Gardner
New World Technology Partners
Annapolis, MD

Nahla Ivy
Enterprise Risk Management Office
Office of Financial Resource Management

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8286A-draft2

July 2021
Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Public comment period: July 6 through August 6, 2021

National Institute of Standards and Technology
Attn: Applied Cybersecurity Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 2000) Gaithersburg, MD 20899-2000
Email: nistir8286@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).
The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems.

Abstract

This document supplements NIST Interagency or Internal Report 8286, Integrating Cybersecurity and Enterprise Risk Management (ERM), by providing additional detail regarding risk guidance, identification, and analysis. This report offers examples and information to illustrate risk tolerance, risk appetite, and methods for determining risks in that context. To support the development of an Enterprise Risk Register, this report describes documentation of various scenarios based on the potential impact of threats and vulnerabilities on enterprise assets. Documenting the likelihood and impact of various threat events through cybersecurity risk registers integrated into an enterprise risk profile helps to later prioritize and communicate enterprise cybersecurity risk response and monitoring.

Keywords

cybersecurity risk management; cybersecurity risk measurement; cybersecurity risk register; enterprise risk management (ERM); enterprise risk profile.

Note to Reviewers

In the development of this second public draft, it has become clear that there is some variance in how common terms are applied across government, commercial, and other types of enterprises. Keeping in mind that all comments are publicly available and should contain no confidential or proprietary information, it will be helpful for commenters to include information about how risk direction (i.e., risk appetite, risk tolerance, risk boundaries) are used within their organizations.

Acknowledgments

The authors wish to thank those who have contributed to the creation of this draft. A detailed acknowledgement will be included in the final publication.

Audience

The primary audience for this publication includes both federal government and non-federal government cybersecurity, privacy, and cyber supply chain professionals at all levels who understand cybersecurity but may be unfamiliar with the details of enterprise risk management (ERM).
The secondary audience includes both federal and non-federal government corporate officers, high-level executives, ERM officers and staff members, and others who understand ERM but may be unfamiliar with the details of cybersecurity.

This document begins with information generated at the Enterprise Level of the organization and frames the discussion and the response from the risk management practitioners. All readers are expected to gain an improved understanding of how cybersecurity risk management (CSRM) and ERM complement and relate to each other, as well as the benefits of integrating their use.

Document Conventions

For the purposes of this document, the terms “cybersecurity” and “information security” are used interchangeably, as are the terms Cybersecurity Risk Management (CSRM) and Information Security Risk Management (ISRM).

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use would be required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by reference to another publication. This call also includes disclosure, where known, of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or electronic form, either:

- assurance in the form of a general disclaimer to the effect that such party does not hold and does not currently intend holding any essential patent claim(s); or
- assurance that a license to such essential patent claim(s) will be made available to applicants desiring to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft publication either:
 - under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or
 - without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that the transferee will similarly include appropriate provisions in the event of future transfers with the goal of binding each successor-in-interest. The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: nistir8286@nist.gov.
Executive Summary

All organizations face a broad array of risks, including cybersecurity risk. For federal agencies, the Office of Management and Budget (OMB) Circular A-11 defines risk as “the effect of uncertainty on objectives.” An organization’s mission and business objectives can be impacted by such effects and must be managed at various levels within the organization.

This report highlights aspects of cybersecurity risk management (CSRM) inherent to enterprises, organizations, and systems. The terms organization and enterprise are often used interchangeably; however, without an understanding of organizational structure, effective risk management is impossible. For the purposes of this document, an organization is defined as an entity of any size, complexity, or position within a larger organizational structure. The enterprise exists at the top level of the hierarchy where senior leaders have unique risk governance responsibilities. Each enterprise, such as a corporation or government agency, is comprised of organizations supported by systems.¹

Enterprise risk management (ERM) calls for understanding the core (i.e., significant) risks that an organization faces, and this document provides supplemental guidance for aligning cyber security risks within an organization’s overall ERM program. Lessons learned from historical cybersecurity incidents demonstrate the importance of collaboration among CSRM and ERM. This document helps enterprises to apply, improve, and monitor the quality of that cooperation and communication.

This NIST Interagency/Internal Report (NISTIR) is part of a series of publications supporting NISTIR 8286, Integrating Cybersecurity and Enterprise Risk Management (ERM). Each publication in the

¹ A system is defined as “a discrete set of information resources organized expressly for the collection, processing, maintenance, use, sharing, dissemination, or disposition of information.”
series, illustrated in Figure 1, provides additional detail and guidance to supplement topics in that document:

- NISTIR 8286A (this report) provides additional detail regarding risk context, scenario identification, and analysis of likelihood and impact. It also includes methods to convey risk information, such as through cybersecurity risk registers (CSRRs) and risk detail records (RDRs). Similar processes and the uses of the Risk Register and RDRs are helpful to identify and manage other types of risk, including those for Cyber Supply Chain and Privacy.

- NISTIR 8286B describes ways to apply risk analysis to prioritize cybersecurity risk, evaluate and select appropriate risk response, and communicate risk activities as part of an enterprise CSRM strategy.

- NISTIR 8286C describes processes for aggregating information from CSRM activities throughout the enterprise. As that information is integrated and harmonized, organizational and enterprise leaders monitor achievement of risk objectives, consider any changes to risk strategy, and use the combined information to maintain awareness of risk factors and positive risks (or opportunities).

A key CSRM success factor is setting leadership expectations, such as through risk appetite and risk tolerance. Section 2.1 of this report provides examples of setting and communicating those expectations and provides input into Section 2.2, which describes methods for identifying CSRM scenarios. Each of the potential risk scenarios are analyzed, as described in Section 2.3, to consider specific likelihood and impact on the organization. Throughout these processes, risk data is developed and recorded in cybersecurity risk registers (and risk detail records) in support of ongoing risk communication. This information becomes the input to risk prioritization and response, which is described in NISTIR 8286B.
Table of Contents

Executive Summary ... iv

1 Introduction .. 1
 1.1 Supporting CSRM as an Integrated Component of ERM 2
 1.2 Purpose and Scope .. 3
 1.3 Document Structure .. 4

2 Cybersecurity Risk Considerations Throughout the ERM Process 5
 2.1 Risk Scope, Context, and Criteria ... 6
 2.1.1 Risk Appetite and Risk Tolerance ... 6
 2.1.2 Enterprise Strategy for Cybersecurity Risk Coordination 9
 2.1.3 Detailed Risk Integration Strategy .. 11
 2.1.4 Enterprise Strategy for Cybersecurity Risk Reporting 15
 2.2 Risk Identification .. 16
 2.2.1 Inventory and Valuation of Assets .. 17
 2.2.2 Determination of Potential Threats ... 19
 2.2.3 Vulnerability Identification ... 28
 2.2.4 Determining Potential Impact ... 31
 2.2.5 Recording Identified Risks ... 33
 2.2.6 Risk Categorization .. 35
 2.3 Detailed Risk Analysis .. 35
 2.3.1 Selecting Risk Analysis Methodologies .. 36
 2.3.2 Techniques for Estimating Likelihood and Impact 37
 2.4 Determination and Documentation of Risk Exposure 45

3 Conclusion ... 46

References ... 47

List of Appendices

Appendix A— Acronyms .. 49
Appendix B— Notional Example of a Risk Detail Record (RDR) 51

List of Figures

Figure 1: NISTIR 8286 Series Publications Describe Detailed CSRM/ERM Integration .iv
Figure 2: NISTIR 8286A Activities as Part of CSRM/ERM Integration 1
List of Tables

Table 1: Examples of Risk Appetite and Risk Tolerance .. 8
Table 2: Inputs and Outputs for ERM Governance and Integrated CSRM 10
Table 3: Example Threat Modeling Analysis .. 20
Table 4: Example Bias Issues to Avoid in Risk Management .. 22
Table 5: Example SWOT Analysis .. 23
Table 6: Cybersecurity Framework Current State Profiles Help Consider Threats 24
Table 7: Example Sources of Threat Information .. 26
Table 8: Example Negative and Positive Impact Scenarios .. 32
Table 9: Example Risk Tolerance Results Assessment ... 38
1 Introduction

This report provides guidance that supplements NIST Interagency/Internal Report (NISTIR) 8286, *Integrating Cybersecurity and Enterprise Risk Management (ERM)* [1]. This is the first of a series of companion publications that provide guidance for implementing, monitoring, and maintaining an enterprise approach designed to integrate cybersecurity risk management (CSRM) into ERM. Readers of this report will benefit from reviewing the foundation document, NISTIR 8286, since many of the concepts described in this report are based upon practices and definitions established in that NISTIR.

Each publication in the series, as illustrated in Figure 2, provides detailed guidance to supplement topics in the flagship document. Activities described in this report are shown in dark blue; those in other documents are shown in a lighter shade.

- **NISTIR 8286A** (this report) details the context, scenario identification, and analysis of likelihood and impact of cybersecurity risk. It also includes methods to convey risk information, such as through cybersecurity risk registers (CSRRs) and risk detail records.

- **NISTIR 8286B** describes ways to apply risk analysis to help prioritize cybersecurity risk, evaluate and select appropriate risk responses, and communicate risk activities as part of an enterprise CSRM strategy.

- **NISTIR 8286C** describes processes for aggregating information from CSRM activities throughout the enterprise. As that information is integrated and harmonized, organizational and enterprise leaders monitor achievement of risk objectives, consider any changes to risk strategy, and use the combined information to maintain awareness of risk factors and positive risks (or opportunities).

A key point established by NISTIR 8286 is that the terms *organization* and *enterprise* are often used interchangeably. That report defines an organization as an entity of any size, complexity, or position within a larger organizational structure (e.g., a federal agency or company). It defines an *enterprise* as having a structural...
hierarchy and senior leaders that bear fiduciary management and reporting responsibilities, including establishing risk strategy (e.g., risk appetite, methods). Notably, government and private industry CSRM and ERM programs have different oversight and reporting requirements (e.g., accountability to the public versus accountability to shareholders), but the general needs and processes are quite similar.

1.1 Supporting CSRM as an Integrated Component of ERM

There are similarities and variances among approaches by public- and private-sector practices for ERM/CSRM coordination and interaction. Some entities incorrectly treat ERM and CSRM practices as separate stovepipes. The CSRM program is an integral part of the ERM portfolio, both taking its direction from ERM and informing it. The universe of risks facing an enterprise includes many factors, and risks to the enterprise’s information and technology often rank high within that list. ERM strategy and CSRM strategy are not divergent; CSRM strategy should be a subset of ERM strategy with particular objectives, processes, and reporting. This report and those in this series support improving ERM and CSRM coordination. As the risk management community continues that discussion, NIST will solicit and publish lessons learned and shared by that community.

Section 2 shows that enterprise governance activities direct the strategy and methods for risk management, including CSRM. Results of those activities are

3 This report refers to the term enterprise in two contexts, referencing both the top level of a hierarchical organization and also to represent the entirety of entity itself. Generally, the phrase enterprise level refers to governance and management activities at the most senior levels of that hierarchy (sometimes referenced as Level 1 in other NIST publications) while the phrase the enterprise references the entirety of the organizational structure and composition.
recorded in various risk registers. Cybersecurity risks, derived from system level assessments, are documented through cybersecurity risk registers (CSRRs) that are aggregated and used to create an enterprise cybersecurity risk register (Enterprise CSRR) that, in turn, becomes part of a broader Enterprise Risk Register (ERR), as depicted in Figure 3. The ERR, when prioritized by those with fiduciary and oversight responsibilities, represents an Enterprise Risk Profile. Figure 3 illustrates the integration of risk register information and demonstrates that ERM and CSRM are not separate processes, but CSRM represents an important subset of risk management under the broader umbrella of enterprise risk management.

The NISTIR 8286x series builds upon existing NIST frameworks by demonstrating methods for applying risk management processes at all enterprise levels and representing how the NIST frameworks are anchored in ERM. A key construct for performing that integration is the cybersecurity risk register (CSRR) described in NISTIR 8286. As shown in Figure 3, the risk register is a key tool to document, communicate, and manage cybersecurity risk at each level of the enterprise. Use of this process streamlines risk reporting, eliminates duplicate record keeping, and helps share CSRM knowledge across program areas.

NISTIR 8286A details methods for completing and maintaining that risk register by identifying threats and analyzing the likelihood of successful exploitation of certain conditions that result in threat events, the estimated impact on enterprise objectives, and whether estimates are within established risk tolerance parameters. This report focuses on the first three elements of the enterprise CSRM process: establishing scope, context, and criteria; identifying the cybersecurity-related risks that may affect an enterprise’s ability to achieve its objectives; and calculating the likelihood and impact of such risks. Subsequent publications will address methods for evaluating risk treatment options, selecting an appropriate treatment, communicating the plans and results of that treatment, and adhering to stakeholders’ risk strategies.

1.2 Purpose and Scope

This document focuses on improving CSRM understanding and communications between and among cybersecurity professionals, high-level executives, and corporate officers to help ensure the effective integration of cybersecurity considerations as a critical subset of overarching enterprise risks. The processes that will be described support improved coordination among ERM champions and liaisons. The report recognizes that the risk management community has observed an opportunity for increased rigor in the manner in which cybersecurity risk identification, analysis, and reporting are performed at all levels of the enterprise. This publication is designed to provide guidance and to further conversations regarding ways to improve CSRM and the coordination of CSRM with ERM.

4 Although this report is focused on CSRM as a function of ERM, future iterations of this report and documents in this series will address other risk management disciplines (e.g., Privacy RM, Supply Chain RM) using the risk register model.

5 Figure 1 of NISTIR 8286 provides an illustration of the various levels of an entity including the enterprise, organization, and system levels. Activities at these levels are further described in this NISTIR 8286A report.
The goals of this document are to:

- Help describe governance processes by which senior leaders build strategy and express expectations regarding CSRM as part of ERM and
- Provide guidance for CSRM practitioners in applying the risk direction received from senior leaders, communicating results, coordinating success, and integrating activities.

This document continues the discussion to bridge existing private industry risk management processes with government-mandated federal agency enterprise and cybersecurity risk requirements derived from OMB Circulars A-123 and A-130 [2]. It builds upon concepts introduced in NISTIR 8286 and complements other documents in this series. It references some materials that are specifically intended for use by federal agencies and will be highlighted as such, but the concepts and approaches are intended to be useful for all enterprises.

1.3 Document Structure

This publication helps establish an enterprise strategy (Section 2.1) to identify cybersecurity risks to mission objectives (Section 2.2) and to analyze (Section 2.3) their likelihood and possible impacts. These sections describe ordinary methods in which that strategy is expressed through risk appetite and risk tolerance. The remainder of this document is organized into the following major sections:

- Section 2 details CSRM considerations, including enterprise risk strategy for risk identification and risk analysis.
- Section 3 provides a short summary and conclusion.
- The References section provides links to external sites or publications that provide additional information.
- Appendix A contains acronyms used in the document.
- Appendix B provides a notional representation of a Risk Detail Record.

6 An Informative Reference that crosswalks the contents of this document and the NIST Framework for Improving Critical Infrastructure Cybersecurity (the NIST Cybersecurity Framework) will be posted as part of the National Cybersecurity Online Informative References (OLIR) Program [3]. See https://www.nist.gov/cyberframework/informative-references for an overview of OLIR.
2 Cybersecurity Risk Considerations Throughout the ERM Process

Because digital information and technology are valuable enablers for enterprise success and growth, they must be sufficiently protected from various types of risk. Government entities for whom growth may not be a strategic objective are still likely to find value in dynamically adding or changing their services or offerings as their constituents’ needs evolve. Thus, both private and public sector entities need to evaluate the role of information and technology in achieving enterprise objectives. This understanding enables a deeper consideration of the various uncertainties that jeopardize those objectives.

In the context of ERM, senior leaders must clearly express expectations regarding how risk should be managed. Those expectations provide CSRM practitioners with objectives for managing cybersecurity risks, including methods for reporting the extent to which risk management activities successfully achieve those objectives. The document for recording and sharing information about those risks is the cybersecurity risk register (CSRR).

NISTIR 8286 describes the use of risk registers, example fields for those registers, and the fact that prioritized risk register contents serve as the basis of a risk profile. That report also states that, while a risk register represents various risks at a single point in time, it is important for the enterprise to ensure that the model is used in a consistent and iterative way. As risks are identified (including calculation of likelihood and impact), the risk register will be populated with relevant information once decisions have been made. That risk condition, after the agreed-upon risk response has been applied, becomes the current risk state in the next assessment cycle.

Figure 4 provides an example of a blank risk register. The red box shows fields that are relevant to the processes described in this report. The remaining columns will be described in a subsequent publication. Note that, while prioritization is informed by some of the information recorded in these columns, risk priority will be discussed in that future publication as part of Risk Evaluation and Risk Response activities. While the example illustrates a template for cybersecurity risks, a similar template could be used for any type of risk in the enterprise.
The risk register provides an easily consumed summary for understanding the risk landscape, but effective risk communication requires many additional details that would not fit into this compact table. The additional information can be provided in a Risk Detail Record (RDR). The RDR provides an opportunity to record historical risk-related information, detailed risk analysis data, and information about individual and organizational accountability. Appendix B of this document provides a notional example of such a record.

2.1 Risk Scope, Context, and Criteria

Effective management of risk throughout the enterprise depends upon collaboration and cooperation at each level. After senior leaders provide direction regarding how to manage risks (including cybersecurity risks), personnel at other levels use that direction to achieve, report, and monitor outcomes. This top-down, collaborative management approach helps ensure that CSRM strategy is formulated as a part of (and flows from) ERM strategy.

ISO 31000:2018 points out that there are three prerequisites for supporting a CSRM program as an input to ERM [4]:

- The scope of the CSRM activities should be defined;
- The internal and external context of the CSRM activities should be determined; and
- The criteria from enterprise stakeholders should be declared and documented through a comprehensive CSRM strategy.

The guidance in the NISTIR 8286 series relies upon these elements (scope, context, and strategy) being established. Senior leaders define the ERM scope, context, and strategy, which inform enterprise priorities, resource utilization criteria, and responsibilities for various enterprise roles. The ERM strategy helps define how various organizational systems, processes, and activities cooperate to achieve risk management goals, including those for CSRM, in alignment with mission objectives.

2.1.1 Risk Appetite and Risk Tolerance

CSRM, as an important component of ERM, helps assure that cybersecurity risks do not hinder established enterprise mission objectives. CSRM also helps ensure that exposure from cybersecurity risk remains within the limits assigned by enterprise leadership. Figure 5 illustrates the ongoing communications among ERM and CSRM stakeholders to set, achieve, and report on risk expectations throughout the enterprise. This illustration builds upon the well-known levels of the Organization-Wide Risk Management Approach described in NIST Special Publication (SP) 800-37, Revision 2 [5]. The diagram extends the Notional Information and Decision Flows figure from the NIST Framework for Improving Critical Infrastructure Cybersecurity (Cybersecurity Framework) by indicating risk appetite and risk tolerance definition, interpretation, and achievement [6].

The process described in Figure 5 illustrates that risk appetite regarding cybersecurity risks is declared at the Enterprise Level. Risk appetite provides a guidepost to the types and amount of risk, on a broad level, that senior leaders are willing to accept in pursuit of mission objectives.
Risk appetite may be qualitative or quantitative. As leaders establish an organizational structure, business processes, and systems to accomplish enterprise mission objectives, the results define the structure and expectations for CSRM at all levels. Based on these expectations, cybersecurity risks are identified, managed, and reported through risk registers and relevant metrics. The register then directly supports the refinement of risk strategy considering mission objectives.

Risk appetite can be interpreted by enterprise- and organization-level leaders to develop specific cybersecurity risk tolerance, which is defined by OMB as “the acceptable level of variance in performance relative to the achievement of objectives” [2]. Risk tolerance represents the specific level of performance risk deemed acceptable within the risk appetite set by senior leadership (while recognizing that such tolerance can be influenced by legal or regulatory requirements). Risk tolerance can be defined at the executive level (e.g., at the department level for U.S. federal agencies), but OMB offers a bit of discretion to an organization, stating that risk tolerance is “generally established at the program, objective, or component level.”

Risk appetite and risk tolerance are related but distinct in a similar manner to the relationship between governance and management activities. Where risk appetite statements define the overarching risk guidance, risk tolerance statements define the specific application of that direction. This means risk tolerance statements are always more specific than the corresponding risk appetite statements. Together, these risk appetite and risk tolerance statements represent risk limits, help communicate risk expectations, and improve the focus of risk management efforts. They also help to address other factors such as findings from internal audits or external reports (e.g., an examination of corporate financial records by an independent audit firm, a review of a federal agency’s improved IT management through the Federal Information Technology Acquisition Reform Act [FITARA]). The definition of these risk parameters places the enterprise in a better position to identify, prioritize, triage, and treat risks that may lead to unacceptable loss. Risk tolerance should always stay within the boundaries established by senior leadership.

Achievement of defined expectations is conveyed through risk registers that document and communicate risk decisions. Risk assessment results and risk response actions at the system level are reflected in CSRRs. As CSRRs from multiple systems are collated and provided to higher level business managers at the organization level, those managers can evaluate results and refine risk tolerance criteria to optimize value delivery, resource utilization, and risk. The enterprise level aggregation of all of the various CSRRs enables senior leaders to monitor risk response.
considering the expectations set. Figure 2 illustrates the tight coupling of ERM, where senior
leaders set enterprise risk strategy and make risk-informed decisions, and CSRM, where
cybersecurity practitioners can best identify where cybersecurity risk is likely to occur. Table 1
provides examples of actionable, measurable risk tolerance that illustrates the application of risk
appetite to specific contexts within the organization level structure.

<table>
<thead>
<tr>
<th>Example Enterprise Type</th>
<th>Example Risk Appetite Statement</th>
<th>Example Risk Tolerance Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Retail Firm</td>
<td>Our customers associate reliability with our company’s performance, so service disruptions must be minimized for any customer-facing websites.</td>
<td>Regional managers may permit website outages lasting up to 2 hours for no more than 5 % of its customers.</td>
</tr>
<tr>
<td>Government Agency</td>
<td>Mission-critical systems must be protected from known cybersecurity vulnerabilities.</td>
<td>Systems designated as mission-critical must be patched against critical software vulnerabilities (severity score of 10) within 14 days of discovery.</td>
</tr>
<tr>
<td>Internet Service Provider</td>
<td>The company has a LOW risk appetite with regard to failure to meet customer service level agreements, including network availability and communication speeds.</td>
<td>Patches must be applied to avoid attack-related outages but also must be well-tested and deployed in a manner that does not reduce availability below agreed-upon service levels.</td>
</tr>
<tr>
<td>Academic Institution</td>
<td>The institution understands that mobile computers are a necessary part of the daily life of students, and some loss is expected. The leadership, however, has no appetite for the loss of any sensitive data (as defined by the Data Classification Policy).</td>
<td>Because the cost of loss prevention for students’ laptop workstations is likely to exceed the cost of the devices, it is acceptable for up to 10 % to be misplaced or stolen if and only if sensitive institution information is prohibited from being stored on students’ devices.</td>
</tr>
<tr>
<td>Healthcare Provider</td>
<td>The Board of Directors has decided that the enterprise has a low risk appetite for any cybersecurity exposures caused by inadequate access control or authentication processes.</td>
<td>There will always be some devices that do not yet support advanced authentication, but 100 % of critical healthcare business applications must use multi-factor authentication.</td>
</tr>
</tbody>
</table>

These discussions may also help identify positive risks in the form of opportunities. From an
opportunity standpoint, the risk appetite statements can identify areas where the organization
needs to stretch further to reach goals and are expressed as those targeted areas where some loss
is acceptable without crossing important lines of demarcation (e.g., innovative solutions should
be pursued but not at the cost of life, safety, compliance with laws/regulations, or reputation).
Understanding that private sector organizations pursue risk as part of their growth strategies and
competitive advantage, this aspect should not be forgotten. Similarly, public sector agencies
typically have stretch goals to keep up with industry needs, customer expectations, market
demands, or other influences.
2.1.2 Enterprise Strategy for Cybersecurity Risk Coordination

Figures 5 and 6 provide simplified illustrations of risk integration and coordination activities. Each enterprise is unique, so enterprise leadership may wish to tailor the approach for those unique circumstances. For example, while risk appetite statements usually originate from the most senior leaders, those leaders may choose to delegate the creation of cybersecurity risk appetite statements to a senior cybersecurity risk official (e.g., Chief Information Security Officer, or CISO). Readers should note that the processes described are cyclical. Early iterations may include the definition of terms, strategies, and objectives. Subsequent iterations may focus on refining those objectives based on previous results, observations of the risk landscape, and changes within the enterprise.

Table 2 describes the process by which senior leaders express strategy and expectations for managing cybersecurity risk throughout the enterprise. In general, NISTIR 8286A addresses activity points 1 to 3, and NISTIRs 8286B and 8286C address activity points 4 to 6.

11 Figure 6 further decomposes the risk management cycle, information flow, and decision points illustrated in Figure 5, which provides a high-level understanding in the context of the organizational structure. Subsequent publications in this series will provide additional information about the activities described in Figure 5 and Table 2.
Table 2: Inputs and Outputs for ERM Governance and Integrated CSRM

<table>
<thead>
<tr>
<th>Activity Point</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Setting risk expectations and priorities</td>
<td>Internal and external risk context; enterprise roles and responsibilities; governance framework and governance systems for managing risk for all types of risks</td>
<td>Documentation of enterprise priorities in light of mission objectives and stakeholder values; direction regarding budget (e.g., authorization for capital and operating expenditures); risk appetite statements pertaining to each risk management discipline, including cybersecurity</td>
</tr>
<tr>
<td>2. Interpreting risk appetite to define risk tolerance statements</td>
<td>Enterprise priorities in light of mission objectives and stakeholder values; direction regarding budget (e.g., authorization for capital and operating expenditures); risk appetite statements</td>
<td>Risk tolerance statements (and metrics) to apply risk appetite direction at the organization level; direction regarding methods to apply CSRM (e.g., centralized services, compliance/auditing methods, shared controls to be inherited and applied at the system level)</td>
</tr>
<tr>
<td>3. Applying risk tolerance statements to achieve system level CSRM</td>
<td>Risk tolerance statements; direction regarding shared services and controls; lessons learned from previous CSRM implementation (and those of peers)</td>
<td>Inputs to preparatory activities (e.g., NIST Risk Management Framework, or RMF, Prepare step); system categorization; selection and implementation of system security controls</td>
</tr>
<tr>
<td>4. Assessing CSRM and reporting system level risk response through CSRRs</td>
<td>Security plans; risk response; system authorization (or denial of authorization with referral back for plan revision)</td>
<td>Risk assessment results; CSRRs describing residual risk and response actions taken; risk categorization and metrics that support ongoing assessment, authorization, and continuous monitoring</td>
</tr>
<tr>
<td>5. Aggregating organization level CSRRs</td>
<td>CSRRs showing system level risk decisions and metrics; internal reports from compliance/auditing processes to confirm alignment with enterprise risk strategy; observations regarding CSRM achievement in light of risk strategy</td>
<td>CSRRs aggregated and normalized based on enterprise-defined risk categories and measurement criteria; refinement of risk tolerance statements, if needed, to ensure balance among value, resources, and risk</td>
</tr>
<tr>
<td>6. Integrating CSRRs into Enterprise CSRR, Enterprise Risk Register (ERR), and Enterprise Risk Profile (ERP)</td>
<td>Normalized and harmonized CSRRs from various organization level CSRM reports; compliance and audit reports; results from other (non-cybersecurity) risk management activities; observations regarding ERM and CSRM achievement</td>
<td>Aggregated and normalized Enterprise CSRR, integrated Enterprise Risk Register (ERR) aligning CSRM results with those of other risk categories; refinement of risk appetite tolerance statements and risk management direction to ensure balance among value, resources, and risk; Enterprise Risk Profile (ERP) for monitoring and reporting overall risk management activities and results</td>
</tr>
</tbody>
</table>

Figure 6 illustrates a more detailed information flow of inputs and outputs. Senior leaders and business managers define risk tolerance direction that is applied at the system level. System level practitioners interpret those risk tolerance statements and apply CSRM activities to achieve risk management objectives. The results are then reviewed to confirm effectiveness, highlight opportunities for improvement, and identify important trends that might require organization or
enterprise level action. The specific process activities will be based on the risk management methods applied but will generally include those below.

The process described in Figure 6 highlights the integration of ERM and CSRM, achieving the high-level process from Figure 5 above, where cybersecurity risks are documented through CSRRs, aggregated at appropriate levels, then used to create an enterprise cybersecurity risk register, which provides input into the broader Enterprise Risk Register (ERR). This integration will be described in more detail in NISTIR 8286C.

2.1.3 Detailed Risk Integration Strategy

The activities in Figure 6 are listed below.

Risk Context and Strategy Activities

- As described in earlier portions of this section, leaders at Levels 1 and 2 define specific and measurable risk appetite and risk tolerance statements that reinforce enterprise mission objectives and organization goals.

12 Figure 3 demonstrates select communications, processes, and decisions germane to the risk appetite, risk tolerance, and risk register interactions among the three levels of an enterprise addressed by this report and is not intended to be exhaustive.

13 For those topics that are addressed in NISTIR 8286A, a pointer to the relevant section is included. NISTIR 8286B will describe how to apply risk analysis to prioritize risks and implement appropriate responses. NISTIR 8286C will provide guidance regarding aggregation of risks into the Enterprise CSRR and subsequent risk monitoring and communications, including adjustments to risk appetite and risk tolerance based upon previous results and the evolving risk landscape.
At Level 3, practitioners interpret the risk tolerance statements for the specific systems that operate to provide business (or agency) benefits. Those in various roles (e.g., system owners, security officers) work together to derive system level requirements for confidentiality, integrity, and availability.

Risk Identification Activities

- The value of each asset of a given system (e.g., information type, technical component, personnel, service provider) is appraised to determine how critical or sensitive it is to the operation of the system (see Section 2.2.1). Subsequent risk decisions depend on an accurate understanding of the importance of each resource to the system.

- For each of these components, the practitioner identifies threat sources that might have a harmful effect (see Section 2.2.2) and the vulnerabilities or conditions that might enable such an effect (see Section 2.2.3). To complete development of the risk scenario, the practitioner determines the adverse effect of the threat source exploiting the vulnerable conditions. The scenario is recorded in the CSRR as the “Risk Description” (see Section 2.2.5). The category for the scenario will be recorded in the “Risk Category” column based on enterprise criteria to support risk correlation, aggregation, and reporting.

Risk Analysis Activities

- The practitioner performs risk analysis (see Section 2.3) to determine the likelihood that the threat events and vulnerable conditions would result in harmful impacts to the system asset. Similarly, the practitioner analyzes the impact value and calculates the risk exposure using the methodology defined in the enterprise risk strategy (e.g., as the product of [risk likelihood] x [risk impact]). The results of these analyses are recorded in the CSRR’s “Current Assessment” column as “Likelihood,” “Impact,” and “Exposure.”

Risk Response Activities

- The determined exposure is compared with the risk tolerance.
 - If exposure is within risk tolerance limits, the risk may be “accepted.”
 - If exposure exceeds tolerable levels of risk, practitioners can consider whether they can achieve risk tolerance through other forms of risk response.
 - In many cases, security controls may be applied to mitigate risk by reducing the likelihood or impact of a risk to a tolerable level. Controls should be implemented with a corresponding performance scale (i.e., KPI) which is used as the basis for KRI.
 - Risk response may also include risk transfer, also known as risk sharing. For example, an organization might hire an external organization to process sensitive transactions (e.g., payment card transactions), thus reducing the likelihood that...
such sensitive data would be processed by an in-house system. Another common risk transfer method involves the use of cybersecurity insurance policies that can help reduce the economic impact if a risk event occurs.

- In some cases, it might be determined that the exposure exceeds risk tolerance and cannot be brought within limits through any combination of mitigation or risk transfer. In this case, practitioners (e.g., the system owner) may need to work with Level 2 leaders to revisit the risk tolerance itself. This negotiation presents an opportunity for the Level 2 and Level 3 managers to determine the best course of action to refine risk direction in light of mission objectives (e.g., through an exception process, an adjustment to the risk tolerance statement, or increased security requirements for the relevant system). In any case, stakeholders will have applied a proactive approach to balancing risk and value.

- If an unacceptable cybersecurity risk cannot be adequately treated in a cost-effective manner, that risk must be avoided. Such a condition may require significant redesign of the system or service. These circumstances should be rare, and they highlight the value of CSRM coordination early in the system engineering process. Notably, risk avoidance is not the same as ignoring a risk.

Risk Monitoring and Communication Activities

- **KRI**s inform organizations whether controls are adequately addressing risk and whether risks are changing over time. When KRI**s fall outside of pre-established thresholds, this indicates a risk response is beyond acceptable levels. In this case, organizations should evaluate risks and make any necessary adjustments to controls.

- Results of risk activities and decisions are recorded in the CSRR and, if applicable, in a documented Plan of Actions & Milestones (POA&M)\(^\text{14}\) that records funded future agreed-upon risk activities that will transpire over time.

- It is important for enterprise processes to ensure adequate communication of risk that has been accepted (or risk that is implicitly accepted, such as through the exception example above). A key purpose of the various risk registers and reporting methods is to ensure that adequate governance information is available to monitor enterprise risk decisions.

- Risk activities may also be informed through the integration of relevant internal and external audit findings. Significant audit findings often have enterprise level impacts; however, lower severity findings may, if not addressed adequately, spread through multiple systems to create risk in aggregate. The coordination of audit findings may span multiple levels of the enterprise. For example, as operational teams at the system level

\(^{14}\) Federal agencies are required by OMB to develop a plan of action and milestones (POA&M) for each system. The plan includes a listing of unaccepted risks and associated plans to mitigate the risks. However, the time horizon to resolve outstanding risks may exceed the current reporting cycle. Private industry is also required to document this type of risk in similar ways (e.g., quarterly SEC Form Q-10 filings, a prospectus). POA&Ms will be addressed in greater detail later in this series when risk mitigation strategies are discussed.
address shortcomings or system deficiencies, key findings might be communicated and tracked by an audit committee (organization level). As responses to findings occur and are documented (such as through a corrective action plan, or CAP), they assist in the planning of subsequent enterprise risk management.

- The process continues until all information and technology assets and processes have been evaluated for risk from currently understood threats and vulnerabilities. For some enterprises, the composite set of system risks (as recorded in the CSRR), risk responses applied, agreements regarding additional CSRM actions to be taken (e.g., as recorded in the POA&M), and other relevant artifacts will be reviewed by a senior official to confirm that risk decisions and risk responses align with risk tolerance and risk appetite directives. For federal government agencies, this represents the system authorization process.

- Subsequently, CSRRs from throughout the business level are normalized and aggregated to provide a composite view of the risk posture and decisions for that organization. As Level 2 managers consider feedback from system CSRM activities, they may decide to refine risk tolerance levels. It may be that the aggregate risk across multiple systems represents too great an exposure and needs to be reduced. In other cases, based on successful risk management results, stakeholders may be able to permit a little more risk in some areas if such a decision would support mission objectives and potentially save resources or allow them to be directed to areas that require additional resources in order to meet expected risk tolerances.

- Similar reviews and refinement occur at Level 1 to support enterprise governance and risk management decisions. Some types of enterprises may be required to formally disclose risk factors (e.g., through annual reports), and this aggregate understanding of cybersecurity risks and risk decisions can support their fiduciary responsibilities. These activities may also help others, such as federal government agencies, to help comply with mandatory requirements, such as those established by OMB.

Interpreting risk tolerance at Level 3, practitioners develop requirements and apply security controls to achieve an acceptable level of risk. This process helps to ensure that CSRM occurs in a cost-effective way. As an example, consider the global retail firm described in the first row of Table 1. The system owner of the customer website will select controls that will ensure adherence to availability service levels. In deciding which controls to apply, the system owner collaborates with a security team to consider methods to meet service level objectives. The team can contact the local power utility supplier to determine electrical availability history and gather other information regarding the likelihood of a loss of power to the important website. This additional information might help the system owner decide whether to invest in a backup generator to ensure sufficient power availability.

Results from previous assessments can be useful for estimating the likelihood of achieving risk goals in the future (this topic is described in Section 2.3.2.1.) The team would then move to the next risk scenario (e.g., perhaps an internet service outage) and review the history and reliability of the organization’s telecommunications provider to ascertain the likelihood and impact of a loss of service. Iterating through each potential risk, as described in Figure 6, practitioners can
develop a risk-based approach to fulfilling CSRM objectives in light of risk appetite and risk tolerance. This, in turn, helps CSRM practitioners demonstrate how their actions directly support mission objectives and enterprise success.

2.1.4 Enterprise Strategy for Cybersecurity Risk Reporting

The enterprise strategy for cybersecurity risk management and monitoring includes common definitions for how and when assessment, response, and monitoring should take place. Notably, ERM monitoring is for communication and coordination regarding overall risk and should not be confused with system level monitoring (or continuous monitoring.)

Direction from senior leaders provides risk guidance – including advice regarding mission priority, risk appetite and tolerance, and capital and operating expenses to manage known risks – to the organizations within their purview. There are some details that need to be defined at the enterprise level so that information can be combined and compared effectively, including the ability to communicate about risks through the various types of risk registers.

While many of these details will be delegated to organization level processes, several key factors should be defined at the enterprise level, including:

- Criteria regarding risk category selection that enables risk register entries from various risk management domains to be consolidated and compared;
- Direction regarding the classification and valuation of enterprise assets, including approved methods for business impact analysis (described in Section 2.2.1.1);
- Assessment methodologies, including direction regarding analysis techniques and the appropriate scales to be applied;
- Frequency of assessment, reporting, and potential escalation;
- Methods for tracking, managing, and reporting risks; and,
- Resources available for risk treatment, including common baselines, common controls, and supply chain considerations.

As cybersecurity risks are recorded, tracked, and reassessed throughout the risk life cycle and aggregated within the enterprise cybersecurity risk register, this guidance ensures that risk will be consistently communicated, managed, and potentially escalated. Strategic guidance from enterprise stakeholders should also include:

- Definition of the organizational boundaries to which CSRM activities will apply;
documentation that the scope for cybersecurity objectives supports alignment among enterprise, business and mission objectives, and operational achievements
- Direction regarding specific roles for managing, communicating, and integrating risks throughout the enterprise; defining the types of stakeholders (by role) will support risk communication and timely decision-making
• Determination of key risk indicators (KRIs) and key performance indicators (KPIs) that will support the management and monitoring of the extent to which risk response remains within acceptable levels.

Through the processes described above, senior leaders express risk limits and expectations as risk appetite statements. That risk appetite is then interpreted through risk tolerance and applied at the system level. The subsections below describe how feedback is provided using the risk register to identify and document risk, analysis, and results.

2.2 Risk Identification

This section describes methods for identifying and documenting sources and their potential consequences (recorded in the Risk Description column of the CSRR, as shown by the red border in Figure 7.)

![Notional Cybersecurity Risk Register](image)

Risk identification represents a critical activity for determining the uncertainty that can impact mission objectives. NISTIR 8286A primarily focuses on negative risks (i.e., threats and vulnerabilities that lead to harmful consequences), but positive risks represent a significant opportunity and should be documented and reviewed as well. Consideration and details regarding positive risks will be addressed in subsequent publications. Through the activities in the following sections, risk practitioners determine and record events that could enhance or impede objectives, including the risk of failing to pursue opportunities.

15 The CSRR template is available in the Open Risk Register Format (ORRF) format, an automated JavaScript Object Notation (JSON) for organizations maintaining automated applications that provide detailed tracking and reporting. The CSRR template is also available in comma-separated value (CSV) format at the same link.
As shown in Figure 8, which is derived from the Generic Risk Model in NIST SP 800-30, Revision 1, Guide for Conducting Risk Assessments, cybersecurity risk identification is composed of four necessary inputs – parts A through D – in the Risk Description cell of the cybersecurity risk register [7]. Combining these elements into a risk scenario helps to provide the full context of a potential loss event. The use of this scenario-based approach helps ensure comprehensive risk identification by considering many types of physical and logical events that might occur. The scope of cybersecurity has expanded from its original boundaries of adversarial digital attacks and encompasses all types of uncertainty that can impact any form of information and technology. Accordingly, the risks to be identified and registered are much broader as well.

The completion of the Risk Description column is composed of four activities that are detailed in Subsections 2.2.1 through 2.2.4. The activities include:

- Part A – Identification of the organization’s relevant assets and their valuation
- Part B – Determination of potential threats that might jeopardize the confidentiality, integrity, and availability of those assets
- Part C – Consideration of vulnerabilities or other predisposing conditions of assets that make a threat event possible
- Part D – High-level evaluation of the potential consequences if the threat source (part B) exploits the weakness (part C) against the organizational asset (part A)

The integration of those elements enables the practitioner to record each scenario in the CSRR as a description of cybersecurity risk. The quantity and level of detail of the risks identified should be in accordance with the risk strategy.

Enterprises that are just beginning to integrate the cybersecurity risk register results into broader ERM activities will benefit from focusing on an initial and limited number of top risks. Those creating a risk management program for the first time should not wait until the risk register is completed before addressing extraordinary issues. However, over time, the risk register should become the ordinary means of communicating risk information.

2.2.1 Inventory and Valuation of Assets

The first prerequisite for risk identification is the determination of enterprise assets that could be affected by risk (part A in Figure 8). Assets are not limited to technology; they include any

16 Positive risks apply a similar process through which an enterprise asset considers an opportunity that takes advantage of a new or preexisting condition that results in a positive impact (benefit) to the enterprise.
resource that helps to achieve mission objectives (e.g., people, facilities, critical data, intellectual property, and services).17

Enterprises may benefit from applying a comprehensive method to inventory and monitor enterprise assets, such as the use of a configuration management database (CMDB) or an information technology asset management (ITAM) system. These management tools help to record and track the extent to which various assets contribute to the enterprise’s mission. They can also help track enterprise resources throughout their own life cycle. For example, as the use of mobile devices (including personal devices) expands, there are commercial products that can help maintain inventory to support ongoing risk identification, analysis, and monitoring.

\subsection{2.2.1.1 Business Impact Analysis}

Risk managers can benefit by using a business impact analysis (BIA) (sometimes called a business impact assessment) process to consistently evaluate, record, and monitor the criticality and sensitivity of enterprise assets. The BIA categorization can, in turn, inform the establishment of risk tolerance levels.

A BIA can help document many aspects of the value of an asset that may extend well beyond replacement costs. For example, while one can calculate the direct cost of research and development underlying a new product offering, the long-term losses of the potential theft of that intellectual property could have more far-reaching impacts, including future revenue, share prices, enterprise reputation, and competitive advantage. That is among the reasons why it is beneficial to gain the guidance of senior leadership regarding the determination of assets that are critical or sensitive. The relative importance of each enterprise asset will be a necessary input for considering the impact portion of the Risk Description (part D) in the cybersecurity risk register. Considerations include:

- Would loss or theft of the resource compromise customer or enterprise private information?
- Would disclosure of an asset’s information trigger legal or regulatory fines or actions?
- Would a lack of availability of the asset interrupt the enterprise’s ability to fulfill its mission or result in costly downtime?
- Would the lack of confidentiality, integrity, or availability of the asset undermine public or consumer confidence or trust in the enterprise?
- Do internal or external critical resources depend on this asset to operate?
- For government systems, would loss or theft of the resource or information cause grave damage to national security?

17 NIST SP 800-37, Revision 2, points out that risk could impact “organizational operations (including mission, functions, image, or reputation), organizational assets, or individuals.”
As the organization reviews the results of previous system level categorization decisions and monitors risk assessment findings, practitioners can use that information to review system prioritization as an input into the BIA.

2.2.1.2 Determination of High-Value Assets

An example of asset valuation is the U.S. Government’s designation of “high-value assets,” or HVAs, described in OMB Memorandum M-19-03 as representing agency resources that have been deemed highly sensitive or critical to achieving the business mission [8]. While not all critical federal assets will be characterized as HVAs, OMB M-19-03 represents an example of an enterprise approach to valuation since the memorandum defines the specific categories for consistent designation (i.e., information value, role in Mission Essential Function support, and role in support for Federal Civilian Essential Functions) yet permits each agency to determine which assets meet those criteria. Other common industry examples include the use of specific classifications to reflect the sensitivity and criticality of technology and information, including “Company Confidential” or “Business Sensitive.”

2.2.1.3 Automation Support for Inventory Accuracy

Accurate and complete asset inventory is an important element of CSRM, and the measurement of that accuracy is often a key performance measurement for CSRM reporting. To illustrate that importance, federal agencies must report how completely their hardware and software asset management inventories reflect what is actually installed on agency networks as part of their annual reporting metrics.

Automated tools can aid in discovering and monitoring various technical components used by the enterprise. For example, a use case described by the NIST Security Content Automation Protocol (SCAP) specification is inventory scanning. Products that have been successfully reviewed as part of the SCAP Validation Program help maintain a comprehensive and accurate inventory of digital assets [9]. Valuation information recorded in that inventory can, in turn, help maintain a comprehensive view of the enterprise assets for which cybersecurity risks should be identified, analyzed, treated, and monitored. The use of automation helps to ensure that enterprise asset inventory is current, accurate, and complete.

The integration of asset inventory management processes throughout the enterprise can help to ensure a complete and accurate repository. For example, harmonizing acquisition, project management, business operations, IT operations, and security as part of an overarching ITAM process will support transparency and real-time data to effectively track and monitor assets.

2.2.2 Determination of Potential Threats

The enumeration of potential threat sources and the threat events that those sources could initiate is the second prerequisite for the identification of potential risk scenarios. Figure 9

18 Federal Binding Operational Directive (BOD) 18-02 describes specific actions that federal agencies must complete to ensure effective identification and timely remediation of major and critical weaknesses to HVA systems [8].
represents part B of the Risk Description cell of the CSRR. Because information and
technology exist in many forms, this threat-informed risk management approach combines
data-driven processes (awareness of threats) and sound business judgment (consideration of
mission impact) to support comprehensive risk identification.

2.2.2.1 Threat Enumeration

Many public- and private-sector processes are available to help enumerate threats. One example
is the OCTAVE Allegro method from Carnegie Mellon University’s Software Engineering
Institute [10]. That model includes identification of areas of concern – a process for determining
the “possible conditions or situations that can threaten an organization’s information asset.” The
OCTAVE Allegro approach describes a process where risk managers create a tree diagram of
various threats based on:

- Human actors using technical means;
- Human actors using physical methods;
- Technical problems, such as hardware and software defects, malicious code (e.g.,
viruses), and other system-related problems; and
- Other problems that are outside of the control of an organization (e.g., natural disasters,
unavailability of critical infrastructures).

Enumeration of threats can be performed as a “top-down” analysis that considers important
assets that might be threatened or as a “bottom-up” analysis that considers what an unknown
threat might attempt to accomplish. Table 3 provides an example excerpt of a threat analysis.

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Motivation</th>
<th>Threat Action</th>
<th>Assets Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insider</td>
<td>Accidental,</td>
<td>Disclosure</td>
<td>Legal documents related to an upcoming merger, sales records, designs from the</td>
</tr>
<tr>
<td></td>
<td>Intentional</td>
<td></td>
<td>research and development division</td>
</tr>
<tr>
<td>Insider</td>
<td>Intentional</td>
<td>Disclosure</td>
<td>Physical files from the personnel department, physical design drawings from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>manufacturing</td>
</tr>
<tr>
<td>Insider</td>
<td>Intentional</td>
<td>Modification</td>
<td>Financial transactions diverted for personal gain through a privilege escalation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>attack</td>
</tr>
<tr>
<td>External</td>
<td>Accidental</td>
<td>Disclosure</td>
<td>Remote access account information for maintenance service staff</td>
</tr>
<tr>
<td>External</td>
<td>Intentional</td>
<td>Destruction</td>
<td>Student record database</td>
</tr>
<tr>
<td>External</td>
<td>Intentional</td>
<td>Disclosure</td>
<td>Patient medical records database (e.g., ransomware)</td>
</tr>
<tr>
<td>Threat Type</td>
<td>Mechanism</td>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Software Defects</td>
<td>n/a</td>
<td>Modification</td>
<td>Financial transaction database (corruption)</td>
</tr>
<tr>
<td>Software Defects</td>
<td>n/a</td>
<td>Interruption</td>
<td>Financial transaction database (outage)</td>
</tr>
<tr>
<td>System Crashes</td>
<td>n/a</td>
<td>Interruption</td>
<td>Retail e-commerce site, payroll processing system, manufacturing automation</td>
</tr>
<tr>
<td>Utility Outage</td>
<td>n/a</td>
<td>Disclosure</td>
<td>Enterprise network connections, e-commerce data center</td>
</tr>
<tr>
<td>Natural Disaster</td>
<td>n/a</td>
<td>Interruption</td>
<td>Enterprise network connections, e-commerce data center</td>
</tr>
</tbody>
</table>

The list above includes physical security considerations. Numerous physical issues (e.g., theft, mechanical failures) can affect digital and logical devices, so both logical and physical threat sources should be considered. Threat enumeration should also consider potential motivations or intents. Accidental and intentional threat activity can each have significant impacts, but the evaluation, treatment, and monitoring of each type of activity will vary based on the motivation. Motivation will also have some bearing on the likelihood calculation (as described in subsequent sections).

Practitioners consider various factors for each threat source based on an understanding of valuable enterprise assets, as determined in Section 2.2.1. Example considerations include:

- What might a human actor accidentally disclose, modify, or destroy?
- What information or technology might a person (e.g., a disgruntled employee) *intentionally* disclose, interrupt, or delete?
- Are there threat conditions that might be introduced by supply chain partners, such as external service providers?
- Are any cyber-physical systems or other operational technology (OT) subject to an attack that might impact safety or otherwise affect enterprise operations?
- What similar considerations might apply to accidents or intentional actions from an external source using technical means?
- What technical flaws or malicious code might affect valuable systems and lead to adverse impacts on enterprise objectives?
- What natural disasters or utility outages might have harmful effects?

Risk managers should develop a reasonable list of potential threats based on practical and imaginative scenarios, particularly in light of the assets identified in earlier processes. The extent of this list depends on the direction of senior leaders. While some stakeholders may prefer fewer risks in the register, it is important to remember that any risks that are not identified at this stage will not be part of the subsequent risk analysis and may introduce an unforeseen vulnerability.

2.2.2.2 Reducing Unwanted Bias in Threat Considerations

While cybersecurity threat discussions often focus on the intentional and adversarial digital attack, it is important that all risk practitioners consider a broad array of threat sources and events. In addition, while highly unlikely scenarios might not need to be listed (e.g., a meteorite crashing into the data center), risk managers should avoid dismissing threats prematurely. For
these reasons, practitioners will benefit from identifying and overcoming bias factors in enumerating potential threat sources and the events they might cause. Consideration of these factors will also help reconcile reactionary thinking with analytical reasoning. An intentional approach to enumerate threats without bias helps to avoid complacency before an incident and supports a proactive evaluation based on relevant data, trends, and current events.

Table 4 describes some of these bias issues as well as methods for addressing them.

<table>
<thead>
<tr>
<th>Bias Type</th>
<th>Description</th>
<th>Example</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overconfidence</td>
<td>The tendency to be overly optimistic about either the potential benefits of an opportunity or the ability to handle a threat</td>
<td>Notion that “our users are too smart to fall for a phishing attack”</td>
<td>Detailed and realistic risk analysis (see Section 2.4) helps to evaluate the true probability of threats</td>
</tr>
<tr>
<td>Group Think</td>
<td>A rationalized desire to miscalculate risk factors based on a desire for conformity with other members of a group or team</td>
<td>A group member may not want to be the only one to express concern about a given threat or opportunity</td>
<td>Use of individual input and subject matter expert judgement (e.g., Delphi Technique) helps avoid the risk that group-based threat discussions might discourage brainstorming</td>
</tr>
<tr>
<td>Following Trends</td>
<td>Over- or under-valuation of threats due to an irrational consideration of recent hype that can result in inappropriate risk response</td>
<td>Assuming that any digital challenge can be addressed and solved through the application of “machine learning” and “artificial intelligence”</td>
<td>Staying informed about the details of current threat patterns and considering input from subject matter experts helps avoid “following the herd” to unreasonable conclusions</td>
</tr>
<tr>
<td>Availability</td>
<td>Tendency to over-focus on opportunities or issues that come readily to mind because one has recently heard or read about them</td>
<td>Concern that VPN confidentiality is insecure because quantum computing will make modern encryption obsolete and unreliable</td>
<td>Detailed and realistic risk analysis (Section 2.3) helps to evaluate the true probability of threats</td>
</tr>
</tbody>
</table>

2.2.2.3 Threat Enumeration Through SWOT Analysis

While it is critical that enterprises address potential negative impacts on mission and business objectives, it is equally important (and required for federal agencies) that enterprises also plan for success. OMB states in Circular A-123 that “the profile must identify sources of uncertainty, both positive (opportunities) and negative (threats)” [2].

One method for identifying potential positive and negative risks is through the use of a SWOT (strength, weakness, opportunity, threat) analysis. Because effective risk management is achieved by balancing potential benefits against negative consequences, a SWOT analysis provides a visual method for considering these factors. Table 5 provides an example of an overarching SWOT analysis. A similar exercise could be performed at any level of the enterprise, including for an information system or cyber-physical system.
Table 5: Example SWOT Analysis

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective communication among a small office with co-located staff</td>
<td>Few dedicated IT and information security employees</td>
</tr>
<tr>
<td>Online email and financial applications mean no local servers to support and protect</td>
<td>Many endpoints are laptops that could be lost or stolen</td>
</tr>
<tr>
<td>Modernized office desktop equipment with current operating systems and connectivity</td>
<td>Office laptops do not employ full-disk encryption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>A newly awarded contract will significantly increase revenue and reputation</td>
<td>Visibility from contract announcement may cause adversaries to target the enterprise</td>
</tr>
<tr>
<td>Expansion of services into software development and remote administration services will enable company growth</td>
<td>Information security requirements included in the terms and conditions of the new contract increase the criticality of cybersecurity improvement</td>
</tr>
<tr>
<td>Funds have been allocated for cybersecurity improvement</td>
<td>Additional service offerings (e.g., development and remote administration) increase cybersecurity risks</td>
</tr>
<tr>
<td>Third-party partners may help quickly ramp up new service offerings</td>
<td>Supply chain partners may bring additional security risks to be considered and managed</td>
</tr>
</tbody>
</table>

2.2.2.4 Use of Gap Analysis to Identify Threats

As part of the threat modeling exercise, practitioners can benefit from evaluating a comparison of current conditions to more desirable conditions and then analyzing any gaps between those to identify potential improvements. This process can be iterative in that the organization may not know the current state until after several rounds of risk management activities. Similarly, practitioners may not fully know the desired state until after several iterations of identifying, assessing, analyzing, and responding to risks. Despite this challenge, gap analysis can be a useful tool to include as part of a broad methodology.

NISTIR 8286 provides an example of the process described by the NIST Cybersecurity Framework [6], which includes a set of activities that consider the five functions:

1. **Identify** what assets are important for achieving enterprise objectives.
2. **Protect** those assets from known threats and vulnerabilities.
3. **Detect** risk events on those assets in an efficient and effective manner.
4. **Respond** to such risk events rapidly and effectively.
5. **Recover** from any disruptions in accordance with enterprise strategy.

The framework decomposes the functions into categories, each of which is further described in terms of strategic and tactical outcomes (subcategories). For each subcategory, the framework recommends the creation of profile artifacts that document the *current* and *desired* (or target) policies, processes, and practices. By documenting the “as-is” outcomes, organizations can consider potential risk implications, including potential threat events. That information will later help develop target state profiles. Table 6 provides an example excerpt from a current profile with example threat considerations.
Table 6: Cybersecurity Framework Current State Profiles Help Consider Threats

<table>
<thead>
<tr>
<th>ID</th>
<th>Category</th>
<th>Current State</th>
<th>Threat Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID.AM</td>
<td>Asset Management</td>
<td>• Hardware and software are tracked, but inventory is not always accurate.</td>
<td>• Internal user (adds a non-compliant device; because a device is not in inventory, scans may miss it as a host so vulnerabilities may go undetected)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Network flows are not mapped.</td>
<td>• External adversary (could gain network access, and activities might not be distinguished from unmapped, typical traffic patterns)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Asset classification is performed and effective.</td>
<td>• External partner (may not fulfill responsibilities for protecting, detecting, or responding to incidents)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internal security roles are defined but not those of supply chain partners.</td>
<td></td>
</tr>
<tr>
<td>ID.BE</td>
<td>Business Environment</td>
<td>• Priorities and responsibilities based on the Commercial Facilities Sector.</td>
<td>• Power failure (causes customers [e.g., emergency services, hospitals] with critical dependencies to experience an extended loss of internet service due to a lack of service level agreements and documented resilience requirements)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dependencies and resilience requirements are anecdotally understood but not more formally recorded.</td>
<td></td>
</tr>
<tr>
<td>PR.AT</td>
<td>Awareness and Training</td>
<td>• All staff have been trained in physical and information security practices during onboarding.</td>
<td>• Internal user (may fall victim to an email phishing attack due to a lack of sufficient training)</td>
</tr>
<tr>
<td>PR.DS</td>
<td>Data Security</td>
<td>• Inbound and outbound remote connections are encrypted.</td>
<td>• External adversary (who has gained network access may quickly recognize and exfiltrate unencrypted, sensitive information in databases or within cleartext network traffic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Laptops with proprietary facility information do not have full-disk encryption.</td>
<td>• Internal user (may unintentionally send sensitive records without encryption, while data loss prevention tools might impede that error)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Email systems are configured to provide limited data loss prevention.</td>
<td></td>
</tr>
<tr>
<td>DE.CM</td>
<td>Security Continuous Monitoring</td>
<td>• Physical security is monitored through cameras and access log reviews.</td>
<td>• Internal User (steals valuable equipment due to a lack of diligent video and log monitoring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information security logs are aggregated and stored securely. Intrusion Detection products monitor for risks.</td>
<td>• External User (is not quickly detected and thwarted due to ineffective monitoring)</td>
</tr>
<tr>
<td>RS.RP</td>
<td>Response Planning</td>
<td>• Response processes and procedures are executed and maintained.</td>
<td>• Supply Chain Partner (is not able to provide the Security Operations Center with system log information and is unable to restore data to a known-good recovery point)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supply chain partners have not been included in planning or exercises.</td>
<td></td>
</tr>
<tr>
<td>RC.RP</td>
<td>Recovery Planning</td>
<td>• Incident recovery processes are included in response plans.</td>
<td>• Software failure (could cause an outage in an essential business application that exceeds organizational directives regarding maximum tolerable downtime)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of recovery objectives and metrics impedes the ability to confirm that risks are treated in accordance with risk appetite and risk tolerance.</td>
<td></td>
</tr>
</tbody>
</table>
controls19 [11]. A companion document, SP 800-53A, *Assessing Security and Privacy Controls in Federal Information Systems and Organizations: Building Effective Assessment Plans*, documents methods for assessing the effectiveness and suitability of those controls for various purposes [12]. Through the examination of controls and assessment methods, practitioners can observe conditions that align with enterprise situations, sparking discussions about potential threats. For example:

A practitioner can consider control AC-17, Remote Access, which states, “The use of encrypted VPNs provides sufficient assurance to the organization that it can effectively treat such connections as internal networks if the cryptographic mechanisms used are implemented in accordance with applicable laws, executive orders, directives, regulations, policies, standards, and guidelines.” The practitioner should then consider the threat conditions that would make encryption necessary (e.g., preventing eavesdropping, ensuring authorization) and perhaps identify regulatory compliance requirements.

Considering controls and their assessments can inspire the imagination and support effective threat modeling.

As noted in NISTIR 8286, “organizations should not wait until the risk register is completed before addressing obvious issues,” such as those issues that arise from the threat modeling exercises. CSRM practitioners, in collaboration with ERM stakeholders, will need to continually define and refine the timing of various risk identification processes. An organization that delays risk management until the end of a detailed and exhaustive risk identification activity may find that many risks become realized while the practitioners are still working. At the other extreme, immediately beginning risk management when only a few risks have been catalogued can hamper prioritization or cause a continual recalculation of risk importance as new loss event types are identified and added. Threat identification methods may also discover quick wins (e.g., changing default passwords for devices and applications, enabling cryptography settings, locking file cabinets) that can be efficiently resolved, immediately addressed, and documented in the risk register while other risk identification activities continue.

2.2.2.5 Technical Threat Enumeration

While threat sources include many factors because cybersecurity risks are so closely associated with information and technology, technical threats are likely to comprise the majority of those enumerated. The complexity and rapid evolution of technical threats make it particularly worthwhile to gain insights from reputable partners regarding how to prepare for, recognize, and respond to these threat sources. These insights also help achieve a proactive threat management stance rather than a reactive approach.

To be successful in protecting information and technology and to rapidly detect, respond, and recover from threat events, the organization may choose to apply an intelligence-driven approach, commonly referenced as Cyber Threat Intelligence (CTI). Using sources of

19 NIST provides a set of Online Informative References Validation Tool and Focal Document Templates, including those for SP 800-53, that assist with aligning and comparing various information security models. The templates are available at https://www.nist.gov/cyberframework/informative-references/validation-tool-templates.
information and data, such as those described in Table 7, practitioners will gain insight into adversaries’ tactics, techniques, and procedures (TTPs) as well as other information about how to prepare and what conditions to monitor.

Industry-based threat intelligence-sharing organizations are available for the exchange of CTI among members or subscribers. For example, DoD’s Information Sharing Environment (DISCE) is a government program that facilitates CTI sharing between its Defense Industrial Base (DIB) members and participants. Another example is that of information sharing analysis centers (ISACs) and organizations (ISAOs). Using intelligence provided by such sources, risk practitioners can make threat-informed decisions regarding defensive capabilities, threat detection techniques, and mitigation strategies. By correlating and analyzing cyber threat information from multiple sources, an organization can also enrich existing information and make it more actionable.\(^{20}\)

<table>
<thead>
<tr>
<th>Table 7: Example Sources of Threat Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Threat Intelligence sources</td>
</tr>
<tr>
<td>Automated Indicator Sharing (AIS) feeds</td>
</tr>
<tr>
<td>Information Sharing and Analysis Centers and Organizations (ISACs and ISAOs)</td>
</tr>
<tr>
<td>Technical Threat Category Models</td>
</tr>
<tr>
<td>MITRE ATT&CK®</td>
</tr>
</tbody>
</table>

\(^{20}\) Cybersecurity information sharing is discussed in detail in NIST SP 800-150, *Guide to Cyber Threat Information Sharing*, which is available at https://doi.org/10.6028/NIST.SP.800-150
While this model does not help identify sources, it provides a broad list of the types of events that a threat source might attempt to initiate, particularly a motivated human adversary. By defining the actions such an adversary might desire to perform, the NTCTF supports an imaginative approach to enterprise threat modeling. https://www.nsa.gov/Portals/70/documents/what-we-do/cybersecurity/professional-resources/ctr-nsa-css-technical-cyber-threat-framework.pdf

By understanding typical attack patterns, enterprises can mount defenses to improve resilience. For example, understanding the methods of various attackers in privilege escalation or lateral movement will help risk managers plan effective preventive and detective controls. Because technical attacks can move rapidly, preparation is paramount. Updated, rapid sharing of indicators of compromise (such as those provided through Structured Threat Information Expression [STIX]) helps enterprise practitioners better detect and respond to emerging threats.\(^{21}\)

Because of the time-critical nature of cybersecurity risks, the use of automation in threat intelligence analysis enables an enterprise to reduce the potential delays and errors that a human-only approach can introduce. While automated information sharing will not entirely eliminate threats, it can help an organization stay aware of and prepared for new and evolving types of attacks. One example of an AIS is that offered by the U.S. Department of Homeland Security (DHS) in accordance with the U.S. Cybersecurity Information Sharing Act of 2015. The DHS AIS site includes the following information:

- The free (DHS) AIS capability enables the exchange of cyber threat indicators between the Federal Government and the private sector at machine speed. Threat indicators are pieces of information like malicious IP addresses or the sender address of a phishing email (although they can also be much more complicated).

- AIS participants connect to a DHS-managed system in the Department’s National Cybersecurity and Communications Integration Center (NCCIC) that allows bidirectional sharing of cyber threat indicators. A server housed at each participant’s location allows them to exchange indicators with the NCCIC. Participants will not only receive DHS-developed indicators but can share indicators they have observed in their own network defense efforts, which DHS will then share back out to all AIS participants.\(^{22}\)

An analysis of network packet capture data can help identify potential threats based on observed traffic. Armed with understanding from CTI sources regarding TTPs and IoCs, practitioners will be able to observe potential indicators and likely attack paths. In conjunction with past and existing cyber incident information, organizations can use CTI to support internal risk communication and risk analysis and to improve risk scenario development. In addition to the

\(^{21}\) STIX is one of several data exchange specifications for cybersecurity information sharing. More information is available at https://oasis-open.github.io/cti-documentation.

\(^{22}\) The NCCIC is part of the Cyber Information Sharing and Collaboration Program (CISCP) and is available at https://www.cisa.gov/ciscp.
technical advisories, the alerts and analysis reports at the DHS National Cyber Alert System provide information about recent TTPs and how they have affected various enterprises.

2.2.3 Vulnerability Identification

For any of the various threat conditions described above to result in an impactful risk, each needs a vulnerable or predisposing condition that can be exploited. The identification of vulnerabilities or conditions that a threat source would use to cause impact is an important component of risk identification and represents part C (Figure 10) of the CSRM risk scenario.

2.2.3.1 Determination of Vulnerabilities and Predisposing Conditions

While it is necessary to review threats and vulnerabilities as unique elements, they are often considered at the same time. Many organizations will consider a given loss scenario and evaluate both. What threat sources might initiate which threat events? What vulnerabilities or predisposing conditions might those threat sources exploit to cause a loss event?23 Much of the information provided through CTI will also inform an understanding of vulnerability. For example, analysis of the infamous 2017 WannaCry ransomware attack includes understanding the threat source and motive (a known and capable cybercrime group seeking financial gain), the intended threat event (deliberate modification, interruption, and potential destruction of key enterprise information assets), and the vulnerability to be exploited by the adversary (CVE-2017-0144).

Practitioners should (within the scope agreed upon in activities described in Section 2.1) systematically consider the potential physical and logical vulnerabilities and predisposing conditions that can be exploited by a threat source. This consideration can be facilitated by many of the methods described in Table 7, including:

- The use of commercial intelligence sources can provide threat and vulnerability information. Many providers will take note of a customer’s enterprise information and technology (e.g., hardware, software, and operating systems in use) to alert the organization to any vulnerabilities in those platforms that are known to be targeted by existing threat sources.

- The integration of AIS feeds may include automated alerts regarding known vulnerabilities. Many security incident event monitoring (SIEM) products and intrusion

23 There are many similarities among threat identification and vulnerability identification activities. These may seem redundant, but it is important to understand both the sources of potential harm (threats) and the conditions that those threat sources might exploit (vulnerabilities).
detection systems (IDS) can help enterprises associate asset inventory information with AIS alerts to support incident reporting and monitoring.

- A threat tree model (e.g., the diagram in the OCTAVE ALLEGRO guidance) can consider various human factors, technical defects, software flaws, physical entry points, utility dependencies, and supply chain vulnerabilities that present vulnerabilities.

- A review of the various threat categorization models (e.g., MITRE ATT&CK®) can inspire internal discussions, such as “What vulnerabilities might enable execution of malicious code?” or “What predisposing conditions foster lateral movement within the enterprise?”

As with threat modeling, practitioners will also benefit from applying known risk management frameworks as a tool for vulnerability discovery. For example, a review of the controls catalog in SP 800-53 may lead to consideration of control MP-3, Media Marking, which can then inspire discussion regarding potential vulnerabilities that might result from unmarked (or improperly marked) system media.

Notably, the enterprise will benefit from the advice of external specialists with expertise in identifying and categorizing various types of vulnerabilities. Some entities, such as those operating moderate- and high-impact federal information systems, require formal penetration testing to identify potential vulnerabilities and the exploitability of those conditions. In addition to some government and law enforcement agencies that are able to assist enterprises with evaluating physical and technical vulnerabilities, many commercial organizations offer these services.

2.2.3.2 System Complexity as a Vulnerability

NISTIR 8286 states that additional risks can result from the dynamic complexity of enterprise information and technology. In fact, that complexity is itself a vulnerability to be considered and documented. Evaluation of “what-if” scenarios regarding potential vulnerabilities, especially those affecting critical assets, should include the determination of critical dependencies on other resources. Because risk identification and risk analysis are iterative, risk analysis methods (such as the Event Tree Analysis described in Section 2.3.2.2) will help determine those dependencies.

Having made that determination, those critical dependencies can be recorded in the BIA (described in Section 2.2.1.1). Risk identification then includes scenario discussions that evaluate complex or cascading events as vulnerabilities to be identified.

For example, the 2003 Northeast Power Grid interruption demonstrated how several moderate risk events cascaded into a national emergency. Another example of systemic risk are the financial institutions that were impacted by cascading risk in 2008. In that case, large enterprises experienced catastrophic events because they had interdependencies with other banks, insurance companies, and customers. When identifying and recording risks in the register, such emerging risk conditions created by the interdependence of systems and counterparty risk must also be identified, tracked, and managed using the same methods described for more straightforward scenarios.
As with other CSRM components, vulnerability identification can be considered through either qualitative or quantitative means. An organization might determine that it has a large number of high severity vulnerabilities based on an internal review. A qualitative review might result from a gap analysis between NIST Cybersecurity Framework Current State and Target State profiles since such an analysis is intended to foster discussion and communication regarding risks but will not likely produce a highly specific quantitative result.

More quantitative vulnerability identification results from a formal testing approach that examines a discrete set of enterprise resources for a specified set of known vulnerabilities. Particular vulnerability assessments (e.g., software code review or simulated phishing attack) can provide quantitative results. Results of a formal assessment might include a specific number of identified issues, which can be used to help complete the likelihood column of the risk register.

2.2.3.3 Vulnerability Identification Automation

The complexity and interconnection of technology results in many thousands of potential vulnerabilities. Because of this broad scale combined with a rapidly evolving technical landscape, automation can improve the enterprise’s ability to manage relevant vulnerabilities. Automation also enables a timelier monitoring of risk as well as adaptation to changing risk scenarios.

Hardware and software products are significant sources of vulnerabilities for any enterprise, whether through inherent flaws in those products or through errors in product implementation or application. To help support the consistent identification and monitoring of these vulnerabilities, security organizations have developed broad clearinghouses of vulnerability information. For example, NIST operates the National Vulnerability Database (NVD) and the National Checklist Program (NCP) to support vulnerability and security configuration management via catalogs of:

- Configuration checklists for securing key information technologies,
- Information about secure configuration settings (with associated SP 800-53 security controls),
- Vulnerabilities (with associated severity scores),
- Standardized security checklists for automated security configuration scanning (e.g., security checklists in Security Content Automation Protocol format\(^{24}\)), and
- Products that use standards to identify and report vulnerabilities.

Automated data feeds, such as those described above, enable enterprise monitoring tools to ingest information about known vulnerabilities in near-real time and compare them with the asset inventory. A key factor in that data feed is information regarding the date that a vulnerability was publicly disclosed. The severity of a given vulnerability increases exponentially after it becomes publicly known, so it is important that practitioners prioritize remediation of flaws. The risk of the vulnerability must be balanced with the risk of implementing a fix for that issue too quickly.

Automated tools can help monitor and maintain that balance through specific reports regarding severe vulnerabilities that have not been patched within a reasonable time. An example of this is the DHS AWARE (Agency-Wide Adaptive Risk Enumeration) scoring methodology used by the DHS Continuous Diagnostics and Mitigation (CDM) risk management dashboard. AWARE is not intended to identify all issues, but the scoring methodology helps to highlight and prioritize cybersecurity risks that are likely to exceed allowable risk tolerance (e.g., known software vulnerabilities on critical assets that are not mitigated within a designated grace period).

2.2.4 Determining Potential Impact

The final prerequisite for creating a practical list of risk scenarios for the risk register is the determination of the potential impact of the threats and vulnerabilities described above. The section below describes the completion of part D of the CSRM Risk Description column (Figure 11).

![Figure 11: Adverse Impact Inclusion in Risk Scenario Identification (Part D)](image)

Discovery activities throughout Section 2.2 may have already highlighted potential adverse impacts to explore. Description of the impact is a key element for enterprise stakeholders and represents the connection between cybersecurity risks and the enterprise objectives that would be affected by those risks. Reviewing the key enterprise objectives, as identified in scoping, and armed with a broad list of potential threats and vulnerabilities, personnel can develop a list of realistic scenarios.

While some types of impact may not be immediately apparent, the long-term effects can be significant. For example, consider a situation where a criminal has gained unauthorized access to an enterprise system and has exfiltrated a large amount of confidential data. If that criminal is cautious, there may not be any disruption of operations. In fact, sometimes cyber criminals actually try to improve the health of a victim’s technology to ensure that it will be available for their malicious activity. In this case, the system may seem to be working fine – even better than ever – and then later, the enterprise realizes that a catastrophic loss has occurred.

Notably, impact scenarios can be considered as a continuum rather than as a binary state. Many impacts will cause mission degradation or reduced performance and may not exhibit themselves as a full interruption of service or capability. This consideration should be factored into risk prioritization and analysis.

Risk scenarios should be assessed in terms of both initial impact and downstream consequences. Factors to consider include:

- **Primary impact** – The initial impact following a negative cybersecurity event, such as the downtime when a website is unavailable to customers
- **Secondary impact** – A loss event that occurs subsequent to the primary impact as a downstream or cascading impact to the enterprise

For example, consider a large enterprise that experiences a breach of confidential customer data. In this example, an external attacker with criminal intent might attack a highly critical and sensitive customer database through a software vulnerability in the internet-facing website. The initial impact may be minimal since exfiltration is not disruptive, and the company may not even detect an issue. Once the problem has been discovered, there may be primary impacts, such as:

- Cost of a focused investigation into the breach
- Price of restitution for customer losses (e.g., credit monitoring services)
- The expense of third-party specialists to provide forensic expertise and to ensure adequate mitigation of the cybersecurity incident
- Cost of immediate capital investment to address cybersecurity issues that contributed to the breach

Long-term or secondary effects may be more impactful. They can include:

- Loss of market share due to eroded trust in the company’s reputation
- Revenue losses from organizations that choose not to renew contracts
- Fines and penalties from regulators

When considering the impact component of risk scenarios, it is important to consider the frequency of potential consequences. A risk event of moderate impact that occurs weekly may, over time, represent a higher risk than that of a major event that occurs infrequently. Such temporal factors may be valuable for stakeholders’ understanding and reporting of risks. For example, senior leaders may wish to see the impact of a risk expressed as the loss for each occurrence (the *single loss expectancy*, or SLE), or they might prefer to see the total loss for that risk over an annual period (the *annualized loss expectancy*, or ALE). Consistent documentation of impact frequency is also important for supporting the integration and aggregation of risk registers.

As with other risk components, impact considerations may be either qualitative or quantitative, as illustrated by the examples in Table 8.

<table>
<thead>
<tr>
<th>Description of negative consequences (qualitative)</th>
<th>A software flaw results in a significant issue with the integrity of enterprise financial systems, necessitating a major outage and extended rework to validate existing records and verify proper operation.</th>
</tr>
</thead>
</table>

Table 8: Example Negative and Positive Impact Scenarios
Description of negative consequences (quantitative)	A ransomware attack has performed unauthorized encryption of 112,000 patient records. Remediation and repair of the affected health information system are likely to disrupt operations for 48 hours, resulting in a $1.14 million primary loss.
Description of positive impact (qualitative)	New machine learning technology would significantly increase the throughput of the enterprise research team and could lead to expansion into new marketing areas.
Description of positive impact (quantitative)	The addition of high-availability services for the enterprise web server will improve availability from 93.4 % to 99.1 % over the next year and will also improve market share by 3 % due to improved customer satisfaction and resulting reviews.

2.2.5 Recording Identified Risks

Using the four elements described in earlier subsections (i.e., key assets, threats, vulnerabilities, and impacts), practitioners can record relevant cybersecurity risks in the risk register.

![Figure 12: Example Risk Register with Sample Risk Descriptions](image)

The use of detailed risk scenarios helps ensure that all understand the risks being considered and the impacts on organizational objectives. The risk description need not be exhaustive but should include sufficient information to support subsequent analysis, evaluation, treatment, and monitoring. Use of a cause-and-effect format clarifies the event or scenario under consideration and its specific impacts. An example risk description based on the data breach illustration above might say:

External criminal attacker exploits a software vulnerability in the internet-facing customer data site, resulting in “significant” customer confidential data exfiltration with revenue, reputation, and regulatory implications.

In support of ERM, practitioners need to continually balance an understanding of what mission objectives can be affected by various threats (a top-down consideration) and how various threats can impact enterprise objectives (a bottom-up consideration). Both sets of conditions are
continually changing, so CSRM is an iterative activity of ongoing discovery, communication, response, and monitoring. In addition to the known risks that are already being monitored, there may also be developing or emergent risks that are yet to be fully defined but might disrupt enterprise objectives in the future.

Each of the activities in Section 2.2 is iterative and supports the top-down/bottom-up approach described above. An if/then scenario analysis can be developed and used to consider threats and vulnerabilities, which may lead to the discovery of additional risk scenarios to be considered. This iterative process can be adjusted and tailored to develop and maintain a practical and manageable set of risks.

As an example, consider some high-value assets that are important to a local hospital and issues that could jeopardize those assets. Some top-down considerations may include:

- Patient record database – A ransomware attack could encrypt critical records; a network outage could disrupt availability; an authentication issue could hamper the ability to log in; a software upgrade could inadvertently corrupt the data.
- Pharmaceutical system provided by a third party – A malicious (or tricked) insider could alter pharmacy records, resulting in incorrect medication being given to a patient; the malicious external party could break in and disclose or destroy pharmacy records; a construction incident could sever network communications to the service.
- Point of care (PoC) terminals – Authentication system failure could disrupt the ability to provide patient care; user data error could result in inaccurate and potentially unsafe patient conditions; an improperly tested software patch could render terminals unusable.

Bottom-up considerations start with threats and vulnerabilities and consider where those can lead:

- Ransomware attack through a social engineering attack (e.g., web-based malware drive-by attack, email phishing attack) – An attack could render many systems unreadable, including patient care databases, pharmacy records, billing systems, and payroll.
- Network outage due to a firewall malfunction – An internal failure of a major switch or router could result in localized failures of PoC terminals, patient in-processing, and medical care services (e.g., review of radiology reports). External connectivity failure would disrupt electronic mail, clinical professional services, pharmaceutical processing, some laboratory results.
- Physical hardware malfunction through a failed component – Technical equipment (e.g., televisions) could be rendered unavailable with few consequences, and technology (e.g., patient scanners) malfunctions could fail to provide timely and accurate patient results. Awaiting replacement systems could lead to potential injuries (e.g., through fire or electrical shock) or delays in patient care.

Thorough risk identification in realistic and mission-oriented scenarios help to communicate the connection between various uncertainties and the mission objectives that might be affected.
2.2.6 Risk Categorization

Each risk in the CSRR should also indicate the relevant risk category (indicated by the yellow dashed box in Figure 13) based on the risk strategy guidance described in Section 2.1. Categories could be any taxonomy that helps aggregate risk information and supports the integration of cybersecurity risk registers for ERM decision support. Example risk categories include:

- Risk framework groupings, such as NIST RMF families (e.g., Access Control, Supply Chain Risk Management)
- Threat types, such as intentional disclosures, unintended modifications, system failures, or natural disasters
- Impact considerations based on business units affected or information systems impacted

Consistent risk categorization supports the effective integration of cybersecurity risks throughout the enterprise and aggregation into an enterprise cybersecurity risk register. That information ultimately becomes part of the overall Enterprise Risk Register and the Enterprise Risk Profile.

2.3 Detailed Risk Analysis

Risk analysis enables the determination of the likelihood of impact and priority of treatment. This section helps to complete the likelihood and impact columns of the cybersecurity risk register and the exposure column that represents the product of those two values. These columns are illustrated by the solid red box in Figure 13.

Because cybersecurity risk reflects the effect of uncertainty on or within a digital component that supports enterprise objectives, risk analysis helps to measure both the level of uncertainty entailed by the risk scenario and the extent of the uncertain effect upon enterprise objectives. Deterministic models can provide a detailed analysis of likelihood and impact where sufficient information is available for such a determination. In other cases, the randomness of uncertainty and the many factors involved in complex information and technology better support a probabilistic (or stochastic) methodology.
2.3.1 Selecting Risk Analysis Methodologies

> In deciding whether a qualitative or quantitative technique is more appropriate, the main criteria to consider are the form of output of most use to stakeholders and the availability and reliability of data. Quantitative techniques generally require high quality data if they are to provide meaningful results. However, in some cases where data is not sufficient, the rigor needed to apply a quantitative technique can provide an improved understanding of the risk, even though the result of the calculation might be uncertain [13].

The Open Group Standard for Risk Taxonomy (O-RT), part of the OpenFAIR series of documents, supports the assertion that quantitative risk analysis can provide an improved understanding of risk [14]. It points out, while there’s nothing inherently wrong with a qualitative approach in many circumstances, a quantitative approach provides better clarity and is more useful to most decision-makers – even if it’s imprecise. For example, one may not have years of empirical data documenting how frequently cleaning crew employees abuse usernames and passwords on sticky-notes, but we can make a reasonable estimate using ranges, particularly if we have been trained in how to make estimates effectively.

Analysis considerations are often provided in a qualitative way, such as, “The patient database is at high risk of unauthorized disclosure because we have learned that hackers are targeting health information systems with ransomware, and we have determined that there are numerous vulnerabilities in our health information system.”

In other cases, the analysis can be quantitative, such as in the example below:

The health information system contains about 12,000 records. A successful ransomware breach could cost approximately $1.3 million if the data is destroyed or $2.5 million dollars if the breach results in a disclosure. We know that the Arctic Zebra APT team has been targeting similar databases; through our understanding of their techniques and those of others, we believe that there is a 70 % chance they will target us and a 30 % chance (based on internal testing and network scans) that it would be successful. Based on that data, we believe that there is a 21 % chance of single loss exposure, or between $273,000 and $525,000. This exposure calculation does not consider additional secondary losses, such as lost revenue due to customer erosion from loss of trust or personal lawsuits against the firm.

As shown by the referenced standards and examples in this section, there are benefits to both qualitative and quantitative risk analysis methodologies and even the use of multiple
methodologies, based on enterprise strategy, organization preference, and data availability.

Regardless of the methodologies being applied, it is important to consider as many data points as
needed to render a judgement regarding likelihood and impact values. Unfortunately, without
supporting data, well-intentioned but misguided methods of risk analysis amount to little more
than a guess. In many cases, the application of even a moderate amount of deductive reasoning,
combined with various analysis techniques, can render a more accurate and reliable risk analysis.
Quantitatively informed qualitative decision-making should be the objective in the absence of
purely quantitative-driven decisions.

Because CSRM is intended to inform ERM activities, the selection and application of risk
analysis methods must be aligned. The enterprise CSRM strategy should inform risk analysis
methodologies, support coordination, and direct the consistent use of available data. As with
many risk management elements, the strategy should help consider the methods available and
provide for a tailored approach that results in effective risk management.

When selecting a risk assessment technique, organizations should consider the costs of analysis
in light of the desired outcome to help determine the most cost-effective technique. An
inexpensive but accurate qualitative analysis that identifies the most risks and leads to mitigating
those risks to the best possible degree may be the right move for a particular organization. For
others, a highly detailed quantitative risk assessment may require more resources than a
qualitative approach but may also provide specific and actionable information that helps to focus
attention on important threat scenarios.

2.3.2 Techniques for Estimating Likelihood and Impact

NISTIR 8286 highlights the need for improved risk analysis when estimating and recording the
likelihood and impact of cybersecurity events and monitoring to ensure that risks remain within
acceptable parameters. To improve enterprise risk estimation accuracy and consistency, CSRM
practitioners are encouraged to explore the use of tools and processes that support measurable
and meaningful risk analysis and reporting.

Some analysis techniques are based on estimates from subject matter experts’ (SMEs) experience
and knowledge. Some methods, such as this SME estimation, can be subjective. Other methods
are more objective and based on analytical considerations, statistical analysis, and scenario
modeling, as well as potentially drawing on knowledge of previous events.

Understanding the intended purpose of the analysis can help one decide which techniques to use.
For example, a detailed and quantified approach may be valuable as a basis for a comprehensive
review or update of the enterprise cybersecurity approach. Detailed evaluation helps to reinforce
defense measures and increase resilience, as in the following example:

Enterprise leaders have learned through an InfraGard alert that there is a high
probability that companies in its sector will be targeted by a particular APT group.

26 It is the intention of this document to introduce the reader to commonly used estimation techniques. The authors defer to
other industry resources for comprehensive details regarding how to perform such analyses.
Because internal cybersecurity risk managers have performed threat modeling based on the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK®) and Pre-ATT&CK frameworks, the company was able to quickly consider high-value assets that would most likely be at risk.

A key TTP of this attack is “password spraying” brute force login attempts. Several critical systems have not yet been updated to support multi-factor authentication and would be vulnerable to such an attack. A poll of the security leaders in the organization (using a Delphi exercise) determined that there is a 50-70% chance that the payroll system will be attacked (the mean value was 60%). A successful attack on that system would have direct and indirect financial impacts of between $1.7 million and $2.4 million USD with the most likely impact being $2.0 million. Therefore, the risk exposure value for this row of the risk register was established at $1.2 million (based on .6 x $2 million).

Notably, the example above provides several ranges of estimates. Some industry specialists have indicated that a range of possible values is more helpful and likely more accurate than a single “point estimate.” Additionally, while this example uses the mean values of those ranges to identify the likelihood and potential impact, the ranges themselves are often recorded in the risk register. In this instance, given a possible impact of “between $1.7 million and $2.4 million,” the exposure may have been presented as “$1.02 million to $1.44 million.”

2.3.2.1 Improving Estimation Based on Knowledge of Prior Events

In many cases, information about previous risk events may be helpful when estimating the likelihood and impact of those in the future. For example, practitioners should consult industry literature, their current power companies, or internet service providers for descriptions of loss events within a given sector or over a particular time frame. To determine the likelihood of a utility outage, the utility provider can be asked to provide details regarding previous disruptions and their duration.

As an example, consider the example organization in the first row in Table 1: Examples of Risk Appetite and Risk Tolerance. It describes a global retail firm at which a senior leader has expressed the risk tolerance statement that “any outage that exceeds four hours for any customer requires significant corrective action.” Risk practitioners can review the actual availability of that website for the previous year (using a table similar to Table 9).

<table>
<thead>
<tr>
<th>Month</th>
<th>Total Hours in the Month</th>
<th># of Hours Unavailable</th>
<th>Outage Customer %</th>
<th>Available Hours (Total Hours Outage)</th>
<th>Appetite Limit (99.95% of Total)</th>
<th>Tolerance Limit (Total - 4 hrs.)</th>
<th>Avail % (Avail. Hours + Total Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>744</td>
<td>1</td>
<td>2.4</td>
<td>743</td>
<td>743.628</td>
<td>739</td>
<td>99.87%</td>
</tr>
<tr>
<td>Feb</td>
<td>672</td>
<td></td>
<td></td>
<td></td>
<td>671.664</td>
<td>668</td>
<td>100.00%</td>
</tr>
<tr>
<td>Mar</td>
<td>744</td>
<td></td>
<td></td>
<td></td>
<td>743.628</td>
<td>740</td>
<td>100.00%</td>
</tr>
<tr>
<td>Apr</td>
<td>720</td>
<td>1.5</td>
<td>4.5</td>
<td>718.5</td>
<td>719.64</td>
<td>714.5</td>
<td>99.79%</td>
</tr>
</tbody>
</table>
In this case, the system did not exceed the risk tolerance since no single outage exceeded four hours, nor did any outage impact more than 5% of customers. While past performance is not a guarantee of future probability, it provides some information that helps inform likelihood estimates. The impact of an outage is likely similar to that in previous iterations. Understanding the probability of an outage given what is known about prior disruption helps organizations consider likely exposure in the future.

When considering each risk in the risk register, practitioners will analyze the likelihood that any risk would result in an impact that would exceed the risk tolerance. That consideration provides a basis for risk treatment decisions, either to ensure sufficient security controls or to review risk tolerance statements to ensure that they represent reasonable and practical expectations.

2.3.2.2 Three-Point Estimation

One method for considering the likelihood or impact of a risk event is three-point estimation. This method, illustrated in Figure 14, is useful because it considers the judgement of available subject matter experts (SMEs). For example, to determine the impact of a successful phishing attack, the risk estimator could poll an SME regarding:

- The most optimistic (or best case) estimate (O),
- A most likely estimate (M), and
- A pessimistic (or worst-case) estimate (P).

Figure 14 illustrates the result of an SME estimating a $80,000 revenue loss due to an attack that would be successful if employees are not properly trained. This first estimate represents a worst-case scenario (pessimistic). The same estimator may suggest that only a $35,000 impact is likely (optimistic) if the attack were successful but limited in spread. Finally, the SME may suggest

![Table](image-url)
that the most likely impact of recovering from such a successful phishing attack would be $50,000. Each of these data points can be used to calculate the expected value (also known as EV, expectation, average, or mean value).

The three datapoints can be categorized as Optimistic ($35,000), Pessimistic ($80,000), and Most likely ($50,000). A simple average of the three numbers (called a Triangular Distribution) is:

$$ EV = \frac{O + P + M}{3} = \frac{35,000 + 80,000 + 50,000}{3} = \frac{165,000}{3} = 55,000 $$

In this phishing attack scenario, perhaps the estimator believes that the pessimistic and optimistic values are too different and that the “most likely” estimate is a better predictor. The estimator can give greater weight (perhaps four times as much) to the “most likely” value using the following standard formula (called the Average for a Beta Distribution):

$$ EV = \frac{P + 4M + O}{6} = \frac{80,000 + 4 \times 50,000 + 35,000}{6} = \frac{255,000}{6} = 42,500 $$

The next question is, “How confident is the estimator regarding this estimated impact of a successful phishing attack?” In three-point estimating, confidence (referred to as sigma, or σ) in the estimated value can be predicted by calculating the standard deviations from the mean. A useful model for determining sigma is $\sigma = \frac{P - O}{6}$.

Figure 15 illustrates these values graphically. Statistical models have demonstrated that one can determine the level of confidence (or confidence interval [CI])29 in the financial estimates given the mean (EV) and standard deviation. For the example above, the estimator will have a 68.27 % confidence level.

29 The NIST Engineering Statistics Handbook points out that a confidence interval generates a lower and upper limit for the mean instead of a single estimate. The interval gives an indication of how much uncertainty there is in the estimate of the true mean. The narrower the interval, the more precise the estimate. (See https://itl.nist.gov/div898/handbook.)
confidence that the financial impact of a successful phishing attack will result in a loss between $39,000 and $66,000. The estimator will have approximately a 95% confidence that the loss will be between $25,500 and $79,500 and a nearly 100% confidence in the $12,000 to $93,000 estimate. This application of CI is useful for each of the analysis methods in this section and helps to represent the level of uncertainty in each of the estimates.

Confidence requirements and standardized methods of calculation should be included in senior leaders’ ERM strategy as part of enterprise risk management policy. This directive helps all risk practitioners in the enterprise consider risk in a similar manner and may help to improve the reliability of likelihood and impact estimates. Additionally, as more information becomes available regarding previous risk results and those of external organizations, this information can be included in the estimation models and used to reduce uncertainty.

Notably, the level of effort for estimating risk factors increases with the required level of rigor. An estimate with very low CI might be simple to develop (perhaps as simple as flipping a coin) but likely offers little value. A CI of 99% may be important in some situations, but the work to develop a more precise estimate can cost significantly more than that required for a 90% CI. Because the appropriate levels of accuracy and precision for cybersecurity risk analysis will vary based on enterprise needs, the techniques and expectations should be clearly defined as part of the enterprise’s risk management guidance.

It is critical that the risk practitioner consider the accuracy of the SME estimates over time to determine who or what source is more accurate and then consider that expert judgement more prominently in calculations for the ongoing risk management cycles. Experts who are overly optimistic or pessimistic create a broad range. However, when accuracy is required, especially when calculating likelihood, knowing who the best estimators are in the organization is vitally important.
2.3.2.3 Event Tree Analysis

Event Tree Analysis (ETA) is a graphical technique that helps practitioners evaluate the downstream impact of a given scenario (as determined in Section 2.2.4.) In the same way that a Root Cause Analysis helps consider previous events that have already led to an event, ETA helps consider the potential consequences of future events. The exercise helps document a sequence of outcomes that could arise following an initiating threat event (e.g., a particular TTP, as described in Section 2.2.2). By iterating through a series of what-if scenarios, the practitioner can analyze each set of circumstances and determine the likelihood that the results would occur.

Figure 11 demonstrates the layered defense that an organization employs to prevent malicious code from being used to exfiltrate data. For each condition, the analyst considers a Boolean (i.e., true or false) answer. The analyst then follows through each iterative outcome until an end result is reached. This analysis can be performed in a qualitative way (using the yes or no conditions), or a probability could be calculated for each scenario. In Figure 11, the probability is calculated based on whether the attack was prevented (Yes) or if the attack was successful (No). Since each branch of the tree represents a binary option, the sum of the two probabilities is always equal to 100 % (or 1.00 in decimal format). In this example, the calculated probabilities provide information about the potential success (or failure) of risk response. The resulting probability (Pr values in the example below) is multiplied by the anticipated financial loss of the scenario. In the tree below, if the anticipated loss of sensitive data being exfiltrated is 1.4 million, then there is a $205,100$ risk exposure (1.4 million x 0.1463).
In the above example, the Event Tree Analysis of the cascading events illustrates the various countermeasures available and the calculated percentage of the success of each defense. A qualitative approach would still describe the Yes/No conditions and outcomes but would not include specific probabilities of each branch. While such an analysis might be less helpful than a quantitative approach, it would still provide meaningful information about potential harmful impacts to the organization and the sequence of events leading to those consequences.

2.3.2.4 Monte Carlo Simulation

While expert judgement is valuable in estimating risk parameters, one way to reduce subjectivity is to supplement that judgement using simulation models. For example, using the Monte Carlo method, the above parameters could be modeled repeatedly (perhaps several hundred thousand cycles) to help account for the many random variables inherent in cybersecurity risks. Simulation is not always necessary, but with the variables for considering likelihood and impact values (based on the factors described in Section 2.2), randomly sampled probabilities can help identify a range of possible values. The results of such a simulation can be plotted on a graph or distribution to facilitate a visual understanding.

30 An example implementation of a Monte Carlo analysis is available from NIST’s Engineering Lab at https://www.nist.gov/services-resources/software/monte-carlo-tool.
For example, when calculating the financial impact of the attack on the payroll system (from the example above), practitioners can use a simulation model to consider the most likely range between the low value ($1.7 million) and the high value ($2.4 million). The result of this simulation could be recorded as a histogram that records the frequency at which certain random values occurred, in this case resulting in a simulated estimated impact of $2 million.

Figure 17: Illustration of a Histogram from a Monte Carlo Estimation Simulation

2.3.2.5 Bayesian Analysis

While there is value in using expert judgement to help estimate risk parameters, it might be improved based on information known from prior events, and the results may represent a more objective determination. For example, if the organization has identified that several critical software vulnerabilities have remained uncorrected, there is an increased likelihood that a threat actor will be able to exploit a software vulnerability to successfully gain access to the enterprise and exfiltrate valuable data. Bayesian analysis describes methods for considering conditional probability – applying a distribution model and a set of known prior data to help estimate the probability of a future outcome.

While an SME might render an opinion regarding how likely a breach might be, that opinion can be improved by what the enterprise risk managers already know about the success of previous attempts by others or about the success of adversaries in similar enterprises. Prior knowledge, drawn from internal observations and events at similar organizations can be of significant value for improving the accuracy and reliability of estimates, such as those for determining the likelihood of an impactful event or for estimating the impact of that uncertainty on the enterprise objectives. Similar methods can be used to estimate whether several conditions might occur (joint probability) or that certain conditions would occur given other external variables (marginal probability).
2.4 Determination and Documentation of Risk Exposure

Once the probability that an impactful event will occur has been determined and the most probable impact of such an occurrence has been calculated, the information is recorded in the risk register. Figure 18 shows how an organization can record this information.

![Figure 18: Example Quantitative Analysis Results](image)

Figure 19 provides an illustration of similar information in a qualitative manner.

![Figure 19: Example Qualitative Analysis Results](image)

In this example, internal SMEs feel that the likelihood of an attack on the organization’s mobile banking application is high. A survey of the SMEs reflects their determination that the impact to the organization if customers experience such an event would be high based on customers’ perception that the application lacked sufficient security protections. In this case, the practitioner would use the enterprise assessment scale for determining qualitative risk, such as the application of Table I-2, Assessment Scale – Level of Risk (Combination of Likelihood and Impact), from SP 800-30, Revision 1. Based on that table, an event with a high likelihood and high impact would be ranked as a high exposure. As an example, this decision would help inform the selection of strong user authentication and encryption controls.

Risk priority is described in NISTIR 8286B and will be determined based on mission objectives, enterprise strategy, and the results of comprehensive risk identification and analysis activities.
3 Conclusion

The use of the methods and templates described in this report supports effective communication and coordination of ERM and CSRM activities. As described in NISTIR 8286, understanding the expectations of senior leaders and business managers regarding risk is a key input for managing cybersecurity risk at the business and system levels. This is reflected by including the determination of enterprise risk appetite and organizational risk tolerance among the first tasks in both the Cybersecurity Framework and the NIST Risk Management Framework.

![Notional Cybersecurity Risk Register](image)

Once these expectations have been defined and communicated, practitioners can use various methods to ensure that risk is managed to stay within the limits articulated. They do this by identifying potential risks (as described in Section 2.2), estimating the probability that an impactful event will occur, calculating the potential harm to the enterprise after such an event, and analyzing the actual risk exposure (the product of likelihood and impact).

Industry practitioners have demonstrated that applying risk analysis techniques like those described in Section 2.3 can be helpful for identifying, responding to, and monitoring enterprise cybersecurity risk. While statistical analysis has been available for hundreds of years, many within the CSRM community have only recently recognized the value of applying a more quantitative approach to risk estimation. It seems likely that those in the CSRM domain will continue to develop and improve statistical methods to estimate risk and include guidance regarding the application of various statistical distribution models.

Responses to previous requests for information have indicated that enterprise risk managers desire increased rigor in the manner in which risk identification, analysis, and reporting are performed. This publication is designed to provide guidance and to further conversations regarding ways to improve CSRM and the coordination of CSRM with ERM. Subsequent publications in this series will describe improvements to the manner in which risk scenarios are prioritized, treated, and reported. Through the NISTIR 8286 series publications, NIST will continue to collaborate with public- and private-sector communities to address methods for improving the integration and coordination of ERM and CSRM.
References

Appendix A—Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

AIS Automated Indicator Sharing
ALE Annualized Loss Expectancy
APT Advanced Persistent Threat
BIA Business Impact Analysis
CCE Common Configuration Enumeration
CDM Continuous Diagnostics and Mitigation
CI Confidence Interval
CISA Cybersecurity and Infrastructure Security Agency
CMDB Configuration Management Database
CPE Common Platform Enumeration
CSRM Cybersecurity Risk Management
CTI Cyber Threat Intelligence
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DHS Department of Homeland Security
DIB Defense Industrial Base
DISCE U.S. Department of Defense Information Sharing Environment
ERM Enterprise Risk Management
ETA Event Tree Analysis
EV Expected Value
FOIA Freedom of Information Act
HVA High-Value Asset
1559 IDS Intrusion Detection Systems
1560 IEC International Electrotechnical Commission
1561 IoC Indicators of Compromise
1562 ISAC Information Sharing Analysis Center
1563 ISAO Information Sharing and Analysis Organization
1564 ITAM Information Technology Asset Management
1565 ITL Information Technology Laboratory
1566 NCCIC National Cybersecurity and Communications Integration Center
1567 NISTIR NIST Interagency or Internal Report
1568 NTCTF NSA/CSS Technical Cyber Threat Framework
1569 NVD National Vulnerability Database
1570 OLIR Online Informative References
1571 OMB Office of Management and Budget
1572 OVAL Open Vulnerability Assessment Language
1573 RMF Risk Management Framework
1574 SCAP Security Content Automation Protocol
1575 SIEM Security Incident Event Monitoring
1576 SME Subject Matter Experts
1577 SWOT Strength, Weakness, Opportunity, Threat
1578 TTP Tactics, Techniques, and Procedures
1579 VPN Virtual Private Network
NISTIR 8286 pointed out that it may be helpful to record specific attributes and information about risk identification in a *risk detail record*, or RDR. As shown in the following notional example, an RDR may help provide information regarding each risk; roles and stakeholders involved in risk decisions and management; schedule considerations, such as the date the risk was first documented and the date of the next expected assessment; and risk response decisions and follow-up, including detailed plans, status, and risk indicators.

Notional Risk Detail Record

<table>
<thead>
<tr>
<th>Risk ID Number(s)</th>
<th>System Affected:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organization or business unit:</td>
</tr>
<tr>
<td>Risk Scenario Description</td>
<td>Asset(s) Affected</td>
</tr>
<tr>
<td>Threat Source(s) / Actor(s) (with intent? with motivation?)</td>
<td>Threat Vector(s)</td>
</tr>
<tr>
<td>Threat Event(s)</td>
<td>Vulnerability / Predisposing Conditions</td>
</tr>
<tr>
<td>Primary Adverse Impact (be sure to reconcile impact vs consequences)</td>
<td>Secondary Adverse Impact(s)</td>
</tr>
<tr>
<td>Risk Category</td>
<td>Other scenario details</td>
</tr>
<tr>
<td>Current Risk Analysis</td>
<td>Likelihood before controls (%):</td>
</tr>
<tr>
<td>Impact before controls ($)</td>
<td>Exposure Rating before controls ($)</td>
</tr>
<tr>
<td>Planned Residual Risk Response as Implemented</td>
<td>Actual Response Cost ($)</td>
</tr>
<tr>
<td>Planned Risk Response Description</td>
<td>Resource Requirements for Planned Risk Response</td>
</tr>
<tr>
<td>Planned Response Cost ($)</td>
<td>Likelihood after controls will be (%)</td>
</tr>
<tr>
<td>Impact ($)</td>
<td>Expected Exposure Rating ($)</td>
</tr>
<tr>
<td>Residual Risk Response as Implemented</td>
<td>After controls are in place, measured Likelihood is (%)</td>
</tr>
<tr>
<td>Risk owner / point of contact</td>
<td>Impact ($)</td>
</tr>
</tbody>
</table>

Figure 21: Notional Risk Detail Record